		Appendix	A
Traffic	Impact	Assessme	nt

Section 16 Planning Application for Proposed Hotel with Minor Relaxation of Plot Ratio and Building Height Restrictions at 201 and 203 Wai Yip Street, Kwun Tong, Kowloon

Traffic Impact Assessment Final Report August 2024

Prepared by: CKM Asia Limited

Section 16 Planning Application for Proposed Hotel with Minor Relaxation of Plot Ratio and Building Height Restrictions at 201 and 203 Wai Yip Street, Kwun Tong, Kowloon

CONTENTS

<u>CHAP</u>	<u>P. P. P</u>	AGE
1.0	INTRODUCTION Background Scope of the Assessment Contents of the Report	1 1 1
2.0	THE EXISTING SITUATION The Subject Site Traffic Survey Review of the Traffic Flows obtained from the Traffic Survey Operational Performance of the Key Junctions Pedestrian Facilities Availability of Public Transport Facilities	2 2 2 2 2 3 3
3.0	THE PROPOSED REDEVELOPMENT Development Schedule Provision of Internal Transport Facilities Swept Path Analysis	7 7 7 8
4.0	Design Year Traffic Forecasting Estimated Traffic Growth Rate from 2031 to 2032 Planned Developments in the Vicinity of the Proposed Redevelopment Traffic Generated by the Proposed Redevelopment Traffic Generation of Proposed Redevelopment (pcu/hour) Comparison of Traffic Generation between the Approved S16 Scheme and the Proposed Redevelopment Planned Traffic Improvement in the Vicinity of the Proposed Redevelopment 2032 Traffic Flows 2032 Junction Operational Performance	9 9 9 9 10 10
5.0	CONCLUSION	. 13
Apper	RES Indix 1 – Calculation Indix 2 – Swept Path Analysis Indix 3 – Planned Developments in the Vicinity of the Proposed Redevelopment	

Section 16 Planning Application for Proposed Hotel with Minor Relaxation of Plot Ratio and Building Height Restrictions at 201 and 203 Wai Yip Street, Kwun Tong, Kowloon

TABLES

NUMBER

- 2.1 Existing junction operational performance
- 2.2 Franchised bus and GMB services operating close to the Subject Site
- 3.1 Comparisons of the internal transport facilities for the Proposed Redevelopment
- 4.1 2019-based TPEDM data produced by Planning Department for Kwun Tong district
- 4.2 Planned developments in the vicinity of the Proposed Redevelopment
- 4.3 Traffic generated by the Proposed Redevelopment
- 4.4 Comparison of traffic generation between the Proposed Redevelopment and the approved S16 scheme
- 4.5 Planned traffic improvement schemes in the vicinity of the Proposed Redevelopment
- 4.6 2032 junction operational performance

Section 16 Planning Application for Proposed Hotel with Minor Relaxation of Plot Ratio and Building Height Restrictions at 201 and 203 Wai Yip Street, Kwun Tong, Kowloon

FIGURES

NUMBER

- 1.1 Location of Subject Site
- 2.1 Location of surveyed junctions and area of influence
- 2.2 Layout of junction of Hung To Road / Hoi Yuen Road / Wai Yip Street
- 2.3 Layout of roundabout of Wai Yip Street / Hoi Yuen Road
- 2.4 Layout of junction of Hung To Road / Tsun Yip Street
- 2.5 Layout of junction of Wai Yip Street / Tsun Yip Street
- 2.6 Layout of junction of Wai Yip Street / How Ming Street
- 2.7 Layout of junction of Kei Yip Street / Kei Yip Lane
- 2.8 Layout of junction of Wai Yip Street / Kei Yip Street
- 2.9 Adjusted 2024 peak hour traffic flows
- 2.10 The public transport services provided in the vicinity of the Subject Site
- 3.1 G/F layout
- 3.2 B1/F layout
- 4.1 Year 2032 peak hour traffic flows without the Proposed Redevelopment
- 4.2 Year 2032 peak hour traffic flows with the Proposed Redevelopment
- 4.3 The ingress / egress route for traffic generated by the Proposed Redevelopment

1.0 INTRODUCTION

Background

- 1.1 The Subject Site comprises of 2 existing buildings, i.e. the Siu Fu Factory Building at 201 Wai Yip Street, and the Tungtex Building at 203 Wai Yip Street (the "2 Existing Buildings"). Figure 1.1 shows the location of the Subject Site.
- 1.2 On 17th January 2020, the Town Planning Board ("TPB") approved the S16 Planning Application for Industrial Building at 203 Wai Yip Street (TPB ref: A/K14/778). On 4th March 2022, the Town Planning Board ("TPB") approved the S16 Planning Application for Commercial Building at 201 Wai Yip Street (TPB ref: A/K14/808).
- 1.3 The Applicant now intends to redevelop the 2 Existing Buildings into a hotel, with 20% increase in plot ratio, i.e., from the maximum permitted plot ratio of 12.0 to plot ratio of 14.4 (the "Proposed Redevelopment"). CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Applicant to prepare a Traffic Impact Assessment ("TIA") in support of the Proposed Redevelopment.

Scope of the Assessment

- 1.4 The main objectives of this TIA are as follows:
 - To assess the existing traffic issues in the vicinity of the Subject Site;
 - To quantify the amount of traffic generated by the Proposed Redevelopment; and
 - To examine the traffic impact on the local road network in the vicinity of the Subject Site.

Contents of the Report

1.5 After this introduction, the remaining chapters contain the following:

Chapter Two
 Chapter Three
 Chapter Four
 Chapter Five
 describes the existing situation;
 outlines the development proposal;
 presents the traffic impact analysis; and
 summarises the overall conclusion.

2.0 THE EXISTING SITUATION

The Subject Site

2.1 The Subject Site fronts onto Wai Yip Street to the south, the Wai Yip Street CLP Substation to the west and a rear lane to the north. The section of Wai Yip Street fronting the Subject Site is a dual carriageway 3-lane road. The run-in/out of the Tungtex Building is provided at Wai Yip Street.

Traffic Survey

- 2.2 To quantify the traffic flows at the junctions chosen for the conduct of capacity analysis, manual classified counts were undertaken on Friday, 15th March 2024 during the AM and PM peak periods. The location of the junctions and area of influence is presented in Figure 2.1 and their layout is shown in Figures 2.2 to 2.8.
- 2.3 The surveyed junctions include the following:
 - J1: Hung To Road / Hoi Yuen Road / Wai Yip Street;
 - J2: Wai Yip Street / Hoi Yuen Road;
 - J3: Hung To Road / Tsun Yip Street;
 - J4: Wai Yip Street / Tsun Yip Street;
 - J5: Wai Yip Street / How Ming Street;
 - J6: Kei Yip Street / Kei Yip Lane; and
 - J7: Wai Yip Street / Kei Yip Street.
- 2.4 In view that the junction of Tsun Yip Street / Hoi Bun Road is not a signal controlled or priority junction, the junction performance assessment is not conducted. The counts were classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. From the survey, the AM and PM peak hours were found to be between 0845 0945 and 1730 1830 hours respectively.

Review of the Traffic Flows obtained from the Traffic Survey

2.5 The traffic flows obtained from the survey in March 2024 are adjusted based on the Annual Average Daily Traffic ("AADT") of station 3020 Wai Yip Street (from Lai Yip Street to Hoi Yuen Road) found in the Annual Traffic Census ("ATC"). The adjusted 2024 peak hour traffic flows are presented in Figure 2.9.

Operational Performance of the Key Junctions

2.6 The existing operational performance of the key junctions is calculated based on the observed traffic counts and the analysis is undertaken using the methods outlined in Volume 2 of Transport Planning and Design Manual ("TPDM"). The results of the existing operational performance of the junctions are summarised in Table 2.1 and the detailed calculations are found in Appendix 1.

TABLE 2.1 EXISTING JUNCTION OPERATIONAL PERFORMANCE

Ref.	Junction	Type of Junction	Parameter ⁽¹⁾	AM Peak Hour	PM Peak Hour
J1	Hung To Road / Hoi Yuen Road / Wai	Signal	RC	87%	90%
	Yip Street				
J2	Wai Yip Street / Hoi Yuen Road	Roundabout	RFC	0.683	0.607
J3	Hung To Road / Tsun Yip Street ⁽²⁾	Signal	RC	52%	89%

Ref.	Junction	Type of Junction	Parameter ⁽¹⁾	AM Peak Hour	PM Peak Hour
J4	Wai Yip Street / Tsun Yip Street ⁽²⁾	Signal	RC	78%	97%
J5	Wai Yip Street / How Ming Street(2)	Signal	RC	79%	87%
J6	Kei Yip Street / Kei Yip Lane	Priority	RFC	0.021	0.028
J7	Wai Yip Street / Kei Yip Street	Not a signal controlled or priority junction			nction

Notes: (1) RC – Reserve Capacity

RFC - Ratio of Flow to Capacity

2.7 The results in Table 2.1 indicate that the junctions now operate with capacities during the AM and PM peak hours.

Pedestrian Facilities

2.8 Good pedestrian facilities provided in the vicinity of the Subject Site, including footpaths, and at-grade pedestrian crossings at the signalised road junctions.

Availability of Public Transport Facilities

2.9 The Subject Site is well-served by various public transport services, including franchised bus and green minibus ("GMB"), and these services operate mainly along Hoi Yuen Road, Wai Yip Street and Kwun Tong Road. The closest entrance to the MTR Kwun Tong Station is at Hoi Yuen Road, which is some 670 metres or 10 minutes' walk away. Details of the franchised bus and GMB routes operating in the vicinity of the Subject Site are presented in Figure 2.10 and Table 2.2.

TABLE 2.2 FRANCHISED BUS AND GMB SERVICES OPERATING CLOSE TO THE SUBJECT SITE

	THE SUBJECT SHE	
Route	Routing	Frequency (minutes)
KMB 1A	Sau Mau Ping (Central) – Star Ferry	5 – 15
KMB 3D	Tsz Wan Shan (Central) – Kwun Tong (Yue Man Square)	4 – 16
KMB 5R	Kai Tak Cruise Terminal – Kwun Tong (apm) (Circular)	30
KMB 6P	Cheung Sha Wan (So Uk Estate) – Lei Yue Mun Estate	AM, PM Peak
KMB 11B	Kwun Tong (Tsui Ping Road) – Kowloon City Ferry	10 – 25
KMB 11C	Chuk Yuen Estate – Sau Mau Ping (Upper)	15 – 25
KMB 11D	Lok Fu – Kwun Tong Ferry	15 – 30
KMB 11X	On Tai (North) – Hung Hom Station	10 – 25
KMB 13D	Po Tat – Island Harbourview	15 – 25
KMB 13M	Kwun Tong (Elegance Road) – Po Tat (Circular)	15 – 30
KMB 13P	Po Tat – Cheung Sha Wan (Lai Kok Estate)	AM Peak
KMB 14	Lei Yue Mun Estate – China Ferry Terminal	12 – 25
KMB 14B	Ngau Tau Kok – Lam Tin (Kwong Tin Estate)	15 – 25
KMB 14X	Yau Tong (Shung Tak Wai) – Tsim Sha Tsui (Circular)	15 – 30
KMB 15	Ping Tin – Hung Hom (Hung Luen Road)	12 – 20
KMB 15A	Ping Tin – Tsz Wan Shan (North)	20 – 30
KMB 15X	Lam Tin (Kwong Tin Estate) – Hung Hom Station	AM, PM Peak
KMB 16	Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)	8 – 20
KMB 16M	Kwun Tong (Yue Man Square) – Lam Tin (Hong Wah Court)	15 – 30
	(Circular)	
KMB 16P	Kwun Tong Ferry – Mong Kok (Park Avenue)	AM, PM Peak
KMB 17	Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)	5 – 20
KMB 23	Kwun Tong Ferry – Shun Lee (Circular)	14 – 25
KMB 23M	Lok Wah – Shun Lee (Circular)	12 – 20
KMB 28B	Choi Fook – Kai Tak (Kai Ching Estate)	15 – 25
KMB 33	Tsuen Wan West Station – Yau Tong	15 – 30

⁽²⁾ Kerbside on-street activities are reflected in the junction performance

.	T	Tillal Report
Route	Routing	Frequency (minutes)
KMB 33B	Tsuen Wan West Station – Yau Tong	20 – 25
KMB 38	Kwai Shing (East) – Ping Tin	5 – 20
KMB 38P	Kwai Shing (Central) – Ping Tin	AM Peak
KMB 40	Tsuen Wan (Belvedere Garden) – Laguna City	12 – 25
KMB 40A	Ping Tin – Kwai Hing Station	AM, PM Peak
KMB 40B	Kwai Chung Estate – Ping Tin	AM Peak
KMB 40P	Kwun Tong Ferry – Tsuen Wan (Shek Wai Kok)	AM, PM Peak
KMB 42C	Tsing Yi (Cheung Hang Estate) – Lam Tin Station	5 – 15
KMB 49	Ching Fu Court – Tseung Kwan O Industrial Estate	AM, PM Peak
KMB 62X	Tuen Mun Central – Lei Yue Mun Estate	8 – 25
KMB 62P	Tuen Mun Central – Lei Yue Mun Estate	8 – 25
KMB 69C	Tin Yan Estate – Kwun Tong Ferry	AM, PM Peak
KMB 74C	Kau Lung Hang – Kwun Tong Ferry	AM Peak
KMB 74D	Kau Lung Hang – Kwun Tong Ferry	25 – 60
KMB 74E	Tai Mei Tuk – Kwun Tong Ferry	AM, PM Peak
KMB 74F	Kwun Tong Ferry – Education University of Hong Kong	AM Peak
KMB 74P	Kwun Tong Ferry – Tai Po Central	AM Peak
KMB 74X	Tai Po Central – Kwun Tong Ferry	3 – 15
KMB 80	Mei Lam – Kwun Tong Ferry	5 – 20
KMB 80A	Mei Lam – Kwun Tung Ferry	AM Peak
KMB 80P	Hin Keng – Kwun Tong Ferry	AM Peak
KMB 80X	Chun Shek – Kwun Tong Ferry	8 – 25
KMB 83A	Shui Chuen O – Kwun Tong Ferry	AM Peak
KMB 83X	Shui Chuen O – Kwun Tong Ferry	8 – 30
KMB 88X	Fo Tan Chung Yeung Estate – Ping Tin (Circular)	20 – 30
KMB 89	Lek Yuen – Kwun Tong Station	8 – 20
KMB 89C	Heng On – Kwun Tong (Tsui Ping Road)	12 – 30
KMB 89D	Wu Kai Sha Station – Lam Tin Station	3 – 20
KMB 89P	Ma On Shan Town Centre – Lam Tin Station Bus Terminus	AM Peak
KMB 89X	Shatin Station – Kwun Tong (Tsui Ping Road)	7 – 20
KMB 93A	Po Lam – Kwun Tong Ferry	20 – 25
KMB 93K	Po Lam – Mong Kok East Station	15 – 30
KMB 95M	Tsui Lam – Kwun Tong Road (Elegance Road)	20 – 30
KMB 98	Tseung Kwan O Industrial Estate – Ngau Tau Kok Station (Circular)	15 – 20
KMB 98A	Hang Hau (North) (Tseung Kwan O Hospital) – Ngau Tau Kok Station (Circular)	8 – 20
KMB 98B	Hang Hau (North) (Tseung Kwan O Hospital) – Kwun Tong Station	AM Peak
KMB 213B	On Tai – Ting Fu Street (Circular)	AM Peak
KMB 215P	Lam Tin (Kwong Tin Estate) – Kowloon Station	AM Peak
KMB 215X	Lam Tin (Kwong Tin Estate) – Kowloon Station	5 – 20
KMB 234C	Sham Tseng – Kwun Tong Station	AM, PM Peak
KMB 234D	Tsing Lung Tau – Kwun Tong Station	AM, PM Peak
KMB 252X	Handsome Court – Lam Tin Station	AM, PM Peak
KMB 258A	Hung Shui Kiu (Hung Fuk Estate) – Lam Tin Station	AM Peak
KMB 258D	Tuen Mun (Po Tin Estate) – Lam Tin Station	5 – 20
KMB 258P	Hung Shui Kiu (Hung Fuk Estate) – Lam Tin Station	AM, PM Peak
KMB 258S	Tuen Mun (Shan King Estate) – Lam Tin Station	AM Peak
KMB 258X	Tuen Mun (Po Tin Estate) – Kwun Tong Ferry	AM, PM Peak
KMB 259D	Tuen Mun (Lung Mun Oasis) – Lei Yue Mun Estate	7 – 25
KMB 259S	Tuen Mun (Lung Mun Oasis) – Kwun Tong Ferry	AM Peak
KMB 259X	Lung Mun Oasis – Kwun Tong Ferry	AM, PM Peak
KMB 267X	Tuen Mun (Siu Hong Court) – Lam Tin Station	AM, PM Peak
KMB 268A	Long Ping Estate – Kwun Tong Ferry	AM, PM Peak
KMB 268C	Long Ping Station – Kwun Tong Ferry	5 – 20
2000	1 == ····g · ····g · ····g · ····g	

Route	Routing	Frequency (minutes)
KMB 268P	Ma Wang Road (Shan Shui House) – Kwun Tong Ferry Kwun Tong Ferry – Long Ping Station	AM, PM Peak
KMB 269C	Tin Shui Wai Town Centre – Kwun Tong Ferry	5 – 20
KMB 269S	Tin Shui Wai Town Centre – Kwun Tong Ferry	AM, PM Peak
KMB 274X	Kwun Tong Ferry – Tai Po Central	PM Peak
KMB 277A	Sha Tau Kok – Lam Tin Station	AM, PM Peak
KMB 277E	Lam Tin Station – Sheung Shui (Tin Ping)	15 – 30
KMB 277P	Sheung Shui (Tin Ping) – Lam Tin Station	AM, PM Peak
KMB 277X	Fanling (Luen Wo Hui) – Lam Tin Station	5 – 30
KMB 292P	Sai Kung – Kwun Tong	AM Peak
KMB 296A	Sheung Tak – Ngau Tau Kok Station (Circular)	7 – 15
KMB 296C	Sheung Tak – Cheung Sha Wan (Hoi Ying Estate)	15 – 30
KMB N3D	Kwun Tong (Yue Man Square) – Tsz Wan Shan (Central)	Overnight
KMB N293	Sheung Yak – Mong Kok East Station	Overnight
KMB T74	Tai Po (Tai Wo) – Kwun Tong Ferry	AM Peak
KMB T277	Sheung Shui – Lam Tin Station	AM, PM Peak
KMB W2	Jordan (West Kowloon Station) – Kwun Tong (Circular)	30 – 60
KMB X42C	Tsing Yi (Cheung Hang Estate) – Yau Tong	7 – 30
KMB X42P	Tsing Yi (Cheung On Estate) – Lam Tin Station	AM Peak
KMB X89D	Nai Chung – Kwun Tong Ferry	AM, PM Peak
KMB/CTB 101	Kwun Tong (Yue Man Square) – Kennedy Town	6 – 20
KMB/CTB 606	Siu Sai Wan (Island Resort) – Choi Wan (Fung Shing Street)	20 – 25
KMB/CTB 606A	Shau Kei Wan (Yiu Tung Estate) – Choi Wan (Fung Shing Street)	AM Peak
KMB/CTB 606X	Siu Sai Wan (Island Resort) – Kowloon Bay	AM, PM Peak
KMB/CTB 619	Shun Lee – Central (Macau Ferry)	4 – 25
KMB/CTB 619P	Shun Lee – Central (Macau Ferry)	AM Peak
KMB/CTB 641	Kai Tak (Kai Ching Estate) – Central (Macau Ferry)	AM, PM Peak
KMB/CTB 671	Diamond Hill Station – Ap Lei Chau Lee Lok Street	15 – 45
KMB/CTB 671X	Ap Lei Chau Lee Lok Street – Diamond Hill Station	AM Peak
KMB/CTB N619	Shun Lee – Central (Macau Ferry)	Overnight
CTB 55	Ching Tin and Wo Tin – Kwun Tong Ferry Pier	AM, PM Peak
CTB 61R	Lam Tin Station – City One Shatin	12 – 20
CTB 78C	Queen's Hill Fanling – Kai Tak	AM, PM Peak
CTB 78P	Queen's Hill Fanling – Kwun Tong	AM Peak
CTB 78X	Queen's Hill Fanling – Kai Tak	30 – 60
CTB 796S	Tseung Kwan O Station – Ngau Tau Kok Station (Circular)	Overnight
CTB 797 CTB A22	Lohas Park – Kowloon Bay (Circular) Lam Tin Station – Airport	15 – 20
CTB A29	Tseung Kwan O (Po Lam) – Airport / HZMB Hong Kong Port	15 – 40 20 – 60
CTB E22	Lam Tin (North) – AsiaWorld-Expo	8 – 20
CTB E22A	Hong Sing Garden – AsiaWorld-Expo	25 – 30
CTB E22C	Tiu Keng Leng Station – Aircraft Maintenance Area	AM, PM Peak
CTB E22S	Tung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)	AM, PM Peak
CTB E22X	Yau Tong – AsiaWorld-Expo	AM, PM Peak
CTB N29	Hong Sing Garden – Tung Chung Station	Overnight
CTB N796	Lohas Park / Tseung Kwan O Station – Mongkok	Overnight
CTB NA29	Tseung Kwan O (Po Lam) – Airport / HZMB Hong Kong Port	Overnight
GMB 22A	Lok Wah Estate – Cheung Yip Street / Kwun Tong Ferry Pier (Circular)	20
GMB 35	Choi Ha Estate – Hong Lee Court	5 – 7
GMB 62S	Kwong Tin Estate – Tsim Sha Tsui (Haiphong Road)	Overnight
GMB 90A	Yau Lai Estate – HK Children's Hospital	20
GMB 90B	Sau Mau Ping Estate Phase 5 – HK Children's Hospital	15 – 20
GMB 102	Hang Hau Station – San Po Kong (Hong Keung Street)	2 – 15
GMB 102B	Hang Hau (Yuk Ming Court) – Choi Hung	12 – 20
GMB 102S	Hang Hau Station – San Po Kong (Hong Keung Street)	Overnight

Route	Routing	Frequency (minutes)
GMB 103	Clear Water Bay – Kwun Tong Ferry	10 – 15
GMB 104	HKUST – Ngau Tau Kok Station	12 – 25
GMB 106	Tseung Kwan O (Po Lam) – Kowloon Bay (Enterprise Square)	7 – 25
GMB 501S	Sheung Shui Station – Kwun Tong (Yue Man Square)	Overnight

Note: KMB – Kowloon Motor Bus CTB – Citybus GMB – Green Minibus

3.0 THE PROPOSED REDEVELOPMENT

Development Schedule

3.1 The Proposed Redevelopment is a Hotel with 448 guest rooms and 1,232.237m² GFA of conference or banqueting facilities.

Provision of Internal Transport Facilities

3.2 A comparison of the internal transport facilities recommended by the Hong Kong Planning Standards and Guidelines ("HKPSG") and the internal transport facilities provided are presented in **Table 3.1**.

TABLE 3.1 COMPARISONS OF THE INTERNAL TRANSPORT FACILITIES FOR THE PROPOSED REDEVELOPMENT

TOR THE FROM OBLD REDEVILLO	I
HKPSG Recommendation for a Hotel with (i) 448 guest rooms, (ii) 1,232.237m² GFA conference and banquet facilities	Proposed Provision
Car Parking Space (i) 1 car parking space per 100 rooms. 448 / 100 = 4.5, say 5 nos. (ii) 0.5-1 car space per 200m² GFA of conference and banquet facilities	9 nos. including (i) 8 nos. @ 5m (L) x 2.5m (W) x 2.4m (H), (ii) 1 no. @ 5m (L) x 3.5m (W) x 2.4m (H) for persons with
Minimum = 1,232.237 / 200 x 0.5 = 3.1, say $\frac{4 \text{ nos.}}{1 \text{ nos.}}$ Maximum = 1,232.237 / 200 x 1 = 6.2, say $\frac{7 \text{ nos.}}{1 \text{ nos.}}$ $\frac{\text{Total [(i) + (ii)]}}{\text{Minimum}} = 5 + 4 = \frac{9 \text{ nos.}}{12 \text{ nos.}}$ Maximum = 5 + 7 = $\frac{12 \text{ nos.}}{12 \text{ nos.}}$	disabilities = HKPSG recommendation
Motorcycle Parking Space 5 to 10% of the total provision for private cars Minimum = 9 x 5% = 0.5, say 1 no. Maximum = 9 x 10% = 0.9, say 1 no.	1 no. @ 2.4m (L) x 1m (W) x 2.4m (H) = HKPSG recommendation
Taxi and Private Car Layby Minimum 3 lay-by for taxis and private cars for 300-599 rooms = 3 nos.	3 nos. @ 5m (L) x 2.5m (W) x 2.4m (H) = HKPSG recommendation
Single-Deck Tour Bus Layby Minimum 2-3 lay-by for single-deck tour buses for 300-899 rooms = 2-3 nos.	3 nos. @ 12m (L) x 3.5m (W) x 3.8m (H) = HKPSG recommendation
Goods Vehicle Loading / Unloading Bay 0.5 - 1 goods vehicle bay per 100 rooms Minimum = 448 / 100 x 0.5 = 2.2, say 3 nos. Maximum = 448 / 100 x 1 = 4.5, say 5 nos.	2 nos. @ 7m (L) x 3.5m (W) x 3.6m (H) for Light Goods Vehicles, plus 1 no. @ 11m (L) x 3.5m (W) x 4.7m (H) for Heavy Goods Vehicles = HKPSG recommendation

3.3 **Table 3.1** shows that the internal transport facilities provided agree with the recommendations of the HKPSG. The carpark layout plans for G/F and B1/F are shown in **Figures 3.1 – 3.2**.

Traffic Impact Assessment Final Report

Swept Path Analysis

The CAD-based swept path analysis program, Autodesk Vehicle Tracking, was used to check the ease of vehicle manoeuvring, and the swept path analysis drawings for critical movements are found in Appendix 2. Vehicles are found to have no manoeuvring problems and all vehicles could enter and leave the spaces with ease.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Redevelopment is expected to be completed by 2029, and the design year adopted for the capacity analysis is 2032, i.e. 3 years after the completion of the development.

Traffic Forecasting

4.2 The 2032 traffic flows used for the junction analysis are produced with reference to: (i) 2031 traffic flows from the Base District Traffic Model ("BDTM"); (ii) estimated traffic growth from 2031 to 2032; (iii) the planned developments in the vicinity of the Proposed Redevelopment, and (iv) additional traffic generated by the Proposed Redevelopment.

Estimated Traffic Growth Rate from 2031 to 2032

Reference is made to the 2019 – based Territorial Population and Employment Data Matrix ("TPEDM") data produced by Planning Department for Kwun Tong District, which are for 2019, 2026 and 2031 and are presented in Table 4.1.

TABLE 4.1 2019-BASED TPEDM DATA PRODUCED BY PLANNING DEPARTMENT FOR KWUN TONG DISTRICT

Item	TPEDM Estimation / Projection		
	2019	2026	2031
Population	693,900	769,400	741,300
Employment	395,350	410,550	408,250
<u>Total</u>	<u>1,089,250</u>	<u>1,179,950</u>	<u>1,149,550</u>
Average Growth %	From 2019 to 2026: +1.15% From 2019 to 2031: +0.45%	From 2026 to 2031: -0.52%	N/A

4.4 Table 4.1 shows that the highest average annual growth rate is 1.15%. In view that there is no estimation beyond 2031 and to err on the high side, the growth rate of 1.15% per annum is adopted for the traffic growth between 2031 and 2032.

Planned Developments in the Vicinity of the Proposed Redevelopment

The planned developments included in the 2032 reference traffic flows are presented in Table 4.2.

TABLE 4.2 PLANNED DEVELOPMENTS IN THE VICINITY OF THE PROPOSED REDEVELOPMENT

Site	Diagning Application No. / Diag No.	Address			
Site	Planning Application No. / Plan No.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1	A/K14/763	350 Kwun Tong Road			
2	A/K14/766	41 King Yip Street			
3	A/K14/771	32 Hung To Road			
4	A/K14/773	82 Hung To Road			
5	A/K14/774	7 Lai Yip Street			
6	A/K14/775	132 Wai Yip Street			
7	A/K14/777	71 How Ming Street			
8	A/K14/780	107-109 Wai Yip Street			
9	A/K14/782	4 Tai Yip Street			
10	A/K14/787	33 Hung To Road			
11	A/K14/796	28A Hung To Road			

Site	Planning Application No. / Plan No.	Address
12	A/K14/804	334 -336 and 338 Kwun Tong Road
13	A/K14/806	11 Lai Yip Street
14	A/K14/807	Kun Tong Inland Lots 1 S.A , 1 RP, 3 and 15
15	A/K14/809	1 Tai Yip Street and 111 Wai Yip Street
16	A/K14/810	5 Lai Yip Street
17	A/K14/820	73 – 75 Hung To Road
18	A/K14/822	25 Tai Yip Street, Kwun Tong
19	S/K14S/URA1/3 Urban Renewal	Areas 4 and 5 of Kwun Tong Town Centre
	Authority's (URA) latest 'Vertical City'	
	scheme of a mixed use development	
20	N/A	EKEO Lai Yip Street Development
21	N/A	Kwun Tong Action Area
22	N/A	Kowloon Bay Action Area

- 4.6 The infrastructure and road network included in the BDTM are as follows:
 - Kai Tak Development
 - Tseung Kwan O Lam Tin Tunnel
 - Central Kowloon Route
 - Trunk Road T2 between Central Kowloon Route and Tseung Kwan O Lam Tin Tunnel

Traffic Generated by the Proposed Redevelopment

- 4.7 The trip rates found in the TPDM are not used because none of the surveyed hotels are located in Business Areas. Hence, the traffic generated by the Proposed Redevelopment is estimated based trip generation rates of surveyed hotels in Business Areas including the following:
 - (i) 254-room Nina Hotel Kowloon East at 38 Chong Yip St, Kwun Tong
 - (ii) 298-room Tuen Mun Pentahotel at 6 Tsun Wen Road, Tuen Mun
- 4.8 The adopted trip generation rates and the calculated traffic generation associated with the Proposed Redevelopment are presented in Table 4.3.

TABLE 4.3 TRAFFIC GENERATION OF THE PROPOSED REDEVELOPMENT

Item	AM Peak Hour			PM Peak Hour				
	In	Out	2-way	In	Out	2-way		
Trip Generation Rates for hotel (pcu/hour/guest room)								
In-house trip generation for hotel	0.0591	0.0433	NA	0.0512	0.0472	NA		
Traffic Generation of Proposed Redevelopment (pcu/hour)								
448 guest rooms	27	20	<u>47</u>	23	22	45		

4.9 Table 4.3 shows the Proposed Redevelopment generates 47 and 45 more pcu (2-way) during the AM and PM peak hours respectively.

Comparison of Traffic Generation between the Approved S16 Scheme and the Proposed Redevelopment

4.10 The traffic generated by the Proposed Redevelopment is compared with the traffic generated by the Approved S16 Scheme at 201 and 203 Wai Yip Street, and is presented in Table 4.4.

TABLE 4.4 COMPARISON OF TRAFFIC GENERATION BETWEEN THE PROPOSED REDEVELOPMENT AND THE APPROVED \$16 SCHEME

Scheme	Traffic Generation (pcu/hour)						
	AM Peak Hour			PM Peak Hour			
	In	Out	2-way	In	Out	2-way	
Approved S16 Scheme at 203 Wai Yip Street (TPB ref: A/K14/778)	19	13	32	15	19	34	
Approved S16 Scheme at 201 Wai Yip Street (TPB ref: A/K14/808)	35	25	60	20	25	45	
Total [A]	<u>54</u>	38	<u>92</u>	<u>35</u>	44	<u>79</u>	
Proposed Redevelopment [B]	<u>27</u>	<u>20</u>	<u>47</u>	<u>23</u>	<u>22</u>	<u>45</u>	
Difference [B] – [A]	<u>-27</u>	<u>-18</u>	<u>-45</u>	<u>-12</u>	<u>-22</u>	<u>-34</u>	

- 4.11 Table 4.4 shows that compared with the Approved S16 Scheme at 201 and 203 Wai Yip Street, the Proposed Redevelopment generates 45 pcu and 34 pcu (2-way) less during the AM and PM peak hours, respectively. Hence, the Proposed Redevelopment is a better-off scheme.
- 4.12 Planned Traffic Improvement in the Vicinity of the Proposed Redevelopment
 The planned improvement schemes in the vicinity of the Proposed Redevelopment are summarized in Table 4.5.

TABLE 4.5 PLANNED TRAFFIC IMPROVEMENT SCHEMES IN THE VICINITY OF THE PROPOSED REDEVELOPMENT

	Junction	Description of the Works	Indicative Layout	Source	Assumed Completion Year
J2	Wai Yip Street /	Modification of Wai Yip	Please refer to	Kwun	Before 2032
	Hoi Yuen Road	Street / Hoi Yuen Road	Appendix 3	Tong	
		roundabout into a signal		District	
		controlled junction		Council	
J6	Kei Yip Street /	Change Kei Yip Lane			
	Kei Yip Lane	from 2-way to 1-way			
J7	Wai Yip Street /	Change to 2-way			
	Kei Yip Street	direction			

2032 Traffic Flows

4.13 Year 2032 traffic flows for the following cases are derived:

2032 without the Proposed

Redevelopment [A]

= 2031 traffic flows derived with reference to BDTM + estimated total growth from 2031 to 2032+ traffic generated by the planned developments in the vicinity

of the Proposed Redevelopment

2032 with the Proposed

= [A] + traffic generated by the Proposed

Redevelopment (Table 4.3)

Redevelopment [B]

4.14 The 2032 peak hour traffic flows for the cases without and with the Proposed Redevelopment, are shown in Figures 4.1 - 4.2, respectively. The ingress / egress route for traffic generated by the Proposed Redevelopment are shown in Figures 4.3.

2032 Junction Operational Performance

4.15 Year 2032 capacity analysis for the cases without and with the Proposed Redevelopment are summarized in Table 4.6 and detailed calculations are found in the Appendix 1.

TABLE 4.6 2032 JUNCTION OPERATIONAL PERFORMANCE

Ref.	Junction	Type of Junction / Parameter ⁽¹⁾	Without the Proposed Redevelopment		With the Proposed Redevelopment	
			AM	PM	AM	PM
			Peak	Peak	Peak	Peak
J1	Hung To Road / Hoi Yuen Road /	Signal / RC	57%	70%	57%	70%
	Wai Yip Street					
J2	Wai Yip Street / Hoi Yuen Road (3)	Signal / RC	20%	32%	20%	32%
J3	Hung To Road / Tsun Yip Street ⁽²⁾	Signal / RC	18%	37%	18%	37%
J4	Wai Yip Street / Tsun Yip Street ⁽²⁾	Signal / RC	41%	49%	39%	49%
J5	Wai Yip Street / How Ming Street ⁽²⁾	Signal / RC	39%	55%	38%	55%
J6	Kei Yip Street / Kei Yip Lane(3)	Priority - RFC	0.661	0.705	0.665	0.708
J7	Wai Yip Street / Kei Yip Street(3)	Priority - RFC	0.442	0.302	0.448	0.309

Notes: (1) RC – Reserve Capacity RFC – Ratio of Flow to Capacity

4.16 Table 4.6 shows that the key junctions operate with capacities during the AM and PM peak hours for the cases without and with the Proposed Redevelopment.

⁽²⁾ Kerbside on-street activities are reflected in the junction performance

⁽³⁾ Junction Improvement Scheme by other project has been incorporated in the Assessment as explained in Table 4.5

5.0 CONCLUSION

- 5.1 The Subject Site is located at 201 and 203 Wai Yip Street in Kwun Tong. It is currently occupied by the Siu Fu Factory Building and the Tungtex Building.
- 5.2 The Applicant intends to redevelop the 2 Existing Buildings into a hotel with 448 quest rooms and 1,232.237m² GFA of conference or banqueting facilities.
- 5.3 Manual classified counts were conducted at junctions located in the vicinity of the Proposed Redevelopment in order to establish the peak hour traffic flows. Currently, the junctions were found to operate with capacities during the AM and PM peak hours.
- 5.4 The Proposed Redevelopment run-in/out is provided at Wai Yip Street. The internal transport facilities provided comply with recommendations of the HKPSG.
- 5.5 The Proposed Redevelopment is expected to be completed by 2029, and the junction capacity analysis is undertaken for year 2032. For the design year 2032, the junctions analysed are expected to operate with capacities during the peak hours for the case without and with Proposed Redevelopment.
- 5.6 It is concluded that the Proposed Redevelopment will result in <u>no</u> adverse traffic impact to the surrounding road network. From traffic engineering grounds, the Proposed Redevelopment is acceptable.

ADJUSTED 2024 PEAK HOUR TRAFFIC FLOWS

Tel: (852) 2520 5990 Fax: (852) 2528 6343

Wan Chai, Hong Kong

Email: mail@ckmasia.com.hk

Scale in A4

N.T.S.

21 AUG 2024

WITHOUT THE PROPOSED REDEVELOPMENT

Wan Chai, Hong Kong

Email: mail@ckmasia.com.hk

Tel: (852) 2520 5990 Fax: (852) 2528 6343

Scale in A4

N.T.S.

21 AUG 2024

WITH THE PROPOSED REDEVELOPMENT

Wan Chai, Hong Kong

Email: mail@ckmasia.com.hk

Tel: (852) 2520 5990 Fax: (852) 2528 6343

Scale in A4

N.T.S.

21 AUG 2024

 Junction:
 Hung To Road / Hoi Yuen Road / Wai Yip Street
 Job Number:
 J7360

 Scenario:
 Existing Condition
 Page
 1

							AM Peak				PM Peak					
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wai Yip Street EB	RT	A1	2,3	5.00	30.0		100	2014	521	0.259	0.259	100	2014	485	0.241	
	RT	A2	2,3	4.50	33.0		100	2109	545	0.258		100	2109	508	0.241	0.241
	RT	А3	2,3	4.50	36.0		100	1982	512	0.258		100	1982	478	0.241	
Hung To Road EB	SA+RT	B1	3	4.00	18.0		19	2121	288	0.136		42	2082	238	0.114	
-	RT	B2	3	3.30	15.0		100	1768	240	0.136		100	1768	203	0.115	
Hoi Yuen Road SB	SA+LT	C1	1	3.50	15.0		73	1831	300	0.164		44	1882	317	0.168	
	SA	C2	1	3.50				2105	345	0.164			2105	355	0.169	
	SA	C3	1	3.50				1965	321	0.163			1965	332	0.169	
Hoi Yuen Road SB	LT	D1	1	3.50	40.0		100	1894	332	0.175		100	1894	372	0.196	
TIOI TUOTI NOUG OD	SA+LT	D2	1	3.50	43.0		28	2085	366		0.176	47	2071	408	0.197	0.197
	SA	D3	1	3.50	.0.0			1965	345	0.176	00		1965	386	0.196	0.101
pedestrian phase		Ep	2,3		min c	rossing	timo –	7	500	GM +	10	sec F	GM -	17	sec	
pedestriari priase		Fp	2			rossing		6		GM +	8	sec F		14	sec	
		Gp	1,2			rossing		9		GM +	13	sec F		22	sec	
		Нр	2			rossing		7		GM +	11	sec F		18	sec	
		lp	2,3		min c	rossing	time =	8	sec	GM +	11	sec F	GM =	19	sec	

1	Gp ↓	D1 A' A2		Fp	B1 B2 JP A1 A2 A3					
AM	G =	I/G = 7	G =	I/G =	G =	I/G = 5	G =	I/G =	G =	
	G =	I/G = 3	G = 23	I/G = 2	G =	I/G = 5	G =	I/G =	G =	
PM	G =	I/G = 7	G =	I/G =	G =	I/G = 5	G =	I/G =	G =	
	G =	I/G = 3	G = 23	I/G = 2	G =	I/G = 5	G =	I/G =	G =	

 Junction:
 Hung To Road / Hoi Yuen Road
 Job Number:
 J7360

 Scenario:
 Without the Proposed Redevelopment
 Page
 2

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Hung To Road EB	SA+RT	B1	3	4.00	18.0		29	2104	362	0.172	0.173	52	2065	337	0.163	0.163
	RT	B2	3	3.30	15.0		100	1768	305	0.173		100	1768	288	0.163	
Hoi Yuen Road SB	SA+LT	C1	1	3.50	15.0		77	1825	407		0.223	55	1863	445	0.239	
	SA	C2	1	3.50				2105	470	0.223			2105	503	0.239	
	SA	C3	1	3.50				1965	439	0.223			1965	469	0.239	0.239
pedestrian phase		Ep	2,3		min o	rossing	timo –	7	200	GM +	10	200 5	GM =	17	sec	
pedestriari priase		Fp	2,3			rossing		6		GM +	8		GM =	14	sec	
		Gp	1,2			rossing		9		GM +	13		GM =	22	sec	
		Нр	2			rossing		7		GM +	11		GM =	18	sec	
															İ	

1	Gp ↓ ↓ ↓ ↓	2	Gp Hp	∳ Fp	B1	*				
АМ	G =	I/G = 3	G = 23	I/G = 2	G =	I/G = 5	G =	I/G =	G =	
	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	
PM	G =	I/G = 3	G = 23	I/G = 2	G =	I/G = 5	G =	I/G =	G =	
	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	

 Junction:
 Hung To Road / Hoi Yuen Road
 Job Number:
 J7360

 Scenario:
 With the Proposed Redevelopment
 Page
 3

							AM Peak				PM Peak					
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Hung To Road EB	SA+RT	B1	3	4.00	18.0		29	2104	362	0.172	0.173	52	2065	337	0.163	0.163
	RT	B2	3	3.30	15.0		100	1768	305	0.173		100	1768	288	0.163	
Hoi Yuen Road SB	SA+LT	C1	1	3.50	15.0		77	1825	407		0.223	55	1863	445	0.239	
	SA	C2	1	3.50				2105	470	0.223			2105	503	0.239	
	SA	C3	1	3.50				1965	439	0.223			1965	469	0.239	0.239
pedestrian phase		Ep	2,3		min c	rossing	time =	7	sec	GM +	10	sec F	GM =	17	sec	
		Fp	2		min c	rossing	time =	6	sec	GM +	8	sec F	GM =	14	sec	
		Gp	1,2		min c	rossing	time =	9	sec	GM +	13	sec F	GM =	22	sec	
		Нр	2		min c	rossing	time =	7	sec	GM +	11	sec F	GM =	18	sec	
_																

1	C3 C2	C1 2	Ep Gp ↓ Hp	∳ Fp	B1	*				
AM	G =	I/G = 3	G = 23	I/G = 2	G =	I/G = 5	G =	I/G =	G =	
	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	
РМ	G =	I/G = 3	G = 23	I/G = 2	G =	I/G = 5	G =	I/G =	G =	
	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	

Roundabout Analysis

Location Wai Yip Street / Hoi Yuen Road

Scenario Existir	ng Condition			Page	4
Design Year:	2023	Job Number J7360	Date	20 Augu	st 2024

AM Peak

Arm	To A	To B	To C	To D	Total	q _c
From A	188	0	803	38	1029	549
From B	325	0	449	269	1043	1578
From C	990	0	390	86	1466	823
From D	119	0	156	3	278	1893
Total	1622	0	1798	396	3816	

PM Peak

Arm	To A	То В	To C	To D	Total	q _c
From A	139	0	782	40	961	510
From B	470	0	579	117	1166	1471
From C	886	0	317	121	1324	766
From D	151	0	193	0	344	1812
Total	1646	0	1871	278	3795	

Legend

Arm	Road (in clockwise order)
Α	Wai Yip Street
В	Hoi Yuen Road
С	Wai Yip Street
D	Bus Terminal Road

Geometric Parameters

CCOIIICUI	o i aramete	,1 3					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	8.5	7.3	25.0	3.0	75	25	0.6
From B	15.0	12.0	45.0	8.0	75	20	0.6
From C	10.0	7.0	20.0	10.0	75	20	0.5
From D	8.0	7.0	35.0	4.0	75	10	0.4

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
$q_{\rm c}$	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_{D}	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_E		Entry Flow		RFC	
Arm	x_2	М	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.826	4.482	1.091	1.027	2371.374	0.588	2104	2128	1029	961	0.489	0.452
From B	13.364	4.482	1.091	1.062	4049.182	0.842	2889	2985	1043	1166	0.361	0.391
From C	8.531	4.482	1.091	1.035	2584.776	0.620	2146	2183	1466	1324	0.683	0.607
From D	7.556	4.482	1.091	1.090	2289.333	0.575	1308	1359	278	344	0.212	0.253

 Junction:
 Wai Yip Street / Hoi Yuen Road
 Job Number:
 J7360

 Scenario:
 Without the Proposed Redevelopment
 Page
 5

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wai Yip Street WB	LT	A1	1	3.60	17.0		100	1815	655	0.361	0.361	100	1815	531	0.293	0.293
	SA	A2	1	3.60				2115	568	0.269			2115	513	0.243	
	SA	А3	1	3.60				2115	567	0.268			2115	512	0.242	
Wai Yip Street EB	SA	B1	1	4.00				2015	404	0.200			2015	447	0.222	
	SA	B2	1	4.00				2155	432	0.200			2155	478	0.222	
	RT	В3	2	3.30	20.0		100	1940	185	0.095	0.096	100	1940	123	0.063	
	RT	B4	2	3.30	17.0		100	1916	183	0.096		100	1916	122	0.064	
Hei Vora Brad OB		04	0.0	4.00	40.0		400	4040	504	0.070		400	4040	075	0.040	0.040
Hoi Yuen Road SB	LT	C1	2,3	4.00	40.0		100	1942	531	0.273	0.440	100	1942	675	0.348	0.348
	SA	C2	3	4.40	00.0		70	2195	311	0.142	0.142	400	2195	250	0.114	
	SA+RT	C3	3	4.00	20.0		76	2039	289	0.142		100	2005	357	0.178	
	RT	C4	3	4.00	17.0		100	1980	281	0.142		100	1980	353	0.178	
pedestrian phase		Dp	1,2			rossing		11		GM +	13		GM =	24	sec	
		Ep	2,3			rossing		8		GM +	10		GM =	18	sec	
		Fp	1			rossing		11		GM +	13		GM =	24	sec	
		Gp 	1			rossing		5		GM +	6		GM =	11	sec	
		Нр	2,3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
				-										<u> </u>	 	

Junction:Wai Yip Street / Hoi Yuen RoadJob Number:J7360Scenario:With the Proposed RedevelopmentPage6

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Wai Yip Street WB	LT	A1	1	3.60	17.0		100	1815	655	0.361	0.361	100	1815	531	0.293	0.293
	SA	A2	1	3.60				2115	578	0.273			2115	522	0.247	
	SA	А3	1	3.60				2115	578	0.273			2115	521	0.246	
Wai Yip Street EB	SA	B1	1	4.00				2015	412	0.204			2015	456	0.226	
	SA	B2	1	4.00				2155	441	0.205			2155	488	0.226	
	RT	В3	2	3.30	20.0		100	1940	187	0.096	0.096	100	1940	125	0.064	
	RT	B4	2	3.30	17.0		100	1916	184	0.096		100	1916	123	0.064	
Hoi Yuen Road SB	LT	C1	2,3	4.00	40.0		100	1942	531	0.273		100	1942	675	0.348	0.348
	SA	C2	3	4.40				2195	311	0.142	0.142		2195	250	0.114	
	SA+RT	C3	3	4.00	20.0		76	2039	289	0.142		100	2005	357	0.178	
	RT	C4	3	4.00	17.0		100	1980	281	0.142		100	1980	353	0.178	
			4.0					44		014	40			0.4		
pedestrian phase		Dp 	1,2			rossing		11		GM +	13		GM =	24 18	sec	
		Ep Fp	2,3			rossing rossing		8 11		<u>GM +</u> GM +	10 13		GM = GM =	24	sec	
		Gp	1			rossing		5		GM +	6		GM =	11	sec	
		Нр	2,3			rossing		5		GM +	7		GM =	12	sec	
				ĺ					l						I	

 Junction:
 Hung To Road / Tsun Yip Street
 Job Number:
 J7360

 Scenario:
 Existing Condition
 Page
 7

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tsun Yip Street NB	SA	A1*	1	3.20												
	RT	A2	1	3.20	15.0		50	1843	654	0.355	0.355	52	1839	477	0.259	0.259
Hung To Road EB	LT	B1	2	3.50	10.0		100	1709	96	0.056		100	1709	76	0.044	
	SA	B2	2	3.50				1965	201	0.102	0.102		1965	191	0.097	0.097
		_														
pedestrian phase		Cp Dp	1,3 2,3			rossing		6 9		GM +	6 9	sec F		12 18	sec	
		<u>Бр</u> Ер	3			rossing rossing		7		<u>GM +</u> GM +	7		GM = GM =	14	sec	
		Fp	3			rossing		7		GM +	7		GM =	14	sec	

 Junction:
 Hung To Road / Tsun Yip Street
 Job Number:
 J7360

 Scenario:
 Without the Proposed Redevelopment
 Page
 8

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Tsun Yip Street NB	SA	A1*	1	3.20												
	RT	A2	1	3.20	15.0		46	1850	821	0.444	0.444	52	1839	623	0.339	0.33
			_													
Hung To Road EB	LT	B1	2	3.50	10.0		100	1709	125	0.073		100	1709	131	0.077	
	SA	B2	2	3.50				1965	286	0.146	0.146		1965	301	0.153	0.15
pedestrian phase		Ср	1,3		min c	rossing	time =	6	sec	GM +	6	sec F	GM =	12	sec	
<u>.</u>		Dp	2,3			rossing		9		GM +	9	sec F		18	sec	
-		Ep	3			rossing		7	sec	GM +	7	sec F	GM =	14	sec	
		Fp	3		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
				-												
				1				l	l		i					

 Junction:
 Hung To Road / Tsun Yip Street
 Job Number:
 J7360

 Scenario:
 With the Proposed Redevelopment
 Page
 9

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tsun Yip Street NB	SA	A1*	1	3.20												
	RT	A2	1	3.20	15.0		46	1850	821	0.444	0.444	52	1839	623	0.339	0.339
Hung To Road EB	LT	B1	2	3.50	10.0		100	1709	125	0.073		100	1709	131	0.077	
riding to Rodd ED	SA	B2	2	3.50	10.0		100	1965	286	0.146	0.146	100	1965	301	0.153	0.153
										01110	01110				01100	
pedestrian phase		Ср	1,3			rossing		6		GM +	6	sec F		12	sec	
		Dp Fn	2,3			rossing		9		GM +	9	sec F		18	sec	
		Ep Fp	3			rossing rossing		7		GM + GM +	7	sec F		14 14	sec	
		' ' '				. 5551119			550	Ç.VI '	•	0001	<u> </u>		555	

 Junction:
 Wai Yip Street / Tsun Yip Street
 Job Number:
 J7360

 Scenario:
 Existing Condition
 Page
 10

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wai Yip Street EB	LT	A1	1	3.00	10.0		100	1665	302	0.181	0.182	100	1665	242	0.145	
	SA+LT	A2	1	3.00	15.0		15	2025	367	0.181		0	2055	344	0.167	0.167
	SA	А3	1	3.00				2055	373	0.182			2055	344	0.167	
Wai Yip Street WB	SA	B1	1	3.00				1915	225	0.117			1915	259	0.135	
	SA	B2	1	3.00				2055	241	0.117			2055	278	0.135	
	SA	В3	1	3.00				2055	241	0.117			2055	279	0.136	
Tsun Yip Street NB	SA+LT	C1	2	3.80	15.0		16	1964	349	0 178	0.178	21	1954	283	0.145	0.145
Tour Tip Offeet No	SA+RT	C2	2	3.30	22.0		99	1953	347	0.178	0.170	96	1957	284	0.145	0.143
	RT	C3*	2	3.30	18.0		- 00	1000	011	0.170		- 00	1007	201	0.110	
pedestrian phase		Dp -	3 1,3			rossing		9		GM +	8 14	sec F		17 28	sec	
		Ep Fp	3			rossing rossing		9		<u>GM +</u> GM +	8	sec F		28 17	sec	
		-гр Gp	3			rossing		12		GM +	12	sec F		24	sec	
							_	_		•		_	•	-		

 Junction:
 Wai Yip Street / Tsun Yip Street
 Job Number:
 J7360

 Scenario:
 Without the Proposed Redevelopment
 Page
 11

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wai Yip Street EB	LT	A1	1	3.00	10.0		100	1665	347	0.208	0.208	100	1665	272	0.163	
	SA+LT	A2	1	3.00	15.0		19	2017	419	0.208		0	2055	382	0.186	
	SA	А3	1	3.00				2055	427	0.208			2055	381	0.185	
Wai Yip Street WB	SA	B1	1	3.00				1915	334	0.174			1915	371	0.194	0.194
	SA	B2	1	3.00				2055	358	0.174			2055	398	0.194	
	SA	В3	1	3.00				2055	358	0.174			2055	397	0.193	
Tsun Yip Street NB	SA+LT	C1	2	3.80	15.0		26	1944	477	0.245	0.245	19	1958	432	0.221	
	SA+RT	C2	2	3.30	22.0		91	1963	481	0.245		100	1952	407	0.209	0.221
	RT	C3*	2	3.30	18.0											
pedestrian phase		Dp	3		min c	rossing	time =	9	sec	GM +	8	sec F	GM =	17	sec	
		Ep	1,3		min c	rossing	time =	14	sec	GM +	14	sec F	GM =	28	sec	
		Fp	3		min c	rossing	time =	9	sec	GM +	8	sec F	GM =	17	sec	
		Gp	3		min c	rossing	time =	12	sec	GM +	12	sec F	GM =	24	sec	

 Junction:
 Wai Yip Street / Tsun Yip Street
 Job Number:
 J7360

 Scenario:
 With the Proposed Redevelopment
 Page
 12

								AM Peak					PM Peak		
	Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
LT	A1	1	3.00	10.0		100	1665	348	0.209	0.209	100	1665	272	0.163	
SA+LT	A2	1	3.00	15.0		19	2017	422	0.209		0	2055	384	0.187	
SA	А3	1	3.00				2055	429	0.209			2055	384	0.187	
SA	B1	1	3.00				1915	335	0.175			1915	372	0.194	
SA	B2	1	3.00				2055	359	0.175			2055	399	0.194	0.194
SA	В3	1	3.00				2055	359	0.175			2055	398	0.194	
SA+LT	C1	2	3.80	15.0		26	1944	488	0.251	0.251	19	1958	432	0.221	
SA+RT	C2	2	3.30	22.0		94	1959	491			100	1952	425		0.221
RT	C3*	2	3.30	18.0											
	Dn	3		min c	rossina	time –	a	200	CM +	ρ	sac F	GM -	17	202	
		,													
	Gp	3					12			12			24	sec	
	SA+LT SA SA SA SA SA+LT SA+RT	LT A1 SA+LT A2 SA A3 SA B1 SA B2 SA B3 SA+LT C1 SA+RT C2 RT C3* Dp Ep Fp	LT A1 1 SA+LT A2 1 SA A3 1 SA B1 1 SA B2 1 SA B3 1 SA+LT C1 2 SA+RT C2 2 RT C3* 2 Dp 3 Ep 1,3 Fp 3	LT A1 1 3.00 SA+LT A2 1 3.00 SA A3 1 3.00 SA B1 1 3.00 SA B2 1 3.00 SA B3 1 3.00 SA B3 1 3.00 SA+LT C1 2 3.80 SA+RT C2 2 3.30 RT C3* 2 3.30 DD 3 Ep 1,3 Fp 3	LT A1 1 3.00 10.0 SA+LT A2 1 3.00 15.0 SA A3 1 3.00 SA B1 1 3.00 SA B2 1 3.00 SA B3 1 3.00 SA+LT C1 2 3.80 15.0 SA+RT C2 2 3.30 22.0 RT C3* 2 3.30 18.0 Dp 3 min c Ep 1,3 min c Fp 3 min c	LT A1 1 3.00 10.0 SA+LT A2 1 3.00 15.0 SA A3 1 3.00 SA B1 1 3.00 SA B2 1 3.00 SA B3 1 3.00 SA+LT C1 2 3.80 15.0 SA+RT C2 2 3.30 22.0 RT C3* 2 3.30 18.0 Dp 3 min crossing Ep 1,3 min crossing Fp 3 min crossing	LT A1 1 3.00 10.0 100 SA+LT A2 1 3.00 15.0 19 SA A3 1 3.00 SA B1 1 3.00 SA B2 1 3.00 SA B3 1 3.00 SA+LT C1 2 3.80 15.0 26 SA+RT C2 2 3.30 22.0 94 RT C3* 2 3.30 18.0 Dp 3 min crossing time = Ep 1,3 min crossing time = Fp 3 min crossing time =	LT A1 1 3.00 10.0 100 1665 SA+LT A2 1 3.00 15.0 19 2017 SA A3 1 3.00 50 50 1915 SA B1 1 3.00 50 50 1915 SA B2 1 3.00 50 50 50 50 50 50 50 50 50 50 50 50 5	Phase Stage Width (m) Radius (m) % Up-hill Turning % Sat. Flow (pcu/hr) Flow (pcu/hr)	Phase	Phase Stage Width (m) Radius (m) % Up-hill Turning % Sat. Flow (pcuhhr) (pcuhhr)	Phase Stage Width (m) Radius (m) % Up-hill Turning % Godent Turning % (pouhh) (p	Phase Stage Width (m) Radius (m) % Up-hill Turning % Sat. Flow (pouhr) y value Critical y Turning % Sat. Flow (pouhr)	Phase Slage Width (m) Radius (m) % Up-hill Turning % Sat. Flow Gradent Gradent Flow (purch) (p	Phase Stage Width (m) Radius (m) Sub-hill Tuming % Sat. Flow (gouth) (

 Junction:
 Wai Yip Street / How Ming Street
 Job Number:
 J7360

 Scenario:
 Existing Condition
 Page
 13

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Wai Yip Street EB	LT	A1*	1,2	3.00	20.0											
	SA	A2	1,2	3.00	20.0		65	1959	744	0.380	0.380	70	1952	687	0.352	0.352
	SA	А3	1,2	3.00				2055	780	0.380			2055	723	0.352	
Wai Yip Street WB	SA	B1	1	2.60				1875	238	0.127			1875	275	0.147	
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SA	B2	1	3.00				2055	262	0.127			2055	300	0.146	
	SA	В3	1	3.00				2055	262	0.127			2055	300	0.146	
How Ming Street NB	LT	C1	2	3.50	20.0		100	1828	84	0.046		100	1828	50	0.027	
		_						_			_	_				
pedestrian phase		Dp	1,3			rossing		5		GM +	7		GM =	12	sec	
		Ep	3			rossing		10		GM +	9		GM =	19	sec	
		Fp Gp	3			rossing		5 9		GM + GM +	7 8		GM = GM =	12 17	sec	
		. Gp	3		HIIIIC	iossing	ume =	9	Sec	GIVI +	0	Secr	GIVI =	17	Sec	
				-												
			l	1	1			l	1		l	1		1	1	l

 Junction:
 Wai Yip Street / How Ming Street
 Job Number:
 J7360

 Scenario:
 Without the Proposed Redevelopment
 Page
 14

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wai Yip Street EB	LT	A1*	1,2	3.00	20.0											
	SA	A2	1,2	3.00	20.0		80	1939	950	0.490	0.490	80	1939	822	0.424	0.424
	SA	А3	1,2	3.00				2055	1006	0.490			2055	871	0.424	
Wai Yip Street WB	SA	B1	1	2.60				1875	368	0.196			1875	391	0.209	
	SA	B2	1	3.00				2055	404	0.197			2055	428	0.208	
	SA	В3	1	3.00				2055	404	0.197			2055	428	0.208	
How Ming Street NB	LT	C1	2	3.50	20.0		100	1828	125	0.068		100	1828	121	0.066	
pedestrian phase		Dp	1,3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		Ep	3		min c	rossing	time =	10	sec	GM +	9	sec F	GM =	19	sec	
		Fp	3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		Gp	3		min c	rossing	time =	9	sec	GM +	8	sec F	GM =	17	sec	
				I					l					l		

 Junction:
 Wai Yip Street / How Ming Street
 Job Number:
 J7360

 Scenario:
 With the Proposed Redevelopment
 Page
 15

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wai Yip Street EB	LT	A1*	1,2	3.00	20.0											
·	SA	A2	1,2	3.00	20.0		80	1939	953	0.491	0.491	80	1939	824	0.425	0.425
	SA	А3	1,2	3.00				2055	1009	0.491			2055	874	0.425	
Wai Yip Street WB	SA	B1	1	2.60				1875	369	0.197			1875	392	0.209	
	SA	B2	1	3.00				2055	405	0.197			2055	429	0.209	
	SA	В3	1	3.00				2055	405	0.197			2055	429	0.209	
Harri Mira er Chan an NID		C4	0	2.50	20.0		400	4000	405	0.000		100	4000	404	0.000	
How Ming Street NB	LT	C1	2	3.50	20.0		100	1828	125	0.068		100	1828	121	0.066	
pedestrian phase		Dp	1,3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		Ep	3		min c	rossing	time =	10	sec	GM +	9	sec F	GM =	19	sec	
		Fp	3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		Gp	3		min c	rossing	time =	9	sec	GM +	8	sec F	GM =	17	sec	

Junction: Kei Yip Street / Kei Yip Lane Design Year: 2023 J7360 20 August 2024 Job Number: Date: Scenario: **Existing Condition** Kei Yip Street (Arm C) Kei Yip Street (Arm A) 911 822 4 8 11 AM PM 15 Kei Yip Lane (Arm B) The predictive equations of capacity of movement are: Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)]Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]Q-CB = F[745 - 0.364Y(q-AC + q-AB)]The geometric parameters represented by D, E, F are: D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-lBA - 150)]E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-rBC - 120)]F = [1 + 0.094(w-CB - 3.65)][1 + 0.0009(V-rCB - 120)]where Y = 1 - 0.0345Wq-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width w-BA, etc = lane width to vehicle v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc Geometry: Calculated Input Input Input W 13.00 V-rBA 0 w-BA 0.00 0.5332 D Ε W-CR 0.00 V-IBA 0 w-BC 3.80 0.9320 V-rBC 30 w-CB 0.00 F 0.5860 V-rCB 0 Υ 0.5515 Analysis: Traffic Flows, pcu/hr PM Capacity, pcu/hr AM РМ ΑM Q-BA q-CA 0 0 237 246 q-CB 0 Q-BC 524 540 0 q-AB 4 8 Q-CB 329 339 822 Q-BAC 524 q-AC 911 540 q-BA 0 0 q-BC 11 15 1.000 1.000 Ratio-of-flow to Capacity PMAM B-A 0.000 0.000 B-C 0.021 0.028 C-B 0.000 0.000

	Rei Tip Street / I	(ei Yip Lane					
Design Year:	2023	Job Numb		Da	ite:	20 A	August 2024
Scenario:	Without the Prop	osed Redev	elopment				P. 17
Kei Yip	Street (Arm C)				Kei Y	ip Street	(Arm A)
<u></u>	3.1.331 (1.1111 3)					., 0001	(* / .)
					_		
		_		•	<u> </u>	835	<u>733</u>
		ק`					
		378	249		Г	AM	PM
		<u>413</u>	<u>164</u>		<u> </u>		
		Kei Yip	Lane (Arm B)	-			
The prodictive of	quations of consoits	, of moveme	ant ara:				
	quations of capacity + 14W-CR - Y(0.36			-CA + 0 52a	-CB)1		
-	- Y(0.364q-AC + 0.	•		<i>5.</i> 0.029	J = //1		
-	- 0.364Y(q-AC + q-	. ,-					
-	arameters represer	/ -	, F are:				
•	094(w-BA - 3.65)][1			.0006(V-IBA	- 150)]		
-	094(w-BC - 3.65)][1	,	/ 	`	/-		
-	094(w-CB - 3.65)][1	,	, -				
where $Y = 1$	0.0345W						
q-AB, e	etc = the design flow	v of moveme	ent AB, etc				
	etc = the design flow ajor road width	v of moveme	ent AB, etc				
W = ma	_		ent AB, etc				
W = ma W-CR = w-BA, e	ajor road width = central reserve w etc = lane width to v	idth rehicle					
W = ma W-CR = w-BA, e v-rBA, e	ajor road width = central reserve w etc = lane width to v etc = visibility to the	idth /ehicle e right for wa	iiting vehicles in s		С		
W = ma W-CR = w-BA, e v-rBA, e	ajor road width = central reserve w etc = lane width to v	idth /ehicle e right for wa	iiting vehicles in s		С		
Ŵ = ma W-CR = w-BA, ∈ v-rBA, ∈	ajor road width = central reserve w etc = lane width to v etc = visibility to the etc = visibility to the	idth /ehicle e right for wa e left for waiti	iiting vehicles in si ing vehicles in stre	eam BA, etc		Calcu	lated
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e	ajor road width = central reserve w etc = lane width to v etc = visibility to the etc = visibility to the	idth /ehicle e right for wa	iiting vehicles in si ing vehicles in stre Input	eam BA, etc Input		Calcu D	lated 0.8536
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e	ajor road width = central reserve w etc = lane width to v etc = visibility to the etc = visibility to the	idth vehicle e right for wa left for waiti nput 17.00	iiting vehicles in si ing vehicles in stre Input V-rBA 20	eam BA, etc Input		_	
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the	idth vehicle e right for wa left for waiti nput 17.00	iiting vehicles in si ing vehicles in stre Input V-rBA 20	eam BA, etc Input w-BA w-BC	3.80	D	0.8536
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the	idth vehicle e right for wa left for waiti nput 17.00	iiting vehicles in st ing vehicles in stre Input V-rBA 20 V-IBA 25	eam BA, etc Input w-BA w-BC w-CB	3.80 3.80	D E	0.8536 0.9228
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry :	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the W W W-CR	idth vehicle e right for wa e left for waiti nput 17.00 0.00	iting vehicles in streeting vehicles veh	eam BA, etc Input w-BA w-BC w-CB	3.80 3.80 0.00	D E F Y	0.8536 0.9228 0.5860 0.4135
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Analysis : Traffic Flows,	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the W W-CR	idth vehicle e right for wa e left for waiti nput 17.00 0.00	iting vehicles in streeting vehicles veh	Input w-BA w-BC w-CB pacity, pcu/h	3.80 3.80 0.00	D E F Y	0.8536 0.9228 0.5860 0.4135
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e Geometry : Analysis : Traffic Flows, q-CA	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the W W-CR	idth vehicle e right for wa left for waiti nput 17.00 0.00 PM 0 0	iting vehicles in streeting vehicles veh	Input w-BA w-BC w-CB pacity, pcu/h Q-BA	3.80 3.80 0.00	D E F Y AM 428	0.8536 0.9228 0.5860 0.4135 PM 441
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e Geometry : Analysis : Traffic Flows, q-CA q-CB	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the WW-CR	idth vehicle right for wa left for waiti nput 17.00 0.00 PM 0 0 0	iting vehicles in streeting vehicles veh	Input w-BA w-BC w-CB pacity, pcu/h Q-BA Q-BC	3.80 3.80 0.00	D E F Y AM 428 572	0.8536 0.9228 0.5860 0.4135 PM 441 586
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e rolled v-RA, e	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the WW-CR	idth vehicle e right for wa helft for waiti nput 17.00 0.00 PM 0 0 0 0 0	iting vehicles in streeting vehicles veh	Input w-BA w-BC w-CB pacity, pcu/h Q-BA Q-BC Q-CB	3.80 3.80 0.00	D E F Y AM 428 572 363	0.8536 0.9228 0.5860 0.4135 PM 441 586 372
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e r-lBA, e v-lBA, e	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the WW-CR	idth vehicle right for wa left for waiti nput 17.00 0.00 PM 0 0 0 0 0 0 5 733	iting vehicles in streeting vehicles veh	Input w-BA w-BC w-CB pacity, pcu/h Q-BA Q-BC	3.80 3.80 0.00	D E F Y AM 428 572	0.8536 0.9228 0.5860 0.4135 PM 441 586
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e r-lBA, e Reometry : Analysis : Traffic Flows, q-CA q-CB q-AB q-AC q-BA	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the WW-CR , pcu/hr AM 83	idth vehicle right for wa left for waiti nput 17.00 0.00 PM 0 0 0 0 0 0 5 733 9 164	iting vehicles in streeting vehicles veh	Input w-BA w-BC w-CB pacity, pcu/h Q-BA Q-BC Q-CB	3.80 3.80 0.00	D E F Y AM 428 572 363	0.8536 0.9228 0.5860 0.4135 PM 441 586 372
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e r-lBA, e r-lBA, e	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the WW-CR , pcu/hr AM 83 24 37	idth vehicle right for wa left for waiti nput 17.00 0.00 PM 0 0 0 0 0 0 5 733 9 164 8 413	iting vehicles in streeting vehicles veh	Input w-BA w-BC w-CB pacity, pcu/h Q-BA Q-BC Q-CB	3.80 3.80 0.00	D E F Y AM 428 572 363	0.8536 0.9228 0.5860 0.4135 PM 441 586 372
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e r-lBA, e W-CB q-CA q-CB q-AB q-AC q-BA	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the WW-CR , pcu/hr AM 83	idth vehicle right for wa left for waiti nput 17.00 0.00 PM 0 0 0 0 0 0 5 733 9 164 8 413	iting vehicles in streeting vehicles veh	Input w-BA w-BC w-CB pacity, pcu/h Q-BA Q-BC Q-CB	3.80 3.80 0.00	D E F Y AM 428 572 363	0.8536 0.9228 0.5860 0.4135 PM 441 586 372
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e r-lBA, e v-lBA, e	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the www. WW-CR Apocu/hr AM 83 24 37 0.60	idth vehicle e right for was left for waitinput 17.00 0.00 PM 0 0 0 0 0 0 5 733 9 164 8 413 3 0.716	iiting vehicles in streing vehicles vehic	Input w-BA w-BC w-CB pacity, pcu/h Q-BA Q-BC Q-CB Q-BAC	3.80 3.80 0.00	D E F Y AM 428 572 363	0.8536 0.9228 0.5860 0.4135 PM 441 586 372
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e r-lBA, e v-lBA, e	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the www. WW-CR Apocu/hr AM 83 24 37 0.60	idth vehicle right for wa left for waiti nput 17.00 0.00 PM 0 0 0 0 0 5 733 9 164 8 413 3 0.716	ilting vehicles in streeting vehicles veh	eam BA, etc Input w-BA w-BC w-CB pacity, pcu/h Q-BA Q-BC Q-CB Q-BAC	3.80 3.80 0.00	D E F Y AM 428 572 363	0.8536 0.9228 0.5860 0.4135 PM 441 586 372
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e r-lBA, e v-lBA, e	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the www. WW-CR Apocu/hr AM 83 24 37 0.60	idth vehicle right for wa left for waiti nput 17.00 0.00 PM 0 0 0 0 5 733 9 164 8 413 3 0.716 of-flow to Ca B-A	iting vehicles in straing vehicles vehicl	eam BA, etc Input w-BA w-BC w-CB pacity, pcu/h Q-BA Q-BC Q-CB Q-BAC PM 0.372	3.80 3.80 0.00	D E F Y AM 428 572 363	0.8536 0.9228 0.5860 0.4135 PM 441 586 372
W = ma W-CR = w-BA, e v-rBA, e v-lBA, e r-lBA, e v-lBA, e	ajor road width = central reserve wetc = lane width to vetc = visibility to the etc = visibility to the www. WW-CR Apocu/hr AM 83 24 37 0.60	idth vehicle right for wa left for waiti nput 17.00 0.00 PM 0 0 0 0 0 5 733 9 164 8 413 3 0.716	ilting vehicles in streeting vehicles veh	Input w-BA w-BC w-CB pacity, pcu/h Q-BA Q-BC Q-CB Q-BAC PM 0.372 0.705	3.80 3.80 0.00	D E F Y AM 428 572 363	0.8536 0.9228 0.5860 0.4135 PM 441 586 372

Daataa V	Wai Yip Street / Ke							
_		Job Numb)	Da	te:	20 /	August 2024
Scenario: <u>\</u>	Without the Propo	sed Redev	velopment					P. 19
Wai Yip S	treet (Arm C)					Wai \	'ip Street	(Arm A)
	· , ,						•	· ·
						<u> </u>	801	<u>1002</u>
	ī	. 🗂					835	<u>733</u>
		249			*	г	AM	PM
		164				L	Aivi	<u>1 1V1</u>
			Street (Arm B))	ı			
The predictive equa	ations of capacity	of moveme	ent are:					
Q-BA = D[627 + 1]	14W-CR - Y(0.364	q-AC + 0.		29q-C <i>F</i>	4 + 0.52q-	CB)]		
Q-BC = E[745 - Y]	•	. /-						
Q-CB = F[745 - 0]	` ' '	, -	E oro:					
The geometric para	ameters represente 4(w-BA - 3.65)][1 -	•		T U VV	∩6(\/_I₽ ^	_ 150\1		
_	4(w-BC - 3.65)][1 - 4(w-BC - 3.65)][1 -	•	,	- 0.00	OO(V-IDA	- 130)]		
-	4(w-BC - 3.65)][1 - 4(w-CB - 3.65)][1 -	,	, -					
where $Y = 1 - 0.0$, ,	. 3.3000(V						
	= the design flow	of moveme	ent AB, etc					
-	r road width							
W- $CR = c$	entral reserve wid	th						
w-BA, etc	= lane width to ve	hicle						
w-BA, etc v-rBA, etc	= lane width to ve = visibility to the r	hicle ight for wa	-			;		
w-BA, etc v-rBA, etc	= lane width to ve	hicle ight for wa	-			;		
w-BA, etc v-rBA, etc v-lBA, etc	= lane width to ve = visibility to the r = visibility to the le	hicle ight for wa	-			;	Calcu	llated
w-BA, etc v-rBA, etc	= lane width to ve = visibility to the r = visibility to the le Inp W	hicle right for wa eft for wait out 17.90	ing vehicles in Input V-rBA	stream 0 v	n BA, etc Input v-BA	0.00	D	0.5332
w-BA, etc v-rBA, etc v-lBA, etc	= lane width to ve = visibility to the r = visibility to the le	hicle right for wa eft for wait out 17.90	ing vehicles in Input V-rBA V-IBA	stream 0 v 0 v	Input V-BA V-BC	0.00 3.80	D E	0.5332 0.9593
w-BA, etc v-rBA, etc v-lBA, etc	= lane width to ve = visibility to the r = visibility to the le Inp W	hicle right for wa eft for wait out 17.90	Input V-rBA V-IBA V-rBC	o v o w 60 v	n BA, etc Input v-BA	0.00	D E F	0.5332 0.9593 0.5860
w-BA, etc v-rBA, etc v-IBA, etc Geometry :	= lane width to ve = visibility to the r = visibility to the le Inp W	hicle right for wa eft for wait out 17.90	ing vehicles in Input V-rBA V-IBA	stream 0 v 0 v	Input V-BA V-BC	0.00 3.80	D E	0.5332 0.9593
w-BA, etc v-rBA, etc v-IBA, etc Geometry :	= lane width to ve = visibility to the r = visibility to the le Inp W W-CR	hicle right for wa eft for wait out 17.90 1.00	Input V-rBA V-IBA V-rBC V-rCB	o v 0 v 0 v 60 v	Input v-BA v-BC v-CB	0.00 3.80 0.00	D E F Y	0.5332 0.9593 0.5860 0.3825
w-BA, etc v-rBA, etc v-IBA, etc Geometry : Analysis : Traffic Flows, po	= lane width to ve = visibility to the r = visibility to the le Inp W W-CR	hicle ight for wa eft for wait out 17.90 1.00	Input V-rBA V-IBA V-rBC V-rCB	0 v 0 v 60 v 0	Input v-BA v-BC v-CB	0.00 3.80 0.00	D E F Y	0.5332 0.9593 0.5860 0.3825
w-BA, etc v-rBA, etc v-IBA, etc Geometry : Analysis : Traffic Flows, po q-CA	= lane width to ve = visibility to the r = visibility to the le Inp W W-CR cu/hr AM 0	chicle right for wa eft for wait out 17.90 1.00 PM 0	Input V-rBA V-IBA V-rBC V-rCB	0 v 0 v 60 v 0	Input v-BA v-BC v-CB sity, pcu/hr	0.00 3.80 0.00	D E F Y AM 258	0.5332 0.9593 0.5860 0.3825 PM 246
w-BA, etc v-rBA, etc v-lBA, etc Geometry : Analysis : Traffic Flows, po q-CA q-CB	= lane width to ve = visibility to the r = visibility to the le Inp W W-CR cu/hr AM 0 0	chicle right for wa eft for wait out 17.90 1.00 PM 0	Input V-rBA V-IBA V-rBC V-rCB	0 v 0 v 60 v 0 Capac Q- Q-	Input v-BA v-BC v-CB sity, pcu/hr BA BC	0.00 3.80 0.00	D E F Y AM 258 564	0.5332 0.9593 0.5860 0.3825 PM 246 542
w-BA, etc v-rBA, etc v-IBA, etc Geometry : Analysis : Traffic Flows, po q-CA q-CB q-AB	= lane width to ve = visibility to the r = visibility to the long W W-CR cu/hr AM 0 0 835	ehicle right for wa eft for wait out 17.90 1.00 PM 0 0 733	Input V-rBA V-IBA V-rBC V-rCB	0 v 0 v 60 v 0 Capac Q- Q- Q-	Input v-BA v-BC v-CB sity, pcu/hr BA BC CB	0.00 3.80 0.00	D E F Y AM 258 564 303	0.5332 0.9593 0.5860 0.3825 PM 246 542 295
w-BA, etc v-rBA, etc v-IBA, etc Geometry : Analysis : Traffic Flows, po q-CA q-CB q-AB q-AC	= lane width to ve = visibility to the r = visibility to the le Inp W W-CR cu/hr AM 0 0	chicle right for wa eft for wait out 17.90 1.00 PM 0	Input V-rBA V-IBA V-rBC V-rCB	0 v 0 v 60 v 0 Capac Q- Q- Q-	Input v-BA v-BC v-CB sity, pcu/hr BA BC	0.00 3.80 0.00	D E F Y AM 258 564	0.5332 0.9593 0.5860 0.3825 PM 246 542
w-BA, etc v-rBA, etc v-lBA, etc v-lBA, etc Geometry: Analysis: Traffic Flows, po q-CA q-CB q-AB q-AC q-BA	= lane width to ve = visibility to the r = visibility to the le Inp W W-CR cu/hr AM 0 0 835 801	ehicle right for wa eft for wait out 17.90 1.00 PM 0 0 733 1002	Input V-rBA V-IBA V-rBC V-rCB	0 v 0 v 60 v 0 Capac Q- Q- Q-	Input v-BA v-BC v-CB sity, pcu/hr BA BC CB	0.00 3.80 0.00	D E F Y AM 258 564 303	0.5332 0.9593 0.5860 0.3825 PM 246 542 295
w-BA, etc v-rBA, etc v-IBA, etc Geometry : Analysis : Traffic Flows, po q-CA q-CB q-AB q-AC	= lane width to ve = visibility to the r = visibility to the le Inp W W-CR cu/hr AM 0 0 835 801 0	Phicle right for wait out 17.90 1.00 PM 0 733 1002 0	Input V-rBA V-IBA V-rBC V-rCB	0 v 0 v 60 v 0 Capac Q- Q- Q-	Input v-BA v-BC v-CB sity, pcu/hr BA BC CB	0.00 3.80 0.00	D E F Y AM 258 564 303	0.5332 0.9593 0.5860 0.3825 PM 246 542 295
w-BA, etc v-rBA, etc v-lBA, etc v-lBA, etc v-lBA, etc Geometry: Analysis: Traffic Flows, po q-CA q-CB q-AB q-AC q-BA q-BC	= lane width to ve = visibility to the r = visibility to the le lnr W W-CR cu/hr AM 0 0 835 801 0 249 1.000	Phicle right for wait right for wait out 17.90 1.00 PM 0 733 1002 0 164 1.000	ing vehicles in Input V-rBA V-IBA V-rBC V-rCB	0 v 0 v 60 v 0 Capac Q- Q- Q- Q-	Input v-BA v-BC v-CB sity, pcu/hr BA BC CB	0.00 3.80 0.00	D E F Y AM 258 564 303	0.5332 0.9593 0.5860 0.3825 PM 246 542 295
w-BA, etc v-rBA, etc v-lBA, etc v-lBA, etc v-lBA, etc Geometry: Analysis: Traffic Flows, po q-CA q-CB q-AB q-AC q-BA q-BC	= lane width to ve = visibility to the r = visibility to the le lnr W W-CR cu/hr AM 0 0 835 801 0 249 1.000	Phicle right for wait out 17.90 1.00 PM 0 733 1002 0 164	ing vehicles in Input V-rBA V-IBA V-rBC V-rCB	o v 0 v 60 v 0 Capac Q- Q- Q-	Input v-BA v-BC v-CB sity, pcu/hr BA BC CB BAC	0.00 3.80 0.00	D E F Y AM 258 564 303	0.5332 0.9593 0.5860 0.3825 PM 246 542 295
w-BA, etc v-rBA, etc v-lBA, etc v-lBA, etc v-lBA, etc analysis: Traffic Flows, po q-CA q-CB q-AB q-AC q-BA q-BC	= lane width to ve = visibility to the r = visibility to the le lnr W W-CR cu/hr AM 0 0 835 801 0 249 1.000	Phicle right for wait eft for wait out 17.90 1.00 PM 0 733 1002 0 164 1.000 f-flow to Ca	ing vehicles in Input V-rBA V-IBA V-rBC V-rCB Apacity AM	O v 0 v 60 v 0 Capac Q- Q- Q-	Input v-BA v-BC v-CB sity, pcu/hr BA BC CB BAC	0.00 3.80 0.00	D E F Y AM 258 564 303	0.5332 0.9593 0.5860 0.3825 PM 246 542 295
w-BA, etc v-rBA, etc v-lBA, etc v-lBA, etc v-lBA, etc Analysis: Traffic Flows, po q-CA q-CB q-AB q-AC q-BA q-BC	= lane width to ve = visibility to the r = visibility to the le lnr W W-CR cu/hr AM 0 0 835 801 0 249 1.000	Phicle right for wait out 17.90 1.00 PM 0 733 1002 0 164 1.000 f-flow to Care	ing vehicles in Input V-rBA V-IBA V-rBC V-rCB apacity AM 0.0	0 v 0 v 60 v 0 Capac Q- Q- Q- 1	Input v-BA v-BC v-CB sity, pcu/hr BA BC CB BAC PM 0.000	0.00 3.80 0.00	D E F Y AM 258 564 303	0.5332 0.9593 0.5860 0.3825 PM 246 542 295

CKM Asia Limited J7New

		Kei Yip Stree						
٠.	2032	Job Numb		360	Da	ite:	20 /	August 2024
Scenario:	With the Propos	sed Redevelo	pment					P. 20
Wai Yip S	Street (Arm C)					Wai \	∕ip Street	(Arm A)
	2 ii 2 2 i (i ii ii i 2 j							(7 7 .)
							801	1002
		◆¬					856	<u>751</u>
					↓		•	
		252					AM	<u>PM</u>
		167 Kai Vin	Street (Arm	B)				
		itei rip	Olleet (Allii	D)				
The predictive equ								
$Q-BA = D[627 + C_{-}BC - E[745 - X_{-}]$	•	•	44q-AB + 0	.229q-	CA + 0.52q	-CB)]		
Q-BC = E[745 - Y] Q-CB = F[745 - Q]	•	. /-						
The geometric para	` .	/ -	F are:					
•	94(w-BA - 3.65)][•		[1 + 0.0	0006(V-IBA	- 150)]		
E = [1 + 0.09]	94(w-BC - 3.65)][1 + 0.0009(V	-rBC - 120)]	_	•	-		
-	94(w-CB - 3.65)][1 + 0.0009(V	-rCB - 120)]					
where $Y = 1 - 0$.			4 A D 4					
· ·	c = the design flo or road width	w of moveme	nt AB, etc					
	n road widin							
W-CR = 0	central reserve v	vidth						
	central reserve v c = lane width to							
w-BA, etc	central reserve w c = lane width to c = visibility to th	vehicle	iting vehicles	s in str	eam BA, et	C		
w-BA, etc v-rBA, etc	c = lane width to	vehicle e right for wai	-			С		
w-BA, etc v-rBA, etc v-IBA, etc	c = lane width to c = visibility to th c = visibility to the	vehicle e right for wai e left for waiti	-				Calcu	lated
w-BA, etc v-rBA, etc	c = lane width to c = visibility to th c = visibility to the	vehicle e right for wai	ng vehicles Input		am BA, etc		Calcu D	lated 0.5332
w-BA, etc v-rBA, etc v-lBA, etc	c = lane width to c = visibility to th c = visibility to the	vehicle e right for wai e left for waitii Input 17.90 R 1.00	Input V-rBA V-IBA	in stream	am BA, etc Input w-BA w-BC	0.00 3.80	D E	0.5332 0.9593
w-BA, etc v-rBA, etc v-lBA, etc	c = lane width to c = visibility to the c = visibility to the W	vehicle e right for wai e left for waitii Input 17.90 R 1.00	Input V-rBA V-IBA V-rBC	0 0 0 60	am BA, etc Input w-BA	0.00	D E F	0.5332 0.9593 0.5860
w-BA, etc v-rBA, etc v-lBA, etc Geometry :	c = lane width to c = visibility to the c = visibility to the W	vehicle e right for wai e left for waitii Input 17.90 R 1.00	Input V-rBA V-IBA	in stream	am BA, etc Input w-BA w-BC	0.00 3.80	D E	0.5332 0.9593
w-BA, etc v-rBA, etc v-IBA, etc Geometry :	c = lane width to c = visibility to the c = visibility to the W W-CF	vehicle e right for wai e left for waitii Input 17.90 R 1.00	Input V-rBA V-IBA V-rBC	0 0 0 60 0	am BA, etc Input w-BA w-BC w-CB	0.00 3.80 0.00	D E F Y	0.5332 0.9593 0.5860 0.3825
w-BA, etc v-rBA, etc v-IBA, etc Geometry : Analysis : Traffic Flows, p	c = lane width to c = visibility to the c = visibility to the W W-CF	vehicle e right for wai e left for waitii Input 17.90 R 1.00	Input V-rBA V-IBA V-rBC	0 0 60 0	am BA, etc Input w-BA w-BC w-CB acity, pcu/h	0.00 3.80 0.00	D E F Y	0.5332 0.9593 0.5860 0.3825
w-BA, etc v-rBA, etc v-IBA, etc Geometry :	c = lane width to c = visibility to the c = visibility to the W W-CF	vehicle e right for wai e left for waitii Input 17.90 R 1.00	Input V-rBA V-IBA V-rBC	0 0 60 0 Cap	am BA, etc Input w-BA w-BC w-CB	0.00 3.80 0.00	D E F Y	0.5332 0.9593 0.5860 0.3825
w-BA, etc v-rBA, etc v-lBA, etc Geometry : Analysis : Traffic Flows, p q-CA	c = lane width to c = visibility to the c = visibility to the W W-CF	vehicle e right for wai e left for waiti Input 17.90 R 1.00 PM 0 0	Input V-rBA V-IBA V-rBC	0 0 60 0 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA	0.00 3.80 0.00	D E F Y AM 257	0.5332 0.9593 0.5860 0.3825 PM 245
w-BA, etc v-rBA, etc v-lBA, etc Geometry : Analysis : Traffic Flows, p q-CA q-CB	c = lane width to c = visibility to the c = visibility to the W W-CF	vehicle e right for waite e left for waite Input 17.90 R 1.00 PM 0 0 0 0 56 751	Input V-rBA V-IBA V-rBC	0 0 60 0 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC	0.00 3.80 0.00	D E F Y AM 257 563	0.5332 0.9593 0.5860 0.3825 PM 245 541
w-BA, etc v-rBA, etc v-lBA, etc Geometry : Analysis : Traffic Flows, p q-CA q-CB q-AB	c = lane width to c = visibility to the c = visibility to the W W-CF	vehicle e right for waite e left for waite Input 17.90 R 1.00 PM 0 0 0 0 56 751	Input V-rBA V-IBA V-rBC	0 0 60 0 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB	0.00 3.80 0.00	D E F Y AM 257 563 301	0.5332 0.9593 0.5860 0.3825 PM 245 541 294
w-BA, etc v-rBA, etc v-IBA, etc Geometry : Analysis : Traffic Flows, p q-CA q-CB q-AB q-AC	c = lane width to c = visibility to the c = visibility to the W W-CF	vehicle e right for waite e left for waite Input 17.90 R 1.00 PM 0 0 0 0 56 751 01 1002	Input V-rBA V-IBA V-rBC	0 0 60 0 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB	0.00 3.80 0.00	D E F Y AM 257 563 301	0.5332 0.9593 0.5860 0.3825 PM 245 541 294
w-BA, etc v-rBA, etc v-lBA, etc Geometry : Traffic Flows, p q-CA q-CB q-AB q-AC q-BA	c = lane width to c = visibility to the c = visibility to the W W-CF	vehicle e right for waite e left for waite Input 17.90 R 1.00 PM 0 0 0 0 56 751 01 1002 0 0 52 167	Input V-rBA V-IBA V-rBC	0 0 60 0 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB	0.00 3.80 0.00	D E F Y AM 257 563 301	0.5332 0.9593 0.5860 0.3825 PM 245 541 294
w-BA, etc v-rBA, etc v-lBA, etc Geometry : Traffic Flows, p q-CA q-CB q-AB q-AC q-BA q-BC	c = lane width to c = visibility to the c = visibility to the W W-CF	vehicle e right for waite left for waite lnput 17.90 R 1.00 PM 0 0 0 0 56 751 01 1002 0 0 52 167 00 1.000	Input V-rBA V-IBA V-rBC V-rCB	0 0 60 0 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-BAC	0.00 3.80 0.00	D E F Y AM 257 563 301	0.5332 0.9593 0.5860 0.3825 PM 245 541 294
w-BA, etc v-rBA, etc v-IBA, etc Geometry : Analysis : Traffic Flows, p q-CA q-CB q-AB q-AC q-BA q-BC	c = lane width to c = visibility to the c = visibility to the W W-CF	vehicle e right for waite e left for waite Input 17.90 R 1.00 PM 0 0 0 0 56 751 01 1002 0 0 52 167 00 1.000 0-of-flow to Ca	Input V-rBA V-lBA V-rBC V-rCB	0 0 60 0 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-BAC	0.00 3.80 0.00	D E F Y AM 257 563 301	0.5332 0.9593 0.5860 0.3825 PM 245 541 294
w-BA, etc v-rBA, etc v-lBA, etc Geometry : Traffic Flows, p q-CA q-CB q-AB q-AC q-BA q-BC	c = lane width to c = visibility to the c = visibility to the W W-CF	vehicle e right for waite e left for waite Input 17.90 R 1.00 PM 0 0 0 0 56 751 01 1002 0 0 52 167 00 1.000 0-of-flow to Ca	Input V-rBA V-lBA V-rBC V-rCB	0 0 60 0 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-BAC PM 0.000	0.00 3.80 0.00	D E F Y AM 257 563 301	0.5332 0.9593 0.5860 0.3825 PM 245 541 294
w-BA, etc v-rBA, etc v-lBA, etc Geometry : Analysis : Traffic Flows, p q-CA q-CB q-AB q-AC q-BA q-BC	c = lane width to c = visibility to the c = visibility to the W W-CF	vehicle e right for waite e left for waite Input 17.90 R 1.00 PM 0 0 0 0 56 751 01 1002 0 0 52 167 00 1.000 0-of-flow to Ca	Input V-rBA V-lBA V-rBC V-rCB	0 0 60 0 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-BAC	0.00 3.80 0.00	D E F Y AM 257 563 301	0.5332 0.9593 0.5860 0.3825 PM 245 541 294

CKM Asia Limited J7New

