

Traffic Impact Assessment Study Final Report Novemeber 2023

Tel: 3488 5449 Fax: 3020 0370 http:// www.ozzotec.com

Traffic Impact Assessment Study Final Report November 2023

Contents Amendment Record

This report has been issued and amended as follows:

Revision	Description	Prepared / Date	Checked / Date	Approved / Date
0	Draft Final Report	22/10/2023 CW	27/10/2023 OC	27/10/2023 OC
0a	Final Report	6/11/2023 CW	6/11/2023 OC	6/11/2023 OC

CONTENT

		Page
1	INTRODUCTION	1
1.1	Background	1
1.2	Study Objectives	1
1.3	Report Structure	2
2	THE PROPOSED DEVELOPMENT	3
2.1	Site Location and Study Area	3
2.2	The Proposed Development Parameters	3
2.3	Vehicular and Pedestrian Access Arrangements	3
2.4	Internal Transport Provisions	4
3	EXISTING TRAFFIC CONDITION	5
3.1	Existing Road Network	5
3.2	Existing Public Transport Services	5
3.3	Existing Peak Hour Traffic	6
3.4	Existing Junction Performance	6
3.5	Existing Link Performance	7
4	FUTURE TRAFFIC SITUATION	9
4.1	Design Year	9
4.2	Methodology	9
4.3	Historical Traffic Growth	10
4.4	Future Developments in the Area	11
4.5	New Transport Infrastructure	11
4.6	2037 Background Traffic Flows	11
4.7	2037 Reference Traffic Flows	11
4.8	Development Trip Generations	13
4.9	2037 Design Traffic Flows	15
5	TRAFFIC IMPACT ASSESSMENT	16
5.1	2037 Junction Assessments	16
5.2	2037 Link Assessments	16
5.3	Pedestrian Impact Assessments	18
6	SUMMARY AND CONCLUSIONS	20
6.1	Summary	20
6.2	Conclusions	21

LIST OF TABLES

		Page
Table 2-1	Summary of Proposed Development Parameters	3
Table 2-2	Proposed Parking and Loading/ Unloading Provisions	4
Table 3-1	Public Transport Services in Vicinity of the Site	5
Table 3-2	Passenger Car Unit Conversion Factors	6
Table 3-3	2023 Peak Hour Performance at Key Junctions	7
Table 3-4	2023 Peak Hour Performance of Key Road Links	7
Table 4-1	Average Annual Daily Traffic from Annual Traffic Census	10
Table 4-2	2019-Based TPEDM for Southern District	11
Table 4-3	Estimated Peak Hour Traffic by Planned/Committed Developments	12
Table 4-4	Wah Fu Estate Redevelopment and Five Public Housing Sites in Pok	Fu
	Lam South Flat Numbers	13
Table 4-5	Estimated Peak Hour Development Traffic	13
Table 4-6	Distribution of Peak Hour Development Traffic	14
Table 5-1	2037 Peak Hour Performance at Key Junctions	16
Table 5-2	2037 Peak Hour Road Link Performances	17
Table 5-3	2023 Hourly Pedestrian Flows and Nos. of Stopped Buses at Northbol	und
	and Southbound Bus stops	18
Table 5-4	2023 Observed Pedestrian Flows and Estimated Pedestrian Flows by	
	Proposed Development	19

LIST OF FIGURES

Figure 2-1	Site Location and Study Area
Figure 2-2	Proposed Run-In/Out at Pok Fu Lam Road
Figure 2-3	Major Access Routes to / from the South
Figure 2-4	Major Access Routes to / from the North
Figure 3-1	Existing Public Transport Inventory
Figure 3-2	Locations of Surveyed Junctions
Figure 3-3	2023 Observed Peak Hour Traffic Flows
Figure 4-1	2037 Reference Peak Hour Traffic Flows
Figure 4-2	Peak Hour Development Traffic Flows
Figure 4-3	2037 Design Peak Hour Traffic Flows

APPENDICES

Appendix A Layout Plans and Sectional Plar	Appendix A	Layout Pla	ans and Sec	tional Plans
--	------------	------------	-------------	--------------

Appendix B Vehicle Swept Path Assessment Results

Appendix C 2023 Junction Calculation Sheets

Appendix D Existing Development Traffic by Ebenezer School & Home for the Visually Impaired

Appendix E 2037 Junction Calculation Sheets

1 INTRODUCTION

1.1 Background

- 1.1.1 The Applicant intents redevelop the site at No. 131, Pok Fu Lam Road, Pok Fu Lam ("the Site"), currently the Ebenezer School & Home for the Visually Impaired, to a residential development ("Proposed Development").
- 1.1.2 Under the Approved Pok Fu Lam OZP No.: S/H10/21, gazetted on 30 May 2023, the Site is zoned as "R(C)7" with the maximum plot ratio (PR) of 1.9 and building height (BH) of 151mPD. According to the OZP, a layout plan shall be submitted via Section 16 application for the approval of the TPB for any new development or redevelopment of an existing building at sub-area "R(C)7.
- 1.1.3 In addition, the Applicant proposes to increase the BH of the Proposed Development to 164mPD.
- 1.1.4 Ozzo Technology (HK) Limited are commissioned to undertake a Traffic Impact Assessment (TIA) Study, in support of the Section 16 application for the minor relaxation of Building Height Restriction (BHR) for the Proposed Development. The main objective of the study is to assess the potential traffic impact to be induced by the proposed residential development on the road network in the vicinity of the Site.

1.2 Study Objectives

- 1.2.1 The main objectives of the TIA study are as follows:
 - To review the existing traffic situation of the surrounding road network:
 - To estimate the potential traffic generations/attractions to be induced by the Proposed Development;
 - To assess the future traffic situation of the surrounding road network;
 - To appraise the potential traffic impact on the surrounding road network and to recommend improvement proposals, if required; and
 - To advise on the access arrangements and internal transport provisions.

1.3 Report Structure

- 1.3.1 Following this introductory chapter, this report is arranged as follow:
 - Chapter 2 describes the Proposed Residential development;
 - Chapter 3 summarizes the existing traffic conditions in the vicinity of the Site;
 - Chapter 4 describes the methodology of traffic forecasts;
 - Chapter 5 presents the results of traffic impact assessment; and
 - a summary of the findings and conclusion of this TIA study are given in Chapter 6.

2 THE PROPOSED DEVELOPMENT

2.1 Site Location and Study Area

2.1.1 **Figure 2-1** shows the location of the Site, located at No. 131 Pok Fu Lam Road, Pok Fu Lam. The figure also shows the proposed Study Area for this TIA Study which includes the key junctions in the vicinity of the Site.

2.2 The Proposed Development Parameters

- 2.2.1 The Site is currently occupied by Ebenezer School & Home for the Visually Impaired. It is proposed to demolish the existing buildings and construct 4 residential blocks providing totals of 135 flat units with average flat size of 90.9 m² ("The Proposed Development").
- 2.2.2 **Table 2-1** summarizes the development parameters of the Proposed Development.

Table 2-1 Summary of Proposed Development Parameters

Parameters	Proposed		
Site Area	6,460m ²		
Residential GFA	12,274m²		
Residential Plot Ratio	1.9		
Total No. of Residential Units	135		
Average Flat Size	90.9 m²		

2.3 Vehicular and Pedestrian Access Arrangements

- 2.3.1 **Figure 2-2** shows the proposed run-in/out at Pok Fu Lam Road in which only left-in /left-out movements are allowed. As shown in the figure, a minimum sight distance of 100m would be available by relocating the existing bus-stop around 65m towards the north. With the proposed left-in/ left-out arrangement, **Figures 2-3 and 2-4** shows the access routes to / from the north and south of Pok Fu Lam area respectively.
- 2.3.2 The main pedestrian access for the proposed development is also situated at Pok Fu Lam Road near the relocated bus-stop. In addition, for the benefit of general public, the footpath adjacent to the northbound carriageway of Pok Fu Lam Road will be widened from currently 1.9 2.0 m to around 2.5m.

2.4 Internal Transport Provisions

2.4.1 **Table 2-2** summarizes the car parking and loading/ unloading provisions for the Proposed Development and which accord with the relevant standards and requirements as stipulated in the Hong Kong Planning Standards and Guidelines (HKPSG).

Table 2-2 Proposed Parking and Loading/ Unloading Provisions

Vehicle	HKPSG Requirements (Private Ho		.	Minimum		
Туре	Criteria	Required	Proposed	Size	Headroom	
	Parking I	Provisions	•	•		
	9 nos. of flats with 40-70 m ² Requirement = GPS x R1 x R2 x R3 GPS = 1 space per 4-7 flats R1 = 1.2 ⁽¹⁾ ; R2 = 1.00 ⁽²⁾ ; R3 = 1.10 ⁽³⁾	2 - 3	3	5m x 2.5m	2.4m	
Resident Car Parking	86 nos. of flats with 70-100 m ² Requirement = GPS x R1 x R2 x R3 GPS = 1 space per 4-7 flats R1 = 2.4(1); R2 = 1.00(2); R3 = 1.10(3)	33 – 57	57	5m x 2.5m	2.4m	
	40 nos. of flats with 100-130 m ² Requirement = GPS x R1 x R2 x R3 GPS = 1 space per 4-7 flats R1 = 4.1(1); R2 = 1.00(2); R3 = 1.10(3)	26 - 46	46	5m x 2.5m	2.4m	
Total		61 - 106	106 (incl. 5 Accessible)	5m x 2.5m (5m x 3.5m)	2.4m	
Motorcycle Parking			1	1m x 2.4m	2.4m	
	Loading/ Unloading Spaces					
M/HGV	Minimum of 1 loading /unloading bay for each housing block	4	4	11m x 3.5m	4.7m	

Notes: (1) Demand Adjustment Ratio (R1) = 1.2 for $40m^2$ <Flat size $\leq 70m^2$, 2.4 for $70m^2$ <Flat size $\leq 100m^2$, 4.2 for $100m^2$ <Flat size $\leq 130m^2$

- 2.4.2 Totals of 106 nos. of car parking spaces and one motorcycle parking space will be provided within the development in accordance with the requirements by HKPSG. Also, totals of 4 goods vehicle bays will be provided with one bay located near each residential block. The layout plans for car parking spaces and loading/unloading bays on each respective level with sectional plans are given in **Appendix A** for reference.
- 2.4.3 Vehicle swept path assessments are undertaken and the results are presented in **Appendix B**.

⁽²⁾ Accessibility Adjustment Ratio (R2) = 1.00 outside a 500m-radius rail station

⁽³⁾ Development Intensity Adjustment Ratio (R3) = 1.10 for 1.00 < Domestic Plot Ratio ≤ 2.00

3 EXISTING TRAFFIC CONDITION

3.1 Existing Road Network

- 3.1.1 **Figure 2-1** shows the existing road network in the Study Area. The main road in the Study Area, Pok Fu Lam Road, is a Primary Distributor road and a major north-south corridor linking Pok Fu Lam with Western District to the north and Aberdeen in the south.
- 3.1.2 The Site can only be accessed via Pok Fu Lam Road and the section of Pok Fu Lam Road fronting the Site is an undivided 4-lane carriageway. Left-in/left-out movements only are proposed at the new run-in/run-out.

3.2 Existing Public Transport Services

3.2.1 **Figure 3-1** shows the existing public transport provisions in the vicinity of the Site with details of the existing public transport services described in **Table 3-1**.

Table 3-1 Public Transport Services in Vicinity of the Site

Route No.	Termina	Frequency (Mins)	
		Franchised Bus Services	
CTB 4	Wong Chuk Hang / Wah Fu (South)	Central	Daily service every 15-25 mins
CTB 4X	Wah Fu (South)	Central (Exchange Square)	Mon to Sat service for every 10-20 mins
CTB 7	Central (Ferry Piers)	Shek Pai Wan	Daily service every 15-25 mins
CTB 30X	Cyberport	Admiralty (East)	Daily service every 15-25 mins
CTB 33X	Cyberport	Sai Wan Ho	Mon to Fri service for 2 departures at AM peak and 3 departures at PM peak
CTB 37A	Chi Fu Fa Yuen	Central (Circular)	Daily service every 6-25 mins
CTB 37B	Chi Fu Fa Yuen	Admiralty (Circular)	Daily service every 9-20 mins
CTB 37X	Chi Fu Fa Yuen	Admiralty (Circular)	Mon to Sat service for every 7-20 mins during AM Peak
CTB 40	Wah Fu (North)	Exhibition Centre Station	Daily service every 11-30 mins
CTB 40M	Wah Fu (North)	Exhibition Centre Station	Daily service every 14-30 mins
CTB 40P	Wah Fu (North) / Wah Kwai / Sham Wan	Robinson Road	School Days service for 6 departures at AM peak
CTB 71	Wong Chuk Hang	Central (Rumsey Street)	Mon to Fri service for every 25-35 mins during AM peak
CTB 71P	Sham Wan	Central (Ferry Piers)	Mon to Sat service for 1 departure at AM peak
CTB 90B	South Horizons	Admiralty (East)	Daily service every 10-25 mins
CTB 91	Ap Lei Chau Estate	Central (Ferry Piers)	Daily service every 10-30 mins
CTB 93	South Horizons / Ap Lei Chau Estate	Robinson Road	School Days service for 4 departures at AM peak

Route No.	Termination Points		Frequency (Mins)	
		Franchised Bus Services		
CTB 93A	Lei Tung Estate	Robinson Road	School Days service for 1 departure at AM peak	
CTB 93C	Tin Wan / Ap Lei Chau Main Street	Caine Road	School Days service for 2 departures at AM peak	
CTB 970	Cyberport	So Uk Estate	Daily service every 5-20 mins	
CTB 970X	Aberdeen	Cheung Sha Wan (Kom Tsun Street)	Daily service every 9-25 mins	
CTB 973	Stanley Market	Tsim Sha Tsui (Mody Road)	Daily service every 30-60 mins	
CTB A10	Ap Lei Chau (Lee Lok Street)	Airport	Daily service every 30-120 mins	

3.3 Existing Peak Hour Traffic

- 3.3.1 To gain an understanding of the existing traffic condition in the Study Area, classified turning movement counts were undertaken at the key junctions in the vicinity of the Site on 5 September 2023 (Tuesday) over the AM and PM peak periods between 07:00 to 10:00 and 16:00 to 19:00 respectively. Figure 3-2 shows the locations of the surveyed road links and junctions.
- 3.3.2 All vehicle flows in the subsequent analysis have been converted to passenger car unit (PCU) based on the PCU factors as indicated in Table 2.3.1.1 of Volume 2 of Transport Planning and Design Manual (TPDM) and shown in **Table 3-2**.

Table 3-2 Passenger Car Unit Conversion Factors

Valida Tura	PCU Conversion Factor			
Vehicle Type	Traffic Signal	Priority		
Car / Taxi	1.00	1.00		
Public Light Bus / Minibus	1.50	1.50		
Light Goods Vehicle	1.50	1.50		
Medium/ Heavy Goods Vehicle	1.75	2.80		
Bus / Coach	2.00	2.80		

Source: Table 2.3.1.1, Chapter 2.3, Volume 2, TPDM-2023

3.3.3 By applying the above PCU factors, vehicular traffic flows in PCUs are calculated and the AM and PM peak hour is identified to occur at 07:45 - 08:45 and 17:45 - 18:45 respectively. **Figure 3-3** presents the observed AM and PM peak hour traffic flows on the road network in the vicinity of the Site.

3.4 Existing Junction Performance

3.4.1 Based on the existing traffic flows, the peak hour performance of the key junctions in the vicinity of the Site on a typical weekday are assessed. The assessment results are indicated in **Table 3-3** and detailed junction calculation sheets are given in **Appendix C**.

Table 3-3 2023 Peak Hour Performance at Key Junctions

Jn. ID.	Location	Туре	Capacity Index ⁽¹⁾	AM Peak	PM Peak
J1	Pok Fu Lam Road / Smithfield / Mount Davis Road	Signal	RC ⁽¹⁾	37.8%	31.6%
J2	Pok Fu Lam Road / Bisney Road	Priority	RC	0.29	0.25
J3	Pok Fu Lam Road / Access Road to Queen Mary Hospital	Priority	DFC ⁽²⁾	0.28	0.19
J4	Pok Fu Lam Road / Access Road to Ebenezer New Hope School	Priority	DFC	0.29	0.01
J5	Pok Fu Lam Road / Chi Fu Road (N)	Priority	DFC	0.24	0.14
J6	Pok Fu Lam Road / Chi Fu Road (S)	Priority	DFC	0.45	0.22
J7A	Pok Fu Lam Road / Sassoon Road (W)	Priority	DFC	0.73	0.56
J7B	Pok Fu Lam Road / Sassoon Road (E)	Signal	RC	24.8%	23.5%
J8	Chi Fu Road/ Pok Fu Lam Road/ Claymore Ave	Priority	DFC	0.20	0.16

Notes:

- (1) The Capacity Index for Signal controlled junction is Reserve Capacity (RC)
- (2) The Capacity Index for Priority Junction is Design Flow to Capacity Ratio (DFC)

3.4.2 The Reserve Capacity (RC) of signal-controlled junctions are calculated based on the actual green time for each phase of the traffic signals observed on-site and hence reflect the actual traffic situations at the respective junctions during the AM and PM peak hours. The results reveal that all the key junctions within the Study Area operate satisfactorily during the AM and PM peak hours of a typical weekday in 2023.

3.5 Existing Link Performance

3.5.1 Based on the existing traffic flows, the peak hour performance of the key links in the vicinity of the Site on a typical weekday are also assessed. The assessment results are indicated in **Table 3-4**. The locations of the key links are shown in **Figure 3-2**.

Table 3-4 2023 Peak Hour Performance of Key Road Links

Link. Section		Direction	Design	Flows	AM Peak		PM Peak	
ID.	Section	Direction	Capacity	(Veh/hr)	Flows	P/Df	Flows	P/Df
1.1	Pok Fu Lam Road	NB	2,800	Flows	1,930	0.69	1,726	0,62
L1	between Mount Davis Road and Bisney Road	SB	2,800	Flows	1,401	0.50	1,170	0.42

L2	Pok Fu Lam Road	NB	2,600	Flows	1,054	0.41	893	0.34
LZ	between Bisney Road and the Application Site	SB	2,600	Flows	740	0.28	621	0.24
	Pok Fu Lam Road between the Application	NB	2,600	Flows	1,150	0.44	929	0.36
L3	Site and Chi Fu Road (North side)	SB	2,600	Flows	813	0.31	651	0.25
	Pok Fu Lam Road between Chi Fu Road	NB	2,600	Flows	998	0.38	856	0.33
L4	(North side) and Victoria Road	SB	2,600	Flows	764	0.29	566	0.22
L5	Elevated Chi Fu Road	WB	475	Flows	263	0.55	132	0.28
LO	connecting to Pok Fu Lam Road North Bound	EB	475	Flows	36	0.08	44	0.09

3.5.2 The results show that the key road links in the vicinity of the Proposed Development operate within capacity during both the AM and PM peak hours in 2023.

4 FUTURE TRAFFIC SITUATION

4.1 Design Year

4.1.1 The anticipated completion year of the Proposed Development is by 2034 and hence the "Design Year" for this TIA study is set as 2037, i.e. 3 years after the operation year.

4.2 Methodology

- 4.2.1 In forecasting the future traffic flows on the road network in the Study Area, references are made to the following sources of information which include:
 - Historical traffic data from Annual Traffic Census (ATC);
 - The forecast population and employment from the 2019-based Territorial Population and Employment Data Matrices (TPEDM) planning data published by Planning Department;
 - Committed and planned developments in the Study Area;
 - New transport infrastructure in the district.
- 4.2.2 The following steps are undertaken to derive the 2037 Peak Hour Reference Flows (i.e. without the Proposed Development) and Design Flows (i.e. with the Proposed Development):

2037 Background Flows = 2023 Flows x annual growth factors

2037 Reference Flows = 2037 Background Flows + additional

traffic generated by planned/committed

developments

2037 Design Flows = 2037 Reference Flows + additional traffic

generated by the Proposed Development

4.2.3 The traffic impact to be induced by the Proposed Development is assessed by comparing the 2037 Peak Hour Reference Traffic Flows against the 2037 Design Traffic Flows.

4.3 Historical Traffic Growth

4.3.1 To gain an understanding of the historical trends of traffic growth on the nearby road network, relevant traffic data over the 5-year period of 2013 to 2018 are extracted from the Annual Traffic Census (ATC) Reports for the ATC stations in the Study Area. **Table 4-1** describes the locations of the ATC stations and provides the corresponding traffic data.

Table 4-1 Average Annual Daily Traffic from Annual Traffic Census

Station	Road	Betv	veen	2013	2014	2015	2016	2017	2018	Average Growth Rate p.a.
2201	Pok Fu	Pokfield	Mount	30,260	29,680	31,640	31,990	31,440	31,560	+0.84%
2201	Lam Rd	Rd	Davis Rd		-1.92%	-0.43%	1.11%	-1.72%	0.38%	+0.0 4 /0
2407	Smithfield	Pok Fu	Lung Wah	8,510	8,000	9,160	8,840	9,910	10,400	+4.09%
2407	Rd	Lam Rd	St		-5.99%	-0.43%	-3.49%	12.10%	4.94%	+4.09%
1836	Mount	Victoria	Pok Fu	1,770	1,760	1,700	1,930	1,890	1,900	+1.43%
1030	Davis Rd	Rd	Lam Rd		-0.56%	-0.43%	13.53%	-2.07%	0.53%	+1.43%
1811	Pok Fu	Mount	Dianay Dd	36,080	35,920	36,380	42,330	39,700	40,390	+2.28%
1011	Lam Rd	Davis Rd	Bisney Rd		-0.44%	-0.43%	16.36%	-6.21%	1.74%	+2.20%
1602	Pok Fu	Sassoon	Dianay Dd	36,610	36,460	40,540	39,900	38,970	39,650	.1 610/
1603	Lam Rd	Rd	Bisney Rd		-0.41%	-0.43%	-1.58%	-2.33%	1.74%	+1.61%
0004	Diamari Dd	Pok Fu	Consort	3,280	3,210	3,130	3,310	3,110	2,700	2 020/
2604	Bisney Rd	Lam Rd	Rise		-2.13%	-0.43%	5.75%	-6.04%	-13.18%	-3.82%
1005	Pok Fu	Sassoon	Oh: E., D.	25,910	26,800	26,570	27,000	25,800	25,760	0.400/
1005	Lam Rd	Rd	Chi Fu Rd		3.43%	-0.43%	1.62%	-4.44%	-0.16%	-0.12%
1405	Pok Fu	Oh: F., D.	Victoria	24,980	26,120	25,740	25,740	25,140	25,570	.0.470/
1405	Lam Rd	Chi Fu Rd	Rd		4.56%	-0.43%	0.00%	-2.33%	1.71%	+0.47%
0000	Oh: F., D.	Pok Fu	Pok Fu	5,400	5,260	5410	5,630	5,590	4,860	0.000/
2609	Chi Fu Rd	Lam Rd	Lam Rd		-2.59%	-0.43%	4.07%	-0.71%	-13.06%	-2.09%
1004	Shek Pai	Victoria	Wah Fu	36,710	26,440	26,780	26,780	26,150	33,340	1 010/
1204	Wan Rd	Rd	Rd		-27.98%	-0.43%	0.00%	-2.35%	27.50%	-1.91%
			Tatal	209,510	199,650	207,050	213,450	207,700	216,130	10 620/
			Total		-4.71%	3.71%	3.09%	-2.69%	4.06%	+0.62%

Source: 2013-2018 Annual Traffic Census (ATC) Reports published by Transport Department

- 4.3.2 It is noted that due to the impact of social events in 2019 and Covid-19 over the period of 2020-2022, the ATC traffic data between 2019 and 2021 are not included in the above assessment of historic trends of traffic growth in the area.
- 4.3.3 As indicated in **Table 4-1**, there was a slight increase of traffic volume (+0.62% per annum) on the road network in the vicinity of the Proposed Development over the period of 2013 2018.

4.4 Future Developments in the Area

4.4.1 References are also made to the 2019-based Territorial Population and Employment Data Matrices (TPEDM) planning data published by Planning Department. **Table 4-2** presents the population and employment data in Southern District for 2019 and 2031.

Table 4-2 2019-Based TPEDM for Southern District

			% Growth p.a.
Category	2019	2031	2019-2031
Population ⁽¹⁾	273,150	282,400	0.28%
Employment Places(1)	114,900	116,300	0.10%
Total	388,050	398,700	0.23%

Source: (1) 2019-based TPEDM published by Planning Department.

4.4.2 As shown in the table, the predicted growth of population and employment places in Southern District from 2019 to 2031 is approximately 0.28% and 0.10% per annum respectively.

4.5 New Transport Infrastructure

- 4.5.1 According to the Railway Development Strategy 2014 and Policy Address 2020, the implementation window of the South Island Line (West) is subject to the actual programme for the development and redevelopment of public housing in the Wah Fu area and the "Invigorating Island South initiative" as well as the build-up of transport demand. New stations are proposed at Queen Mary Hospital and Wah Fu along the proposed SIL(W).
- 4.5.2 To provide conservative estimates, the effect of the above new rail infrastructure has not been taken into account in this TIA Study.

4.6 2037 Background Traffic Flows

4.6.1 Taking into consideration of the above information, to provide conservative estimates, it is proposed to adopt an average growth rate of +1.0% per annum, which is higher than the traffic growth over the 5-year period of 2013 to 2018 (Table 4-1) as well as the future development intensity in Southern District (Table 4-2), for estimating the 2037 peak hour Background Traffic Flows in the Study Area.

4.7 2037 Reference Traffic Flows

4.7.1 The planned and committed developments within the Study Area are summarized in **Table 4-3**. The estimated peak hour traffic flows to be generated by these developments are also indicated in the table.

Table 4-3 Estimated Peak Hour Traffic by Planned/Committed Developments

		Ti	affic Flow	s (pcu/hoı	ır)
Location	Use	AM Pea	ak Hour	PM Peak Hour	
Location	USE	Out	ln	Out	ln
Five Public Housing Sites in Pok Fu Lam South	8,900 Public Rental Housing ⁽¹⁾	385	290	211	268
Queen Mary Hospital Redevelopment (New Block)	Operational uses (41 car parking spaces)	40	40	40	40
Rural Building Lot No. 925, High West, Pok Fu Lam	Proposed Residential (2) Institution (Student Hostel)	27	5	5	16
Cyberport Expansion Project	Office / Data Services Platform / Multi-function Hall etc. (about 66,000 m²)(3)	108	143	96	89
East of No.3 Sassoon Road, Pok Fu Lam	HKU New Academic Building On an Extension Site ⁽⁴⁾	13	32	39	16
HKU Pokfield Campus Site	HKU New Academic Complex ⁽⁵⁾	60	66	69	52

Notes:

4.7.2 For Wah Fu Estate Redevelopment, the overall flat production target of about 11,900 additional public housing units is summarized in **Table 4-4**. The reception units at the Five Public Housing Sites, all situated at Pok Fu Lam South, is expected to be completed by 2027. However, there is no timeline yet on the completion of Wah Fu Estate. Hence, the 8900 reception units at the Five Housing Sites for Wah Fu Estate are included in the assessment.

⁽¹⁾ Peak Hour trip rates for Subsidized Public Rental Housing High-Density R(A), average size 40m², extracted from TPDM Volume 1, Chapter 3, Annex D, Table 1

⁽²⁾ Source: TIA report of Approved Planning Application A/H10/94

⁽³⁾ Source: Planning Application A/H10/95 (Appendix 4 – Traffic Technical Note)

⁽⁴⁾ Source: TIA report of Planning Application A/H10/13

⁽⁵⁾ Source: TIA report of Planning Application for Pokfield Campus Site

Table 4-4 Wah Fu Estate Redevelopment and Five Public Housing Sites in Pok Fu Lam South Flat Numbers

Category	Existing	Expected After Completion	Additional
Five Sites	-	8,900	8,900
Wah Fu Estate	9,100	12,100	3,000
Total	9,100	21,000	11,900

Source: Proposed Public Housing Developments in Pokfulam South by Housing Department, MPC Paper No. 5/17

4.7.3 The additional development flows to be generated by the planned/committed development in **Table 4-3** are added to the 2037 Peak Hour Background Traffic to derive the 2037 Peak Hour Reference Traffic Flows (i.e. without the Proposed Development). The results are shown in **Figure 4-1**.

4.8 Development Trip Generations

4.8.1 References are made to the peak hour traffic generation and attraction rates in Transport Planning and Design Manual (TPDM) to estimate the AM and PM peak hour trips to be generated by the Proposed Development. The results are shown in **Table 4-5**. In addition, trip generation surveys at the existing Ebenezer School & Home for the Visually Impaired were undertaken on 5 September 2023 between 07:00 – 10:00 and 16:00 – 19:00. Details of the observed trip data is given in **Appendix D** and the school trips during the commuter AM and PM peak hours, i.e. 07:45 – 08:45 and 17:45 – 18:45 respectively, are also shown in **Table 4-5**.

Table 4-5 Estimated Peak Hour Development Traffic

	AM Peak Hour		PM Pea	ık Hour		
	ln	Out	ln	Out		
Proposed Development (average flat size 90.9 m²)						
Trip Rates (1) (pcu/hr/flat)	0.1219	0.2203	0.1563	0.1115		
Traffic Flows (pcu/hr)	17	30	22	16		
Total 2-way Trips (pcu/hr)	4	7	3	8		
Existing Development – Ebenezer School & Home for the Visually Impaired						
Observed Trip Generations (pcu/hr)	30 20 2 2					

Notes: (1) Peak Hour trip rates for Private Housing: High-Density / R(B) – Upper Limit with Average Flat Size 100m², extracted from TPDM Volume 1, Chapter 3, Appendix 1, Annex C, Table 1.

- 4.8.2 To provide conservative estimates, the higher trip rates from TPDM are adopted. Hence, it is forecast that the Proposed Development would induce total two-way traffic of 47 pcu's (17 in and 30 out) and 38 pcu's (22 in and 16 out) in the AM and PM peak hour respectively.
- 4.8.3 The peak hour development traffic are distributed to the north or south of Pokfulam area with reference to the forecast 2031 population and employment data indicated in the 2019-based TPEDM and assigned to the fastest route taking into account of the left-in / left-out arrangement at the proposed run-in/out. The distribution pattern and assigned routes are summarized in **Table 4-6**.

Table 4-6 Distribution of Peak Hour Development Traffic

District	Population ⁽¹⁾	Employment ⁽¹⁾	Total	Distribution Proportion	Assigned route
Wan Chai / South	414 250	403 350	817 600	6.8%	To Aberdeen direction
Others (except Wan Chai / South)	7 530 500	3 705 900	11 236 400	93.2%	To Pok Fu Lam Road north
Whole Territories	7 944 750	4 109 250	12 054 000	100%	
		To Pro	posed Develo	pment	
Wan Chai / South / Eastern / Kwun Tong / Tseung Kwan O	2 089 700	1 218 050	3 307 750	27.4%	From Aberdeen direction
Others (except Wan Chai / South / Eastern / Kwun Tong / Tseung Kwan O)	5 855 050	2 891 200	8 746 250	72.6%	From Pok Fu Lam Road north
Whole Territories	7 944 750	4 109 250	12 054 000	100%	-

Notes: (1) 2037 Population and Employment Places extracted from 2019-based TPEDM published by Planning Department

As indicated in **Table 4-6**, taking into account of the left-in/left-out arrangement at the proposed run-in/out, it is anticipated that only the development traffic heading towards Wan Chai and Southern districts would take the detour route onto the southbound carriageway of Pok Fu Lam Road as shown in **Figure 2-5** and the traffic to other districts would take the more direct and faster route via Pok Fu Lam Road northbound carriageway. Hence, with reference to the forecast 2031 population and employment places by TPEDM, about 7% of the development traffic are assigned toward Aberdeen direction and around 93% towards Pok Fu Lam north.

- 4.8.5 Similarly, taking into account of the detour routing for accessing traffic due to the left-in/left-out arrangement as shown in **Figure 2-4**, it is expected that the development traffic coming from Wanchai, Southern, Eastern, Kwun Tong and Tseung Kwan O districts, i.e. the eastern part of the HKSAR Territory, would access the proposed development from the south (e.g. via Aberdeen Tunnel). The traffic coming from other districts would take the more direct route via Pok Fu Lam Road north which is still faster than the route from Aberdeen direction in general. As a result, about 27% of the development traffic are assigned from the Aberdeen direction and around 73% from Pok Fu Lam north.
- 4.8.6 According to the distribution pattern, the peak hour development traffic is then assigned to the road network in the Study Area as shown in **Figure 4-2.**

4.9 2037 Design Traffic Flows

4.9.1 The 2037 Peak Hour Design Flows (i.e. with Proposed Development) are derived by adding the peak hour development flows onto the forecast 2037 Peak Hour Reference Flows. To provide the worst case scenario, the existing trips generated by Ebenezer School & Home for the Visually Impaired are not reduced from the 2037 Reference Flows. The final results are shown in **Figure 4-3**.

5 TRAFFIC IMPACT ASSESSMENT

5.1 2037 Junction Assessments

5.1.1 Based on the 2037 Reference Flows (i.e. without Proposed Development) and 2037 Design Flows (i.e. with Proposed Development), junction capacity with detailed calculation sheets provided in **Appendix D**.

Table 5-1 2037 Peak Hour Performance at Key Junctions

Jn.	Location	Toma	Capacity	Refe	ence	Design	
ID.	Location	Туре	Index ⁽¹⁾	AM Peak	PM Peak	AM Peak	PM Peak
J1	Pok Fu Lam Road / Smithfield / Mount Davis Road ⁽²⁾	Signal	RC	21.9%	42.8%	20.8%	42.2%
J2	Pok Fu Lam Road / Bisney Road	Priority	RC	0.39	0.32	0.39	0.32
J3	Pok Fu Lam Road / Access Road to Queen Mary Hospital	Priority	DFC)	0.36	0.23	0.37	0.24
J4	Pok Fu Lam Road / Access Road to Ebenezer New Hope School	Priority	DFC	0.12	0.01	0.13	0.02
J5	Pok Fu Lam Road / Chi Fu Road (N)	Priority	DFC	0.30	0.17	0.30	0.18
J6	Pok Fu Lam Road / Chi Fu Road (S)	Priority	DFC	0.57	0.27	0.57	0.27
J7A	Pok Fu Lam Road / Sassoon Road (W)(3)	Priority	DFC	0.83	0.68	0.83	0.68
J7B	Pok Fu Lam Road / Sassoon Road (E)	Signal	RC	32.2%	22.1%	32.2%	22.1%
J8	Chi Fu Road/ Pok Fu Lam Road/ Claymore Ave	Priority	DFC	0.23	0.19	0.23	0.19

Notes: (1) The Capacity Index for Signal controlled junction is Reserve Capacity (RC)
The Capacity Index for Priority Junction is Design Flow to Capacity Ratio (DFC)

- (2) Based on junction improvement scheme proposed by Queen Mary Hospital Redevelopment Phase 1
- (3) Based on junction improvement scheme proposed by Cyberport Expansion Project (A/H10/95)
- 5.1.2 It is indicated in **Table 5-1** that, all the key junctions in the vicinity of the Site would be operating within capacity during the AM and PM peak hours for both the 2037 Reference (without Proposed Development) and Design (with Proposed Development) scenarios.

5.2 2037 Link Assessments

5.2.1 Based on the 2037 Reference Flows (i.e. without Proposed Development) and 2037 Design Flows (i.e. with Proposed Development), link capacity assessments are undertaken and the results are presented in **Table 5-2**.

Table 5-2 2037 Peak Hour Road Link Performances

Link.	O a stient	Discotion	Design	Flows	Refe	ence	Des	sign					
ID.	Section	Direction	Capacity	(Veh/hr)	AM	РМ	AM	PM					
	Dala Faul and Danel	NB	2,800	Flows	2,293	2,035	2,317	2,047					
L1	Pok Fu Lam Road between Mount Davis	IND	2,000	P/Df	0.82	0.73	0.83	0.73					
LI	Road and Bisney	SB	2,800	Flows	1,704	1,409	1,714	1,423					
Road	SB	2,000	P/Df	0.61	0.50	0.61	0.51						
	Pok Fu Lam Road	NB	2,600	Flows	1,260	1,039	1,286	1,053					
L2	between Bisney Road	IND	2,000	P/Df	0.48	0.40	0.49	0.41					
LZ	and the Application Site	SB	2,600	Flows	881	759	893	774					
	Site	SB	SD	SD	SD	SB	SB	SB 2,000	P/Df	0.34	0.29	0.34	0.3
	Pok Fu Lam Road	NB	2,600	Flows	1,370	1,081	1,385	1,100					
L3	between the	between the	2,000	P/Df	0.53	0.42	0.53	0.42					
LJ	Application Site and Chi Fu Road (North	SB	2,600	Flows	964	793	976	808					
	side)	SD	2,000	P/Df	0.37	0.31	0.38	0.31					
	Pok Fu Lam Road	NB	2,600	Flows	1,148	984	1,152	989					
L4	between Chi Fu Road	IND	2,000	P/Df	0.44	0.38	0.44	0.38					
L4	(North side) and Victoria Road	SB	2,600	Flows	918	690	920	691					
	VICIONA ROAU	SB	2,000	P/Df	0.35	0.27	0.35	0.27					
	Elevated Chi Fu Road	\\/D	475	Flows	303	151	313	165					
L5	connecting to Pok Fu		4/0	P/Df	0.64	0.32	0.66	0.35					
LO	Lam Road North Bound	EB	475	Flows	42	50	42	50					
	Douriu	ED	4/0	P/Df	0.09	0.11	0.09	0.11					

5.2.2 The results show that the key road links in the vicinity of the Application Site operate within capacity during both the AM and PM peak hours in 2031.

5.3 Pedestrian Impact Assessments

Table 5-3 shows the existing pedestrian flows on the footpath adjacent to the Application Site. It is noted that over 85% of the pedestrians are generated by the existing Ebenezer School & Home for the Visually Impaired in particular during the AM and PM school peak hours. The table also shows the nos. of buses observing at the northbound bus stop adjacent to the Site. It is noted that the nos. of stopped buses increased in proportion to the amount of pedestrians on the footpath adjacent to the Site as almost all the pedestrians access the existing school by buses.

Table 5-3 2023 Hourly Pedestrian Flows and Nos. of Buses Observed the Nearby Northbound Bus stop

Hour	Two-way Pedes adja	trian Flows cent to Site	Nos. of buses stopped at the	
Houi	To/From Ebenezer School	Others	Total	northbound bus stop adjacent to Site
7:00-8:00	67	12	79	28
8:00-9:00	116	7	123	28
9:00-10:00	30	3	33	18
10:00-11:00	16	5	21	17
11:00-12:00	15	3	18	15
12:00-13:00	55	6	61	15
13:00-14:00	33	6	39	24
14:00-15:00	26	9	35	14
16:00-17:00	45	7	52	26
17:00-18:00	130	13	143	45
18:00-19:00	37	18	55	35
Total	584	95	679	278

5.3.2 As the existing school will be relocated and replaced by the Proposed Development with 135 residential units only, the amount of pedestrians would be reduced significantly. With reference to the observed pedestrian flows recorded at the nearby residential development which is similar to the Proposed Development in terms of accessibility to public transport services available at Pok Fu Lam Road, **Table 5-4** shows the amount of pedestrians to be generated by the Proposed Development.

Table 5-4 2023 Observed Pedestrian Flows and Estimated Pedestrian Flows by Proposed Development

	Two-way Pedestr Royalton F	ian Flows o		Estimated Two-way Pedestrian Flows by Proposed Development			
Hour	To/From nearby bus stops	Others	Total	To/From nearby bus stops	Others	Total	
7:00-8:00	4	27	31	12	79	91	
8:00-9:00	2	11	13	6	32	38	
9:00-10:00	0	10	10	0	29	29	
10:00-11:00	2	3	5	6	9	15	
11:00-12:00	3	14	17	9	41	50	
12:00-13:00	1	10	11	3	29	32	
13:00-14:00	3	3	6	9	9	18	
14:00-15:00	0	9	9	0	26	26	
15:00-16:00	1	16	17	3	47	50	
16:00-17:00	0	17	17	0	50	50	
17:00-18:00	1	4	5	3	12	15	
18:00-19:00	1	13	14	3	38	41	
Total	18	137	155	54	401	455	

Notes: (1) Totals of 46 flats at Royalton Phase 1 and Phase 2

- 5.3.3 As indicated in **Table 5-4**, with reference to the observed pattern, it is estimated that the Proposed Development would generate a maximum hourly flows of 91 pedestrians and a daily totals of 455 pedestrians.
- 5.3.4 Among the pedestrians generated by the existing residential development, only a small proportion of the pedestrians are heading to/ coming from the nearby bus-stops whereas majority of them are walking along the nearby footpaths for other purposes such as jogging, walking dogs etc. With reference to this, a maximum hourly flow of 12 persons is forecast to access the relocated bus stop adjacent to the Site. As a result, the nos. of buses stopping at the relocated northbound bus-stop would also be reduced significantly to around 5-10 nos. only, i.e. around one stopping bus every 5 10 min.
- 5.3.5 With the reduction of both the amount of pedestrians and nos. of stopped buses at the relocated bus-stop with the Proposed Development, coupled with the proposed footpath widening, the conditions along the footpath and at the bus-stop would be improved.

6 SUMMARY AND CONCLUSIONS

6.1 Summary

- 6.1.1 The Applicant intents to redevelop the Ebenezer School & Home for the Visually Impaired at No. 131 Pok Fu Lam Road, Pok Fu Lam ("the Site") to residential development. The Proposed Residential Development ("the Proposed Development") will provide totals of 135 units with an average flat size of 90.9 m².
- 6.1.2 Ozzo Technology (HK) Limited are commissioned to undertake this Traffic Impact Assessment (TIA) Study to assess the traffic impact to be induced by the Proposed Development on the nearby road network.
- In order to appraise the existing traffic condition in the area, classified turning movement counts were carried out at the key junctions in the vicinity of the Site over the AM and PM peak periods on 5 September 2023 (Tuesday). The AM and PM peak hours are identified to be 07:45 08:45 and 17:45 18:45 respectively.
- Junction capacity assessments are carried out for the AM and PM peak hours for the key junctions in the vicinity of the Site. The results indicate that all the key junctions perform satisfactorily during both the AM and PM peak hours on a weekday in 2023.
- 6.1.5 The planned completion year of the Proposed Development is 2034 and hence the "Design Year" for this TIA study is set as 2037, i.e. 3 years after the completion year. Having reviewed the historical trend of traffic growth in the area and the forecast development intensity in the area, a growth factor of +1.0% per annum is adopted for estimating the 2037 Background Traffic Flows.
- 6.1.6 The peak hour trips to be generated by the planned and committed developments within the Study Area are added to the 2037 Peak Hour Background Flows to derive the 2037 Peak Hour Reference Flows (i.e. without the Proposed Development).
- 6.1.7 With reference to the peak hour trip generation rates extracted from Transport Planning and Design Manual, it is estimated that the Proposed Development would generate two-way traffic of 32 pcu's in the AM peak hour and 18 pcu's in the PM peak hour. The additional development traffic is added to the 2037 Peak Hour Reference Traffic Flows (i.e. without Proposed Development) to derive the 2037 Peak Hour Design Traffic Flows (i.e. with Proposed Development).

- 6.1.8 Traffic impact assessments are undertaken by comparing the performances of key junctions and road links of the 2037 Reference scenario (i.e. without the Proposed Development) against the Design scenario (i.e. with the Proposed Development). As the amount of additional traffic to be generated by the Proposed Development is not significant, the differences in junction and road link performances between the Reference and Design Scenarios are small.
- 6.1.9 The assessment results indicate that all assessed junctions and road links in the vicinity of the Site would perform satisfactorily during the AM and PM peak periods for both the 2037 Reference and Design scenarios.
- 6.1.10 Totals of 106 nos. of car parking spaces, 1 no. of motorcycle parking space and 4 nos. of goods vehicle loading and unloading bays will be provided within the development site in accordance with relevant HKPSG requirements.
- 6.1.11 The amount of pedestrians on the nearby footpaths at Pok Fu Lam Road will be reduced after the relocation of the existing Ebenezer School & Home for the Visually Impaired. Coupled with the proposed footpath widening for the benefit of general public, the conditions along the footpaths and at the bus-stop adjacent to the Site would be improved after the development.

6.2 Conclusions

- 6.2.1 Based on the traffic impact assessment results, it can be concluded that the Proposed Development would not create adverse traffic impact on the surrounding road network.
- 6.2.2 In addition, with the proposed footpath widening adjacent to the Proposed Development, the walking conditions along the footpath will be improved.

Figures

Appendix A

Layout Plans and Sectional Plans

Appendix B

Vehicle Swept Path Assessment Results

Appendix C

2023 Junction Calculation Sheets

OZZO TECHNOLOGY (HK) LIMITED TRAFFIC SIGNAL CALCULATION INITIALS DATE S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP PROJECT NO .: 82786 Prepared By: CW Nov-23 J1: Pok Fu Lam Road / Mount Davis Road / Smithfield FILENAME: Checked By: OC Nov-23 2023 AM 2023 Observed AM Peak Hour Traffic Flows J1_PokFuLamRd_MountDavisRd_Smithfield Reviewed By: OC Nov-23

Existing Cycle Time
Cycle time C = 135 sec Sum(y) Y = 0.527 Loss time L = 19 sec
Sum(y) Y = 0.527 Loss time L = 19 sec
Loss time L = 19 sec
Total Flow = 3897 pcu
Co = $(1.5*L+5)/(1-Y)$ = 70.9 sec
Cm = L/(1-Y) = 40.2 sec
Yult = 0.758
R.C.ult = (Yult-Y)/Y*100% = 43.7 %
Cp = 0.9*L/(0.9-Y) = 45.9 sec
Ymax = 1-L/C = 0.859
R.C.(P) = (0.9/Xmax-1)*100% = 37.8 %
R.C.(C) = (0.9*Ymax-Y)/Y*100% = 46.7 %

(1) (1) (1) (1) (P6) (1) (1) (P9)	(P7) (2) (P6) (3) (2)	(P8) (P10) (4) (4) (4) (3)	(5) (P8) (P8) (P6)	
Stage A Int = 12	Stage B Int = 0	Stage C Int = 5	Stage D Int = 5	

Pedestrian	Stage	Width	Gree	n Time Requ	uired (s)	Green Time	Provided (s)
Phase		(m)	SG	FG	Delay	SG	FG
P6	A, B,D	5	5	4	2	7	5
P7	В	10	5	8	9	7	9
P8	C,D	12	5	10	1	12	12
P9	A,D	7	5	6	2	7	8
P10	С	11	5	9	6	6	11

- 1																,								
Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Movemer	nt	Total	Proportion	Sat.	Gradient	Share	Revised				g	g	Degree of	Queue	Average
	Width		lane				Ahead	Left	Straight	Right	FLow	of Turning	Flow	Effect	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Length	Delay
	m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h		pcu/hr	pcu/h		у	sec	sec	sec	X	(m / lane)	(seconds)
																			19					
Α	3.44	1	1	8		N	1959	20	369		389	0.05	1940			1940	0.200			44	64	0.423	42	22
Α	3.40	1	1	15			2095		420		420	0.00	2095			2095	0.200			44	64	0.423	48	22
В	3.25	2	1	26		N	1940			45	45	1.00	1834			1834	0.025			5	25	0.132	6	42
Α	3.60	1	1	7			2115	26	623		649	0.04	2097			2097	0.310	0.310		68	64	0.653	72	27
Α	3.30	1	2				4170		1291		1291	0.00	4170			4170	0.310			68	64	0.653	75	26
В	3.60	2	1	14			2115			183	183	1.00	1910			1910	0.096			21	25	0.517	30	50
B,C	3.40	3	2	57		N	4050	720			720	1.00	3946			3946	0.182	0.182		40	41	0.601	54	38
С	3.85	4	1	26		N	2000		11	34	45	0.76	1916			1916	0.023			5	11	0.288	6	57
D	5.60	5	1	18			2315	85			85	1.00	2137			2137	0.040	0.035		9	11	0.488	12	62
D	3.75	5	1	18			2130	0	8	62	70	0.89	1984			1984	0.035			8	11	0.433	12	61
											-													
	B A A B B,C C	Midth m. A 3.44 A 3.40 B 3.25 A 3.60 A 3.30 B 3.60 B,C 3.40 C 3.85 D 5.60	Midth m. A 3.44 1 A 3.40 1 B 3.25 2 A 3.60 1 A 3.30 1 B 3.60 2 B,C 3.40 3 C 3.85 4 D 5.60 5	Midth m. lane A 3.44 1 1 A 3.40 1 1 B 3.25 2 1 A 3.60 1 1 A 3.30 1 2 B 3.60 2 1 B,C 3.40 3 2 C 3.85 4 1 D 5.60 5 1	Width m. lane m. A 3.44 1 1 1 8 A 3.40 1 1 15 B 3.25 2 1 26 A 3.60 1 1 7 A 3.30 1 2 B 3.60 2 1 14 B 3.60 2 57 C 3.85 4 1 26 D 5.60 5 1 18	Width m. lane m. A 3.44 1 1 8 A 3.40 1 1 15 B 3.25 2 1 26 A 3.60 1 1 7 A 3.30 1 2 B 3.60 2 1 14 B,C 3.40 3 2 57 C 3.85 4 1 26 D 5.60 5 1 18	Width m. lane m. A 3.44 1 1 1 8 N A 3.40 1 1 1 15 B 3.25 2 1 26 N A 3.60 1 1 7 A 3.30 1 2 B 3.60 2 1 14 B 3.25 2 57 N C 3.85 4 1 26 N D 5.60 5 1 18	Width m. lane m. Ahead Sat. Flow A 3.44 1 1 8 N 1959 A 3.40 1 1 15 2095 2095 B 3.25 2 1 26 N 1940 A 3.60 1 1 7 2115 A 3.30 1 2 4170 B 3.60 2 1 14 2115 B,C 3.40 3 2 57 N 4050 C 3.85 4 1 26 N 2000 D 5.60 5 1 18 2315	Width m. lane m. Mead Sat. Flow pcu/h A 3.44 1 1 1 8 A 3.40 1 1 1 15 B 3.25 2 1 26 N 1940 N 1959 20 A 1940 A 3.60 1 1 7 A 3.30 1 2 B 3.60 2 1 14 A 14 A 170	Width m. lane m. m. Ahead Sat. Flow pcu/h pcu/h Left pcu/h pcu/h pcu/h Straight pcu/h pcu/h A 3.44 1 1 1 8 A 3.40 1 1 1 15 B 3.25 2 1 26 N 1940 N 1959 20 369 420 420 A 3.60 1 1 7 A 3.30 1 2 B 3.60 2 1 14 T 2115 26 623 4170 1291 26 623 4170 1291 B 3.60 2 1 14 N 4050 720 C 3.85 4 1 26 N 2000 111 N 2000 111 D 5.60 5 1 18 2315 85	Width m. lane m. m. Ahead Sat. Flow pcu/h pcu/h Left pcu/h pcu/h Straight pcu/h pcu/h Right pcu/h pcu/h A 3.44 1 1 1 8 A 3.40 1 1 1 15 B 3.25 2 1 26 N 1940 N 1959 20 369 420 420 45 420 45 A 3.60 1 1 7 7 A 3.30 1 2 A 3.30 1 2 B 3.60 2 1 14 2115 26 623 4170 1291 1291 183 183 B,C 3.40 3 2 57 N 4050 720 C 3.85 4 1 26 N 2000 11 34 N 2000 11 34 134 D 5.60 5 1 18 2315 85 85	Width m. lane m. m. Ahead Sat. Flow pcu/h Left pcu/h Straight pcu/h Right pcu/h FLow pcu/h A 3.44 1 1 1 8 A 3.40 1 1 1 15 B 3.25 2 1 26 A 3.30 1 2 B 3.60 2 1 14 N 1959 20 369 420 420 420 420 420 45 A 45 A 3.60 1 1 7 7 A 3.30 1 2 B 3.60 2 1 14 Y 2115 26 623 623 649 1291 1291 1291 1291 1291 1291 1291 12	Width m. lane m. Ahead Sat. Flow pcu/h	Width Mark Mark	Width Mark Mark	Width Max Ma	Width Max Ma	Width Max Midth Min Min	Width Mr. Iane Mr. Ahead Left Straight Right Pcu/h Pcu/h	Width N N N N N N N N N	Width March Bane March Bane March March	Width Widt	Width Widt	Width Max. Iane Maked Left Straight Right Flow Pou/h Pou/h

NOTE: O - OPPOSING TRAFFIC

N - NEAR SIDE LANE

SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRAIN WALKING SPEED = 1.2m/s

QUEUING LENGTH = AVERAGE QUEUE * 6m

OZZO TECHNOLOGY (HK) LIMITED TRAFFIC SIGNAL CALCULATION INITIALS DATE S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP PROJECT NO .: 82786 Prepared By: CW Nov-23 J1: Pok Fu Lam Road / Mount Davis Road / Smithfield FILENAME: Checked By: OC Nov-23 2023 PM 2023 Observed PM Peak Hour Traffic Flows J1_PokFuLamRd_MountDavisRd_Smithfield Reviewed By: OC Nov-23

_			Existing C	Cycle Time
No. of stage:	s per cycle	N =	4	
Cycle time		C =	110	sec
Sum(y)		Y =	0.437	
Loss time		L =	19	sec
Total Flow		=	3362	pcu
Co	= (1.5*L+5)/(1-Y)	=	59.5	sec
Cm	= L/(1-Y)	=	33.7	sec
Yult		=	0.758	
R.C.ult	= (Yult-Y)/Y*100%	=	73.5	%
Ср	$= 0.9 \times L/(0.9 - Y)$	=	36.9	sec
Ymax	= 1-L/C	=	0.827	
R.C.(P)	= (0.9/Xmax-1)*100%	=	31.6	%
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	70.5	%

(1) (1) (1) (1) (1) (1) (P6) (1) (1)	(P7) (2) (P6) (3) (2)	(P8) (P10) (4) (4) (4) (3)	(5) (5) (5)	(P8) (P6) (P9)
Stage A Int = 12	Stage B Int = 0	Stage C Int = 5	Stage D	Int = 5

Pedestrian	Stage	Width	Gree	n Time Requ	uired (s)	Green Time	Provided (s)
Phase		(m)	SG	FG	Delay	SG	FG
P6	A, B,D	5	5	4	2	7	5
P7	В	10	5	8	9	7	9
P8	C,D	12	5	10	1	12	12
P9	A,D	7	5	6	2	7	8
P10	С	11	5	9	6	6	11

Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Movemer	nt	Total	Proportion	Sat.	Gradient	Share	Revised				g	g	Degree of	Queue	Average
ment		Width		lane				Ahead	Left	Straight	Right	FLow	of Turning	Flow	Effect	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h		pcu/hr	pcu/h		у	sec	sec	sec	X	(m / lane)	(seconds)
																				19					
LT/SA	Α	3.44	1	1	8		N	1959	29	314		343	0.08	1928			1928	0.178			37	44	0.445	36	23
SA	Α	3.40	1	1	15			2095		373		373	0.00	2095			2095	0.178			37	44	0.445	36	23
RT	В	3.25	2	1	26		N	1940			37	37	1.00	1834			1834	0.020			4	19	0.117	0	35
LT,SA	Α	3.60	1	1	7			2115	14	561		575	0.02	2104			2104	0.274	0.274		57	44	0.684	60	29
SA	Α	3.30	1	2				4170		1141		1141	0.00	4170			4170	0.274			57	44	0.684	60	27
RT	В	3.60	2	1	14			2115			178	178	1.00	1910			1910	0.093			19	19	0.539	24	43
LT	B,C	3.40	3	2	57		N	4050	544			544	1.00	3946			3946	0.138	0.138		29	39	0.389	30	25
SA/RT	С	3.85	4	1	26		N	2000		17	19	36	0.53	1941			1941	0.019			4	15	0.136	0	39
LT	D	5.60	5	1	18			2315	85			85	1.00	2137			2137	0.040	0.025		8	8	0.547	12	57
LT/SA/RT	D	3.75	5	1	18			2130	0	5	45	50	0.90	1981			1981	0.025			5	8	0.347	6	50
		-																							

NOTE: O - OPPOSING TRAFFIC

N - NEAR SIDE LANE

SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRAIN WALKING SPEED = 1.2m/s

QUEUING LENGTH = AVERAGE QUEUE * 6m

OZZO TECHNOLOGY (HK) LIMITED	PRIORI [*]	TY JUNCTION C	ALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Bu Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136		2023 AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J2 : Pok Fu Lam Road / Bisney Road			FILENAME :	CHECKED BY:	ОС	Nov-23
2023 Observed AM Peak Hour Traffic Flows		_	J2 PokFuLamRd BisnevRd P.xls	REVIEWED BY:	ОС	Nov-23

NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vr b-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vr c-b = D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B (1-0.0345W)

ETRIC DETAIL	J.		GEOMETRIC FAC	i Oilo .		THE CAPACITY OF MO	VENILITI .		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)										
W =	3.9	(metres)	D	=	0.6110158	Q b-a =	218		DFC b-a	=	0.0000
W cr =	0	(metres)	E	=	1.4269246	Q b-c =	676		DFC b-c	=	0.2870
q a-b =	81	(pcu/hr)	F	=	0.5859548	Q c-b =	269		DFC c-b	=	0.0000
q a-c =	828	(pcu/hr)	Υ	=	0.86545						
MAJOR ROAI	(ARM C)					TOTAL FLOW	= 1103	(PCU/HR)			
W c-b =		(metres)									
Vr c-b =		(metres)									
q c-a =	0	(pcu/hr)									
q c-b =	0	(pcu/hr)									
									CRITICAL DFC	=	0.29
MINOR ROAD	(ARM B)										
W b-a =		(metres)									
W b-c =	8.5	(metres)									
VI b-a =	62	(metres)									
Vr b-a =	100	(metres)									
Vr b-c =	100	(metres)									
q b-a =	0										
q b-c =	194										

OZZO TECHNOLOGY (HK) LIMITED	PRIORI [*]	TY JUNCTION C	ALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Bu Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136		2023 PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J2 : Pok Fu Lam Road / Bisney Road			FILENAME :	CHECKED BY:	ОС	Nov-23
2023 Observed PM Peak Hour Traffic Flows			J2 PokFuLamRd BisnevRd P.xls	REVIEWED BY:	OC	Nov-23

NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH W cr = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a Vr b-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vr c-b = D = STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B (1-0.0345W)

METRIC DETAILS:	GEOMETRIC FACTORS:	THE CAPACITY OF MOVEMENT :	COMPARISION OF DESIGN FLOW TO CAPACITY:
MAJOR ROAD (ARM A)			
W = 3.9 (metres)	D = 0.6110158	Q b-a = 241	DFC b-a = 0.0000
W cr = 0 (metres)	E = 1.4269246	Q b-c = 731	DFC b-c = 0.2517
q a-b = 61 (pcu/hr)	F = 0.5859548	Q c-b = 293	DFC c-b = 0.0000
q a-c = 714 (pcu/hr)	Y = 0.86545		
MAJOR ROAD (ARM C)		TOTAL FLOW = 959 (PCU/HR)	
W c-b = (metres)			
Vr c-b = (metres)			
q c-a = 0 (pcu/hr)			
q c-b = 0 (pcu/hr)			
			CRITICAL DFC $= 0.25$
MINOR ROAD (ARM B)			
W b-a = (metres)			
W b-c = 8.5 (metres)			
VI b-a = 62 (metres)			
Vr b-a = 100 (metres)			
Vr b-c = 100 (metres)			
q b-a = 0 (pcu/hr)			
q b-c = 184 (pcu/hr)			

OZZO TECHNOLOGY (HK) LIMITED PRIORIT	TY JUNCTION C	CALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2023 AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J3 : Pok Fu Lam Road / Access Road to Queen Mary Hospital		FILENAME :	CHECKED BY:	ОС	Nov-23
2023 Observed AM Peak Hour Traffic Flows		J3_PokFuLamRd_AccessRdtoQMH_P.xls	REVIEWED BY:	ОС	Nov-23

NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vr b-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vr c-b = STREAM-SPECIFIC B-A D = E = STREAM-SPECIFIC B-C STREAM-SPECIFIC C-B (1-0.0345W)

IETRIC DETAIL	S:		GEOMET	RIC FACT	ORS:		THE (CAPACITY OF MO	/EMEN	Γ:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)													
W =	7.1	(metres)		D	=	0.5785844		Q b-a =	57			DFC b-a	=	0.0000
W cr =	0	(metres)		Е	=	0.9842098		Q b-c =	485	Q b-c (O) =	485	DFC b-c	=	0.2742
qa-b =	31	(pcu/hr)		F	=	0.9042675		Q c-b =	441			DFC c-b	=	0.2834
q a-c =	904	(pcu/hr)		Υ	=	0.755395								
MAJOR ROA	(ARM C)							TOTAL FLOW	= 2	2503	(PCU/HR)			
W c-b =	3.5	(metres)												
Vr c-b =	28	(metres)												
q c-a =	1310	(pcu/hr)												
q c-b =	125	(pcu/hr)												
												CRITICAL DFC	=	0.28
MINOR ROAD	(ARM B)													
W b-a =		(metres)												
W b-c =	4.2	(metres)												
VI b-a =	50	(metres)												
Vr b-a =	50	(metres)												
Vr b-c =	50	(metres)												
q b-a =	0	(pcu/hr)												
q b-c =	133	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED PRIORIT	TY JUNCTION C	CALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2023 PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J3 : Pok Fu Lam Road / Access Road to Queen Mary Hospital		FILENAME :	CHECKED BY:	OC	Nov-23
2023 Observed PM Peak Hour Traffic Flows		J3_PokFuLamRd_AccessRdtoQMH_P.xls	REVIEWED BY:	ОС	Nov-23

ETRIC DETAIL	J.		GEOMET	NIC PACI	UNS:		INE	CAPACITY OF MOV	LIVICIN	١.		COMPARISION OF DESIGN FLOW TO CAPACITY:			
MAJOR ROA	O (ARM A)														
W =	7.1	(metres)		D	=	0.5785844		Q b-a =	104			DFC b-a	=	0.0000	
W cr =	0	(metres)		E	=	0.9842098		Q b-c =	518	Q b-c (O) =	518	DFC b-c	=	0.1506	
q a-b =	19	(pcu/hr)		F	=	0.9042675		Q c-b =	473			DFC c-b	=	0.1860	
q a-c =	788	(pcu/hr)		Υ	=	0.755395									
MAJOR ROAI	(ARM C)							TOTAL FLOW	= 3	2094	(PCU/HR)				
W c-b =	3.5	(metres)													
Vr c-b =	28	(metres)													
q c-a =	1121	(pcu/hr)													
q c-b =	88	(pcu/hr)													
												CRITICAL DFC	=	0.19	
MINOR ROAD	(ARM B)														
W b-a =		(metres)													
W b-c =	4.2	(metres)													
VI b-a =	50	(metres)													
Vr b-a =	50	(metres)													
Vr b-c =	50	(metres)													
q b-a =	0	(pcu/hr)													
q b-c =	78	(pcu/hr)													

OZZO TECHNOLOGY (HK) LIMITED PRIORI	TY JUNCTION (CALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2023 AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J4 : Pok Fu Lam Road / Access Road to Application Site		FILENAME :	CHECKED BY:	ОС	Nov-23
2023 Observed AM Peak Hour Traffic Flows		J4_PokFuLamRd_AccessRdtoEbenezerNew	REVIEWED BY:	ОС	Nov-23

NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH W cr = W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a Vr b-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vr c-b = D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B (1-0.0345W)

METRIC DETAIL	S:		GEOMET	RIC FACT	ORS:		THE C	APACITY OF MOV	/EMEN	Τ:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)													
W =	7.1	(metres)		D	=	0.7266602		Q b-a =	42			DFC b-a	=	0.2857
W cr =	0	(metres)		E	=	0.7730428		Q b-c =	277	Q b-c (O) =	257.2	DFC b-c	=	0.0433
q a-b =	8	(pcu/hr)		F	=	0.9085783		Q c-b =	324			DFC c-b	=	0.0864
q a-c =	1404	(pcu/hr)		Υ	=	0.7548775								
MAJOR ROAI	(ARM C)							TOTAL FLOW	= :	2460	(PCU/HR)			
W c-b =	3.6	(metres)												
Vr c-b =	28	(metres)												
q c-a =	996	(pcu/hr)												
q c-b =	28	(pcu/hr)												
												CRITICAL DFC	=	0.29
MINOR ROAD	(ARM B)													
W b-a =	1.8	(metres)												
W b-c =	1.8	(metres)												
VI b-a =	50	(metres)												
Vr b-a =	50	(metres)												
Vr b-c =	50	(metres)												
q b-a =	12	(pcu/hr)												
q b-c =	12	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED PRIORIT	TY JUNCTION C	CALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2023 PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J4 : Pok Fu Lam Road / Access Road to Application Site		FILENAME :	CHECKED BY:	ОС	Nov-23
2023 Observed PM Peak Hour Traffic Flows		J4_PokFuLamRd_AccessRdtoEbenezerNew	REVIEWED BY:	ОС	Nov-23

NOTES: (GEOMETRIC INPUT DATA) MAJOR ROAD WIDTH W = CENTRAL RESERVE WIDTH W cr = W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a Vr b-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vr c-b = D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C STREAM-SPECIFIC C-B F = (1-0.0345W)

METRIC DETAIL	S:		GEOMETI	RIC FACT	ORS:		THE (CAPACITY OF MO	/EMEN	Т:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)													
W =	7.1	(metres)		D	=	0.7266602		Q b-a =	127			DFC b-a	=	0.0079
W cr =	0	(metres)		E	=	0.7730428		Q b-c =	332	Q b-c (O) =	331.3	DFC b-c	=	0.0090
qa-b =	2	(pcu/hr)		F	=	0.9085783		Q c-b =	390			DFC c-b	=	0.0000
q a-c =	1146	(pcu/hr)		Υ	=	0.7548775								
MAJOR ROAL	(ARM C)							TOTAL FLOW	=	1942	(PCU/HR)			
W c-b =	3.6	(metres)												
Vr c-b =	28	(metres)												
q c-a =	790	(pcu/hr)												
q c-b =	0	(pcu/hr)												
												CRITICAL DFC	=	0.01
MINOR ROAD	(ARM B)													
W b-a =	1.8	(metres)												
W b-c =	1.8	(metres)												
VI b-a =	50	(metres)												
Vr b-a =	50	(metres)												
Vr b-c =	50	(metres)												
q b-a =	1	(pcu/hr)												
q b-c =	3	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED PRIORI	TY JUNCTION C	CALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2023 AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J5 : Pok Fu Lam Road / Chi Fu Road (N)		FILENAME :	CHECKED BY:	ОС	Nov-23
2023 Observed AM Peak Hour Traffic Flows		J5_PokFuLamRd_ChiFuRd(N)_P.xls	REVIEWED BY:	ОС	Nov-23

NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH W cr = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a =LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a Vr b-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vrc-b = STREAM-SPECIFIC B-A D = E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B (1-0.0345W) Y =

DMETRIC DETAILS:	GEOMETRIC FACTORS :	THE CAPACITY OF MOVEMENT :	COMPARISION OF DESIGN FLOW TO CAPACITY:
MAJOR ROAD (ARM A)			
W = 7.50 (metres)	D = 0.5785844	Q b-a = 215	DFC b-a = 0.0000
W cr = 0 (metres)	E = 1.0030585	Q b-c = 490 Q b-c (O) = 490	DFC b-c = 0.2347
q a-b = 249 (pcu/hr)	F = 0.5859548	Q c-b = 263	DFC c-b = 0.0000
q a-c = 851 (pcu/hr)	Y = 0.74125		
MAJOR ROAD (ARM C)		TOTAL FLOW = 1215 (PCU/HR)	
W c-b = (metres)			
Vr c-b = (metres)			
q c-a = 0 (pcu/hr)			
q c-b = 0 (pcu/hr)			
			CRITICAL DFC = 0.23
MINOR ROAD (ARM B)			0
W b-a = (metres)			
W b-c = 4.40 (metres)			
VI b-a = 50 (metres)			
Vr b-a = 50 (metres)			
Vr b-c = 50 (metres)			
q b-a = 0 (pcu/hr)			
q b-c = 115 (pcu/hr)			

OZZO TECHNOLOGY (HK) LIMITED PRIORI	TY JUNCTION C	CALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2023 PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J5 : Pok Fu Lam Road / Chi Fu Road (N)		FILENAME :	CHECKED BY:	ОС	Nov-23
2023 Observed PM Peak Hour Traffic Flows		J5_PokFuLamRd_ChiFuRd(N)_P.xls	REVIEWED BY:	ОС	Nov-23

NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH W cr = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a Vr b-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vr c-b = STREAM-SPECIFIC B-A D = E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B (1-0.0345W) Y =

TRIC DETAILS			GEOMET	RIC FACI	UKS:		THE CA	APACITY OF MOV	EMEN	1:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROAD	(ARM A)													
W =	7.50	(metres)		D	=	0.5785844		Q b-a =	253			DFC b-a	=	0.0000
W cr =	0	(metres)		E	=	1.0030585		Q b-c =	557	Q b-c (O) =	557	DFC b-c	=	0.1400
q a-b =	191	(pcu/hr)		F	=	0.5859548		Q c-b =	307			DFC c-b	=	0.0000
q a-c =	627	(pcu/hr)		Υ	=	0.74125								
MAJOR ROAD	(ARM C)							TOTAL FLOW	= 8	896	(PCU/HR)			
W c-b =		(metres)												
Vr c-b =		(metres)												
q c-a =	0	(pcu/hr)												
q c-b =	0	(pcu/hr)												
												CRITICAL DFC	=	0.14
MINOR ROAD (ARM B)													
W b-a =		(metres)												
W b-c =	4.40	(metres)												
VI b-a =	50	(metres)												
Vr b-a =	50	(metres)												
Vr b-c =	50	(metres)												
q b-a =	0	(pcu/hr)												
q b-c =	78	(pcu/hr)												

	TY JUNCTION (TY JUNCTION CALCULATION							
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2023 AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23				
J6 : Pok Fu Lam Road / Chi Fu Road (S)		FILENAME:	CHECKED BY:	ОС	Nov-23				
2023 Observed AM Peak Hour Traffic Flows		J6_PokFuLamRd_ChiFuRd(S)_P.xls	REVIEWED BY:	ОС	Nov-23				

NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH W cr = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a =LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a Vr b-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vrc-b = D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B (1-0.0345W) Y =

DMETRIC DETAILS:	GEOMETRIC FACTORS:	THE CAPACITY OF MOVEMENT:	COMPARISION OF DESIGN FLOW TO CAPACITY:	
MAJOR ROAD (ARM A)				
W = 10.0 (metres)	D = 0.5332189	Q b-a = 219	DFC b-a	= 0.0000
W cr = 0 (metres)	E = 1.0986945	Q b-c = 581 Q b-c (O) =	581 DFC b-c	= 0.4527
q a-b = 0 (pcu/hr)	F = 0.5859548	Q c-b = 310	DFC c-b	= 0.0000
q a-c = 907 (pcu/hr)	Y = 0.655			
MAJOR ROAD (ARM C)		TOTAL FLOW = 1170 (F	PCU/HR)	
W c-b = (metres)				
Vr c-b = (metres)				
q c-a = 0 (pcu/hr)				
q c-b = 0 (pcu/hr)				
			CRITICAL DFC	= 0.45
MINOR ROAD (ARM B)				
W b-a = (metres)				
W b-c = 5.0 (metres)				
VI b-a = (metres)				
Vr b-a = (metres)				
Vr b-c = 94 (metres)				
q b-a = 0 (pcu/hr)				
q b-c = 263 (pcu/hr)				

OZZO TECHNOLOGY (HK) LIMITED PRIORIT	TY JUNCTION C		INITIALS	DATE	
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2023 PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J6 : Pok Fu Lam Road / Chi Fu Road (S)		FILENAME :	CHECKED BY:	OC	Nov-23
2023 Observed PM Peak Hour Traffic Flows		J6_PokFuLamRd_ChiFuRd(S)_P.xls	REVIEWED BY:	ОС	Nov-23

NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH W cr = CENTRAL RESERVE WIDTH LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a =LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a Vr b-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vr c-b = D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B (1-0.0345W) Y =

GEOMETRIC DETAILS:	GEOMETRIC FACTORS :	THE CAPACITY OF MOVEMENT :	COMPARISION OF DESIGN FLOW TO CAPACITY:
MAJOR ROAD (ARM A)			
W = 10.0 (metres)	D = 0.5332189	Q b-a = 250	DFC b-a = 0.0000
W cr = 0 (metres)	E = 1.0986945	Q b-c = 644 Q b-c (O) = 644	DFC b-c = 0.2189
q a-b = 0 (pcu/hr)	F = 0.5859548	Q c-b = 343	DFC c-b = 0.0000
q a-c = 666 (pcu/hr)	Y = 0.655		
MAJOR ROAD (ARM C)		TOTAL FLOW = 807 (PCU/HR)	
W c-b = (metres)			
Vr c-b = (metres)			
q c-a = 0 (pcu/hr)			
q c-b = 0 (pcu/hr)			
			CRITICAL DFC = 0.22
MINOR ROAD (ARM B)			
W b-a = (metres)			
W b-c = 5.0 (metres)			
VI b-a = (metres)			
Vr b-a = (metres)			
Vr b-c = 94 (metres)			
q b-a = 0 (pcu/hr)			
q b-c = 141 (pcu/hr)			

OZZO TECHNOLOGY (HK) LIMITED PRIORITY JUNCTION CALCULATION **INITIALS** DATE Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, PREPARED BY: PROJECT NO.: 82786 CW Nov-23 Hong Kong, RBL 136RP 2023 AM J7A: Pok Fu Lam Road / Sassoon Road (W) FILENAME: CHECKED BY: OC Nov-23 J7A_PokFuLamRd_SassoonRd_P.xls OC REVIEWED BY: Nov-23

NOTES: (GEOMETRIC INPUT DATA) MAJOR ROAD WIDTH W cr = CENTRAL RESERVE WIDTH LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a = W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W c-b =LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VIb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vr c-b = D = STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C E = STREAM-SPECIFIC C-B (1-0.0345W)

OMETRIC DETAIL			GEOMETRIC FACT	TORS :		THE CAPACITY OF M	OVEM	ENT :			COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA													
W =	15.00	(metres)	D	=	0.7049957	Q b-a =	392				DFC b-a	=	0.1658
W cr =	1.7	(metres)	E	=	1.6993536	Q b-c =	1137		o-c (O) =	1090	DFC b-c	=	0.5629
q a-b =	417	(pcu/hr)	F	=	1.2883574	Q c-b =	805	5			DFC c-b	=	0.0547
q a-c =	268	(pcu/hr)	Y	=	0.4825	Q b-ac =	967.5	5			DFC b-ac	=	0.7287
MAJOR ROAL	(ARM C)		F for (Qb-a	ac) =	0.9078014	TOTAL FLOW	=	1504		(PCU/HR)			
W c-b =	7.50	(metres)											
Vr c-b =	60	(metres)											
q c-a =	70	(pcu/hr)											
q c-b =	44	(pcu/hr)											
											CRITICAL DFC	=	0.73
MINOR ROAD	(ARM B)												
W b-a =	1.50	(metres)											
W b-c =	3.10	(metres)											
VI b-a =	40	(metres)											
Vr b-a =	60	(metres)											
Vr b-c =	1000	(metres)	* adjusted parameter to reflect the ti	ime gap	available for traffic from Sa	assoon Road (Arm B) during	he red	time of a	djacent sig	nalized junction			
	65	(pcu/hr)	, ,	0.		, , ,			, ,	•			
q b-a =													

OZZO TECHNOLOGY (HK) LIMITED PRIORITY JUNCTION CALCULATION **INITIALS** DATE Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, PREPARED BY: PROJECT NO.: 82786 CW Nov-23 Hong Kong, RBL 136RP 2023 PM J7A: Pok Fu Lam Road / Sassoon Road (W) FILENAME: CHECKED BY: OC Nov-23 J7A_PokFuLamRd_SassoonRd_P.xls OC REVIEWED BY: Nov-23

NOTES: (GEOMETRIC INPUT DATA) MAJOR ROAD WIDTH W cr = CENTRAL RESERVE WIDTH LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a = W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W c-b =LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VIb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vr b-a = Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vr c-b = D = STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C E = STREAM-SPECIFIC C-B (1-0.0345W)

METRIC DETAIL			GEOMETRIC FAC	TORS:		THE CAPACITY OF N	IOVEMI	ENT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA												
W =	15.00	(metres)	D	=	0.7049957	Q b-a =	385			DFC b-a	=	0.1896
W cr =	1.7	(metres)	E	=	1.6993536	Q b-c =	1104	, ,	= 1052	DFC b-c	=	0.3705
q a-b =	479	(pcu/hr)	F	=	1.2883574	Q c-b =	772	2		DFC c-b	=	0.0324
q a-c =	352	(pcu/hr)	Υ	=	0.4825	Q b-ac =	860.6	5		DFC b-ac	=	0.5601
MAJOR ROAL	(ARM C)		F for (Qb-a	ac) =	0.8485477	TOTAL FLOV	/ =	1370	(PCU/HR)			
W c-b =	7.50	(metres)										
Vr c-b =	60	(metres)										
q c-a =	32	(pcu/hr)										
q c-b =	25	(pcu/hr)										
										CRITICAL DFC	=	0.56
MINOR ROAD	(ARM B)											
W b-a =	1.50	(metres)										
W b-c =	3.10	(metres)										
VI b-a =	40	(metres)										
Vr b-a =	60	(metres)										
Vr b-c =	1000	(metres)	* adjusted parameter to reflect the ti	ime gap	s available for traffic from S	assoon Road (Arm B) during	the red	time of adjacer	nt signalized junction			
		(pcu/hr)	,	3-1		. , 3		,	, , , , , ,			
q b-a =	73											

OZZO TECHNOLOGY (HK) LIMITED TRAFFIC SIGNAL CALCULATION INITIALS DATE S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP PROJECT NO.: 82786 Prepared By: CW Nov-23 J7B: Pok Fu Lam Road / Sassoon Road (near Queen Marry Hospital) FILENAME: Checked By: OC Nov-23 2023 AM 2023 Observed AM Peak Hour Traffic Flows ОС J7B_PokFuLamRd_SassoonRd(near QMH) Reviewed By: Nov-23

			Existing Cycle Time
No. of sta	ges per cycle	N =	4
Cycle time	е	C =	102 sec
Sum(y)		Y =	0.442
Loss time		L =	18 sec
Total Flov	V	=	1390 pcu
Co	= (1.5*L+5)/(1-Y)	=	57.4 sec
Cm	= L/(1-Y)	=	32.3 sec
Yult		=	0.765
R.C.ult	= (Yult-Y)/Y*100%	=	72.9 %
Ср	= 0.9 L/(0.9 Y)	=	35.4 sec
Ymax	= 1-L/C	=	0.824
R.C.(P)	= (0.9/Xmax-1)*100%	=	24.8 %
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	67.5 %

(P2)	(2) — (P3) (P3)	(3) (3) (3) (P3)	(4)	(4)
Stage A Int = 6	Stage B Int = 6	Stage C Int = 5	Stage D Int =	5

SG - STEADY GREEN

NOTE: O - OPPOSING TRAFFIC

N - NEAR SIDE LANE

Pedestrian	Stage	Width	Gree	n Time Req	uired (s)	Green Time	Provided (s)
Phase		(m)	SG	FG	Delay	SG	FG
P1	A,B,D	4.0	5	8		31	12
P2	A,D	2.9	5	9		21	13
P3	B,C	2.8	5	9		35	14

QUEUING LENGTH = AVERAGE QUEUE * 6m

Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-	l	Movemer	nt	Total	Proportion	Sat.	Gradient	Share	Revised				g	g	Degree of	Queue	Average
ment		Width		lane				Ahead	Left	Straight	Right	FLow	of Turning	Flow	Effect	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	pcu/hr	pcu/hr	pcu/h		у	sec	sec	sec	X	(m / lane)	(seconds)
																				18					
LT,SA	Α	3.00	1	1	7		N	1915	50	243		293	0.17	1847			1847	0.159	0.159		30	29	0.558	30	32
SA	В	3.80	2	1			N	1995		85		85	0.00	1995			1995	0.043	0.043		8	14	0.310	12	38
RT	В	3.80	2	1	15			2135			41	41	1.00	1941			1941	0.021			4	14	0.154	6	36
			_	-																					
RT	С	3.30	3	1	13			2085			436	436	1.00	1869			1869	0.233	0.233		44	33	0.721	48	34
LT	C	3.30	3	1	10		N	1945	371		100	371	1.00	1691			1691	0.219	0.200		42	33	0.678	42	33
SA	C	3.30	3	1	10			2085	371	149		149	0.00	2085			2085	0.213			14	33	0.221	12	23
34		3.30	3	'				2005		143		143	0.00	2003			2003	0.071			14	33	0.221	12	23
1.7.04	_	0.00			05		N.	4045	0			45	0.40	4070			4070	0.000	0.000		0		0.040	0	44
LT,SA	D	3.00	4	1	25		N	1915	6	9		15	0.40	1870			1870	0.008	0.008		2	8	0.018	U	41
1																									

PEDESTRAIN WALKING SPEED = 1.2m/s

FG - FLASHING GREEN

OZZO TECHNOLOGY (HK) LIMITED TRAFFIC SIGNAL CALCULATION INITIALS DATE S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP PROJECT NO.: 82786 Prepared By: CW Nov-23 J7B: Pok Fu Lam Road / Sassoon Road (near Queen Marry Hospital) FILENAME: Checked By: OC Nov-23 2023 PM 2023 Observed PM Peak Hour Traffic Flows ОС J7B_PokFuLamRd_SassoonRd(near QMH) Reviewed By: Nov-23

			Existing (Cycle Time
No. of stage	s per cycle	N =	4	
Cycle time		C =	102	sec
Sum(y)		Y =	0.501	
Loss time		L =	18	sec
Total Flow		=	1278	pcu
Co	= (1.5*L+5)/(1-Y)	=	64.2	sec
Cm	= L/(1-Y)	=	36.1	sec
Yult		=	0.765	
R.C.ult	= (Yult-Y)/Y*100%	=	52.6	%
Ср	= 0.9 L/(0.9-Y)	=	40.6	sec
Ymax	= 1-L/C	=	0.824	
R.C.(P)	= (0.9/Xmax-1)*100%	=	23.5	%
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	47.9	%

← <u>(P1</u>	(P2)	(2) — (2) —		(3)	(3) (3)		(4) (4)
Stage A	Int = 6	Stage B	Int = 6	Stage C	Int = 5	Stage D	Int = 5

Pedestrian	Stage	Width	Gree	n Time Req	uired (s)	Green Time	Provided (s)
Phase		(m)	SG	FG	Delay	SG	FG
P1	A,B,D	4.0	5	8		31	12
P2	A,D	2.9	5	9		21	13
P3	B,C	2.8	5	9		35	14

Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-	l	Movemer	nt	Total	Proportion	Sat.	Gradient	Share	Revised				g	g	Degree of	Queue	Average
ment		Width		lane				Ahead	Left	Straight	Right	FLow	of Turning	Flow	Effect	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	pcu/hr	pcu/hr	pcu/h		у	sec	sec	sec	X	(m / lane)	(seconds)
																				18					
LT,SA	Α	3.00	1	1	7		N	1915	18	296		314	0.06	1892			1892	0.166	0.166		28	25	0.677	36	39
SA	В	3.80	2	1			N	1995		78		78	0.00	1995			1995	0.039	0.039		7	14	0.285	6	38
RT	В	3.80	2	1	15			2135			21	21	1.00	1941			1941	0.011			2	14	0.079	0	35
RT	С	3.30	3	1	13			2085			521	521	1.00	1869			1869	0.279	0.279		47	39	0.729	54	30
LT	С	3.30	3	1	10		N	1945	184			184	1.00	1691			1691	0.109			18	39	0.285	18	21
SA	C	3.30	3	1				2085		127		127	0.00	2085			2085	0.061			10	39	0.159	12	19
				-																					
LT,SA	D	3.00	1	1	25		N	1915	5	28		33	0.15	1898			1898	0.017	0.017		3	8	0.039	0	43
L1,0A		3.00	7		25			1313	3	20		55	0.13	1030			1030	0.017	0.017		3	· ·	0.033		70

NOTE: O - OPPOSING TRAFFIC

N - NEAR SIDE LANE

SG - STEADY GREEN

FG - FLASHING GREEN

PEDESTRAIN WALKING SPEED = 1.2m/s

OZZO TECHNOLOGY (HK) LIMITED PR	ORITY JUNCTION (INITIALS	DATE			
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Heigh	ht					
Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2023 AM	PROJECT NO.:	82786	PREPARED BY:	CW	Nov-23
J8 : Chi Fu Road (N) / Claymore Avenue	2020 7	FILENAME :		CHECKED BY:	ОС	Nov-23
2023 Observed AM Peak Hour Traffic Flows		J8_ChiFuRd_Claymo	oreAve_P.XLS	REVIEWED BY:	ОС	Nov-23

NOTES: (GEOMETRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH W cr = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a =W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vr c-b = X a = STREAM-SPECIFIC (RIGHT TURN FROM A) X b = STREAM-SPECIFIC (RIGHT TURN FROM B) STREAM-SPECIFIC (LEFT TURN FROM B) Z b = M b = STREAM-SPECIFIC (STRAIGHT AHEAD FROM B - LEFT LANE) Y = (1-0.0345W) RATIO OF FLOW TO CAPACITY IN STREAM b-a rb-a =

GEOMETRIC I	DETAILS:					GEOMETR	IIC FACTO	JRS:				COMPARISION OF DESIGN TO CAPACITY:	IFLOV	v
GENERAL						X b =	0.790		Ха	=	0.927			
W =	7.60	(metres)				X c =	0.940		X d	=	0.833	DFC b-a	=	0.0434
W cr =	0	(metres)	Y =	0.7378		Z b =	0.928		Ζd	=	1.234	DFC b-c	=	0.1162
						M b =	0.872		M d	=	1.186	DFC c-b	=	0.0512
MAJOR ROAD	(ARM A)		MAJOR MAJOR	ROAD (ARM C)								DFCI b-d	=	0.0326
W a-d =	3.85	(metres)	W c-b =	4.00	(metres)	PROPORT	ION OF M	IINOR STRAI	GHT AHEAD TRA	FFIC :		DFCr b-d	=	0.0334
Vr a-d =	20	(metres)	Vr c-b =	20	(metres)							DFC d-c	=	0.0977
q a-b =	33	(pcu/hr)	q c-a =	11	(pcu/hr)	r b-a =	0.037		r d-c	=	0.098	DFC d-a	=	0.1971
q a-c =	216	(pcu/hr)	q c-b =	31	(pcu/hr)	ql b-d =	15.04	(pcu/hr)	ql d-b	=	17.014 (pcu/hr)	DFC a-d	=	0.1270
q a-d =	86	(pcu/hr)	q c-d =	0	(pcu/hr)	qr b-d =	13.96	(pcu/hr)	gr d-b	=	13.986 (pcu/hr)	DFCI d-b	=	0.0265
•		-			-	•		-	•			DFCr d-b	=	0.0311
MINOR ROAD	(ARM B)		MINOR ROAD (A	ARM D)		CAPACITY	OF MOV	EMENT:						
W b-a =	2.29	(metres)	W d-c =	2.86	(metres)									
W b-c =	3.25	(metres)	W d-a =	7.02	(metres)	Q b-a =	369	(pcu/hr)	Q d-c	=	430 (pcu/hr)			
VI b-a =	50	(metres)	VI d-c =	85	(metres)	Q b-c =	628	(pcu/hr)	Q d-a	=	893 (pcu/hr)			
Vr b-a =	80	(metres)	Vr d-c =	50	(metres)	Q c-b =	606	(pcu/hr)	Q a-d	=	677 (pcu/hr)	CRITICAL DFC	=	0.20
Vr b-c =	80	(metres)	Vr d-a =	50	(metres)	QI b-d =	461	(pcu/hr)	QI d-b	=	641 (pcu/hr)			
q b-a =	16	(pcu/hr)	q d-c =	42	(pcu/hr)	Qr b-d =	418	(pcu/hr)	Qr d-b	=	450 (pcu/hr)			
q b-c =	73	(pcu/hr)	q d-a =	176	(pcu/hr)									
q b-d =	29	(pcu/hr)	q d-b =	31	(pcu/hr)	TOTA	AL FLOW	=	744 (PCU/HR	١				

OZZO TECHNOLOGY (HK) LIMITED P		INITIALS	DATE			
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building	Height					
Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2023 PM	PROJECT NO.:	82786	PREPARED BY:	CW	Nov-23
J8 : Chi Fu Road (N) / Claymore Avenue	2023 F W	FILENAME :		CHECKED BY:	ОС	Nov-23
2023 Observed PM Peak Hour Traffic Flows		J8_ChiFuRd_ClaymoreA	Ave_P.XLS	REVIEWED BY:	ОС	Nov-23

GEOMETRIC [DETAILS:					GEOMETR	RIC FACTO	ORS :				COMPARISION OF DESIGN TO CAPACITY:	SN FLO	W	
GENERAL						X b =	0.790		Ха	=	0.927				
W =	7.60	(metres)				X c =	0.940		Χd	=	0.833	DFC b-a	i =	0.0249	
W cr =	0	(metres)	Y =	0.7378		Z b =	0.928		Ζd	=	1.234	DFC b-	=	0.0400	
						M b =	0.872		M d	=	1.186	DFC c-l) =	0.0250	
MAJOR ROAD	(ARM A)		MAJOR MAJOR	ROAD (ARM C)								DFCI b-0	i =	0.0209	
W a-d =	3.85	(metres)	W c-b =	4.00	(metres)	PROPORT	ION OF M	IINOR STRAI	GHT AHEAD TRA	FFIC:		DFCr b-c	i =	0.0221	
Vr a-d =	20	(metres)	Vr c-b =	20	(metres)							DFC d-	=	0.0195	
q a-b =	10	(pcu/hr)	q c-a =	33	(pcu/hr)	rb-a =	0.022		r d-c	=	0.020	DFC d-a	a =	0.1615	
q a-c =	147	(pcu/hr)	q c-b =	16	(pcu/hr)	ql b-d =	10.22	(pcu/hr)	ql d-b	=	20.39 (pcu/hr)	DFC a-c	i =	0.0842	
q a-d =	57	(pcu/hr)	q c-d =	0	(pcu/hr)	gr b-d =	9.783	(pcu/hr)	gr d-b	=	19.61 (pcu/hr)	DFCI d-l) =	0.0304	
•		. ,	·		. ,	·		. ,			4 ,	DFCr d-l	=	0.0416	
MINOR ROAD	(ARM B)		MINOR ROAD (A	ARM D)		CAPACITY	OF MOV	EMENT:							
W b-a =	2.29	(metres)	W d-c =	2.86	(metres)										
W b-c =	3.25	(metres)	W d-a =	7.02	(metres)	Q b-a =	402	(pcu/hr)	Q d-c	=	461 (pcu/hr)				
VI b-a =	50	(metres)	VI d-c =	85	(metres)	Q b-c =	650	(pcu/hr)	Q d-a	=	904 (pcu/hr)				
Vr b-a =	80	(metres)	Vr d-c =	50	(metres)	Q c-b =	640	(pcu/hr)	Q a-d	=	677 (pcu/hr)	CRITICAL DFC	=	0.16	
Vr b-c =	80	(metres)	Vr d-a =	50	(metres)	Ql b-d =	488	(pcu/hr)	QI d-b	=	671 (pcu/hr)				
q b-a =	10	(pcu/hr)	q d-c =	9	(pcu/hr)	Qr b-d =		(pcu/hr)	Qr d-b	=	471 (pcu/hr)				
q b-c =	26	(pcu/hr)	q d-a =	146	(pcu/hr)			. ,			= '				
q b-d =	20	(pcu/hr)	q d-b =	40	(pcu/hr)	TOTA	AL FLOW	=	514 (PCU/HR	١					

Appendix D

Existing Development Traffic by Ebenezer School & Home for the Visually Impaired

Appendix D: Existing development traffic by Ebenezer School & Home for the Visually Impaired

				ln			Out						
From	То	Car	School bus	Others	Total Veh	Total PCU	Car	School bus	Others	Total Veh	Total PCU		
				AM Peri	od (07:0	0 – 10:00))						
07:00	07:15	0	0	0	0	0	2	0	0	2	2		
07:15	07:30	1	0	1	2	4	1	0	0	1	1		
07:30	07:45	4	0	0	4	4	1	1	1	3	5		
07:45	08:00	5	0	0	5	5	2	0	0	2	2		
08:00	08:15	5	3	0	8	10	1	1	0	2	3		
08:15	08:30	4	4	0	8	10	2	4	0	6	8		
08:30	08:45	2	4	0	6	8	2	5	0	7	9		
08:45	09:00	3	1	0	4	5	2	0	0	2	2		
09:00	09:15	2	0	0	2	2	2	1	0	3	4		
09:15	09:30	1	2	0	3	4	0	1	0	1	2		
09:30	09:45	3	2	0	5	6	2	1	0	3	4		
09:45	10:00	3	0	0	3	3	2	2	0	4	5		
07:45	08:45	16	11	0	27	32	7	10	0	17	22		
				PM Peri	od (16:0	0 – 19:00))						
16:00	16:15	2	2	0	4	5	1	1	0	2	3		
16:15	16:30	1	0	0	1	1	1	1	0	2	3		
16:30	16:45	1	1	0	2	3	2	1	0	3	4		
16:45	17:00	1	0	0	1	1	1	1	0	2	3		
17:00	17:15	0	1	0	1	2	1	0	0	1	1		
17:15	17:30	1	0	0	1	1	0	1	0	1	2		
17:30	17:45	0	0	0	0	0	1	0	0	1	1		
17:45	18:00	1	0	0	1	1	1	0	0	1	1		
18:00	18:15	0	0	0	0	0	0	0	0	0	0		
18:15	18:30	0	0	0	0	0	1	0	0	1	1		
18:30	18:45	1	0	0	1	1	1	0	0	1	1		
18:45	19:00	0	0	0	0	0	1	0	0	1	1		
17:45	18:45	2	0	0	2	2	3	0	0	3	3		

Appendix E

2037 Junction Calculation Sheets

OZZO TECHNOLOGY (HK) LIMITED TRAFFIC SIGNAL CALCULATION INITIALS DATE S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP PROJECT NO .: 82786 Prepared By: CW Nov-23 J1: Pok Fu Lam Road / Mount Davis Road / Smithfield FILENAME: Checked By: OC Nov-23 2037Ref AM 2037 Reference AM Peak Traffic Flows J1_PokFuLamRd_MountDavisRd_Smithfield Reviewed By: OC Nov-23

			Existing C	Cycle Time
No. of stage	s per cycle	N =	4	
Cycle time		C =	135	sec
Sum(y)		Y =	0.635	
Loss time		L =	19	sec
Total Flow		=	4662	pcu
Co	= (1.5*L+5)/(1-Y)	=	91.7	sec
Cm	= L/(1-Y)	=	52.0	sec
Yult		=	0.758	
R.C.ult	= (Yult-Y)/Y*100%	=	19.4	%
Ср	= 0.9*L/(0.9-Y)	=	64.4	sec
Ymax	= 1-L/C	=	0.859	
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	21.9	%

(1) (1) (1) (1) (P6) (1) (1) (P9)	(P7) (2) (P6) (3) (2)	(P8) (P10) (4) (4) (4) (3)	(5) (P8) (P8) (P6)	
Stage A Int = 12	Stage B Int = 0	Stage C Int = 5	Stage D Int = 5	

Pedestrian	Stage	Width	Gree	n Time Requ	uired (s)	Green Time	Provided (s)
Phase		(m)	SG	FG	Delay	SG	FG
P6	A, B,D	5	5	4	2	7	5
P7	В	10	5	8	9	7	9
P8	C,D	12	5	10	1	12	12
P9	A,D	7	5	6	2	7	8
P10	С	11	5	9	6	6	11

Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Movemer	nt	Total	Proportion	Sat.	Gradient	Share	Revised				g	g	Degree of	Queue	Average
ment		Width		lane				Ahead	Left	Straight	Right	FLow	of Turning	Flow	Effect	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h		pcu/hr	pcu/h		у	sec	sec	sec	X	(m / lane)	(seconds)
																				19					
LT/SA	Α	3.44	1	1	8		N	1959	23	449		472	0.05	1941			1941	0.243			44	44	0.739	66	43
SA	Α	3.40	1	1	15			2095		509		509	0.00	2095			2095	0.243			44	44	0.739	72	43
RT	В	3.25	2	1	26		N	1940			52	52	1.00	1834			1834	0.028			5	21	0.185	6	46
LT,SA	Α	3.60	1	1	7			2115	31	742		773	0.04	2097			2097	0.369	0.369		67	67	0.739	84	29
SA	Α	3.30	1	2				4170		1538		1538	0.00	4170			4170	0.369			67	67	0.739	84	26
RT	В	3.60	2	1	14			2115			216	216	1.00	1910			1910	0.113			21	21	0.739	42	65
LT	B,C	3.40	3	2	57		N	4050	880			880	1.00	3946			3946	0.223	0.223		41	41	0.739	69	42
SA/RT	С	3.85	4	1	26		N	2000		13	39	52	0.75	1917			1917	0.027			5	5	0.739	12	123
LT	D	5.60	5	1	18			2315	85			85	1.00	2137			2137	0.040	0.043		7	7	0.739	18	96
LT/SA/RT	D	3.75	5	1	18			2130	0	9	76	85	0.89	1982			1982	0.043			8	8	0.739	18	96
											-														

NOTE: O - OPPOSING TRAFFIC

N - NEAR SIDE LANE

SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRAIN WALKING SPEED = 1.2m/s

OZZO TECHNOLOGY (HK) LIMITED TRAFFIC SIGNAL CALCULATION INITIALS DATE S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP PROJECT NO .: 82786 Prepared By: CW Nov-23 J1: Pok Fu Lam Road / Mount Davis Road / Smithfield FILENAME: Checked By: OC Nov-23 2037Ref PM 2037 Reference PM Peak Traffic Flows J1_PokFuLamRd_MountDavisRd_Smithfield Reviewed By: OC Nov-23

			Existing C	Cycle Time
No. of stage	es per cycle	N =	4	
Cycle time		C =	110	sec
Sum(y)		Y =	0.520	
Loss time		L =	19	sec
Total Flow		=	3985	pcu
Co	= (1.5*L+5)/(1-Y)	=	69.8	sec
Cm	= L/(1-Y)	=	39.6	sec
Yult		=	0.758	
R.C.ult	= (Yult-Y)/Y*100%	=	45.7	%
Ср	= 0.9 L/(0.9 Y)	=	45.0	sec
Ymax	= 1-L/C	=	0.827	
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	43.2	%

(1) (1) (1) (1) (1) (1) (P6) (1) (1)	(P7) (2) (P6) (3) (2)	(P8) (P10) (4) (4) (4) (3)	(5) (5) (5)	(P8) (P6) (P9)
Stage A Int = 12	Stage B Int = 0	Stage C Int = 5	Stage D	Int = 5

1							
Pedestrian	Stage	Width	Gree	n Time Requ	uired (s)	Green Time	Provided (s)
Phase		(m)	SG	FG	Delay	SG	FG
P6	A, B,D	5	5	4	2	7	5
P7	В	10	5	8	9	7	9
P8	C,D	12	5	10	1	12	12
P9	A,D	7	5	6	2	7	8
P10	С	11	5	9	6	6	11

																							1		
Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Movemer	nt	Total	Proportion	Sat.	Gradient	Share	Revised				g	g	Degree of	Queue	Average
ment		Width		lane				Ahead	Left	Straight	Right	FLow	of Turning	Flow	Effect	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h		pcu/hr	pcu/h		у	sec	sec	sec	X	(m / lane)	(seconds)
																				19					
LT/SA	Α	3.44	1	1	8		N	1959	33	380		413	0.08	1930			1930	0.214			37	37	0.628	48	32
SA	Α	3.40	1	1	15			2095		449		449	0.00	2095			2095	0.214			37	37	0.628	54	31
RT	В	3.25	2	1	26		N	1940			43	43	1.00	1834			1834	0.023			4	19	0.135	6	35
LT,SA	Α	3.60	1	1	7			2115	17	663		680	0.03	2104			2104	0.323	0.323		57	57	0.628	60	20
SA	Α	3.30	1	2				4170		1347		1347	0.00	4170			4170	0.323			57	57	0.628	60	19
RT	В	3.60	2	1	14			2115			209	209	1.00	1910			1910	0.109			19	19	0.628	30	46
LT	B,C	3.40	3	2	57		N	4050	657			657	1.00	3946			3946	0.166	0.166		29	29	0.628	42	35
SA/RT	С	3.85	4	1	26		N	2000		20	22	42	0.52	1941			1941	0.022			4	4	0.628	6	88
LT	D	5.60	5	1	18			2315	85			85	1.00	2137			2137	0.040	0.030		7	7	0.628	12	65
LT/SA/RT	D	3.75	5	1	18			2130	0	6	54	60	0.90	1981			1981	0.030			5	5	0.628	12	75
			_								•												0.000		
		l				l	1	l		Ĭ															

NOTE: O - OPPOSING TRAFFIC

N - NEAR SIDE LANE

SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRAIN WALKING SPEED = 1.2m/s

OZZO TECHNOLOGY (HK) LIMITED TRAFFIC SIGNAL CALCULATION INITIALS DATE S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP PROJECT NO .: 82786 CW Nov-23 Prepared By: J1: Pok Fu Lam Road / Mount Davis Road / Smithfield FILENAME: Checked By: OC Nov-23 2037Des AM 2037 Design AM Peak Traffic Flows J1_PokFuLamRd_MountDavisRd_Smithfield Reviewed By: OC Nov-23

_			Existing (Cycle Time
No. of stage	s per cycle	N =	4	
Cycle time		C =	135	sec
Sum(y)		Y =	0.640	
Loss time		L =	19	sec
Total Flow		=	4701	pcu
Co	= (1.5*L+5)/(1-Y)	=	93.1	sec
Cm	= L/(1-Y)	=	52.8	sec
Yult		=	0.758	
R.C.ult	= (Yult-Y)/Y*100%	=	18.3	%
Ср	= 0.9*L/(0.9-Y)	=	65.8	sec
Ymax	= 1-L/C	=	0.859	
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	20.8	%

(1) (1) (1) (1) (P6) (1) (1) (P9)	(P7) (2) (P6) (3) (2)	(P8) (P10) (4) (4) (4) (3)	(5) (P8) (P8) (P6)	
Stage A Int = 12	Stage B Int = 0	Stage C Int = 5	Stage D Int = 5	

Pedestrian	Stage	Width	Gree	n Time Requ	iired (s)	Green Time	Provided (s)
	Olago				. ,		` '
Phase		(m)	SG	FG	Delay	SG	FG
P6	A, B,D	5	5	4	2	7	5
P7	В	10	5	8	9	7	9
P8	C,D	12	5	10	1	12	12
P9	A,D	7	5	6	2	7	8
P10	С	11	5	9	6	6	11

Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Movemer	nt	Total	Proportion	Sat.	Gradient	Share	Revised				g	g	Degree of	Queue	Average
ment		Width		lane				Ahead	Left	Straight	Right	FLow	of Turning	Flow	Effect	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h		pcu/hr	pcu/h		у	sec	sec	sec	X	(m / lane)	(seconds)
																				19					
LT/SA	Α	3.44	1	1	8		N	1959	23	452		475	0.05	1941			1941	0.245			44	44	0.745	66	44
SA	Α	3.40	1	1	15			2095		512		512	0.00	2095			2095	0.245			44	44	0.745	72	43
RT	В	3.25	2	1	26		N	1940			52	52	1.00	1834			1834	0.028			5	21	0.185	6	46
																									1
LT,SA	Α	3.60	1	1	7			2115	31	751		782	0.04	2097			2097	0.373	0.373		68	68	0.745	84	29
SA	Α	3.30	1	2				4170		1554		1554	0.00	4170			4170	0.373			68	68	0.745	87	26
RT	В	3.60	2	1	14			2115			218	218	1.00	1910			1910	0.114			21	21	0.745	42	65
LT	B,C	3.40	3	2	57		N	4050	886			886	1.00	3946			3946	0.225	0.225		41	41	0.745	69	42
SA/RT	С	3.85	4	1	26		N	2000		13	39	52	0.75	1917			1917	0.027			5	5	0.745	12	126
LT	D	5.60	5	1	18			2315	85			85	1.00	2137			2137	0.040	0.043		7	7	0.745	18	98
LT/SA/RT	D	3.75	5	1	18			2130	0	9	76	85	0.89	1982			1982	0.043			8	8	0.745	18	98

NOTE: O - OPPOSING TRAFFIC

N - NEAR SIDE LANE

SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRAIN WALKING SPEED = 1.2m/s

OZZO TECHNOLOGY (HK) LIMITED TRAFFIC SIGNAL CALCULATION INITIALS DATE S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP PROJECT NO .: 82786 CW Nov-23 Prepared By: J1: Pok Fu Lam Road / Mount Davis Road / Smithfield FILENAME: Checked By: OC Nov-23 2037Des PM 2037 Design PM Peak Traffic Flows J1_PokFuLamRd_MountDavisRd_Smithfield Reviewed By: OC Nov-23

			Existing (Cycle Time
No. of stage	s per cycle	N =	4	
Cycle time		C =	110	sec
Sum(y)		Y =	0.524	
Loss time		L =	19	sec
Total Flow		=	4015	pcu
Co	= (1.5*L+5)/(1-Y)	=	70.3	sec
Cm	= L/(1-Y)	=	39.9	sec
Yult		=	0.758	
R.C.ult	= (Yult-Y)/Y*100%	=	44.6	%
Ср	= 0.9*L/(0.9-Y)	=	45.4	sec
Ymax	= 1-L/C	=	0.827	
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	42.2	%

(1) (1) (1) (1) (P6) (1) (1) (P9)	(P7) (2) (P6) (3) (2)	(P8) (P10) (4) (4) (4) (3)	(5) (P8) (P8) (P6)	
Stage A Int = 12	Stage B Int = 0	Stage C Int = 5	Stage D Int = 5	

Pedestrian	Stage	Width	Gree	n Time Requ	uired (s)	Green Time	Provided (s)
Phase		(m)	SG	FG	Delay	SG	FG
P6	A, B,D	5	5	4	2	7	5
P7	В	10	5	8	9	7	9
P8	C,D	12	5	10	1	12	12
P9	A,D	7	5	6	2	7	8
P10	С	11	5	9	6	6	11

																	1								
Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Movemer	nt	Total	Proportion	Sat.	Gradient	Share	Revised				g	g	Degree of	Queue	Average
ment		Width		lane				Ahead	Left	Straight	Right	FLow	of Turning	Flow	Effect	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h		pcu/hr	pcu/h		у	sec	sec	sec	Х	(m / lane)	(seconds)
																				19					
LT/SA	Α	3.44	1	1	8		N	1959	33	385		418	0.08	1930			1930	0.216			38	38	0.633	48	32
SA	Α	3.40	1	1	15			2095		453		453	0.00	2095			2095	0.216			38	38	0.633	54	31
RT	В	3.25	2	1	26		N	1940			43	43	1.00	1834			1834	0.023			4	19	0.135	6	35
LT,SA	Α	3.60	1	1	7			2115	17	667		684	0.02	2104			2104	0.325	0.325		57	57	0.633	60	20
SA	Α	3.30	1	2				4170		1356		1356	0.00	4170			4170	0.325			57	57	0.633	60	19
RT	В	3.60	2	1	14			2115			210	210	1.00	1910			1910	0.110			19	19	0.633	30	46
LT	B,C	3.40	3	2	57		N	4050	664			664	1.00	3946			3946	0.168	0.168		29	29	0.633	42	35
SA/RT	С	3.85	4	1	26		N	2000		20	22	42	0.52	1941			1941	0.022			4	4	0.633	6	89
LT	D	5.60	5	1	18			2315	85			85	1.00	2137			2137	0.040	0.030		7	7	0.633	12	66
LT/SA/RT	D	3.75	5	1	18			2130	0	6	54	60	0.90	1981			1981	0.030			5	5	0.633	12	76
	_								•				-												

NOTE: O - OPPOSING TRAFFIC

N - NEAR SIDE LANE

SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRAIN WALKING SPEED = 1.2m/s

OZZO TECHNOLOGY (HK) LIMITED	PRIORI [*]	TY JUNCTION C	ALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Bu Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136		2037Ref_AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J2 : Pok Fu Lam Road / Bisney Road			FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Reference AM Peak Hour Traffic Flows			J2 PokFuLamRd BisnevRd P.xls	REVIEWED BY:	ОС	Nov-23

ETRIC DETAILS	•		GEOMETR		J.1.J.		1112	CAPACITY OF MO			COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROAL	(ARM A)												
W =	3.9	(metres)		D	=	0.6110158		Q b-a =	176		DFC b-a	=	0.0000
W cr =	0	(metres)		E	=	1.4269246		Q b-c =	579		DFC b-c	=	0.3851
q a-b =	93	(pcu/hr)		F	=	0.5859548		Q c-b =	228		DFC c-b	=	0.0000
q a-c =	1039	(pcu/hr)		Υ	=	0.86545							
MAJOR ROAD	(ARM C)							TOTAL FLOW	= 1355	(PCU/HR)			
W c-b =		(metres)											
Vr c-b =		(metres)											
q c-a =	0	(pcu/hr)											
q c-b =	0	(pcu/hr)											
											CRITICAL DFC	=	0.39
MINOR ROAD	(ARM B)												
W b-a =		(metres)											
W b-c =	8.5	(metres)											
VI b-a =	62	(metres)											
Vr b-a =	100	(metres)											
Vr b-c =	100	(metres)											
q b-a =	0	(pcu/hr)											
q b-c =	223	(pcu/hr)											

OZZO TECHNOLOGY (HK) LIMITED	PRIORI	TY JUNCTION C	ALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Buil Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136f		2037Ref_PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J2 : Pok Fu Lam Road / Bisney Road			FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Reference PM Peak Hour Traffic Flows			J2 PokFuLamRd BisnevRd P.xls	REVIEWED BY:	ОС	Nov-23

ETRIC DETAIL	J.		GEOMETRIC FAC	i ono .		THE CAPACITY OF M	JVLINLINI .		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)										
W =	3.9	(metres)	D	=	0.6110158	Q b-a =	208		DFC b-a	=	0.0000
W cr =	0	(metres)	E	=	1.4269246	Q b-c =	655		DFC b-c	=	0.3237
q a-b =	70	(pcu/hr)	F	=	0.5859548	Q c-b =	261		DFC c-b	=	0.0000
q a-c =	880	(pcu/hr)	Υ	=	0.86545						
MAJOR ROAL	(ARM C)					TOTAL FLOW	= 1162	(PCU/HR)			
W c-b =		(metres)									
Vr c-b =		(metres)									
q c-a =	0	(pcu/hr)									
q c-b =	0	(pcu/hr)									
									CRITICAL DFC	=	0.32
MINOR ROAD	(ARM B)										
W b-a =		(metres)									
W b-c =	8.5	(metres)									
VI b-a =	62	(metres)									
Vr b-a =	100	(metres)									
Vr b-c =	100	(metres)									
q b-a =	0	(pcu/hr)									
q b-c =	212										

OZZO TECHNOLOGY (HK) LIMITED	PRIORI'	TY JUNCTION C	ALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Bu Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 130		2037Des_AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J2 : Pok Fu Lam Road / Bisney Road			FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Design AM Peak Hour Traffic Flows			J2 PokFuLamRd BisnevRd P.xls	REVIEWED BY:	ОС	Nov-23

TRIC DETAIL	J .		GEOMETRI	CFACI	OKS:		THE CAL	PACITY OF MOV	EWENT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	O (ARM A)												
W =	3.9	(metres)		D	=	0.6110158		Q b-a =	176		DFC b-a	=	0.0000
W cr =	0	(metres)		Е	=	1.4269246		Q b-c =	579		DFC b-c	=	0.3851
qa-b =	93	(pcu/hr)		F	=	0.5859548		Q c-b =	228		DFC c-b	=	0.0000
q a-c =	1039	(pcu/hr)		Υ	=	0.86545							
MAJOR ROAL	(ARM C)							TOTAL FLOW	= 1355	(PCU/HR)			
W c-b =		(metres)											
Vr c-b =		(metres)											
q c-a =	0	(pcu/hr)											
q c-b =	0	(pcu/hr)											
											CRITICAL DFC	=	0.39
MINOR ROAD	(ARM B)												
W b-a =		(metres)											
W b-c =	8.5	(metres)											
VI b-a =	62	(metres)											
Vr b-a =	100	(metres)											
Vr b-c =	100	(metres)											
q b-a =	0	(pcu/hr)											
q b-c =	223	(pcu/hr)											

OZZO TECHNOLOGY (HK) LIMITED PRIOR	ITY JUNCTION C	ALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Des_PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J2 : Pok Fu Lam Road / Bisney Road		FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Design PM Peak Hour Traffic Flows		J2_PokFuLamRd_BisneyRd_P.xls	REVIEWED BY:	ОС	Nov-23

METRIC DETAIL	.o.		GEOMETRIC FACT	UKS:		THE CAPACITY OF MO	OVENIENT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)										
W =	3.9	(metres)	D	=	0.6110158	Q b-a =	208		DFC b-a	=	0.0000
W cr =	0	(metres)	E	=	1.4269246	Q b-c =	655		DFC b-c	=	0.3237
q a-b =	70	(pcu/hr)	F	=	0.5859548	Q c-b =	261		DFC c-b	=	0.0000
q a-c =	880	(pcu/hr)	Υ	=	0.86545						
MAJOR ROAL	O (ARM C)					TOTAL FLOW	= 1162	(PCU/HR)			
W c-b =		(metres)									
Vr c-b =		(metres)									
q c-a =	0	(pcu/hr)									
q c-b =	0	(pcu/hr)									
									CRITICAL DFC	=	0.32
MINOR ROAD	(ARM B)										
W b-a =		(metres)									
W b-c =	8.5	(metres)									
VI b-a =	62	(metres)									
Vr b-a =	100	(metres)									
Vr b-c =	100	(metres)									
q b-a =	0	(pcu/hr)									
q b-c =	212	(pcu/hr)									

OZZO TECHNOLOGY (HK) LIMITED PRIORI	ITY JUNCTION C	CALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Ref_AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J3 : Pok Fu Lam Road / Access Road to Queen Mary Hospital		FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Reference AM Peak Hour Traffic Flows		J3_PokFuLamRd_AccessRdtoQMH_P.xls	REVIEWED BY:	ОС	Nov-23

METRIC DETAIL	.S:		GEOME	TRIC FACT	ORS:		THE	CAPACITY OF MO	VEMEN	Т:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)													
W =	7.1	(metres)		D	=	0.5785844		Q b-a =	1			DFC b-a	=	0.0000
W cr =	0	(metres)		E	=	0.9842098		Q b-c =	439	Q b-c (O) =	439	DFC b-c	=	0.3485
q a-b =	36	(pcu/hr)		F	=	0.9042675		Q c-b =	398			DFC c-b	=	0.3618
q a-c =	1074	(pcu/hr)		Υ	=	0.755395								
MAJOR ROA	O (ARM C)							TOTAL FLOW	= :	2969	(PCU/HR)			
W c-b =	3.5	(metres)												
Vr c-b =	28	(metres)												
q c-a =	1562	(pcu/hr)												
q c-b =	144	(pcu/hr)												
												CRITICAL DFC	=	0.36
MINOR ROAL	(ARM B)													
W b-a =		(metres)												
W b-c =	4.2	(metres)												
VI b-a =	50	(metres)												
Vr b-a =	50	(metres)												
Vr b-c =	50	(metres)												
q b-a =	0	(pcu/hr)												
q b-c =	153	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED PRIORIT	TY JUNCTION C	ALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Ref_PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J3 : Pok Fu Lam Road / Access Road to Queen Mary Hospital		FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Reference PM Peak Hour Traffic Flows		J3_PokFuLamRd_AccessRdtoQMH_P.xls	REVIEWED BY:	ОС	Nov-23

IETRIC DETAIL	.S:		GEOMETR	RIC FACT	ORS:		THE (CAPACITY OF MO	/EMEN	Т:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)													
W =	7.1	(metres)		D	=	0.5785844		Q b-a =	56			DFC b-a	=	0.0000
W cr =	0	(metres)		E	=	0.9842098		Q b-c =	472	Q b-c (O) =	472	DFC b-c	=	0.1907
q a-b =	22	(pcu/hr)		F	=	0.9042675		Q c-b =	430			DFC c-b	=	0.2349
q a-c =	957	(pcu/hr)		Υ	=	0.755395								
MAJOR ROAI	O (ARM C)							TOTAL FLOW	= :	2474	(PCU/HR)			
W c-b =	3.5	(metres)												
Vr c-b =	28	(metres)												
q c-a =	1304	(pcu/hr)												
q c-b =	101	(pcu/hr)												
												CRITICAL DFC	=	0.23
MINOR ROAD	(ARM B)													
W b-a =		(metres)												
W b-c =	4.2	(metres)												
VI b-a =	50	(metres)												
Vr b-a =	50	(metres)												
Vr b-c =	50	(metres)												
q b-a =	0	(pcu/hr)												
q b-c =	90	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED PRIOR	ITY JUNCTION C	JUNCTION CALCULATION						
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Des_AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23			
J3 : Pok Fu Lam Road / Access Road to Queen Mary Hospital		FILENAME :	CHECKED BY:	ОС	Nov-23			
2037 Design AM Peak Hour Traffic Flows		J3_PokFuLamRd_AccessRdtoQMH_P.xls	REVIEWED BY:	ОС	Nov-23			

METRIC DETAIL	.S:		GEOMET	RIC FACT	ORS:		THE	CAPACITY OF MO	/EMEN	Т:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)													
W =	7.1	(metres)		D	=	0.5785844		Q b-a =	-5			DFC b-a	=	0.0000
W cr =	0	(metres)		E	=	0.9842098		Q b-c =	435	Q b-c (O) =	435	DFC b-c	=	0.3517
q a-b =	36	(pcu/hr)		F	=	0.9042675		Q c-b =	394			DFC c-b	=	0.3655
q a-c =	1088	(pcu/hr)		Υ	=	0.755395								
MAJOR ROAI	O (ARM C)							TOTAL FLOW	=	3013	(PCU/HR)			
W c-b =	3.5	(metres)												
Vr c-b =	28	(metres)												
q c-a =	1592	(pcu/hr)												
q c-b =	144	(pcu/hr)												
												CRITICAL DFC	=	0.37
MINOR ROAD	(ARM B)													
W b-a =		(metres)												
W b-c =	4.2	(metres)												
VI b-a =	50	(metres)												
Vr b-a =	50	(metres)												
Vr b-c =	50	(metres)												
q b-a =	0	(pcu/hr)												
q b-c =	153	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED PRIOR	ITY JUNCTION C	Y JUNCTION CALCULATION						
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Des_PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23			
J3 : Pok Fu Lam Road / Access Road to Queen Mary Hospital		FILENAME :	CHECKED BY:	ОС	Nov-23			
2037 Design PM Peak Hour Traffic Flows		J3_PokFuLamRd_AccessRdtoQMH_P.xls	REVIEWED BY:	ОС	Nov-23			

TRIC DETAIL	J.		GEOWEI	TRIC FACT	ONO:		INE	CAPACITY OF MO	LIVIEIN	١.		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)													
W =	7.1	(metres)		D	=	0.5785844		Q b-a =	51			DFC b-a	=	0.0000
W cr =	0	(metres)		Е	=	0.9842098		Q b-c =	467	Q b-c (O) =	467	DFC b-c	=	0.1927
q a-b =	22	(pcu/hr)		F	=	0.9042675		Q c-b =	426			DFC c-b	=	0.2371
q a-c =	974	(pcu/hr)		Υ	=	0.755395								
MAJOR ROAL	(ARM C)							TOTAL FLOW	= 2	2507	(PCU/HR)			
W c-b =	3.5	(metres)												
Vr c-b =	28	(metres)												
q c-a =	1320	(pcu/hr)												
q c-b =	101	(pcu/hr)												
												CRITICAL DFC	=	0.24
MINOR ROAD	(ARM B)													
W b-a =		(metres)												
W b-c =	4.2	(metres)												
VI b-a =	50	(metres)												
Vr b-a =	50	(metres)												
Vr b-c =	50	(metres)												
q b-a =	0	(pcu/hr)												
q b-c =	90	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED PRIOR	RITY JUNCTION C	ALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Ref_AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J4 : Pok Fu Lam Road / Access Road to Application Site		FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Reference AM Peak Hour Traffic Flows		J4_PokFuLamRd_AccessRdtoEbenezerNew	REVIEWED BY:	ОС	Nov-23

METRIC DETAIL	.S:		GEOMETR	IIC FACT	rors :		THE	CAPACITY OF MO	/EMEN	Т:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)													
W =	7.1	(metres)		D	=	0.7266602		Q b-a =	-36			DFC b-a	=	-0.3889
W cr =	0	(metres)		E	=	0.7730428		Q b-c =	220	Q b-c (O) =	241.4	DFC b-c	=	0.0636
q a-b =	9	(pcu/hr)		F	=	0.9085783		Q c-b =	258			DFC c-b	=	0.1240
q a-c =	1670	(pcu/hr)		Υ	=	0.7548775								
MAJOR ROA	D (ARM C)							TOTAL FLOW	= :	2919	(PCU/HR)			
W c-b =	3.6	(metres)												
Vr c-b =	28	(metres)												
q c-a =	1180	(pcu/hr)												
q c-b =	32	(pcu/hr)												
												CRITICAL DFC	=	0.12
MINOR ROAL	(ARM B)													
W b-a =	1.8	(metres)												
W b-c =	1.8	(metres)												
VI b-a =	50	(metres)												
Vr b-a =	50	(metres)												
Vr b-c =	50	(metres)												
q b-a =	14	(pcu/hr)												
q b-c =	14	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED PRIOR	ITY JUNCTION C	ALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Ref_PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J4 : Pok Fu Lam Road / Access Road to Application Site		FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Reference PM Peak Hour Traffic Flows		J4_PokFuLamRd_AccessRdtoEbenezerNew	REVIEWED BY:	ОС	Nov-23

TRIC DETAIL	.		GEOMET	NIC FACI	ons.		INE	CAPACITY OF MOV	LIVILIN	٠.		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	O (ARM A)													
W =	7.1	(metres)		D	=	0.7266602		Q b-a =	69			DFC b-a	=	0.0145
W cr =	0	(metres)		E	=	0.7730428		Q b-c =	293	Q b-c (O) =	291.9	DFC b-c	=	0.0102
q a-b =	2	(pcu/hr)		F	=	0.9085783		Q c-b =	344			DFC c-b	=	0.0000
q a-c =	1332	(pcu/hr)		Υ	=	0.7548775								
MAJOR ROAL	(ARM C)							TOTAL FLOW	= 2	2297	(PCU/HR)			
W c-b =	3.6	(metres)												
Vr c-b =	28	(metres)												
q c-a =	959	(pcu/hr)												
q c-b =	0	(pcu/hr)												
												CRITICAL DFC	=	0.01
MINOR ROAD	(ARM B)													
W b-a =	1.8	(metres)												
W b-c =	1.8	(metres)												
VI b-a =	50	(metres)												
Vr b-a =	50	(metres)												
Vr b-c =	50	(metres)												
q b-a =	1	(pcu/hr)												
q b-c =	3	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED PRIOR	ITY JUNCTION C	ALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Des_AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J4 : Pok Fu Lam Road / Access Road to Application Site		FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Design AM Peak Hour Traffic Flows		J4_PokFuLamRd_AccessRdtoEbenezerNew	REVIEWED BY:	ОС	Nov-23

TRIC DETAIL	ə :		GEOMETR	IC FACI	UKS:		THE	CAPACITY OF MO	VEIVIEN	1:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)													
W =	7.1	(metres)		D	=	0.7266602		Q b-a =	-41			DFC b-a	=	-0.3415
W cr =	0	(metres)		E	=	0.7730428		Q b-c =	217	Q b-c (O) =	235.5	DFC b-c	=	0.0645
q a-b =	9	(pcu/hr)		F	=	0.9085783		Q c-b =	253			DFC c-b	=	0.1265
q a-c =	1687	(pcu/hr)		Υ	=	0.7548775								
MAJOR ROAL	(ARM C)							TOTAL FLOW	= 2	2950	(PCU/HR)			
W c-b =	3.6	(metres)												
Vr c-b =	28	(metres)												
q c-a =	1194	(pcu/hr)												
q c-b =	32	(pcu/hr)												
												CRITICAL DFC	=	0.13
MINOR ROAD	(ARM B)													
W b-a =	1.8	(metres)												
W b-c =	1.8	(metres)												
VI b-a =	50	(metres)												
Vr b-a =	50	(metres)												
Vr b-c =	50	(metres)												
q b-a =	14	(pcu/hr)												
q b-c =	14	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED PRIOR	ITY JUNCTION C	ALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Des_PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J4 : Pok Fu Lam Road / Access Road to Application Site		FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Design PM Peak Hour Traffic Flows	_	J4_PokFuLamRd_AccessRdtoEbenezerNew	REVIEWED BY:	ОС	Nov-23

METRIC DETAIL	S:		GEOMET	RIC FACT	ORS:		THE	CAPACITY OF MO	/EMEN	Γ:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)													
W =	7.1	(metres)		D	=	0.7266602		Q b-a =	63			DFC b-a	=	0.0159
W cr =	0	(metres)		E	=	0.7730428		Q b-c =	288	Q b-c (O) =	286.9	DFC b-c	=	0.0104
q a-b =	2	(pcu/hr)		F	=	0.9085783		Q c-b =	338			DFC c-b	=	0.0000
q a-c =	1354	(pcu/hr)		Υ	=	0.7548775								
MAJOR ROAL	(ARM C)							TOTAL FLOW	= 2	2336	(PCU/HR)			
W c-b =	3.6	(metres)												
Vr c-b =	28	(metres)												
q c-a =	976	(pcu/hr)												
q c-b =	0	(pcu/hr)												
												CRITICAL DFC	=	0.02
MINOR ROAD	(ARM B)													
W b-a =	1.8	(metres)												
W b-c =	1.8	(metres)												
VI b-a =	50	(metres)												
Vr b-a =	50	(metres)												
Vr b-c =	50	(metres)												
q b-a =	1	(pcu/hr)												
q b-c =	3	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED PRIOR		INITIALS	DATE		
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Ref_AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J5 : Pok Fu Lam Road / Chi Fu Road (N)		FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Reference AM Peak Hour Traffic Flows		J5_PokFuLamRd_ChiFuRd(N)_P.xls	REVIEWED BY:	ОС	Nov-23

METRIC DETAILS:	GEOMETRIC FACTORS :	THE CAPACITY OF MOVEMENT :	COMPARISION OF DESIGN FLOW TO CAPACITY:
MAJOR ROAD (ARM A)			
W = 7.50 (metres)	D = 0.5785844	Q b-a = 185	DFC b-a = 0.0000
W cr = 0 (metres)	E = 1.0030585	Q b-c = 440 Q b-c (O) = 440	DFC b-c = 0.3000
q a-b = 286 (pcu/hr)	F = 0.5859548	Q c-b = 230	DFC c-b = 0.0000
q a-c = 1023 (pcu/hr)	Y = 0.74125		
MAJOR ROAD (ARM C)		TOTAL FLOW = 1441 (PCU/HR)	
W c-b = (metres)			
Vr c-b = (metres)			
q c-a = 0 (pcu/hr)			
q c-b = 0 (pcu/hr)			
			CRITICAL DFC = 0.30
MINOR ROAD (ARM B)			
W b-a = (metres)			
W b-c = 4.40 (metres)			
VI b-a = 50 (metres)			
Vr b-a = 50 (metres)			
Vr b-c = 50 (metres)			
q b-a = 0 (pcu/hr)			
q b-c = 132 (pcu/hr)			

OZZO TECHNOLOGY (HK) LIMITED	PRIORI [*]	TY JUNCTION C	ALCULATION	INITIALS	DATE	
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Build Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136R	2037Ref_PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23	
J5 : Pok Fu Lam Road / Chi Fu Road (N)		FILENAME :	CHECKED BY:	ОС	Nov-23	
2037 Reference PM Peak Hour Traffic Flows			J5 PokFuLamRd ChiFuRd(N) P.xls	REVIEWED BY:	OC	Nov-23

METRIC DETAILS:	GEOMETRIC FACTORS :	THE C	CAPACITY OF MO	/EMEN	Т:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROAD (ARM A)									
W = 7.50 (metre	B) D =	0.5785844	Q b-a =	230			DFC b-a	=	0.0000
W cr = 0 (metre	s) E =	1.0030585	Q b-c =	516	Q b-c (O) =	516	DFC b-c	=	0.1744
q a-b = 220 (pcu/h	r) F =	0.5859548	Q c-b =	281			DFC c-b	=	0.0000
q a-c = 766 (pcu/h	Y =	0.74125							
MAJOR ROAD (ARM C)			TOTAL FLOW	=	1076	(PCU/HR)			
W c-b = (metre	s)								
Vr c-b = (metre	6)								
q c-a = 0 (pcu/h	·)								
$q c-b = 0 ext{ (pcu/h}$	·)								
							CRITICAL DFC	=	0.17
MINOR ROAD (ARM B)									
W b-a = (metre	6)								
W b-c = 4.40 (metre	6)								
VI b-a = 50 (metre	6)								
Vr b-a = 50 (metre	6)								
Vr b-c = 50 (metre	6)								
q b-a = 0 (pcu/h	·)								
q b-c = 90 (pcu/h	·)								

OZZO TECHNOLOGY (HK) LIMITED	PRIORI	ALCULATION	INITIALS	DATE		
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Bu Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136	2037Des_AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23	
J5 : Pok Fu Lam Road / Chi Fu Road (N)			FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Design AM Peak Hour Traffic Flows			J5 PokFuLamRd ChiFuRd(N) P.xls	REVIEWED BY:	OC	Nov-23

METRIC DETAILS:		GEOMETRIC	FACTO	ORS :		THE C	APACITY OF MOV	/EMEN	NT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROAD (ARM A)													
W = 7.50	(metres)		D	=	0.5785844		Q b-a =	184			DFC b-a	=	0.0000
W cr = 0	(metres)		Е	=	1.0030585		Q b-c =	438	Q b-c (O) =	438	DFC b-c	=	0.3014
q a-b = 298	(pcu/hr)		F	=	0.5859548		Q c-b =	227			DFC c-b	=	0.0000
q a-c = 1025	(pcu/hr)		Υ	=	0.74125								
MAJOR ROAD (ARM C)							TOTAL FLOW	=	1455	(PCU/HR)			
W c-b =	(metres)												
Vr c-b =	(metres)												
q c-a = 0	(pcu/hr)												
q c-b = 0	(pcu/hr)												
											CRITICAL DFC	=	0.30
MINOR ROAD (ARM B)													
W b-a =	(metres)												
W b-c = 4.40	(metres)												
VI b-a = 50	(metres)												
Vr b-a = 50	(metres)												
Vr b-c = 50	(metres)												
q b-a = 0	(pcu/hr)												
q b-c = 132	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED	PRIORI	INITIALS	DATE			
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Buil Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136f	2037Des_PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23	
J5 : Pok Fu Lam Road / Chi Fu Road (N)		FILENAME :	CHECKED BY:	ОС	Nov-23	
2037 Design PM Peak Hour Traffic Flows			J5 PokFuLamRd ChiFuRd(N) P.xls	REVIEWED BY:	ОС	Nov-23

ETRIC DETAILS:	GEOMETRIC FACTORS :	THE CAPACITY OF MOVEMENT :	COMPARISION OF DESIGN FLOW TO CAPACITY:
MAJOR ROAD (ARM A)			TO GALAGITI.
W = 7.50 (metres)	D = 0.5785844	Q b-a = 228	DFC b-a = 0.0000
W cr = 0 (metres)	E = 1.0030585	Q b-c = 514 Q b-c (O) = 514	DFC b-c = 0.1751
q a-b = 236 (pcu/hr)	F = 0.5859548	Q c-b = 278	DFC c-b = 0.0000
q a-c = 767 (pcu/hr)	Y = 0.74125		
MAJOR ROAD (ARM C)		TOTAL FLOW = 1093 (PCU/HR)	
W c-b = (metres)			
Vr c-b = (metres)			
q c-a = 0 (pcu/hr)			
q c-b = 0 (pcu/hr)			
			CRITICAL DFC $= 0.18$
MINOR ROAD (ARM B)			
W b-a = (metres)			
W b-c = 4.40 (metres)			
VI b-a = 50 (metres)			
Vr b-a = 50 (metres)			
Vr b-c = 50 (metres)			
q b-a = 0 (pcu/hr)			
q b-c = 90 (pcu/hr)			

OZZO TECHNOLOGY (HK) LIMITED PRIORI	TY JUNCTION C	CALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Ref_AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J6 : Pok Fu Lam Road / Chi Fu Road (S)		FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Reference AM Peak Hour Traffic Flows		J6_PokFuLamRd_ChiFuRd(S)_P.xls	REVIEWED BY:	ОС	Nov-23

METRIC DETAILS:	GEOMETRIC FACTORS:	THE CAPACITY OF MOVEMENT :	COMPARISION OF DESIGN FLOW TO CAPACITY:	
MAJOR ROAD (ARM A)				
W = 10.0 (metres)	D = 0.533	2189 Q b-a = 196	DFC b-a	= 0.0000
W cr = 0 (metres)	E = 1.098	6945 Q b-c = 534 Q b-c (O) =	534 DFC b-c	= 0.5655
q a-b = 0 (pcu/hr)	F = 0.585	9548 Q c-b = 285	DFC c-b	= 0.0000
q a-c = 1088 (pcu/hr)	Y = 0	0.655		
MAJOR ROAD (ARM C)		TOTAL FLOW = 1390	(PCU/HR)	
W c-b = (metres)				
Vr c-b = (metres)				
q c-a = 0 (pcu/hr)				
q c-b = 0 (pcu/hr)				
			CRITICAL DFC	= 0.57
MINOR ROAD (ARM B)				
W b-a = (metres)				
W b-c = 5.0 (metres)				
VI b-a = (metres)				
Vr b-a = (metres)				
Vr b-c = 94 (metres)				
q b-a = 0 (pcu/hr)				
q b-c = 302 (pcu/hr)				

OZZO TECHNOLOGY (HK) LIMITED PR	ALCULATION		INITIALS	DATE	
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Ref_PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J6 : Pok Fu Lam Road / Chi Fu Road (S)		FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Reference PM Peak Hour Traffic Flows		J6_PokFuLamRd_ChiFuRd(S)_P.xls	REVIEWED BY:	ОС	Nov-23

GEOMETRIC DETAILS:			GEO	METRIC FA	CTORS :		THE CAPACITY OF MO	NEMEN	NT :		COMPARISION OF DESIGN FLOW TO CAPACITY:			
MAJOR ROAD (A	ARM A)													
W =	10.0	(metres)		D	=	0.533218	Q b-a =	233			DFC b-a	=	0.0000	
W cr =	0	(metres)		E	=	1.098694	Q b-c =	609	Q b-c (O) =	609	DFC b-c	=	0.2660	
q a-b =	0	(pcu/hr)		F	=	0.585954	Q c-b =	325			DFC c-b	=	0.0000	
q a-c =	798	(pcu/hr)		Υ	=	0.65								
MAJOR ROAD (A	RM C)						TOTAL FLOW	=	960	(PCU/HR)				
W c-b =		(metres)												
Vr c-b =		(metres)												
q c-a =	0	(pcu/hr)												
q c-b =	0	(pcu/hr)												
											CRITICAL DFC	=	0.27	
MINOR ROAD (A	RM B)													
W b-a =		(metres)												
W b-c =	5.0	(metres)												
VI b-a =		(metres)												
Vr b-a =		(metres)												
Vr b-c =	94	(metres)												
q b-a =	0	(pcu/hr)												
q b-c =	162	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED PRIOR	ITY JUNCTION C	CALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Des_AM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J6 : Pok Fu Lam Road / Chi Fu Road (S)		FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Design AM Peak Hour Traffic Flows		J6_PokFuLamRd_ChiFuRd(S)_P.xls	REVIEWED BY:	ОС	Nov-23

GEOMETRIC DETAILS:	GEOMETRIC FACTORS:	THE CAPACITY OF MOVEMENT :	COMPARISION OF DESIGN FLOW TO CAPACITY:	
MAJOR ROAD (ARM A)				
W = 10.0 (metres)	D = 0.5332189	Q b-a = 196	DFC b-a = 0.0000	
W cr = 0 (metres)	E = 1.0986945	Q b-c = 533 Q b-c (O) = 533	DFC b-c = 0.5666	
q a-b = 0 (pcu/hr)	F = 0.5859548	Q c-b = 284	DFC c-b = 0.0000	
q a-c = 1090 (pcu/hr)	Y = 0.655			
MAJOR ROAD (ARM C)		TOTAL FLOW = 1392 (PCU/HR)		
W c-b = (metres)				
Vr c-b = (metres)				
q c-a = 0 (pcu/hr)				
q c-b = 0 (pcu/hr)				
			CRITICAL DFC = 0.57	
MINOR ROAD (ARM B)				
W b-a = (metres)				
W b-c = 5.0 (metres)				
VI b-a = (metres)				
Vr b-a = (metres)				
Vr b-c = 94 (metres)				
q b-a = 0 (pcu/hr)				
q b-c = 302 (pcu/hr)				

OZZO TECHNOLOGY (HK) LIMITED PRI	IORITY JUNCTION C	ALCULATION		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Des_PM	PROJECT NO.: 82786	PREPARED BY:	CW	Nov-23
J6 : Pok Fu Lam Road / Chi Fu Road (S)		FILENAME :	CHECKED BY:	ОС	Nov-23
2037 Design PM Peak Hour Traffic Flows		J6_PokFuLamRd_ChiFuRd(S)_P.xls	REVIEWED BY:	ОС	Nov-23

EOMETRIC DETAILS:	GEOMETRIC FACTORS:	THE CAPACITY OF MOVEMENT :	COMPARISION OF DESIGN FLOW TO CAPACITY:	
MAJOR ROAD (ARM A)				
W = 10.0 (metres)	D = 0.5332189	Q b-a = 233	DFC b-a = 0.0000	
W cr = 0 (metres)	E = 1.0986945	Q b-c = 609 Q b-c (O) = 609	DFC b-c = 0.2660	
q a-b = 0 (pcu/hr)	F = 0.5859548	Q c-b = 325	DFC c-b = 0.0000	
q a-c = 799 (pcu/hr)	Y = 0.655			
MAJOR ROAD (ARM C)		TOTAL FLOW = 961 (PCU/HR)		
W c-b = (metres)				
Vr c-b = (metres)				
q c-a = 0 (pcu/hr)				
q c-b = 0 (pcu/hr)				
			CRITICAL DFC = 0.27	
MINOR ROAD (ARM B)				
W b-a = (metres)				
W b-c = 5.0 (metres)				
VI b-a = (metres)				
Vr b-a = (metres)				
Vr b-c = 94 (metres)				
q b-a = 0 (pcu/hr)				
q b-c = 162 (pcu/hr)				

OZZO TECHNOLOGY (HK) LIMITED PRIORITY JUNCTION CALCULATION **INITIALS** DATE Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, PREPARED BY: PROJECT NO.: 82786 CW Nov-23 Hong Kong, RBL 136RP 2037Ref AM J7A: Pok Fu Lam Road / Sassoon Road (W) FILENAME: CHECKED BY: OC Nov-23 2037 Reference AM Peak Hour Traffic Flows J7A_PokFuLamRd_SassoonRd_P.xls OC REVIEWED BY: Nov-23

Sassoon Road (ARM B)

[1] 557
[2] 328

Pok Fu Lam Road (Near Queen Mary Hospital) (ARM C)

(ARM A)

METRIC DETAIL	.S:		GEOMETRIC FACT	TORS :		THE CAPACITY OF MO	OVEME	ENT :			COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)												
W =	15.00	(metres)	D	=	0.7880507	Q b-a =	418	3			DFC b-a	=	0.1914
W cr =	1.7	(metres)	E	=	1.8256896	Q b-c =	1184	4 Q b	o-c (O) =	1127	DFC b-c	=	0.6410
q a-b =	557	(pcu/hr)	F	=	1.2699718	Q c-b =	749	9			DFC c-b	=	0.0841
q a-c =	328	(pcu/hr)	Υ	=	0.4825	Q b-ac =	1008	В			DFC b-ac	=	0.8324
MAJOR ROA	O (ARM C)		F for (Qb-a	ac) =	0.9046484	TOTAL FLOW	=	1867		(PCU/HR)			
W c-b =	7.50	(metres)											
Vr c-b =	45	(metres)											
q c-a =	80	(pcu/hr)											
q c-b =	63	(pcu/hr)											
											CRITICAL DFC	=	0.83
MINOR ROAL	(ARM B)												
W b-a =	2.50	(metres)											
W b-c =	3.85	(metres)											
VI b-a =	40	(metres)											
Vr b-a =	60	(metres)											
Vr b-c =	1000	(metres)	* adjusted parameter to reflect the ti	me gaps	available for traffic from Sa	assoon Road (Arm B) during th	ne red	time of a	djacent sid	nalized junction			
	80	(pcu/hr)	, ,	3-1		, , , , , ,			,	•			
q b-a =		. ,											

OZZO TECHNOLOGY (HK) LIMITED PRIORITY JUNCTION CALCULATION **INITIALS** DATE Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, PREPARED BY: PROJECT NO.: 82786 CW Nov-23 Hong Kong, RBL 136RP 2037Ref PM J7A: Pok Fu Lam Road / Sassoon Road (W) FILENAME: CHECKED BY: OC Nov-23 J7A_PokFuLamRd_SassoonRd_P.xls **REVIEWED BY:** OC 2037 Reference PM Peak Hour Traffic Flows Nov-23

Sassoon Road
(ARM B)

[1] 588
[2] 425

Pok Fu Lam Road
(Near Queen Mary Hospital)
(ARM A)

[ARM C)

OMETRIC DETAIL	S:		GEOMETRIC FAC	TORS:		THE CAPACITY OF M	OVEME	INT :		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)											
W =	15.00	(metres)	D	=	0.7880507	Q b-a =	412			DFC b-a	=	0.2403
W cr =	1.7	(metres)	E	=	1.8256896	Q b-c =	1149	Q b-c (O) :	= 1080	DFC b-c	=	0.4352
q a-b =	588	(pcu/hr)	F	=	1.2699718	Q c-b =	720			DFC c-b	=	0.0486
q a-c =	425	(pcu/hr)	Υ	=	0.4825	Q b-ac =	886.8			DFC b-ac	=	0.6755
MAJOR ROAI	(ARM C)		F for (Qb-	ac) =	0.8347245	TOTAL FLOW	=	1684	(PCU/HR)			
W c-b =	7.50	(metres)										
Vr c-b =	45	(metres)										
q c-a =	37	(pcu/hr)										
d c-p =	35	(pcu/hr)										
										CRITICAL DFC	=	0.68
MINOR ROAD	(ARM B)											
W b-a =	2.50	(metres)										
W b-c =	3.85	(metres)										
VI b-a =	40	(metres)										
Vr b-a =	60	(metres)										
Vr b-c =	1000	(metres)	* adjusted parameter to reflect the t	ime gap	s available for traffic from	Sassoon Road (Arm B) during	he red t	ime of adjacent	signalized junction			
q b-a =	99	(pcu/hr)										
q b-c =	500	(pcu/hr)										

OZZO TECHNOLOGY (HK) LIMITED PRIORITY JUNCTION CALCULATION **INITIALS** DATE Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, PREPARED BY: PROJECT NO.: 82786 CW Nov-23 Hong Kong, RBL 136RP 2037Des AM J7A: Pok Fu Lam Road / Sassoon Road (W) FILENAME: CHECKED BY: OC Nov-23 J7A_PokFuLamRd_SassoonRd_P.xls OC 2037 Design AM Peak Hour Traffic Flows REVIEWED BY: Nov-23

Sasson Road
(ARM B)

[1] 557
[2] 328

Pok Fu Lam Road
(Near Queen Mary Hospital)
(ARM C)

METRIC DETAIL	_S:		GEOMETRIC FACT	TORS :		THE CAPACITY OF MO	OVEME	ENT :		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)											
W =	15.00	(metres)	D	=	0.7880507	Q b-a =	417			DFC b-a	=	0.1918
W cr =	1.7	(metres)	E	=	1.8256896	Q b-c =	1184	Q b-c (O)	= 1127	DFC b-c	=	0.6410
q a-b =	557	(pcu/hr)	F	=	1.2699718	Q c-b =	749			DFC c-b	=	0.0841
q a-c =	328	(pcu/hr)	Υ	=	0.4825	Q b-ac =	1007			DFC b-ac	=	0.8329
MAJOR ROAI	D (ARM C)		F for (Qb-a	ac) =	0.9046484	TOTAL FLOW	=	1869	(PCU/HR)			
W c-b =	7.50	(metres)										
Vr c-b =	45	(metres)										
q c-a =	82	(pcu/hr)										
q c-b =	63	(pcu/hr)										
										CRITICAL DFC	=	0.83
MINOR ROAD	(ARM B)											
W b-a =	2.50	(metres)										
W b-c =	3.85	(metres)										
VI b-a =	40	(metres)										
Vr b-a =	60	(metres)										
Vr b-c =	1000	(metres)	* adjusted parameter to reflect the til	me gap	s available for traffic from S	Sassoon Road (Arm B) during th	ne red t	time of adjacen	t signalized junction			
q b-a =	80	(pcu/hr)		٠.		. , ,		•				
	759	(pcu/hr)										

OZZO TECHNOLOGY (HK) LIMITED PRIORITY JUNCTION CALCULATION **INITIALS** DATE Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, PREPARED BY: PROJECT NO.: 82786 CW Nov-23 Hong Kong, RBL 136RP 2037Des PM J7A: Pok Fu Lam Road / Sassoon Road (W) FILENAME: CHECKED BY: OC Nov-23 J7A_PokFuLamRd_SassoonRd_P.xls REVIEWED BY: OC 2037 Design PM Peak Hour Traffic Flows Nov-23

Sassoon Road (ARM B)

[1] 588
[2] 425

Pok Fu Lam Road (Near Queen Mary Hospital) (ARM C)

(ARM A)

OMETRIC DETAIL			GEOMETRIC FACT	TORS:		THE CAPACITY OF M	OVEME	ENT :		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA												
W =	15.00	(metres)	D	=	0.7880507	Q b-a =	412			DFC b-a	=	0.2403
W cr =	1.7	(metres)	E	=	1.8256896	Q b-c =	1149	. ,	1080	DFC b-c	=	0.4352
q a-b =	588	(pcu/hr)	F	=	1.2699718	Q c-b =	720)		DFC c-b	=	0.0486
q a-c =	425	(pcu/hr)	Y	=	0.4825	Q b-ac =	886.8	3		DFC b-ac	=	0.6755
MAJOR ROAL	(ARM C)		F for (Qb-a	ac) =	0.8347245	TOTAL FLOW	' =	1685	(PCU/HR)			
W c-b =	7.50	(metres)										
Vr c-b =	45	(metres)										
q c-a =	38	(pcu/hr)										
q c-b =	35	(pcu/hr)										
										CRITICAL DFC	=	0.68
MINOR ROAD	(ARM B)											
W b-a =	2.50	(metres)										
W b-c =	3.85	(metres)										
VI b-a =	40	(metres)										
Vr b-a =	60	(metres)										
Vr b-c =	1000	(metres)	* adjusted parameter to reflect the ti	ime gap	available for traffic from Sa	assoon Road (Arm B) during	the red	time of adjacent	signalized junction			
	99	(pcu/hr)	,	٠.		, , ,		•	,			
q b-a =												

OZZO TECHNOLOGY (HK) LIMITED TRAFFIC SIGNAL CALCULATION INITIALS DATE S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP PROJECT NO.: 82786 Prepared By: CW Nov-23 J7B: Pok Fu Lam Road / Sassoon Road (near Queen Marry Hospital) FILENAME: Checked By: OC Nov-23 2037Ref_AM 2037 Reference AM Peak Hour Traffic Flows ОС J7B_PokFuLamRd_SassoonRd(near QMH) Reviewed By: Nov-23

			Existing C	Cycle Time
No. of stage	s per cycle	N =	4	
Cycle time		C =	102	sec
Sum(y)		Y =	0.560	
Loss time		L =	18	sec
Total Flow		=	1719	pcu
Co	= (1.5*L+5)/(1-Y)	=	72.8	sec
Cm	= L/(1-Y)	=	41.0	sec
Yult		=	0.765	
R.C.ult	= (Yult-Y)/Y*100%	=	36.5	%
Ср	= 0.9 L/(0.9-Y)	=	47.7	sec
Ymax	= 1-L/C	=	0.824	
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	32.2	%

	(P2)	(2) — (P3) (P3)	(3) (3) (3) (P3)	(P2) (4) (4)
L	Stage A Int = 6	Stage B Int = 6	Stage C Int = 5	Stage D Int = 5

Pedestrian	Stage	Width	Gree	n Time Req	Green Time Provided (s)		
Phase		(m)	SG	FG	Delay	SG	FG
P1	A,B,D	4.0	5	8		31	12
P2	A,D	2.9	5	9		21	13
P3	B,C	2.8	5	9		35	14

Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Movemer	nt	Total	Proportion	Sat.	Gradient	Share	Revised				g	g	Degree of	Queue	Average
ment		Width		lane				Ahead	Left	Straight	Right	FLow	of Turning	Flow	Effect	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	pcu/hr	pcu/hr	pcu/h		у	sec	sec	sec	X	(m / lane)	(seconds)
																				18					
LT,SA	Α	3.00	1	1	7		N	1915	57	279		336	0.17	1848			1848	0.182	0.182		27	27	0.681	36	37
SA	В	3.80	2	1			N	1995		98		98	0.00	1995			1995	0.049	0.049		7		0.681	18	66
RT	В	3.80	2	1	15			2135			52	52	1.00	1941			1941	0.027			4		0.371	6	47
RT	С	3.30	3	1	13			2085			599	599	1.00	1869			1869	0.320	0.320		48	48	0.681	48	23
LT	С	3.30	3	1	10		N	1945	426			426	1.00	1691			1691	0.252			38	48	0.535	36	20
SA	С	3.30	3	1				2085		191		191	0.00	2085			2085	0.092			14	48	0.195	12	15
LT,SA	D	3.00	4	1	25		N	1915	7	10		17	0.41	1869			1869	0.009	0.009		1	1	0.120	6	183
,-																									
<u> </u>	<u> </u>		l	l	<u> </u>	l	l	l		<u> </u>				l					l						

NOTE: O - OPPOSING TRAFFIC

N - NEAR SIDE LANE

SG - STEADY GREEN

FG - FLASHING GREEN

PEDESTRAIN WALKING SPEED = 1.2m/s

OZZO TECHNOLOGY (HK) LIMITED TRAFFIC SIGNAL CALCULATION INITIALS DATE S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP PROJECT NO.: 82786 Prepared By: CW Nov-23 J7B: Pok Fu Lam Road / Sassoon Road (near Queen Marry Hospital) FILENAME: Checked By: OC Nov-23 2037Ref_PM 2037 Reference PM Peak Hour Traffic Flows ОС J7B_PokFuLamRd_SassoonRd(near QMH) Reviewed By: Nov-23

			Existing (Cycle Time
No. of stage	es per cycle	N =	4	
Cycle time		C =	102	sec
Sum(y)		Y =	0.607	
Loss time		L =	18	sec
Total Flow		=	1562	pcu
Co	= (1.5*L+5)/(1-Y)	=	81.4	sec
Cm	= L/(1-Y)	=	45.8	sec
Yult		=	0.765	
R.C.ult	= (Yult-Y)/Y*100%	=	26.0	%
Ср	= 0.9*L/(0.9-Y)	=	55.3	sec
Ymax	= 1-L/C	=	0.824	
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	22.1	%

	(P1) (P2)	(2) — (P3) (P3)	(3) (3) (3)	(P2) (4) (4) (4)
St	age A Int = 6	Stage B Int = 6	Stage C Int = 5	Stage D Int = 5

Pedestrian	Stage	Width	Gree	n Time Requ	uired (s)	Green Time	Provided (s)
Phase		(m)	SG	FG	Delay	SG	FG
P1	A,B,D	4.0	5	8		31	12
P2	A,D	2.9	5	9		21	13
P3	B,C	2.8	5	9		35	14
i							

Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-	l	Movemer	nt	Total	Proportion	Sat.	Gradient	Share	Revised				g	g	Degree of	Queue	Average
ment		Width		lane				Ahead	Left	Straight	Right	FLow	of Turning	Flow	Effect	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	pcu/hr	pcu/hr	pcu/h		у	sec	sec	sec	X	(m / lane)	(seconds)
																				18					
LT,SA	Α	3.00	1	1	7		N	1915	21	340		361	0.06	1891			1891	0.191	0.191		26	26	0.737	42	40
SA	В	3.80	2	1			N	1995		90		90	0.00	1995			1995	0.045	0.045		6	6	0.737	18	80
RT	В	3.80	2	1	15			2135			39	39	1.00	1941			1941	0.020			3	6	0.328	6	48
RT	С	3.30	3	1	13			2085			656	656	1.00	1869			1869	0.351	0.351		49	49	0.737	54	25
LT	С	3.30	3	1	10		N	1945	212			212	1.00	1691			1691	0.125			17	49	0.263	18	15
SA	С	3.30	3	1				2085		166		166	0.00	2085			2085	0.080			11	49	0.167	12	14
LT,SA	D	3.00	4	1	25		N	1915	6	32		38	0.16	1897			1897	0.020	0.020		3	3	0.130	6	132
21,07		0.00	-		20			1010	· ·	02		00	0.10	1007			1007	0.020	0.020		J		0.100		102

NOTE: O - OPPOSING TRAFFIC

N - NEAR SIDE LANE

SG - STEADY GREEN

FG - FLASHING GREEN

PEDESTRAIN WALKING SPEED = 1.2m/s

OZZO TECHNOLOGY (HK) LIMITED TRAFFIC SIGNAL CALCULATION INITIALS DATE S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP PROJECT NO.: 82786 Prepared By: CW Nov-23 J7B: Pok Fu Lam Road / Sassoon Road (near Queen Marry Hospital) FILENAME: Checked By: OC Nov-23 2037Des_AM 2037 Design AM Peak Hour Traffic Flows OC J7B_PokFuLamRd_SassoonRd(near QMH) Reviewed By: Nov-23

			Existing Cycle Time
No. of stag	ges per cycle	N =	4
Cycle time		C =	102 sec
Sum(y)		Y =	0.560
Loss time		L =	18 sec
Total Flow		=	1721 pcu
Co	= (1.5*L+5)/(1-Y)	=	72.8 sec
Cm	= L/(1-Y)	=	41.0 sec
Yult		=	0.765
R.C.ult	= (Yult-Y)/Y*100%	=	36.5 %
Ср	= 0.9 L/(0.9-Y)	=	47.7 sec
Ymax	= 1-L/C	=	0.824
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	32.2 %

◆ ^(P1) >	(P2)	(2) ————————————————————————————————————	(P3)	(3)	(3) (3) 		(4) (4)
Stage A	Int = 6	Stage B	Int = 6	Stage C	Int = 5	Stage D	Int = 5

SG - STEADY GREEN

NOTE: O - OPPOSING TRAFFIC

N - NEAR SIDE LANE

Pedestrian	Stage	Width	Gree	n Time Req	uired (s)	Green Time	Provided (s)
Phase		(m)	SG	FG	Delay	SG	FG
P1	A,B,D	4.0	5	8		31	12
P2	A,D	2.9	5	9		21	13
P3	B,C	2.8	5	9		35	14

QUEUING LENGTH = AVERAGE QUEUE * 6m

Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Movemer	nt	Total	Proportion	Sat.	Gradient	Share	Revised				g	g	Degree of	Queue	Average
ment		Width		lane				Ahead	Left	Straight	Right	FLow	of Turning	Flow	Effect	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	pcu/hr	pcu/hr	pcu/h		у	sec	sec	sec	Х	(m / lane)	(seconds)
																				18					
LT,SA	Α	3.00	1	1	7		N	1915	57	279		336	0.17	1848			1848	0.182	0.182		27	27	0.681	36	37
SA	В	3.80	2	1			N	1995		98		98	0.00	1995			1995	0.049	0.049		7		0.681	18	66
RT	В	3.80	2	1	15			2135			54	54	1.00	1941			1941	0.028			4	7	0.385	6	48
														-											
RT	С	3.30	3	1	13			2085			599	599	1.00	1869			1869	0.320	0.320		48	48	0.681	48	23
LT	C	3.30	3	1	10		N	1945	426			426	1.00	1691			1691	0.252			38	48	0.535	36	20
SA	C	3.30	3	1				2085	.20	191		191	0.00	2085			2085	0.092			14	48	0.195	12	15
0,1		0.00						2000		101		101	0.00	2000			2000	0.002					0.100		
LT,SA	D	3.00	4	1	25		N	1915	7	10		17	0.41	1869			1869	0.009	0.009		1	4	0.120	6	183
LI,SA		3.00	4	'	23		IN IN	1913	,	10		17	0.41	1009			1009	0.003	0.003		'		0.120	ŭ	103
<u> </u>																									

PEDESTRAIN WALKING SPEED = 1.2m/s

FG - FLASHING GREEN

OZZO TECHNOLOGY (HK) LIMITED TRAFFIC SIGNAL CALCULATION INITIALS DATE S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP PROJECT NO.: 82786 Prepared By: CW Nov-23 J7B: Pok Fu Lam Road / Sassoon Road (near Queen Marry Hospital) FILENAME: Checked By: OC Nov-23 2037Des_PM 2037 Design PM Peak Hour Traffic Flows ОС J7B_PokFuLamRd_SassoonRd(near QMH) Reviewed By: Nov-23

			Existing (Cycle Time
No. of stage	es per cycle	N =	4	
Cycle time		C =	102	sec
Sum(y)		Y =	0.607	
Loss time		L =	18	sec
Total Flow		=	1563	pcu
Co	= (1.5*L+5)/(1-Y)	=	81.4	sec
Cm	= L/(1-Y)	=	45.8	sec
Yult		=	0.765	
R.C.ult	= (Yult-Y)/Y*100%	=	26.0	%
Ср	= 0.9 L/(0.9 Y)	=	55.3	sec
Ymax	= 1-L/C	=	0.824	
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	22.1	%

(P2)	(2) → (2) →	(3) (3) (3)	(P2) (4) (4)
(1) (1)	(P3)	(P3)	-
Stage A Int = 6	Stage B Int = 6	Stage C Int = 5	Stage D Int = 5

Pedestrian	Stage	Width	Gree	n Time Req	uired (s)	Green Time	Provided (s)
Phase		(m)	SG	FG	Delay	SG	FG
P1	A,B,D	4.0	5	8		31	12
P2	A,D	2.9	5	9		21	13
P3	B,C	2.8	5	9		35	14

Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-	I	Movemer	nt	Total	Proportion	Sat.	Gradient	Share	Revised				g	g	Degree of	Queue	Average
ment		Width		lane				Ahead	Left	Straight	Right	FLow	of Turning	Flow	Effect	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	pcu/hr	pcu/hr	pcu/h		у	sec	sec	sec	Х	(m / lane)	(seconds)
																				18					
LT,SA	Α	3.00	1	1	7		N	1915	21	340		361	0.06	1891			1891	0.191	0.191		26	26	0.737	42	40
SA	В	3.80	2	1			N	1995		90		90	0.00	1995			1995	0.045	0.045		6	6	0.737	18	80
RT	В	3.80	2	1	15			2135			40	40	1.00	1941			1941	0.021			3	6	0.337	6	48
RT	С	3.30	3	1	13			2085			656	656	1.00	1869			1869	0.351	0.351		49	49	0.737	54	25
LT	С	3.30	3	1	10		N	1945	212			212	1.00	1691			1691	0.125			17	49	0.263	18	15
SA	C	3.30	3	1				2085		166		166	0.00	2085			2085	0.080			11	49	0.167	12	14
				-																					
LT,SA	D	3.00	4	1	25		N	1915	6	32		38	0.16	1897			1897	0.020	0.020		3	3	0.130	6	132
LI,OA		3.00	7		25			1313	U	32		30	0.10	1037			1037	0.020	0.020		3	, ,	0.130	Ů	102

NOTE: O - OPPOSING TRAFFIC

N - NEAR SIDE LANE

SG - STEADY GREEN

FG - FLASHING GREEN

PEDESTRAIN WALKING SPEED = 1.2m/s

OZZO TECHNOLOGY (HK) LIMITED PRIO	DRITY JUNCTION (CALCULATIO	N		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Heigh						
Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Ref AM	PROJECT NO.:	82786	PREPARED BY:	CW	Nov-23
J8 : Chi Fu Road (N) / Claymore Avenue	2037 Kei_AW	FILENAME :		CHECKED BY:	ОС	Nov-23
2037 Reference AM Peak Hour Traffic Flows		J8_ChiFuRd_Claymo	reAve_P.XLS	REVIEWED BY:	ОС	Nov-23

NOTES: (GEOMETRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH W cr = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a =W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vr c-b = X a = STREAM-SPECIFIC (RIGHT TURN FROM A) X b = STREAM-SPECIFIC (RIGHT TURN FROM B) STREAM-SPECIFIC (LEFT TURN FROM B) Z b = M b = STREAM-SPECIFIC (STRAIGHT AHEAD FROM B - LEFT LANE) Y = (1-0.0345W) RATIO OF FLOW TO CAPACITY IN STREAM b-a rb-a =

GEOMETRIC [DETAILS:					GEOMETR	RIC FACTO	ORS :				COMPARISION OF DESIGN TO CAPACITY:	I FLOV	V
GENERAL						X b =	0.790		Ха	=	0.927			
W =	7.60	(metres)				X c =	0.940		Χd	=	0.833	DFC b-a	=	0.0514
W cr =	0	(metres)	Y =	0.7378		Z b =	0.928		Ζd	=	1.234	DFC b-c	=	0.1357
						M b =	0.872		M d	=	1.186	DFC c-b	=	0.0608
MAJOR ROAD	(ARM A)		MAJOR MAJOR	ROAD (ARM C)								DFCI b-d	=	0.0384
W a-d =	3.85	(metres)	W c-b =	4.00	(metres)	PROPORT	ION OF M	IINOR STRAI	GHT AHEAD TRA	FFIC :		DFCr b-d	=	0.0389
Vr a-d =	20	(metres)	Vr c-b =	20	(metres)							DFC d-c	=	0.1151
q a-b =	38	(pcu/hr)	q c-a =	13	(pcu/hr)	r b-a =	0.043		r d-c	=	0.115	DFC d-a	=	0.2272
q a-c =	248	(pcu/hr)	q c-b =	36	(pcu/hr)	ql b-d =	17.21	(pcu/hr)	ql d-b	=	20.072 (pcu/hr)	DFC a-d	=	0.1467
q a-d =	99	(pcu/hr)	q c-d =	0	(pcu/hr)	qr b-d =	15.79	(pcu/hr)	qr d-b	=	15.928 (pcu/hr)	DFCI d-b	=	0.0321
												DFCr d-b	=	0.0362
MINOR ROAD	(ARM B)		MINOR ROAD (A	ARM D)		CAPACITY	OF MOV	EMENT:						
W b-a =	2.29	(metres)	W d-c =	2.86	(metres)									
W b-c =	3.25	(metres)	W d-a =	7.02	(metres)	Q b-a =	350	(pcu/hr)	Q d-c	=	417 (pcu/hr)			
VI b-a =	50	(metres)	VI d-c =	85	(metres)	Q b-c =	619	(pcu/hr)	Q d-a	=	889 (pcu/hr)			
Vr b-a =	80	(metres)	Vr d-c =	50	(metres)	Q c-b =	592	(pcu/hr)	Q a-d	=	675 (pcu/hr)	CRITICAL DFC	=	0.23
Vr b-c =	80	(metres)	Vr d-a =	50	(metres)	QI b-d =	448	(pcu/hr)	QI d-b	=	626 (pcu/hr)			
q b-a =	18	(pcu/hr)	q d-c =	48	(pcu/hr)	Qr b-d =	406	(pcu/hr)	Qr d-b	=	440 (pcu/hr)			
q b-c =	84	(pcu/hr)	q d-a =	202	(pcu/hr)									
q b-d =	33	(pcu/hr)	q d-b =	36	(pcu/hr)	TOT	AL FLOW	=	855 (PCU/HR)				

OZZO TECHNOLOGY (HK) LIMITED PRIO	RITY JUNCTION (CALCULATIO	N		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height						
Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Ref PM	PROJECT NO.:	82786	PREPARED BY:	CW	Nov-23
J8 : Chi Fu Road (N) / Claymore Avenue	_	FILENAME :		CHECKED BY:	ос	Nov-23
2037 Reference PM Peak Hour Traffic Flows		J8_ChiFuRd_Claymor	eAve_P.XLS	REVIEWED BY:	ос	Nov-23

GEOMETRIC I	JE I AILS:					GEOMETR	IIC FACT	JKS:				COMPARISION OF DESIGN TO CAPACITY:	N FLOV	v	
GENERAL						X b =	0.790		Ха	=	0.927				
W =	7.60	(metres)				X c =	0.940		Χd	=	0.833	DFC b-a	=	0.0284	
W cr =	0	(metres)	Y =	0.7378		Z b =	0.928		Ζd	=	1.234	DFC b-c	=	0.0466	
						M b =	0.872		M d	=	1.186	DFC c-b	=	0.0285	
MAJOR ROAD	(ARM A)		MAJOR MAJOR	R ROAD (ARM C)								DFCI b-d	=	0.0246	
W a-d =	3.85	(metres)	W c-b =	4.00	(metres)	PROPORT	ION OF M	INOR STRAI	GHT AHEAD TRA	FFIC :		DFCr b-d	=	0.0259	
Vr a-d =	20	(metres)	Vr c-b =	20	(metres)							DFC d-c	=	0.0221	
q a-b =	11	(pcu/hr)	q c-a =	38	(pcu/hr)	rb-a =	0.024		r d-c	=	0.022	DFC d-a	=	0.1863	
q a-c =	169	(pcu/hr)	q c-b =	18	(pcu/hr)	ql b-d =	11.78	(pcu/hr)	ql d-b	=	23.509 (pcu/hr)	DFC a-d	=	0.0978	
q a-d =	66	(pcu/hr)	q c-d =	0	(pcu/hr)	gr b-d =	11.22	(pcu/hr)	gr d-b	=	22.491 (pcu/hr)	DFCI d-b	=	0.0356	
,		u ,			· · · · /			u · · · /			, ,	DFCr d-b	=	0.0486	
MINOR ROAD	(ARM B)		MINOR ROAD	(ARM D)		CAPACITY	OF MOV	EMENT:							
W b-a =	2.29	(metres)	W d-c =	2.86	(metres)										
W b-c =	3.25	(metres)	W d-a =	7.02	(metres)	Q b-a =	388	(pcu/hr)	Q d-c	=	452 (pcu/hr)				
VI b-a =	50	(metres)	VI d-c =	85	(metres)	Q b-c =	644	(pcu/hr)	Q d-a	=	902 (pcu/hr)				
Vr b-a =	80	(metres)	Vr d-c =	50	(metres)	Q c-b =	631	(pcu/hr)	Q a-d	=	675 (pcu/hr)	CRITICAL DFC	=	0.19	
Vr b-c =	80	(metres)	Vr d-a =	50	(metres)	Ql b-d =	479	(pcu/hr)	QI d-b	=	660 (pcu/hr)				
q b-a =	11	(pcu/hr)	q d-c =	10	(pcu/hr)	Qr b-d =		(pcu/hr)	Qr d-b	=	463 (pcu/hr)				
q b-c =	30	(pcu/hr)	q d-a =	168	(pcu/hr)			. ,			,				
q b-d =	23	(pcu/hr)	q d-b =	46	(pcu/hr)	TOTA	AL FLOW	_	590 (PCU/HR	١					

1 /	DRITY JUNCTION (CALCULATIO	N		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height						
Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Des AM	PROJECT NO.:	82786	PREPARED BY:	CW	Nov-23
J8 : Chi Fu Road (N) / Claymore Avenue	2037 Des_Alvi	FILENAME :		CHECKED BY:	ОС	Nov-23
2037 Design AM Peak Hour Traffic Flows		J8_ChiFuRd_Claymor	reAve_P.XLS	REVIEWED BY:	ОС	Nov-23

GEOMETRIC I	DETAILS:					GEOMETR	CIC FACTO	DRS:				COMPARISION OF DESIGN TO CAPACITY:	3N FLC	W	
GENERAL						X b =	0.790		Ха	=	0.927				
W =	7.60	(metres)				X c =	0.940		Χd	=	0.833	DFC b-	a =	0.0516	
W cr =	0	(metres)	Y =	0.7378		Z b =	0.928		Ζd	=	1.234	DFC b-	c =	0.1357	
						M b =	0.872		M d	=	1.186	DFC c-) =	0.0608	
MAJOR ROAD	(ARM A)		MAJOR MAJOR	ROAD (ARM C)								DFCI b-	= b	0.0384	
W a-d =	3.85	(metres)	W c-b =	4.00	(metres)	PROPORT	ION OF M	IINOR STRAI	GHT AHEAD TRA	FFIC:		DFCr b-	= t	0.0389	
Vr a-d =	20	(metres)	Vr c-b =	20	(metres)							DFC d-	c =	0.1439	
q a-b =	38	(pcu/hr)	q c-a =	13	(pcu/hr)	r b-a =	0.043		r d-c	=	0.144	DFC d-	a =	0.2290	
q a-c =	248	(pcu/hr)	q c-b =	36	(pcu/hr)	ql b-d =	17.21	(pcu/hr)	ql d-b	=	20.59 (pcu/hr)	DFC a-	= t	0.1467	
q a-d =	99	(pcu/hr)	q c-d =	0	(pcu/hr)	qr b-d =	15.79	(pcu/hr)	qr d-b	=	15.41 (pcu/hr)	DFCI d-) =	0.0329	
												DFCr d-) =	0.0350	
MINOR ROAD	(ARM B)		MINOR ROAD (A	ARM D)		CAPACITY	OF MOV	EMENT:							
W b-a =	2.29	(metres)	W d-c =	2.86	(metres)										
W b-c =	3.25	(metres)	W d-a =	7.02	(metres)	Q b-a =	349	(pcu/hr)	Q d-c	=	417 (pcu/hr)				
VI b-a =	50	(metres)	VI d-c =	85	(metres)	Q b-c =	619	(pcu/hr)	Q d-a	=	882 (pcu/hr)				
Vr b-a =	80	(metres)	Vr d-c =	50	(metres)	Q c-b =	592	(pcu/hr)	Q a-d	=	675 (pcu/hr)	CRITICAL DFC	=	0.23	
Vr b-c =	80	(metres)	Vr d-a =	50	(metres)	Ql b-d =	448	(pcu/hr)	QI d-b	=	626 (pcu/hr)				
q b-a =	18	(pcu/hr)	q d-c =	60	(pcu/hr)	Qr b-d =	406	(pcu/hr)	Qr d-b	=	440 (pcu/hr)				
q b-c =	84	(pcu/hr)	q d-a =	202	(pcu/hr)										
q b-d =	33	(pcu/hr)	q d-b =	36	(pcu/hr)	TOTA	AL FLOW	=	867 (PCU/HR	١					

1 /	DRITY JUNCTION (CALCULATIO	N		INITIALS	DATE
S16 Application for Layout Plan Submission and Proposed Minor Relaxation of Building Height						
Restriction for Permitted Flat Use At 131 Pok Fu Lam Road, Hong Kong, RBL 136RP	2037Des PM	PROJECT NO.:	82786	PREPARED BY:	CW	Nov-23
J8 : Chi Fu Road (N) / Claymore Avenue	2037 Des_FIVI	FILENAME :		CHECKED BY:	ОС	Nov-23
2037 Design PM Peak Hour Traffic Flows		J8_ChiFuRd_Claymo	reAve_P.XLS	REVIEWED BY:	ОС	Nov-23

GEOMETRIC I	DETAILS:					GEOMETR	IIC FACTO	DRS:				COMPARISION OF DESIGN TO CAPACITY:	FLOV	V	
GENERAL						X b =	0.790		Ха	=	0.927				
W =	7.60	(metres)				X c =	0.940		Χd	=	0.833	DFC b-a	=	0.0285	
W cr =	0	(metres)	Y =	0.7378		Z b =	0.928		Ζd	=	1.234	DFC b-c	=	0.0466	
						M b =	0.872		M d	=	1.186	DFC c-b	=	0.0285	
MAJOR ROAD	(ARM A)		MAJOR MAJOR	ROAD (ARM C)								DFCI b-d	=	0.0246	
W a-d =	3.85	(metres)	W c-b =	4.00	(metres)	PROPORT	ION OF M	INOR STRAI	GHT AHEAD TRA	FFIC :		DFCr b-d	=	0.0259	
Vr a-d =	20	(metres)	Vr c-b =	20	(metres)							DFC d-c	=	0.0575	
q a-b =	11	(pcu/hr)	q c-a =	38	(pcu/hr)	rb-a =	0.024		r d-c	=	0.058	DFC d-a	=	0.1879	
q a-c =	169	(pcu/hr)	q c-b =	18	(pcu/hr)	ql b-d =	11.78	(pcu/hr)	ql d-b	=	24.323 (pcu/hr)	DFC a-d	=	0.0978	
q a-d =	66	(pcu/hr)	q c-d =	0	(pcu/hr)	qr b-d =	11.22	(pcu/hr)	gr d-b	=	21.677 (pcu/hr)	DFCI d-b	=	0.0369	
												DFCr d-b	=	0.0468	
MINOR ROAD	(ARM B)		MINOR ROAD	ARM D)		CAPACITY	OF MOV	EMENT:							
W b-a =	2.29	(metres)	W d-c =	2.86	(metres)										
W b-c =	3.25	(metres)	W d-a =	7.02	(metres)	Q b-a =	386	(pcu/hr)	Q d-c	=	452 (pcu/hr)				
VI b-a =	50	(metres)	VI d-c =	85	(metres)	Q b-c =	644	(pcu/hr)	Q d-a	=	894 (pcu/hr)				
Vr b-a =	80	(metres)	Vr d-c =	50	(metres)	Q c-b =	631	(pcu/hr)	Q a-d	=	675 (pcu/hr)	CRITICAL DFC	=	0.19	
Vr b-c =	80	(metres)	Vr d-a =	50	(metres)	QI b-d =	479	(pcu/hr)	QI d-b	=	660 (pcu/hr)				
q b-a =	11	(pcu/hr)	q d-c =	26	(pcu/hr)	Qr b-d =		(pcu/hr)	Qr d-b	=	463 (pcu/hr)				
q b-c =	30	(pcu/hr)	q d-a =	168	(pcu/hr)			•			•				
q b-d =	23	(pcu/hr)	q d-b =	46	(pcu/hr)	TOT	AL FLOW	=	606 (PCU/HR						