

Date: 16th July 2024

BY HAND

1

司

限

Secretary, Town Planning Board 15/F, North Point Government Offices 333 Java Road, North Point, Hong Kong

Dear Sir/Madam,

SECTION 16 APPLICATION TOWN PLANNING ORDINANCE (CHAPTER 131)

PROPOSED RELIGIOUS INSTITUTION (REDEVELOPMENT OF BETHEL BIBLE SEMINARY (BBS) WITH IN-SITU PRESERVATION OF SUN HOK BUILDING) AT 45 - 47 GRAMPIAN ROAD (PART), KOWLOON CITY, KOWLOON, NEW KOWLOON

INLAND LOT NO.1382 (PART)

Planning Application No. A/K18/347

Further Information (6) – Technical Clarifications

Reference is made to the captioned Section 16 planning application. In order to address Transport Department's comments regarding the captioned application, attached please the table of responses-tocomments (R to C) with the following attachment:

Replacement pages of Traffic Impact Assessment

Please be advised that this FI(6) should be exempted from the publication requirement and/or the recounting requirement in accordance with TPB PG-No. 32B since the it does not involve major changes in the assumptions and methodologies, findings and proposed mitigation measures and involves technical clarifications only.

Should you have any queries, please feel free to contact Mr. Endy CHENG at

or myself at

Yours faithfully, FOR AND ON BEHALF OF DeSPACE (INTERNATIONAL) LIMITED

Greg Lam

Proposed "Religious Institution" (Redevelopment of Bethel Bible Seminary with in-situ preservation of Sun Hok Building) at 45-47 Grampian Road, Kowloon City, Kowloon (Planning Application No. A/K18/347)

Proposed "Religious Institution" (Redevelopment of Bethel Bible Seminary with in-situ preservation of Sun Hok Building) at 45-47 Grampian Road, Kowloon City, Kowloon Town Planning Application No. A/K18/347

Response-to-Comment Table (Departmental Comments)

Departmental Comments	Responses
Memo dated 24 June 2024 refers:	
(Commissioner For Transport: Mr. LI Hon-yeung, Simon; Tel: 2399	2512)
 Please find below our further comments on the subject FI and RTC from traffic engineering perspective: 1) R-to-C item no. 5 and Para. 4.8.4 - The applicant shall clarify the exact figures of the calculated gueue lengths at the concerned 	Table 4.12 of the TIA is updated. Both calculated queue lengths at the concerned section of Nga Tsin Wai Road are 42m for reference and design
exact figures of the calculated queue lengths at the concerned section of Nga Tsin Wai Road instead of putting ">30"m on Table 4.12 for reference and design scenarios. Furthermore, the applicant shall also review if other possible improvement measures, say by adjustment of the traffic green times / linkage of	scenarios. Therefore, the impact caused by the proposed development on the queue length is negligible. This section of Nga Tsin Wai Road is bounded by Grampian Road, Junction Road, Man Yuen Mansion and 49-49A Nga Tsin Wai Road, it cannot be
the junction concerned and upstream junctions, can potentially alleviate the excessive queue length;	elongated nor widened. By adjusting the green time, the vehicles could queue within the allowable queue length. Please refer to Table 4.13 of the TIA report.
2) Table 6.9 - the pedestrian flows generated / attracted by the	The pedestrian flows were less than 109/103/127 as some people will come
proposed development during the peak times at critical section 7 do	to the proposed development by private car and taxi based on the modal
not tally with the assumption as stated in para. 6.2.9 where	split.

Proposed "Religious Institution" (Redevelopment of Bethel Bible Seminary with in-situ preservation of Sun Hok Building) at 45-47 Grampian Road, Kowloon City, Kowloon (Planning Application No. A/K18/347)

	maximum of 109/103/127 people will come/leave the subject site within 15 minutes during day/noon/evening time;	Anyway, for conservative, assume 100% of people will use bus/PLB and walk to/ from the proposed development. Chapter 6 is updated accordingly.
3)	R-to-C item no. 8, the applicant shall supplement swept path analysis to demonstrate the proposed permanent location of the on- street metered parking spaces will not affect the passage of buses / coaches due to close proximity to the existing refuge island, the applicant shall commit to follow up the proposed permanent relocation of the affected on-street metered spaces and undertake all the necessary local consultation, by adding a paragraph under appropriate section of the TIA report.	Swept path are shown in Figures SP-04 to SP-05 . It is noted that the proposed on-street metered parking spaces will not affect the passage of 12m buses / coaches from Dumbarton Road and 11m HGV left turn from Grampian Road. It is noted that as shown in Figure SP-06 , 12m buses / coaches cannot be left turn from Grampian Road to Dumbarton Road at present due to the existing traffic refuge island (even without relocate the parking spaces). Thus, our proposal will not affect the passage of other vehicles. Section 3.5 is added to the TIA to describe the relocation of on-street parking spaces and the applicant will follow up the proposed permanent relocation of the affected on-street metered spaces and undertake all the necessary local consultation.

3.4.2 It reveals that the proposed development is currently well served by the comprehensive public transport services in the vicinity.

3.5 Relocation of On-street Parking Spaces

- 3.5.1 Due to the provision of new run-in/out at Dumbarton Road, 3 nos. of on-street meter parking spaces will be affected. It is proposed to shift the parking spaces to the right as shown in **Figure RtC 1**.
- 3.5.2 As shown in **Figures SP-01** to **SP-05**, the manoeuvring of the vehicles will not be affect by relocation of the parking spaces. **Figures SP-06** shows that 12m buses / coaches cannot be left turn from Grampian Road to Dumbarton Road at present due to the existing traffic refuge island (even without relocate the parking spaces). Thus, our proposal will not affect the passage of other vehicles.
- 3.5.3 The applicant will follow up the proposed permanent relocation of the affected onstreet metered spaces and undertake all the necessary local consultation.

We commit We deliver 誠

Table 4.12	Queue Length Analysis of Identified Junctions in 2029 (Design
-------------------	---

Year)

					Length of	Calculated Queue Length (m)		
Ref.	Junction	Method of	Direction		Road Segment	Design S	Scenario	
		Control			(m)	AM Peak	PM Peak	
			Inverness Road (SB) (SRT+RT)		288	0	0	
А	A Dumbarton Road/ Inverness Road	Priority	Dumbarton Road (WI	B)(LR+RT)	88	2	2	
			Inverness Road (NB)	(SRT+LT)	80	2	1	
			Dumbarton Road (EE	B)(LR+RT)	15	0	0	
В	Dumbarton Road/ Grampian Road	Priority	Dumbarton Road (WI	B)(LR+RT)	88	1	1	
			Grampian Road (NB)(LT+RT)	284	6	6	
			Dumbarton Road (EB) (LR+RT)	119	30	12	
С	Dumbarton Road/ Junction Road	Road/ Road Signal	Junction Road (NE	B) (SRT)	75	54	48	
			Junction Road (SB)(SRT+RT)	55	24	18	
			Carpenter Road (SB)	(LT+RT)	68	36	36	
D	Junction Road/ Signal		Junction Road (NB)	(SRT+RT)	46	36	36	
	Carpenter Koau		Junction Road (SB)	(SRT+LT)	74	60	42	
	I D 1/		Inverness Road (SB)	(LT+RT)	288	11	6	
Е	Nga Tsin Wai	Priority	Nga Tsin Wai Roa (SRT+LT)	ad (EB)	57	0	0	
	Koad		Nga Tsin Wai Road	(SRT+RT)	75	5	6	
			Grampian Road (SB)(LT+RT)	41	18	12	
	Grampian Road/		Grampian Ro (NB)(LT+RT+S	ad SRT)	84	30	24	
F	Nga Tsin Wai Road	Vai Signal	Nga Tsin Wai Road (WB) (SRT+RT)		30	24	24	
			Nga Tsin Wai Roa (SRT+LT)	ad (EB)	61	30	30	
			Junction Road (SB)	(LT+RT)	81	42	30	
			Junction Road (NB)	(LT+SRT)	50	24	24	
G	Junction Road/ Nga Tsin Wai	Signal	Nga Tsin Wai Roa (SRT+RT)	d (WB)	40	24	30	
	Road		Nga Tsin Wai Road	Reference Case	30	<mark>42</mark>	30	
			(EB) (SRT)	Design Case	50	<mark>42</mark>	30	

4.8.4 The assessment results in **Table 4.12** indicate that all queues are queuing within the allowable road segments *except* for the Junction G (East Bound).

- 4.8.5 The queue length for Junction G (East Bound) for the reference case (i.e. without the proposed development) is the same as the queue length for design case. Therefore, the impact caused by the proposed development on the queue length is negligible.
- 4.8.6 In addition, this section of Nga Tsin Wai Road is bounded by Grampian Road, Junction Road, Man Yuen Mansion and 49-49A Nga Tsin Wai Road, it cannot be elongated nor widened. Therefore, the applicant is unable to carry out any mitigation measures that can reduce the queue length.

4.8.7 By adjusting the green time, the vehicles could queue within the allowable queue length.

Table 4.13Queue Length Analysis of Identified Junctions in 2029 withAdjusted Green Time (Design Year)

				Longth of	Calculated Queue Length (m)		
D.C. Trutter	Tunation	Method of	Direction	Length of Dood Segment	Design Scenario		
Kel.	Control		Direction	(m)	AM <mark>Peak</mark>	PM <mark>Peak</mark>	
G)	Junction Road/ Nga Tsin Wai Road	Signal	Junction Road (SB) (LT+RT)	<mark>81</mark>	<mark>54</mark>	<mark>36</mark>	
			Junction Road (NB) (LT+SRT)	<mark>50</mark>	<mark>30</mark>	<mark>30</mark>	
			Nga Tsin Wai Road (WB) (SRT+RT)	<mark>40</mark>	<mark>24</mark>	<mark>30</mark>	
			Nga Tsin Wai Road (EB) (SRT)	30	30	<mark>24</mark>	

6.2.10 As the nearest MTR stations including both Lok Fu Station and Song Wong Toi Station are out of 500m radius, hence, we assumed the travelers will take either GMB or bus to the MTR station. Hence, the model split is adjusted. The adjusted model split is summarized in the **Table 6.7**.

	TCS									
	Rail	Franchised Bus	PLB	Private Vehicle	SPB	Taxi	Tram	Ferry		
Modal Split	30%	27%	13%	12%	9%	6%	2%	1%		
Adjusted Modal Split	-	<mark>68%</mark>	<mark>33%</mark>	-	-	-	-	•		

Table 6.7 Adjusted Model Split

6.2.11 The expected peak hour pedestrian flow to/ from the proposed development, bus and GMB stop are estimated and summarized in is summarized in the below Table 6.8.

Proposed Development	Period	Peak Hour Pedestrian Flow	Passenger trip related to Bus in AM Peak (68%)	Passenger trip related to GMB in AM Peak (33%)
	AM Peak	<mark>109</mark>	74 (two- way)	35 (two- way)
Bethel Bible Seminary at 45-47 Grampian Road	Noon Peak	103	70 (two- way)	33 (two- way)
	PM Peak	127	86 (two- way)	41 (two- way)

Table 6.8 Expected Peak Hour Pedestrian Flow to Bus/ GMB Stops

6.2.12 A separated pedestrian flow table shows the pedestrian generated and attracted by the proposed development only. The detail is also provided and is shown in the **Table 6.9**.

We commit We deliver

Critical Sections	Pedestrian Flow Generated and Attracted by the Proposed Development						
Critical Sections	AM Peak (ped/15 mins)	Noon Peak (ped/15 mins)	PM Peak (ped/15 mins)				
4	5	5	10				
<mark>5</mark>	<mark>5</mark>	<mark>5</mark>	10				
6	<mark>5</mark>	<mark>5</mark>	10				
7	110	<mark>105</mark>	<mark>125</mark>				
8	<mark>30</mark>	25	<mark>35</mark>				
<mark>9</mark>	<mark>5</mark>	<mark>5</mark>	<mark>10</mark>				
<mark>12</mark>	<mark>35</mark>	<mark>30</mark>	<mark>40</mark>				
13	20	20	25				
<mark>14</mark>	<mark>55</mark>	<mark>50</mark>	<mark>65</mark>				
<mark>15</mark>	<mark>10</mark>	<mark>10</mark>	<mark>15</mark>				
<mark>16</mark>	<mark>5</mark>	<mark>5</mark>	<mark>10</mark>				
<mark>17</mark>	<mark>5</mark>	5	<mark>10</mark>				
<mark>18</mark>	5	<mark>5</mark>	<mark>10</mark>				
<mark>19</mark>	<mark>5</mark>	<mark>5</mark>	<mark>10</mark>				
20	5	<mark>5</mark>	<mark>10</mark>				
21	5	<mark>5</mark>	<mark>10</mark>				
22	<mark>5</mark>	<mark>5</mark>	<mark>10</mark>				
23	5	<mark>5</mark>	<mark>10</mark>				
25	20	<mark>15</mark>	<mark>20</mark>				
<mark>26</mark>	5	<mark>5</mark>	<mark>10</mark>				
27	5	5	<mark>10</mark>				
28	5	<mark>5</mark>	<mark>10</mark>				
<mark>29</mark>	<mark>5</mark>	<mark>5</mark>	<mark>10</mark>				
<mark>30</mark>	5	5	<mark>10</mark>				
31	0	0	0				
32	20	<mark>15</mark>	<mark>20</mark>				
<mark>34</mark>	5	5	5				
35	5	5	5				
<mark>36</mark>	5	5	5				
<mark>40</mark>	5	5	5				
41	5	5	5				
42	5	5	5				
<mark>48</mark>	5	5	10				
51	5	5	10				
<mark>53</mark>	5	5	<mark>10</mark>				
55	20	15	<mark>20</mark>				
<mark>56</mark>	<mark>10</mark>	<mark>10</mark>	<mark>15</mark>				
<mark>58</mark>	<mark>20</mark>	20	<mark>25</mark>				

Table 6.9 Pedestrian Flow Generated and Attracted by the Proposed Development

Note :

(1) The pedestrian flow results are demonstrated to the nearest units of 5, 0.

We commit We deliver

Table 6.10 Pedestrian Flow Generated and Attracted by the ProposedDevelopment for the Pedestrian Crossing

Critical Sections	Pedestrian Flow Generated and Attracted by the Proposed Development						
Cifical Sections	AM Peak (ped/15 mins)	Noon Peak (ped/15 mins)	PM Peak (ped/15 mins)				
<mark>C2</mark>	<mark>5</mark>	<mark>5</mark>	10				
<mark>C8</mark>	<mark>5</mark>	<mark>5</mark>	10				
<mark>C9</mark>	<mark>5</mark>	<mark>5</mark>	<mark>10</mark>				
C12	<mark>5</mark>	<mark>5</mark>	<mark>10</mark>				
C13	<mark>5</mark>	<mark>5</mark>	<mark>5</mark>				
<mark>C14</mark>	<mark>5</mark>	<mark>5</mark>	<mark>10</mark>				
C17	5	5	10				
<mark>C19</mark>	<mark>5</mark>	5	10				
<mark>C24</mark>	<mark>5</mark>	<mark>5</mark>	<mark>10</mark>				
C25	<mark>10</mark>	<mark>10</mark>	<mark>15</mark>				
<mark>C26</mark>	20	<mark>20</mark>	<mark>25</mark>				
C27	20	<mark>15</mark>	20				

Note :

(1) The pedestrian flow results are demonstrated to the nearest units of 5, 0.

6.2.13 The estimated trips are superimposed to the network, the future pedestrian design flow could be estimated and summarized in **Table 6.11 and Table 6.12**.

用心以誠

tet Assessment Report We commit We deliver 誠

用心

			Design Scenario (with the Proposed Development) in Year 2029								
			AM Peak Noon Peak PM Peak								
Critical Sections	Total Footpath Width (m) ⁽¹⁾	Effective Width (m) ⁽²⁾	Two-way Pedestrian Flow	Two-way Pedestria n Flow Rate	LOS	Two-way Pedestrian Flow	Two-way Pedestrian Flow Rate	LOS	Two-way Pedestrian Flow	Two-way Pedestrian Flow Rate	LOS
	. ,		(ped/15 mins)	(ped/min/ m) ⁽³⁾		(ped/15 mins)	(ped/min/ m) ⁽³⁾		(ped/15 mins)	(ped/min/m) ⁽³⁾	
1	3.1	2.6	10	0.26	Α	10	0.26	Α	<mark>10</mark>	<mark>0.26</mark>	Α
2	3.3	2.8	<mark>25</mark>	<mark>0.60</mark>	Α	<mark>25</mark>	<mark>0.60</mark>	Α	<mark>30</mark>	<mark>0.71</mark>	Α
3	2.9	2.4	100	<mark>2.78</mark>	Α	<mark>35</mark>	<mark>0.97</mark>	Α	<mark>25</mark>	<mark>0.69</mark>	Α
4	2.6	2.1	105	<mark>3.33</mark>	Α	<mark>45</mark>	1.43	Α	<mark>45</mark>	<mark>1.43</mark>	Α
5	3.3	2.3	105	3.04	Α	130	3.77	Α	<mark>55</mark>	1.59	Α
6	3.3	2.8	125	2.98	A	170	4.05	A	75	1.79	A
7	2.9	1.9	185	6.49	A	120	4.21	A	145	5.09	A
8	2.6	1.0	105	4.38	A	60 60	2.50	A	85 40	3.54 0.05	A
9	3.5	2.8	70	2.38	A	55	1.45	A	40 70	0.95	A
10	2.0	2.0	<u>70</u> 40	1.07	A	25	0.60	A	10	0.28	A
11	2.9	2.4	145	1.11	A	170	0.09 5.40	A	80	2.54	A
12	2.0	2.1	145	4.00 5.36	A	85	2.40	A	60 60	1.74	A
13	3.3	2.3	70	2.03	Α Δ	235	<u>6.81</u>	Δ	160	4 64	Α Δ
15	2.9	1.9	165	5 79	A	75	2.63	A	80	2.81	A
16	2.6	1.6	165	6.88	A	80	3.33	A	60	2.50	A
17	3.3	2.3	150	4.35	A	60	1.74	A	85	2.46	A
18	3.3	2.3	130	3.77	Α	<mark>40</mark>	<mark>1.16</mark>	Α	<mark>45</mark>	1.30	Α
19	2.9	1.9	<mark>165</mark>	<mark>5.79</mark>	Α	120	4.21	Α	<mark>140</mark>	<mark>4.91</mark>	Α
20	2.6	1.6	110	<mark>4.58</mark>	Α	<mark>60</mark>	<mark>2.50</mark>	Α	<mark>80</mark>	<mark>3.33</mark>	Α
21	3.3	2.3	<mark>150</mark>	<mark>4.35</mark>	Α	<mark>75</mark>	2.17	Α	<mark>80</mark>	2.32	Α
22	3.3	2.3	<mark>190</mark>	5.51	Α	<mark>95</mark>	<mark>2.75</mark>	Α	<mark>115</mark>	<mark>3.33</mark>	Α
23	2.9	1.9	<mark>75</mark>	2.63	Α	25	0.88	Α	<mark>55</mark>	1.93	Α
24	2.6	2.1	55	1.75	Α	265	8.41	Α	150	4.76	Α
25	3.3	2.3	60 115	1.74	A	<u>90</u>	2.61	A	105	3.04	A
26	3.3	2.3	115	3.33	A	210	6.09	A	210	6.09	A
27	2.9	1.9	130	4.50	A	230	8.07	A	240	8.42	A
28	2.0	1.0	95	4.38	A	105	0.75 5.65	A	203	<u>8.34</u>	A
30	3.3	2.3	80	2.75	Α Δ	195	5.65	Δ	200	5.80	Α Δ
31	2.9	1.9	115	4.04	A	145	5.09	A	50	1 75	A
32	2.6	1.6	130	5.42	A	190	7.92	A	135	5.63	A
33	3.3	2.3	190	5.51	Α	145	4.20	A	110	3.19	A
34	3.3	2.3	130	3.77	A	200	5.80	A	<u>160</u>	<mark>4.64</mark>	A
35	2.9	1.9	120	4.21	A	<mark>245</mark>	<mark>8.60</mark>	Α	<mark>330</mark>	11.58	A
36	2.6	1.6	<mark>195</mark>	<mark>8.13</mark>	A	<mark>355</mark>	14.79	A	<mark>425</mark>	17.71	B
37	3.3	2.3	<mark>95</mark>	<mark>2.75</mark>	Α	120	<mark>3.48</mark>	Α	110	<mark>3.19</mark>	Α
38	3.3	2.3	190	5.51	Α	315	9.13	Α	155	4.49	Α
39	2.9	1.9	115	4.04	A	220	7.72	A	300	10.53	A
40	2.6	1.6	190	7.92	A	210	8.75	A	185	7.71	A
41	3.3	2.3	200	5.80	A	370 255	10.72	A	400 245	11.59	A
42	2.5	2.3	105	3.69	A	165	10.29 5 70	A	343 155	<u>10.00</u>	A
44	2.9	1.9	140	5.00	A	365	15.79	A	210	8 75	A A
45	3.3	2.3	45	1.30	A	165	4.78	A	155	4.49	Δ
46	3.3	2.3	365	10.58	A	355	10.29	A	605	17,54	B
47	2.9	1.9	155	5.44	A	255	8.95	A	285	10.00	A
48	2.6	2.1	90	2.86	A	95	3.02	A	90	2.86	A
49	3.3	2.8	<mark>70</mark>	<mark>1.67</mark>	Α	<mark>75</mark>	<mark>1.79</mark>	Α	100	<mark>2.38</mark>	Α
50	3.3	2.8	205	<mark>4.88</mark>	Α	<mark>90</mark>	<mark>2.14</mark>	Α	<mark>115</mark>	<mark>2.74</mark>	Α
51	2.9	2.4	210	<mark>5.83</mark>	Α	<mark>155</mark>	<mark>4.31</mark>	Α	<mark>190</mark>	<mark>5.28</mark>	Α

We commit We deliver

52	2.6	1.6	<mark>180</mark>	<mark>7.50</mark>	Α	<mark>150</mark>	6.25	Α	<mark>185</mark>	7.71	Α
53	3.3	2.8	<mark>70</mark>	<mark>1.67</mark>	Α	<mark>70</mark>	1.67	Α	<mark>65</mark>	1.55	Α
54	3.3	2.3	105	3.04	Α	<mark>345</mark>	10.00	Α	235	<mark>6.81</mark>	Α
55	2.9	1.9	155	<mark>5.44</mark>	Α	<mark>75</mark>	2.63	Α	<mark>90</mark>	<mark>3.16</mark>	Α
56	2.6	1.6	<mark>65</mark>	2.71	Α	<mark>40</mark>	1.67	Α	<mark>35</mark>	<mark>1.46</mark>	Α
57	3.3	2.8	<mark>55</mark>	1.31	Α	<mark>50</mark>	1.19	Α	<mark>60</mark>	1.43	Α
58	3.3	2.3	<mark>90</mark>	2.61	Α	<mark>40</mark>	<mark>1.16</mark>	Α	<mark>55</mark>	<mark>1.59</mark>	Α
59	2.9	1.9	<mark>70</mark>	<mark>2.46</mark>	Α	<mark>80</mark>	2.81	Α	<mark>70</mark>	<mark>2.46</mark>	Α
60	2.6	1.6	<mark>60</mark>	2.50	Α	<mark>80</mark>	3.33	Α	<mark>60</mark>	2.50	Α
61	3.3	2.3	<mark>65</mark>	1.88	Α	<mark>150</mark>	<mark>4.35</mark>	A	120	<mark>3.48</mark>	Α

Note:

- (1) Clear Width of Street = Street Width between walls and hoardings. For conservative, assume no pedestrian could walk under the hoardings.
- (2) Effective Width = Clear Width Dead Width (There is no shopping frontages along the footpath, and hence assume 0.5m for dead areas for both side T.P.D.M Vol 2 Chapter 3.4 Table 3.4.11.1)
- (3) Pedestrian Flow Rate (ped/min/m) = Peak Hour Pedestrian Flow / 15 min. / Effective Width
- (4) The pedestrian flow results are demonstrated to the nearest units of 5, 0.

用

心以誠

用

Year 2029											
		Design Scenario(with the Proposed Development) in Year 2029									
	Method of Control	AM	Peak (ped/	/hr)	Noon Peak (ped/hr)			PM Peak (ped/hr)			
Crossing		Crossing Demand (V)	Crossing Capacity (C)	V/C	Crossing Demand (V)	Crossing Capacity (C)	V/C	Crossing Demand (V)	Crossing Capacity (C)	V/C	
C1	Signalized	<mark>180</mark>	<mark>3475</mark>	0.05	<mark>590</mark>	<mark>3420</mark>	0.17	<mark>510</mark>	<mark>3475</mark>	0.15	
C2	Signalized	<mark>515</mark>	<mark>6490</mark>	<mark>0.08</mark>	1120	<mark>6460</mark>	0.17	1225	<mark>6490</mark>	<mark>0.19</mark>	
C3	Signalized	<mark>400</mark>	<mark>3475</mark>	0.12	<mark>800</mark>	<mark>3515</mark>	0.23	<mark>690</mark>	<mark>3475</mark>	0.20	
C4	Signalized	<mark>495</mark>	<mark>3475</mark>	0.14	1045	<mark>3515</mark>	0.30	<mark>960</mark>	<mark>3475</mark>	0.28	
C5	Signalized	<mark>470</mark>	<mark>3730</mark>	0.13	1005	<mark>3760</mark>	0.27	1515	<mark>3730</mark>	0.41	
C6	Signalized	<mark>280</mark>	<mark>6840</mark>	0.04	<mark>850</mark>	<mark>6610</mark>	0.13	1050	<mark>6840</mark>	0.15	
C7	Signalized	<mark>530</mark>	<mark>8500</mark>	0.06	<mark>1190</mark>	<mark>8550</mark>	0.14	1430	<mark>8500</mark>	0.17	
C8	Signalized	<mark>140</mark>	<mark>2365</mark>	<mark>0.06</mark>	<mark>75</mark>	<mark>2430</mark>	0.03	<mark>90</mark>	<mark>2365</mark>	0.04	
C9	Signalized	<mark>230</mark>	2120	0.11	<mark>405</mark>	<mark>2660</mark>	0.15	<mark>305</mark>	2120	0.14	
C10	Signalized	<mark>90</mark>	<mark>2615</mark>	0.03	<mark>70</mark>	<mark>2660</mark>	0.03	<mark>55</mark>	<mark>2615</mark>	0.02	
C11	Signalized	<mark>455</mark>	<mark>5980</mark>	0.08	<mark>365</mark>	<mark>5930</mark>	0.06	325	<mark>5980</mark>	0.05	
C12	Signalized	<mark>140</mark>	<mark>2895</mark>	0.05	120	<mark>2890</mark>	0.04	<mark>160</mark>	<mark>2895</mark>	0.06	
C13	Signalized	200	<mark>4885</mark>	0.04	<mark>360</mark>	<mark>4865</mark>	0.07	<mark>350</mark>	<mark>4885</mark>	0.07	
C14	Signalized	120	<mark>2895</mark>	0.04	<mark>140</mark>	<mark>2890</mark>	0.05	205	<mark>2895</mark>	0.07	
C15	Signalized	<mark>375</mark>	<mark>2895</mark>	0.13	<mark>490</mark>	<mark>2915</mark>	0.17	<mark>405</mark>	<mark>2895</mark>	0.14	
C16	Signalized	<mark>165</mark>	2000	0.08	120	2025	0.06	130	2000	0.07	
C17	Signalized	<mark>290</mark>	<mark>3835</mark>	0.08	<mark>340</mark>	<mark>3880</mark>	0.09	280	<mark>3835</mark>	0.07	
C18	Signalized	225	4275	0.05	<mark>705</mark>	4275	0.16	<mark>635</mark>	4275	0.15	
C19	Signalized	205	<mark>3090</mark>	0.07	<mark>665</mark>	<mark>2470</mark>	0.27	625	<mark>3090</mark>	0.20	
C20	Signalized	250	3325	0.08	<mark>710</mark>	3325	0.21	<mark>660</mark>	<mark>3325</mark>	0.20	
C21	Signalized	<mark>285</mark>	7335	0.04	110	3135	0.04	<mark>90</mark>	7335	0.01	
C22	Signalized	275	<mark>5000</mark>	<mark>0.06</mark>	<mark>310</mark>	<mark>7315</mark>	0.04	325	<mark>5000</mark>	0.07	
C23	Signalized	235	<mark>2620</mark>	<mark>0.09</mark>	<mark>75</mark>	<mark>3230</mark>	0.02	<mark>110</mark>	<mark>2620</mark>	0.04	
C24	Signalized	200	<mark>2620</mark>	0.08	<mark>170</mark>	<mark>3230</mark>	0.05	<mark>190</mark>	<mark>2620</mark>	0.07	
C25	Signalized	215	<mark>2620</mark>	0.08	<mark>190</mark>	<mark>3230</mark>	<mark>0.06</mark>	<mark>130</mark>	<mark>2620</mark>	0.05	
C26	Signalized	<mark>50</mark>	<mark>2600</mark>	0.02	<mark>140</mark>	<mark>2660</mark>	0.05	<mark>90</mark>	<mark>2600</mark>	0.03	
C27	Signalized	<mark>255</mark>	<mark>4800</mark>	0.05	<mark>770</mark>	<mark>2585</mark>	<mark>0.30</mark>	<mark>430</mark>	<mark>4800</mark>	<mark>0.09</mark>	
C28	Signalized	<mark>115</mark>	<mark>2485</mark>	0.05	<mark>55</mark>	<mark>2535</mark>	0.02	<mark>55</mark>	<mark>2485</mark>	0.02	
C29	Signalized	170	<mark>2340</mark>	0.07	<mark>35</mark>	<mark>2365</mark>	0.01	<mark>65</mark>	<mark>2340</mark>	0.03	

Table 6.12Performance of Critical Pedestrian Crossing in Design Scenario in
Year 2029

6.2.14 From the assessment results in **Tables 6.11 and 6.12**, it is revealed that the concerned sections of footpaths and pedestrian crossings would all operate with LOS A, B and with ample V/C Ratio in peak periods. Therefore, the application is acceptable from the traffic points of view.

JUNCTION DELAY CA	LCULATION		Job No:	23041HK		C	TA Consul	tants Ltd.	
Junction: (G) Nga Tsin Wa	i Road / Junction l	Road							
Description: 2029 Design Scen	nario (Peak Hour)		(With Improve	ment)					
TRRL Method (Transpor	t Road Resear	ch Laboratory	')						
	$d = \frac{c}{2(}$	$\frac{(1 \lambda)^2}{1 \lambda X} + \frac{1}{2}$	$\frac{X}{2q(1-X)} -0.6$	55 (c) $\frac{1}{3}$ X $\overline{q}^{2^{-}}$	⁽²⁺⁵ λ)				
	where	$d = average \lambda = proport$	e delay per v tion of the cy	ehicle on the cle which is	e particular a effectively g	rm green for the	phase under		
	:	x = Cycle t $x = Cycle t$ $y = Cycle t$	eration i.e.f g gree of satur um possible Es where S ime in secor	g/c ation. This flow under t = saturation ids e in seconds	is the ratio of the given sett flow in veh/l	f actual flow ing of signa hour	to the ls and equals		
	q should	be the flow	in vehicles	per second to	o give delay i	n seconds			
Approach:	Approach Junction Road (SE		B) (LT+RT) Juntion Roa		Nga Tsin Wai Road (WB)		Nga Tsin Wai Road (EB) (SRT)		
rippioaen.	A.M. Peak	P.M. Peak	A.M. Peak	P.M. Peak	A.M. Peak	P.M. Peak	A.M. Peak	P.M. Peak	
q (veh/s)	829	638	454	513	371	433	542	429	
g (sec)	41	43	41	43	47	35	47	35	
c (sec)	120	110	120	110	120	110	120	110	
s (veh/hr)	3,333	3,333	1,679	1,679	3,308	3,308	3,267	3,267	
λ	0.34	0.39	0.34	0.39	0.39	0.32	0.39	0.32	
Х	0.73	0.49	0.79	0.78	0.29	0.41	0.42	0.41	
M=qc	27.64	19.48	15.14	15.66	12.36	13.24	18.06	13.11	
Delay			(2.24		27.15	20.00	25.25	20.12	
d Investion Dalay (cos)	36.22	25.97	42.21	34.84	25.46	30.09	21.27	30.12	
From TPDM	Vold Table 4.2	5							
Average Qu N=q(r/2+d) c	eue N calculate or qr,whichever	ed by the greater			where	r = effective req = flow (in sad = average de	ed time me units as r and lay per vehicle	d)	
Approach:	Junction Road (SB) (LT+RT)		Juntion Road (NB) (SRT+LT)		Nga Tsin Wai Road (WB) (SRT+LT)		Nga Tsin Wai Road (EB) (SRT)		
/ ``	A.M. Peak	P.M. Peak	A.M. Peak	P.M. Peak	A.M. Peak	P.M. Peak	A.M. Peak	P.M. Peak	
r (sec)	/9 19	67	/9 10	67/ 10	/3 Q	15	/3	/5	
IN (Ven)	10	14	10	10	0	y	1 11	y	
Average Queue length	_				_				