Response to Comments (1) S.16 Planning Application No. A/K22/38

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place, with Minor Relaxation of
Building Height Restriction in "Comprehensive Development Area (4)" Zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon

Further Information (1)

August 2024

Response to Comments s.16 Planning Application No. A/K22/38

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place, with Minor Relaxation of Building Height Restriction, in "Comprehensive Development Area (4)" Zone, Kai Tak Area 2A2, Kai Tak Development Area, Kowloon

Contents

Table R1: Response to Departmental Comments of CEDD (EDO), C of P, HAD, UD&L, EMSD,CEDD (GEO), SWD, HyD, TD, WSD, ArchSD, AMO, DEVB (HO), EKEO, EPD, LandsD, DEVB,FEHD, BD, KDPO, LCSD, DSD
Comments from Civil Engineering and Development Department (East Development Office)
Comments from Commissioner of Police1
Comments from Home Affairs Department1
Comments from Urban Design and Landscape Section (Landscape Unit)1
Comments from Electrical and Mechanical Services Department
Comments from Civil Engineering and Development Department (Geotechnical Engineering Office)
Comments from Social Welfare Department2
Comments from Highways Department3
Comments from Transport Department
Comments from Water Supplies Department4
Comments from Architectural Services Department4
Comments from Antiquities and Monuments Office5
Comments from Development Bureau (Harbour Office)6
Comments from Urban Design and Landscape Section (Urban Design Unit), AVA perspective
Comments from Building Plan Unit, Lands Department8
Comments from Energizing Kowloon East Office, Development Bureau
Comments from Environmental Protection Department8
Comments from Lands Department, Kowloon East9
Comments from Development Bureau (Planning Unit)10
Comments from Food and Environmental Hygiene Department
Comments from Buildings Department

omments from Urban Design and Landscape Section (Urban Design Unit), VIA perspectiv	′е 12
omments from Urban Design and Landscape Section (Urban Design Unit), Other Urban	
esign Comments	13
omments from Kowloon District Planning Office	15
omments from Leisure and Cultural Services Department	15
omments from Development Bureau (Lands Unit)	15
omments from Drainage Services Department	16
omments from Architectural Services Department (Project Management)	16
omments from Kowloon District Planning Office	16

Appendices

Appendix 1: Replacement pages of Planning Statement
Appendix 2: Replacement pages of Traffic Impact Assessment
Appendix 3: Replacement pages of Air Ventilation Assessment
Appendix 4: Replacement pages of Visual Impact Assessment
Appendix 5: Supplementary Information of Setback Diagram, and Minor updates in Master Layout Plan, 2/F Plan and G/F Plan
Appendix 6: Supplementary elaboration on MiC
Appendix 7: Minor revision in Landscape Master Plan

Table R1: Response to Departmental Comments of CEDD (EDO), C of P, HAD, UD&L, EMSD, CEDD (GEO), SWD, HyD, TD, WSD, ArchSD, AMO, DEVB (HO), EKEO, EPD, LandsD, DEVB, FEHD, BD, KDPO, LCSD, DSD

Comments from Civil Engineering and Development Department (East Development Office)

Comments from CEDD (East Development Office) (Contact: Mr. Eric TUNG; Tel.: 3579 2124)		Response
1	No comment on the application.	Noted.

Comments from Commissioner of Police

Comments from C of P (Contact: Mr. Elton LAM; Tel. 3661 0345)		Response
1	Our Formation would have no comment on the matters.	Noted.

Comments from Home Affairs Department

Comments from HAD (Contact: Mr. Kenneth WU; Tel. 2621 3428)		Response
1	No comment on the application.	Noted.

Comments from Urban Design and Landscape Section (Landscape Unit)

Con	nments from UD&L (Landscape Unit) (Contact: Ms. Isabella TSUI; Tel.: 3565 3951)	Response
1	Background (for reference only)	Noted.
	The Site (around 6,270m ²), Kai Tak Area 2A Site 2, falls within an area zoned "Comprehensive	
	Development Area (4)" ("CDA(4)") on the approved Kai Tak Outline Zoning Plan (OZP) No.	
	S/K22/8. The applicant seeks planning permission for proposed comprehensive residential-cum-	
	commercial development.	
2	Landscape Observations	Noted.
	With reference to the aerial photo of 2023, the Site is situated in an area of reclamation/ongoing	
	major development landscape character predominately by other construction sites such as Lung	
	Tsun Stone Bridge Preservation Corridor (LTSBPC) to its northeast, Station Square to its east, Kai	
	Yan Court to its south and Kai Tak Sports Park to its further south. The Site is currently vacant	
	without any existing tree. The proposed residential-cum-commercial development is	
	considered not incompatible to the planned landscape character of the surrounding	
	environment.	

Com	ments from UD&L (Landscape Unit) (Contact: Ms. Isabella TSUI; Tel.: 3565 3951)	Response
3	According to the submitted Landscape Master Plan (Annex 10), total <u>25</u> nos. new trees are	Noted.
	proposed at G/F, 1/F and 2/F. Landscape provisions such as arrival plaza, ornamental garden	
	and seating garden at G/F; outdoor lounge area at 1/F; and children play area, fitness area,	
	terraced landscape, viewing terrace, seating station at 2/F are proposed for enjoyment of the	
	users. As significant adverse impact to the existing landscape resources is not anticipated, we	
	have no comment from landscape planning perspective on the application.	
4	Remarks to Applicant	Noted.
	Approval of the application under Town Planning Ordinance does not imply approval of the site	
	coverage of greenery requirements under PNAP APP-152. The site coverage of greenery	
	calculation should be submitted separately to BD for approval as appropriate.	
5	Comments from our Urban Design Team will be provided under separate cover.	Noted.

Comments from Electrical and Mechanical Services Department

Comments from EMSD (Contact: Mr. Stanley SIU Tel: 3757 6231)		Response
1	Please note that we have nil return.	Noted.

Comments from Civil Engineering and Development Department (Geotechnical Engineering Office)

Comments from CEDD (GEO) (Contact: Ms. Y H LAM; Tel.: 2762 5389)	Response
1 The Geotechnical Engineering Office has no adverse geotechnical comment on the application.	Noted.

Comments from Social Welfare Department

С	omments from SWD (Contact: Mr. Michael PANG; Tel.: 2116 5939)	Responses
1	Our comments on the applicant's pre-submission were given to the applicant vide emails of	Noted.
	4.3.2024 and 7.5.2024 respectively. To recapitulate, the following welfare facilities are required	
	to be provided as Government Accommodation under the Conditions of Sale (CoS) for the	
	captioned lot (i.e. bundled land sale site of Kai Tak Area 2A Site 2 and Site 3, Kai Tak, Kowloon) –	
	Neighbourhood Elderly Centre (NEC);	
	· Hostel for Severely Mentally Handicapped Persons (HSMH);	
	· Day Activity Centre (DAC);	
	· District Support Centre for Persons with Disabilities (DSC);	

С	omments from SWD (Contact: Mr. Michael PANG; Tel.: 2116 5939)	Responses
	· Boys' Home (BH); and	
	· Centre for Cyber Youth Support Team (CYST).	
2	As reconfirmed by the applicant in paragraph 4.4 and Table 4 of the Planning Statement in the	Noted. Suggested minor amendment is
	formal submission, the aforesaid welfare provision will all be accommodated in the "Residential	incorporated in the Planning Statement (Appendix
	(Group A)6" site to the southwest of the captioned site (i.e. Kai Tak Area 2A Site 3). On the	1).
	understanding that the proposed s.16 planning application will not affect the aforesaid welfare	
	provision in the "R(A)6" site and there will be ongoing liaison among us and the developer to	
	ensure that all requirements regarding our welfare facilities as stipulated in the planning brief,	
	relevant documents of the CoS including the Technical Schedule annexed thereto and all current	
	and prevailing ordinances and regulations (if applicable) will be fulfilled, we have no comment on	
	the captioned planning application. Meanwhile, suggested minor textual amendment to Table 4	
	of the Planning Statement is marked in the attachment below for your necessary action.	

Comments from Highways Department

Comments from HyD (Contact: Ms. Jenny LI; Tel.: 2707 7411)	Response
1 No comment on the application.	Noted.

Comments from Transport Department

Comments from Chief Traffic Engineer/Kowloon, Transport		Response (see Appendix 2)
Department		
(Contact: Mr. Alvin CHAN; Tel.: 2399 2772)		
1	Para 4.1.1: We note the traffic consultant adopted year 2032 (3 years after planned completion of the Proposed Development) as the design year of this TIA study. What if the schedule of the Proposed Development delay? Please consider to review the design year to cope with such scenario for a holistic TIA study.	For a holistic TIA study, please be advised that the design year has been revised to year 2033 to well cover the planned completion year of 2029 as well as the building covenant date of the Proposed Development by end of year 2030 as required under lease. The relevant traffic forecasts and assessments have been updated in the TIA report accordingly.
		Please also be advised that the conclusion of TIA remains since the updating of design year has no apparent effect to the traffic forecasts and assessments' results.

Con	nments from Chief Traffic Engineer/Kowloon, Transport	Response (see Appendix 2)			
Department					
(Co	ntact: Mr. Alvin CHAN; Tel.: 2399 2772)				
2	Para 4.3.10: The traffic consultant is approaching our Transport Operations (Urban) division for the anticipated road-based public transport demand of the Light Public Housing at Olympic Avenue.	Advice from Transport Operation (Urban) division on the adopted assumptions for public transport in the TIA report has been sought. Reply from Transport Operation (Urban) division with no further comment is attached in Annex 1.			
3	Para 5.4.3: We note that the traffic consultant solely accounted the number of parking spaces within Kai Tak Sports Park to estimate the traffic generation. However, the visitors could also make use of the loading / unloading spaces and other road-based transportation mode like taxi. Would the traffic impact be underestimated?	The assumption of all parking spaces for private cars and coaches at the sport park will be available for the visitors of the event and to be fully utilized or fully discharged within an hour is considered on a conservative side for estimation of the traffic generation. Since the sport park is well served by MTR and public transport, it is expected that most of the visitors would be commuting to/from the sport park by MTR or buses, in particular the sensitivity test was reviewing the hypothetical scenarios of a large-scale event to start or finish during communal PM peak when the availability of taxis is in question. Nevertheless, the sensitivity test in Section 5.4 of the TIA report has been updated to include the taxi pick-up/drop-off demand in the traffic forecasts for a more conservative approach. The updated assessment results in Section 5.4 indicated that all the key access junctions will be still operating within capacity in the sensitivity test scenario.			

Comments from Water Supplies Department

(Comments from Construction Division, WSD	Response
(Contact: Ms Ruby HU, Tel: 2152 5772)	
1	1 No comment on the application.	Noted.

Comments from Architectural Services Department

Con	ments from Chief Architect/ASC, ArchSD	Response
(Coi	ntact: Ms Catherine WONG, Tel: 2582 5322)	
1	Based on the information provided, it is noted that the proposed application involves a 32-	Noted.
	storey residential development of building height (BH) 129.035mPD on top of a low-rise retail	
	block. It is noted that the proposed BH is proposed to be relaxed from 125mPD to 129.035mPD	

Con	ments from Chief Architect/ASC, ArchSD	Response
(Cor	ntact: Ms Catherine WONG, Tel: 2582 5322)	
	solely for the purpose of adopting MiC into its residential tower portion. Based on the submitted drawings and images provided in the Visual Impact Assessment, we have no particular comments on the proposal from architectural and visual impact point of view, subject to PlanD's view.	
2	It is noted that your memo and the RtC table were also sent to our CPM303 directly. We understand that he would reply to you separately as appropriate.	Noted.
3	We understand that PlanD will consider the application holistically and take into account comments/ advice from relevant parties/departments/bureaus in relation to the planning intention for the final ruling.	Noted.

Comments from Antiquities and Monuments Office

Comments from Antiquities and Monuments Office (Contact: Ms. April YIP; Tel: 2208 4418)				Response									
1	Appendix 2 EA Report Ch	hapter 5					Noted.	Кеу	mitigat	tion r	measur	es at	site
	The proposed works are	e in proximity to th	e Lung	Tsun Sto	one Brid	ge ("LTSB") SAI. Specia	investigati	on s	tage, d	constru	uction	stage	and
	attention should be paid	l to avoid adverse ph	ysical im	pact aris	sing fron	n the proposed works to	operation	stage	are inclu	uded in	n EA Rej	port Ch	apter
	the heritage site. Design	proposal, method of	works ar	d choice	of mach	ninery should be targeted	eted 5.						
	to minimize adverse im	pacts to the heritag	e site. S	Suitable	mitigati	on measures should be							
_	proposed if needed.												
2	Please be reminded to comprehensively review the potential effects due to proposed			Noted. Par	ra. 5.2.	.17 of El	A retei	rs.					
	construction works to th	he LISB SAI and subi	mit with	monito	ring pro	posal and precautionary							
	measures for AMO's sep	arate consideration.											
3	Any vibration and mover	ment induced from th	e propo	sed work	ks should	be strictly monitored to	Noted. Pa	ra. 5.2	2.12 of E	IA refe	ers.		
	ensure no disturbance a	and physical damages	s made t	to the he	eritage s	site during the course of							
	works. Monitoring prog	posal, including che	ckpoint	location	s. instal	lation details, response							
	actions for each of the A	lert/ Alarm/ Action (3	As) leve	ls and fr	equency	of monitoring should							
	be submitted for AMO's	consideration. Reco	, mmende	ed 3As le	evels for	Lung Tsun Stone Bridge							
	SAI are as below:					0 0							
		Type of Monitoring	Alert	Alarm	Action								
		for				-							
		Vibration (PPV)	5mm/s	6mm/s	7.5mm/s								
		Settlement	6mm	8mm	10mm								
		Tilting	1/2000	1/1500	1/1000								

Con	ments from Antiquities and Monuments Office (Contact: Ms. April YIP; Tel: 2208 4418)	Response
	(Note: Monitoring criteria would be subjected to review upon updates of grading status of	
	heritage site.)	

Comments from Development Bureau (Harbour Office)

Con	nments from DevB (Harbour Office) (Contact: Ms. Flora NG; Tel.: 3679 3545)	Response
1	The concerned site falls within an area zoned "Comprehensive Development Area (4)" ("CDA(4)") on the approved Kai Tak Outline Zoning Plan (OZP) No. S/K22/8, and fall within the harbourfront area under the purview of the Harbourfront Commission's Task Force on Kai Tak Harbourfront Development (KTTF). The project should be considered having regard to the Harbour Planning Principles and Guidelines.	Noted.
2	The gist, location plan and newspaper notices of the subject application have been circulated to Members of KTTF on 25 June 2024. Members were invited to offer comments, if any, to the Town Planning Board direct.	It is noted that the proposed scheme of the subject planning application no. A/K22/38 is circulated to KTTF for comments. A paper requested by HO is also separately submitted for comments. After
3	It is noted that the pre-submission proposed to the site for a comprehensive development including flat, shop and services and eating place, with minor relaxation in building height (BH) restriction from 125mPD to 129.035mPD (+3.2%) to adopt Modular Integrated Construction (MiC) into the proposed development on earlier consultation with KTTF on a proposal at the same site in early 2024. As per the established practice for projects within the harbourfront area, the applicant should consult KTTF on the proposed development upon formal submission of the planning application and update Members with details. Please promptly inform the proponent to liaise with the KTTF Secretariat, Ms Flora NG (Tel: 3679 3545 and email: florang@devb.gov.hk), for the logistics arrangement concerning the KTTF consultation. After which, the comments of the Task Force would be conveyed to the Town Planning Board for consideration.	consultation, the applicant will incorporate comments received into the detailed design.

Con	nments from UD&L (Urban Design Unit) (Contact: Ms Rachel YIU, Tel: 3565 3944)	Response (See Appendix 3)
1	Planned / Committed developments at Sites 2B3, 2B4, 2B5 and 2B6 (para. 1.4.2 and Appendix 6) – The consultant should provide the relevant layout plans of future developments at Sites 2B3, 2B4, 2B5 and 2B6 under the latest applications for checking.	The layout plan of Sites 2B3-2B6 have been supplemented in Appendix 6. Please refer to the updated report. The layout plan of Sites 2B3 & 2B4 are referred to Approved Application No. A/K22/35. The layout of Site 2B6 is available in the Sales Brochure and 2B5 is referenced in aerial photos. We have sought confirmation from KDPO on these references.
2	Baseline Scheme (para. 1.5.2 and Appendix 1) – The consultant should provide building height of the Baseline Scheme on plan for complete information. Meanwhile, it seems the building height of Baseline Scheme is slightly lower than the BHR of 125mPD (i.e. 118.1 mPD) under the referred study. The consultant should correct and provide consistent information presented on plans/figures.	Typo amended. The BHR at 118.1 mPD is updated in para. 1.5.2.
3	Planned developments at Site 2A3 (Figure 2c and Appendix 6) – It appears that the building height of planned developments at Site 2A3 shown in Figure 2c is different from that shown in Appendix 6. The consultant should clarify and revise it where appropriate.	Typo amended. The building height at 114.95 mPD in Figure 2c has been updated.
4	Baseline Scheme at Site 2A2 and Planned / Committed developments at Sites 2A3, 2A4, 2A5(B) and 2A10 (para. 1.5.2 and Figure 5.7b of Appendix 6) – It appears that sectional drawings of the mentioned developments do not show the correct building height of each building. The consultant should clarify and revise it where appropriate.	The sectional drawing Figure 2.7b is replaced by Figure 5.8c in Appendix 6.
5	Para. 4.2.6 – The consultant should use "CDA(3)" to refer Site 2A1 for consistency.	CDA (3) is used to refer to Site 2A1 throughout the report for consistency.
6	Figure 6 – The label of Focus Group 8 should read "Pedestrian Walkway between Kai Yan Court & Site 2B1 ".	Figure 6 is updated.

Comments from Urban Design and Landscape Section (Urban Design Unit), AVA perspective

Comments from Building Plan Unit, Lands Department

Con	nments from BPU, LandsD (Contact: Ms. Priscilla TSO; Tel.: 3793 4205)	Response
1	 Detailed design of the proposed development will be examined by Building Plan Unit at building plans submission stage and I shall reserve my comments on such. That said, the following are noted: (a) Under Special Condition No. (7)(b) of the Lease, "the Retail Building Area" (i.e. the 15m wide strip of land within the Lot facing Lung Tsun Stone Bridge Preservation Corridor and is referred to in the Planning Statement as "the retail belt") shall not be used for any purpose other than non-industrial (excluding residential, office, godown, hotel, the Government Accommodation and petrol filling station) purposes. It is noted that the roof of the retail belt block is intended for use by occupier of the subject site (as stated in the last sentence of para. 5.16 of the Planning Statement). The applicant shall clarify whether "occupier" include residents. 	Please note a clarification that "occupiers" include residents.
	(b) It is noted that the proposed location of "the 1 st LIFT and 1 st ESCALATORS" referred to in Special Condition No. (39)(c)(i) of the Lease is significantly deviated from the location indicated on the lease plans. According to the said Special Condition, the different location is subject to CEDD's approval.	Noted. No adverse comments from CEDD were received in this submission regarding the proposed layout. The exact location of the lift is subject to detail design for which CEDD will be consulted.

Comments from Energizing Kowloon East Office, Development Bureau

Com	nments from EKEO, DEVB (Contact: Mr. LI Wai Kit, Tel: 3904 1364)	Response	
1	No objection to the application.	Noted.	

Comments from Environmental Protection Department

Con	nments from EPD (Contact: Mr. Ms Alice HSU, Tel: 2835 1151)	Response
1	Based on the supporting planning statement (Appendix 5 Environmental Assessment and Appendix 7 Sewerage	Noted.
	Impact Assessment) submitted by the applicant., insurmountable environmental impact is not anticipated from	
	the proposed minor relation of BHR. The summary of findings of environmental impacts as follows:	
	i) On <u>air quality</u> , the minimum separation distance between the proposed residential blocks and the	
	nearest road kerbs of Prince Edward Road East (Primary Distributor>20m), Olympic Avenue (District	
	Distributor>10m) and Muk Lai Street (Local Distributor>5m) have satisfied relevant vehicular	

Com	ments fron	n EPD (Contact: Mr. Ms Alice HSU, Tel: 2835 1151)	Response
		emission buffer distances as stipulated in HKPSG. Also, there is no chimney emission or industrial	
		activities identified within 200m from the Application Site.	
	ii)	On noise, with all practical and effective noise mitigation measures (i.e. façade orientation, vertical	
		fin, acoustic windows and balconies (baffle type), enhanced acoustic windows and balconies (baffle	
		type), noise reducer and fixed glazing with/without maintenance windows) adopted, 100% road	
		traffic noise compliance rate for proposed development is achieved. There is no potential fixed	
		existing noise source identified within 300m assessment area. For the fixed noise plant noise from	
		operation of the proposed development, it will be designed with the provision of suitable silencers,	
		acoustic louvers and enclosures at the representative NSRs to comply with the fixed noise source	
		standard for planning purpose.	
	iii)	On <u>sewerage</u> , the finding of the SIA has demonstrated that after proposed mitigation measures (i.e.	
		rehabilitation of two existing DN300 concrete public sewage pipes), there will be sufficient pipe	
		capacity for additional sewerage flow from the proposed development.	
2	On the abo	ove basis, insurmountable environmental impacts associated with the proposed development are not	Noted.
	anticipate	d. Hence, we have <u>no objection</u> to the captioned application from environmental perspective.	
3	However,	we still have comments on EIA and SIA in Annex A. To address the remaining comments, we consider	Noted.
	to incorpo	rate approval conditions on the submission.	
	"() the subn	nission of a noise impact assessment and the implementation of the noise mitigation antified therein for the proposed development to the satisfaction of the Director of	
	Environmen	tal Protection or of the Town Planning Board."	
	"() the cub	mission of a sequences impact apparement for the proposed development to the	
	satisfaction	of the Director of Environmental Protection or of the Town Planning Board";	
	II have been	- Investigation of the local annumber of the feature of the section works an	
	identified in	the sewerage impact assessment for the proposed development to the satisfaction	
	of the Direct	tor of Drainage Services or of the Town Planning Board";	

Comments from Lands Department, Kowloon East

Comments from LandsD, Kowloon East		Response
(Cor	ntact: Mr Raymond LAM, Tel: 3842 7602 or Ms Winnie WAN, Tel: 3842 7610)	
1	No objection to the application.	Noted.

Con	nments from LandsD, Kowloon East	Response
(Cor	ntact: Mr Raymond LAM, Tel: 3842 7602 or Ms Winnie WAN, Tel: 3842 7610)	
2	The application site is within New Kowloon Inland Lot No. 6590 ("the Lot"), which is referred as "the Pecked	Noted.
	Green Area" under the Conditions of Sale No. 20426 dated 12.10.2023 ("the Conditions") governing the Lot. The	
	user of the Lot is restricted to non-industrial (excluding godown, hotel and petrol filling station) purposes.	
	Detailed design of the proposed development would be examined by our Building Plan Unit (BPU) during the	
	building plan submission stage and comment on it is reserved.	

Comments from Development Bureau (Planning Unit)

Comments from DEVB (Planning Unit) (Contact: Ms Stella CHOI, Tel: 3509 8842)		Response
1	I submit a nil return from the planning perspective, please.	Noted.

Comments from Food and Environmental Hygiene Department

Com	ments from FEHD (Contact: Mr Dickson CHENG, Tel: 3141 1230)	Response
1	FEHD has no specific comment on the captioned planning application, please.	Noted.

Comments from Buildings Department

С	omments from BD (Contact: Ms. Lam Wan-Ching at 3106 3077 / Mr. Peter Lo at 3104	Responses
2	011)	
1	No objection in principle to the application subject to the following comments:	Noted. Each "R(A)6" site and "CDA(4)" site should be
	The "R(A)6" site and "CDA(4)" site separated by Muk Lai Street should be considered as	considered as 2 individual sites for the purpose of the
	2 individual sites for the purpose of Building Ordinance (BO) and the proposed	Buildings Ordinance (BO), and each site shall be self-
	development in each individual site should be self-sustained in all aspects under the BO.	sustained in all aspects under the BO and separate
		submissions to the Buildings Department shall be made.
2	It is noted that the proposed maximum site coverage (SC) of 65% has exceeded	Noted. Please be clarified that the proposed maximum site
	permissible limits under the First Schedule of Building (Planning) Regulations (B(P)R) for	coverage (SC) of 65% happens at the non-domestic part of
	a building with building height over 61m on a Class B site. Please ensure that the	the proposed composite building well below 21m building
	proposed SC should not exceed the permissible limits under B(P)R. Your attention is	height and this SC does not exceed the permissible limit
	drawn to B(P)R 18A and 20.	under the B(P)R. For domestic part above, the maximum SC
		shall be maximum 37.5%, which shall comply to the

Comments from BD (Contact: Ms. Lam Wan-Ching at 3106 3077 / Mr. Peter Lo at 3104 F		Responses
2011)		
		permissible SC under B(P)R for domestic building on a Class B site. Detailed demonstration under the Buildings Ordinance (BO) shall be made upon General Building Plans submission to the satisfaction to Buildings Department.
3	Based on the schematic design as shown on the planning application, it appears that the disposition of the non-domestic portions of the development may not fulfil the building separation requirements under PNAP APP-152 Please ensure that the proposed development would comply with the sustainable building design guidelines (SBDG) in particular the building separation requirements under PNAP APP-152 if the proposed development involves application for gross floor area (GFA) concession under PNAP APP-151.	Noted. Building separation requirements under PNAP APP- 152 shall be complied with. The alternative approaches set out in Appendix E to PNAP APP-152 in recognition of the genuine constraints in compliance with SBDG for building separation requirement at the low zone may be adopted as necessary for fulfilling the planning requirement of Cantilever Design fronting the LTSBPC for retail belt as stipulated in the Planning Brief. Detailed demonstration on sustainable building design guidelines (SBDG) shall be made upon General Building Plans submission to the satisfaction to Buildings Department.
4	For the proposed building of the retail blet, the unprotected opening on the external wall within 900mm from the common boundary with Lung Tsun Stone Bridge Preservation corridor (LTSBPC) is not acceptable. Your attention is drawn to section 35 of the Building (Construction) Regulation and Clause C5.3 of the Code of Practice for the Fire Safety in Buildings 2011 (FS Code).	Noted. Detailed fire rated construction complying Building (Construction) Regulation and Code of Practice for the Fire Safety in Buildings 2011 or necessary application for modification under the BO (in view of the planning requirement of Cantilever Design fronting the LTSBPC for retail belt) to be demonstrated or applied upon General Building Plans submission to the satisfaction to Buildings Department.
5	The applicant should be reminded to provide adequate means of escape for the proposed building at the retail blet. In particular, every exit route should lead directly to an ultimate place of safety with adequate clear width, B(P)R41 and FS Code refer.	Noted. Detailed demonstration of the adequate means of escape under Building Ordinance (BO) shall be made upon General Building Plans submission to the satisfaction to Buildings Department.
6	The GFA of various portions of Underground Shopping Street (USS) should be included in the plot ratio (PR) calculations of the respective parent sites as requested under the B(P)R. In addition, the resultant PR (based on the site area excluding USS) should not exceed the limit under the B(P)R. If the resultant PR is not achievable under the B(P)R and the total GFA including that for USS for that particular site is acceptable under the planning regime, the amended OZP should clearly stipulate the resultant PR (notwithstanding not achievable under B(P)R). In this connection, the Buildings Department (BD) would	Noted. Detailed GFA calculation will be demonstrated upon General Building Plans submission to the satisfaction to Buildings Department.

Co 20	omments from BD (Contact: Ms. Lam Wan-Ching at 3106 3077 / Mr. Peter Lo at 3104	Responses
	favourably consider granting modification to permit the PR specified in the B(P)R to be exceeded to a level on par with the maximum PR restriction under the planning regime which is to be in line with the spirit of the Joint Practice Note No. 4 (JPN 4).	
7	Social welfare facilities should be accountable for domestic/ non-domestic GFA and SC calculations according to their respective use in accordance with the B(P)R. However, under JPN 4, such facilities that would become government accommodation (GA) (i.e. these provisions will be handed over to the Government as required under the lease), BD may consider exempting GA from GFA, calculations if the GA will be exempted from GFA calculations under the new or amended statutory plans and the provision of such GA is included in the corresponding leases.	Noted. The detailed GFA calculation for the Government Accommodation (GA) at R(A)6 site shall be submitted upon General Building Plans submission separately to the satisfaction to Buildings Department.
8	Covered pedestrian walkway for public passage/ pedestrian circulation should be included in GFA and SC calculation under B(P)R. However, application for GFA exemption may be considered subject to compliance with the criteria stipulated in PNAP APP-108 and full justifications provided by Authorized Person at building plan submission stage.	Noted. Detailed GFA calculation will be demonstrated upon General Building Plans submission to the satisfaction to Buildings Department.
9	All building works are subject to compliance with the BO. Detailed comments under the BO on individual sites for private developments such as permissible PR, SC, means of escape, emergency vehicular access, private streets, and/or access roads, barrier free access and facilities, open space, compliance with the SBDG, etc. will be formulated at the building plan submission stage.	Noted.

Comments from Urban Design and Landscape Section (Urban Design Unit), VIA perspective

Сс	omments from UD&L (Urban Design Unit) (Contact: Ms Rachel YIU, Tel: 3565 3944)	Response (See Appendix 4)
1	As GBP (Site 2A3) is not approved, please remove Fig. 4a and 5a and "In case GBP of Site 2A3 submitted on	Fig. 4a and 5a are to be taken out from
	28.3.2024 is not approved, CEDD scheme of +114.95mPD is followed" in Fig. 4b and 5b. Please be reminded	the VIA. Fig. 4b and 5b (now named as Fig.
	that BH of surrounding developments other than the Site should be the same in baseline and proposed	4 and 5) are updated accordingly.
	scenarios.	
2	Please remove all the footnotes as para. 4.1 already states that the minor relaxation of BHR from +125mPD	Footnotes are removed (VIA p.8-10
	to +129.035mPD is considered in the assessment.	refer).
3	VP1 - Para. 2.2.3 – Please revise to read as "including users, and visitors, staff at the park".	Para. 2.2.3 is revised accordingly.
4	VP2 - Para. 2.2.5 – As TPB PG-No. 41 focuses on protection of public views instead of private views, please	Para. 2.2.5 is revised accordingly.
	revise to read as "visitors and staffs of pedestrians travelling to/from the proposed".	

Co	omments from UD&L (Urban Design Unit) (Contact: Ms Rachel YIU, Tel: 3565 3944)	Response (See Appendix 4)
	Para. 2.3.3 and Visual Impact Summary Table (Visual Composition, Visual Obstruction and Effect on Visual	Para. 2.3.3 and the said table are revised
	Resource) – Please revise to "with a slight to moderate increase in obstruction".	accordingly.
	Fig. 4b – (a) Please remove annotation regarding application No. A/K22/16 as it does not seem relate to	Fig. 4 is revised accordingly.
	this VP; (b) Proposed Scheme - it seems that the bulk of the proposed development should extend to screen	
	off more of the middle block of "CDA(3)", and its BH and the height of the BHR at +125mPD are slightly	
	underestimated. Please review.	
5	VP3 - Para. 2.3.5 and Visual Impact Summary Table (Visual Composition, Visual Obstruction and Effect on	Para. 2.3.5 and the said table are revised
	Visual Resource) - Please revise to read as "with a slight to moderate increase"	accordingly.
	Para. 2.3.6 and Visual Impact Summary Table (Magnitude of Visual Change) – Please revise the degree of	Para. 2.3.6 and the said table are revised
	visual change from "moderate" to "slight to moderate".	accordingly.
	Fig. 5b - (a) Notional and Proposed Scheme – Please annotated the leftmost modelled block with its BH in	Fig. 5 is revised accordingly.
	mPD; and (b) Proposed Scheme - it seems that the BH of the proposed development at +129.035mPD and	
	at +125mPD are slightly underestimated. Please review.	
6	VP4 – Fig. 6, Notional and Proposed Scheme - Please confirm if the layout/BH of the modelled blocks	Please note that Figure 6 is made with
	simulated for the planned developments in Kai Tak are in order. It does not seem that the bulk of "CDA(5)"	reference to Fig 5.21 in Attachment V of
	is revised based on our previous comments that its bulk would be larger and extend to screen of the rest	MPC paper no. 9/21. We also confirm
	of the sky view to its left. Please also review the bulk of the leftmost block in Site 2A1 in that its BH is slightly	that the modelled blocks are in order.
	underestimated and its bulk would be larger and extend to its left.	
7	VP5 - Para. 2.2.12 – Please revise to "the future residents, visitors and staff to the retail belt"	Para. 2.2.12 is revised accordingly.
8	VP6 – Fig. 8 – (a) Re. R-to-C Item 16 - The Consultant's responses are noted. Please adopt the view angle	Fig. 8 is revised accordingly.
	to tally with that of Strategic VP4 on PlanD website; (b) For clarity, please indicate the lower portion of	
	the planned developments of Sites 2B3 to 2B6 that would be screened by the Kai Tak Sports Park with	
	dotted line; (c) Annotation - It seems that "R(B)4" does not correspond with Sites 4A2, and 4C1 to 4C3.	
9	Para. 4.1 – Please remove phrases "the visual impact is considered to be acceptable" and "and the scale	Para. 4.1 is updated accordingly.
	and effect of increasing the BHR by 4m is negligible in the wider urban context".	

Comments from Urban Design and Landscape Section (Urban Design Unit), Other Urban Design Comments

Comments from UD&L (Urban Design Unit) (Contact: Ms Rachel YIU, Tel: 3565 3944)		Response
1	Please confirm the 4m-wide setback of residential tower from southeastern	Please be confirmed min. 3m wide setback of residential
	boundary facing POS.	tower from southeastern boundary facing POS would be
		provided. (Appendix 5)

Comments from UD&L (Urban Design Unit) (Contact: Ms Rachel YIU, Tel: 3565 3944)		Response	
2	JPN No. 8 - Para. 5.5 - applicant may wish to briefly elaborate on how proposed	Further information is supplemented in SPS para. 5.5.	
	increase of BH is within 4% of the total storey height of all MiC floors of residential	(Appendix 1)	
	tower portion according to JPN No. 8.		
3	<i>Criteria for Minor Relaxation of BHR</i> - applicant may wish to elaborate on how proposed development fulfils the criteria for minor relaxation of BHR in accordance with Para. 8.8 of the ES of the OZP.	It fulfils criteria (f) in para. 8.8 of the ES of the OZP, in that the proposed minor relaxation of BHR is to accommodate an innovative building design that would benefit the neighbourhood and would not cause adverse landscape and visual impacts. The proposed minor relaxation of BHR is solely for adopting MiC into its residential tower portion. MiC is a form of green and innovative building design (SPS para. 5.5 and JPN8 refers). It would enable better quality control, simplify the construction process, reduce disturbance and nuisance to the neighbourhood, and reduce waste. Various technical assessments included in this submission also concluded that the proposal would not cause adverse landscape impacts. The degree of visual change brought by the minor relaxation of BHR	
		would also be minor in nature.	
4	Re. R-to-C Item 8, SPS, Para. 5.11 – Please review if the 16m to 21m setback at the	Para. 5.11 is revised accordingly. (Appendix 1)	
-	boundary facing LISBPC should be at the northeastern boundary instead.		
5	Para. 5.14 – Please discard "the air ventilationand healthy environment for	Para. 5.14 is revised accordingly. (Appendix 1)	
	significant advorse impact to the pearby environment"		
6	Be R-to-C Item 9 SPS Para 5 21 and 5 25 - Please elaborate that the "Public Open	Para 5.24 and 5.25 are revised accordingly (Annendix 1)	
0	Space at the South-East Boundary of Site" and the "POS with a site area of 1,100m ² "		
	is located outside of the application site boundary.		
7	SPS, Para. 5.25 – Please supplement on the opening hours of the 3m-wide full-height	Para. 5.25 is revised accordingly. (Appendix 1)	
	setback for public pedestrian passageway abutting the southeastern boundary.		
8	SPS, Para. 7.4 – Please revise to "the visual impact of increasing the building height	Para. 7.4 is revised accordingly. (Appendix 1)	
	by (about) 4m or not more than 4% (of the residential tower MiC) is negligible does		
<u> </u>	not bring about significant adverse visual impact from all the viewpoints".		
9	SPS, Para. 7.5, 5 th point – Please remove "Optimizing podium-free design of the	5 th point at para. 7.5 is removed. (Appendix 1)	
	retail belt" to avoid confusion.		
10	SPS, Para. 7.7 (Harbour Planning Principles) – We defer to HO of DEVB to comment	Noted.	
	from perspective of Harbour Planning Principles.		

Cor	nments from UD&L (Urban Design Unit) (Contact: Ms Rachel YIU, Tel: 3565 3944)	Response
11	SPS, Executive Summary (ES), Para. 8.2 and all relevant paragraphs – Please revise	ES and para. 8.2 are revised accordingly. (Appendix 1)
	to "The minor relaxation of BHR, solely to adopt MiC, is insignificant and negligible	
	from does not bring about significant adverse impact as demonstrated in the visual	
	appraisal." Please also revise the Chinese version of ES accordingly.	
12	Re. R-to-C Item 12, MLP, Building Setback Diagram (Dwg. No. SK-01) – Please clarify	Please be clarified that the setback of residential tower from
	if 16m to 21m-wide setback from the northeastern site boundary along LTSBPC and	the northeastern site boundary along LTSBPC is approximately
	4m-wide setback of residential tower from the southeastern boundary facing POS is	16m to 21m and from southeastern boundary facing POS
	from 3/F to 34/F instead and revise as appropriate to ensure consistency with MLP.	would be min. 3m and the setback is from 3/F to 34/F. Please
		find amended building setback diagram at Appendix 5.

Comments from Kowloon District Planning Office

Comments from KDPO (Contact: Ms. Helen IP, Tel: 2231 4973)		Response	
1	Please elaborate more on how the adoption of MiC would lead to the proposed	Please find the elaboration on MiC in Appendix 6.	
	minor relaxation of building height.		

Comments from Leisure and Cultural Services Department

Comments from LCSD (Contact: Ms Cherry LEUNG, Tel: 2601 8051)		Response
1	Please be informed that we have no specific comment on the minor	Noted.
	relaxation in BH restriction in the captioned site.	

Comments from Development Bureau (Lands Unit)

Comments from DEVB (Lands Unit) (Contact: Esmond LEUNG, Tel: 3509 8834)		Response
1	Nil comment from Lands Unit/DEVB, please.	Noted.

Comments from Drainage Services Department

Со	mments from DSD (Contact: Mr KY CHEN, Tel: 2300 1425)	Response
1	Please be advised that we have no adverse comment on the submission from	Noted.
	drainage planning and maintenance perspective. This is a coordinated reply	
	of Mainland South Division and Land Drainage Division.	

Comments from Architectural Services Department (Project Management)

Comments from ArchSD, Project Management, Branch 3, Division 303	Response
(Contact: Mr Eric TSANG, Tel: 2867 3456)	
1 Minor comment marked as below for your consideration please. Figure 13 and 14 in PS: Image: Second and the image of the second and the image of the second and the image of the second and the second	 Please note that Figures 13 and 14 are now revised to indicate the minimum height of opening of 3m only as per the requirement stated in the Planning Brief (Appendix 1), whereas drawing no. S-01 indicates the bottom of curtain wall facade 4.2m (>3m) above finished floor level which conforms cantilever concept drawing for retail belt. Drawing No. P-05 is also revised accordingly (Appendix 5).

Comments from Kowloon District Planning Office

Comments from KDPO (Contact: Ms. Helen IP, Tel: 2231 4973)		Response
1	About the roof of the retail belt, please elaborate which part of	The retail belt respects the building height restriction of +15mPD. The original
	the roof would be higher than +15mPD and the area of that.	landscape footbridge connecting the clubhouse and the retail belt roof area is
		omitted (Appendix 5 and Appendix 7). The remaining landscape feature (e.g. a
		landscaped walkway) will be on the structural roof of +15mPD. The landscape
		feature concerned occupies approximately 14% of the total retail belt area. The
		landscape master plan with terraced landscape and paths could allow better views

Comments from KDPO (Contact: Ms. Helen IP, Tel: 2231 4973)		Response
		to the surroundings at the retail belt roof and is a result of a discussion with UD&L. Detailed design will be considered in General Building Plan submission stage.
2	Please elaborate whether the roof of the retail belt would be opened for public to access, and how could the public gain access there and how the area would be managed.	Roof of the retail belt building is a private property and not intended for open public access. It is intended to be used by occupiers of the development and visitors invited by them only. Barrier free access complying statutory requirements shall be provided. Details shall be considered in General Building Plan submission stage.
3	Please clarify the height of parapets at the retail belt roof.	The concerned parapets will be min. 1.1m in height as required under regulation 3A of the Building (Planning) Regulations (from the top of landscape features on the landscaped roof below). Details will be considered at detail design stage.

Appendix 1 Replacement pages of Planning Statement housing supply. The minor relaxation of BHR, solely to adopt MiC, does not bring about significant adverse impact as demonstrated in the visual appraisal. It complies with the Joint Practice Note No. 8 on the adoption of MiC in developments. Therefore, the TPB is requested to consider this application favorably.

行政摘要

(聲明:此中文譯本僅供參考,如中文譯本和英文原文有差異時,應以英文原文為準。)

- S1. 申請人金得誠有限公司(下稱「申請人」)擬就城市規劃條例第 16 條向城市規劃委員 會(下稱「城規會」)申請將位於九龍啟德新發展區第 2A 區 2 號地盤(下稱「申請地 點」)發展為包括「分層住宅」、「商店及服務行業」及「食肆」的綜合發展,以及略 為放寬建築物高度限制以便採用「組裝合成」的建築法。本文件中所提交的總綱發展藍 圖可見擬議的綜合發展符合規劃大綱的要求,並能與龍津石橋保育長廊互相融合。
- S2. 申請地點位於《啟德分區計劃大綱核准圖編號 S/K22/8》(下稱「大綱核准圖」)上的「綜合發展(4)」地帶。該地帶位於啓德發展區,此區正進行多項大型基建及新樓建設以發展成為重點城區。
- S3. 擬議發展方案為一個私人住宅項目(「分層住宅」),連附屬會所及户外景觀設施,並 於平台、零售帶及地下購物街內輔以商業設施(「商店及服務行業」及「食肆」)。方 案包括了擬議略為放寬建築物高度限制,由主水平基準上 125 米增至主水平基准上 129.035米,即增加約 4.035米或約 3.2%,以採用「組裝合成」的建築法。此建築法能 更好地控制質量,簡化施工過程,減少對周邊居民的干擾,並減少產生建築廢料。
- S4. 擬議發展符合「綜合發展(4)」地帶的規劃意向,並與附近的發展及龍津石橋保育長 廊相容。擬議方案會保留龍津石橋保育長廊的氛圍,並改善附近的步行環境。擬議發展 包含位於申請地點東南方的地面零售帶,以進一步營造有活力和適意的步行環境。申請 地點內(特别是地下購物街內)的擬議行人設施及連接性,將有助完善周邊的行人網絡 和發展。同時,本文件中所提交的各項的技術評估亦證明擬議發展不會引致重大的技術 問題。
- S5. 擬議發展符合規劃大綱的要求及海港規劃原則,亦能為長遠私人住房供應做出貢獻。為 配合採用組裝合成的建築法,擬議發展需要略為放寬建築物高度限制。根據視覺景觀評 估,相關改動不會造成重大的負面影響。擬議發展符合進一步促進建築物採用「組裝合 成」建築法的《聯合作業備考第八號》。基於以上各點,懇請城規會從優考慮是次規劃 申請。

Compliance with the Joint Practice Note No. 8 to adopt MiC

5.5 The proposed minor relaxation of BHR complies with the Joint Practice Note No. 8 (JPN8), in that the proposed increase in building height of 4.035m is within the acceptable 4% range of the total storey height of all MiC floors of the residential tower portion (i.e. 4% x 100.95m = 4.038m). It supports the Government's policy initiative to promote green and innovative buildings of enhanced facilitation measures for buildings adopting MiC. It would enable better quality control, simplify the construction process, reduces disturbance and nuisance to the neighbourhood, and reduce waste. ¹

Residential Tower and Podium Design Response to the LTSBPC

- 5.6 The configuration and form of the residential tower and podium in the Proposed Scheme are seriously restricted by site constraints, the need to accommodate the permitted maximum development intensity within the buildable area, and to provide quality private spaces for the enjoyment of residents.
- 5.7 The building height of the residential tower and podium complements the building height profile in the neighbourhood. There is very limited scope to manipulate the building height of the residential tower, as the proposed minor relaxation is solely to adopt the MiC in the residential tower portion, and the Site itself is highly constrained and small-scale.
- 5.8 The site constraints are made up of the following (**Figure 8**):
 - (i) Townscape setback of 15m-wide at the north-west boundary;
 - (ii) Retail belt setback of 15m-wide at the north-east boundary;
 - (iii) Public pedestrian passageway setback of 3m-wide at the south-east boundary;
 - (iv) Fixed vehicular access points at the south-west boundary;
 - (v) A maximum site coverage of 65%;
 - (vi) A maximum BHR of +125mPD;
 - (vii) A maximum plot ratio of 7.5, including a maximum domestic plot ratio of 6.5 and non-domestic plot ratio of 1.0;
 - (viii) Adjacent POS located at the south-east boundary;
 - (ix) The LTSBPC is located at the north-east boundary.
 - (x) The heavily-trafficked Olympic Avenue and Prince Edward Road East is located at the north;
 - (xi) Vertical pedestrian connections to be designated at the east and south corners of the Site;

¹ Source: https://www.pland.gov.hk/pland_en/tech_doc/joint_pn/index.html

Modulation of Residential Tower and Podium

- 5.10 The site constraints of the setback requirements within the "CDA(4)" site have rendered the buildable area for constructing the residential tower and podium outside retail belt. to be only about 3,940m² or about 63% of the total site area. Such a small buildable area that needs to accommodate the permitted development intensity (including site coverage, BHR and plot ratio), makes the design flexibility of the blocks to be seriously restricted. In addition, the fixed vehicular access points have also confined the access driveway and residents' entrance hallway of the podium at the south-west boundary, facing Muk Lai Street. G/F landscaping is reserved to soften the impact of vehicular access for the convenience and enjoyment of residents. Likewise, the designated locations of the vertical pedestrian connections have confined the podium to align on the south-east boundary, to allow integration and connection with the adjacent POS. To minimise overlooking effect on the residential units from adjacent sites, the residential tower is placed at a relatively centred position at the site with an "L" shape to minimise residential units locating near Olympic Avenue and Muk Lai Street to minimise noise and air quality nuisance to residents.
- 5.11 In fact, modulation of building form has been optimized with a setback of the residential tower by 16m to 21m at the northeastern boundary facing LTSBPC, and minimum 3m at the south-east boundary facing POS. At the access driveway side, a setback of 27m is provided at the south-west boundary to enable an open and comfortable entrance area for the enjoyment of residents. (Figure 8) Setback from LTSBC allowed good screening of residential tower (especially for lower parts nearer to LTSBC) by retail belt for public walking along LTSBC. The building configuration of the Proposed Scheme complies with the Sustainable Building Design Guidelines.
- 5.12 Based on the VIA (**Appendix 10**), the viewpoints at street-levels of VP2, VP3, VP4 and VP5 show that the L-shaped configuration of the residential tower (Proposed Scheme), would be compatible and congruous with the built form of the urban context, including the LTSBPC. It would not appear to be lengthy when viewed in the future context of the high-rise urban environment. The VIA has demonstrated that the configuration of the residential tower and podium would not obstruct any visual corridors.
- 5.13 To achieve "podium-free" design as much as practical, footprint of podium outside retail belt has been put to coincide with residential tower as much as practical under the allowable site coverage 65%.
- 5.14 According to the AVA (**Appendix 8**), the proposed building design would not induce significant adverse impact to the nearby environment.

Townscape Setback

5.23 The townscape setback will comply with the 15m-wide full-height setback at the northwestern boundary within the Site. This would respect the visual context and heritage significance of the LTSBPC. It would enhance the visual openness and highlight the entry point of the northern LTSBPC, for the enjoyment of pedestrians while walking along the heritage trail on Olympic Avenue (**Figure 6** and **Figure 12**), and as outlined in the KTUDGM. Within the townscape setback, there will not be any structures that would impinge the purpose or function of the townscape setback nor create adverse visual impact. In general, the townscape setback will contain soft and hard landscaping of trees, lawns and shrubs with design incorporating necessary EVA for the use of residents and their visitors. For more descriptions and illustrations, please refer to the Landscape Master Plan in **Appendix 11**.

Public Open Space at the South-East Boundary of Site

5.24 The POS, which is located outside the Site boundary, will be designed and constructed by the Applicant and handed over to the Government upon completion as stipulated under Land Grant. The POS shall be designed and constructed to the satisfaction of relevant government Bureax/departments. It will be open to the public on a 24-hour basis, subject to government arrangement. The design of the POS will follow the standards in the Public Open Space in Private Developments Design and Management Guidelines (POSPD). For more descriptions and illustrations, please refer to the Landscape Master Plan in **Appendix 11**.

Maximize at-grade public spaces

5.25 The proposed development would comply with the requirements of providing at-grade public spaces. There will be a 3m-wide setback for the public pedestrian passageway at G/F of the retail belt, fronting the LTSBPC; and the POS with a site area of 1,100m², which is located outside the Site boundary, will be provided. In addition, there will be a 3m-wide setback for public pedestrian passageway in front of the G/F commercial extension, fronting the POS at the south-eastern boundary of the Site. It is open for public use on 24-hour basis.

Pedestrian Facilities and Connectivity of the Site with Surrounding Uses

- 5.26 The LTSBPC comprises G/F and B1/F with linked walkways, footbridges and resting and viewing spaces for visitors to appreciate the remnants. According to the Planning Brief, the Site is to provide convenient pedestrian connections both internally and with its surrounding areas (particularly LTSBPC) and developments.
- 5.27 The Proposed Scheme will comply with the requirements of providing three designated pedestrian openings to enhance connectivity of the development with the LTSBPC.

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place, with Minor Relaxation of Building Height Restriction in "Comprehensive Development Area (4)" Zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission)

Figure 13: Artist's Impression of the Retail Belt and three pedestrian connections to the LTSBPC on G/F and B1/F at the north-western boundary of the Site

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place, with Minor Relaxation of Building Height Restriction in "Comprehensive Development Area (4)" Zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission)

Figure 14: Artist's Impression of the Retail Belt and the LTSBPC on G/F at the eastern corner of the Site

Complies with the Joint Practice Note No. 8 to adopt MiC

7.4 The minor relaxation of BHR in the Proposed Scheme is solely for the adoption of MiC to enable better quality control, shortens construction period, reduce disturbance and nuisances to the neighbourhood, and reduce waste. The visual appraisal in the VIA has demonstrated that the visual impact of increasing the building height by (about) 4m or not more than 4% (of the residential tower MiC) does not bring about significant adverse visual impact from all the viewpoints. The adoption of MiC in the Proposed Scheme fully complies with the requirements of adopting MiC in JPN No. 8.

Urban Design Merits

- 7.5 The Proposed Scheme contains the following design merits:
 - (i) The building height of the residential tower and podium complements the building height profile of the neighbourhood;
 - (ii) Slightly increased building height to adopt MiC and the benefits that come with this;
 - (iii) Mitigating the stringent site constraints by optimizing the setbacks of the residential tower, and ensuring there is sufficient space for quality design of the entrance area, townscape setback and landscape areas at G/F for future residents;
 - (iv) An L-shaped configuration of the residential tower would be compatible and congruous with the built form of the urban context, including LTSBPC;
 - (v) Comply with the dimensions, setback specifications and façade treatment to be compatible and congruous with the LTSBPC and surrounding developments;
 - (vi) G/F commercial extension from retail belt to enhance vibrancy and amenity for visitors;
 - (vii) Maximise at-grade public spaces by 3m-wide setback for public pedestrian passageway, and the POS;
 - (viii) Provision of the POS and the landscaping and public amenities at the south-east boundary of site;
 - (ix) Providing pedestrian facilities, underground shopping street and connectivity of the site with surrounding uses;

Technically Feasible

7.6 The accompanying technical assessments has demonstrated that the proposed comprehensive development is technically feasible and complies with the relevant Government standards in terms of environmental, drainage, sewerage, air ventilation, traffic, visual, and landscape aspects.

Satisfies the Harbour Planning Principles

	Item	Particulars "CDA(4)"	Compliance (Yes/ No)
		 (iii) one 100-place day activity centre (DAC) with a minimum NOFA of 638.1m²; (iv) one district support centre for persons with disabilities (DSC) with a minimum NOFA of 334.4m²; (v) one boys' home (BH) with a minimum NOFA of 1,116.9m²; and (vi) one cyber youth support team (CYST) with a minimum NOFA of 123.3m². 	
4.	PR / GFA	 Maximum PR of 7.5 or maximum GFA of 47,250m² Residential (maximum PR of 6.5 or maximum GFA of 40,950m²) Commercial (maximum PR of 1.0 or maximum GFA of 6,300m²), which shall include PR/GFA of retail belt Retail belt (minimum PR of 0.2 or minimum GFA of 1,260m²) (refer to Item 8 below) Floor space for social welfare facilities, as required by the Government, are to be disregarded in calculation of maximum PR/GFA 	✓ Yes. Please refer to Table 2.
		 The GFA of the public pedestrian passageway on G/F of the retail belt may be disregarded in the calculation of maximum PR/GFA, subject to the approval/agreement of the Building Authority. 	⊠ Yes
5.	SC	 Maximum 65% (excluding basement(s)) 	☑ Yes
6.	ВН	 Maximum 125mPD (except for land designated townscape setback) 	 No. Please refer our justifications in para. 4.2 and 7.4, Chapter 5 Urban Design Proposal, Appendix 10 VIA, and MLP Appendix 2, Sections AA and BB.
		 On land designated 'Shop and Services' and 'Eating Place' uses only (i.e. retail belt): not exceeding two storeys above ground and 15mPD 	✓ Yes. Pleaser efer to MLP Appendix 2 , Sections AA and BB.

ltem	Particulars "CDA(4)"	Compliance (Yes/ No)
	 Parking Information System 	

8. Conclusion

- 8.1 The Proposed Scheme is for a quality private residential development with a retail belt and commercial facilities, which would be compatible and congruous with the surrounding developments and the LTSBPC. It would preserve the ambience of LTSBPC and enhance pedestrian walking environment. The G/F extension from retail belt would enhance vibrancy and amenity for visitors. The site would complete a portion of the pedestrian facilities and connectivity, especially the USS, with the surrounding pedestrian network and developments.
- 8.2 The Proposed Scheme generally complies with the PB requirements and Harbour Planning Principles. The minor relaxation of BHR, solely to adopt MiC, does not bring about significant adverse impact as demonstrated in the visual appraisal. The scheme would contribute to the long-term private housing supply. The Town Planning Board is requested to consider this application favourably.

Appendix 2 Replacement Pages of Traffic Impact Assessment

TABLE OF CONTENTS

1.	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	STUDY OBJECTIVES	1
1.3	STRUCTURE OF THE REPORT	1
2.	THE PROPOSED DEVELOPMENT	3
2.1	SITE LOCATION	3
2.2	DEVELOPMENT SCHEDULE	3
2.3	PROPOSED ACCESS ARRANGEMENT	3
2.4	PROPOSED INTERNAL TRANSPORT FACILITIES	3
3.	EXISTING TRAFFIC CONTEXT	5
3.1	Existing Road Network	5
3.2	EXISTING TRAFFIC CONDITIONS	5
3.3	EXISTING PUBLIC TRANSPORT SERVICES	7
4.	FUTURE TRAFFIC CONDITIONS	10
4.1	DESIGN YEAR AND FUTURE SCENARIOS TO BE ASSESSED	10
4.2	LOCAL AREA TRAFFIC MODEL DEVELOPMENT AND VALIDATION	10
4.3	2033 REFERENCE TRAFFIC FORECAST	11
4.4	TRAFFIC GENERATION AND ATTRACTION OF THE PROPOSED DEVELOPMENT	17
4.5	2033 DESIGN TRAFFIC FORECASTS	18
5.	TRAFFIC IMPACT ASSESSMENT	19
5.1	JUNCTION OPERATIONAL ASSESSMENT	19
5.2	JUNCTION IMPROVEMENT SCHEMES	21
5.3	QUEUE LENGTH ASSESSMENT	23
5.4	SENSITIVITY TEST FOR EVENT AT KAI TAK SPORTS PARK	24
5.5	REVIEW ON PUBLIC TRANSPORT	27
6.	LONG TERM TRAFFIC FORECAST FOR NOISE IMPACT ASSESSMENT	28
6.1	DESIGN YEAR OF NIA STUDY	28
6.2	METHODOLOGY OF TRAFFIC FORECAST FOR NIA STUDY	28
6.3	VEHICLE CLASS	29

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place,
with Minor Relaxation of Building Height Restriction in "Comprehensive Development Area
(4)" Zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, KowloonCHK50786310Traffic Impact Assessment – Final Report29/07/2024

LIST OF DRAWINGS

Drawing No. 2.1	Site Location
Drawing No. 2.2	Master Layout Plan
Drawing No. 3.1	Existing Road Network and Key Junctions to Be Assessed
Drawing No. 3.2	Existing Junction Layout of Slip Road of Prince Edward Road East (Kowloon City) /
Drawing No. 3.3	Existing Junction Layout of Slip Road to Prince Edward Road East (San Po Kong) /
Drawing No. 3.4	Existing Junction Layout of Shing Kai Road / Concorde Road / Muk Chun Street
	(Junction C)
Drawing No. 3.5	Existing Junction Layout of Shing Kai Road / Muk Hung Street (Junction D)
Drawing No. 3.6	Existing Junction Layout of Shing Kai Road / Muk Chui Street (Junction E)
Drawing No. 3.7	Existing Junction Layout of Shing Kai Road / Kai Shing Street / Muk On Street (Junction F)
Drawing No. 3.8	Existing Junction Layout of Shing Kai Road / Shing Fung Road (Junction G)
Drawing No. 3.9	Existing Junction Layout of Shing Kai Road / Western Access to Main Stadium (Junction H)
Drawing No. 3.10	Existing Junction Layout of To Kwa Wan Road / Shing Kai Road / Sung Wong Toi Road (Junction I)
Drawing No. 3.11	Existing Junction Layout of Kowloon City Road / Sung Wong Toi Road (Junction J)
Drawing No. 3.12	Existing Junction Layout of Ma Tau Chung Road / Sung Wong Toi Road / Fu Ning
	Street (Junction K)
Drawing No. 3.13	Existing Junction Layout of Olympic Avenue / Hang Wan Road (Junction L)
Drawing No. 3.14	Existing Junction Layout of Prince Edward Road East / Prince Edward Road West / Ma Tau Chung Road / Argyle Street (Junction M)
Drawing No. 3.15	Existing Junction Layout of Kai San Road / Tsat Po Street / Pat Tat Street (Junction N)
Drawing No. 3.16	Existing Junction Layout of Sze Mei Street / Luk Hop Street (Junction O)
Drawing No. 3.17	Year 2024 Observed Traffic Flows
Drawing No. 4.1	Future Junction Layout of Slip Road of Prince Edward Road East (Kowloon City) /
	Olympic Avenue / Concorde Road (Junction A)
Drawing No. 4.2	Future Junction Layout of Shing Kai Road / Shing Fung Road (Junction G)
Drawing No. 4.3	(Junction H)
Drawing No. 4.4	Future Junction Layout of To Kwa Wan Road / Shing Kai Road / Sung Wong Toi Road (Junction I)
Drawing No. 4.5	Future Junction Layout of Olympic Avenue / Hang Wan Road (Junction L)
Drawing No. 4.6	Future Junction Layout of Shing Kai Road / Proposed Slip Road to Central Kowloon Route (Junction P)
Drawing No. 4.7	Future Junction Layout of Shing Kai Road / Eastern Access to Main Stadium (Junction Q)
Drawing No. 4.8	Future Junction Layout of Olympic Avenue / Dakota Drive (Junction R)
Drawing No. 4.9	Future Junction Layout of Olympic Avenue / Muk Lai Street (Junction S)
Drawing No. 4.10	Planned Future Developments Updated in Traffic Model
Drawing No. 4.11	Year 2033 Reference Traffic Flows
Drawing No. 4.12	Development Traffic
Drawing No. 4.13	Year 2033 Design Traffic Flows

CHK50786310

- Drawing No. 5.1 Junction Improvement Scheme for Junction of Shing Kai Road / Muk Chui Street (Junction E)
- Drawing No. 5.2 Junction Improvement Scheme for Junction of To Kwa Wan Road / Shing Kai Road / Sung Wong Toi Road (Junction I)
- Drawing No. 5.3 Junction Improvement Scheme for Junction of Olympic Avenue / Dakota Drive (Junction R)
- Drawing No. 5.4 Junction Improvement Scheme for Junction of Olympic Avenue / Muk Lai Street (Junction S)
- Drawing No. 5.5 Year 2033 Design Traffic Flows for Sensitivity Test

CHK50786310

LIST OF TABLES

Table 2.1	Key Development Parameters	3
Table 2.2	Proposed Provision of Internal Transport Facilities	4
Table 3.1	Identified Key Junctions for Assessment	6
Table 3.2	Existing Operation Junction Performance in 2024	7
Table 3.3	Existing Public Transport Services in the Vicinity of Application Site	7
Table 4.1	BDTM Validation Criteria	10
Table 4.2	Summary of Junction Count Validation Results	11
Table 4.3	Summary of Link Count Validation Results	11
Table 4.4	Population and Employment in Kowloon City Area Estimates from TPEDM	11
Table 4.5	Planned Junctions of Kai Tak Development	12
Table 4.6	Adopted Trip Rates	13
Table 4.7	Kai Tak Development and Other Planned Developments Updated in the LATM	14
Table 4.8	Traffic Generation and Attraction of Light Public Housing at Olympic Avenue	16
Table 4.9	Anticipated Road-based Public Transport Demand of the Light Public Housing at Olymp	oic
	Avenue	16
Table 4.10	Total Road-based Traffic Generation and Attraction of Light Public Housing at Olympic Avenue	17
Table 4.11	Comparison of Traffic Induced by Light Public Housing Scheme and Long-term Planning	
	Scheme	17
Table 4.12	Estimated Potential Traffic Generation and Attraction of the Proposed Development	18
Table 5.1	Junctions to be Assessed in the Future Scenarios of Year 2033	19
Table 5.2	Year 2033 Junction Operation Performance	20
Table 5.3	Operational Performance of Critical Junctions in 2033 (With Junction Improvement	
	Schemes)	22
Table 5.4	Summary of Junction Improvement Schemes	22
Table 5.5	Junctions to be Assessed in the Future Scenarios of Year 2033	23
Table 5.6	Year 2033 Junction Operation Performance - Sensitivity Test	25
Table 5.7	Junctions to be Assessed in the Sensitivity Test Scenarios	26
Table 5.8	Anticipated Public Transport Demand of the Proposed Development	27
Table 6.1	Population Projections from "Hong Kong Population Projections 2022 – 2046"	28
Table 6.2	Adopted Passenger Car Unit (PCU) Conversion Factors	28

4. FUTURE TRAFFIC CONDITIONS

4.1 Design Year and Future Scenarios to be Assessed

- 4.1.1 The Proposed Development is planned to be completed by year 2029. In order to assess the impact on the local road network due to the Proposed Development, Year 2033 (i.e. 4 years after completion of the Proposed Development) is adopted as the design year for this TIA study. The adopted design year 2033 is also considered well sufficient to cover the building covenant date of the Proposed Development by end of year 2030 as required under lease.
- 4.1.2 To evaluate the effect to the surrounding road junctions due to the Proposed Development, the below future scenarios will be assessed:
 - **O** Reference Scenario Future case of the Application Site without the Proposed Development
 - Design Scenario Future case of the Application Site with completion of the Proposed Development

4.2 Local Area Traffic Model Development and Validation

4.2.1 A Local Area Traffic Model (LATM) is developed for providing traffic forecasts within the AOI for traffic impact assessment SATURN platform.

Base Year Traffic Model Development

- 4.2.2 Transport Department (TD)'s 2019-based Base District Traffic Model (BDTM) "K2" covering Kowloon East is adopted to develop the 2024 LATM including the road network and matrices.
- 4.2.3 The LATM road network is developed from BDTM base year model. The road network within the AOI in the traffic model has been checked against the existing roads and junction configuration / method of control based on the on-site observation, as presented in Section 3.2, as well as the public transport information as available from HKemobility and websites of the franchised bus companies.
- 4.2.4 The LATM matrices are derived by applying growth to the BDTM base year matrices and refining with reference to the observed traffic count data. Then, the matrix estimation SATME2 function, which is a sub-programme within the SATURN suite of programmes, is applied for recalculating the origin and destination matrices to give the best overall fit with the observed traffic flows.
- 4.2.5 Under this study, the LATM will serve as a prime basis for facilitating traffic forecasts and assessments to be carried out. Hence, the developed base year LATM, simulated from the updated road network and the refined matrices, is further validated against the observed traffic count data comprising 15 key junctions and 5 screenlines, as illustrated in **Appendix B.**
- 4.2.6 The BDTM validation criteria is adopted in the TIA and are listed in the **Table 4.1** below:

Validation Criteria	Validation Target		
lunction Arm Flows and Screenling Link Flows	GEH 5 or less on 85% of links		
Junction Arm Flows and Screenline Link Flows	GEH 10 or less on 100% of links		
Caroonling Link Flows	85% within 10%		
Screenine Link Flows	100% within 20%		

Table 4.1 BDTM Validation Criteria

4.2.7 The GEH statistic is a modified chi-square test of the form.

$$\sqrt{\frac{(V_2 - V_1)^2}{\frac{1}{2}(V_1 + V_2)}}$$

Where V1 and V2 are the observed and modelled flows on a specific link.

4.2.8 The junctions and screenlines validation results are summarised in **Table 4.2** and **Table 4.3** respectively. Detailed summary of validation results is in **Appendix B**

Criteria Guideline	Target	Number of Cour	nt within Criteria	Percentage of Count within Criteria		
	Target	AM Peak	PM Peak	AM Peak	PM Peak	
Total No. of Links	-	100	100	100%	100%	
		Comparisons	on GEH Values			
Links within GEH 5	85%	97	91	97%	91%	
Links within GEH 10	100%	100	100	100%	100%	
Links greater GEH 10	0%	0	0	0%	0%	

 Table 4.2
 Summary of Junction Count Validation Results

Criteria Guideline	Torget	Number of Cour	nt within Criteria	Percentage of Count within Criteria		
	Target	AM Peak	PM Peak	AM Peak	PM Peak	
Total No. of Links	-	51	51	100%	100%	
Comparisons on GEH Values						
Links within GEH 5	85%	50	50	98%	98%	
Links within GEH 10	100%	51	51	100%	100%	
Links greater GEH 10	0%	0	0	0%	0%	
		Comparisons on Pe	rcentage Difference			
Links within ±10%	85%	51	51	100%	100%	
Links within ±20%	100%	51	51	100%	100%	
Links greater ±20%	0%	0	0	0%	0%	

Table 4.3 Summary of Link Count Validation Results

4.2.9 The above results show that the traffic flows at all screenlines and key junctions are satisfactorily validated to the validation criteria for both AM peak and PM peak hours. It is considered that the validated LATM with the 2024 adjusted traffic conditions is robust and reliable for conducting future traffic projections and traffic forecast to facilitate this study.

4.3 **2033** Reference Traffic Forecast

4.3.1 Future year 2033 reference traffic flows are formulated by projecting the future year 2031 BDTM with zonal growth factor of Kowloon City derived from 2019 – based The Territorial Population and Employment Data Matrix (TPEDM) of +0.6% p.a. by 1 year. Derivation of growth factor from TPEDM are presented in **Table 4.4**.

TPEDM	Year			Derived Annual Growth Rate (% p		
Estimates	stimates 2019 2026		2031	2031/2019	2031/2026	
Population	429,300	451,100	420,050	-0.18%	-1.42%	
Employment	212,000	237,900	227,850	+0.60%	-0.86%	
Adopted Growth Rate				+0.	.6%	

Table 4.4 Population and Employment in Kowloon City Area Estimates from TPEDM

Source: 2016 - based Territorial Population and Employment Data Matrix as available on Planning Department's website

Future Road Network

- 4.3.2 Central Kowloon Route (CKR) and Trunk Road T2 have already been considered and incorporated in the future year BDTM model. Hence, the development of design year 2033 "reference scenario" model also assumed these highway infrastructures in place.
 - Ο Central Kowloon Route is a 4.7 km long dual 3-lane trunk road in Central Kowloon linking Yau Ma Tei Interchange in West Kowloon with the road network on Kai Tak Development and Kowloon Bay in East Kowloon.
 - Ο Trunk Road T2 is a dual two-lane trunk road of approximately 3 km long connecting CKR and Tseung Kwan O – Lam Tin Tunnel. Trunk Road T2 runs along South East Kowloon connecting CKR at its west and TKO-LTT at its east.
- 4.3.3 Apart from the key junctions as presented in Table 3.1, there will be four more planned junctions (Junction P - Shing Kai Road / Proposed Slip Road to Central Kowloon Route, Junction Q – Shing Kai Road / Eastern Access to Main Stadium, R - Olympic Avenue / Dakota Drive and Junction S - Olympic Avenue / Muk Lai Street), as identified in Drawing No. 3.1 to be critical for TIA of the Proposed Development.
- 4.3.4 Junction P will be completed under Central Kowloon Route and Junction Q will be formed under the Kai Tak Sport Park project. For Junction R and Junction S, the junctions will be completed under Kai Tak Development – Stage 5B and Stage 5A infrastructure works at former north apron area respectively.
- 4.3.5 The layouts of the abovementioned four planned future junctions and the future layout of the existing junctions A, G, H, I, and L without temporary traffic management scheme are illustrated from Drawing Nos. 4.1 to 4.9 and summarized in Table 4.5.

Junction No.	Junctions	Method of Control	Drawing No.
А	Slip Road of Prince Edward Road East (Kowloon City) / Olympic Avenue / Concorde Road	Roundabout	4.1
G	Shing Kai Road / Shing Fung Road / Muk Tai Street	Signal	4.2
Н	Shing Kai Road / Western Access to Main Stadium	Signal	4.3
	To Kwa Wan Road / Shing Kai Road / Sung Wong Toi Road	Signal	4.4
L	Olympic Avenue / Hang Wan Road	Signal	4.5
Р	Shing Kai Road / Proposed Slip Road to Central Kowloon Route	Signal	4.6
Q	Shing Kai Road / Eastern Access to Main Stadium	Signal	4.7
R	Olympic Avenue / Dakota Drive	Signal	4.8
S	Olympic Avenue / Muk Lai Street	Signal	4.9

Table 4.5 Planned Junctions of Kai Tak Development

Public Transport Planning

4.3.6 To reflect the latest public transport planning, the LATM is reviewed and updated in accordance with the Bus Routes Planning Programme 2024-2025 as available from Transport Department's website.

4.3.11 By superimposing the above estimated road-based public transport demand onto the traffic generation and attraction in Table 4.8, the total road-based traffic induced by the light public housing at Olympic Avenue are estimated as shown in **Table 4.10**.

	Total Road-based Traffic Generation and Attraction (pcu/hr)					
	AMI	Peak	PM Peak			
	Generation	Attraction	Generation	Attraction		
Light Public Housing	314	255	212	263		
at Olympic Avenue	[259 + 55]	[242 + 13]	[189 + 23]	[215 + 48]		

Table 4.10 Total Road-based Traffic Generation and Attraction of Light Public Housing at Olympic Avenue

4.3.12 Under the OZP, the sites occupied by the light public housing are intended for commercial use and arts & performance related uses in long-term planning. As comparing the potential traffic induced by public light housing (including the potential increase of road-based public transport) with the long-term planning, it is identified that the traffic induced by the uses under long-term planning would be more critical, as shown in Table 4.11. Therefore, the assumption of uses at the concerned Sites 1M1, 1M2, 2A1 (as listed in Table 4.7) as adopted in the traffic model is considered more conservative for assessments.

Table 4.11 Comparison of Traffic Induced by Light Public Housing Scheme and Long-term Planning Scheme

Lisse at Sites 1041, 1042 and 241	AM I	Peak	PM Peak	
Uses at Sites 1011, 1102 and 2A1	Generation	Attraction	Generation	Attraction
Light Public Housing Scheme [A]				
Light Public Housing ⁽¹⁾	314	255	212	263
Long-term Planning Scheme [B]				
Commercial Use at Site 1M1 ⁽²⁾	151	218	140	104
Arts & Performance related Use at Site 1M2 ⁽²⁾	7	11	19	7
Commercial Use at Site 2A1 ⁽²⁾	225	324	208	155
Total	383	553	367	266
Net Difference [A] – [B]	-69	-298	-155	-3

Notes:

(1) Refer to Table 4.10

(2) Refer to Table 4.7.

2033 Reference Traffic Forecasts

4.3.13 By taking into account the above, the 2033 reference traffic forecasts are derived as shown in Drawing No. 4.11.

4.4 **Traffic Generation and Attraction of the Proposed Development**

4.4.1 In order to estimate the potential traffic generation and attraction of the Proposed Developments under proposed development parameter as shown in Table 2.1, reference has been made to the trip generation rates as stipulated in Volume 1 Chapter 3 Appendix D Table 1 of the prevailing Transport Planning and Design Manual (TPDM). The adopted trip rates are summarized in Table 4.12.

	AM	Peak	PM	Peak	
	Generation	Attraction	Generation	Attraction	
	Residential – 930 flat	s at average flat size 4	3.1m ²		
Adopted Trip Rates ⁽¹⁾ (pcu/hr/flat)	0.0718	0.0425	0.0286	0.0370	
Estimated Trips (pcu/hr)	67	40	27	34	
	Retail –	6,270 m ² GFA			
Adopted Trip Rates ⁽²⁾ (pcu/hr/100m ² GFA)	0.2296	0.2434	0.3100	0.3563	
Estimated Trips (pcu/hr)	14	15	19	22	
Overall					
Estimated Trips (pcu/hr)	81	55	46	56	

 Table 4.12 Estimated Potential Traffic Generation and Attraction of the Proposed Development

Notes: (1)

(2)

TPDM Mean trip rates for high-density private housing development with avg. flat size of 60m2 are adopted. TPDM Mean trip rates for retail development are adopted.

4.4.2 Based on the proposed development parameters, it is estimated that the Proposed Developments will generate and attract about 81 pcu/hr and 55 pcu/hr in the AM peak hour and generate and attract about 46 pcu/hr and 56 pcu/hr in the PM peak hour respectively.

4.5 **2033** Design Traffic Forecasts

- 4.5.1 The estimated traffic generation and attraction of the Proposed Development (as shown in **Table 4.12** and presented in **Drawing No. 4.12**) were then superimposed onto the 2033 reference traffic flows according to the origin-destination (O-D) pattern of the traffic zone representing the Application Site in the LATM to derive the 2033 design traffic forecasts.
- 4.5.2 The 2033 AM and PM peak design traffic forecasts (with the Proposed Development) are shown in **Drawing No. 4.13**.

5. **TRAFFIC IMPACT ASSESSMENT**

5.1 **Junction Operational Assessment**

As mentioned in Paragraphs 4.3.3-4.3.5, there will be planned junctions within the AOI in the 5.1.1 future. The junction layout and method of control adopted for assessment of year 2033 future scenarios are summarized in Table 5.1.

Junction No.	Junctions	Layout	Method of Control	Drawing No.
А	Slip Road of Prince Edward Road East (Kowloon City) / Olympic Avenue / Concorde Road	Planned	Roundabout	4.1
В	Slip Road to Prince Edward Road East (San Po Kong) / Concorde Road	Existing	Roundabout	3.3
С	Shing Kai Road / Concorde Road / Muk Chun Street	Existing	Roundabout	3.4
D	Shing Kai Road / Muk Hung Street	Existing	Signal	3.5
E	Shing Kai Road / Muk Chui Street	Existing	Signal	3.6
F	Shing Kai Road / Kai Shing Street / Muk On Street	Existing	Signal	3.7
G	Shing Kai Road / Shing Fung Road / Muk Tai Street	Planned	Signal	4.2
Н	Shing Kai Road / Western Access to Main Stadium	Planned	Signal	4.3
I	To Kwa Wan Road / Shing Kai Road / Sung Wong Toi Road	Planned	Signal	4.4
J	Kowloon City Road / Sung Wong Toi Road	Existing	Signal	3.11
к	Ma Tau Chung Road / Sung Wong Toi Road / Fu Ning Street	Existing	Signal	3.12
L	Olympic Avenue / Hang Wan Road	Planned	Signal	4.5
М	Prince Edward Road East / Prince Edward Road West / Ma Tau Chung Road / Argyle Street	Existing	Roundabout	3.14
N	Kai San Road / Tsat Po Street/ Pat Tat Street	Existing	Signal	3.15
0	Sze Mei Street / Luk Hop Street	Existing	Roundabout	3.16
Ρ	Shing Kai Road / Slip Road of Central Kowloon Route	Planned	Signal	4.6
Q	Shing Kai Road / Eastern Access to Main Stadium	Planned	Signal	4.7
R	Olympic Avenue/ Dakota Drive	Planned	Signal	4.8
S	Olympic Avenue / Muk Lai Street	Planned	Signal	4.9

5.1.2 To assess the traffic impact due to the Proposed Development, operational assessments of the identified key junctions in the AOI for both reference and design scenarios in year 2033 has been conducted. The results are summarised and presented in Table 5.2, and the details of junction assessments are attached in Appendix A.

			Year <mark>2033</mark> RC ⁽¹⁾ /DFC ⁽²⁾			
Junction No.	No. Junction Junction Junction Method of Control [Without Propos Development]		e Scenario Proposed pment]	Design Scenario [With Proposed Development]		
			AM Peak	PM Peak	AM Peak	PM Peak
A	Slip Road of Prince Edward Road East (Kowloon City) / Olympic Avenue / Concorde Road	Roundabout	<mark>0.78</mark>	0.46	<mark>0.81</mark>	<mark>0.48</mark>
В	Slip Road to Prince Edward Road East (San Po Kong) / Concorde Road	Roundabout	0.58	<mark>0.70</mark>	0.59	0.70
С	Shing Kai Road / Concorde Road / Muk Chun Street	Roundabout	0.43	0.46	0.44	<mark>0.47</mark>
D	Shing Kai Road / Muk Hung Street	Signal	<mark>40%</mark>	42%	<mark>39%</mark>	<mark>41%</mark>
E	Shing Kai Road / Muk Chui Street	Signal	8%	6%	7%	<mark>5%</mark>
F	Shing Kai Road / Kai Shing Street / Muk On Street	Signal	34%	<mark>19%</mark>	34%	<mark>19%</mark>
G	Shing Kai Road / Shing Fung Road / Muk Tai Street	Signal	17%	31%	17%	30%
Н	Shing Kai Road / Western Access to Main Stadium	Signal	<mark>25%</mark>	<mark>43%</mark>	25%	<mark>42%</mark>
Ι	To Kwa Wan Road / Shing Kai Road / Sung Wong Toi Road	Signal	<mark>8%</mark>	<mark>23%</mark>	<mark>7%</mark>	23%
J	Kowloon City Road / Sung Wong Toi Road	Signal	<mark>41%</mark>	<mark>33%</mark>	41%	33%
К	Ma Tau Chung Road / Sung Wong Toi Road / Fu Ning Street	Signal	<mark>33%</mark>	22%	<mark>33%</mark>	22%
L	Olympic Avenue / Hang Wan Road	Signal	<mark>88%</mark>	>100%	<mark>85%</mark>	>100%
Μ	Prince Edward Road East / Prince Edward Road West / Ma Tau Chung Road / Argyle Street	Roundabout	<mark>0.93</mark>	<mark>0.82</mark>	<mark>0.93</mark>	<mark>0.82</mark>
Ν	Kai San Road / Tsat Po Street/ Pat Tat Street	Signal	<mark>20%</mark>	27%	<mark>18%</mark>	25%
0	Sze Mei Street / Luk Hop Street	Roundabout	0.72	0.75	0.73	0.76
Р	Shing Kai Road / Slip Road of Central Kowloon Route	Signal	<mark>100%</mark>	>100%	<mark>100%</mark>	>100%
Q	Shing Kai Road / Eastern Access to Main Stadium	Signal	18%	<mark>37%</mark>	<mark>17%</mark>	<mark>36%</mark>
R	Olympic Avenue / Dakota Drive	Signal	-5%	<mark>23%</mark>	-6%	<mark>22%</mark>
S	Olympic Avenue / Muk Lai Street	Signal	<mark>22%</mark>	45%	<mark>9%</mark>	<mark>31%</mark>

 Table 5.2
 Year 2033
 Junction Operation Performance

Notes: (1) (2) RC = Reserve capacity of a signal junction.

DFC = Ratio of flow to capacity for a roundabout or a priority junction.

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place, with Minor Relaxation of Building Height Restriction in "Comprehensive Development Area (4)" Zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon

CHK50786310

- 5.1.3 Table 5.1 indicates all the key access junctions will be operating within capacity during the AM and PM peak periods in the design year 2033 except for the Junction R Olympic Avenue / Dakota Drive which will be overloaded during the AM peak under both the reference scenario and design scenario. Besides, it is also assessed that some junctions will operate at/close to their capacities including Junction E Shing Kai Road / Muk Chui Street, Junction I To Kwa Wan Road / Sung Wong Toi Road, and Junction S Olympic Avenue / Muk Lai Street, and therefore possible junction improvement schemes should be reviewed to improve the junction performances.
- 5.1.4 Apart from abovementioned Junctions E, I, R and S, it is also identified that Junction M -Olympic Garden Roundabout would operate close to it capacity, however, the impact to this junction's performance due to the Proposed Development is negligible as proven by the junction assessment results in **Table 5.2**.

5.2 Junction Improvement Schemes

Junction E - Shing Kai Road / Muk Chui Street

- 5.2.1 According to the meeting minutes of the 4th meeting of Housing, Planning and Lands Committee of the 6th Term Kwun Tong District Council dated 17 September 2020, it is noted that an improvement scheme at the junction of Shing Kai Road / Muk Chui Street was planned and will be implementation by the Public Housing Development at Wang Chiu Road by Housing Authority (HKHA).
- 5.2.2 Notwithstanding that the details of the improvement scheme was not available in the abovementioned document, it is anticipated that the junction would be improved by local widening of carriageway at Muk Chui Street at the eastern approach arm of the junction, as illustrated in **Drawing No. 5.1**.

Junction I - To Kwa Wan Road / Sung Wong Toi Road

- 5.2.3 Refer to the information of the approved planning application (Application No. A/K22/35) for the public housing developments at Kai Tak Site 2B3 and 2B4, it is noted that junction improvement scheme at Junction I was proposed under the aforesaid public housing developments project.
- 5.2.4 Notwithstanding that the details on the junction improvement scheme is not available from the application document, it is anticipated that the junction would be improved by widening at Sung Wong Toi Road eastbound approach to increase the traffic lanes from existing 3 lanes to 4 lanes with revised method of control as demonstrated in **Drawing No. 5.2**.

Junction R - Olympic Avenue / Dakota Drive

- 5.2.5 To improve the junction operational performance, it is possible to widen the Dakota Drive approach to provide one additional traffic lane as shown in **Drawing No. 5.3**.
- 5.2.6 As the junction is the immediate junction serving the access of nearby public housing sites, e.g. Kai Tak Site 2B3 to 2B4, while the junction assessment results reflected that impact to the junction's performance due to the Proposed Development is very minimal (i.e. the junction will be overloaded in the Reference Scenario without the Proposed Development and the change in RC at Design Scenario is minute), the junction improvement should be responsible

by other party. It is understood that the junction improvement would be covered by the CEDD's planned infrastructure works for Kai Tak development.

Junction S - Olympic Avenue / Muk Lai Street

- 5.2.7 According to the Traffic Impact Assessment report of the approved planning application (Application No. A/K22/30) for the subsidized housing development at the adjacent Site 2B1 on Muk Lai Street Hong Kong Housing Society (HKHS), it is noted that a junction improvement scheme, as exhibited in **Drawing No. 5.4**, was proposed and to be implemented by the subsidized housing development at the adjacent Site 2B1.
- 5.2.8 Based on the proposed junction improvement schemes, the operational performances have been re-assessed, and the results are summarised in **Table 5.3**.

	Junction With Improvement		Year <mark>2033</mark> RC ⁽¹⁾ /DFC ⁽²⁾			
Junction No.		Method of Control	Reference [Without Develo	e Scenario Proposed pment]	Design Scenario [With Proposed Development]	
			AM Peak	PM Peak	AM Peak	PM Peak
E	Shing Kai Road / Muk Chui Street	Signal	21%	19%	20%	<mark>17%</mark>
I	To Kwa Wan Road / Sung Wong Toi Road	Signal	<mark>22%</mark>	<mark>38%</mark>	22%	38%
R	Olympic Avenue / Dakota Drive	Signal	22%	44%	20%	<mark>42%</mark>
S	Olympic Avenue / Muk Lai Street	Signal	61%	<mark>67%</mark>	44%	60%

Table 5.3 Operational Performance of Critical Junctions in 2033 (With Junction Improvement Schemes)

Notes: (1) RC = Reserve capacity of a signal junction.

(2) DFC = Ratio of flow to capacity for a roundabout or a priority junction.

- 5.2.9 The assessment results in **Table 5.3** revealed that Junctions E, I, R, and S will all operate with adequate capacities in the design year 2033 with implementation of junction improvement schemes.
- 5.2.10 The anticipated responsible project proponents of the junction improvement scheme as discussed in above are summarised in **Table 5.4**.

Junction No.	Junction Improvement Scheme	Anticipated Responsible Project Proponent	Planned Completion
E	Shing Kai Road / Muk Chui Street	Public Housing Development at Wang Chiu Road by HKHA	By 2025
I	To Kwa Wan Road / Sung Wong Toi Road	Public Housing Developments at Kai Tak Sites 2B3 and 2B4 by HKHA	By 2026/27
R	Olympic Avenue / Dakota Drive	CEDD	By 2025
S	Olympic Avenue / Muk Lai Street	Subsidized Housing Development at Kai Tak Site 2B1 by HKHS	By 2026

Table 5.4 Summary of Jun	ction Improvement Schemes
--------------------------	---------------------------

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place,
with Minor Relaxation of Building Height Restriction in "Comprehensive Development Area
(4)" Zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, KowloonCHK50786310Traffic Impact Assessment – Final Report29/07/2024

5.3 Queue Length Assessment

5.3.1 Apart from junction operational performance, queue length assessment is also conducted. The estimated queue lengths at the assessed signal junctions in the reference and design scenarios at the design year 2033 are presented in **Table 5.5**.

				Average Queue Length (m)			
				Reference Scenario Design Scenario			
Ref	Junctions	Approach	Capacity	[Without Proposed		[With P	roposed
NO.			(m)	Development]		Development]	
				AM Peak	PM Peak	AM Peak	PM Peak
_	Shing Kai Road / Muk	Shing Kai Rd NB	175	34	38	34	38
D	Hung Street	Shing Kai Rd SB	195	37	33	37	33
		Muk Chui St EB	95	34	35	36	35
E S	Shing Kai Road / Muk	L3 Road WB	35	25	26	27	32
	Chui Street	Shing Kai Rd NB	405	46	56	46	<mark>57</mark>
		Shing Kai Rd SB	175	54	43	53	44
		Muk On St SB	135	46	51	46	51
	Shing Kai Road / Kai	Kai Shing Rd NB	90	40	<mark>59</mark>	40	<mark>59</mark>
F	Shing Street / Muk On	Shing Kai Rd EB	245	39	37	39	37
	Street	Shing Kai Rd WB	410	33	24	33	24
		Muk Tai St SB	145	32	23	32	23
~	Shing Kai Road / Shing	Shing Fung Rd NB	>500	<mark>62</mark>	45	<mark>62</mark>	45
G	Fung Rodu / Muk Tai	Shing Kai Rd EB	105	<mark>64</mark>	54	64	<mark>55</mark>
	Street	Shing Kai Rd WB	220	<mark>45</mark>	43	<mark>45</mark>	44
ц	Shing Kai Road /	Shing Kai Rd EB	190	64	56	<mark>65</mark>	56
	Main Stadium	Shing Kai Rd WB	175	66	56	<mark>67</mark>	56
	To Kwa Wan Road /	Sung Wong Toi Rd EB	>500	46	34	<mark>47</mark>	<mark>35</mark>
I	I Shing Kai Road / Sung Wong Toi Road	To Kwa Wan Rd NB	70	<mark>67</mark>	60	67	<mark>61</mark>
		Shing Kai Rd SB	175	68	56	68	56
	Kowloon City Road /	Sung Wong Toi Rd WB	300	25	26	25	<mark>27</mark>
J	Sung Wong Toi Road	Kowloon City Rd NB	80	<mark>22</mark>	23	<mark>22</mark>	23
	Ma Tau Chung Road /	Sung Wong Toi Rd WB	80	<mark>57</mark>	65	57	<mark>66</mark>
К	Sung Wong Toi Road /	Ma Tau Chung Rd NB	170	48	<mark>72</mark>	48	<mark>72</mark>
	Fu Ning Street	Ma Tau Chung Rd SB	80	65	50	65	50
	Olympic Avenue / Hang	Olympic Ave NB	90	20	16	20	16
L	Wan Road	Olympic Ave SB	280	21	16	21	17
	Wan Noud	Hang Wan Rd EB	30	20	14	20	14
	Kai San Road / Tsat Po	Tsat Po Street EB	100	26	19	26	19
Ν	Street / Pat Tat Street	Tsat Po Street WB	155	57	53	58	54
		Kai San Road NB	>500	57	50	<mark>60</mark>	52
	Shing Kai Road / Slip	Shing Kai Rd EB	245	40	32	40	32
Р	Road of Central	Shing Kai Rd WB	255	40	38	40	38
	Kowloon Route	Slip Road of CKR	200	9	14	9	14
0	Shing Kai Road / Eastern Access to Main	Shing Kai Rd EB	200	69	57	<mark>70</mark>	57
	Stadium	Shing Kai Rd WB	165	<mark>71</mark>	58	71	<mark>59</mark>
	Olymnic Avenue/	Olympic Ave EB	280	40	31	44	32
R	Dakota Drive	Olympic Ave WB	210	<mark>55</mark>	49	56	<mark>50</mark>
		Dakota Drive NB	120	49	<mark>33</mark>	49	33

Table 5.5	Junctions to b	e Assessed	in the Future	Scenarios of	Year	2033

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place, with Minor Relaxation of Building Height Restriction in "Comprehensive Development Area (4)" Zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon Traffic Impact Assessment – Final Report

CHK50786310

Page 24

				Average Queue Length (m)			
Ref No.	Junctions	Approach	Capacity (m)	Reference [Without Develo	e Scenario Proposed pment]	Design S [With Pi Develo	Scenario roposed pment]
				AM Peak	PM Peak	AM Peak	PM Peak
	S Olympic Avenue / Muk Lai Street	Olympic Ave EB	210	18	17	20	19
S		Olympic Ave WB	400	36	36	39	37
		Muk Lai St NB	100	30	18	35	23

 Table 5.5
 Junctions to be Assessed in the Future Scenarios of Year
 2033
 (Cont'd)

5.3.2 The queue length assessment results in **Table 5.5** revealed that the estimated queue lengths at all assessed Junctions will be within the available capacity in the design year 2033 under both the reference and design scenarios. The results also reflect that the differences of queue lengths between the reference and design scenarios are insignificant.

5.4 Sensitivity Test for Event at Kai Tak Sports Park

- 5.4.1 Since the large-scale event should be normally hosted outside the communal peak hours while Kai Tak Sports Park is situated at a location where is well served by MTR and public transport, the traffic impact of event at Kai Tak Sports Park during the communal peak hours should be minimal. Particularly, it is very unlikely that any key highlighted event/ceremony would be held in the early morning during the communal AM peak. Nevertheless, a sensitivity test on potential impact of the large-scale event at Kai Tak Sports Park with both the event start and event dispersal scenarios during critical communal PM peak is carried out.
- 5.4.2 With reference to the approved planning application (Application No. A/K22/17) for "Minor Relaxation of Building Height Restriction for the Proposed Main Stadium at the Southern Portion of the Kai Tak Sports Park; Proposed Hotel and Eating Place", it is noted that there would be a total of 700 private car parking spaces and 60 coach parking spaces provided at Kai Tak Sports Park.
- 5.4.3 For sensitivity test purpose, it is assumed that all of the 700 car parking spaces and 60 coach parking spaces would serve the visitors of the event; and they would be arriving and leaving within an hour during the event starts and event dispersal respectively. Therefore, the traffic attraction of private cars and coaches of Kai Tak Sports Park during event starts and the traffic generation of private cars and coaches of Kai Tak Sport Park during event dispersal in critical PM peak under the sensitivity test scenarios would be about 820 pcu/hr (i.e. 700 pcu/hr for private cars and 120 pcu/hr for coaches).
- 5.4.4 Apart from the traffic attraction and generation of private cars and coaches as mentioned in the above **paragraph 5.4.3**, the potential traffic demand of taxis' pick-up/drop-off induced by Kai Tak Sport Park during the start and dispersal of the event are also taken into account in the traffic forecast for sensitivity test. The year 2033 PM peak traffic flows in the sensitivity test scenarios are derived as shown in **Drawing No. 5.5**.
- 5.4.5 To test the critical scenarios of large-scale event at Kai Tak Sports Park during the communal PM peak, the operational performances of the junctions within AOI are further assessed, and the results are summarised in **Table 5.6**.

			Year 2033 RC ⁽¹⁾ /DFC ⁽²⁾		
Junction No.	Junction	Method of Control	Sensitivity Test Scenarios of Critical PM Peak		
			Event Start	Event Dispersal	
A	Slip Road of Prince Edward Road East (Kowloon City) / Olympic Avenue / Concorde Road	Roundabout	0.49	0.48	
В	Slip Road to Prince Edward Road East (San Po Kong) / Concorde Road	Roundabout	0.70	0.70	
С	Shing Kai Road / Concorde Road / Muk Chun Street	Roundabout	<mark>0.47</mark>	<mark>0.47</mark>	
D	Shing Kai Road / Muk Hung Street	Signal	<mark>41%</mark>	<mark>41%</mark>	
E	Shing Kai Road / Muk Chui Street (<u>With Improvement)</u>	Signal	<mark>17%</mark>	<mark>17%</mark>	
F	Shing Kai Road / Kai Shing Street / Muk On Street	Signal	<mark>19%</mark>	<mark>17%</mark>	
G	Shing Kai Road / Shing Fung Road / Muk Tai Street	Signal	<mark>19%</mark>	<mark>20%</mark>	
Н	Shing Kai Road / Western Access to Main Stadium	Signal	<mark>17%</mark>	<mark>10%</mark>	
I	To Kwa Wan Road / Shing Kai Road / Sung Wong Toi Road (With Improvement)	Signal	<mark>27%</mark>	22%	
J	Kowloon City Road / Sung Wong Toi Road	Signal	<mark>31%</mark>	<mark>14%</mark>	
К	Ma Tau Chung Road / Sung Wong Toi Road / Fu Ning Street	Signal	<mark>21%</mark>	<mark>16%</mark>	
L	Olympic Avenue / Hang Wan Road	Signal	<mark>94%</mark>	>100%	
М	Prince Edward Road East / Prince Edward Road West / Ma Tau Chung Road / Argyle Street	Roundabout	<mark>0.88</mark>	<mark>0.83</mark>	
Ν	Kai San Road / Tsat Po Street/ Pat Tat Street	Signal	25%	25%	
0	Sze Mei Street / Luk Hop Street	Roundabout	0.76	0.76	
Р	Shing Kai Road / Slip Road of Central Kowloon Route	Signal	>100%	<mark>93%</mark>	
Q	Shing Kai Road / Eastern Access to Main Stadium	Signal	<mark>13%</mark>	<mark>10%</mark>	
R	Olympic Avenue/ Dakota Drive (With Improvement)	Signal	<mark>35%</mark>	<mark>36%</mark>	
S	Olympic Avenue / Muk Lai Street (With Improvement)	Signal	<mark>54%</mark>	<mark>59%</mark>	

Table 5.6	Year 2033	Junction O	peration	Performance -	- Sensitivitv	Test

Notes: (1) (2) RC = Reserve capacity of a signal junction.

DFC = Ratio of flow to capacity for a roundabout or a priority junction.

5.4.6 **Table 5.6** indicates that all the key access junctions will be still operating within capacity during the critical PM peak with event at Kai Tak Sports Park under the critical sensitivity test scenarios.

5.4.7 Apart from junction operational performance, queue length assessment is also conducted for the sensitivity test scenarios. The estimated queue lengths are presented in **Table 5.7**.

Page 26

				Average Queue Length (m)		
Ref	lun ati a ra	Ammanah	Capacity	Sensitivity Test Scenarios		
No.	Junctions	Approach	(m)	of Critical PM Peak		
				Event Start	Event Dispersal	
6	Shing Kai Road / Muk Hung	Shing Kai Rd NB	175	38	38	
D	Street	Shing Kai Rd SB	195	33	33	
		Muk Chui St EB	95	35	35	
_ Shing Kai R	Shing Kai Road / Muk Chui	L3 Road WB	35	32	32	
E	Street	Shing Kai Rd NB	405	<mark>57</mark>	<mark>57</mark>	
		Shing Kai Rd SB	175	44	44	
		Muk On St SB	135	51	53	
c	Shing Kai Road / Kai Shing	Kai Shing Rd NB	90	<mark>59</mark>	59	
Г	Street / Muk On Street	Shing Kai Rd EB	245	<mark>38</mark>	<mark>40</mark>	
		Shing Kai Rd WB	410	24	24	
		Muk Tai St SB	145	27	<mark>27</mark>	
G	Shing Kai Road / Shing Fung	Shing Fung Rd NB	>500	<mark>57</mark>	43	
9	Road / Muk Tai Street	Shing Kai Rd EB	105	<mark>60</mark>	64	
		Shing Kai Rd WB	220	<mark>58</mark>	48	
ц	Shing Kai Road / Western	Shing Kai Rd EB	190	<mark>74</mark>	<mark>71</mark>	
	Access to Main Stadium	Shing Kai Rd WB	175	<mark>70</mark>	<mark>74</mark>	
	To Kwa Wan Boad / Shing Kai	Sung Wong Toi Rd EB	>500	<mark>55</mark>	<mark>36</mark>	
Т		To Kwa Wan Rd NB	70	<mark>66</mark>	<mark>68</mark>	
		Shing Kai Rd SB	175	<mark>60</mark>	69	
	Kowloon City Road / Sung	Sung Wong Toi Rd WB	300	<mark>27</mark>	<mark>36</mark>	
J	Wong Toi Road	Kowloon City Rd NB	80	23	<mark>32</mark>	
	Ma Tau Chung Road / Sung	Sung Wong Toi Rd WB	80	<mark>66</mark>	<mark>71</mark>	
К	Wong Toi Road / Fu Ning	Ma Tau Chung Rd NB	170	<mark>72</mark>	<mark>77</mark>	
	Street	Ma Tau Chung Rd SB	80	50	52	
	Olympic Avenue / Hang Wan	Olympic Ave NB	90	18	<mark>18</mark>	
L	Road	Olympic Ave SB	280	20	<mark>17</mark>	
		Hang Wan Rd EB	30	<mark>19</mark>	<mark>15</mark>	
	Kai San Road / Tsat Po Street /	Tsat Po Street EB	100	19	19	
Ν	Pat Tat Street	Tsat Po Street WB	155	54	54	
		Kai San Road NB	>500	52	52	
	Shing Kai Road / Slin Road of	Shing Kai Rd EB	245	<mark>33</mark>	<mark>40</mark>	
Р	Central Kowloon Boute	Shing Kai Rd WB	255	39	<mark>42</mark>	
		Slip Road of CKR	200	<mark>30</mark>	13	
0	Shing Kai Road / Eastern	Shing Kai Rd EB	200	<mark>73</mark>	<mark>79</mark>	
ч -	Access to Main Stadium	Shing Kai Rd WB	165	<mark>78</mark>	<mark>74</mark>	
		Olympic Ave EB	280	33	34	
R	Olympic Avenue/ Dakota Drive	Olympic Ave WB	210	52	50	
		Dakota Drive NB	120	34	<mark>34</mark>	
	Olympic Avenue / Muk Lai	Olympic Ave EB	210	19	19	
S	Street	Olympic Ave WB	400	<mark>39</mark>	37	
		Muk Lai St NB	100	23	23	

Table 5.7	Junctions to be Assessed in the Sensitivity	y Test Scenarios
-----------	---	------------------

5.4.8 The queue length assessment results in **Table 5.7** revealed that the estimated queue lengths at all assessed junctions will be still within the available capacity in the design year 2033 under the sensitivity scenarios.

LONG TERM TRAFFIC FORECAST FOR NOISE IMPACT 6. ASSESSMENT

6.1 **Design year of NIA Study**

6.1.1 Taking into consideration that the Proposed Development is planned to be completed by year 2029, design year of 2044 (completion year of the Proposed Development + 15 years) have been adopted for NIA study. The year 2044 peak hour traffic forecasts (solely used for NIA study of this project) together with the vehicle composition breakdown are summarized in Appendix C.

6.2 Methodology of Traffic Forecast for NIA Study

- 6.2.1 To derive the year 2044 long term traffic forecast data for the NIA study, the set of year 2033 design traffic flows as derived for TIA as discussed in Section 4 is used as basis.
- 6.2.2 For the long-term traffic growth from year 2033 to 2044, reference was made to growth rates as derived from (i) the population projections from "Hong Kong Population Projections 2022 - 2046" as published by Census and Statistics Department.
- 6.2.3 Based on the population projections as presented in **Table 6.1**, it is derived that the annual growth rate of population in HKSAR from year 2033 to 2044 is about +0.32% p.a.

Projected I (thousand	Growth Rate (% p.a.)	
<mark>2033</mark>	2044	<mark>2033</mark> /2044
7,903.6 8,186.8		<mark>0.32%</mark>

Table 6.1 Population Projections from "Hong Kong Population Projections 2022 – 2046"

- 6.2.4 The 2044 long term traffic forecasted flows are derived by applying a growth rate of 0.32% p.a. onto the year 2033 design traffic flows upto the future year 2044. The forecasted year 2044 traffic flows in passenger car unit (PCU) are listed in Table A of Appendix C.
- 6.2.5 To serve the NIA study purpose, the produced year 2044 traffic forecast were then converted from PCU to vehicles based on the PCU conversion factors as stipulated in TPDM and the composition of breakdown of vehicles from manual classified count surveys data. The PCU conversation factors are listed in Table 6.2 below.

Vehicle Type	PCU Factors ⁽¹⁾
Private Car / Taxi	1.0
Light Van	1.1
Light Goods Vehicle (LGV)	1.5
Medium Goods Vehicle (MGV)	2.0
Heavy Goods Vehicle (HGV)	2.5
Motorcycle	0.75
Light Bus	1.5
Special Purpose Bus	2.0
Bus	2.5
Tractor Unit	2.5
Vietos (1) Conversion factors stimulated in	

Table 6.2 Adopted Passenger Car Unit (PCU) Conversion Factors

Notes: Conversion factors stipulated in TPDM Vol.2 Ch.2.3 Table 2.3.1.1. (1)

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place, with Minor Relaxation of Building Height Restriction in "Comprehensive Development Area CHK50786310 (4)" Zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon Traffic Impact Assessment – Final Report 29/07/2024

7. SUMMARY AND CONCLUSION

7.1 Summary

- 7.1.1 The Application Site is zoned "Comprehensive Development Area (4)" on the Approved Kai Tak Outline Zoning Plan No. S/K22/8. Under the Town Planning Ordinance, a section 16 planning application is required to be submitted by the Applicant to obtain permission from the Town Planning Board (TPB), for the Proposed Development.
- 7.1.2 In support of the S16 Application from a traffic engineering viewpoint, MVA was commissioned to conduct a TIA study for the Proposed Development.
- 7.1.3 The Proposed Development would be accessed from Olympic Avenue via Muk Lai Street, and the vehicular access would be located at Muk Lai Street in accordance with the X1,Y1,Z1 point as specified in the Lease of the lot. The internal transport facilities would also be provided in accordance with the relevant land sale conditions of the Application Site.
- 7.1.4 Based on the proposed development schedule, it was estimated that the Proposed Development would generate and attract about 81 pcu/hr and 55 pcu/hr in the AM peak hour and generate and attract about 46 pcu/hr and 56 pcu/hr in the PM peak hour respectively.
- 7.1.5 To appraise the existing traffic condition, traffic count surveys were conducted in the surrounding road network. The existing operational performance of the critical junctions was assessed with the observed traffic flows, and the assessment results revealed that all critical junctions were operating within capacities.
- 7.1.6 In view of the Proposed Development was planned to be completed by year 2029, Year 2033 (i.e. 4 years after completion of the Proposed Development) was adopted as the design year for assessments in this TIA study.
- 7.1.7 A local area traffic model was developed, and it was demonstrated that the base year traffic model satisfactorily replicates the year 2024 traffic conditions and was able to provide a robust basis for the development of design year traffic models to facilitate traffic forecasting. Design year 2033 traffic forecast were then developed from the validated base year LATM, zonal growth factor derived from 2019 based TPEDM and future year 2031 BDTM.
- 7.1.8 Assessment of operational performance of the critical junctions revealed that all the key access junctions would be operating within capacity during the AM and PM peak periods under both the reference scenario and design scenario in the design year 2033 by taking into account the future junction improvement schemes at Junction E (Shing Kai Road / Muk Chui Street), Junction I (To Kwa Wan Road / Sung Wong Toi Road), Junction R (Olympic Avenue / Dakota Drive) and Junction S (Olympic Avenue / Muk Lai Street) which to be implemented either by CEDD or under the project of Public Housing Development at Wang Chiu Road and the adjacent public housing and subsidised housing projects.

7.2 Conclusion

7.2.1 In conclusion, the traffic impact assessment has demonstrated that the traffic generated by the proposed developments can be absorbed by the nearby future road network and would not cause any adverse traffic impact. Hence it can be concluded that the proposed developments are acceptable in traffic terms.

5[245] 5[245] 5[245] 5[285] 0[250] 5[245] 5[28] 5[28]	SIE MEI STREET
ATTOLOGISTI Sentence Sentence Sentence Kal Shing St	REET
EGEND : PM SENSITIVITY SCE	NARIO - EVENT START
IVENT DISPERSAL] F IN PCU/HR ■ JUNCTION INDEX	YEAK TRAFFIC FLOWS
TIC FLOWS EST	
Ing No. 5.5	A

1

APPENDIX A – JUNCTION ASSESSMENTS

2033 Reference

lob Titlo	Dranasad Comprohansiu	o Dovolonmont Induding F	lat Chan & Carvi	as and Fating Dia	rac in CDA(A) Zar	A Kai Tak Aroa 2	A Cito 2	
Job Title:	Shing Kai Road / Concorr	de Read / Muk Chup Street	lat, Shop & Servio	es and Eating Pla	ace in CDA(4) Zor	ie, Kal Tak Area 2	A Site 2	
Scheme:	2022 Design Scenario	ue Roau / Muk Chun Street					Checked by:	
Design Vear	2033 Design Scenario		Job No · CHK507	86310			Date:	
Arm A	Shing Kai Road		505 No.: CHR507	50510			Date.	JOL, 2024
Arm B	Muk Chun Street							
Arm C	Concorde Road (EB)							
	AM 840 105 5 Arm C Concorde Road (EB)	PM $725 \rightarrow 105 \rightarrow 5$ $5 \rightarrow 7$ $4 \rightarrow 7$ $85 \qquad 65 \qquad 5$				→ AM 5 ← 605 ↓ 5	Arm A Shing Kai Road PM 5 775 5	
	AM PM	8565545205	Arm B	Muk Chun Street				
			ENTRY ARM	А	В	C		
INPUT PARAM	IETERS							
V	Approach Half Width (m)		5.00	5.00	7.00		
E .	Entry Width (m)	()		7.00	7.50	7.00		
L	Effective Length of Flare	(m)		5.00	5.00	5.00		
ĸ	Entry Radius (m)	r (m)		30.00	20.00	50.00		
Δ	Entry Angle (degree)	r (m)		40.00	25.00	25.00		
~	Litti y Aligic (degree)			40.00	25.00	23.00		
OUTPUT PARA	METERS							
S	= 1.6 (E - V) / L	Sharpness of flare		0.64	0.80	0.00		
К	= 1 - 0.00347 (A-30) - 0.9	978 (1/R - 0.05)		0.98	1.02	1.05		
X2	= V + ((E-V) / (1+2S))			5.88	5.96	7.00		
M	= EXP ((D-60) /10)			1.00	1.00	1.00		
F	= 303 * X2			1781	1806	2121		
Id Fe	= 1 + (0.5 / (1+M))			1.25	1.25	1.25		
FC	= 0.21*10 (1 + 0.2*X2)			0.57	0.58	0.63		
AM RESULT								
Q	Entry Flow (pcu/hour)			615	155	950		
Qc	Circulating Flow Across E	Entry (pcu/hour)		115	610	75		
Qe	= K (F - Fc*Qc)			1684	1481	2171		
DFC	= Q / Qe	Design Flow / Capacity	0.44	0.37	0.10	0.44		
		Total Entry Flows	1,720					
PM RESULT								
Q	Entry Flow (pcu/hour)			785	70	835		
QC QC	Circulating Flow Across E	ntry (pcu/hour)		115	780	30		
	= K (F - FC*QC)	Dosign Flow / Conseits	0.47	1684	1381	2200		
DFC	- U / UE	Total Entry Flows	0.47	0.47	0.05	0.38		
All the above	formulas are in accordanc	e to T P D M Vol 2 Cha 4 G	1,09U			1	1	
All the upove	ionnalas are in accordanc	с to т.г. <i>р.</i> ім. voi.z спр.4 з	CC 4.J.J					

TRAFFIC SIGNALS CALCULATION MVA HONG KONG LIMITED Job No.: CHK50786310 Junction: Shing Kai Road / Muk Hung Street Design Year: ____2033___ 2033 Designed Scenario Designed By: TCW Checked By: CHC Description: ____ Revised Saturation Flow (pcu/hr) Pro. Turning (%) Radius (m) AM Peak PM Peak Gradient (%) Movements Phase Right Flow (pcu/hr) Stage Width Left Flow (pcu/hr) AM y Value y Value РМ АМ РМ Critical y Critical y Approach (m) 3.650 15 25% 16% 1930 1950 334 0.173 0.173 407 0.209 Shing Kai Road 4 А 1 Ť 2120 2120 366 0.173 443 0.209 0.209 (NB) А 3.650 1 Shing Kai Road ↓ 1980 1980 0.230 0.189 2 3.650 455 0.230 374 в (SB) в 3.650 8 37% 36% 1980 1985 455 0.230 376 0.189 0.189 2

Pedestrian Crossing	Ср	1,3	MIN GREEN + FLASH =	9	+ 9) =	18						
	Dp	2,3	MIN GREEN + FLASH =	9	+ 9) =	18						
	Ep	3 23	MIN GREEN + FLASH =	9	+ 5	· =	18			-			-
	Gp	2,3	MIN GREEN + FLASH =	9	+ 9) =	18						
Netes													
Notes.			Flow. (pcu/lir)		/		₽	Group	Gp,B	A,B,Ep	Group	A,Dp	A,B,Ep
TAC junction : CT 90s add	pted			170(135)	<u> </u>		I	У	0.230	0.403	У	0.209	0.398
				740	(615)			L (sec)	28	34	L (sec)	28	34
				615	(785)			C (sec)	90	90	C (sec)	90	90
				85(65)	Ţ			y pract.	0.620	0.560	y pract.	0.620	0.560
				Ň				R.C. (%)	170%	39%	R.C. (%)	197%	41%
Stage / Phase Diagrams								-					
1.			2.	ЫВ	3.			4.			5.		
	« -	Ср >	Dp ←>		Ep 🔨	Dp ≮>	Cp <≯						
		Gn	_	< T		Fn	Gp						

Fp

-->

18

18

Fp ≪--->

Gp

I/G= 5

I/G= 5

<---->

A

I/G= 3

I/G= 3

Gp

I/G=

I/G=

Date:

JUL, 2024

I/G=

I/G=

Junction:

Shing Kai Road / Muk Hung Street

(D)

. د---->

Sig Cal_2033_DES_new.xlsm \ D

I/G= 10

I/G= 10

	SIGN/	ALS	CALO	CULAT	ION						Job No.	: <u>CHK5</u>	<u>07863</u> 10	Ν	IVA HON	G KONG	
Junction:	Shing k	Kai Roa	d / Muk (Chui Stree	t			_							Design Yea	r: <u>2033</u>	
Description:	2033 D	esign Si	cenario					_			Designed	By: TCW	1		Checked By	: <u>CHC</u>	
	Its				Radi	us (m)	(%)	Pro. Tu	rning (%)	Revised Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movemer	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	AM	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Muk Chui Street (EB)	+	С	3	3.750	30	25		39% / 17%	38% / 19%	1935	1930	440	0.227	0.227	425	0.220	0.220
Shing Kai Road (SB)	↓ ↓	B B	2 2	3.650 3.650	10	20		92% 15%	100% 11%	1740 2095	1720 2100	333 402	0.191 0.192	0.192	300 310	0.174 0.148	0.174
Muk Chui Street (WB)	Ł_ ⊀	D D	4 4	3.650 3.650	10	20		43%	31%	1970 1860	1970 1895	135 70	0.069 0.038	0.069	105 65	0.053 0.034	0.053
Shing Kai Road (NB)	*† †•	A A	1 1	3.650 3.650	18	20		40% 30%	39% 16%	1915 2075	1915 2095	288 312	0.150 0.150	0.150	382 418	0.199 0.200	0.200
Redestrian Crossi	23	En	14			V6H -	5		0	_	14						
	ing	Ep Fp Gp Hp Jp	1,4 2 1,2,4 3 2,3,4 1	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 6 5 5	+ + + +	9 8 10 9 11	- 	14 13 16 14 16						
				1				•						T			I
Notes:	120s adr	onted		Flow: (p	cu/hr)			\wedge			[↑]	Group	Jp,B,C,D	A,B,C,D	Group	A,Fp,C,D	A,B,C,D
	1205 440	optou					60(35	370(275)	▶ 305(300)			У	0.488	0.638	У	0.473	0.647
					170(160)	105(105)				135(105		L (sec)	38	29	L (sec)	39	29
						195(165)) 115(150)	390(585)	▶95(65)	30(20)		C (sec)	0.615	0.683	v pract	0.608	0.683
					75(80)			V		50(20)	R.C. (%)	26%	7%	R.C. (%)	28%	5%
Stage / Phase Di	agrams																
1. ↑ Gp		<	>	2. ∧ GI	Fp <÷	> ~		3 3 . →		с		4. ^ Gp 	~	Ep >	5.		
	*	<	lp ····≯		lp ≼	>			∧ Hp ↓ Ip <>			^{Ip} ≪÷	* * *	D			
I/G= 8			I/G=	9				I/G= 7			I/G=	= 9		I/G=	<u> </u>		
I/G= 8			I/G=	9				I/G= 7			I/G=	= 9		I/G=			(-)

I/G= 9 Date:

JUL, 2024

I/G= Junction:

Shing Kai Road / Muk Chui Street

E

TRAFFIC S	GN/	ALS	CAL	CULAT	ION						Job No.	: <u>CHK5</u>	<u>07863</u> 10	Ν	IVA HON	g kong	LIMITED
Junction:	Shing k	Kai Road	d / Muk (Chui Street	t									Design Yea	r: <u>2033</u>		
Description:	2033 De	esign So	cenario (With propo	osed jund	ction impr	ovement)				Designed	By: TCW			Checked By	CHC	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Muk Chui Street (EB)	* -↓* *	C C	3 3	4.000 4.000	15	17	1	82% 32%	80% 36%	1305 1465	1305 1460	207 233	0.159 0.159	0.159	201 224	0.154 0.153	0.154
Shing Kai Road (SB)	↓ ↓	B B	2 2	3.650 3.650	10	20		92% 15%	100% 11%	1740 2095	1720 2100	333 402	0.191 0.192	0.192	300 310	0.174 0.148	0.174
Muk Chui Street (WB)	<u>+</u> ≁	D D	4 4	3.650 3.650	10	20		43%	31%	1970 1860	1970 1895	135 70	0.069 0.038	0.069	105 65	0.053 0.034	0.053
Shing Kai Road (NB)	*† †*	A A	1 1	3.650 3.650	18	20		40% 30%	39% 16%	1915 2075	1915 2095	288 312	0.150 0.150	0.150	382 418	0.199 0.200	0.200
Pedestrian Crossir	ng	Εp	1,4	MIN GRE	:EN + FL	ASH =	5	+	9	-	14						
		Fp Gp Hp Ip Jp	2 1,2,4 3 2,3,4 1	Min gre Min gre Min gre Min gre Min gre	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH =	5 5 6 5 5	+ + + +	9 8 10 9 11	= = =	14 13 16 14 16						
Notes:				Flow: (pe	cu/hr)			Å			1 ^ℕ	Group	A,B,Hp,D	A,B,C,D	Group	A,B,Hp,D	A,B,C,D
TAC junction: CT ² * Site factor 0.7 ad	20s ado ded due	opted to flare	length				60(35)		➤ 305(300)		I	У	0.411	0.570	У	0.427	0.581
					170(160))		370(275)		135(105)	A	L (sec)	44	29	L (sec)	44	29
					\preccurlyeq	195(185)		390(585)		40(45)	\succ	C (sec)	120	120	C (sec)	120	120
					75(80))	115(150)		95(65)	30(20)		y pract.	0.570	0.683	y pract.	0.570	0.683
								γ				R.C. (%)	39%	20%	R.C. (%)	33%	17%
Stage / Phase Dia 1.	igrams			2.				3.				4.			5.		
∱ Gp 		<-	Ep ≯	^ Gr *	Fp <	» √	В			С		∱ Gp \ \ \	<-	Ep >			
	, *	«	lp >		lp ≼	>			↑ Нр ¦/ ^р <>			^{Ip}	* * *	D			
I/G= 8			I/G=	9				I/G= 7			I/G:	= 9		I/G=			
I/G= 8			I/G=	9				I/G= 7			I/G=	= 9 9:		I/G=	ion:		E
												JUL, 2024		\$hing Kai	Road / Muk Chui St	treet	

Job No.: <u>CHK507863</u>10

Junction:	Shing K	ai Road	d / Kai S	hing Street	: / Muk C	n Street		_							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign So	cenario					-			Designed	By: TCW			Checked By	: <u>CHC</u>	
	onts				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	 ≁ 	A A A	2 2 2	3.650 3.650 3.650	18	18 15		45% 66%	74% 28%	1910 2010 1925	1865 2070 1925	255 268 257	0.134 0.133 0.134	0.134	175 194 181	0.094 0.094 0.094	0.094
Muk On Street	₽ ₽	E E	1 1	3.650 3.650	18	20		61% 45%	56% 56%	1885 2050	1890 2035	309 336	0.164 0.164	0.164	313 337	0.166 0.166	0.166
Shing Kai Road (WB)	← ∢ <u>←</u> √ #	D D D	3 3 3	3.650 3.650 3.650	50	20		50%	49%	2120 2045 1345	2120 2045 1345	209 201 65	0.099 0.098 0.048		158 152 65	0.075 0.074 0.048	
kai Shing Street	ן• ↑ ∙¶ #	C C B	4 4 1,2,4	3.650 3.650 4.000	50	20				1970 2120 1370	1970 2120 1370	200 270 550	0.102 0.127 0.401	0.127	425 225 645	0.216 0.106 0.471	0.216
Pedestrian Crossi	ng	Fp Gp Ip Jp Lp	2,3,4 1 1,3,4 3 3,4 1,2,4	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH = ASH =	5 8 5 7 5 5	+ + + + + + +	9 20 21 9 17 9 9	= = = = =	14 28 29 14 24 14 14						
Notes:		мр	1,2,0	Flow: (po	cu/hr)		5		5			Group	GRADC	EA In C	Group	Co A In C	EAIDC
TAC Junction: 13	Os CT ado	opted						\wedge			Ϋ́ν	Group	0 359	0.425	Group	0 310	0.475
# Site factor 0.7 a	dopted						150(190)	305(285)	 190(175) 	100(75)	1	L (sec)	56	48	L (sec)	73	48
				_	115(130)	230(185))			310(235)		C (sec)	130	130	C (sec)	130	130
					405(005)		550(645)	2/0(225)	200(425)	65(65)		y pract.	0.512	0.568	y pract.	0.395	0.568
					433(233)			Ý				R.C. (%)	43%	34%	R.C. (%)	27%	19%
Stage / Phase Di	agrams			1						En				5.			
1. ← Gp ↓ Hp ↓ Hp	<> Mp	E		2. A	B	<> Mp	۲ ۲	р 3. / Lp Jр Др	←-> Mp	> Kp <>	dr ↓	4. + + + + + + + + + + + + +	Кр < С	 Lp ∧ -> C_ Lp ∧ Lp ∧ Lp	5.		
I/G= 8			I/G=	6				I/G= 10 I/G= 10)	24 24	I/G	= 3		I/G=			
											Dat	e: JUL. 2024		Junct Shing Kai	ion: Boad / Kai Shing S	treet / Muk On Str	F

Job No.: <u>CHK507863</u>10

Junction:	Shing K	ai Roa	d / Shing	I Fung Roa	ad / Muk	Tai Stree	t	_							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign S	cenario					-			Designed	By: <u>TCW</u>	1		Checked By	CHC	
	nts				Radi	us (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	♣ ↑ ┌╸ ┌╸	B B B B	2 2 2 2	3.650 3.500 3.500 3.500	15	20 15	I	27%	58%	1930 2105 1960 1915	1870 2105 1960 1915	296 324 481 469	0.153 0.154 0.245 0.245	0.245	233 262 448 437	0.125 0.124 0.229 0.228	0.229
Muk Tai Street	↓ ^ ↓• ^	A A	1 1	3.750 4.000	22	17		84%	92%	980 955	980 950	190 215	0.194 0.225	0.225	160 120	0.163 0.126	0.163
Shing Kai Road (WB)	← ↓ ↓ ↓	E E E	4 4 4 4	3.650 3.650 3.650 3.650	25 28	23		43%	71%	2120 2060 1870 2010	2120 2025 1870 2010	238 232 251 269	0.112 0.113 0.134 0.134		294 281 253 272	0.139 0.139 0.135 0.135	0.139
Shing Fung Road	⋖┐ ⋖┐ ┟╸	C C D D	2,3 2,3 3 3	3.650 3.650 3.650 3.650	20 22	23 19		42%	82%	1840 1985 2065 1750	1840 1985 2010 1750	556 599 130 110	0.302 0.302 0.063 0.063	0.063	431 464 142 123	0.234 0.234 0.071 0.070	0.071
Pedestrian Crossir	ng	Fp Gp Fp Jp Kp Kp Np	1,3,4 2,3 1,4 4 1,2,3 1,2,3 4 2,3 1	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EEN + FL EEN + FL	ASH = ASH = ASH = ASH = ASH = ASH = ASH = ASH = ASH =	8 5 5 7 5 7 5 6	+ + + + + + + + +	15 7 8 9 7 13 9 11		23 12 13 19 14 12 20 14 17						
Notes:				Flow: (po	cu/hr)			Å			[▲] N	Group	A,B,D,E	A,B,D,Lp	Group	A,B,D,Lp	A,B,D,E
TAC junction : CT ^ Site factor 0.5 ad	130s add	opted to flare	e length		80(135)) 540(360))	190(160) 1155(895)	35(10) 75(25)	▶ 180(110▶ 165(240)	0) 100(200) 370(375) ◀ 520(525)		y L (sec) C (sec) y pract. R.C. (%)	0.668 17 130 0.782 17%	0.533 40 130 0.623 17%	y L (sec) C (sec) y pract. R.C. (%)	0.462 40 130 0.623 35%	0.601 17 130 0.782 30%
Stage / Phase Dia	igrams	A		2.		6-	Мр	3.		,	Mp	4.		Мр	5.		
K Np <≥ Fp ↓ V			Kn	B	Gp		>	Kn	Fp Gp	ج	>	Fp V	ر -	Lp			
, 7 4 ^с Нр			ר, איי לק		c		7		÷		kp ↓ ↓ ↓ ↓ ↓	ر Hp	lp ≼≯	E			
I/G= 2			I/G=	5				I/G= 6			I/G=	= 10	20	I/G=			
			1.0-	- 1				1.0 0			Date): JUL, 2024		Junct Shing Kai I	ion: Road / Shing Fung	Road / Muk Tai St	G

Job No.: <u>CHK507863</u>10

Junction:	Shing k	(ai Road	d / West	ern access	to main	stadium		-							Design Yea	r:2033	
Description:	2033 De	esign So	cenario								Designed	By: TCW			Checked By	CHC	
	ents				Radi	us (m)	t (%)	Pro. Tu	ırning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr	y Value	Critical y	Flow (pcu/h	y Value	Critical y
		Α	1	3 650	17.5			3%	4%	1975	1970	502	0 254	- ,	445	0 226	0.226
Shing Kai Road EB	 → ★	A A	1 1	3.650 3.650		22.5		3%	3%	2120 2115	2120 2115	540 538	0.255 0.254	0.255	478 477	0.225 0.226	0.220
Shing Kai Road WB	↓ ↓	C C C	3 3 3	3.650 3.650 3.650	17.5	22.5		21% 1%	23% 2%	1945 2120 2120	1940 2120 2115	536 585 584	0.276 0.276 0.275	0.276	443 484 483	0.228 0.228 0.228	0.228
Western Access Road to Main Stadium NB	¶ †→	B B	2 2	3.750 3.750	15	22.5		75%	80%	1810 2030	1810 2020	105 20	0.058 0.010	0.058	110 25	0.061 0.012	0.061
Western Access	₽	D	4	3.500	20			50%	50%	1895	1895	10	0.005		10	0.005	
Stadium SB	►	D	4	3.500		32.5				2010	2010	15	0.007		15	0.007	
Pedestrian Crossi	ng	Ep Fp Hp Jp	4 1,2,3 3 1,2,4 2 1,3,4	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5	+ + + + +	5 7 10 11 8 7		10 12 15 17 13 12						
TAC junction : CT	130s ad	opted		1 IOW. (pt	Juini			\mathcal{A}			Ŧ	Group	A,B,Gp,D	A,B,C,D	Group	A,B,Gp,D	A,B,C,D
,							15(15)		5(5)	5(10)	\	y	0.313	0.589	y	0.287	0.515
				9	15(20)	1550(136	35)			1590(1300)		- C (sec)	130	130	C (sec)	130	130
				\leq	→ 15(15)		105(110)	5(5)	▶15(20)	110(100)	•	y pract.	0.630	0.734	y pract.	0.630	0.734
					10(10)			Ý				R.C. (%)	101%	25%	R.C. (%)	120%	42%
Stage / Phase Di	agrams												1				
		Fp <>	^ - Hp	2.		<	Fp > ^ >	3		F < Gp		4. Ep <>		А́нр	5.		
> Jp	>		¥		В	, I	p v		«> qL			> qL	->	*			
I/G= 5 I/G= 5			I/G=	5 5				I/G= 5			I/G	= 7	5 5	I/G= I/G=			
											Date	e: JUL, 2024		Junc Shing Ka	tion: Road / Western ac	cess to main stadi	um (H)

Job No.: <u>CHK507863</u>10

Junction:	To Kwa	Wan R	oad / Sh	ing Kai Ro	ad / Sun	g Wong	Toi Road	_							Design Yea	2033_	
Description:	2033 De	esign Sc	enario					Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>				
	ints				Radi	us (m)	(%) :	Saturation pcu/hr)		AM Peak			PM Peak				
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
To kwa Wan Road (NB)	+† †	C C	1 1	3.600 3.000	18			49%	48%	1895 2055	1900 2055	538 582	0.284 0.283	0.284	545 590	0.287 0.287	0.287
Shing Kai Road (SB)	↓ ↓ ↓	A A A	2 2 2	3.500 3.650 4.000		32 30		39%	77%	1965 2080 2050	1965 2045 2050	551 584 575	0.280 0.281 0.280	0.281	462 481 482	0.235 0.235 0.235	0.235
Sung Wong Toi Road (EB)	┑┵	B B B	3 3 3	3.650 3.650 3.650	18 20	32 30		100% / 0%	0 100% / 0%	1830 1970 2020	1830 1970 2020	349 376 360	0.191 0.191 0.178	0.191	253 272 225	0.138 0.138 0.111	0.138
Pedestrian Crossi	ng	Dp Ep Gp Hp Ip	2,3 1 1,3 2 1,2 3	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5 5 5	+ + + + +	10 12 11 7 6 7	= = = =	15 17 16 12 11 12						
Notes:				Flow: (po	cu/hr)							0	4.0-0	4.7.0	0	A 0- 0	4.5.0
TAC Junction: CT	130s ad	opted					805(850)				Ŧ	Group	0,565	а,в,с 0 756	Group	A,Gp,C	A,B,C
					705/505)			905(575)				L (sec)	29	13	L (sec)	29	13
					125(525)		265(260)	855(875)				C (sec)	130	130	C (sec)	130	130
					₹ 360(225)	1	200(200)					y pract.	0.699	0.810	y pract.	0.699	0.810
												R.C. (%)	24%	7%	R.C. (%)	34%	23%
Stage / Phase Dia	agrams											1.			1_		
г. Fp _μ ,7	ج Ep		/ A	Z.	B J J	*	۴.	・シュ Dp	Fp ,7		۳. Dp	4.			5.		
रू. Hp	7			للا جر Hp	<i>,</i> , , ,				c)/	A .	الا Ip						
I/G= 5			I/G=	6				I/G= 5			I/G=	-		I/G=			
I/G= 5			I/G=	0				I/G= 5			I/G=	ə:		I/G=	ion:		()
												JUL, 2024		o Kwa Wa	in Road / Shing Ka	Road / Sung Wo	ng Toi Road

TRAFFIC S	IGN/	ALS (CAL	CULAT	ION						Job No.	: <u>CHK5</u>	<u>07863</u> 10	Ν	IVA HON	g kong	LIMITED
Junction:	To Kwa	Wan R	oad / Sh	iing Kai Ro	ad / Sun	g Wong	Toi Road					Design Year	r: <u>2033</u>				
Description:	2033 De	esign So	cenario (With propo	osed junc	tion imp	rovement)				Designed	By: TCW			Checked By	CHC	
	nts				Radio	us (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
To kwa Wan Road (NB)	+ ↑	D D	4 4	3.600 3.000	18			49%	48%	1895 2055	1900 2055	538 582	0.284 0.283	0.284	545 590	0.287 0.287	0.287
Shing Kai Riad (SB)	↓ ↓ ↓	A A A	1,2 1,2 1,2	3.500 3.650 4.000		32 30		39%	77%	1965 2080 2050	1965 2045 2050	551 584 575	0.280 0.281 0.280	0.281	462 481 482	0.235 0.235 0.235	0.235
To Kwa Wan Road (EB)	+ + + +	C B B	2,3 2,3 3 3	3.500 3.500 3.500 3.500	18 20	30 28				1630 1960 2005 2000	1630 1960 2005 2000	329 396 180 180	0.202 0.202 0.090 0.090	0.090	238 287 113 112	0.146 0.146 0.056 0.056	0.056
Pedestrian Crossin	g	Jp Ep Fp Gp Hp Ip	3,4 1 1,4 3 1,2,3 4	Min gre Min gre Min gre Min gre Min gre Min gre	EEN + FL EEN + FL EEN + FL EEN + FL EEN + FL EEN + FL	ASH = ASH = ASH = ASH = ASH = ASH =	5 7 8 5 5 5 5	+++++++++++++++++++++++++++++++++++++++	10 13 15 7 6 7		15 17 16 12 11 12						
Notes:				Flow: (p	cu/hr)		005(050)	/			↑ ^N	Group	A,Jp	A,B,D	Group	A,Jp	A,B,D
*Site factor 0.9 add	130s ad led due	to flare	length				805(850)	005(575)				У	0.281	0.655	У	0.235	0.579
					725(525)			905(575)				L (sec)	21	15	L (sec)	21	15
					\leq		265(260)	855(875)				C (sec)	130	130	C (sec)	130	130
					360(225)							y pract.	0.755	0.796	y pract.	0.755	0.796
												R.C. (%)	169%	22%	R.C. (%)	221%	38%
Stage / Phase Dia	grams			2				2				4			E		
Fp , 7	ل ار (Ep		// A	2.	C	*		A	C B	5	لار مر	Fp 7	1	الد qt	5.		
н! 	0			7	`` <i>-</i> <u>/</u> Нр				Gp 、オ ビ Hp			D	1	اللہ الح Ip			
I/G= 5			I/G= 1	2				I/G= 6			I/G=	= 5		I/G=			
								1.2.0	I		Date	9: JUL, 2024		Junct To Kwa W	ion: an Road / Shing Kai	i Road / Sung Wo	I) ng Toi Road

Job No.: <u>CHK507863</u>10

Junction:	Kowloo	n City R	oad / Su	ing Wong	Toi Road										Design Yea	r: <u>2033</u>	
Description:	2033 De	sign Sc	enario					Designed	By:TCW			Checked By	: <u>CHC</u>				
	ents				Radiu	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Sung Wong Toi Ro	← ←	A A	1 1	3.650 3.500						1585 1685	1585 1685	528 562	0.333 0.334	0.334	543 577	0.343 0.342	0.343
Kowloon City Road	*] *]	B B	2 2	4.500 4.500	10 12					1435 1570	1435 1570	298 327	0.208 0.208	0.208	332 363	0.231 0.231	0.231
Pedestrian Crossi	ng	Ср	2	MIN GRE	EN + FL	ASH =	10	+	11	=	21						
Notes:				Flow: (po	:u/hr)						[↑]	Group	A,Cp	A,B	Group	A,Cp	A,B
Site factor 0.8 add activities at Sung V Kowloon City Road	ed due to Vong To I	i Road &	de &									У	0.334	0.542	У	0.343	0.574
										1090(1120)		L (sec)	27 65	10 65	L (sec)	27 65	10 65
							625(695)	•				y pract.	0.526	0.762	y pract.	0.526	0.762
												R.C. (%)	58%	41%	R.C. (%)	54%	33%
Stage / Phase Dia	igrams											1					•
1.				2. ∢-				3				4.			5.		
					~	+	· >	В									
	A						Ср										
I/G= 6			I/G= 6	B				 /G=			I/G=	:		I/G=			
I/G= 6			I/G= 6	o				I/G=			I/G=	= e: JUL, 2024		I/G= Junct Kowloon C	ion: ity Road / Sung We	ong Toi Road	J

Job No.: <u>CHK507863</u>10

Junction:	Ma Tau	Chung	Road / S	Sung Wong	g Toi Roa	ad / Fu N	ing Street	-							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign So	cenario					-			Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Sung Wong Toi Re	יד רד רד ר ר ר	D D E E	2,3 2,3 2,3 2 2 2	3.500 3.500 3.000 3.500 3.500 3.500	I	15 20 25	1	1	1	1785 1960 1940 1965 2105	1785 1960 1940 1965 2105	455 500 495 263 282	0.255 0.255 0.255 0.134 0.134	0.255	531 582 577 239 256	0.297 0.297 0.297 0.122 0.122	0.297
Ma Tau Chung Rd (NB)	_+ → →	A A A	1 1 1	3.500 3.500 3.500	10			24%	37%	1895 2105 2105	1860 2105 2105	491 545 544	0.259 0.259 0.258		633 716 716	0.340 0.340 0.340	0.340
Ma Tau Chung Rd (SB)	+ + +	B B B	1 1 1	3.500 3.500 3.500						2105 2105 1965	2105 2105 1965	690 691 644	0.328 0.328 0.328	0.328	482 483 450	0.229 0.229 0.229	
Fu Ning Street	لم	I	4	3.500		20				1830	1830	25	0.014		25	0.014	
Pedestrian Crossi	ng	Cp Fp Gp Hp	1 2,3 1,2,3 3,4	MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH =	10 10 5 7	+ + + +	9 9 5 8		19 19 10 15						
Notes:				Flow: (pe	cu/hr))		+ → _N	Group	A,D,I	B,D,I	Group	B,D,I	A,D,I
								#REF!	/			у (222)	0.514	0.583	у	0.527	0.638
					120(235)	1460(18;	30)			2025(1415)		C (sec)	130	130	C (sec)	130	130
							,	545(495)	▶1450(1690)	,		y pract.	0.775	0.775	y pract.	0.775	0.775
								ľ				R.C. (%)	51%	33%	R.C. (%)	47%	22%
Stage / Phase Di	agrams											T	•	•	1	•	•
1. A	Ср	<gr ←></gr 	9> B	2.	↑ ↓ Fp	D	Gp)	3.	< ↑ ↓ Fp ↓ D	Нр > <-	Gp >	4. <	Нр >		5.		
I/G=			I/G=	5				I/G= 5			I/G=	= 5	5	I/G=			
I/G=			I/G=	5				I/G= 5			I/G= Date	= 5 e: .IUI 2024	5	I/G= Junct	ion:	Vong Toj Rosd / E	K U Ning Street

Job No.: <u>CHK507863</u>10

Junction:	Olympic	Avenu	e / Hang	g Wan Roa	d			-							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign So	cenario					-			Designed	By: TCW			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	urning (%)	Revised Flow (Saturation (pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (NB)	† †	A A	1,2 1,2	3.500 3.500			1			1965 2105	1965 2105	357 383	0.182 0.182	1	307 328	0.156 0.156	1
Olympic Avenue (SB)	ţ	B B	1,2 1,2	3.650 3.650						1980 2120	1980 2120	401 429	0.203 0.202	0.203	333 357	0.168 0.168	0.168
Hang Wan Road	** ** *	C D D E F P G P G P	2,3 3 3 1 1 3	5.000 3.300 3.300 MIN GRE MIN GRE MIN GRE	13 EN + FL EN + FL EN + FL EN + FL	25 20 ASH = ASH = ASH = ASH =	5 5 5	+ + +	6 6 7	1895 1965 1940 = = =	1895 1965 1940 1940	50 382 378	0.026 0.194 0.195	0.195	30 262 258	0.016 0.133 0.133	0.133
Notes:				Flow: (po	:u/hr)						₽	Group	A,D	B,D	Group	A,D	B,D
								Ļ			I	У	0.377	0.397	У	0.290	0.302
					50(30)			830(690)				L (sec)	9	11	L (sec)	9	11
					\leq			740(635)				C (sec)	60	60	C (sec)	60	60
					760(520)							y pract.	0.765	0.735	y pract.	0.765	0.735
Stars / Dhase Di												R.C. (%)	103%	85%	R.C. (%)	164%	144%
1.	agranis			2.				3	J.			4.			5.		
Fp ,77	Ęp ,≦⊥		3		C /A	*		8	C D	Γ.,	Gp						
I/G= 6			I/G=					I/G= 7 I/G= 7			I/G=			I/G=			
			1	I					1		Date) JUL 2024		Junct	ion:	Road	L

Ioh Title	Pronosed Comprehensiv	e Development Incl	luding 🛙	lat Shor	& Sarvin	es and Fating DI	ace in CD	Δ(<u>4</u>) 700	e Kai Tak Ares ?	Δ Site 2	
Junction:	Prince Edward Road East	c, Nul TUN AICO Z	Designed by:	TCW							
Scheme:	2033 Design Scenario		Checked by:	CHC							
Design Year:	2033		Date:	JUL, 2024							
Arm A	Prince Edward Road Eas	t									
Arm B	Ma Tau Chung Road (EB)									
Arm C	Argyle Street	*									
Arm D	Prince Edward Road We	SL									
		AM	PM		AM	PM		AM	PM		
	Arm D	→ 1530	1270		3025	2955>		1965	2035		
	Prince Edward Road West			↑							
				1495	AM						
		1065	1115	1685	PM						
		- 1005	1115								
	Arm C	→ 470	450								
	Argyle Street			↑							
							+				
				2090	AM	AM	1055				
			415	2355	PM	PM	915				
		- 555	415								
	Arm B										
	Ma Tau Chung Road (EB)	<u>→ 1630</u>	1455								
				↑							
				1015	AM			1745	1660 4	Arm A Prince Edward P	ood Fost
		1785	1260	1320		2800 2580		1/45	1000	Fince Edward R	Uau East
		1,05									
				ENT	RY ARM	А	В		С	D	
INPUT PARAM	ETERS										
V	Approach Half Midtle /	N N				0 50		0	6.00	6.50	
F	Approach nan Width (m)	1				0.50 9.00	9.5	00	0.00 8.00	9.50	
Ĺ	Effective Length of Flare	(m)				1.00	5.0	00	5.00	9.00	
R	Entry Radius (m)					50.00	22.	00	28.00	60.00	
D	Inscribed Circle Diamete	r (m)				100.00	100.00 100.00			100.00	
A	Entry Angle (degree)			10.00	55.	00	15.00	30.00			
	METERC										
UUTPUT PARA	IVIETERS										
s	= 1.6 (E - V) / I	Sharpness of flare				0.80	0.1	16	0.64	0.57	
ĸ	= 1 - 0.00347 (A-30) - 0.9			1.10	0.92 1.07			1.03			
X2	= V + ((E-V) / (1+2S))			8.69	9.88 6.88			8.00			
М	= EXP ((D-60) /10)			54.60	54.60 54.60			54.60			
F	= 303 * X2					2634	299	93	2084	2423	
Td F-	= 1 + (0.5 / (1+M))					1.01	1.0	01	1.01	1.01	
FC	= 0.21*10 (1 + 0.2*X2)					0.58	0.6	5	0.50	0.55	
AM RESULT											
Q	Entry Flow (pcu/hour)					1,745	1,6	30	470	1,530	
Qc	Circulating Flow Across I	Entry (pcu/hour)				1,055	1,0	15	2,090	1,495	
Qe	= K (F - Fc*Qc)					2221	210	60	1100	1652	
DFC	= Q / Qe	Design Flow / Capa	acity	0.9	93	0.79	0.7	75	0.43	0.93	
		Total Entry Flows		5,3	/5						
PIVI RESULI	Entry Flow (new/hour)					1 660	1.4	55	150	1 270	
Q QC	Circulating Flow Across		915	1,4	20	2.355	1,685				
Qe	= K (F - Fc*Qc)					2310	1,3	83	958	1544	
DFC	= Q / Qe	Design Flow / Capa	acity	0.8	32	0.72	0.7	73	0.47	0.82	
		Total Entry Flows		4,8	35						
All the above ;	formulas are in accordanc	e to T.P.D.M. Vol.2	Chp.4	Sec 4.5.9							

TRAFFIC	SIGN	ALS	CAL	CULA	TION						Job No.	: <u>CHK5</u>	<u>07863</u> 10	N	IVA HON	g kong	
Junction: Kai San Road / Tsat Po Street							-							Design Yea	r: <u>2033</u>		
Description: 2033 Design Scenario							-			Designed	By: TCW		Checked By: CHC				
	ţ				Radius (m)		(%)	Pro. Turning (%)		Revised Saturation Flow (pcu/hr)		AM Peak				PM Peak	
Approach	Movemen	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Tsat Po Street (EB)	⊥	С	4	5.000	10	25		14% / 64%	11% / 37%	1995	2040	70	0.035		95	0.047	0.047
Tsat Po Street (WB)	≁ ⊊	A A	1 1	3.600 3.600	10	25		89% 29%	69% 59%	1745 2080	1790 2045	360 430	0.206 0.207	0.207	364 416	0.203 0.203	0.203
Kai San Road (NB)	* ⊀†	B B	2 2	4.000 4.000	10	15		42%	13%	1960 1895	1960 1975	470 420	0.240 0.222	0.240	400 345	0.204 0.175	0.204
Pedestrian Cross	ing	Dp Ep Fp	2 2,3 1,2,4	MIN GRE MIN GRE MIN GRE	EEN + FI EEN + FI EEN + FI	ASH = _ASH = _ASH =	10 8 7	+ + +	9 8 7	= = =	19 16 14						
		Gр Нр	2 2	MIN GRE	EEN + FI EEN + FI	_ASH = _ASH =	9 7	+ +	8 7	=	17 14			*			*
Notes:				Flow: (p	cu/hr)						++>	Group	A,Gp,B,C	A,Gp,B,C	Group	A,Gp,B,C	A,Gp,B,C
												У	0.447	0.447	У	0.454	0.454
					10(10)				125(245)	A.	L (sec)	54	54	L (sec)	48	48
					\triangleleft	15(50)	175(45)	245(300)	470/400)	345(285)	\rightarrow	C (sec)	130	130	C (sec)	130	130
					45(35)	175(45)		470(400)	320(250))	y pract.	0.526	0.526	y pract.	0.568	0.568
								Y				R.C. (%)	18%	18%	R.C. (%)	25%	25%
1.	agrams			2.	Hp ,7			3.				4.			5.		
< Fp	>		<u>A</u>	Gr	€ ^{Fp}	<>	^ □ 		B	<>			<u><u></u><u>p</u></u>				
I/G= 11 I/G= 11			I/G=	11 11		17 17		I/G= 3 I/G= 3			I/G=	= 9	5	I/G= I/G=			
											Date	e:		Junct	ion:		(N)

JUL, 2024

Kai San Road / Tsat Po Street

Job Titlo:	Bronocod Comprohensiv	a Davalanmant Including E	lat Shan & San	icos and Eating Di	2co in CDA(A) Zor	A Kai Tak Aroa		
Jupctica:	Sto Moi Street / July 11-	Street	iat, shop & serv	ices and Eating Pla	ace in CDA(4) ZOP	ie, Kal Tak Area 2	Designed by:	
Scheme:	2033 Design Scenario	JUCEL					Checked by:	
Design Vear	2033 Design Scenario			286310			Date:	
Arm A	Sze Mei Street		202 Ho.: CHK307	00010				301, 2027
Arm B	Sze Mei Street							
Arm C	Luk Hop Street							
	·							
			Arm A	Sze Mei Street				
					AM 5	435 105	105	
					PM 5	335 180	180	
					€	₄ ⊢ ↓	+	
	AN	DM					Free Flow	
	Alvi 110	230 *		<u> </u>				
	610	600						
	175	85	/					
			/	\				
	Arm C							
	Luk Hop Street							
			\					
			\mathbf{N}					
		<hr/>						
	۵M	185 295 5						
	PM	360 330 5	Arm B	Sze Mei Street				
			ENTRY ARM	А	В	С		
INPUT PARAM	ETERS							
V	Approach Half Width (m)			4.00	3.50	4.50		
E	Entry Width (m)	()		4.00	3.50	5.00		
L	Effective Length of Flare	(m)		1.00	1.00	2.00		
r D	Entry Radius (M)	r (m)		30.00	100.00	15.00		
Δ	Entry Angle (degree)			10.00	10.00	30.00		
	Lini y Angle (degree)			10.00	10.00	33.00		
OUTPUT PARA	METERS							
S	= 1.6 (E - V) / L	Sharpness of flare		0.00	0.00	0.40		
к	= 1 - 0.00347 (A-30) - 0.9	78 (1/R - 0.05)		1.09	1.11	0.97		
X2	= V + ((E-V) / (1+2S))			4.00	3.50	4.78		
M	= EXP ((D-60) /10)			0.05	0.05	0.05		
F Td	= 303 + X2			1212	1061	1448		
Fc	– 1 + (U.3 / (1+IVI)) – 0 21*Td (1 + 0 2*V2)			1.48	1.48	1.48		
10	- 0.21 iu (1 + 0.2 · X2)			0.50	0.55	0.01		
AM RESULT								
Q	Entry Flow (pcu/hour)			545	485	895		
Qc	Circulating Flow Across E	ntry (pcu/hour)		790	615	305		
Qe	= K (F - Fc*Qc)			837	816	1220		
DFC	= Q / Qe	Design Flow / Capacity	0.73	0.65	0.59	0.73		
		Total Entry Flows	1,925					
PM RESULT								
Q	Entry Flow (pcu/hour)			520	695	915		
Qc	Circulating Flow Across E	ntry (pcu/hour)		690	425	340		
Qe	= K (F - Fc*Qc)			898	927	1200		
DFC	= Q / Qe	Design Flow / Capacity	0.76	0.58	0.75	0.76	1	
All 46 - 1	6 · · ·	Total Entry Flows	2,130					
All the above ;	formulas are in accordance	e to T.P.D.M. Vol.2 Chp.4 S	ec 4.5.9					

Job No.: <u>CHK507863</u>10

Junction:	Shing K	ai Roac	d / Slip ro	oad of CKF	R			-							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign Sc	cenario					-			Designed	By: TCW			Checked By	CHC	
	ints				Radi	us (m)	(%) :	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	→ * 7	A A A	1 1 1	3.650 3.650 3.650		26 23	1	0%	13%	1980 2120 1990	1980 2105 1990	316 339 230	0.160 0.160 0.116	0.160	233 248 234	0.118 0.118 0.118	0.118
Shing Kai Road (WB)	* ↓ * ← ←	E E E	3 3 3	4.500 3.600 3.600	35			43%	37%	2030 2115 2115	2030 2115 2115	327 342 341	0.161 0.162 0.161	0.162	347 362 361	0.171 0.171 0.171	0.171
Slip Road of CKR	* ► ►	B C C	1,2 2 2	5.000 3.600 3.600	35	18 20				2030 1950 1965	2030 1950 1965	120 57 58	0.059 0.029 0.030		160 52 53	0.079 0.027 0.027	
Pedestrian Crossii	ng	Fp Gp Ip Jp Kp	1,2 1 2 3 3 3	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH =	5 5 14 5 5 10	+ + + + + +	10 5 10 10 5 8		15 10 24 15 10 18						÷
Notes:				Flow: (po	cu/hr)						≜ N	Group	A,C,E	A,Hp,E	Group	A,C,E	A,Hp,E
* assumed to be s	ame pha	se for									+	у.	0.351	0.322	у.	0.316	0.289
oonoon raaro parp												L (sec)	12	37	L (sec)	12	37
					$ \rightarrow$	655(450)				870(940)		C (sec)	130	130	C (sec)	130	130
					230(265)		120(160)		115(105)	140(130))	y pract.	0.817	0.644	y pract.	0.817	0.644
								γ				R.C. (%)	133%	100%	R.C. (%)	159%	123%
Stage / Phase Dia	agrams											I .			1-		
	В	^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r Fp جريع Gp	2.	Hp B	Fr		D	ج عربي Jp	> Kp	E D	4.			5.		
I/G= 5 I/G= 5			I/G=	5		24 24		I/G= 5			I/G=			I/G=			
											Date	; JUL, 2024		Junct Shing Kai	Road / Slip road of	CKR	P

Job No.: <u>CHK507863</u>10

Note: Description Description Total Product Description Descript	Junction:	Shing k	Kai Roa	d / Easte	ern access	to main	stadium									Design Yea	r: <u>2033</u>	
Image: Production Consumption Production Cons	Description:	2033 D	esign Si	cenario								Designed	By: TCW	,		Checked By	CHC	
Approxim $\frac{9}{2}$ <t< th=""><th></th><th>ints</th><th></th><th></th><th></th><th>Radi</th><th>us (m)</th><th>(%) :</th><th>Pro. Tur</th><th>rning (%)</th><th>Revised S Flow (</th><th>Saturation (pcu/hr)</th><th></th><th>AM Peak</th><th></th><th></th><th>PM Peak</th><th></th></t<>		ints				Radi	us (m)	(%) :	Pro. Tur	rning (%)	Revised S Flow (Saturation (pcu/hr)		AM Peak			PM Peak	
Single Mark A I 3 800 10 100 1000 1000 0.201 0.211 442 0.222 0.222 EB \rightarrow A I 3.00 3.0 10 2135 2135 535 0.211 442 0.222 0.222 EB \rightarrow A I 3.00 3.0 10 0.000 100	Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Shing Kai Road (EB)	 → →	A A A	1 1 1	3.800 3.800 3.800	15	30	1	1% 1%	2%	1995 2135 2135	1990 2135 2135	500 535 535	0.251 0.251 0.251	0.251	442 474 474	0.222 0.222 0.222	0.222
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Eastern Access to main stadium	⊾ ₊↓	C C	3 3	3.650 3.650	10	15		67%	67%	1720 1990	1720 1990	10 15	0.006 0.008		15 15	0.009 0.008	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Shing Kai Road (WB)	┺ ╺┺	B B B	2 2 2	3.800 3.800 3.800	15	30		2% 3%	3% 4%	1990 2135 2130	1990 2135 2130	547 587 586	0.275 0.275 0.275	0.275	456 490 489	0.229 0.230 0.230	0.230
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
Notes: Flow: (pcu/hr) AB.C.pp AB.C.pp A.B.C.pp	Pedestrian Cross	ing	Dp Ep Fp Gp Hp	4 1,3,4 2,4 3,4 1,2,4	MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5	+ + + +	10 10 10 7 7	- - - -	15 15 15 12 12						*
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Notes:				Flow: (po	cu/hr)						↑ N	Group	A B Gn	A B C Dp	Group	A B Gn	A B C Dn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TAC junction : CT	130s ad	opted					40(40)	\mathbb{A}		,	+"	y	0.526	0.526	y	0.452	0.452
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						5(10)	1	10(10)	5(5)	• 10(15) 15(20))	L (sec)	26	41	L (sec)	26	41
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						\triangleleft	1560(13	70)			1695(1400)	\rightarrow	C (sec)	130	130	C (sec)	130	130
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						5(10))				10(15))	y pract.	0.720	0.616	y pract.	0.720	0.616
Stage / Phase Diagrams 1. \checkmark \checkmark \checkmark \checkmark \checkmark Gp Hp Fp Gp Hp Fp Gp Hp Fp Gp Hp Fp Fp Gp Hp Fp													R.C. (%)	37%	17%	R.C. (%)	59%	36%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Stage / Phase Di 1.	agrams			2.				3.				4.			5.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A		< Hp	->			< Hŗ	> > > > Fp 		< Gp	-> \\\	C	≪ Gr	> < ⊃ Hp	-> ↓ ↓ ↓ ↓ ↓			
I/G=5 V/G=7 I/G=6 5 I/G=5 15 I/G= I/G=5 I/G=7 I/G=6 5 I/G=5 15 I/G= Date: Date: Junction: Q			<>	Ep					B			∱ Ep V	<	> Dp	↓ ↓			
$\frac{ / G =0}{ / G =0} + \frac{ / G =0}{ / G =0} + \frac{1}{2} + \frac{1}{2$	I/G= 5			I/G=	7				I/G= 6		5	I/G	= 5	15	I/G=			
	I/G= 5			I/G=	1				I/G= 6		5	I/G Dat	= 5 e:	15	Junct	ion:		Q

Job No.: <u>CHK507863</u>10

Junction:	Olympic	: Avenu	e/ Dakot	a Drive				_							Design Yea	2033_	
Description:	2033 De	esign Sc	enario					_			Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ints				Radio	us (m)	(%) :	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	→ → *	A A A	1 1 1	3.650 3.650 3.650		25		73%	100%	1980 2120 2030	1980 2120 2000	254 271 260	0.128 0.128 0.128	0.128	212 228 220	0.107 0.108 0.110	0.110
Muk Yan Street (NB)	*↑*	В	2	4.500	15	20		46% / 54%	39% / 61%	2040	2040	675	0.331	0.331	395	0.194	0.194
Olympic Avenue (WB)	€	C C	3 3	3.650 3.650	15			78%	74%	1835 2120	1845 2120	378 437	0.206 0.206	0.206	379 436	0.205 0.206	0.206
Pedestrian Crossi	ng	Dp Ep	4	MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH =	6 6	+ +	10 10	= =	16 16			*			*
Notos				Flow: (pg	u/br)								[1			I
* Saturation flow 1	50 pcu/h	r added		r iow. (pe	,u/m)						Ŧ۳	Group	A,B,C,Ep	A,B,C,Dp	Group	A,B,C,Ep	A,B,C,Dp
												y L (sec)	0.005	0.005	y L (sec)	0.509	0.509
						595(440)				520(535)		C (sec)	120	120	C (sec)	120	120
							310(155		▶365(240)	295(280)		v pract.	0.645	0.623	v pract.	0.645	0.623
					190(220)			V				R.C. (%)	-3%	-6%	R.C. (%)	27%	22%
Stage / Phase Dia	agrams											1 7					
1. A				2.	В	-		3.		c ←		4. ↓ Ep ↓ V ↓ Cp	>		5.		
I/G= 3			I/G= (5 5				I/G= 5			I/G=	= 10	16	I/G=			
			1/0=1	<u> </u>				1/0= 5	I		Date	- 10 e: JUL, 2024	10	Junct Olympic A	ion: venue/ Dakota Driv	e	R

TRAFFIC S	SIGN	ALS (CAL	CULAT	ION						Job No.	: <u>CHK5</u>	<u>07863</u> 10	Ν	IVA HON	g kong	LIMITED
Junction:	Olympic	Avenu	e/ Dako	ta Drive											Design Year	r:2033_	
Description:	2033 De	esign So	cenario (With propo	osed junc	tion impr	ovement)				Designed	By: TCW			Checked By	CHC	
	ints				Radii	us (m)	(%) :	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	→ → *	A A A	1 1 1	3.650 3.650 3.650		25		73%	100%	1980 2120 2030	1980 2120 2000	254 271 260	0.128 0.128 0.128	0.128	212 228 220	0.107 0.108 0.110	0.110
Muk Yan Street (NB)	•] ≁	B B	2 2	3.500 3.500	15	20				1785 1960	1785 1960	310 365	0.174 0.186	0.186	155 240	0.087 0.122	0.122
Olympic Avenue (WB)	€	C C	3 3	3.650 3.650	15			78%	74%	1835 2120	1845 2120	378 437	0.206 0.206	0.206	379 436	0.205 0.206	0.206
Deduction Court							c		10		46			·			
Pedestrian Crossi	ng	Dp Ep	4 4	MIN GRE	EN + FL	ASH = ASH =	6	+ +	10 10	Ξ	16			•			
Notes:				Flow: (po	cu/hr)						[↑] N	Group	A,B,C,Ep	A,B,C,Dp	Group	A,B,C,Ep	A,B,C,Dp
											I	У	0.521	0.521	у	0.438	0.438
												L (sec)	34	37	L (sec)	34	37
					$ \rightarrow$	595(440)				520(535)		C (sec)	120	120	C (sec)	120	120
					190(220)		310(155)		▶365(240)	295(280))	y pract.	0.645	0.623	y pract.	0.645	0.623
								γ				R.C. (%)	24%	20%	R.C. (%)	47%	42%
Stage / Phase Di	agrams			2				2				4			E		
				2. 4-	B	-		3.		c ←		4. Ερ √ Ερ	»		5.		
					-												
I/G= 3 I/G= 3			I/G=	6				I/G= 5			I/G=	= 10	16 16	I/G=			
				I					I		Date	9: JUL, 2024		Junct Olympic A	venue/ Dakota Drive	e	R

TRAFFIC S	SIGN/	ALS	CAL	CULAT	ION						Job No.:	: <u>CHK5</u>	<u>07863</u> 10	N	IVA HON	G KONG	
Junction:	Olympic	c Avenu	e / Muk	Lai Street				-							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign So	cenario					-			Designed I	By: <u>TCW</u>			Checked By	r: <u>CHC</u>	
	ıts				Radi	us (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	→ *	A A	1 1	3.650 3.650	1	19	I	18%	25%	1980 2090	1980 2080	161 169	0.081 0.081	0.081	154 161	0.078 0.077	0.078
Muk Lai Street (NB)	≁₽	В	2	4.500	16	19		41% / 59%	50% / 50%	1905	1900	425	0.223	0.223	240	0.126	0.126
Olympic Avenue (WB)	₩	C C	3 3	3.650 3.650	16			65%	60%	1865 2120	1875 2120	431 489	0.231 0.231	0.231	453 512	0.242 0.242	0.242
Pedestrian Crossin	ng	Dp Ep	4 4	MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH =	7 6	+ +	13 15	= =	20 21			*			*
Notoo				Elouy (n									1				
NOTES.				riow. (p	cu/m)						[▲] ^N	Group	A,C,B,Ep	A,C,B,Dp	Group	A,C,B,Ep	A,C,B,Dp
											1	У	0.536	0.536	У	0.446	0.446
												L (sec)	37	42	L (sec)	37	42
					$ \rightarrow$	300(275)	175(100)		►2E0(120)	640(695)		C (sec)	120	120	C (sec)	120	120
					30(40)		175(120)	·\/	230(120)	280(270)		y pract.	0.623	0.585	y pract.	0.623	0.585
								γ				R.C. (%)	16%	9%	R.C. (%)	40%	31%
Stage / Phase Dia 1.	agrams			2.				3				4.			5.		
A														∧ Dp V			
								c	R			≪	> Ep				

I/G= 6 I/G= 6 I/G= 10 I/G= 10 Date:

JUL, 2024

20

20

I/G= I/G= Junction:

Olympic Avenue / Muk Lai Street

S

I/G= 2 I/G= 2 I/G= 7 I/G= 7

TRAFFIC S	GIGN/	ALS (CAL	CULAT	ION						Job No.	: <u>CHK5</u>	<u>07863</u> 10	Ν	IVA HON	G KONG	LIMITED
Junction:	Olympic	c Avenu	e / Muk	Lai Street											Design Year	2033_	
Description:	2033 De	esign So	cenario (With propo	sed junc	tion impro	ovement)				Designed	By: TCW			Checked By	: <u>CHC</u>	
	nts				Radiu	s (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	AM	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	↓ ↓↓	A A	1 1	3.650 3.650		19		18%	25%	1980 2090	1980 2080	161 169	0.081 0.081	0.081	154 161	0.078 0.077	0.078
Muk Lai Street (NB)	*₽	В	2	4.500	16	19		41% / 59%	50% / 50%	1905	1900	425	0.223	0.223	240	0.126	
Olympic Avenue (WB)	♥ ←	C C	3 3	3.650 3.650	16			65%	60%	1865 2120	1875 2120	431 489	0.231 0.231	0.231	453 512	0.242 0.242	0.242
Pedestrian Crossi	ng	Dp Ep Fp Gp	3 1,2 2 1,3	MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL	4SH = 4SH = 4SH = 4SH =	7 7 6 6	+ + +	13 13 15 15		20 20 21 21						·
Notes:				Flow: (pc	:u/hr)							Group	ARDo	ARC	Group	ARC	A En C
											[▲] N	v	0.304	0.536	v	0.446	0.319
												L (sec)	43	13	L (sec)	13	39
						300(275)				640(695)		C (sec)	90	90	C (sec)	90	90
					₹ 30(40)		175(120)		250(120)	280(270)		y pract.	0.470	0.770	y pract.	0.770	0.510
					. ,			γ				R.C. (%)	54%	44%	R.C. (%)	73%	60%
Stage / Phase Di	agrams														-		
1. A			↓ Ep	2.		≪	↑ ↓ Fp	Ер	≪> Gn	↓ [Op C	4.			5.		
Gp					В		-		ЧU								
I/G= 6			I/G=	5		04		I/G= 5			I/G=	I		I/G=	L		
/U=0			I/G=	9		21		I/G= 5			Date	9: JUL, 2024		I/G= Junct Olympic A	ion: /enue / Muk Lai Str	eet	S

2033 Design

lob Titlo	Dranasad Comprohansiu	o Dovolonmont Induding F	lat Chan & Carvi	as and Fating Dia	rac in CDA(A) Zar	A Kai Tak Aroa 2	A Cito 2	
Job Title:	Shing Kai Road / Concorr	de Read / Muk Chup Street	lat, Shop & Servio	es and Eating Pla	ace in CDA(4) Zor	ie, Kal Tak Area 2	A Site 2	
Scheme:	2022 Design Scenario	ue Roau / Muk Chun Street					Checked by:	
Design Vear	2033 Design Scenario		Job No · CHK507	86310			Date:	
Arm A	Shing Kai Road		505 No.: CHR507	50510			Date.	JOL, 2024
Arm B	Muk Chun Street							
Arm C	Concorde Road (EB)							
	AM 840 105 5 Arm C Concorde Road (EB)	PM $725 \rightarrow 105 \rightarrow 5$ $5 \rightarrow 7$ $4 \rightarrow 7$ $85 \qquad 65 \qquad 5$				→ AM 5 ← 605 ↓ 5	Arm A Shing Kai Road PM 5 775 5	
	AM PM	8565545205	Arm B	Muk Chun Street				
			ENTRY ARM	А	В	C		
INPUT PARAM	IETERS							
V	Approach Half Width (m)		5.00	5.00	7.00		
E .	Entry Width (m)	()		7.00	7.50	7.00		
L	Effective Length of Flare	(m)		5.00	5.00	5.00		
ĸ	Entry Radius (m)	r (m)		30.00	20.00	50.00		
Δ	Entry Angle (degree)	r (m)		40.00	25.00	25.00		
~	Litti y Aligic (degree)			40.00	25.00	23.00		
OUTPUT PARA	METERS							
S	= 1.6 (E - V) / L	Sharpness of flare		0.64	0.80	0.00		
К	= 1 - 0.00347 (A-30) - 0.9	978 (1/R - 0.05)		0.98	1.02	1.05		
X2	= V + ((E-V) / (1+2S))			5.88	5.96	7.00		
M	= EXP ((D-60) /10)			1.00	1.00	1.00		
F	= 303 * X2			1781	1806	2121		
Id Fe	= 1 + (0.5 / (1+M))			1.25	1.25	1.25		
FC	= 0.21*10 (1 + 0.2*X2)			0.57	0.58	0.63		
AM RESULT								
Q	Entry Flow (pcu/hour)			615	155	950		
Qc	Circulating Flow Across E	Entry (pcu/hour)		115	610	75		
Qe	= K (F - Fc*Qc)			1684	1481	2171		
DFC	= Q / Qe	Design Flow / Capacity	0.44	0.37	0.10	0.44		
		Total Entry Flows	1,720					
PM RESULT								
Q	Entry Flow (pcu/hour)			785	70	835		
QC QC	Circulating Flow Across E	ntry (pcu/hour)		115	780	30		
	= K (F - FC*QC)	Dosign Flow / Conseits	0.47	1684	1381	2200		
DFC	- U / UE	Total Entry Flows	0.47	0.47	0.05	0.38		
All the above	formulas are in accordanc	e to T P D M Vol 2 Cha 4 G	1,09U			1	1	
All the upove	ionnalas are in accordanc	с to т.г. <i>р.</i> ім. voi.z спр.4 з	CC 4.J.J					

TRAFFIC SIGNALS CALCULATION MVA HONG KONG LIMITED Job No.: CHK50786310 Junction: Shing Kai Road / Muk Hung Street Design Year: ____2033___ 2033 Designed Scenario Designed By: TCW Checked By: CHC Description: ____ Revised Saturation Flow (pcu/hr) Pro. Turning (%) Radius (m) AM Peak PM Peak Gradient (%) Movements Phase Right Flow (pcu/hr) Stage Width Left Flow (pcu/hr) AM y Value y Value РМ АМ РМ Critical y Critical y Approach (m) 3.650 15 25% 16% 1930 1950 334 0.173 0.173 407 0.209 Shing Kai Road 4 А 1 Ť 2120 2120 366 0.173 443 0.209 0.209 (NB) А 3.650 1 Shing Kai Road ↓ 1980 1980 0.230 0.189 2 3.650 455 0.230 374 в (SB) в 3.650 8 37% 36% 1980 1985 455 0.230 376 0.189 0.189 2

Pedestrian Crossing	Ср	1,3	MIN GREEN + FLASH =	9	+ 9) =	18						
	Dp	2,3	MIN GREEN + FLASH =	9	+ 9) =	18						
	Ep	3 23	MIN GREEN + FLASH =	9	+ 5	· =	18			-			-
	Gp	2,3	MIN GREEN + FLASH =	9	+ 9) =	18						
Netes													
Notes.			Flow. (pcu/lir)				₽	Group	Gp,B	A,B,Ep	Group	A,Dp	A,B,Ep
TAC junction : CT 90s add	pted			170(135)	<u> </u>		I	У	0.230	0.403	У	0.209	0.398
				740	(615)			L (sec)	28	34	L (sec)	28	34
				615	(785)			C (sec)	90	90	C (sec)	90	90
				85(65)	Ţ			y pract.	0.620	0.560	y pract.	0.620	0.560
				Ň				R.C. (%)	170%	39%	R.C. (%)	197%	41%
Stage / Phase Diagrams								-					
1.			2.	ЫВ	3.			4.			5.		
	« -	Ср >	Dp ←>		Ep 🔨	Dp ≮>	Cp <≯						
		Gn	_	< T		Fn	Gp						

Fp

-->

18

18

Fp ≪--->

Gp

I/G= 5

I/G= 5

<---->

A

I/G= 3

I/G= 3

Gp

I/G=

I/G=

Date:

JUL, 2024

I/G=

I/G=

Junction:

Shing Kai Road / Muk Hung Street

(D)

. د---->

Sig Cal_2033_DES_new.xlsm \ D

I/G= 10

I/G= 10

	SIGN/	ALS	CALO	CULAT	ION						Job No.	: <u>CHK5</u>	<u>07863</u> 10	Ν	IVA HON	G KONG	
Junction:	Shing k	Kai Roa	d / Muk (Chui Stree	t			_							Design Yea	r: <u>2033</u>	
Description:	2033 D	esign Si	cenario					_			Designed	By: <u>TCW</u>	1		Checked By	: <u>CHC</u>	
	Its				Radi	us (m)	(%)	Pro. Tu	rning (%)	Revised Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movemer	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	AM	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Muk Chui Street (EB)	+	С	3	3.750	30	25		39% / 17%	38% / 19%	1935	1930	440	0.227	0.227	425	0.220	0.220
Shing Kai Road (SB)	↓ ↓	B B	2 2	3.650 3.650	10	20		92% 15%	100% 11%	1740 2095	1720 2100	333 402	0.191 0.192	0.192	300 310	0.174 0.148	0.174
Muk Chui Street (WB)	Ł_ ⊀	D D	4 4	3.650 3.650	10	20		43%	31%	1970 1860	1970 1895	135 70	0.069 0.038	0.069	105 65	0.053 0.034	0.053
Shing Kai Road (NB)	*† †•	A A	1 1	3.650 3.650	18	20		40% 30%	39% 16%	1915 2075	1915 2095	288 312	0.150 0.150	0.150	382 418	0.199 0.200	0.200
Redestrian Crossi	23	En	14			V6H -	5		0	_	14						
	ing	Ep Fp Gp Hp Jp	1,4 2 1,2,4 3 2,3,4 1	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 6 5 5	+ + + +	9 8 10 9 11	- 	14 13 16 14 16						
				1				•						T			I
Notes:	120s adr	onted		Flow: (p	cu/hr)			\wedge			[↑]	Group	Jp,B,C,D	A,B,C,D	Group	A,Fp,C,D	A,B,C,D
	1205 440	optou					60(35	370(275)	▶ 305(300)			У	0.488	0.638	У	0.473	0.647
					170(160)	105(105)				135(105		L (sec)	38	29	L (sec)	39	29
						195(165)) 115(150)	390(585)	▶95(65)	30(20)		C (sec)	0.615	0.683	v pract	0.608	0.683
					75(80)			V		50(20)	R.C. (%)	26%	7%	R.C. (%)	28%	5%
Stage / Phase Di	agrams																
1. ↑ Gp		<	>	2. ∧ GI	Fp <÷	> ~		3 3 . →		с		4. ^ Gp 	~	Ep >	5.		
	*	<	lp ····≯		lp ≼	>			∧ Hp ↓ Ip <>			^{Ip} ≪÷	* * *	D			
I/G= 8			I/G=	9				I/G= 7			I/G=	= 9		I/G=	<u> </u>		
I/G= 8			I/G=	9				I/G= 7			I/G=	= 9		I/G=			(-)

I/G= 9 Date:

JUL, 2024

I/G= Junction:

Shing Kai Road / Muk Chui Street

E

TRAFFIC S	GN/	ALS	CAL	CULAT	ION						Job No.	: <u>CHK5</u>	<u>07863</u> 10	Ν	IVA HON	g kong	LIMITED
Junction:	Shing k	Kai Road	d / Muk (Chui Street	t										Design Yea	r: <u>2033</u>	
Description:	2033 De	esign So	cenario (With propo	osed jund	ction impr	ovement)				Designed	By: TCW			Checked By	CHC	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Muk Chui Street (EB)	* -↓* *	C C	3 3	4.000 4.000	15	17	1	82% 32%	80% 36%	1305 1465	1305 1460	207 233	0.159 0.159	0.159	201 224	0.154 0.153	0.154
Shing Kai Road (SB)	↓ ↓	B B	2 2	3.650 3.650	10	20		92% 15%	100% 11%	1740 2095	1720 2100	333 402	0.191 0.192	0.192	300 310	0.174 0.148	0.174
Muk Chui Street (WB)	Ł ∳	D D	4 4	3.650 3.650	10	20		43%	31%	1970 1860	1970 1895	135 70	0.069 0.038	0.069	105 65	0.053 0.034	0.053
Shing Kai Road (NB)	*† †*	A A	1 1	3.650 3.650	18	20		40% 30%	39% 16%	1915 2075	1915 2095	288 312	0.150 0.150	0.150	382 418	0.199 0.200	0.200
Pedestrian Crossir	ng	Εp	1,4	MIN GRE	EN + FL	ASH =	5	+	9	-	14						
		Fp Gp Hp Ip Jp	2 1,2,4 3 2,3,4 1	Min gre Min gre Min gre Min gre Min gre	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH =	5 5 6 5 5	+ + + +	9 8 10 9 11	= = =	14 13 16 14 16						
Notes:				Flow: (pe	cu/hr)			Å			1 ^ℕ	Group	A,B,Hp,D	A,B,C,D	Group	A,B,Hp,D	A,B,C,D
TAC junction: CT ² * Site factor 0.7 ad	20s ado ded due	opted to flare	length				60(35)		➤ 305(300)		I	У	0.411	0.570	У	0.427	0.581
					170(160))		370(275)		135(105)	A	L (sec)	44	29	L (sec)	44	29
					\preccurlyeq	195(185)		390(585)		40(45)	\succ	C (sec)	120	120	C (sec)	120	120
					75(80))	115(150)		95(65)	30(20)		y pract.	0.570	0.683	y pract.	0.570	0.683
								γ				R.C. (%)	39%	20%	R.C. (%)	33%	17%
Stage / Phase Dia 1.	igrams			2.				3.				4.			5.		
∱ Gp 		<-	Ep ≯	^ Gr *	Fp <	» √	В			С		∱ Gp \ \ \	<-	Ep >			
	, *	«	lp >		lp ≼	>			↑ Нр ¦/ ^р <>			^{Ip}	*	D			
I/G= 8			I/G=	9				I/G= 7			I/G:	= 9		I/G=			
I/G= 8			I/G=	9				I/G= 7			I/G=	= 9 9:		I/G=	ion:		E
												JUL, 2024		\$hing Kai	Road / Muk Chui St	treet	

Job No.: <u>CHK507863</u>10

Junction:	Shing K	ai Road	d / Kai S	hing Street	: / Muk C	n Street		_							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign So	cenario					-			Designed	By: TCW			Checked By	: <u>CHC</u>	
	onts				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	 ≁ 	A A A	2 2 2	3.650 3.650 3.650	18	18 15		45% 66%	74% 28%	1910 2010 1925	1865 2070 1925	255 268 257	0.134 0.133 0.134	0.134	175 194 181	0.094 0.094 0.094	0.094
Muk On Street	₽ ₽	E E	1 1	3.650 3.650	18	20		61% 45%	56% 56%	1885 2050	1890 2035	309 336	0.164 0.164	0.164	313 337	0.166 0.166	0.166
Shing Kai Road (WB)	← ∢ <u>←</u> √ #	D D D	3 3 3	3.650 3.650 3.650	50	20		50%	49%	2120 2045 1345	2120 2045 1345	209 201 65	0.099 0.098 0.048		158 152 65	0.075 0.074 0.048	
kai Shing Street	ן* ↑ ₹ן#	C C B	4 4 1,2,4	3.650 3.650 4.000	50	20				1970 2120 1370	1970 2120 1370	200 270 550	0.102 0.127 0.401	0.127	425 225 645	0.216 0.106 0.471	0.216
Pedestrian Crossi	ng	Fp Gp Ip Jp Lp	2,3,4 1 1,3,4 3 3,4 1,2,4	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH = ASH =	5 8 5 7 5 5	+ + + + + + +	9 20 21 9 17 9 9	= = = = =	14 28 29 14 24 14 14						
Notes:		мр	1,2,0	Flow: (po	cu/hr)		5		5			Group	GRADC	EA In C	Group	Co A In C	EAIDC
TAC Junction: 13	Os CT ado	opted						\wedge			Ϋ́ν	Group	0 359	0.425	Group	0 310	0.475
# Site factor 0.7 a	dopted						150(190)	305(285)	 190(175) 	100(75)	1	L (sec)	56	48	L (sec)	73	48
				_	115(130)	230(185))			310(235)		C (sec)	130	130	C (sec)	130	130
					405(005)		550(645)	2/0(225)	200(425)	65(65)		y pract.	0.512	0.568	y pract.	0.395	0.568
					433(233)			Ý				R.C. (%)	43%	34%	R.C. (%)	27%	19%
Stage / Phase Di	agrams			1						En				5.			
1. ← Gp ↓ Hp ↓ Hp	<> Mp	E		2. A	B	<> Mp	۲ ۲	р 3. / Lp Jр Др	←-> Mp	> Kp <>	dr ↓	4. + Hp + Up B	Кр < С	→ ^{Fp} Lp ∧ -> Lp ∧ Lp ∧ Lp	5.		
I/G= 8			I/G=	6				I/G= 10 I/G= 10)	24 24	I/G	= 3		I/G=			
											Dat	e: JUL. 2024		Junct Shing Kai	ion: Boad / Kai Shing S	treet / Muk On Str	F

Job No.: <u>CHK507863</u>10

Junction:	Shing K	ai Roa	d / Shing	I Fung Roa	ad / Muk	Tai Stree	t	_							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign S	cenario					-			Designed	By: <u>TCW</u>	1		Checked By	CHC	
	nts				Radi	us (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	♣ ↑ ┌╸ ┌╸	B B B B	2 2 2 2	3.650 3.500 3.500 3.500	15	20 15	I	27%	58%	1930 2105 1960 1915	1870 2105 1960 1915	296 324 481 469	0.153 0.154 0.245 0.245	0.245	233 262 448 437	0.125 0.124 0.229 0.228	0.229
Muk Tai Street	↓ ^ ↓• ^	A A	1 1	3.750 4.000	22	17		84%	92%	980 955	980 950	190 215	0.194 0.225	0.225	160 120	0.163 0.126	0.163
Shing Kai Road (WB)	← ↓ ↓ ↓	E E E	4 4 4 4	3.650 3.650 3.650 3.650	25 28	23		43%	71%	2120 2060 1870 2010	2120 2025 1870 2010	238 232 251 269	0.112 0.113 0.134 0.134		294 281 253 272	0.139 0.139 0.135 0.135	0.139
Shing Fung Road	⋖┐ ⋖┐ ┟╸	C C D D	2,3 2,3 3 3	3.650 3.650 3.650 3.650	20 22	23 19		42%	82%	1840 1985 2065 1750	1840 1985 2010 1750	556 599 130 110	0.302 0.302 0.063 0.063	0.063	431 464 142 123	0.234 0.234 0.071 0.070	0.071
Pedestrian Crossir	ng	Fp Gp Fp Jp Kp Kp Np	1,3,4 2,3 1,4 4 1,2,3 1,2,3 4 2,3 1	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EEN + FL EEN + FL	ASH = ASH = ASH = ASH = ASH = ASH = ASH = ASH = ASH =	8 5 5 7 5 7 5 6	+ + + + + + + + +	15 7 8 9 7 13 9 11		23 12 13 19 14 12 20 14 17						
Notes:				Flow: (po	cu/hr)			Å			[▲] N	Group	A,B,D,E	A,B,D,Lp	Group	A,B,D,Lp	A,B,D,E
TAC junction : CT ^ Site factor 0.5 ad	130s add	opted to flare	e length		80(135)) 540(360))	190(160) 1155(895)	35(10) 75(25)	▶ 180(110▶ 165(240)	0) 100(200) 370(375) ◀ 520(525)		y L (sec) C (sec) y pract. R.C. (%)	0.668 17 130 0.782 17%	0.533 40 130 0.623 17%	y L (sec) C (sec) y pract. R.C. (%)	0.462 40 130 0.623 35%	0.601 17 130 0.782 30%
Stage / Phase Dia	igrams	A		2.		6-	Мр	3.		,	Mp	4.		Мр	5.		
K Np <≥ Fp ↓ V			Kn	B	Gp		>	Kn	Fp Gp	ج	>	Fp V	ر -	Lp			
, Л 4 ^с Нр			ר, איי לק		c		7		÷		kp ↓ ↓ ↓ ↓	ر Hp	lp ≼≯	E			
I/G= 2			I/G=	5				I/G= 6			I/G=	= 10	20	I/G=			
			1.0-	- 1				1.0 0			Date): JUL, 2024		Junct Shing Kai I	ion: Road / Shing Fung	Road / Muk Tai St	G

Job No.: <u>CHK507863</u>10

Junction:	Shing k	(ai Road	d / West	ern access	to main	stadium		-							Design Yea	r:2033	
Description:	2033 De	esign So	cenario								Designed	By: TCW			Checked By	CHC	
	ents				Radi	us (m)	t (%)	Pro. Tu	ırning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr	y Value	Critical y	Flow (pcu/h	y Value	Critical y
		Α	1	3 650	17.5			3%	4%	1975	1970	502	0 254	- ,	445	0 226	0.226
Shing Kai Road EB	 → ★	A A	1 1	3.650 3.650		22.5		3%	3%	2120 2115	2120 2115	540 538	0.255 0.254	0.255	478 477	0.225 0.226	0.220
Shing Kai Road WB	↓ ↓	C C C	3 3 3	3.650 3.650 3.650	17.5	22.5		21% 1%	23% 2%	1945 2120 2120	1940 2120 2115	536 585 584	0.276 0.276 0.275	0.276	443 484 483	0.228 0.228 0.228	0.228
Western Access Road to Main Stadium NB	¶ †→	B B	2 2	3.750 3.750	15	22.5		75%	80%	1810 2030	1810 2020	105 20	0.058 0.010	0.058	110 25	0.061 0.012	0.061
Western Access	₽	D	4	3.500	20			50%	50%	1895	1895	10	0.005		10	0.005	
Stadium SB	►	D	4	3.500		32.5				2010	2010	15	0.007		15	0.007	
Pedestrian Crossi	ng	Ep Fp Hp Jp	4 1,2,3 3 1,2,4 2 1,3,4	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5	+ + + + +	5 7 10 11 8 7		10 12 15 17 13 12						
TAC junction : CT	130s ad	opted		1 IOW. (pt	Juini			\mathcal{A}			Ŧ	Group	A,B,Gp,D	A,B,C,D	Group	A,B,Gp,D	A,B,C,D
							15(15)		5(5)	5(10)	\	y	0.313	0.589	y	0.287	0.515
				9	15(20)	1550(136	35)			1590(1300)		- C (sec)	130	130	C (sec)	130	130
				\leq	→ 15(15)		105(110)	5(5)	▶15(20)	110(100)	•	y pract.	0.630	0.734	y pract.	0.630	0.734
					10(10)			Ý				R.C. (%)	101%	25%	R.C. (%)	120%	42%
Stage / Phase Di	agrams												1				
		Fp <>	^ - Hp	2.		<	Fp > ^ >	3		F < Gp		4. Ep <>		А́нр	5.		
> Jp	>		¥		В	, I	p v		<> qL			> qL	->	*			
I/G= 5 I/G= 5			I/G=	5 5				I/G= 5			I/G	= 7	5 5	I/G= I/G=			
											Date	e: JUL, 2024		Junc Shing Ka	tion: Road / Western ac	cess to main stadi	um (H)

Job No.: <u>CHK507863</u>10

Junction:	To Kwa	Wan R	oad / Sh	ing Kai Ro	ad / Sun	g Wong	Toi Road	_							Design Yea	2033_	
Description:	2033 De	esign Sc	enario					-			Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ints				Radi	us (m)	(%) :	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
To kwa Wan Road (NB)	+† †	C C	1 1	3.600 3.000	18			49%	48%	1895 2055	1900 2055	538 582	0.284 0.283	0.284	545 590	0.287 0.287	0.287
Shing Kai Road (SB)	↓ ↓ ↓	A A A	2 2 2	3.500 3.650 4.000		32 30		39%	77%	1965 2080 2050	1965 2045 2050	551 584 575	0.280 0.281 0.280	0.281	462 481 482	0.235 0.235 0.235	0.235
Sung Wong Toi Road (EB)	┑┵	B B B	3 3 3	3.650 3.650 3.650	18 20	32 30		100% / 0%	0 100% / 0%	1830 1970 2020	1830 1970 2020	349 376 360	0.191 0.191 0.178	0.191	253 272 225	0.138 0.138 0.111	0.138
Pedestrian Crossi	ng	Dp Ep Gp Hp Ip	2,3 1 1,3 2 1,2 3	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5 5 5	+ + + + +	10 12 11 7 6 7	= = = =	15 17 16 12 11 12						
Notes:				Flow: (po	cu/hr)							0	4.0-0	4.7.0	0	A 0- 0	4.5.0
TAC Junction: CT	130s ad	opted					805(850)				Ŧ	Group	A,Gp,C	а,в,с 0 756	Group	A,Gp,C	A,B,C
					705/505)			905(575)				L (sec)	29	13	L (sec)	29	13
					125(525)		265(260)	855(875)				C (sec)	130	130	C (sec)	130	130
					₹ 360(225)	1	200(200)					y pract.	0.699	0.810	y pract.	0.699	0.810
												R.C. (%)	24%	7%	R.C. (%)	34%	23%
Stage / Phase Dia	agrams											1.			1_		
г. Fp _μ ,7	ج Ep ک		/ A	Z.	B J J	*	۴.	・シュ Dp	Fp ,7		۳. Dp	4.			5.		
रू. Hp	7			للا جر Hp	<i>,</i> , , ,				c)/	A .	الا Ip						
I/G= 5			I/G=	6				I/G= 5			I/G=	-		I/G=			
I/G= 5			I/G=	0				I/G= 5			I/G=	ə:		I/G=	ion:		()
												JUL, 2024		o Kwa Wa	in Road / Shing Ka	Road / Sung Wo	ng Toi Road

TRAFFIC S	IGN/	ALS (CAL	CULAT	ION						Job No.	: <u>CHK5</u>	<u>07863</u> 10	Ν	IVA HON	g kong	LIMITED
Junction:	To Kwa	Wan R	oad / Sh	iing Kai Ro	ad / Sun	g Wong	Toi Road								Design Year	r: <u>2033</u>	
Description:	2033 De	esign So	cenario (With propo	osed junc	tion imp	rovement)				Designed	By: TCW			Checked By	CHC	
	nts				Radio	us (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
To kwa Wan Road (NB)	+ ↑	D D	4 4	3.600 3.000	18			49%	48%	1895 2055	1900 2055	538 582	0.284 0.283	0.284	545 590	0.287 0.287	0.287
Shing Kai Riad (SB)	↓ ↓ ↓	A A A	1,2 1,2 1,2	3.500 3.650 4.000		32 30		39%	77%	1965 2080 2050	1965 2045 2050	551 584 575	0.280 0.281 0.280	0.281	462 481 482	0.235 0.235 0.235	0.235
To Kwa Wan Road (EB)	+ + + +	C B B	2,3 2,3 3 3	3.500 3.500 3.500 3.500	18 20	30 28				1630 1960 2005 2000	1630 1960 2005 2000	329 396 180 180	0.202 0.202 0.090 0.090	0.090	238 287 113 112	0.146 0.146 0.056 0.056	0.056
Pedestrian Crossin	g	Jp Ep Fp Hp Ip	3,4 1 1,4 3 1,2,3 4	Min gre Min gre Min gre Min gre Min gre Min gre	EEN + FL EEN + FL EEN + FL EEN + FL EEN + FL EEN + FL	ASH = ASH = ASH = ASH = ASH = ASH =	5 7 8 5 5 5 5	+++++++++++++++++++++++++++++++++++++++	10 13 15 7 6 7		15 17 16 12 11 12						
Notes:				Flow: (p	cu/hr)		005(050)	/			↑ ^N	Group	A,Jp	A,B,D	Group	A,Jp	A,B,D
*Site factor 0.9 add	130s ad led due	to flare	length				805(850)	005(575)				У	0.281	0.655	У	0.235	0.579
					725(525)			905(575)				L (sec)	21	15	L (sec)	21	15
					\leq		265(260)	855(875)				C (sec)	130	130	C (sec)	130	130
					360(225)							y pract.	0.755	0.796	y pract.	0.755	0.796
												R.C. (%)	169%	22%	R.C. (%)	221%	38%
Stage / Phase Dia	grams			2				2				4			E		
Fp , 7	ل ار (Ep		// A	2.	C	*		A	C B	5	لار مر	Fp 7	1	الد qt	5.		
н! 	0			7	`` <i>-</i> <u>/</u> Нр				Gp 、オ ビ Hp			D	1	اللہ الح Ip			
I/G= 5 I/G= 5			I/G= 1	2				I/G= 6			I/G=	= 5		I/G=			
								1.2.0			Date	9: JUL, 2024		Junct To Kwa W	ion: an Road / Shing Kai	i Road / Sung Wo	I) ng Toi Road

Job No.: <u>CHK507863</u>10

Junction:	Kowloo	n City R	oad / Su	ing Wong	Toi Road										Design Yea	r: <u>2033</u>	
Description:	2033 De	sign Sc	enario								Designed	By:TCW			Checked By	: <u>CHC</u>	
	ents				Radiu	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Sung Wong Toi Ro	← ←	A A	1 1	3.650 3.500						1585 1685	1585 1685	528 562	0.333 0.334	0.334	543 577	0.343 0.342	0.343
Kowloon City Road	*] *]	B B	2 2	4.500 4.500	10 12					1435 1570	1435 1570	298 327	0.208 0.208	0.208	332 363	0.231 0.231	0.231
Pedestrian Crossi	ng	Ср	2	MIN GRE	EN + FL	ASH =	10	+	11	=	21						
Notes:				Flow: (po	:u/hr)						[↑]	Group	A,Cp	A,B	Group	A,Cp	A,B
Site factor 0.8 add activities at Sung V Kowloon City Road	ed due to Vong To I	i Road &	de &									У	0.334	0.542	У	0.343	0.574
										1090(1120)		L (sec)	27 65	10 65	L (sec)	27 65	10 65
							625(695)	•				y pract.	0.526	0.762	y pract.	0.526	0.762
												R.C. (%)	58%	41%	R.C. (%)	54%	33%
Stage / Phase Dia	igrams											1					•
1.				2. ∢-				3				4.			5.		
					~	+	· >	В									
	A						Ср										
I/G= 6			I/G= 6	B				 /G=			I/G=	:		I/G=			
I/G= 6			I/G= 6	o				I/G=			I/G=	= e: JUL, 2024		I/G= Junct Kowloon C	ion: ity Road / Sung We	ong Toi Road	J

Job No.: <u>CHK507863</u>10

Junction:	Ma Tau	Chung	Road / S	Sung Wong	g Toi Roa	ad / Fu N	ing Street	-							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign So	cenario					-			Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Sung Wong Toi R	יד רד רד ר ר ר	D D E E	2,3 2,3 2,3 2 2 2	3.500 3.500 3.000 3.500 3.500 3.500	I	15 20 25	1	1	1	1785 1960 1940 1965 2105	1785 1960 1940 1965 2105	455 500 495 263 282	0.255 0.255 0.255 0.134 0.134	0.255	531 582 577 239 256	0.297 0.297 0.297 0.122 0.122	0.297
Ma Tau Chung Rd (NB)	_+ → →	A A A	1 1 1	3.500 3.500 3.500	10			24%	37%	1895 2105 2105	1860 2105 2105	491 545 544	0.259 0.259 0.258		633 716 716	0.340 0.340 0.340	0.340
Ma Tau Chung Rd (SB)	+ + +	B B B	1 1 1	3.500 3.500 3.500						2105 2105 1965	2105 2105 1965	690 691 644	0.328 0.328 0.328	0.328	482 483 450	0.229 0.229 0.229	
Fu Ning Street	لم	I	4	3.500		20				1830	1830	25	0.014		25	0.014	
Pedestrian Crossi	ng	Cp Fp Gp Hp	1 2,3 1,2,3 3,4	MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH =	10 10 5 7	+ + + +	9 9 5 8		19 19 10 15						
Notes:				Flow: (pe	cu/hr))		+ → _N	Group	A,D,I	B,D,I	Group	B,D,I	A,D,I
								#REF!	/			у (222)	0.514	0.583	у	0.527	0.638
					120(235)	1460(18;	30)			2025(1415)		C (sec)	130	130	C (sec)	130	130
							,	545(495)	▶1450(1690)	,		y pract.	0.775	0.775	y pract.	0.775	0.775
								ľ				R.C. (%)	51%	33%	R.C. (%)	47%	22%
Stage / Phase Di	agrams											T	•	•	1	•	•
1. A	Ср	<gr ←></gr 	9> B	2.	↑ ↓ Fp	D	Gp)	3.	< ↑ ↓ Fp ↓ D	Нр > <-	Gp >	4. <	Нр >		5.		
I/G=			I/G=	5				I/G= 5			I/G=	= 5	5	I/G=			
I/G=			I/G=	5				I/G= 5			I/G= Date	= 5 e: .IUI 2024	5	I/G= Junct	ion:	Vong Toj Rosd / E	

Job No.: <u>CHK507863</u>10

Junction:	Olympic	: Avenu	ie / Hang	g Wan Roa	d			-							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign So	cenario					-			Designed	By: TCW			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	urning (%)	Revised Flow (Saturation (pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (NB)	† †	A A	1,2 1,2	3.500 3.500			1	1	1	1965 2105	1965 2105	357 383	0.182 0.182	1	307 328	0.156 0.156	
Olympic Avenue (SB)	ţ	B B	1,2 1,2	3.650 3.650						1980 2120	1980 2120	401 429	0.203 0.202	0.203	333 357	0.168 0.168	0.168
Hang Wan Road		C D D	2,3 3 3	5.000 3.300 3.300	13 EN + FL	25 20	5	÷	6	1895 1965 1940	1895 1965 1940	50 382 378	0.026 0.194 0.195	0.195	30 262 258	0.016 0.133 0.133	0.133
		Fp Gp	1 3	MIN GRE	EN + FL	ASH = ASH =	5	+ +	6 7	=	11 12						
Notes:				Flow: (po	cu/hr)						[↑] ^N	Group	A,D	B,D	Group	A,D	B,D
								830(690)				У	0.377	0.397	У	0.290	0.302
					50(30)			000(000)				L (sec)	9	11	L (sec)	9	11
								740(635)				C (sec)	60	60	C (sec)	60	60
					760(520)							y pract.	0.765	0.735	y pract.	0.765	0.735
Stage / Phase Dia	agrams											K.C. (78)	10070	0070	R.O. (78)	10470	14470
1. F.	Ep L		в	2.	C /	,		B	c D	۴	Gp ب	4.			5.		
I/G= 6	-		I/G=					I/G= 7			I/G=			I/G=			
			1.0-	I				1/0-7	I		Date	9: JUL 2024			ion: venue / Hang Wan	Road	Ŀ

Ioh Title	Pronosed Comprehensiv	e Development Inc	luding 🛙	lat Shor	& Sarvin	es and Fating DI	ace in CD	Δ(<u>4</u>) 700	e Kai Tak Ares ?	Δ Site 2	
Junction:	Prince Edward Road East	t / Prince Edward R	oad We	st / Ma 1	au Chune	Road / Argvle S	Street		c, Nul TUN AICO Z	Designed by:	TCW
Scheme:	2033 Design Scenario			.,		, ,				Checked by:	CHC
Design Year:	2033			Job No.:	CHK5078	6310				Date:	JUL, 2024
Arm A	Prince Edward Road East	t									
Arm B	Ma Tau Chung Road (EB))									
Arm C	Argyle Street	*									
Arm D	Prince Edward Road We	SI.									
		AM	PM		AM	PM		AM	PM		
	Arm D	→ 1530	1270		3025	2955>		1965	2035		
	Prince Edward Road West			↑							
				1495	AM						
		1065	1115	1685	PM						
		- 1065	1112								
	Arm C	→ 470	450								
	Argyle Street			↑							
							+				
				2090	AM	AM	1055				
		 FFF	A15	2355	PM	PM	915				
		555	415								
	Arm B										
	Ma Tau Chung Road (EB)	1630	1455								
				l 1							
				1015						A A	
				1015				17/5	1660 🗕 🗕 🚽	Arm A Prince Edward P	oad Fast
		4 1785	1260	1320		2800 2580		1/43	1000 -	i mice Euwaru K	
				ENT	RY ARM	А	В		С	D	
INPUT PARAM	ETERS										
v	Approach Half Width (m)				8 50	0	50	6.00	6 50	
E	Entry Width (m)	1				9.00	9.5 10	00	8,00	9,70	
L	Effective Length of Flare	(m)				1.00	5.0	00	5.00	9.00	
R	Entry Radius (m)					50.00	22.	00	28.00	60.00	
D	Inscribed Circle Diamete	r (m)				100.00	100	.00	100.00	100.00	
A	Entry Angle (degree)					10.00	55.	00	15.00	30.00	
	METEDS										
GUIPUI PAKA											
s	= 1.6 (E - V) / L	Sharpness of flare				0.80	0.1	16	0.64	0.57	
к	= 1 - 0.00347 (A-30) - 0.9	978 (1/R - 0.05)				1.10	0.9	92	1.07	1.03	
X2	= V + ((E-V) / (1+2S))					8.69	9.8	38	6.88	8.00	
M	= EXP ((D-60)/10)					54.60	54.	60	54.60	54.60	
F Ta	= 303 * X2					2634	299	93 11	2084	2423	
FC	- 1 + (U.3 / (1+IVI)) = 0 21*Td (1 + 0 2*Y2)					1.01	1.0	53	1.01	0.55	
	- 0.21 TU (1 + 0.2 AZ)					0.50	0.0	,,	0.50	0.55	
AM RESULT											
Q	Entry Flow (pcu/hour)					1,745	1,6	30	470	1,530	
Qc	Circulating Flow Across E	Entry (pcu/hour)				1,055	1,0	15	2,090	1,495	
Qe	= K (F - Fc*Qc)		14		22	2221	210	50 75	1100	1652	
DEC	= U / Ue	Design Flow / Cap	acity	0.9	75	0.79	0.7	15	0.43	0.93	
PM RESULT		TOTAL ENTRY FIOWS		5,5	75						
Q	Entry Flow (pcu/hour)					1,660	1.4	55	450	1,270	
Qc	Circulating Flow Across E	Entry (pcu/hour)				915	1,3	20	2,355	1,685	
Qe	= K (F - Fc*Qc)					2310	198	83	958	1544	
DFC	= Q / Qe	Design Flow / Cap	acity	0.8	82	0.72	0.7	73	0.47	0.82	
		Total Entry Flows		4,8	35						
All the above ;	formulas are in accordanc	e to T.P.D.M. Vol.2	Chp.4	Sec 4.5.9							

TRAFFIC	SIGN	ALS	CAL	CULA	ΓΙΟΝ						Job No.	: <u>CHK5</u>	<u>07863</u> 10	N	IVA HON	g kong	
Junction:	Kai Sa	n Road /	Tsat Po	Street				-							Design Yea	r: <u>2033</u>	
Description:	2033 D	esign So	cenario					-			Designed	By: TCW			Checked By	: <u>CHC</u>	
	its				Radi	us (m)	(%)	Pro. Tur	ning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movemen	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Tsat Po Street (EB)		С	4	5.000	10	25		14% / 64%	11% / 37%	1995	2040	70	0.035		95	0.047	0.047
Tsat Po Street (WB)	∉	A A	1 1	3.600 3.600	10	25		89% 29%	69% 59%	1745 2080	1790 2045	360 430	0.206 0.207	0.207	364 416	0.203 0.203	0.203
Kai San Road (NB)	* ⊀†	B B	2 2	4.000 4.000	10	15		42%	13%	1960 1895	1960 1975	470 420	0.240 0.222	0.240	400 345	0.204 0.175	0.204
Pedestrian Cross	ing	Dр Ер Fр Gp Нр	2 2,3 1,2,4 2 2	MIN GRI MIN GRI MIN GRI MIN GRI MIN GRI	EEN + FI EEN + FI EEN + FI EEN + FI EEN + FI	_ASH = _ASH = _ASH = _ASH = _ASH =	10 8 7 9 7	+ + + +	9 8 7 8 7		19 16 14 17 14						
Notes:				Flow: (p	cu/hr)						+•	Group	A Go B C	A Go B C	Group	A Go B C	A Gp B C
											N	v	0.447	0.447	v	0.454	0.454
					10/10	`				125(245))	L (sec)	54	54	L (sec)	48	48
) • 15(50)		0.45(0.00)		345(285)		C (sec)	130	130	C (sec)	130	130
					7		175(45)	245(300)	•470(400)	320(250)		v pract.	0.526	0.526	v pract.	0.568	0.568
					45(35)		Y				R.C. (%)	18%	18%	R.C. (%)	25%	25%
Stage / Phase Di	agrams											1					
1.				2.	Hp _7			3.				4.			5.		
< FP-	>		<u>4</u>	¦Gr ∀	<- Fp <>	<> ≫	^ ₩ 		B	, ≪>		 ~-	- <u>-</u> p →				
I/G= 11 I/G= 11			I/G=	11 11		17 17		I/G= 3			I/G=	= 9	5	I/G=			
· · · · ·				I					- I		Date): 		Junct	ion:		(N)

JUL, 2024

Kai San Road / Tsat Po Street

Job Titlo:	Bronocod Comprohensiv	a Davalanmant Including E	lat Shan & San	icos and Eating Di	2co in CDA(A) Zor	A Kai Tak Aroa		
Jupctica:	Sto Moi Street / July 11-	Street	iat, shop & serv	ices and Eating Pla	ace in CDA(4) ZOP	ie, Kal Tak Area 2	Designed by:	
Scheme:	2033 Design Scenario	JUCEL					Checked by:	
Design Vear	2033 Design Scenario			286310			Date:	
Arm A	Sze Mei Street		202 Ho.: CHK307	00010				301, 2027
Arm B	Sze Mei Street							
Arm C	Luk Hop Street							
	·							
			Arm A	Sze Mei Street				
					AM 5	435 105	105	
					PM 5	335 180	180	
					Ł	₄ ⊢ ↓	+	
	AN	DM					Free Flow	
	Alvi 110	230 *		<u> </u>				
	610	600						
	175	85	/					
			/	\				
	Arm C							
	Luk Hop Street							
			\					
			\mathbf{N}					
			\mathbf{i}					
		<hr/>						
	۵M	185 295 5						
	PM	360 330 5	Arm B	Sze Mei Street				
			ENTRY ARM	А	В	С		
INPUT PARAM	ETERS							
V	Approach Half Width (m)			4.00	3.50	4.50		
E	Entry Width (m)	()		4.00	3.50	5.00		
L	Effective Length of Flare	(m)		1.00	1.00	2.00		
r D	Entry Radius (M)	r (m)		30.00	100.00	15.00		
Δ	Entry Angle (degree)			10.00	30.00	30.00		
	Lini y Angle (degree)			10.00	10.00	33.00		
OUTPUT PARA	METERS							
S	= 1.6 (E - V) / L	Sharpness of flare		0.00	0.00	0.40		
к	= 1 - 0.00347 (A-30) - 0.9	78 (1/R - 0.05)		1.09	1.11	0.97		
X2	= V + ((E-V) / (1+2S))			4.00	3.50	4.78		
M	= EXP ((D-60) /10)			0.05	0.05	0.05		
F Td	= 303 + X2			1212	1061	1448		
Fc	– 1 + (U.3 / (1+IVI)) – 0 21*Td (1 + 0 2*V2)			1.48	1.48	1.48		
10	- 0.21 iu (1 + 0.2 · X2)			0.50	0.55	0.01		
AM RESULT								
Q	Entry Flow (pcu/hour)			545	485	895		
Qc	Circulating Flow Across E	ntry (pcu/hour)		790	615	305		
Qe	= K (F - Fc*Qc)			837	816	1220		
DFC	= Q / Qe	Design Flow / Capacity	0.73	0.65	0.59	0.73		
		Total Entry Flows	1,925					
PM RESULT								
Q	Entry Flow (pcu/hour)			520	695	915		
Qc	Circulating Flow Across E	ntry (pcu/hour)		690	425	340		
Qe	= K (F - Fc*Qc)			898	927	1200		
DFC	= Q / Qe	Design Flow / Capacity	0.76	0.58	0.75	0.76	1	
All 46 - 1	6 · · ·	Total Entry Flows	2,130					
All the above ;	formulas are in accordance	e to T.P.D.M. Vol.2 Chp.4 S	ec 4.5.9					

Job No.: <u>CHK507863</u>10

Junction:	Shing K	ai Road	d / Slip ro	oad of CKF	R			-							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign Sc	cenario					-			Designed	By: TCW			Checked By	CHC	
	ints				Radi	us (m)	(%) :	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	→ * 7	A A A	1 1 1	3.650 3.650 3.650		26 23	1	0%	13%	1980 2120 1990	1980 2105 1990	316 339 230	0.160 0.160 0.116	0.160	233 248 234	0.118 0.118 0.118	0.118
Shing Kai Road (WB)	* ↓ * ← ←	E E E	3 3 3	4.500 3.600 3.600	35			43%	37%	2030 2115 2115	2030 2115 2115	327 342 341	0.161 0.162 0.161	0.162	347 362 361	0.171 0.171 0.171	0.171
Slip Road of CKR	* ► ►	B C C	1,2 2 2	5.000 3.600 3.600	35	18 20				2030 1950 1965	2030 1950 1965	120 57 58	0.059 0.029 0.030		160 52 53	0.079 0.027 0.027	
Pedestrian Crossi	ng	Fp Gp Ip Jp Kp	1,2 1 2 3 3 3	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH =	5 5 14 5 5 10	+ + + + + +	10 5 10 10 5 8		15 10 24 15 10 18						÷
Notes:				Flow: (po	cu/hr)						≜ N	Group	A,C,E	A,Hp,E	Group	A,C,E	A,Hp,E
* assumed to be s	ame pha	se for									+	у.	0.351	0.322	у.	0.316	0.289
oonoon raaro parp												L (sec)	12	37	L (sec)	12	37
					$ \rightarrow$	655(450)				870(940)		C (sec)	130	130	C (sec)	130	130
					230(265)		120(160)		115(105)	140(130))	y pract.	0.817	0.644	y pract.	0.817	0.644
								γ				R.C. (%)	133%	100%	R.C. (%)	159%	123%
Stage / Phase Dia	agrams											<u> </u>			1-		
	в	^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r Fp جريع Gp	2.	Hp B	Fr		D	ج عربي Jp	> Kp	E D	4.			5.		
I/G= 5 I/G= 5			I/G=	5		24 24		I/G= 5			I/G=			I/G=			
											Date	; JUL, 2024		Junct Shing Kai	Road / Slip road of	CKR	P

Job No.: <u>CHK507863</u>10

Note: Description Description Total Product Description Descript	Junction:	Shing k	Kai Roa	d / Easte	ern access	to main	stadium									Design Yea	r: <u>2033</u>	
Image: Production Consumption Production Cons	Description:	2033 D	esign Si	cenario								Designed	By: TCW	,		Checked By	CHC	
Approxim $\frac{9}{2}$ <t< th=""><th></th><th>ints</th><th></th><th></th><th></th><th>Radi</th><th>us (m)</th><th>(%) :</th><th>Pro. Tur</th><th>rning (%)</th><th>Revised S Flow (</th><th>Saturation (pcu/hr)</th><th></th><th>AM Peak</th><th></th><th></th><th>PM Peak</th><th></th></t<>		ints				Radi	us (m)	(%) :	Pro. Tur	rning (%)	Revised S Flow (Saturation (pcu/hr)		AM Peak			PM Peak	
Single Mark A I 3 800 10 100 1000 1000 0.201 0.211 442 0.222 0.222 EB \rightarrow A I 3.00 3.0 10 2135 2135 535 0.211 442 0.222 0.222 EB \rightarrow A I 3.00 3.0 10 0.000 100	Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Shing Kai Road (EB)	 → →	A A A	1 1 1	3.800 3.800 3.800	15	30	1	1% 1%	2%	1995 2135 2135	1990 2135 2135	500 535 535	0.251 0.251 0.251	0.251	442 474 474	0.222 0.222 0.222	0.222
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Eastern Access to main stadium	⊾ ₊↓	C C	3 3	3.650 3.650	10	15		67%	67%	1720 1990	1720 1990	10 15	0.006 0.008		15 15	0.009 0.008	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Shing Kai Road (WB)	┺ ╺┺	B B B	2 2 2	3.800 3.800 3.800	15	30		2% 3%	3% 4%	1990 2135 2130	1990 2135 2130	547 587 586	0.275 0.275 0.275	0.275	456 490 489	0.229 0.230 0.230	0.230
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
Notes: Flow: (pcu/hr) AB.C.pp AB.C.pp A.B.C.pp	Pedestrian Cross	ing	Dp Ep Fp Gp Hp	4 1,3,4 2,4 3,4 1,2,4	MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5	+ + + +	10 10 10 7 7	- - - -	15 15 15 12 12						*
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Notes:				Flow: (po	cu/hr)						↑ N	Group	A B Gn	A B C Dp	Group	A B Gn	A B C Dn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TAC junction : CT	130s ad	opted					40(40)	\mathbb{A}		,	+"	y	0.526	0.526	y	0.452	0.452
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						5(10)	1	10(10)	5(5)	► 10(15)) 15(20))	L (sec)	26	41	L (sec)	26	41
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						\triangleleft	1560(13	70)			1695(1400)	\rightarrow	C (sec)	130	130	C (sec)	130	130
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						5(10))				10(15))	y pract.	0.720	0.616	y pract.	0.720	0.616
Stage / Phase Diagrams 1. \checkmark \checkmark \checkmark \checkmark \checkmark Gp Hp Fp Gp Hp Fp Gp Hp Fp Gp Hp Fp Fp Gp Hp Fp													R.C. (%)	37%	17%	R.C. (%)	59%	36%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Stage / Phase Di 1.	agrams			2.				3.				4.			5.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A		< Hp	->			< Hŗ	> > > > Fp 		< Gp	-> \\\	C	≪ Gr	> < ⊃ Hp	-> ↓ ↓ ↓ ↓ ↓			
I/G=5 V/G=7 I/G=6 5 I/G=5 15 I/G= I/G=5 I/G=7 I/G=6 5 I/G=5 15 I/G= Date: Date: Junction: Q			<i><></i>	Ep					B			∱ Ep V	<	> Dp	↓ ↓			
$\frac{ / G =0}{ / G =0} + \frac{ / G =0}{ / G =0} + \frac{1}{2} + \frac{1}{2$	I/G= 5			I/G=	7				I/G= 6		5	I/G	= 5	15	I/G=			
	I/G= 5			I/G=	1				I/G= 6		5	I/G Dat	= 5 e:	15	Junct	ion:		Q

Job No.: <u>CHK507863</u>10

Junction:	Olympic	: Avenu	e/ Dakot	a Drive				_							Design Yea	2033_	
Description:	2033 De	esign Sc	enario					_			Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ints				Radio	us (m)	(%) :	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	→ → *	A A A	1 1 1	3.650 3.650 3.650		25		73%	100%	1980 2120 2030	1980 2120 2000	254 271 260	0.128 0.128 0.128	0.128	212 228 220	0.107 0.108 0.110	0.110
Muk Yan Street (NB)	*↑*	В	2	4.500	15	20		46% / 54%	39% / 61%	2040	2040	675	0.331	0.331	395	0.194	0.194
Olympic Avenue (WB)	€	C C	3 3	3.650 3.650	15			78%	74%	1835 2120	1845 2120	378 437	0.206 0.206	0.206	379 436	0.205 0.206	0.206
Pedestrian Crossi	ng	Dp Ep	4 4	MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH =	6 6	+ +	10 10	= =	16 16			*			*
Notos				Flow: (pg	u/br)								[1			I
* Saturation flow 1	50 pcu/h	r added		r iow. (pe	,u/m)						Ŧ۳	Group	A,B,C,Ep	A,B,C,Dp	Group	A,B,C,Ep	A,B,C,Dp
												y L (sec)	0.005	0.005	y L (sec)	0.509	0.509
						595(440)				520(535)		C (sec)	120	120	C (sec)	120	120
							310(155		▶365(240)	295(280)		v pract.	0.645	0.623	v pract.	0.645	0.623
					190(220)			V				R.C. (%)	-3%	-6%	R.C. (%)	27%	22%
Stage / Phase Dia	agrams											1 7					
1. A				2.	В	-		3.		c ←		4. ↓ Ep ↓ V ↓ Cp	>		5.		
I/G= 3			I/G= (6				I/G= 5			I/G=	= 10	16	I/G=			
			1/0=1	<u> </u>				0 = 5/1	I		Date	- 10 e: JUL, 2024	10	Junct Olympic A	ion: venue/ Dakota Driv	e	R

TRAFFIC S	SIGN	ALS (CALC	CULAT	ION						Job No.	: <u>CHK5</u>	<u>07863</u> 10	Ν	IVA HON	G KONG	LIMITED
Junction:	Olympic	c Avenu	e/ Dako	ta Drive											Design Year	r:2033_	
Description:	2033 De	esign So	cenario (With propo	osed jund	tion impr	ovement)				Designed	By: TCW			Checked By	CHC	
	ints				Radi	us (m)	(%) :	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	→ → ★	A A A	1 1 1	3.650 3.650 3.650		25		73%	100%	1980 2120 2030	1980 2120 2000	254 271 260	0.128 0.128 0.128	0.128	212 228 220	0.107 0.108 0.110	0.110
Muk Yan Street (NB)	•] ≁	B B	2 2	3.500 3.500	15	20				1785 1960	1785 1960	310 365	0.174 0.186	0.186	155 240	0.087 0.122	0.122
Olympic Avenue (WB)	₩	C C	3 3	3.650 3.650	15			78%	74%	1835 2120	1845 2120	378 437	0.206 0.206	0.206	379 436	0.205 0.206	0.206
Pedestrian Crossi	ng	Dp Ep	4 4	MIN GRE	EN + FL	ASH = ASH =	6	+ +	10 10	=	16 16			*			*
Notes:				Flow: (po	cu/hr)						[↑] N	Group	A,B,C,Ep	A,B,C,Dp	Group	A,B,C,Ep	A,B,C,Dp
											I	у	0.521	0.521	у	0.438	0.438
												L (sec)	34	37	L (sec)	34	37
					$ \rightarrow$	595(440)				520(535)		C (sec)	120	120	C (sec)	120	120
					190(220)		310(155)		▶365(240)	295(280))	y pract.	0.645	0.623	y pract.	0.645	0.623
								γ				R.C. (%)	24%	20%	R.C. (%)	47%	42%
Stage / Phase Di	agrams			2				2				4			E		
				2. •	В	•		э.		c ←		τ. Ep ∀ Op	>		5.		
I/G= 3 I/G= 3			I/G=	6 <u> </u>				I/G= 5			I/G=	= 10	16 16	I/G= I/G=			
					_			-			Date	JUL, 2024		Junct Olympic A	venue/ Dakota Drive	e	R

TRAFFIC S	SIGN/	ALS	CAL	CULAT	ION						Job No.:	: <u>CHK5</u>	<u>07863</u> 10	Ν	IVA HON	g kong	
Junction:	Olympi	c Avenu	ie / Muk	Lai Street				-							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign So	cenario					-			Designed I	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ıts				Radi	us (m)	(%)	Pro. Tu	ırning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	→ *	A A	1 1	3.650 3.650	1	19	I	18%	25%	1980 2090	1980 2080	161 169	0.081 0.081	0.081	154 161	0.078 0.077	0.078
Muk Lai Street (NB)	⁴р	В	2	4.500	16	19		41% / 59%	ő 50% / 50%	1905	1900	425	0.223	0.223	240	0.126	0.126
Olympic Avenue (WB)	₹	C C	3 3	3.650 3.650	16			65%	60%	1865 2120	1875 2120	431 489	0.231 0.231	0.231	453 512	0.242 0.242	0.242
Pedestrian Crossin	ng	Dp Ep	4	min gre Min gre	EN + FL EN + FL	ASH = ASH =	7 6	+ +	13 15	-	20 21			×			*
Notes:				Flow: (p	cu/hr)						₽N	Group	A,C,B,Ep	A,C,B,Dp	Group	A,C,B,Ep	A,C,B,Dp
											I	У	0.536	0.536	У	0.446	0.446
												L (sec)	37	42	L (sec)	37	42
					$ \rightarrow$	300(275)		_		640(695)		C (sec)	120	120	C (sec)	120	120
					30(40)	1	175(120)		▶250(120)	280(270)		y pract.	0.623	0.585	y pract.	0.623	0.585
								γ				R.C. (%)	16%	9%	R.C. (%)	40%	31%
Stage / Phase Dia	agrams			2				2							E		
				2.								4.		∧ Dp	5.		
								c	R			≪	> Ep				

I/G= 6 I/G= 6 I/G= 10 I/G= 10 Date:

JUL, 2024

20

20

I/G= I/G= Junction:

Olympic Avenue / Muk Lai Street

S

I/G= 2 I/G= 2 I/G= 7 I/G= 7

TRAFFIC S	GIGN/	ALS (CAL	CULAT	ION						Job No.	: <u>CHK5</u>	<u>07863</u> 10	Ν	IVA HON	G KONG	LIMITED
Junction:	Olympic	c Avenu	e / Muk	Lai Street											Design Year	2033_	
Description:	2033 De	esign So	cenario (With propo	sed junc	tion impro	ovement)				Designed	By: TCW			Checked By	: <u>CHC</u>	
	nts				Radiu	s (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	AM	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	↓ ↓↓	A A	1 1	3.650 3.650		19		18%	25%	1980 2090	1980 2080	161 169	0.081 0.081	0.081	154 161	0.078 0.077	0.078
Muk Lai Street (NB)	*₽	В	2	4.500	16	19		41% / 59%	50% / 50%	1905	1900	425	0.223	0.223	240	0.126	
Olympic Avenue (WB)	♥ ←	C C	3 3	3.650 3.650	16			65%	60%	1865 2120	1875 2120	431 489	0.231 0.231	0.231	453 512	0.242 0.242	0.242
Pedestrian Crossi	ng	Dp Ep Fp Gp	3 1,2 2 1,3	MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL	4SH = 4SH = 4SH = 4SH =	7 7 6 6	+ + +	13 13 15 15		20 20 21 21						·
Notes:				Flow: (pc	:u/hr)							Group	ARDo	ARC	Group	ARC	A En C
											[▲] N	v	0.304	0.536	v	0.446	0.319
												L (sec)	43	13	L (sec)	13	39
						300(275)				640(695)		C (sec)	90	90	C (sec)	90	90
					₹ 30(40)		175(120)		250(120)	280(270)		y pract.	0.470	0.770	y pract.	0.770	0.510
					. ,			γ				R.C. (%)	54%	44%	R.C. (%)	73%	60%
Stage / Phase Di	agrams											Γ.			-		
1. A			↓ Ep	2.		≪	↑ ↓ Fp	Ер	<> Gn	↓ [OpC	4.			5.		
Gp					В		-		ЧU								
I/G= 6			I/G=	5		04		I/G= 5			I/G=	I		I/G=	I		
/U=0			I/G=	a		21		I/G= 5			Date	9: JUL, 2024		I/G= Junct Olympic A	ion: /enue / Muk Lai Str	eet	S

2033 Design (Sensitivity Test - Event Start)

Job Title:	Proposed Comprehensiv	e Development Including	Elat Shan & Sar	wices and Eating	Place in CDA(4)	Zone Kai Tak A	rea 24 Site 2	
Job Title.	Clin Dood of Dringo Edu	ard Boad Fast (Kowlean (VICES and Eating	s Place III CDA(4)	ZUIIE, Kai Tak A	Designed by	TCM
Junction:	Slip Road of Prince Edw	aru Roau East (Kowioon (Lity) / Olympic A	venue / concord	e Roau		Designed by:	
Scheme:	2033 Design Flow (Sens	sitivity Scenario)		06240			Спескей by:	CHC
Design Year:	2033		JOD NO.: CHK507	86310			Date:	JUL, 2024
Arm A	Concorde Road							
Arm B	Access Road to Airside							
Arm C	Olympic Avenue							
Arm D	Slip Road to Prince Edw	ard Road East						
			Arm D					
			Slip Road to Prin	ice Edward Road	l East			
					PM 220	70 255		
					PM 220	70 255		
					•	↓ L		
	PM	PM						
	625	625 —						
	100	100 🚽						
	335	335 🖌	/	· · · · ·				
			/)				
	Arm C				Arm A			
	Olympic Avenue						Concorde Road	
1			\	/				
			\			PM	PM	
1			\mathbf{i}			670	670	
			\sim			← 280	280	
			I			✓ 100	100	
1								
	PM	10 350 0						
	PM	10 350 0	Arm B	Access Road to	Airside			
			ENTRY ARM	A	В	C	D	
INPUT PARAN	1ETERS							
V	Approach Half Width (n	n)		7.30	7.00	10.00	7.00	
E	Entry Width (m)			10.00	7.50	11.00	10.50	
L	Effective Length of Flare	e (m)		5.00	1.00	5.00	20.00	
R	Entry Radius (m)			35.00	30.00	25.00	30.00	
D	Inscribed Circle Diamete	er (m)		60.00	60.00	60.00	60.00	
A	Entry Angle (degree)			15.00	15.00	60.00	40.00	
0.175.17 - 1								
UUIPUT PAR	AMETERS							
<u>_</u>		ci (1)		0.00	0.00	0.55	0.00	
5	= 1.6 (E - V) / L	Sharpness of flare		0.86	0.80	0.32	0.28	
K	= 1 - 0.00347 (A-30) - 0	.978 (1/R - 0.05)		1.07	1.07	0.91	0.98	
X2	= V + ((E-V) / (1+2S))			8.29	7.19	10.61	9.24	
M	= EXP ((D-60) /10)			1.00	1.00	1.00	1.00	
F	= 303 * X2			2512	2179	3215	2801	
ld -	= 1 + (0.5 / (1+M))			1.25	1.25	1.25	1.25	
FC	= 0.21*1d (1 + 0.2*X2)			0.70	0.64	0.82	0.75	
AM RECULT								
	Entry Flow (new/hour)			1.050	360	1.060	545	
õc	Circulating Flow Across	Entry (ncu/hour)		725	1 505	1 020	2 080	
	$= K (F - Fc^* \cap c)$			2152	1299	2154	1222	
		Design Flow / Canacity	0.49	0.40	0.28	0 /0	0.45	
Dru	- 4 / 48	Total Entry Flows	2.015	0.49	0.28	0.49	0.45	
		TOLAI EILITY FIOWS	3,015					
PIVI RESULT	Entry Flow (/)			1.050	200	1.000	E 4 5	
ų or	Circulating Flow (pcu/nour)	Entry (new/have)		1,050	300	1,060	245	
		End y (pcu/nour)		725	1,505	1,020	2,080	
DEC	- K (F - FC'QC)	Docign Flow: / Conocity	0.40	2152	1733	2154	1222	
DFC	- u / ue	Design Flow / Capacity	0.49	0.49	0.28	0.49	0.45	
		Total Entry Flavor	2 01 5				-	-
All 46 - 1	6	Total Entry Flows	3,015					

Job Title:	Proposed Comprehensiv	ve Development Includin	g Flat, Shop & Ser	vices and Eating	g Place in CDA(4)	Zone, Kai Tak A	rea 2A Site 2	
Junction:	Slip Road to Prince Edw	ard Road East (San Po Ko	ong) / Concorde R	oad			Designed by:	TCW
Scheme:	2033 Design Flow (Sen	sitivity Scenario)					Checked by:	СНС
Design Year:	2033		Job No.: CHK507	86310			, Date:	JUL, 2024
Arm A	Concorde Road (WB)							
Arm B	Concorde Road (EB)							
Arm C	Slip Road to Prince Edw	ard Road East						
			Arm C Slip Roa	d to Prince Edwa	ard Road East			
					PM 5	235 310		
					PM 5	235 310		
					Ł	₄ ┘ └ ∍		
	, PM	PM						
	400	400 _						
	520	320						
	560	560 🔶	/	\				
	Arm B		1		Arm A			
	Slip Road to Prince Edw	ard Road East	1		,,		Concorde Road	I (WB)
			1	/				. ,
			\			PM	PM	
			\mathbf{X}			▶ 5	5	
						♠660	660	
						← 170	170	
							1	
			ENTRY ARM	A	В	C		
INPUT PARAM	IETERS							
V	Approach Half Widel /-	m)		8 00	7.00	0.00		
r F	Approach Hair Width (n	11)		8.00 8.00	7.00	8.00		
	Effective Length of Elar	e (m)		6.00 1.00	6.00	0.00 1.00		
R	Entry Radius (m)			42.00	20.00	47.00		
D	Inscribed Circle Diamete	er (m)		40.00	40.00	40.00		
A	Entry Angle (degree)			10.00	22.00	15.00		
	.,			0		0		
OUTPUT PARA	AMETERS							
S	= 1.6 (E - V) / L	Sharpness of flare		0.00	0.27	0.00		
К	= 1 - 0.00347 (A-30) - 0	.978 (1/R - 0.05)		1.10	1.03	1.08		
X2	= V + ((E-V) / (1+2S))			8.00	7.65	8.00		
М	= EXP ((D-60) /10)			0.14	0.14	0.14		
F	= 303 * X2			2424	2319	2424		
Td	= 1 + (0.5 / (1+M))			1.44	1.44	1.44		
FC	= 0.21*Td (1 + 0.2*X2)			0.79	0.77	0.79		
AM RESULT								
0	Entry Flow (pcu/hour)			835	1.300	550		
Qc	Circulating Flow Across	Entry (pcu/hour)		620	670	905		
Qe	= K (F - Fc*Qc)	//		2120	1856	1849		
DFC	= Q / Qe	Design Flow / Capacity	0.70	0.39	0.70	0.30	1	
		Total Entry Flows	2,685				1	
PM RESULT		•	•					
Q	Entry Flow (pcu/hour)			835	1,300	550		
Qc	Circulating Flow Across	Entry (pcu/hour)		620	670	905		
Qe	= K (F - Fc*Qc)	· · · ·		2120	1856	1849		
DFC	= Q / Qe	Design Flow / Capacity	0.70	0.39	0.70	0.30		
		Total Entry Flows	2,685					
All the above	formulas are in accordan	ce to T.P.D.M. Vol.2 Chp	0.4 Sec 4.5.9					
All the upove								

Job Title:	Proposed Comprehensiv	e Development Including	g Flat. Shop & Sei	vices and Eating	g Place in CDA(4)	Zone. Kai Tak A	rea 2A Site 2	
Junction:	Shing Kai Road / Concor	de Road / Muk Chun Stre	eet		,		Designed by:	TCW
Scheme:	2033 Design Flow (Sens	sitivity Scenario)					Checked by:	СНС
Design Year:	2033		Job No.: CHK507	86310			Date:	JUL. 2024
Arm A	Shing Kai Road							
Arm B	Muk Chun Street							
Arm C	Concorde Road (EB)							
	PM	PM						
	725	725						
	105	105						
	5	5 🚽	/	·				
			/	1				
	Arm C				Arm A		Ching Kai Dood	
	Concorde Road (EB)		1				Shing Kai Koad	
			\			DM	DM	
			\mathbf{X}				5	
						↓ J	775	
						· ,,,,,	5	
						v J	5	
		←						
	PM	45 20 5						
	PM	45 20 5	Arm B	Muk Chun Stree	t			
			ENTRY ARM	А	В	С		
INPUT PARAN	NETERS							
V	Approach Half Width (n	ר)		5.00	5.00	7.00		
E	Entry Width (m)			7.00	7.50	7.00		
L	Effective Length of Flare	e (m)		5.00	5.00	5.00		
ĸ	Entry Radius (m)			29.00	20.00	50.00		
D	Inscribed Circle Diamete	er (m)		60.00	60.00	60.00		
А	Entry Angle (degree)			40.00	27.00	23.00		
OUTPUT PAR	AMETERS							
	-							
s	= 1.6 (E - V) / L	Sharpness of flare		0.64	0.80	0.00		
к	= 1 - 0.00347 (A-30) - 0	.978 (1/R - 0.05)		0.98	1.01	1.05		
X2	= V + ((E-V) / (1+2S))			5.88	5.96	7.00		
М	= EXP ((D-60) /10)			1.00	1.00	1.00		
F	= 303 * X2			1781	1806	2121		
Td	= 1 + (0.5 / (1+M))			1.25	1.25	1.25		
Fc	= 0.21*Td (1 + 0.2*X2)			0.57	0.58	0.63		
AIVI KESULI	Entry Flow (new/hours)			795	70	92E		
	Circulating Flow Across	Entry (ncu/hour)		100	780	30		
	= K (F - Fc*Oc)			1682	1372	50 2215		
DEC		Design Flow / Canacity	0.47	0.47	0.05	0.38		
		Total Entry Flows	1 690	0.47	0.05	0.50		
PM RESULT		. otor Entry Hows	1,050					
0	Entry Flow (neu/hour)			785	70	835		
∽ Qc	Circulating Flow Across	Entry (pcu/hour)		115	780	30		
Qe	= K (F - Fc*Oc)	, (pool, loon)		1682	1372	2215		
DFC	= Q / Qe	Design Flow / Capacity	0.47	0.47	0.05	0.38	Ì	
-		Total Entry Flows	1,690				Ì	
All the above	formulas are in accordan	ce to T.P.D.M. Vol.2 Chn	.4 Sec 4.5.9					
	,							

Job No.: <u>CHK5078631</u>0

Description:	Checked By: CHC PM Peak Critical y tical y Flow (pcu/hr) y Value Critical y 209 443 0.209 0.209 .189 376 0.189 0.189
Approach g g g g g g g g g Radius (m) t g g g g g g g Pro. Turning (%) g Revised Saturation Pro. Turning (%) Period Revised Saturation Pile Peak Shing Kai Road + A 1 3.650 15 16% 10% 1050 10% 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.189	Flow (pcu/hr) y Value Critical y 407 0.209 0.209 209 443 0.209 0.209 .189 376 0.189 0.189
Approach $\frac{9}{29}$ $\frac{9}{20}$ $\frac{9}{20}$ $\frac{9}{20}$ $\frac{9}{20}$ $\frac{9}{20}$ $\frac{9}{20}$ $\frac{9}{20}$ $\frac{9}{2120}$ $\frac{1}{100}$ \frac	tical y Flow (pcu/hr) y Value Critical 209 443 0.209 0.209 .189 376 0.189 0.189
Shing Kai Road I A 1 3.850 15 16% 16% 1950 1950 407 0.209 0.209 Shing Kai Road I B 2 3.850 8 36% 1980 1980 1980 37.4 0.189 0.209 0.209 Shing Kai Road I B 2 3.850 8 36% 1980 1980 37.6 0.189 0.189 (SB) I B 2 3.650 8 36% 36% 1985 1985 1985 0.189 0.189 0.189 (SB) I B 2 3.650 8 36% 36% 1985 1985 1985 1985 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.9 1.8 1.9 1.9 1.18 1.9 1.18	407 0.209 .209 443 0.209 0.209 .189 376 0.189 0.189
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	374 0.189 .189 376 0.189 0.189
Pedestrian Crossing Cp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 MIN GREEN + 100 MIN GREEN +	
Pedestrian Crossing Cp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 TAC junction : CT 90s adopted Flow: (pcu/hr) 135(135) 135(135) 135(135) 1 MIN GREEN + FLASH = 9 + 9 = 18 TAC junction : CT 90s adopted Flow: (pcu/hr) 135(135) 1	
Pedestrian Crossing Cp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Motes: TAC junction : CT 90s adopted TAC junction : CT 90s adopted Flow: (pcu/hr) \uparrow^{N} $\begin{pmatrix} Group & ADp & A.6.6p \\ y & 0.209 & 0.398 \\ G5(65) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	
Pedestrian Crossing Cp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Cp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Notes: TAC junction : CT 90s adopted Flow: (pcu/hr) $135(135) \stackrel{785(185)}{\bullet}$ $135(135) \stackrel{785(185)}{\bullet}$ $135(135) \stackrel{785(185)}{\bullet}$ $135(135) \stackrel{785(185)}{\bullet}$ $135(135) \stackrel{785(185)}{\bullet}$	
Pedestrian Crossing Cp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 TAC junction : CT 90s adopted Flow: (pcu/hr) 135(135) 135(135) 135(135) 14 14 14 14 14 14 15 165(615) 165(615) 16 </td <td></td>	
Pedestrian Crossing Cp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Notes: TAC junction : CT 90s adopted $I_{135(135)} + I_{135(135)} + I_{135(1$	
Pedestrian Crossing Cp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Notes: TAC junction : CT 90s adopted $ \begin{cases} Flow: (pcu/hr) \\ 135(135) \bullet 65(65) \\ 65(65) \\ 785(785) \\ 65(65) \\ 785(785) \\ 65(65) \\ 785(785) \\$	
Pedestrian Crossing Cp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Notes: TAC junction : CT 90s adopted Flow: (pcu/hr) + 9 + 9 = 18 $135(135)$ $65(65)$ $785(785)$ - 4^N $A.D_P$ $A.B.E_P$ Y 0.209 0.398 - - 28 34 C (sec) 90 <td></td>	
Pedestrian Crossing Cp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Notes: TAC junction : CT 90s adopted Flow: (pcu/hr) + 9 + 9 = 18 135(135) $615(615)$ - + 9 0.209 0.398 L (sec) 28 34 C (sec) 90 <td></td>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* *
Notes: Flow: (pcu/hr) Image: Notest in the image: Notest	
Notes: Flow: (pcu/hr) Image: Notest image:	
Notes: Flow: (pcu/nr) Flow: (pcu/nr)<	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B,Ep Group A,Dp A,B,Ep
⁷⁸⁵⁽⁷⁸⁵⁾ ⁶⁵⁽⁶⁵⁾ ⁷⁸⁵⁽⁷⁸⁵⁾ ⁷⁸⁵⁽⁷⁸⁵⁾ ⁷⁸⁵⁽⁷⁸⁵⁾ ⁷⁸⁵⁽⁷⁸⁵⁾ ⁷⁸⁵⁽⁷⁸⁵⁾ ⁷⁸⁵⁽⁷⁸⁵⁾ ⁷⁸⁵⁽⁷⁸⁵⁾ ⁷⁸⁵⁽⁷⁸⁵⁾ ⁹⁰ ⁹⁰ ⁹⁰ ⁹⁰ ⁹⁰ ⁹⁰ ⁹⁰ ⁹⁰	330 y 0.209 0.330 34 L (sec) 28 34
65(65) y pract. 0.620 0.560	90 C (sec) 90 90
	560 y pract. 0.620 0.560
R.C. (%) 197% 41%	1% R.C. (%) 197% 41%
Stage / Phase Diagrams	
$\begin{vmatrix} 1. & & & 2. & & & B \\ & & & Cp & & Dp & & \\ & \leftarrow \cdots \rightarrow & & \leftarrow \cdots \rightarrow & & & & \\ & & & \leftarrow \cdots \rightarrow & & & & \\ & & & & \leftarrow \cdots \rightarrow & & \leftarrow \cdots \rightarrow & \leftarrow \cdots \rightarrow & & \\ & & & & & & \leftarrow \cdots \rightarrow \rightarrow $	5.
Gp Fp Gp	
I/G= 3 I/G= 5 I/G= 10 18 I/G= I/G=	
I/G= 3 I/G= 5 I/G= 10 18 I/G= I/G= Date: Jun	VG=
Job No.: <u>CHK507863</u>10

Junction:	Shing K	ai Road	l / Muk C	Chui Street				_							Design Year		
Description:	2033 De	esign Eld	ow (Ser	sitivity Sce	nario)			-			Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	Its				Radiu	ıs (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation		PM Peak			PM Peak	
Approach	Movemer	Phase	Stage	Width (m)	Left	Right	Gradient	РМ	РМ	РМ	PM	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Muk Chui Street (EB)	↓	С	3	3.750	30	25		38% / 19%	38% / 19%	1930	1930	425	0.220	0.220	425	0.220	0.220
Shing Kai Road (SB)	↓ ↓	B B	2 2	3.650 3.650	10	20		100% 11%	100% 11%	1720 2100	1720 2100	300 310	0.174 0.148	0.174	300 310	0.174 0.148	0.174
Muk Chui Street (WB)	Ł_ ⊀∓	D D	4 4	3.650 3.650	10	20		31%	31%	1970 1895	1970 1895	105 65	0.053 0.034	0.053	105 65	0.053 0.034	0.053
Shing Kai Road (NB)	*† †	A A	1 1	3.650 3.650	18	20		39% 16%	39% 16%	1915 2095	1915 2095	382 418	0.199 0.200	0.200	382 418	0.199 0.200	0.200
Pedestrian Crossi	ng	Ep Fp Gp Ip Jp	1,4 2 1,2,4 3 2,3,4 1	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL/ EN + FL/ EN + FL/ EN + FL/ EN + FL/ EN + FL/	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5 5 5	+ + + +	9 9 8 10 9 11	= = = = =	14 14 13 16 14 16						
Notes:	120s ado	pted		Flow: (pc	u/hr)						≜ ^N	Group	A,Fp,C,D	A,B,C,D	Group	A,Fp,C,D	A,B,C,D
					160(160) 80(80)	185(185)	35(35) 150(150)	275(275) 585(585)	▶ 300(300)▶ 65(65)	105(105) 45(45) 20(20)		y L (sec) C (sec) y pract. R.C. (%)	39 120 0.608 28%	29 120 0.683 5%	y L (sec) C (sec) y pract. R.C. (%)	0.473 39 120 0.608 28%	29 120 0.683 5%
Stage / Phase Di	agrams																
1. ↑ Gp ↓ ↓	, *	<	Ep >	2. ∧ Gr ∀	Fp </td <td>` ↓</td> <td></td> <td>3 3.</td> <td>A Hp ↓</td> <td>с</td> <td></td> <td>4. ↑ Gp ↓ ↓</td> <td><</td> <td></td> <td>5.</td> <td></td> <td></td>	` ↓		3 3.	A Hp ↓	с		4. ↑ Gp ↓ ↓	<		5.		
I/G= 8			I/G= 9	 }				//G= 7			I/G=	9		I/G=			
I/G= 8			I/G= 9)				I/G= 7			I/G= Date	9 :		I/G= Juncti	on:	Street	E

Job No.: <u>CHK507863</u>10

Junction:	Shing K	ai Roac	I / Muk C	Chui Street											Design Yea	r: <u>2033</u>	
Description:	2033 De	esign Ele	ow (Ser	nsitivity Sce	enario) (V	Vith prop	osed junc	ion improve	ment)		Designed	By: TCW			Checked By	CHC	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (p	aturation ocu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	PM	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Muk Chui Street (EB)	× ×	C C	3 3	4.000 4.000	15	17	I	80% 36%	80% 36%	1305 1460	1305 1460	201 224	0.154 0.153	0.154	201 224	0.154 0.153	0.154
Shing Kai Road (SB)	↓∙ ∢	B B	2 2	3.650 3.650	10	20		100% 11%	100% 11%	1720 2100	1720 2100	300 310	0.174 0.148	0.174	300 310	0.174 0.148	0.174
Muk Chui Street (WB)	<u>+</u> _ ⊀	D D	4 4	3.650 3.650	10	20		31%	31%	1970 1895	1970 1895	105 65	0.053 0.034	0.053	105 65	0.053 0.034	0.053
Shing Kai Road (NB)	<∱ ∱*	A A	1 1	3.650 3.650	18	20		39% 16%	39% 16%	1915 2095	1915 2095	382 418	0.199 0.200	0.200	382 418	0.199 0.200	0.200
Pedestrian Crossi	ng	Ep Fp Gp Ip Jp	1,4 2 1,2,4 3 2,3,4 1	Min gre Min gre Min gre Min gre Min gre Min gre	EN + FL. EN + FL. EN + FL. EN + FL. EN + FL. EN + FL.	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 6 5 5	+ + + + +	9 9 8 10 9 11	= = = =	14 14 13 16 14 16						
Notes				Flow: (nc	u/br)												
TAC junction: CT * Site factor 0.7 ad	120s ado Ided due	pted to flare	length		160(160)	185(185	35(35)) 150(150)	275(275)	➤ 300(300) ►65(65)	105(105) 45(45) ◀ 20(20)	+~	y L (sec) C (sec) y pract.	A,B,Hp,D 0.427 44 120 0.570	0.581 29 120 0.683	y L (sec) C (sec) y pract.	A,B,Hp,D 0.427 44 120 0.570	A,B,C,D 0.581 29 120 0.683
					80(80)			Y				R.C. (%)	33%	17%	R.C. (%)	33%	17%
Stage / Phase Dia	agrams			2				2				4			5		
f. ↑ Gp ↓		≪-	≯	2. ∧ G¢ ∨	Fp ≪÷	> ~)↓ ↓			с		4. ∧ Gp ¦ ∀	~	Ep →	5.		
	_	<	lp >		lp ≼	->		,	∧ Hp ¦ √ lp <>			^{Ip} <⇒	₹ •	D			
I/G= 8			I/G= 9					I/G= 7			I/G=	9		I/G=			
I/G= 8			I/G= 9	9				I/G= 7			I/G= Date	9 : JUL, 2024		I/G= Junct Shing Kai	ion: Road / Muk Chui	Street	E

Job No.: <u>CHK507863</u>10

Junction:	Shing Ka	ai Road	l / Kai Sl	ning Street	/ Muk O	n Street		_							Design Yea	r: <u>2033</u>	
Description:	2033 De	sign Flo	ow (Ser	sitivity Sce	enario)						Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (j	Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	-4+ -7+ -7	A A A	2 2 2	3.650 3.650 3.650	18	18 15	1	73% 30%	73% 30%	1865 2070 1925	1865 2070 1925	177 196 182	0.095 0.095 0.095	0.095	177 196 182	0.095 0.095 0.095	0.095
Muk On Street	↓	E E	1 1	3.650 3.650	18	20		56% 56%	56% 56%	1890 2035	1890 2035	313 337	0.166 0.166	0.166	313 337	0.166 0.166	0.166
Shing Kai Road (WB)	← ∢ <u>↓</u> √ #	D D D	3 3 3	3.650 3.650 3.650	50	20		49%	49%	2120 2045 1345	2120 2045 1345	158 152 65	0.075 0.074 0.048		158 152 65	0.075 0.074 0.048	
kai Shing Street	ך► ↑ ◄ן #	C C B	4 4 1,2,4	3.650 3.650 4.000	50	20				1970 2120 1370	1970 2120 1370	425 225 690	0.216 0.106 0.504	0.216	425 225 690	0.216 0.106 0.504	0.216
Pedestrian Crossi	ng	Fp Gp Ip Jp Kp Mp	2,3,4 1 1,3,4 4 3 3,4 1,2,4 1,2,3	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH = ASH =	5 8 8 5 7 5 5 5	+ + + + + + +	9 20 21 9 17 9 9 9 9	= = = = =	14 28 29 14 24 14 14 14			*			*
Notes:				Flow: (pc	u/hr)						*	Group	Gn A .In C	E A .In C	Group	Gn A Jn C	E A .In C
TAC Junction: 130	ls CT ado	pted					400/400				ХN	v	0.311	0.476	v	0.311	0.476
# Site factor 0.7 a	lopted				120(120)		190(190)	285(285)	▶ 175(175)	75(75)		L (sec)	73	48	L (sec)	73	48
						185(185)	225(225)		235(235)		C (sec)	130	130	C (sec)	130	130
					₹ 240(240)		690(690)		▶425(425)	65(65)		y pract.	0.395	0.568	y pract.	0.395	0.568
					240(240)			Y				R.C. (%)	27%	19%	R.C. (%)	27%	19%
Stage / Phase Dia	igrams			1						En		1		F -	1		
1. ←Gp	<> Mn	E	↓ Lp	2. A		<>	ج> ۲.,	р 3 . / Lp	<> [↓] [↓] [↓] [↓] [↓] [↓] [↓] [↓]	> Кр / ≪>	dr ↔	4. ↓ Hp ↓ Ip	Kp ≪	Lp ∧	5.		
В	444		Lp		В	ivip	-	Lb 7		,	-	в	С	Lp			
I/G= 8			I/G= 6					I/G= 10		24	I/G=	3		I/G=	• 		
νu= δ			_ //G= 6					⊮G= 10	<u> </u>	24	Date	: JUL, 2024		I/G= Juncti Shing Kai	on: Road / Kai Shing	Street / Muk On S	F

Job No.: <u>CHK5078631</u>0

Junction:	Shing K	ai Road	l / Shing	Fung Roa	d / Muk	Tai Street	t	-							Design Year	:2033	
Description:	2033 De	esign El	ow (Ser	nsitivity Sce	enario)			-			Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (aturation ocu/hr)		PM Peak			PM Peak	
Approach	Movem	Phase	Stage	Width (m)	Left	Right	Gradien	РМ	РМ	РМ	PM	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	+ → _+ _+ _+	B B B	2 2 2 2	3.650 3.500 3.500 3.500 3.500	15	20 15		56%	56%	1875 2105 1960 1915	1875 2105 1960 1915	240 270 453 442	0.128 0.128 0.231 0.231	0.231	240 270 453 442	0.128 0.128 0.231 0.231	0.231
Muk Tai Street	₄↓^ ↓₅^	A A	1 1	3.750 4.000	22	17		92%	92%	980 950	980 950	160 120	0.163 0.126	0.163	160 120	0.163 0.126	0.163
Shing Kai Road (WB)	← ◆← ↓ ↓	E E E	4 4 4 4	3.650 3.650 3.650 3.650	25 28	23		51%	51%	2120 2050 1870 2010	2120 2050 1870 2010	404 391 253 272	0.191 0.191 0.135 0.135	0.191	404 391 253 272	0.191 0.191 0.135 0.135	0.191
Shing Fung Road	⁴] ⁴] [*	C C D D	2,3 2,3 3 3	3.650 3.650 3.650 3.650	20 22	23 19		82%	82%	1840 1985 2010 1750	1840 1985 2010 1750	515 555 142 123	0.280 0.280 0.071 0.070	0.071	515 555 142 123	0.280 0.280 0.071 0.070	0.071
Pedestrian Crossi	ng	FP GP HP JP KP KP NP	1,3,4 2,3 1,4 1,2,3 1,2,3 4 2,3 1	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH = ASH = ASH =	8 5 5 7 5 6	+ + + + + + + + + +	15 7 8 9 7 13 9 11		23 12 13 19 14 12 20 14 17		Γ	Γ			Γ
Notes: TAC junction : CT	130s ado	opted		Flow: (pc	u/hr)			\wedge			1 [™]	Group	A,C,E	A,B,D,E	Group	A,C,E	A,B,D,E
^ Site factor 0.5 ac	ded due	to flare	length		105(105)		160(160)	10(10)	▶ 110(110)	200(200)		y L (sec)	17	17	y L (sec)	0.034 17	17
						375(375)	25(25)		595(595) ◄		C (sec)	130	130	C (sec)	130	130
					895(895)	1	1070(1070		▶240(240)	525(525)		y pract.	0.782	0.782	y pract.	0.782	0.782
								γ				R.C. (%)	23%	19%	R.C. (%)	23%	19%
Stage / Phase Dia	agrams	A		2.		«	Mp	3.		<i>(</i>	Мр	4.	6	Mp	5.		
Fp			Ka	B	Gp			Ka	Fp Gp;			Fp : V	Ň	↓ ↓ Lp			
,77 12 Нр			لالم لار م	•	c		7	^{Kp} ↓	÷	D	, , , , , , , , , , , , , , , , , , ,	تر. لا	lp . ≪>	E			
I/G= 5 I/G= 5			I/G= {	5				I/G₽= 6 I/G= 6			I/G=	= 5 = 5		I/G=			
											Date	JUL, 2024		Juncti Shing Kai	on: Road / Shing Fun	g Road / Muk Tai	G

Job No.: <u>CHK507863</u>10

Junction:	Shing K	ai Road	/Weste	ern access	to main	stadium									Design Year		
Description:	2033 De	sign Flo	ow (Sen	sitivity Sce	enario)						Designed	By: TCW			Checked By	: <u>CHC</u>	
	ents				Radiu	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (j	Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	PM	РМ	PM	РМ	Flow (pcu/hr	`v Value	Critical v	Flow (pcu/h	v Value	Critical v
		А	1	3 650	17.5	1		30%	30%	1930	1930	592	0.307	0.307	592	0.307	0.307
Shing Kai Road EB	\rightarrow	A A	1 1	3.650 3.650		22.5		27%	27%	2120 2080	2120 2080	650 638	0.307 0.307	0.001	650 638	0.307 0.307	0.007
Shing Kai Road WB	⊊ ←	C C C	3 3 3	3.650 3.650 3.650	17.5	22.5		34% 14%	34% 14%	1925 2120 2100	1925 2120 2100	484 533 528	0.251 0.251 0.251	0.251	484 533 528	0.251 0.251 0.251	0.251
Western Access Road to Main Stadium NB	¶ ∱→	B B	2 2	3.750 3.750	15	22.5		86%	86%	1810 2015	1810 2015	125 35	0.069 0.017	0.069	125 35	0.069 0.017	0.069
Western Access	↓►	D	4	3.500	20			67%	67%	1870	1870	15	0.008		15	0.008	
Road to Main Stadium SB	ل ہ	D	4	3.500		32.5				2010	2010	25	0.012		25	0.012	
Pedestrian Crossi	ng	Ep Fp Gp Ip Jp	4 1,2,3 3 1,2,4 2 1,3,4	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FLJ EN + FLJ EN + FLJ EN + FLJ EN + FLJ EN + FLJ	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5	+ + + + + + + + + + + + + + + + + + + +	5 7 10 11 8 7		10 12 15 17 13 12				Group		
TAC junction : CT	130s ado	opted			,			\checkmark	•		+	Group	0.376	A,B,C,D	Group	0.376	0.627
					190/190)		25(25)	▼ 5(5)	10(10)	75(75)	•	L (sec)	39	24	L (sec)	39	24
)	100(100)	1525(152	25)	5(5)		1305(1305)	\leftrightarrow	C (sec)	130	130	C (sec)	130	130
					175(175)		125(125)		30(30)	165(165)	¥	y pract.	0.630	0.734	y pract.	0.630	0.734
								Ŷ				R.C. (%)	68%	17%	R.C. (%)	68%	17%
Stage / Phase Di 1.	agrams	5.0		2.			En	3				4.	Åр		5.		
A Jp	>	Fp <>	↑ Нр	-	В	< → < I¢	Fp > ↓ Hp		> Jp	Fr < ↓ Gp ↓		•. Ep <>	~	↑ 	0.		
I/G= 5			I/G= 5	5				I/G= 5			I/G=	= 7	5	I/G=	<u> </u>		
I/G= 5			I/G= 5	5				I/G= 5			I/G= Date	= 7 9:	5	I/G= Junct	ion:		H

Job No.: <u>CHK5078631</u>0

Junction:	lo Kwa	Wan Ro	bad / Sh	ing Kai Roa	ad / Sun	g Wong	loi Road	-							Design Year	:2033_	
Description:	2033 De	esign Flo	ow (Ser	sitivity Sce	enario)			-			Designed	By: TCW			Checked By	CHC	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (j	Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
To kwa Wan Road (NB)	↓	C C	1 1	3.600 3.000	18		1	41%	41%	1910 2055	1910 2055	631 679	0.330 0.330	0.330	631 679	0.330 0.330	0.330
Shing Kai Road (SB)	↓ ↓ ↓	A A A	2 2 2	3.500 3.650 4.000		32 30		77%	77%	1965 2045 2050	1965 2045 2050	472 491 492	0.240 0.240 0.240	0.240	472 491 492	0.240 0.240 0.240	0.240
Sung Wong Toi Road (EB)	┤ ╎	B B B	3 3 3	3.650 3.650 3.650	18 20	24 22		100% / 0%	100% / 0%	1830 1970 1985	1830 1970 1985	399 431 225	0.218 0.219 0.113	0.219	399 431 225	0.218 0.219 0.113	0.219
Pedestrian Crossir	ıg	Dp Ep Fp Gp Ip	2,3 1 1,3 2 1,2 3	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5 5	+ + + + +	10 12 11 7 6 7		15 17 16 12 11 12						
Notos				Elow: (no	u/br)												
TAC Junction: CT	130s adr	onted		now. (pc	u/m)		870(870)	/			[▲] ^N	Group	A,Gp,C	A,B,C	Group	A,Gp,C	A,B,C
		optou					()	585(585)				У	0.571	0.789	У	0.571	0.789
					830(830)			000(000)				L (sec)	29	13	L (sec)	29	13
					\leq		260(260)	1050(1050)				C (sec)	130	130	C (sec)	130	130
					225(225)							y pract.	0.699	0.810	y pract.	0.699	0.810
								N				R.C. (%)	23%	3%	R.C. (%)	23%	3%
Stage / Phase Dia	grams											Γ.			1_		
۲. Fp	、 Ep 、 <u>ム</u>		/ A	Z.	B	×	۴.,	`ユ Dp	Fp_,.7		۳. Dp	4.			5.		
۳. Hp	7			لك جر Hp	<i>7</i>				c		Ip						
I/G= 5			I/G= 6	3				I/G= 5			I/G=			I/G=			
I/G= 5			I/G= (j				I/G= 5			I/G= Date	e:		I/G= Junct	ion:		(n)
												JUL, 2024		To Kwa W	an Road / Shing K	ai Road / Sung V	Vong Toi Road

TRAFFIC SI	GNA	LS C	CALC	ULATI	ON						Job No.:	: <u>CHK5</u>	<u>07863</u> 10	Ν	IVA HON	g kong	LIMITED
Junction:	lo Kwa	Wan R	oad / Sh	ing Kai Ro	ad / Sun	g Wong	Toi Road								Design Yea		
Description:2	2033 De	esign El	ow (Sei	nsitivity Sci	enario) (V	Vith prop	oosed junct	ion improver	nent)		Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	nts				Radi	us (m)	(%)	Pro. Tur	ning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
To kwa Wan Road (NB)	≁† ↑	D D	4 4	3.600 3.000	18	I	1	41%	41%	1910 2055	1910 2055	631 679	0.330 0.330	0.330	631 679	0.330 0.330	0.330
Shing Kai Riad (SB)	↓ ↓ ↓	A A A	1,2 1,2 1,2	3.500 3.650 4.000		32 30		77%	77%	1965 2045 2050	1965 2045 2050	472 491 492	0.240 0.240 0.240	0.240	472 491 492	0.240 0.240 0.240	0.240
To Kwa Wan Road (EB)	+ + + +	C B B	2,3 2,3 3 3	3.500 3.500 3.500 3.500	18 20	30 28				1630 1960 2005 2000	1630 1960 2005 2000	377 453 113 112	0.231 0.231 0.056 0.056	0.056	377 453 113 112	0.231 0.231 0.056 0.056	0.056
Pedestrian Crossing	3	Jp Ep Fp Hp Ip	3,4 1 1,4 3 1,2,3 4	min gre Min gre Min gre Min gre Min gre	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH =	5 7 8 5 5 5 5	+ + + + + +	10 13 15 7 6 7	= = = =	15 17 16 12 11 12						
Notes:				Flow: (po	cu/hr)						≜ N	Group	Ep,C,Ip	A,B,D	Group	Ep,C,Ip	A,B,D
TAC Junction : CT 1	30s ad	opted	length				870(870)				+	у	0.231	0.627	у	0.231	0.627
	Ju uuo		longui		830(830)			585(585)				L (sec)	30	15	L (sec)	30	15
				_			260/260)	1050/1050)				C (sec)	130	130	C (sec)	130	130
					N		200(200)					y pract.	0.692	0.796	y pract.	0.692	0.796
					223(223)							R.C. (%)	199%	27%	R.C. (%)	199%	27%
Stage / Phase Diag	rams							1							. ,		
1. Fp _L ⁷⁷	_ Ep		/ / A	2 .	<u>ر</u>	* .		A C	B B B B B B B B B B B B B B B B B B B	٣.	ي. df	4.	1	لاریج الا	5.		
Hp					Нр				Hp ڬ			"//					
I/G= 5			I/G=	2		<u>.</u>		I/G= 6			I/G=	5		I/G=			
I/G= 5			/G=	2				I/G= 6			I/G=	5		I/G=	ion:		$\overline{()}$
											Date	JUL, 2024		To Kwa W	/an Road / Shing K	ai Road / Sung V	Vong Toi Road

Job No.: <u>CHK5078631</u>0

Junction:	Kowloo	n City Ro	oad / Su	ng Wong T	oi Road										Design Year		
Description:	2033 De	esign Flo	w (Sen	sitivity Sce	nario)			Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>				
	ints				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (p	Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	PM	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Sung Wong Toi Ro	+ +	A A	1 1	3.650 3.500						1585 1685	1585 1685	553 587	0.349 0.348	0.349	553 587	0.349 0.348	0.349
Kowloon City Road	* ⊺ * ⊺	B B	2 2	4.500 4.500	10 12					1435 1570	1435 1570	332 363	0.231 0.231	0.231	332 363	0.231 0.231	0.231
Pedestrian Crossi	ng	Ср	2	MIN GREI	EN + FL	ASH =	10	÷	11	-	21						
Notes:				Flow: (pc	u/hr)						₽	Group	A,Cp	A,B	Group	A,Cp	A,B
Site factor 0.8 add activities at Sung V	ed due to Nong To	o kerbsio i Road &	le k								I	У	0.349	0.580	У	0.349	0.580
Kowloon City Roa	b											L (sec)	27	10	L (sec)	27	10
							695(695)	•		1140(1140)		C (sec)	65	65	C (sec)	65	65
							,					y pract.	0.526 51%	0.762	y pract.	0.526	0.762
Stage / Phase Dia	grams											N.O. (<i>1</i>)	5170	5170	n.o. (%)	0170	0170
1.	A			2. ◀-	<	+	-> Ср	в				4.			5.		
I/G= 6			I/G= 6					I/G=			I/G=			I/G=			
			1.0 0	I				1	1		Date	: JUL, 2024		Juncti Kowloon (ion: City Road / Sung V	Vong Toi Road	J

Job No.: <u>CHK5078631</u>0

Junction:	Ma Tau	Chung	Road / S	Sung Wong	<u> Toi Roa</u>	<u>d / Fu Ni</u>	ng Street								Design Yea	r: <u>2033</u>	
Description:	2033 De	esign Fl	ow (Ser	nsitivity Sce	enario)						Designed	By: <u>TCW</u>			Checked By	CHC	
	ents				Radi	us (m)	ıt (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Movem	Phase	Stage	Width (m)	Left	Right	Gradier	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Sung Wong Toi Ro	יז ו ר+ ר ל	D D E E	2,3 2,3 2,3 2 2 2	3.500 3.500 3.000 3.500 3.500	I	15 20 25	L			1785 1960 1940 1965 2105	1785 1960 1940 1965 2105	534 586 580 241 259	0.299 0.299 0.299 0.123 0.123	0.299	534 586 580 241 259	0.299 0.299 0.299 0.123 0.123	0.299
Ma Tau Chung Rd (NB)	 → →	A A A	1 1 1	3.500 3.500 3.500	10			37%	37%	1860 2105 2105	1860 2105 2105	633 716 716	0.340 0.340 0.340	0.340	633 716 716	0.340 0.340 0.340	0.340
Ma Tau Chung Rd (SB)	+ + +	B B B	1 1 1	3.500 3.500 3.500						2105 2105 1965	2105 2105 1965	482 483 450	0.229 0.229 0.229		482 483 450	0.229 0.229 0.229	
Fu Ning Street	↓	I	4	3.500		20				1830	1830	25	0.014		25	0.014	
Pedestrian Crossi	ng	Ср Fр Gp Hp	1 2,3 1,2,3 3,4	MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH =	10 10 5 7	+ + +	9 9 5 8		19 19 10 15						
Notes:				Flow: (pc	u/hr))		→ N	Group	B,D,I	A,D,I	Group	B,D,I	A,D,I
								#REF!	/			у (сос)	0.529	0.639	y	0.529	0.639
					235(235)	1830(18	30)			1415(1415	— —	C (sec)	130	130		130	130
							,	500(500)	▶1700(1700)			v pract.	0.775	0.775	v pract.	0.775	0.775
												R.C. (%)	47%	21%	R.C. (%)	47%	21%
Stage / Phase Dia	igrams											I T					
	Ср	< <u>Gt</u>	р» В	2.	↓ Fp	D	Gp <}	3.	< ↑ ↓ Fp 0	Hp> <	Gp >	4.	Hp>		5.		
I/G= I/G=			I/G=	5				I/G= 5			I/G=	= 5 = 5	5 5	I/G=			
· ·											Date): JUL, 2024		Junct Ma Tau C	ion: hung Road / Sung	Wong Toi Road /	K Fu Ning Street

Job No.: <u>CHK5078631</u>0

Junction:	Olympic	: Avenu	ie / Hang	Wan Roa	d			-							Design Year	:2033	
Description:	2033 De	sign El	ow (Ser	nsitivity Sce	enario)			-		1	Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	ıt (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak	T		PM Peak	r
Approach	Movem	Phase	Stage	Width (m)	Left	Right	Gradier	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (NB)	Ť	A A	1,2 1,2	3.500 3.500		•				1965 2105	1965 2105	309 331	0.157 0.157		309 331	0.157 0.157	
Olympic Avenue (SB)	ţ	B B	1,2 1,2	3.650 3.650						1980 2120	1980 2120	355 380	0.179 0.179	0.179	355 380	0.179 0.179	0.179
Hang Wan Road	* ~~~* ~~~*	C D D	2,3 3 3	5.000 3.300 3.300	13	25 20				1895 1965 1940	1895 1965 1940	30 392 388	0.016 0.199 0.200	0.200	30 392 388	0.016 0.199 0.200	0.200
Pedestrian Crossi	ng	Ep Fp	1	MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH =	55	++	6	=	11 11						
		Gp	3	MIN GRE	EN + FL	ASH =	5	+	7	=	12						
Notes:				Flow: (po	u/hr)						▲ N	Group	A,D	B,D	Group	A,D	B,D
								725(725)			I	У	0.357	0.379	У	0.357	0.379
					30(30)			135(135)				L (sec)	9	11	L (sec)	9	11
								640(640)				v pract	0 765	0.735	v pract	0 765	0.735
					780(780)							R.C. (%)	114%	94%	R.C. (%)	114%	94%
Stage / Phase Dia	agrams																
1. Fp,7	Ep >	1	в	2.	c	A	► E	3	C D	۴	Gp	4.			5.		
					•												
I/G= 6			I/G=					 /G= 7			I/G=	I		I/G=			
			10-	I				1//0= /	1		Date	: JUL, 2024		Junct Olympic A	ion: wenue / Hang War	n Road	Û

Lab. Tist	Brenned C 1	a Davidana 11 1	line EL 1 CL	0. 0	deserve te st		NA(4) 7	L A	
	Proposed Comprenensiv	ve Development Inclu	ang Flat, Sh	up & ser	vices and Eating	s Place in Cl	DA(4) ZONE, Kai Ta	K AFEB ZA SITE Z	7011
Junction:	Prince Edward Road Eas	st / Prince Edward Roa	a West / N	ia Tau Ch	ung Road / Arg	yie Street		Designed by:	ICW
Scheme:	2033 Design Flow (Sen	sitivity Scenario)						Checked by:	CHC
Design Year:	2033		Job No.	CHK507	86310			Date:	JUL, 2024
Arm A	Prince Edward Road Eas	st							
Arm B	Ma Tau Chung Road (EE	3)							
Arm C	Argyle Street				-				
Arm D	Prince Edward Road We	est							
		PM PM	1	PM	PM	ſ	PM PM		
	Arm D	→ 1330 123		3075	3075	г -	2035 2035	→	
	Prince Edward Boad West	100 100		3073	3073 -		2033 2033		
	FINCE EUWAIU KOAO WEST		ļĨ						
			4745						
			1745	PM					
			1745	PM					
			20						
	Arm C	<u> </u>	0						
	Argyle Street		1						
						+			
			2360	PM	PM	1035			
			2360	PM	PM	1035			
		420 42	0						
		720 72	-						
	Arm B								
	ALTER Charles De 1475								
	Ma Tau Chung Road (EB)	- 1460 146							
			I Î						
				_					
			1320	PM				Arm A	
			1320	PM			1800 1800 🗲	Prince Edward	Road East
		1520 152	20		2840 2840				
			ENT	RY ARM	A	В	C	D	
INPUT PARAM	1ETERS								
v	Approach Half Width (n	n)			8.50	9 50	6.00	6 50	
F	Entry Width (m)				9.00	10.00	8.00	9.50	
ī.	Effective Length of Flore	a (m)			1 00	5.00	5.00	<u>0</u> 00	
L .	Enective Length of Flare	= (111)			1.00	5.00	5.00	9.00	
ĸ	Entry Radius (m)				50.00	22.00	28.00	60.00	
U	Inscribed Circle Diamete	er (m)			100.00	100.00	100.00	100.00	
А	Entry Angle (degree)				10.00	55.00	15.00	30.00	
1									
OUTPUT PARA	AMETERS								
S	= 1.6 (E - V) / L	Sharpness of flare			0.80	0.16	0.64	0.57	
к	= 1 - 0.00347 (A-30) - 0	.978 (1/R - 0.05)			1.10	0.92	1.07	1.03	
X2	= V + ((E-V) / (1+2S))				8.69	9.88	6.88	8.00	
м	= EXP ((D-60) / 10)				54.60	54.60	54.60	54.60	
F	= 303 * X2				2634	2002	2084	2422	
Td	$= 303 \times 2$ = 1 + (0 5 / (1+M))				1 01	1 01	1 01	1 01	
Ec	= 1 + (0.3 / (1 + 0.3 + 1)) = 0.21 + Td / 1 + 0.2 + (2)				1.01	1.01	1.01	1.01	
rt.	- 0.21 IU (1 + 0.2"X2)				0.56	0.63	0.50	0.55	
AM RESULT									
Q	Entry Flow (pcu/hour)				1,800	1,460	510	1,330	
Qc	Circulating Flow Across	Entry (pcu/hour)			1,035	1,320	2,360	1,745	
Qe	= K (F - Fc*Qc)				2234	1983	955	1510	
DFC	= Q / Qe	Design Flow / Capaci	ty 0.	88	0.81	0.74	0.53	0.88	
		Total Entry Flows	5,1	.00					
PM RESULT		· ·							
0	Entry Flow (ncu/hour)				1 800	1 460	510	1 330	
Oc.	Circulating Flow Across	Entry (ncu/bour)			1 035	1 220	2 360	1 7/15	
					1,000	1,520	2,300	1,743	
					2234	1983	955	1510	ł
DFC	= ų / ųe	Design Flow / Capaci	τγ Ο.	58	0.81	0.74	0.53	0.88	
1		Total Entry Flows	5,1	.00					

Job No.: <u>CHK5078631</u>0

Junction:	Kai Sar	Road /	Tsat Po	Street				_							Design Year	2033	
Description:	2033 De	esign Flo	w (Ser	sitivity Sce	nario)			-			Designed	By: TCW			Checked By	: <u>CHC</u>	
	ents				Radiu	ıs (m)	ıt (%)	Pro. Tu	rning (%)	Revised S Flow (p	Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Movem	Phase	Stage	Width (m)	Left	Right	Gradier	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Tsat Po Street (EB)	+	С	4	5.000	10	25		11% / 37%	11% / 37%	2040	2040	95	0.047	0.047	95	0.047	0.047
Tsat Po Street (WB)	≁ ∓	A A	1 1	3.600 3.600	10	25		69% 59%	69% 59%	1790 2045	1790 2045	364 416	0.203 0.203	0.203	364 416	0.203 0.203	0.203
Kai San Road (NB)	r⁼ ⊀†	B	2 2	4.000 4.000	10	15		13%	13%	1960 1975	1960 1975	400 345	0.204 0.175	0.204	400 345	0.204 0.175	0.204
Pedestrian Crossi	ng	Dp Ep Fp Hp	2 2,3 1,2,4 2 2	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL/ EN + FL/ EN + FL/ EN + FL/ EN + FL/	ASH = ASH = ASH = ASH = ASH =	10 8 7 9 7	+++++++++++++++++++++++++++++++++++++++	9 8 7 8 7	= = = =	19 16 14 17 14						*
Notes:				Flow: (pc	u/hr)						→N	Group	A,Gp,B,C	A,Gp,B,C	Group	A,Gp,B,C	A,Gp,B,C
												У	0.454	0.454	У	0.454	0.454
					10(10)					245(245)	Ą	L (sec)	48	48	L (sec)	48	48
					\triangleleft	50(50)		300(300)		285(285) ◄	\geq	C (sec)	130	130	C (sec)	130	130
					35(35)		45(45)		400(400)	250(250)		y pract.	0.568	0.568	y pract.	0.568	0.568
								Ŷ				R.C. (%)	25%	25%	R.C. (%)	25%	25%
Stage / Phase Dia	grams			2				3				4			5.		
		A	-	∱ ¦Gp V	нр // –>	≽	∱ V Dr		B	<>		 	<u>♀</u> →				
I/G= 11			I/G= ^	11		17		<u> /G= 3</u>			I/G=	9		I/G=			
I/G= 11			I/G= ^	11		17		I/G= 3			I/G= Date	9		I/G= Juncti	on:		(N)
												JUL, 2024		Kai San R	oad / Tsat Po Stre	et)

Job Title:	Proposed Comprehensiv	e Development Includin	g Flat, Shop & Sei	rvices and Eating	g Place in CDA(4)	Zone, Kai Tak A	rea 2A Site 2	
Junction:	Sze Mei Street / Luk Hor	o Street					Designed by:	TCW
Scheme:	2033 Design Flow (Sens	sitivity Scenario)					Checked by:	CHC
Design Year:	2033		Job No.: CHK507	786310			Date:	JUL, 2024
Arm A	Sze Mei Street							
Arm B	Sze Mei Street							
Arm C	Luk Hop Street							
			Arm A	Sze Mei Street				
					PM 5	335 180	180	
					PM 5	335 180	180	
					Ł	↓ ↓	¥	
							Free Flow	
	PM	PM						
	230	230						
	600	600 +						
	85	85 🚽	/	\				
	Arm C		(
	Luk Hop Street		1					
			\		1			
			\					
			\mathbf{N}					
		⁴ ↑ ।						
	PM	360 330 5						
	PM	360 330 5	Arm B	Sze Mei Street				
				٨	R	C	1	
INPUT PARAN	METERS			~	D	C		
v	Approach Half Width (m	ı)		4.00	3.50	4.50		
E	Entry Width (m)			4.00	3.50	5.00		
L	Effective Length of Flare	e (m)		1.00	1.00	2.00		
R	Entry Radius (m)			30.00	100.00	15.00		
D	Inscribed Circle Diamete	er (m)		30.00	30.00	30.00		
А	Entry Angle (degree)			10.00	10.00	35.00		
OUTFUT PARA	NIVILIENJ							
s	= 1.6 (E - V) / I	Sharpness of flare		0.00	0.00	0.40		
ĸ	= 1 - 0.00347 (A-30) - 0	978 (1/R - 0.05)		1.09	1.11	0.97		
X2	= V + ((E-V) / (1+2S))			4.00	3.50	4.78		
М	= EXP ((D-60) /10)			0.05	0.05	0.05		
F	= 303 * X2			1212	1061	1448		
Td	= 1 + (0.5 / (1+M))			1.48	1.48	1.48		
Fc	= 0.21*Td (1 + 0.2*X2)			0.56	0.53	0.61		
AM RESULT				520	665	015		
ų Os	Entry Flow (pcu/hour)	Entry (nou /h - · · · ·)		520	695	915		
		End y (pcu/nour)		606 030	425	340		
DFC		Design Flow / Canacity	0.76	0.58	0.75	0.76	1	
Bre	- 4 / 46	Total Entry Flows	2 130	0.30	0.75	0.70	1	
PM RESULT		Total Lift y HOWS	2,130					
0	Entry Flow (neu/hour)			520	695	915		
С Ос	Circulating Flow Across	Entry (pcu/bour)		690	425	340		
Qe	= K (F - Fc*Oc)			898	927	1200		
DFC	= Q / Qe	Design Flow / Capacity	0.76	0.58	0.75	0.76	1	
	-/	Total Entry Flows	2,130				1	
All the above	formulas are in accordan	ce to T.P.D.M. Vol.2 Chr	.4 Sec 4.5.9					
		211p						

Job No.: <u>CHK5078631</u>0

Junction:	Shing K	ai Road	d / Slip r	oad of CKF	R			-							Design Yea	r: <u>2033</u>	
Description:	2033 De	esign Flo	ow (Sei	nsitivity Sce	enario)						Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	nts				Radi	us (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation (pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	→ * ~	A A A	1 1 1	3.650 3.650 3.650	1	26 23		14%	14%	1980 2105 1990	1980 2105 1990	238 253 239	0.120 0.120 0.120	0.120	238 253 239	0.120 0.120 0.120	0.120
Shing Kai Road (WB)	++ ← ←	E E E	3 3 3	4.500 3.600 3.600	35			36%	36%	2035 2115 2115	2035 2115 2115	362 377 376	0.178 0.178 0.178	0.178	362 377 376	0.178 0.178 0.178	0.178
Slip Road of CKR	*] * *	B C C	1,2 2 2	5.000 3.600 3.600	35	18 20				2030 1950 1965	2030 1950 1965	335 52 53	0.165 0.027 0.027		335 52 53	0.165 0.027 0.027	
Pedestrian Crossi	ng	Fp Gp Hp Jp Kp	1,2 1 2 3 3 3	Min gre Min gre Min gre Min gre Min gre Min gre	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 14 5 5 10	+ + + +	10 5 10 10 5 8	- - - - -	15 10 24 15 10 18			×			×
Notes:				Flow: (po	:u/hr)						≜ N	Group	B,E	A,Hp,E	Group	B,E	A,Hp,E
* assumed to be s conservative purpo	ame pha	ise for									+	у	0.343	0.298	у	0.343	0.298
												L (sec)	8	37	L (sec)	8	37
					$ \rightarrow$	455(455)			985(985) 🖣		C (sec)	130	130	C (sec)	130	130
					275(275)		335(335)		▶105(105)	130(130))	y pract.	0.845	0.644	y pract.	0.845	0.644
								γ				R.C. (%)	146%	116%	R.C. (%)	146%	116%
Stage / Phase Dia	agrams			2.				3				4.			5.		
A	•			*	Нр		^				∱ lp ∀						
		^	/ Fp	•	~	F		D	«-	•	D						
	В	7	َّ`` <u>`</u> Gp		В	c			Jp	Кр							
I/G= 5			I/G=	5		24		I/G= 5			I/G=			I/G=			
I/G= 5			I/G=	5		24		I/G= 5	<u> </u>		Date	ə:		Juncti	ion:		P
												JUL, 2024		Shing Kai	Road / Slip road of	of CKR	_

Job No.: <u>CHK5078631</u>0

Junction:	Shing K	ai Road	l / Easte	rn access	to main :	stadium									Design Yea	r: <u>2033</u>	
Description:	2033 De	esign Fl	ow (Ser	nsitivity Sce	enario)						Designed	By: TCW			Checked By	/: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tur	rning (%)	Revised S Flow (j	aturation ocu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	 → →	A A A	1 1 1	3.800 3.800 3.800 3.800	15	30		18% 17%	18% 17%	1960 2135 2115	1960 2135 2115	494 538 533	0.252 0.252 0.252	0.252	494 538 533	0.252 0.252 0.252	0.252
Eastern Access to main stadium	⊾ ₊↓	C C	3 3	3.650 3.650	10	15		75%	75%	1720 1970	1720 1970	25 20	0.015 0.010		25 20	0.015 0.010	
Shing Kai Road (WB)	€ € ₽	B B B	2 2 2	3.800 3.800 3.800	15	30		25% 24%	25% 24%	1945 2135 2110	1945 2135 2110	574 629 622	0.295 0.295 0.295	0.295	574 629 622	0.295 0.295 0.295	0.295
Pedestrian Cross	ing	Dp Ep Fp Gp Hp	4 1,3,4 2,4 3,4 1,2,4	min gre Min gre Min gre Min gre Min gre	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5	+ + + +	10 10 10 7 7	= = = =	15 15 15 12 12						*
Notes:				Flow: (pc	u/hr)						A						
TAC junction : CT	130s ad	opted		- u			15/15)	\land	> 25/25	\	+"	group	А,В,Gp 0.547	A,B,C,Dp 0.547	Group	A,B,Gp 0.547	A,B,C,Dp
					90(90))	15(15)	5(5)	23(23) 150(150)		L (sec)	26	41	L (sec)	26	41
					\triangleleft	1385(13	85)			1530(1530)	\rightarrow	C (sec)	130	130	C (sec)	130	130
					90(90))				145(145)		y pract.	0.720	0.616	y pract.	0.720	0.616
												R.C. (%)	32%	13%	R.C. (%)	32%	13%
Stage / Phase Di	agrams			2				3				4			5		
		< Нр	->	2.		< Н;	> Fp V		< Gp		c	 ≪ Gr	> < > Hp	-> 	5.		
		← >	Ep					B			<pre> Ep v </pre>	≪	> Dp	Ep V			
I/G= 5			I/G=	7				I/G= 6		5	I/G=	= 5	15	I/G=			
I/G= 5			I/G= `	7				/G= 6		5	I/G= Date	= 5 e:	15	I/G= Junct	ion:		(Q)
											- 40	JUL, 2024		Shing Kai	Road / Eastern a	ccess to main stat	dium

Job No.: <u>CHK507863</u>10

Junction:	Olympic	Avenue	e/ Dakot	a Drive				_							Design Yea		
Description:	2033 De	sign Flo	ow (Sen	sitivity Sce	nario)			_			Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	\rightarrow \rightarrow \Rightarrow	A A A	1 1 1	3.650 3.650 3.650		24		100%	100%	1980 2120 1995	1980 2120 1995	215 230 220	0.109 0.108 0.110	0.110	215 230 220	0.109 0.108 0.110	0.110
Muk Tan Street (NB)	*↑*	В	2	4.500	16	19		39% / 61%	39% / 61%	2040	2040	395	0.194	0.194	395	0.194	0.194
Olympic Avenue (WB)	€	C C	3 3	3.650 3.650	16			70%	70%	1860 2120	1860 2120	402 458	0.216 0.216	0.216	402 458	0.216 0.216	0.216
Pedestrian Crossi	ng	Dp Ep	4	MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH =	9 9	+ +	9 8	=	18 17			·			•
Notes:				Flow: (pc	u/hr)						A						
* Saturation flow 1	50 pcu/h	r added			,						+ ^N	Group	A,B,C,Ep	A,B,C,Dp	Group	A,B,C,Ep	A,B,C,Dp
												y L (sec)	.35	39	y L (sec)	35	39
						445(445)			580(580)		C (sec)	120	120	C (sec)	120	120
					7		155(155		▶240(240)	280(280)		v pract.	0.638	0.608	v pract.	0.638	0.608
					220(220)			\bigvee		, , , , , , , , , , , , , , , , , , ,		R.C. (%)	23%	17%	R.C. (%)	23%	17%
Stage / Phase Dia	grams							1							. ,		
1. A				2.		-		3.		c ←		4. ↓ Ep ↓ Cp	>		5.		
					в`'												
I/G= 3			I/G= 6					I/G= 5			I/G=	= 10	18	I/G=	Ⅰ		
L"0-0			1/0-0	<u>, </u>				1/0-0	I		Date	JUL, 2024	10	Juncti Olympic A	ion: .venue/ Dakota Dri	ve	R

Job No.: <u>CHK507863</u>10

	Olympic	Avenue	e/ Dakota	a Drive	nario) (M	Vith prop	osed junc		ment)		Designed	By: TCW			Design Yea	r: <u>2033</u>	
	ti 2000 DC				Radiu	us (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (r	Saturation		PM Peak			PM Peak	
Approach	Movemen	Phase	Stage	Width (m)	Left	Right	Gradient (РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	\rightarrow \rightarrow \rightarrow	A A A	1 1 1	3.650 3.650 3.650		23	<u> </u>	100%	100%	1980 2120 1990	1980 2120 1990	215 230 220	0.109 0.108 0.111	0.111	215 230 220	0.109 0.108 0.111	0.111
Muk Yan Street (NB)	*] ∣*	B B	2 2	3.500 3.500	16	18				1795 1945	1795 1945	155 240	0.086 0.123	0.123	155 240	0.086 0.123	0.123
Olympic Avenue (WB)	\$-	C C	3 3	3.650 3.650	16			70%	70%	1860 2120	1860 2120	402 458	0.216 0.216	0.216	402 458	0.216 0.216	0.216
Pedestrian Crossir	ng	Dp Ep	4	MIN GREI	EN + FL/ EN + FL/	ASH = ASH =	9 9	+ +	9 8	=	18 17			×			*
Notes:				Flow: (pc	u/hr)						1 N	Group	A,B,C,Ep	A,B,C,Dp	Group	A,B,C,Ep	A,B,C,Dp
											I	У	0.450	0.450	У	0.450	0.450
						445/445				F00(F00) 4		L (sec)	35	39	L (sec)	35	39
						440(440	, 155(155)		▶240(240)	280(280)		v pract.	0.638	0.608	v pract.	0.638	0.608
					220(220)			Ý				R.C. (%)	42%	35%	R.C. (%)	42%	35%
Stage / Phase Dia	igrams			2				2									
A				2. •	В	-		з.		c ←		4. ↓Ep ↓ ↓ Dp	>		5.		
I/G= 3			I/G= 6					I/G= 5			I/G=	10	18	I/G=			
I/G= 3			I/G= 6	6				I/G= 5			I/G= Date	10	18	l/G= Junct	on:		(R)

Job No.: <u>CHK5078631</u>0

Junction:	Olympic	c Avenue	e / Muk I	Lai Street				_							Design Year		
Description:	2033 De	esign Flo	ow (Ser	sitivity Sce	nario)			-			Designed	By: <u>TCW</u>			Checked By	CHC	
	nts				Radi	us (m)	: (%)	Pro. Tu	rning (%)	Revised S Flow (p	Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	→	A A	1 1	3.650 3.650		19	•	25%	25%	1980 2080	1980 2080	154 161	0.078 0.077	0.078	154 161	0.078 0.077	0.078
Muk Lai Street (NB)	Ť	В	2	4.500	16	19		50% / 50%	50% / 50%	1900	1900	240	0.126	0.126	240	0.126	0.126
Olympic Avenue (WB)	€	C C	3 3	3.650 3.650	16			57%	57%	1880 2120	1880 2120	475 535	0.253 0.252	0.253	475 535	0.253 0.252	0.253
Pedestrian Crossi	ng	Dp Ep	4 4	MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH =	7 6	+ +	13 15	=	20 21			·			•
Notes:				Flow: (pc	u/hr)						≜	Group	A,C,B,Ep	A,C,B,Dp	Group	A,C,B,Ep	A,C,B,Dp
											+"	у	0.457	0.457	у	0.457	0.457
												L (sec)	37	42	L (sec)	37	42
					$ \rightarrow$	275(275)			740(740) ◄		C (sec)	120	120	C (sec)	120	120
					40(40)		120(120)		120(120)	270(270)		y pract.	0.623	0.585	y pract.	0.623	0.585
								Ý				R.C. (%)	36%	28%	R.C. (%)	36%	28%
Stage / Phase Dia	igrams			r													
1.				2.				C	В			4 . ≪	-→ Ep	∱ Dp ↓	5.		
I/G= 2			I/G= 7	7				I/G= 6			I/G=	10	20	I/G=			
L"0-2			1/0-1					1/0-0	I		Date	: JUL, 2024	20	Juncti Olympic A	l ion: wenue / Muk Lai S	treet	S

TRAFFIC SIGNALS CALCULATION CHK50786310 **MVA HONG KONG LIMITED** Job No.: Design Year: _____2033_ Junction: Olympic Avenue / Muk Lai Street Designed By: Description: _ 2033 Design Flow (Sensitivity Scenario) (With proposed junction improvement) TCW Checked By: CHC **Revised Saturation** Radius (m) Pro. Turning (%) PM Peak PM Peak % Movements Flow (pcu/hr) Gradient Phase Stage Width Right Flow Flow Left Approach PM РМ РМ PM y Value Critical y y Value Critical y (pcu/hr) (pcu/hr) (m) 1980 0.078 0.078 Olympic Avenue 3.650 1980 154 0.078 154 0.078 A 1 3.650 19 25% 25% 2080 2080 0.077 161 0.077 (EB) 161 * А 1 7 Muk Lai Street в 2 4.500 16 19 50% / 50% 50% / 50% 1900 1900 240 0.126 240 0.126 (NB) ⇇ Olympic Avenue С 3 3.650 16 57% 57% 1880 1880 475 0.253 0.253 475 0.253 0.253 (WB) С 3 3.650 2120 2120 535 0.252 535 0.252 -3 MIN GREEN + FLASH = 7 Pedestrian Crossing Dp + 13 20 = MIN GREEN + FLASH = Ep 1,2 7 + 13 = 20 Fp 2 MIN GREEN + FLASH = 6 + 15 = 21 Gp 1,3 MIN GREEN + FLASH = 6 15 = 21 Notes: Flow: (pcu/hr) Group Group A,B,C A,Fp,C A,B,C A,Fp,C _ ∾ 0.457 0.330 0.457 0.330 У У L (sec) 13 39 L (sec) 13 39 ➡ 275(275) 740(740) C (sec) 90 90 C (sec) 90 90 120(120) ◄ ▶120(120) 0.770 0.510 0.510 0.770 270(270) y pract. y pract. 40(40) R.C. (%) 69% 54% R.C. (%) 69% 54% Stage / Phase Diagrams 2. 1. 3. 4. 5. ^ --↓ Dp Α Ŷ С 4 ψ Ep <----> <----> <----> Fp Gp Gp В I/G= 6 I/G= 9 21 I/G= 5 I/G= I/G=

I/G=

Date:

JUL, 2024

I/G= Junction:

Olympic Avenue / Muk Lai Street

S

I/G= 5

I/G= 6

I/G= 9

21

2033 Design (Sensitivity Test - Event Dispersal)

lob Title [.]	Proposed Comprehensiv	e Development Including	Flat Shop & Ser	vices and Fating	Place in CDA(4)	Zone Kai Tak A	rea 2A Site 2	
Junction:	Slip Road of Prince Edw	ard Road Fast (Kowloon (Tity) / Olympic A	venue / Concord	le Road		Designed by:	TCW
Scheme:	2033 Design Flow (Sen	sitivity Scenario)	city) / Olympic A	venue / concord			Checked by:	CHC
Design Year	2033		Iob No · CHK507	86310			Date:	101 2024
Arm A	Concorde Road		505 No.: CINSO/	00010			Dute.	JOL, 2024
Arm B	Access Road to Airside							
Arm C	Olympic Avenue							
Arm D	Slip Road to Prince Edw	ard Road Fast						
,	Shp Rodd to Finice Edw							
			Arm D					
			Slin Road to Prin	ce Edward Road	1 Fast			
					PM 220	70 255		
					PM 220	70 255		
					 	1 L		
					•	•		
	PM	PM						
	625	625						
	100	100						
	295	295	/					
			/	\				
	Arm C				Arm A		_	
	Olympic Avenue						Concorde Road	
			\					
			\			PM	PM	
			\mathbf{X}			└ 670	670	
			\sim			← 280	280	
						✓ 100	100	
	PM	10 350 0	I					
	PM	10 350 0	Arm B	Access Road to	Airside			
					P	C C	D.	
	AFTERC			A	В	L	U	
INPUT PARAN	TETERS							
V	Approach Half Width (n	2)		7 20	7.00	10.00	7.00	
V E	Eptre Width (m)	1)		7.30	7.00	11.00	10.50	
	Effective Length of Flar	(m)		5.00	1.00	5.00	20.00	
P	Entry Padius (m)	2 (11)		25.00	20.00	25.00	20.00	
D	Inscribed Circle Diamete	ar (m)		60.00	60.00	60.00	60.00	
Δ	Entry Angle (degree)			15.00	15.00	60.00	40.00	
~	Entry Angle (degree)			15.00	15.00	00.00	40.00	
OUTPUT PAR	AMETERS							
							1	
S	= 1.6 (E - V) / L	Sharpness of flare		0.86	0.80	0.32	0.28	
К	= 1 - 0.00347 (A-30) - 0	.978 (1/R - 0.05)		1.07	1.07	0.91	0.98	
X2	= V + ((E-V) / (1+2S))			8.29	7.19	10.61	9.24	
М	= EXP ((D-60) /10)			1.00	1.00	1.00	1.00	
F	= 303 * X2			2512	2179	3215	2801	
Td	= 1 + (0.5 / (1+M))			1.25	1.25	1.25	1.25	
Fc	= 0.21*Td (1 + 0.2*X2)			0.70	0.64	0.82	0.75	
							1	
AIVI RESULI	Entry Flow (/)			1.050	200	1.030	E 4 5	
ų or	Circulating Flow (pcu/nour)	Entry (nou/h)		1,050	300	1,020	545	
		Entry (pcu/nour)		240	1,465	1,020	2,040	
DEC	- N (F - FL QL)	Docign Flow / Conosite	0.49	2102	1320	2134	1252	
DFC	- u / ue	Total Entry Flows	0.48	0.48	0.27	0.47	0.44	<u> </u>
		TOLDI ETILIY FIOWS	2,975				1	
PIVI KESULI	Entry Flow (new/harr)			1.050	260	1.030	EAF	
	Circulating Flow Across	Entry (neu/hour)		1,050	300	1,020	2 040	
	= K (F = Fc*Oc)			2122	1326	2154	2,040	
DEC		Design Flow / Conscient	0.49	0.102	1320	0.47	0.44	<u> </u>
Dre		Total Entry Flows	2 975	0.40	0.27	0.47	0.44	
All the above	formulas are in accordan		2,313		1	l	L	l
All the above	joi maias are in accordan	ce το τ.Ρ.υ.ινι. νοι.2 Chp.	4 JEL 4.3.3		I			

Junction: Slip Road to Prince Edward Road East (San Po Kong) / Concorde Road Scheme: 2033 Design Flow (Sensitivity Scenario) Design Year: 2033 Job No.: CHK50786310 Arm A Concorde Road (WB) Arm B Concorde Road (EB) Arm C Slip Road to Prince Edward Road East Arm C Slip Road to Prince Edward Road East PM 5 235 310 PM 5 235 310 + 4	Designed by: TCW Checked by: CHC Date: JUL, 2024
Scheme: 2033 Design Flow (Sensitivity Scenario) Design Year: 2033 Job No.: CHK50786310 Arm A Concorde Road (WB) Arm B Concorde Road (EB) Arm C Slip Road to Prince Edward Road East Arm C Slip Road to Prince Edward Road East PM 5 235 310 PM 5 235 310 PM 5 235 310	Checked by: CHC Date: JUL, 2024
Design Year: 2033 Job No.: CHK50786310 Arm A Concorde Road (WB) Arm B Concorde Road (EB) Arm C Slip Road to Prince Edward Road East Arm C Slip Road to Prince Edward Road East PM 5 235 310 PM 5 235 310 PM 5 235 310	Date: JUL, 2024
Arm A Concorde Road (WB) Arm B Concorde Road (EB) Arm C Slip Road to Prince Edward Road East Arm C Slip Road to Prince Edward Road East PM 5 235 310 PM 5 235 310 + +	<u>,,</u>
Arm B Concorde Road (EB) Arm C Slip Road to Prince Edward Road East Arm C Slip Road to Prince Edward Road East PM 5 235 310 PM 5 235 310 + +	
Arm C Slip Road to Prince Edward Road East Arm C Slip Road to Prince Edward Road East PM 5 235 310 PM 5 235 310	
Arm C Slip Road to Prince Edward Road East PM 5 235 310 PM 5 235 310	
Arm C Slip Road to Prince Edward Road East PM 5 235 310 PM 5 235 310 M 4 4	
Arm C Slip Road to Prince Edward Road East PM 5 235 310 PM 5 235 310 M 4 4	
Arm C Slip Road to Prince Edward Road East PM 5 235 310 PM 5 235 310 PM 5 235 310 A	
PM 5 235 310 PM 5 235 310 M 4 4	
PM 5 235 310 ▲ ↓ ↓	
500 500 🗣	
Arm B	
Slin Road to Prince Edward Road East	Concorde Boad (W/B)
	PM
	5
	660
	170
1/0	1/0
	1
v Approach Fail Width (m) 8.00 7.00 8.00 E Entry Width (m) 8.00	
E Entry Width (III) 8.00 8.00 8.00 8.00	
L Enective Length of Fidre (III) 1.00 5.00 1.00	
rk Entry Kadius (m) 42.00 47.00 47.00 40.00 47.00	
U Inscribed Circle Diameter (m) 40.00 40.00 40.00 A Entry Angle (Januar) 40.00 40.00 40.00 40.00	
A Entry Angle (degree) 10.00 22.00 15.00	1
S -16/E-V//L Sharphace of flare 0.00 0.27 0.00	
J - 1.0 (E - V) / L Sital press of itale 0.00 0.27 0.00 V - 1.0 (0.247 (A 20) - 0.078 (1/P, 0.05) 1.10 1.00 1.00 1.00	
$\begin{array}{c} n & -1 - 0.00347 (A-30) - 0.376 (1/R - 0.03) \\ Y_2 & - V_{\pm} (F_{\pm}V) / (1\pm 2S) \end{array}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{1}{100} = \frac{1}{100} + \frac{1}{100} + \frac{1}{100} = \frac{1}{100} = \frac{1}{100} + \frac{1}{100} = \frac{1}{100} = \frac{1}{100} + \frac{1}{100} = \frac{1}$	
$r = 503 \text{ X}2$ $\frac{2424}{2319} = 2424$	
$\begin{bmatrix} 10 & = 1 + (0.5 / (1+N)) \\ 1.44 & 1.44 \\ 1.44 & 1.44 \\ 0.70 & 0.77 \\ 0.77 & 0.77 \\$	1
rc = 0.21*10(1+0.2*X2) 0.79 0.79	
AM RESULT	
0 Entry Flow (neu/hour) 925 1 200 550	
Oc Circulating Flow Across Entry (neu/hour) 630 670 000	1
C C C C C C C C C C C C C C C C C C C	
$\frac{1049}{1049}$	+
TOLAI ETILLY FIUWS 2,085	
I 835 I 1.300 550	
	1
Qc Circulating Flow Across Entry (pcu/hour) 620 670 905 Qc Circulating Flow Across Entry (pcu/hour) 620 670 905	
Qc Circulating Flow Across Entry (pcu/hour) 620 670 905 Qe = K (F - Fc*Qc) 2120 1856 1849	
Qc Circulating Flow Across Entry (pcu/hour) 620 670 905 Qe = K (F - Fc*Qc) 2120 1856 1849 DFC = Q / Qe Design Flow / Capacity 0.70 0.39 0.70 0.30	
Qc Circulating Flow Across Entry (pcu/hour) 620 670 905 Qe = K (F - Fc*Qc) 2120 1856 1849 DFC = Q / Qe Design Flow / Capacity 0.70 0.39 0.70 0.30 Total Entry Flows 2,685	

Job Title:	Proposed Comprehensiv	e Development Including	7 Flat Shon & Sei	vices and Fating		Zone Kai Tak A	raz 24 Sita 2	
Junction:	Shing Kai Road / Concor	de Road / Muk Chun Str	- 1 ac, 5110p & 381	vices and Lating	STACE IT CDA(4)		Designed by:	TCW
Scheme:	2033 Design Flow / Concor	citivity Scenario)					Checked by:	CHC
Design Vear	2033 Design Flow (Sens	stavity scenditu)		86310			Date:	
Arm A	Shing Kai Road		JOD NO., CHK307	00310			Date.	JUL, 2024
Arm B	Muk Chun Street							
Arm C	Concorde Road (EB)							
AIIIIC	CONCOLUE KORU (EB)							
	PM	PM						
	725	725						
	105	105						
	5	5 4	/					
	5	J 4	/	\				
	Arm C		1		Arm A			
	Concorde Road (EB)						, Shing Kai Road	l
			1	/			5	
			\			PM	PM	
			\mathbf{X}			▶ 5	5	
						← 775	775	
						√ 5	5	
		← ► ►						
	PM	45 20 5						
	PM	45 20 5	Arm B	Muk Chun Stree	t			
			ENTRY ARM	А	В	C		
INPUT PARAN	IETERS							
V	Approach Half Width (m	ו)		5.00	5.00	7.00		
E	Entry Width (m)			7.00	7.50	7.00		
L	Effective Length of Flare	e (m)		5.00	5.00	5.00		
R	Entry Radius (m)			29.00	20.00	50.00		
D	Inscribed Circle Diamete	er (m)		60.00	60.00	60.00		
А	Entry Angle (degree)			40.00	27.00	23.00		
OUTPUT PARA	HIVIE I EKS							
s	= 1.6 (F - \/) / I	Sharphess of flare		0.64	0.80	0.00		
5 V	-1.0(E-V)/L -1.000247(A 20) 0			0.04	1.01	1.05		
X2	= 1 = 0.00347 (A-30) = 0. = V + ((F-V) / (1+2S))	570 (1/N = 0.05)		0. <i>3</i> 0 5.88	5.96	7.00		
M	= V + ((L - V) / (1 + 23)) = FXP ((D-60) /10)			J.80 1 00	1.00	1.00		
F	= 303 * X2			1781	1806	2121		
Td	$= 303 \times 12$ = 1 + (0 5 / (1+M))			1 25	1 25	1 25		
Fc	= 0.21*Td (1 + 0.2*Y2)			0.57	0.58	0.63		
	0.21 (0 (1 · 0.2 //2)			0.07	0.55	0.05		
AM RESULT								
Q	Entry Flow (pcu/hour)			785	70	835		
Qc	Circulating Flow Across	Entry (pcu/hour)		115	780	30		
Qe	= K (F - Fc*Qc)			1682	1372	2215		
DFC	= Q / Qe	Design Flow / Capacity	0.47	0.47	0.05	0.38		
		Total Entry Flows	1,690					
PM RESULT								
Q	Entry Flow (pcu/hour)			785	70	835		
Qc	Circulating Flow Across	Entry (pcu/hour)		115	780	30		
Qe	= K (F - Fc*Qc)			1682	1372	2215		
DFC	= Q / Qe	Design Flow / Capacity	0.47	0.47	0.05	0.38		
		Total Entry Flows	1,690					
All the above	formulas are in accordan	ce to T.P.D.M. Vol.2 Chp	.4 Sec 4.5.9					

Job No.: <u>CHK507863</u>10

Description:	Checked By: CHC PM Peak y Flow (pcu/hr) y Value C 407 0.209 443 0.209 374 0.189 376 0.189	Critical y 0.209 0.189
Approach g g g g g g g g g With (m) (m) (m) Radius (m) g g g g g g g g Pro. Turning (%) PM Revised Saturation PM PM Pate (pcu/m) Pate Pate Shing Kai Road 1 3.650 15 16% 1950 1900 407 0.209 0.209 Shing Kai Road 1 B 2 3.650 5 16% 1950 1900 477 0.209 0.209 Shing Kai Road 1 B 2 3.650 8 36% 36% 1985 1985 376 0.189 0.189 Padestrian Crossing (SB) Cp 1.3 MMI GREEN + FLASH = Ep 0 + 9 = 18 Padestrian Crossing (SB) Cp 1.3 MMI GREEN + FLASH = Ep 0 + 9 = 18 Padestrian Crossing (SB) Cp 1.3 MMI GREEN + FLASH = Ep 0 + 9 = 18 Padestrian Crossing (SB) Cp 1.3 MMI GREEN + FLASH = Ep 0	PM Peak y Flow (pcu/hr) y Value C 407 0.209 0.209 0.209 374 0.189 376 0.189	Critical y
Approach $\frac{9}{92}$ $\frac{9}{62}$ $\frac{9}{62}$ $\frac{9}{62}$ $\frac{9}{62}$ $\frac{9}{62}$ $\frac{9}{61}$ PM	y Flow (pcu/hr) y Value (407 0.209 443 0.209 374 0.189 376 0.189	Critical y
Shing Kai Road 4 A 1 3.850 15 16% 16% 1950 1950 407 0.209 0.209 Shing Kai Road I B 2 3.850 15 16% 16% 1950 1950 4473 0.209 0.209 Shing Kai Road I B 2 3.850 8 36% 1980 1980 1980 376 0.189 0.189 Shing Kai Road I B 2 3.850 8 36% 36% 1985 1985 376 0.189 0.189 (SB) I B 2 3.650 8 36% 36% 1985 1985 1985 1985 1985 1985 1985 1.89 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36	407 0.209 443 0.209 374 0.189 376 0.189	0.209
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	374 0.189 376 0.189	0.189
Pedestrian Crossing Cp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 L(sec) 28 34 C(sec) 28 34 C(sec) 90 90 y pract. 0.620 0.560		
$\begin{array}{c cccc} Pedestrian Crossing & Cp & 1.3 & MIN GREEN + FLASH = & 9 & + & 9 & = & 18 \\ Dp & 2.3 & MIN GREEN + FLASH = & 9 & + & 9 & = & 18 \\ Ep & 3 & MIN GREEN + FLASH = & 9 & + & 9 & = & 18 \\ Gp & 1.3 & MIN GREEN + FLASH = & 9 & + & 9 & = & 18 \\ Gp & 1.3 & MIN GREEN + FLASH = & 9 & + & 9 & = & 18 \\ \hline & & & & & & & & & & & \\ \hline & & & & &$		
Pedestrian Crossing Cp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 f^{N} f^{N} f		
Pedestrian Crossing Cp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Acc junction : CT 90s adopted $135(135) + 9 + 9 = 18$ Flow: (pcu/hr) $135(135) + 9 + 9 = 18$ Acc junction : CT 90s adopted $135(135) + 9 + 9 = 18$ Flow: (pcu/hr) $135(135) + 9 + 9 = 18$ Flow: (pcu/hr) $135(135) + 9 + 9 = 18$ Flow: (pcu/hr) $135(135) + 9 + 9 = 18$ Dot for the point of the poi		
Pedestrian Crossing Cp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 TAC junction : CT 90s adopted $I_{135(135)} \bullet I_{615(615)} \bullet I_{135(135)} \bullet I_{135($		
Pedestrian Crossing Cp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Modes: TAC junction : CT 90s adopted Flow: (pcu/hr) $135(135) \xrightarrow[615(615)]{135(135)} \xrightarrow[615(785)]{135(135)} \xrightarrow[65(785)]{785(785)}$ $\frac{1}{1}$ $\frac{Group}{y}$ A.D.p A.B.E.p AB.E.p $135(135) \xrightarrow[65(785)]{785(785)} \xrightarrow[785(785)]{785(785)}$ $\frac{1}{1}$ $\frac{Group}{y}$ A.D.p A.B.E.p		
Pedestrian Crossing Cp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Anotes: TAC junction : CT 90s adopted $I35(135) \bullet f15(615) \bullet$		
Pedestrian Crossing Cp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2.3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1.3 MIN GREEN + FLASH = 9 + 9 = 18 Notes: TAC junction : CT 90s adopted Flow: (pcu/hr) + 9 + 9 = 18 $135(135)$ $615(615)$ $65(65)$ $785(785)$ + 90 0.398 L (sec) 28 34 C (sec) 90 <td></td> <td></td>		
Pedestrian Crossing Cp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Dp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Ep 3 MIN GREEN + FLASH = 9 + 9 = 18 Fp 2,3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Gp 1,3 MIN GREEN + FLASH = 9 + 9 = 18 Notes: TAC junction : CT 90s adopted Flow: (pcu/hr) $filos(135)$ $filos(135)$ $filos(15)$ $filos(265)$ y 0.209 0.398 L (sec) 2.8 34 C (sec) 90 90 y 0.620 0.560		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		*
Notes: Flow: (pcu/hr) Image: Notest in the image: Notest		
Notes: Flow: (pcu/hr) Image: Notest in the image: Notest		
Notes: Flow: (pcu/nr) Flow: (pcu/nr)<		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Group A,Dp	A,B,Ep
⁷⁸⁵⁽⁷⁸⁵⁾ ⁶⁵⁽⁶⁵⁾ ⁷⁸⁵⁽⁷⁸⁵⁾ ⁷⁸⁵⁽⁷⁸⁵⁾ ⁷⁸⁵⁽⁷⁸⁵⁾ ⁷⁸⁵⁽⁷⁸⁵⁾ ⁹⁰ ⁹⁰ ⁹⁰ ⁹⁰ ⁹⁰ ⁹⁰ ⁹⁰ ⁹⁰	L (sec) 28	34
65(65) (rest(rest)) (rest(rest)	C (sec) 90	90
	y pract. 0.620	0.560
R.C. (%) 197% 41%	R.C. (%) 197%	41%
Stage / Phase Diagrams		
1. $\begin{array}{c c c c c c c c c c c c c c c c c c c $	5.	
Gp Fp Gp		
I/G= 3 I/G= 5 I/G= 10 18 I/G= I/G=		
I/G= 3 I/G= 5 I/G= 10 18 I/G= I/G= Date: Jun	-	

Job No.: CHK50786310 MVA HONG KONG LIMITED

lunation	Ching	ai Daad		hui Otre et											Design Vee		
	Shing K			nui Street				-							Design real		
Description:	2033 De	esign Flo	ow (Sen	sitivity Sce	enario)			_		-	Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radiu	ıs (m)	ıt (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Movem	Phase	Stage	Width (m)	Left	Right	Gradier	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Muk Chui Street (EB)	+	С	3	3.750	30	25	1	38% / 19%	38% / 19%	1930	1930	425	0.220	0.220	425	0.220	0.220
Shing Kai Road (SB)	↓• ∢	B B	2 2	3.650 3.650	10	20		100% 11%	100% 11%	1720 2100	1720 2100	300 310	0.174 0.148	0.174	300 310	0.174 0.148	0.174
Muk Chui Street (WB)	<u>+</u> _ ∙∓	D D	4 4	3.650 3.650	10	20		31%	31%	1970 1895	1970 1895	105 65	0.053 0.034	0.053	105 65	0.053 0.034	0.053
Shing Kai Road (NB)	≮ ∱ ∱≁	A A	1 1	3.650 3.650	18	20		39% 16%	39% 16%	1915 2095	1915 2095	382 418	0.199 0.200	0.200	382 418	0.199 0.200	0.200
Pedestrian Crossi	ng	Ep Fp Hp Jp	1,4 2 1,2,4 3 2,3,4 1	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL/ EN + FL/ EN + FL/ EN + FL/ EN + FL/ EN + FL/	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 6 5 5	+ + + +	9 9 8 10 9 11	= = = = =	14 14 13 16 14 16						
Notes:	1200 0 0 0	ntad		Flow: (pc	u/hr)			\wedge			₽	Group	A,Fp,C,D	A,B,C,D	Group	A,Fp,C,D	A,B,C,D
TAC junction: CT	1205 800	pied					35(35		➤ 300(300)			У	0.473	0.647	У	0.473	0.647
					160(160)			213(213)		105(105)	A.	L (sec)	39	29	L (sec)	39	29
					\triangleleft	185(185)	585(585)	05(05)	45(45)		C (sec)	120	120	C (sec)	120	120
					80(80)		150(150)		-05(05)	20(20)		y pract.	0.608	0.683	y pract.	0.608	0.683
								Ŷ				R.C. (%)	28%	5%	R.C. (%)	28%	5%
Stage / Phase Dia	igrams			2				3				4			5		
f. ∱ Gp ↓		<i>«</i>	Ep >	2. ∧ Gr	Fp ≪∻	~	↓↓↓ E			с		4. ∧Gp ↓	~	Ep →	5.		
	-	J ≁	p >		lp ≼	>			^ Нр ✓			Iр к Э	• •				
A		Ì															
I/G= 8			I/G= 9					I/G= 7			I/G=	9		I/G=			
10-0			_ #G= S	,				_ //G= /	<u> </u>		Date			Juncti	on: Road / Muk Chuil	Street	E

Job No.: <u>CHK507863</u>10

Junction:	Shing K	ai Roac	I / Muk C	Chui Street											Design Yea	r: <u>2033</u>	
Description:	2033 De	esign Ele	ow (Ser	nsitivity Sce	enario) (V	Vith prop	osed junc	ion improve	ment)		Designed	By: TCW			Checked By	CHC	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (p	aturation ocu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	PM	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Muk Chui Street (EB)	* *	C C	3 3	4.000 4.000	15	17	I	80% 36%	80% 36%	1305 1460	1305 1460	201 224	0.154 0.153	0.154	201 224	0.154 0.153	0.154
Shing Kai Road (SB)	↓∙ ∢	B B	2 2	3.650 3.650	10	20		100% 11%	100% 11%	1720 2100	1720 2100	300 310	0.174 0.148	0.174	300 310	0.174 0.148	0.174
Muk Chui Street (WB)	<u>+</u> _ ⊀	D D	4 4	3.650 3.650	10	20		31%	31%	1970 1895	1970 1895	105 65	0.053 0.034	0.053	105 65	0.053 0.034	0.053
Shing Kai Road (NB)	<∱ ∱*	A A	1 1	3.650 3.650	18	20		39% 16%	39% 16%	1915 2095	1915 2095	382 418	0.199 0.200	0.200	382 418	0.199 0.200	0.200
Pedestrian Crossi	ng	Ep Fp Gp Ip Jp	1,4 2 1,2,4 3 2,3,4 1	Min gre Min gre Min gre Min gre Min gre Min gre	EN + FL. EN + FL. EN + FL. EN + FL. EN + FL. EN + FL.	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 6 5 5	+ + + + +	9 9 8 10 9 11	= = = =	14 14 13 16 14 16						
Notes				Flow: (nc	u/br)												
TAC junction: CT * Site factor 0.7 ad	120s ado Ided due	pted to flare	length		160(160)	185(185	35(35)) 150(150)	275(275)	➤ 300(300) ►65(65)	105(105) 45(45) ◀ 20(20)	+~	y L (sec) C (sec) y pract.	A,B,Hp,D 0.427 44 120 0.570	0.581 29 120 0.683	y L (sec) C (sec) y pract.	A,B,Hp,D 0.427 44 120 0.570	A,B,C,D 0.581 29 120 0.683
					80(80)			Y				R.C. (%)	33%	17%	R.C. (%)	33%	17%
Stage / Phase Dia	agrams			2				2				4			5		
f. ↑ Gp ↓		≪-	≯	2. ∧ G¢ ∨	Fp ≪÷	> ~)↓ ↓			с		4. ∧ Gp ¦ ∀	~	Ep →	5.		
	_	<	lp >		lp ≼	->		,	∧ Hp ¦ √ lp <>			^{Ip} <⇒	₹ •	D			
I/G= 8			I/G= 9					I/G= 7			I/G=	9		I/G=			
I/G= 8			I/G= 9	9				I/G= 7			I/G= Date	9 : JUL, 2024		I/G= Junct Shing Kai	ion: Road / Muk Chui	Street	E

Job No.: <u>CHK5078631</u>0

Junction:	Shing K	ai Road	l / Kai Sł	ning Street	/ Muk O	n Street		-							Design Yea	r: <u>2033</u>	
Description:	2033 De	sign Flo	ow (Sen	sitivity Sce	enario)						Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tur	rning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	 → → →	A A A	2 2 2	3.650 3.650 3.650	18	18 15	1	68% 40%	68% 40%	1875 2050 1925	1875 2050 1925	191 208 196	0.102 0.101 0.102	0.102	191 208 196	0.102 0.101 0.102	0.102
Muk On Street	₽	E E	1 1	3.650 3.650	18	20		56% 56%	56% 56%	1890 2035	1890 2035	313 337	0.166 0.166	0.166	313 337	0.166 0.166	0.166
Shing Kai Road (WB)	← ◆ ↓ √ #	D D D	3 3 3	3.650 3.650 3.650	50	20		49%	49%	2120 2045 1345	2120 2045 1345	158 152 65	0.075 0.074 0.048		158 152 65	0.075 0.074 0.048	
kai Shing Street	ן* ↑ *ן#	C C B	4 4 1,2,4	3.650 3.650 4.000	50	20				1970 2120 1370	1970 2120 1370	425 225 650	0.216 0.106 0.474	0.216	425 225 650	0.216 0.106 0.474	0.216
Pedestrian Crossi	ng	Fp Gp Ip Jp Kp Mp	2,3,4 1 1,3,4 4 3 3,4 1,2,4 1,2,3	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH = ASH =	5 8 5 7 5 5 5	+ + + + + +	9 20 21 9 17 9 9 9		14 28 29 14 24 14 14 14			•			
Notes:				Flow: (pc	u/hr)			λ			*	Group	Gp.A.Jp.C	E.A.Jp.C	Group	Gp.A.Jp.C	E.A.Jp.C
TAC Junction: 130 # Site factor 0.7 a)s CT add dopted	pted			130(130)	185(185	190(190)) 650(650)	285(285)	 ▶ 175(175) ▶ 425(425) 	75(75) 235(235) ◀ 65(65)		y L (sec) C (sec) y pract.	0.318 73 130 0.395	0.483 48 130 0.568	y L (sec) C (sec) y pract.	0.318 73 130 0.395	0.483 48 130 0.568
								Y				R.C. (%)	24%	17%	R.C. (%)	24%	17%
Stage / Phase Di . Gp . Hp . B	<> Mp	E	κ_⊥ μ	2. A	B	<> Mp	۲	р 3. / Lp Lp 4/2	< ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	> Kp <>	qt V	4.	Кр < С	Lp ∧ -> [€] p -> [€] Lp	5.		
I/G= 8 I/G= 8			I/G= 6	6 6				I/G= 10 I/G= 10		24 24	I/G= I/G=	3		I/G= I/G=	on:		(F)
											Date	JUL, 2024		Shing Kai	Road / Kai Shing	Street / Muk On S	Street

Job No.: <u>CHK5078631</u>0

Junction:	Shing K	ai Roac	l / Shing	Fung Roa	d / Muk	Tai Street	t	-							Design Year	:2033	
Description:	2033 De	sign Fl	ow (Ser	sitivity Sce	enario)						Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (p	aturation ocu/hr)		PM Peak			PM Peak	
Approach	Movem	Phase	Stage	Width (m)	Left	Right	Gradien	РМ	РМ	РМ	PM	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	+ → _+ _+ _+	B B B B	2 2 2 2	3.650 3.500 3.500 3.500	15	20 15		38%	38%	1910 2105 1960 1915	1910 2105 1960 1915	359 396 536 524	0.188 0.188 0.273 0.274	0.274	359 396 536 524	0.188 0.188 0.273 0.274	0.274
Muk Tai Street	₄↓^ ↓₅^	A A	1 1	3.750 4.000	22	17		92%	92%	980 950	980 950	160 120	0.163 0.126	0.163	160 120	0.163 0.126	0.163
Shing Kai Road (WB)	← ↓ ↓ ↓	E E E	4 4 4 4	3.650 3.650 3.650 3.650	25 28	23		69%	69%	2120 2030 1870 2010	2120 2030 1870 2010	302 288 253 272	0.142 0.142 0.135 0.135	0.142	302 288 253 272	0.142 0.142 0.135 0.135	0.142
Shing Fung Road	⁴] ⁴] [*	C C D D	2,3 2,3 3 3	3.650 3.650 3.650 3.650	20 22	23 19		82%	82%	1840 1985 2010 1750	1840 1985 2010 1750	435 470 142 123	0.236 0.237 0.071 0.070	0.071	435 470 142 123	0.236 0.237 0.071 0.070	0.071
Pedestrian Crossi	ng	FP GPP IP JP KP MP NP	1,3,4 2,3 1,4 1,2,3 1,2,3 4 2,3 1	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH = ASH = ASH =	8 5 5 7 5 6	+ + + + + + + + + + + + + + + + + + + +	15 7 8 9 7 13 9 11		23 12 13 19 14 12 20 14 17		Γ	Γ			Γ
Notes: TAC junction : CT	130s ado	opted		Flow: (pc	:u/hr)			\wedge			↓ ^N	Group	A,B,D,Lp	A,B,D,E	Group	A,B,D,Lp	A,B,D,E
^ Site factor 0.5 ac	ded due	to flare	length		105/105		160(160)	10(10)	▶ 110(110)) 200(200)		y L (sec)	40	17	y L (sec)	40	17
						620(620)	25(25)		390(390) ◄		C (sec)	130	130	C (sec)	130	130
				10	6 0(1060)	1	905(905)		▶240(240)	525(525)		y pract.	0.623	0.782	y pract.	0.623	0.782
								γ				R.C. (%)	23%	20%	R.C. (%)	23%	20%
Stage / Phase Dia	agrams	A		2.		<	Mp	3.		<i>k</i>	Mp	4.	6	Mp	5.		
Fp				B	Gp				Fp	Ì		Fp ¦ V		↓ Lp			
-77 4- Hp			κp ≮-≫ Γ_⊥Jp	↓	c		7	∧ ^{Kp} ↓ Jp			لاب م لا ج		lp <>	E			
I/G= 5			I/G= {	5	-			/@=6		U	I/G=	5		I/G=			
I/G= 5			I/G= {	5				/G= 6			I/G= Date	5 		l/G= Juncti	on:		G

Job No.: <u>CHK5078631</u>0

Junction:	Shing K	ai Road	/Weste	ern access	to main	stadium									Design Year	:2033	
Description:	2033 De	sign Flo	ow (Sen	sitivity Sce	enario)						Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Movem	Phase	Stage	Width (m)	Left	Right	Gradien	PM	РМ	РМ	РМ	Flow (pcu/br	'v Value	Critical v	Flow (pcu/b	v Value	Critical v
	•	^	1	2 650	17.5	L		70/	70/	1070	1070	454	0.220	ontiour y	454	0.220	ondour y
Shing Kai Road EB	\rightarrow \rightarrow \rightarrow	A A	1 1	3.650 3.650 3.650	17.5	22.5		5%	5%	2120 2115	2120 2115	434 489 487	0.230 0.231 0.230	0.231	434 489 487	0.230 0.231 0.230	0.231
Shing Kai Road WB	₹ ←	C C	3 3 3	3.650 3.650 3.650	17.5	22.5		21%	21%	1945 2120 2115	1945 2120 2115	497 542 541	0.256 0.256 0.256	0.256	497 542 541	0.256 0.256 0.256	0 256
Western Access Road to Main Stadium NB	י ז ≁	B B	2 2	3.750 3.750	15	22.5		98%	98%	1810 2000	1810 2000	310 260	0.171 0.130	0.171	310 260	0.171 0.130	0.171
Western Access	₽	D	4	3.500	20			93%	93%	1835	1835	75	0.041		75	0.041	
Road to Main Stadium SB	₽	D	4	3.500		32.5				2010	2010	95	0.047	0.047	95	0.047	0.047
Pedestrian Crossi	ng	Ep Fp Gp Hp Jp	4 1,2,3 3 1,2,4 2 1,3,4	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL. EN + FL. EN + FL. EN + FL. EN + FL. EN + FL.	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 6 5 5 5	+ + + +	5 7 10 11 8 7		10 12 15 17 13 12			1			
TAC junction : CT	130s ado	opted		u u	. ,			\square			+	Group	A,B,Gp,D	A,B,C,D	Group	A,B,Gp,D	A,B,C,D
							95(95)	♦ 5(5)	70(70)	15(15)		y L (sec)	33	18	y L (sec)	33	18
)	30(30)	1375(13)	75)			1460(1460)		- C (sec)	130	130	C (sec)	130	130
				\leq	→		310(310)	→	255(255)	105(105)	\checkmark	y pract.	0.672	0.775	y pract.	0.672	0.775
					25(25)			Y				R.C. (%)	49%	10%	R.C. (%)	49%	10%
Stage / Phase Dia	igrams			r				1									
1. A		Fp ≺>		2.		۲	Fp >	3.		F <	₽ >	4.			5.		
df	>		^ Hp ↓	•	В	< ţ	>↓ Hp >		<> Jp	•	c	> مار	->	∱ ¦ v			
I/G= 5			I/G= 5	5				I/G= 5			I/G=	= 7		I/G=			
_#G=0			1/0-0	,				189- 2	I		Date	- , ə: JUL, 2024		Junct Shing Ka	ion: i Road / Western a	cess to main st	H

Job No.: <u>CHK5078631</u>0

Junction:	To Kwa	Wan Ro	oad / Sh	ing Kai Roa	ad / Sun	g Wong ⁻	Toi Road	-							Design Year	:2033	
Description:	2033 De	sign Elc	w (Ser	isitivity Sce	enario)			-			Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	onts				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (j	Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
To kwa Wan Road (NB)	+ ↑	C C	1 1	3.600 3.000	18			47%	47%	1900 2055	1900 2055	550 595	0.289 0.290	0.290	550 595	0.289 0.290	0.290
Shing Kai Road (SB)	↓ ↓ ↓	A A A	2 2 2	3.500 3.650 4.000		32 30		83%	83%	1965 2040 2050	1965 2040 2050	605 629 631	0.308 0.308 0.308	0.308	605 629 631	0.308 0.308 0.308	0.308
Sung Wong Toi Road (EB)	┑ ┑ Ţ	B B B	3 3 3	3.650 3.650 3.650	18 20	24 22		100% / 0%	100% / 0%	1830 1970 1985	1830 1970 1985	262 283 225	0.143 0.144 0.113	0.144	262 283 225	0.143 0.144 0.113	0.144
Pedestrian Crossi	ng	Dp Ep Fp Gp Ip	2,3 1 1,3 2 1,2 3	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5 5	+ + + + +	10 12 11 7 6 7	= = = =	15 17 16 12 11 12						
Nataa				F I									r	1			
TAC Junction: CT	130s ado	opted		Flow. (pc	u/m)		1155(1155	5)			≜ ^N	Group	A,Gp,C	A,B,C	Group	A,Gp,C	A,B,C
								710(710)				y	0.598	0.742	y L (200)	0.598	0.742
					545(545)								120	120		120	120
							260(260)	885(885)				v pract	0.600	0.810	v pract	0.600	0.810
					225(225)								17%	9%		17%	0.010
Stage / Phase Dia	agrams											12.0. (78)	17.70	370	R.O. (78)	17.70	370
1.	grunio			2.				3.				4.			5.		
Fp _L ,7	ي َ £b		/ A	Gp	B	*	٣.	アン Dp	Fp ,7 ⊭		下、 Dp						
۳. Hp	.7			للا ج Hp	<i></i>				c	* •	الم Ip						
I/G= 5			I/G= 6	<u>6</u>				I/G= 5			I/G=			I/G=			
											Date	JUL, 2024		Juncti	on: an Road / Shine K	ai Road / Sung V	Uong Toj Road

TRAFFIC S	GNA	LS C	CALC	ULATI	ON						Job No.:	: <u>CHK50</u>	<u>)78631</u> 0	N	IVA HON	g kong	LIMITED
Junction:	To Kwa	Wan R	oad / Sh	ing Kai Ro	ad / Sun	g Wong	Toi Road								Design Yea		
Description:	2033 De	esign Fl	ow (Ser	nsitivity Sce	enario) (V	Vith prop	oosed junctio	on improve	ment)		Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ıts				Radi	us (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Movemer	Phase	Stage	Width (m)	Left	Right	Gradient	РМ	РМ	РМ	PM	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
To kwa Wan Road (NB)	+ ↑ ↑	D D	4 4	3.600 3.000	18		1 1	47%	47%	1900 2055	1900 2055	550 595	0.289 0.290	0.290	550 595	0.289 0.290	0.290
Shing Kai Riad (SB)	↓ ↓ ↓	A A A	1,2 1,2 1,2	3.500 3.650 4.000		32 30		83%	83%	1965 2040 2050	1965 2040 2050	605 629 631	0.308 0.308 0.308	0.308	605 629 631	0.308 0.308 0.308	0.308
To Kwa Wan Road (EB)	-+ + -+ -+ -+ -+	C C B B	2,3 2,3 3 3	3.500 3.500 3.500 3.500	18 20	30 28				1630 1960 2005 2000	1630 1960 2005 2000	247 298 113 112	0.152 0.152 0.056 0.056	0.056	247 298 113 112	0.152 0.152 0.056 0.056	0.056
Pedestrian Crossin	g	JP EP FP HP IP	3,4 1 1,4 3 1,2,3 4	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH =	5 7 8 5 5 5 5	+ + + + + + +	10 13 15 7 6 7	= = = = =	15 17 16 12 11 12						
Notes:				Flow: (po	:u/hr)										C		
TAC Junction : CT	130s ad	lopted					1155(1155)				Ŧ	Group	A,Jp	A,B,D	Group	0.200	A,B,D
*Site factor 0.9 add	ed due	to flare	length				•	710(710)				y L (soc)	0.306	15	y L (soc)	0.300	15
					545(545)								120	120		120	120
							260(260)	885(885)				C (Sec)	0.755	0.706	C (Sec)	0.755	0.706
					225(225)								1450/	0.790		1450/	0.790
Stago / Phaso Dia	Trame											R.C. (%)	143%	22.70	R.C. (%)	145%	22.70
1.	Jianis			2.				3.				4.			5.		
Fp _L ,7	Ер `` <u>`</u>		/ / A		C	* .			СВ		dr مر	Fp , 7	1	لار ال			
Ht لار آ)			<i>⊾</i>	` <i>`-</i> Д Нр				Gp 、ゴ ビ Hp ユ			D	/	۲. ۱p			
I/G= 5			I/G=	2				I/G= 6			I/G=	5		I/G=	•		
I/G= 5			I/G= :	2				I/G= 6			I/G= Date	5		I/G= Junct	on:		
												JUL, 2024		To Kwa W	an Road / Shing K	ai Road / Sung V	Vong Toi Road

Job No.: <u>CHK5078631</u>0

Junction:	Kowloo	n City R	oad / Su	ng Wong T	foi Road										Design Yea	r: <u>2033</u>	
Description:	2033 De	esign Flo	w (Sen	sitivity Sce	nario)						Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	onts				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (p	Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Sung Wong Toi Ro	← ←	A A	1 1	3.650 3.500						1585 1685	1585 1685	691 734	0.436 0.436	0.436	691 734	0.436 0.436	0.436
Kowloon City Road	* ๅ * ๅ	B B	2 2	4.500 4.500	10 12					1435 1570	1435 1570	332 363	0.231 0.231	0.231	332 363	0.231 0.231	0.231
Pedestrian Crossi	ng	Ср	2	MIN GRE	EN + FL	ASH =	10	+	11	=	21						
Notes:		- 1		Flow: (pc	u/hr)						↑ ^N	Group	A,Cp	A,B	Group	A,Cp	A,B
activities at Sung V Kowloon City Road	eu uue ti Nong To d	i Road &	y Je									У	0.436	0.667	У	0.436	0.667
										4405/140-7		L (sec)	27	10	L (sec)	27	10
							695(695)	•		1425(1425)		C (sec)	65	05	C (sec)	65	05
												y pract.	0.520	0.762	y pract.	0.526	0.762
Stage / Phase Dia	igrams							1					21/0	17/0		21/0	1 - 10
1.	A			2. ◀-	~	+	-> Ср	В				4.			5.		
I/G= 6			I/G= 6					I/G=			I/G=	· · · ·		I/G=			
WG-0			#G= 0	,				189=	I		Date	: JUL, 2024		Juncti Kowloon (lon: City Road / Sung V	Vong Toi Road	J

Job No.: <u>CHK507863</u>10

Junction:	Ma Tau	Chung	Road / S	Sung Wong	<u> Toi Roa</u>	d / Fu Ni	ng Street								Design Yea	r: <u>2033</u>	
Description:	2033 De	sign El	ow (Ser	nsitivity Sce	enario)						Designed	By: <u>TCW</u>			Checked By	CHC	
	ents				Radi	us (m)	ıt (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak	•		PM Peak	
Approach	Movem	Phase	Stage	Width (m)	Left	Right	Gradier	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Sung Wong Toi Ro	יז ו ר+ ר ל	D D E E	2,3 2,3 2,3 2 2 2	3.500 3.500 3.000 3.500 3.500	I	15 20 25				1785 1960 1940 1965 2105	1785 1960 1940 1965 2105	586 643 636 280 300	0.328 0.328 0.328 0.142 0.143	0.328	586 643 636 280 300	0.328 0.328 0.328 0.142 0.143	0.328
Ma Tau Chung Rd (NB)	 → →	A A A	1 1 1	3.500 3.500 3.500	10			37%	37%	1860 2105 2105	1860 2105 2105	633 716 716	0.340 0.340 0.340	0.340	633 716 716	0.340 0.340 0.340	0.340
Ma Tau Chung Rd (SB)	↓ ↓ ↓	B B B	1 1 1	3.500 3.500 3.500						2105 2105 1965	2105 2105 1965	482 483 450	0.229 0.229 0.229		482 483 450	0.229 0.229 0.229	
Fu Ning Street	►	Ι	4	3.500		20				1830	1830	25	0.014		25	0.014	
Pedestrian Crossi	ng	Ср	1	MIN GRE	EN + FL	ASH =	10	÷	9	-	19						
		Fp Gp Hp	2,3 1,2,3 3,4	MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL	ASH = ASH = ASH =	10 5 7	+ + +	9 5 8	= = =	19 10 15						
Notes:				Flow: (pc	u/hr))		++>	Group	B,D,I	A,D,I	Group	B,D,I	A,D,I
								#REF!				У	0.558	0.669	У	0.558	0.669
					235(235)			-				L (sec)	18	18	L (sec)	18	18
						1830(18	30)	580(580)	▶1865(1865)	1415(1415)		C (sec)	130	130	C (sec)	130	130
								<pre>/</pre>				B C (%)	39%	16%	y pract.	39%	16%
Stage / Phase Dia	igrams											14.0. (70)	0070	1070	14.0. (70)	0070	10 /0
1. 	Ср	< ^{Gr})	2.	∧ ↓ Fp ↓ Fp	D	Gp <>	3.	< ∧ ↓ Fp ↓ Fp	Hp > <	Gp >	4.	Нр >		5.		
I/G=			//G= !	5	-			//G= 5			I/G=	5	5	I/G=			
I/G=			I/G=	5				I/G= 5			I/G=	5	5	I/G=	ion:		(K)
											- 410	JUL, 2024		Ma Tau C	hung Road / Sung	Wong Toi Road /	Fu Ning Street

Job No.: <u>CHK5078631</u>0

Junction:	Olympic	: Avenu	e / Hang	Wan Roa	d			-							Design Year	2033	
Description:	2033 De	sign Fl	ow (Ser	nsitivity Sce	enario)						Designed	By: TCW			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (j	Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (NB)	† †	A A	1,2 1,2	3.500 3.500			•	•		1965 2105	1965 2105	328 352	0.167 0.167		328 352	0.167 0.167	
Olympic Avenue (SB)	ţ	B B	2,3 2,3	3.650 3.650						1980 2120	1980 2120	336 359	0.170 0.169	0.170	336 359	0.170 0.169	0.170
Hang Wan Road	* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C D D	2,3 3 3	5.000 3.300 3.300	13	25 20				1895 1965 1940	1895 1965 1940	30 269 266	0.016 0.137 0.137	0.137	30 269 266	0.016 0.137 0.137	0.137
Pedestrian Crossi	ng	Ep Fp Gp Hp	1 1 3 2,3	MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH =	5 5 5 5	+ + +	6 6 7 9	= = =	11 11 12 14						
Notes:				Flow: (pc	u/hr)						[▲] ^N	Group	A,D	B,D	Group	A,D	B,D
					30(30) 535(535)			695(695) 680(680)				y L (sec) C (sec) y pract. R.C. (%)	0.304 9 60 0.765 151%	0.307 11 60 0.735 140%	y L (sec) C (sec) y pract. R.C. (%)	0.304 9 60 0.765 151%	0.307 11 60 0.735 140%
Stage / Phase Dia	igrams													•	1_		
1. F.	Ęp ≚		3	2.	C	٢	► E	3	C	۲.,	Gp Salar	4.			5.		
I/G= 6 I/G= 6			I/G= I/G=					I/G= 7 I/G= 7			I/G=			I/G=			
											Date	: JUL, 2024		Junct Olympic A	ion: venue / Hang Wan	Road	L

lob Title	Proposed Comprehensiv	e Develonment Includi	ng Flat Sh	10n & See	vices and Fating	Place in		Zone Kai Tak /	rea 24 Site 2	
Junction:	Prince Edward Road Fac	st / Prince Edward Road	West / M	la Tau Ch	ung Road / Arm	vle Street	2074(4)		Designed hv	TCW
Scheme [.]	2033 Design Flow (Sen	sitivity Scenario)	west / W		ang noud / Alg				Checked by:	CHC
Design Year	2033	sectory section of	Job No	: CHK507	86310				Date:	JUL. 2024
Arm A	Prince Edward Road Eas	:+	305 110.	. emesor	00010				Dute.	501, 2024
Arm B	Ma Tau Chung Road (FP	3)								
Arm C	Argyle Street	·1								
Arm D	Prince Edward Road We	est								
	a.a.a noda We									
		PM PM		PM	PM		PM	PM		
	Arm D	→ 1275 1275		2965	2965>		2035	2035		
	Prince Edward Road West		+						•	
			1690	PM						
			1690	PM						
		← 1170 1170								
	Arm C	→ 455 455								
	Argyle Street		1 ↑							
			1			· •				
			2410	PM	PM	925				
			2410	PM	PM	925				
		475 475	4							
			1							
			1							
	Arm B		1							
	Ma Tau Chung Road (EB)	→ 1570 1570	<u> </u>							
			1							
			111							
			1320	PM					Arm A	
			1320	PM			1670	1670 4	Prince Edward F	Road East
				←	2595 2595					
			CALT		^	<u> </u>		<u>^</u>	5	
	AETEDS		ENT		A	В		L	U	
INPUT PAKAN	TETERS									
V	Approach Light Width /-	2)			0 50	0.5	0	6.00	6.50	
v E	Approach Hair Width (n	1)			0.00	9.5		0.00	0.50	
	Effective Length of Eler	a (m)			9.00	10.0	0	5.00	9.70	
R	Entry Radius (m)	- (11)			50.00	3.0		28.00	5.00	
n D	Inscribed Circle Diameter	ar (m)			100.00	100	00	100.00	100.00	
Δ	Fntry Angle (degree)	- (11)			10.00	55 0	10	15.00	30.00	
~	Linu y Angle (degree)				10.00	55.0		13.00	30.00	
ΟΠΤΡΙΤ ΡΑΒ	AMETERS									
SULLOTFAR	UTILILING									
s	= 1.6 (F - V) / I	Sharpness of flare			0.80	0.1	6	0.64	0.57	
ĸ	= 1 - 0 00347 (Δ-30) - 0	978 (1/R - 0.05)			1 10	0.1	2	1 07	1.03	
X2	= V + ((E-V) / (1+2S))				8.69	9.8	8	6.88	8.00	
м	= EXP ((D-60) /10)				54.60	54 6	50	54.60	54.60	
F	= 303 * X2				2634	290	3	2084	2423	
Td	= 1 + (0.5 / (1+M))				1.01	1.0	1	1.01	1.01	
Fc	= 0.21*Td (1 + 0.2*X2)				0.58	0.6	3	0.50	0.55	
AM RESULT										
Q	Entry Flow (pcu/hour)				1,670	1,57	70	455	1,275	
Qc	Circulating Flow Across	Entry (pcu/hour)			925	1,32	20	2,410	1,690	
Qe	= K (F - Fc*Qc)				2304	198	33	928	1541	
DFC	= Q / Qe	Design Flow / Capacity	/ 0.	83	0.72	0.7	9	0.49	0.83	1
		Total Entry Flows	4,9	970						
PM RESULT										
Q	Entry Flow (pcu/hour)				1,670	1,57	70	455	1,275	
Qc	Circulating Flow Across	Entry (pcu/hour)			925	1,32	20	2,410	1,690	
Qe	= K (F - Fc*Qc)				2304	198	33	928	1541	
DFC	= Q / Qe	Design Flow / Capacity	/ 0.	83	0.72	0.7	9	0.49	0.83	
		Total Entry Flows	4,9	970					1	
All the above	formulas are in accordan	ce to T.P.D.M. Vol.2 Ch	p.4 Sec 4.	5.9						
	-									

Job No.: <u>CHK5078631</u>0

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Junction:	Kai Sar	n Road /	Tsat Po	Street				_							Design Year	2033	
Approach Part with or point of the point o	Description:	2033 Design Flow (Sensitivity Scenario) Designed By: <u>TCW</u> Radius (m) Radius (m) Pro. Turning (%)														Checked By	: <u>CHC</u>	
Agreesh $\frac{1}{2}$ <th< td=""><td></td><td>ents</td><td></td><td></td><td></td><td>Radiu</td><td>ıs (m)</td><td>ıt (%)</td><td>Pro. Tu</td><td>rning (%)</td><td>Revised S Flow (p</td><td>Saturation pcu/hr)</td><td></td><td>PM Peak</td><td></td><td></td><td>PM Peak</td><td></td></th<>		ents				Radiu	ıs (m)	ıt (%)	Pro. Tu	rning (%)	Revised S Flow (p	Saturation pcu/hr)		PM Peak			PM Peak	
$\begin{array}{c c c c } \hline Earl Po Speel & + & A & 1 & 3.600 & 10 & 25 & 115 / 1376 & 115 / 376 & 116 / 376 & 2440 & 2440 & 0.44 & 0.44 & 0.44 & 0.44 & 0.44 & 0.44 & 0.44 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 0.203 & 446 & 0.203 & 0.203 & 0.204 & 0.47 & 0.42 & 0.20 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.203 & 0.205 & 0.204 & 0.40 & 0.203 & 0.205 & 0.204 & 0.40 & 0.40 & 0.40 & 0.205 & 0.204 & 0.40 & 0.40 & 0.205 & 0.204 & 0.40 & 0.40 & 0.205 & 0.204 & 0.40 & 0.40 & 0.205 & 0.204 & 0.40 & 0.40 & 0.205 & 0.204 & 0.40 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & 0.40 & 0.205 & 0.204 & $	Approach	Movem	Phase	Stage	Width (m)	Left	Right	Gradier	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tsat Po Street (EB)	+	С	4	5.000	10	25		11% / 37%	11% / 37%	2040	2040	95	0.047	0.047	95	0.047	0.047
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tsat Po Street (WB)	<u>≁</u> ⊊	A A	1 1	3.600 3.600	10	25		69% 59%	69% 59%	1790 2045	1790 2045	364 416	0.203 0.203	0.203	364 416	0.203 0.203	0.203
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Kai San Road (NB)	* •1	B	2 2	4.000 4.000	10	15		13%	13%	1960 1975	1960 1975	400 345	0.204 0.175	0.204	400 345	0.204 0.175	0.204
Notes: Flow: (pcu/hr) \rightarrow Notes: Group A.G.p.B.C. C.G.C. A.G.p.B.C.	Pedestrian Crossi	ng	Dp Ep Fp Hp	2 2,3 1,2,4 2 2	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL/ EN + FL/ EN + FL/ EN + FL/ EN + FL/	ASH = ASH = ASH = ASH = ASH =	10 8 7 9 7	+ + + +	9 8 7 8 7	= = = =	19 16 14 17 14						*
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Notes:				Flow: (pc	u/hr)						→N	Group	A,Gp,B,C	A,Gp,B,C	Group	A,Gp,B,C	A,Gp,B,C
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													У	0.454	0.454	У	0.454	0.454
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						10(10)					245(245)	Ą	L (sec)	48	48	L (sec)	48	48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						\triangleleft	50(50)		300(300)		285(285) ◄	\geq	C (sec)	130	130	C (sec)	130	130
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						35(35)		45(45)		400(400)	250(250)		y pract.	0.568	0.568	y pract.	0.568	0.568
Stage / Phase Diagrams 1. \checkmark \downarrow									Y				R.C. (%)	25%	25%	R.C. (%)	25%	25%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Stage / Phase Dia	agrams			2.	110 7			3				4.			5.		
VG=11 VG=1 17 VG=3 VG=9 VG= VG=11 17 VG=3 VG=9 VG= VG=11 17 VG=3 VG=9 VG= Date: Date: Junction: (N)				<u>.</u>	- ¦Gp ∀	Hp7 ∠ <>	<>	∱ 		B	<>		 	<u>₽</u> →				
I/G= 11 I/G = 11 I/G = 3 I/G = 9 I/G = 9 Date: Junction: (N)	I/G= 11			I/G= -	I 11		17		/G= 3			I/G=	9		I/G=			
	I/G= 11			/G= '	11		17		/G= 3			I/G= Date	9		I/G= Juncti	ion:		N

Roundabout Capacity Calculation

Job Title:	Proposed Comprehensiv	e Development Includin	g Flat, Shop & Sei	vices and Eating	g Place in CDA(4)	Zone, Kai Tak A	Area 2A Site 2	
Junction:	Sze Mei Street / Luk Hop	o Street					Designed by:	TCW
Scheme:	2033 Design Flow (Sens	sitivity Scenario)					Checked by:	CHC
Design Year:	2033		Job No.: CHK507	86310			Date:	JUL, 2024
Arm A	Sze Mei Street							
Arm B	Sze Mei Street							
Arm C	Luk Hop Street							
			Arm A	Sze Mei Street				
					PM 5	335 180	180	
					PM 5	335 180	180	
					€	↓ ل	¥	
							Free Flow	
	PM	PM						
	230	230						
	85	85	/					
	05	•••	/	\				
	Arm C		1					
	Luk Hop Street		1					
			\					
			\mathbf{N}					
			\mathbf{i}					
		⁴┐ 眷 ा₄						
	PM	360 330 5						
	PM	360 330 5	Arm B	Sze Mei Street				
			ENTRY ARM	А	В	С		
INPUT PARAN	IETERS							
v	Approach Half Width (m	n)		4 00	3 50	4 50		
E	Entry Width (m)	''		4.00	3.50	5.00	1	
L	Effective Length of Flare	e (m)		1.00	1.00	2.00	1	
R	Entry Radius (m)			30.00	100.00	15.00		
D	Inscribed Circle Diamete	er (m)		30.00	30.00	30.00		
A	Entry Angle (degree)			10.00	10.00	35.00		
0.170.77.5.5								
OUTPUT PARA	AMETERS							
s	= 1.6 (F - \/) / I	Sharnness of flare		0.00	0.00	0.40		
ĸ	= 1.0 (L = V) / L = 1 - 0 00347 (A-30) - 0	978 (1/R - 0.05)		1 09	1 11	0.40		
X2	= V + ((E-V) / (1+2S))	575 (1/1 0.05)		4.00	3.50	4,78		
М	= EXP ((D-60) /10)			0.05	0.05	0.05		
F	= 303 * X2			1212	1061	1448		
Td	= 1 + (0.5 / (1+M))			1.48	1.48	1.48		
Fc	= 0.21*Td (1 + 0.2*X2)			0.56	0.53	0.61		
AIVI RESULI	Entry Flow (new/hours)			520	605	015		
	Circulating Flow Across	Entry (ncu/bour)		520	425	340	1	
Qe	= K (F - Fc* Ω c)			898	927	1200		
DFC	= Q / Qe	Design Flow / Capacity	0.76	0.58	0.75	0.76		
	21 22	Total Entry Flows	2,130					
PM RESULT		,	,					
Q	Entry Flow (pcu/hour)			520	695	915		
Qc	Circulating Flow Across	Entry (pcu/hour)		690	425	340		
Qe	= K (F - Fc*Qc)	-		898	927	1200		
DFC	= Q / Qe	Design Flow / Capacity	0.76	0.58	0.75	0.76		
1		Total Entry Flows	2,130					

Job No.: <u>CHK5078631</u>0

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Junction:	Shing K	ai Road	I / Slip ro	oad of CKR	1										Design Yea	r: <u>2033</u>	
Agroach Pal Pa	Description:	2033 De	sign Flo	ow (Ser	nsitivity Sce	nario)						Designed	By: <u>TCW</u>			Checked By	CHC	
Approach Vertex Free Path		ints				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak			PM Peak	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Shing Kai Road (EB)	→ * 7	A A A	1 1 1	3.650 3.650 3.650		26 23	I	47%	47%	1980 2065 1990	1980 2065 1990	320 333 322	0.162 0.161 0.162	0.162	320 333 322	0.162 0.161 0.162	0.162
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Shing Kai Road (WB)	+ ← ←	E E E	3 3 3	4.500 3.600 3.600	35			37%	37%	2035 2115 2115	2035 2115 2115	349 363 363	0.171 0.172 0.172	0.172	349 363 363	0.171 0.172 0.172	0.172
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Slip Road of CKR	↑ ↑ ↑	B C C	1,2 2 2	5.000 3.600 3.600	35	18 20				2030 1950 1965	2030 1950 1965	170 52 53	0.084 0.027 0.027		170 52 53	0.084 0.027 0.027	
Notes: Flow: (pcu/hr) \uparrow " assumed to be same phase for conservative purpose Group A.C.E A.Hp.E Group A.C.E I.S. I.S. I.S. I.S. I.S. I.S. I.S. I.E. I.G. I.G. <td>Pedestrian Crossi</td> <td>ng</td> <td>Fp Gp Hp Jp Kp</td> <td>1,2 1 2 3 3 3 3</td> <td>MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE</td> <td>EN + FL. EN + FL EN + FL. EN + FL. EN + FL. EN + FL.</td> <td>ASH = ASH = ASH = ASH = ASH =</td> <td>5 5 14 5 5 10</td> <td>+ + + + + +</td> <td>10 5 10 10 5 8</td> <td>= = = =</td> <td>15 10 24 15 10 18</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Pedestrian Crossi	ng	Fp Gp Hp Jp Kp	1,2 1 2 3 3 3 3	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL. EN + FL EN + FL. EN + FL. EN + FL. EN + FL.	ASH = ASH = ASH = ASH = ASH =	5 5 14 5 5 10	+ + + + + +	10 5 10 10 5 8	= = = =	15 10 24 15 10 18						
* assumed to be same phase for conservative purpose * $495(495)$ $945(445)$ $945(445)$ 12 37 $L(sec)$ 12 37 $L(sec)$ 12 37 $L(sec)$ 12 37 $L(sec)$ 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 127% 93% $R.C.(\%)$ 127% 12% 12% 10%	Notes:				Flow: (pc	u/hr)						N	Group	A,C,E	A,Hp,E	Group	A,C,E	A,Hp,E
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	* assumed to be s conservative purpo	ame pha ose	se for									I	у	0.360	0.333	У	0.360	0.333
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													L (sec)	12	37	L (sec)	12	37
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						$ \rightarrow$	495(495)			945(945) <		C (sec)	130	130	C (sec)	130	130
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						480(480)		170(170)	`\/	105(105)	130(130)		y pract.	0.817	0.644	y pract.	0.817	0.644
Stage / Phase Diagrams 1. A V_{Fp} V_{Fp} B Gp B $V_{G=5}$									γ				R.C. (%)	127%	93%	R.C. (%)	127%	93%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Stage / Phase Dia 1.	igrams			2.				3.				4.			5.		
I/G=5 I/G=5 24 I/G=5 I/G= I/G= I/G=5 I/G=5 24 I/G=5 I/G= I/G= I/G=5 I/G=5 I/G= I/G= I/G= I/G=5 I/G=5 I/G= I/G=		в	~^ ~7	۲ Fp کے Gp	<> 4	Нр	Fi C	↑ • •	D	Jp <-	• > Kp							
I/G= 5 I/G= 5 I/G= 5 I/G= 5 Date: Junction: P	I/G= 5			I/G= 5	5		24		I/G= 5			I/G=			I/G=			
	I/G= 5			/G= 5	5		24		I/G= 5			I/G= Date	ə:		I/G= Juncti	on:		P

Job No.: <u>CHK5078631</u>0

Junction:	Shing K	ai Road	/ Easte	m access t	to main s	stadium									Design Year	:2033	
Description:	2033 De	esign Eld	ow (Sen	sitivity Sce	nario)						Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	ıt (%)	Pro. Tu	rning (%)	Revised S Flow (p	Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Movem	Phase	Stage	Width (m)	Left	Right	Gradien	PM	РМ	PM	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shing Kai Road (EB)	 _→ _→	A A A	1 1 1	3.800 3.800 3.800	15	30	I	3% 3%	3% 3%	1990 2135 2130	1990 2135 2130	542 582 581	0.272 0.273 0.273	0.273	542 582 581	0.272 0.273 0.273	0.273
Eastern Access to main stadium	⊾ ₊∔	C C	3 3	3.650 3.650	10	15		97%	97%	1720 1930	1720 1930	145 175	0.084 0.091	0.091	145 175	0.084 0.091	0.091
Shing Kai Road (WB)	↓ ← ∢±	B B B	2 2 2	3.800 3.800 3.800	15	30		5% 6%	5% 6%	1985 2135 2130	1985 2135 2130	465 501 499	0.234 0.235 0.234	0.235	465 501 499	0.234 0.235 0.234	0.235
Pedestrian Crossi	ng	Dp Ep Fp Hp	4 1,3,4 2,4 3,4 1,2,4	MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5	+ + + +	10 10 10 7 7	= = = =	15 15 15 12 12						
Notes: TAC junction : CT	130s ado	opted		Flow: (pc	u/hr)						≜ ^N	Group	A,B,Gp	A,B,C,Dp	Group	A,B,Gp	A,B,C,Dp
					15(15)	1675(16	170(170) 75)	5(5)	▶ 145(145)	30(30) 1410(1410) 25(25)		y L (sec) C (sec) y pract.	26 130 0.720	35 130 0.658	y L (sec) C (sec) y pract.	26 130 0.720	35 130 0.658
Stage / Phase Dia	orams											R.C. (%)	42%	10%	R.C. (%)	42%	10%
1.	yr drif5	< Нр ^ ¥	-> Ep	2.		< Нр	Fp	3. B	< Gp	»	C Ep	4 . Gp ←	> < Hp > Dp	→ Fp ↓ Ep ↓	5.		
I/G= 5			I/G= 7	7				I/G= 6			I/G=	5	15 15	I/G=			
<u>"G-0 </u>			_ #G= 1					189=0			Date	: JUL, 2024	10	Juncti Shing Kai	on: Road / Eastern ac	cess to main stat	Q

Job No.: <u>CHK507863</u>10

Junction:	Olympic	Avenue	e/ Dakot	a Drive				_							Design Year	r: <u>2033</u>	
Description:	2033 De	sign Flo	ow (Sen	sitivity Sce	nario)			_			Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	$\stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\rightarrow}$	A A A	1 1 1	3.650 3.650 3.650		24	I	95%	95%	1980 2120 2000	1980 2120 2000	229 245 231	0.116 0.116 0.116	0.116	229 245 231	0.116 0.116 0.116	0.116
Muk Tan Street (NB)	*↑*	В	2	4.500	16	19		39% / 61%	39% / 61%	2040	2040	395	0.194	0.194	395	0.194	0.194
Olympic Avenue (WB)	€	C C	3 3	3.650 3.650	16			73%	73%	1855 2120	1855 2120	382 438	0.206 0.207	0.207	382 438	0.206 0.207	0.207
Pedestrian Crossi	ng	Dp Ep	4	MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH =	9 9	+ +	9 8	= =	18 17						
Notes:				Flow: (pc	u/hr)						≜ N	Group	A,B,C,Ep	A,B,C,Dp	Group	A,B,C,Ep	A,B,C,Dp
* Saturation flow 1	50 pcu/h	r added									Т	у	0.516	0.516	у	0.516	0.516
												L (sec)	35	39	L (sec)	35	39
					$ \rightarrow$	485(485)			540(540)		C (sec)	120	120	C (sec)	120	120
					220(220)		155(155		240(240)	280(280))	y pract.	0.638	0.608	y pract.	0.638	0.608
								Ŷ				R.C. (%)	24%	18%	R.C. (%)	24%	18%
Stage / Phase Dia 1.	grams			2.				3.				4.			5.		
										c ←		€p					
				•	В	-						Dp)				
I/G= 3			I/G= 6	<u>; </u>				I/G= 5			I/G=	= 10 = 10	18 18	I/G=			
								1.5 0	1		Date	: JUL, 2024		Juncti Olympic A	on: venue/ Dakota Dri	ve	R

Job No.: <u>CHK5078631</u>0

Junction:	Olympic	c Avenue	e/ Dakot	a Drive											Design Yea	r: <u>2033</u>	
Description:	2033 De	esign Flo	ow (Sen	sitivity Sce	enario) (V	Vith prop	osed junc	ion improve	ment)		Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	ents				Radi	us (m)	ıt (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak	•		PM Peak	
Approach	Movem	Phase	Stage	Width (m)	Left	Right	Gradier	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	→ → *	A A A	1 1 1	3.650 3.650 3.650		23		95%	95%	1980 2120 1995	1980 2120 1995	229 245 231	0.116 0.116 0.116	0.116	229 245 231	0.116 0.116 0.116	0.116
Muk Yan Street (NB)	↓	B B	2 2	3.500 3.500	16	18				1795 1945	1795 1945	155 240	0.086 0.123	0.123	155 240	0.086 0.123	0.123
Olympic Avenue (WB)	₹ ←	C C	3 3	3.650 3.650	16			73%	73%	1855 2120	1855 2120	382 438	0.206 0.207	0.207	382 438	0.206 0.207	0.207
Pedestrian Crossi	ng	Dp Ep	4	MIN GRE	EN + FL EN + FL	ASH = ASH =	9 9	+ +	9 8	=	18 17			*			*
Notes:				Flow: (pc	u/hr)						↑ N	Group	A,B,C,Ep	A,B,C,Dp	Group	A,B,C,Ep	A,B,C,Dp
											Ť	у.	0.446	0.446	у.	0.446	0.446
												L (sec)	35	39	L (sec)	35	39
					$ \rightarrow$	485(485)		0.40(0.40)	540(540)		C (sec)	120	120	C (sec)	120	120
				:	220(220)		155(155)		240(240)	280(280)		y pract.	0.638	0.608	y pract.	0.638	0.608
Stago / Phaso Dia	arame							Ŷ				R.C. (%)	43%	36%	R.C. (%)	43%	36%
1.	igranis			2.				3.				4.			5.		
				4-	в	•				c ←		Ep V Op	>				
I/G= 3			I/G= 6	 5				I/G= 5			I/G=	10	18	I/G=	<u> </u>		
I/G= 3			I/G= 6	3				I/G= 5			I/G= Date	10	18	l/G= Juncti	ion:		(R)
											Date	JUL, 2024		Olympic A	venue/ Dakota Dr	ive	

Job No.: <u>CHK5078631</u>0

Junction:	Olympic	: Avenue	e / Muk I	Lai Street				_							Design Year	2033	
Description:	2033 De	esign Flo	ow (Ser	sitivity Sce	nario)			-			Designed	By: <u>TCW</u>			Checked By	: <u>CHC</u>	
	nts				Radi	us (m)	: (%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		PM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	РМ	РМ	РМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Olympic Avenue (EB)	→ →	A A	1 1	3.650 3.650		19	1	25%	25%	1980 2080	1980 2080	154 161	0.078 0.077	0.078	154 161	0.078 0.077	0.078
Muk Lai Street (NB)	*₽*	В	2	4.500	16	19		50% / 50%	50% / 50%	1900	1900	240	0.126	0.126	240	0.126	0.126
Olympic Avenue (WB)	₹ ←	C C	3 3	3.650 3.650	16			59%	59%	1875 2120	1875 2120	455 515	0.243 0.243	0.243	455 515	0.243 0.243	0.243
Pedestrian Crossi	ng	Dp Ep	4 4	MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH =	7 6	+ +	13 15	= =	20 21						•
Notes:				Flow: (pc	u/hr)							Group	A C B En	A C B Dn	Group	A C B En	A C B Do
											[↑]	v	0.447	0.447	v	0.447	0.447
												L (sec)	37	42	L (sec)	37	42
					\rightarrow	275(275)			700(700) ◄		C (sec)	120	120	C (sec)	120	120
					10(40)		120(120)		▶120(120)	270(270)	•	y pract.	0.623	0.585	y pract.	0.623	0.585
					40(40)			V				R.C. (%)	39%	31%	R.C. (%)	39%	31%
Stage / Phase Di	agrams			1								1		1	ı		1
1.				2.				3.				4.			5.		
A								c						∧ Dp √			
							•		В			€	> Ep				
I/G= 2			I/G= 7	7				I/G= 6			I/G=	10	20 20	I/G=			
			1-0-1	·				1/0-0	I		Date		20	Junct	ion:	treet	S

TRAFFIC SIGNALS CALCULATION CHK50786310 **MVA HONG KONG LIMITED** Job No.: Design Year: _____2033_ Junction: Olympic Avenue / Muk Lai Street Designed By: Description: _ 2033 Design Flow (Sensitivity Scenario) (With proposed junction improvement) TCW Checked By: CHC **Revised Saturation** Radius (m) Pro. Turning (%) PM Peak PM Peak % Movements Flow (pcu/hr) Gradient Phase Stage Width Right Flow Flow Left Approach PM РМ РМ PM y Value Critical y y Value Critical y (pcu/hr) (pcu/hr) (m) 1980 0.078 0.078 Olympic Avenue 3.650 1980 154 0.078 154 0.078 A 1 3.650 19 25% 25% 2080 2080 0.077 0.077 (EB) 161 161 * А 1 7 Muk Lai Street в 2 4.500 16 19 50% / 50% 50% / 50% 1900 1900 240 0.126 240 0.126 (NB) ⇇ Olympic Avenue С 3 3.650 16 59% 59% 1875 1875 455 0.243 455 0.243 (WB) С 3 3.650 2120 2120 515 0.243 0.243 515 0.243 0.243 -3 MIN GREEN + FLASH = 7 Pedestrian Crossing Dp + 13 20 = Ep 1,2 MIN GREEN + FLASH = 7 + 13 = 20 Fp 2 MIN GREEN + FLASH = 6 + 15 = 21 MIN GREEN + FLASH = Gp 1,3 6 15 = 21 Notes: Flow: (pcu/hr) Group Group A,B,C A,Fp,C A,B,C A,Fp,C _ ∾ 0.447 0.321 0.447 0.321 У У L (sec) 13 39 L (sec) 13 39 ➡ 275(275) 700(700) C (sec) 90 90 C (sec) 90 90 120(120) ◄ ▶120(120) 0.770 0.510 0.510 0.770 270(270) y pract. y pract. 40(40) R.C. (%) 72% 59% R.C. (%) 72% 59% Stage / Phase Diagrams 2. 1. 3. 4. 5. ^ --↓ Dp Α ٨ С • ψ Ep <----> <----> <----> Fp Gp Gp В I/G= 6 I/G= 9 21 I/G= 5 I/G= I/G=

I/G=

Date:

JUL, 2024

I/G= Junction:

Olympic Avenue / Muk Lai Street

S

I/G= 5

I/G= 6

I/G= 9

21

LEE Charles

From:	Nga Ching YIP <ngachingyip@td.gov.hk></ngachingyip@td.gov.hk>
Sent:	Monday, July 29, 2024 9:53 AM
То:	LEE Charles
Cc:	TSANG Andy; heiyuchan@td.gov.hk; Rick Kin Wai LIU
Subject:	Fw: [For Comment] Fw: NKIL 6590 Kai Tak CDA(4) - Traffic Impact Assessment for
	S16 Planning Application (A/K22/38)
Attachments:	Section 5.5.pdf; Section 3.3.pdf; Section 4.3 (para 4.3.6).pdf

Dear Charles,

Thank you for the clarification. I have no further comments.

Regards, Cynthia YIP Transport Department Tel: 3583 3988 ----- Forwarded by Nga Ching YIP/TD/HKSARG on 26/07/2024 20:33 -----

 From:
 LEE Charles <clee@systra.com>

 To:
 Nga Ching YIP <ngachingyip@td.gov.hk>, TSANG Andy <atsang@systra.com>

 Cc:
 "heiyuchan@td.gov.hk" <heiyuchan@td.gov.hk>

 Date:
 25/07/2024 14:14

 Subject:
 RE: NKIL 6590 Kai Tak CDA(4) - Traffic Impact Assessment for S16 Planning Application (A/K22/38)

Dear Cynthia,

Please kindly be advised that the description of the existing public transport services has been included in section 3.3 of the TIA report, while the updating of traffic model based on the BRPP 24-25 has been mentioned in section 4.3 (para. 4.3.6) of the TIA. Besides, a review on future public transport has been presented in section 5.5 of the TIA report.

The above-mentioned sections are extracted from the submitted TIA report for your easy reference.

In case of the download link in our previous email on 17 Jul has been expired, the full TIA report can also be downloaded from the following link: http://www.mvaasia.com/download/L2400937_2A_Site2_TIA_Report.pdf

Grateful if you could offer us your division's advice/agreement at your earliest convenience. Your support in this matter is greatly appreciated.

Thanks!

Best Regards,

Charles Lee Associate Director Tel: +852 2864 6320 (Direct Line) • Gen: +852 2529 7037 • Fax: +852 2527 8490

22nd Floor • Genesis • 33-35 Wong Chuk Hang Road • Hong Kong <u>www.mvaasia.com</u> MVA email disclaimer: <u>www.mvaasia.com/disclaimer</u> Please consider the environment before printing.

From: Nga Ching YIP <ngachingyip@td.gov.hk>
Sent: Thursday, July 25, 2024 12:00 PM
To: TSANG Andy <atsang@systra.com>
Cc: LEE Charles <clee@systra.com>; heiyuchan@td.gov.hk
Subject: RE: NKIL 6590 Kai Tak CDA(4) - Traffic Impact Assessment for S16 Planning Application (A/K22/38)

Dear Andy,

Tried to call but no luck to reach you. It seems that there is not much mention on PT services in the TIA, grateful for your advice and feel free to call back for further discussion. Thank you.

(ps. I will be out for meeting this afternoon and tomorrow morning)

Regards, Cynthia YIP Transport Department Tel: 3583 3988

 From:
 TSANG Andy <atsang@systra.com>

 To:
 Nga Ching YIP <ngachingyip@td.gov.hk>

 Cc:
 LEE Charles <clee@systra.com>, "heiyuchan@td.gov.hk" <heiyuchan@td.gov.hk</td>

 Date:
 23/07/2024 11:51

 Subject:
 RE: NKIL 6590 Kai Tak CDA(4) - Traffic Impact Assessment for S16 Planning Application (A/K22/38)

Dear Cynthia,

As discussed, please find attached the relevant sections 4.3.6 – 4.3.12, which includes the Tables 4.6 (Adopted Trip Rates) and 4.7 (Kai Tak Development and Other Planned Developments Updated in the LATM), as extracted from the TIA report for your easy reference.

Should you have any queries, please feel free to call me anytime.

Thank you very much!

Best Regards, Andy Tsang Senior Traffic Engineer Tel: +852 2864 6359 (Direct Line) • Gen: +852 2529 7037 • Fax: +852 2527 8490

22nd Floor • Genesis • 33-35 Wong Chuk Hang Road • Hong Kong www.mvaasia.com MVA email disclaimer: www.mvaasia.com/disclaimer Please consider the environment before printing.

From: TSANG Andy
Sent: Wednesday, July 17, 2024 9:07 PM
To: Nga Ching YIP <<u>ngachingyip@td.gov.hk</u>>
Cc: LEE Charles <<u>clee@systra.com</u>>; <u>heiyuchan@td.gov.hk</u>
Subject: NKIL 6590 Kai Tak CDA(4) - Traffic Impact Assessment for S16 Planning Application (A/K22/38)

Dear Cynthia,

We, MVA Hong Kong Limited, has been commissioned to conduct a Traffic Impact Assessment (TIA) in support of the Section 16 Planning Application for the CDA(4) Site at NKIL 6590 at Kai Tak.

To conduct the traffic forecast, we have reviewed on the land uses at Sites 1M1, 1M2, 2A1 and part of open space. It is noted that while the sites are intended for commercial uses and arts & performance related uses in long-term planning, light public housing will be implemented to fill the short-term gap of public housing supply. In view of that, traffic induced by the two planning schemes were compared in order to identify the more conservative scenario for assessment.

As per the comments as received from Traffic Engineering Division (Mr. Alvin Chan), we would like to seek your division's advice/agreement on the estimation of road-based public transport demand of the Light Public Housing as mentioned in the sections 4.3.9 – 4.3.12 of the TIA. Relevant pages are extracted in the attachment for your easy review, and the full report can be downloaded from the link below. https://sendto.systra.com/pickup?claimID=MtHaExPp5aWcBmPZ&claimPasscode=dsWNVuuhVfbsdz2v

We would be grateful if you could offer us your division's advice/agreement at your earliest convenience. Your support in this matter is greatly appreciated.

Should you have any queries, please feel free to call me anytime.

Thank you very much for your kind attention!

Best Regards, Andy Tsang Senior Traffic Engineer Tel: +852 2864 6359 (Direct Line) • Gen: +852 2529 7037 • Fax: +852 2527 8490

22nd Floor • Genesis • 33-35 Wong Chuk Hang Road • Hong Kong www.mvaasia.com MVA email disclaimer: www.mvaasia.com/disclaimer Please consider the environment before printing.

This message has been scanned for malware. This message and any attachments (the "message") are confidential, intended solely for the addressees, and may contain legally privileged information. Any unauthorised use or dissemination is prohibited. E-mails are susceptible to alteration. Neither our company or any of its subsidiaries or affiliates shall be liable for the message if altered, changed or falsified.

Ce message a ete verifie et ne contient pas de programme malveillant. Ce message et toutes les pieces jointes (ci-apres le "message") sont confidentiels et susceptibles de contenir des informations couvertes par le secret professionnel. Ce message est etabli a l'intention exclusive de ses destinataires. Toute utilisation ou diffusion non autorisee est interdite. Tout message electronique est susceptible d'alteration. Notre societe et ses filiales declinent toute responsabilite au titre de ce message s'il a ete altere, deforme falsifie. O

4.3.12.pdf" deleted by Nga Ching YIP/TD/HKSARG]

This message has been verified and checked by the company's antispam system. Click <u>here</u> to report this message as a spam.

This message has been scanned for malware. This message and any attachments (the "message") are confidential, intended solely for the addressees, and may contain legally privileged information. Any unauthorised use or dissemination is prohibited. E-mails are susceptible to alteration. Neither our company or any of its subsidiaries or affiliates shall be liable for the message if altered, changed or falsified.

Ce message a ete verifie et ne contient pas de programme malveillant. Ce message et toutes les pieces jointes (ci-apres le "message") sont confidentiels et susceptibles de contenir des informations couvertes par le secret professionnel. Ce message est etabli a l'intention exclusive de ses destinataires. Toute utilisation ou diffusion non autorisee est interdite. Tout message electronique est susceptible d'alteration. Notre societe et ses filiales declinent toute responsabilite au titre de ce message s'il a ete altere, deforme falsifie. O

Appendix 3

Replacement Pages of Air Ventilation Assessment

- 3. Future CDA (2) Site Application No. A/K10/256 and A/K10/259
- 4. Approved Application No. A/K10/265
- 5. a: Future Kai Tak Sports Park (Application No. A/K22/17);

b: Future Office and Hotel Development of Kai Tak Sports Park (Application No. A/K22/28)

- 6. Proposed Dedicated Rehousing Estate at Ma Tau Kok
- 7. URA Project KC-018 & KC-019
- 8. Public Housing Site at To Kwa Wan Road
- 9. Approved Application No. A/K22/23
- 10. Curvilinear Elevated Walkway Connecting Mikiki & Site 1M2
- 11. Future CDA 1M1 (Commercial Use)
- 12. Future Site 1M2 for Arts and Performance Related Use
- 13. Future CDA(3) Site 2A1 (Commercial Use)
- 14. Future Lung Tsun Stone Bridge Preservation Corridor
- 15. URA Project KC-015
- 16. Approved Planning Application (No. Y/K10/4)
- 17. URA Project KC-017
- 18. a: Future Residential Site 2A4 & 2A5(B)

b: Future Site 2A5(A) for G/IC Use

- 19. 4-24 Nam Kok Road
- 20. Approved Application A/K10/249-1
- 21. Future Residential Site 2A10

1.5 Baseline Scheme

- 1.5.1 The Baseline Scheme is referenced to the layout of the Proposed Scheme identified in the Figure 5.6b of "Planning Review Study of Kai Tak Development Engineering Study cum Design and Construction of Advance Works Investigation, Design and Construction, Further Review of Land Use in Kai Tak Development" (by AECOM Asia Co. Ltd, November 2021) under MPC Paper No. 9/21.
- 1.5.2 The Subject Site contains one L-shaped domestic tower. The tower has a building height of +118.1 mPD, with 31 residential storeys atop a 4-storey podium.
- 1.5.3 Along the northeast and southeast boundaries of the Subject Site, there is a retail belt elevated at +15 mPD. There is a 15m setback from the retail belt to the northwest boundary. **Appendix 1** show the Master Layout Plan (MLP) of the Baseline Scheme.
- 1.5.4 The development parameters of the Baseline Scheme in the abovementioned study is listed in **Table 1.1**.

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place, with Minor Relaxation of Building Height Restriction in "Comprehensive Development Area (4)" Zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon

Wind Direction	Probability for Annual Condition (%)	Probability for Summer Condition (%)
NNW	1.2	1.2

2.2 Topography and Building Morphology

Topography

- 2.2.1 According to the "Air Ventilation Assessment Initial Study for Kai Tak Development Engineering Study cum Design and Construction of Advance Works – Investigation, Design and Construction, Additional Services for Technical Study on Increasing the Development Density in Kai Tak Area", the topography at the Kai Tak area (including the Subject Sites) is relatively flat with slightly raised terrain in San Po Kong area and Kowloon Bay area. Also, the topography is generally flat within the Kai Tak area around the Subject Sites.
- 2.2.2 Lion Rock Country Park (with the hill-top around 490 mPD located around 2.8 km to the north), Fei Ngo Shan (with the hill-top around 600 mPD located around 3.3 km to the northeast) and Braemar Hill (with the hill-top around 300 mPD located around 5.7 km to the south) would impact the winds approaching the Subject Sites from north, northeast and south direction respectively.

Building Morphology

- 2.2.3 The Subject Sites will be surrounded by mid- to high-rise developments. The building height information of these identified developments are referenced from "Planning Review Report of Kai Tak Development Engineering Study cum Design and Construction of Advance Works Investigation, Design and Construction, Further Review of Land Use in Kai Tak Development" (by AECOM Asia Co. Ltd, November 2021)" and the Approved Kai Tak Outline Zoning Plan (OZP No. S/K22/8, gazetted in October 2022).
- 2.2.4 **Table 2.2** highlights the building height of the nearby developments.

Name of Development	Max. Building Height (mPD)	Location from Site
Future CDA Site 1M1and 1M2	15 - 40	Northeast
Future CDA (3)	100	Northeast
Future Residential Site 2A3	<mark>114.95</mark>	Southwest
Future Kai Tak Sports Park	31 - 70	Southeast
Future Housing Society Site 2B1	135	Southeast
Future Public Housing Sites 2B2, 2B3 & 2B4	125	South
Future Residential Site 2A4	125	Southwest
Future Residential Site 2A5(B)	115	Southwest
Future G/IC Site 2A5(A)	45	Southwest
Future Residential Site 2A10	100	Southwest
Future Public Housing Development at To Kwa Wan Road	125	South
Pumping Station at Site 2A9	13.9	Southwest

Table 2.2Building Height of the Surrounding Developments

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place, with Minor Relaxation of Building Height Restriction in "Comprehensive Development Area (4)" Zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon

Name of Development	Max. Building Height (mPD)	Location from Site		
Prince Ritz	126.1	West		
KC-017	20 to 160	West		
Low to medium existing buildings along Tak Ku Ling Road, South Wall Road and <mark>Lung</mark> Kong Road	~ <mark>10.9</mark> to 40	Northwest		
Regal Oriental Hotel	51	Northwest		
KC-015 Kai Tak Road	120	Northwest		
Le Billionnaire	144.4	North		
Billionnaire Royale	170	North		
K Summit	15 - 130	Southeast		
The Henley	<mark>15</mark> - 130	Southeast		
Upper River Bank	15 - 130	Southeast		

better VR at Open Space (2), Muk Lai Street and southern portion of Site 2B1 under the Proposed Scheme, south of the Subject Site.

Summer Weighted Average Contour plot for Baseline Scheme

Summer Weighted Average Contour plot for Proposed Scheme

4.2.6 Under the summer condition, CDA(3) zone, Site 2B1 as well as the northern portion of Site 2A3 display a decline in wind performance in the Proposed Scheme. However, an improved wind environment is observed at the area to the south of the Subject Site.

channelized effect. This flow is rebounded by the landing part of the elevated road, creating a turbulent zone in the area to the northwest of CDA (3). From the wind contours, the Proposed Scheme shows a slightly better wind performance in this specific area compared to the Baseline Scheme.

- b. The increased building footprint in the Proposed Scheme may divert more of the upcoming wind to pass through the northern portion of the Site 2A3. This wind join with the wind flow from Open Space at this area. As a result, a slightly stronger wind flow is observed in the southeast-northwest direction across Open Space (1) under the Proposed Scheme compared to the Baseline Scheme.
- c. The increased building footprint in the Proposed Scheme may divert more of the upcoming wind to pass through the northern portion of the Site 2A3. As a result, a slightly stronger wind flow is observed in the southeast-northwest direction across Open Space (1) under the Proposed Scheme compared to the Baseline Scheme. A slightly better wind performance observed in this area under the Proposed Scheme.
- d. The stronger wind along Open Space (1) in the Proposed Scheme continuously moves towards north along Sa Po Road. Thus, Sa Po Road experiences better wind performance in the Proposed Scheme compared to the Baseline Scheme.
- e. According to the vector plots, in the Baseline Scheme, the wind from Open Space (1) crosses Prince Edward Road East and is diverted primarily towards both Kai Tak Road and Sa Po Road. However, in the Proposed Scheme, most of the wind coming from Open Space (1) is diverted towards Prince Edward Road East or Sa Po Road. As a result, the VR at Kai Tak Road is lower in the Proposed Scheme.

downwash wind reaches both Site 2A3 and Muk Lai Road. As a result, higher VR is observed at Muk Lai Road in the Proposed Scheme.

- b. In the Baseline Scheme, the high-rise building in Site 2A4 collects high-level wind and diverts it towards Site 2A3 and the Subject Site. However, the downwash wind generated by the Proposed Scheme counters this flow in Site 2A3. Thus, decreased VR is observed at Site 2A3 as well as the area to its southwest.
- c. From the vector plots, the northern block of Kai Yan Court collects high-level wind and channels it northward. In the Proposed Scheme, the stronger wind diverted towards Muk Lai Road counteracts the downwash wind caused by the northern block of Kai Yan Court, resulting in lower VR in the area north of the building. However, this stronger flow along Muk Lai Road is able to divert more of this downwash wind towards Open Space (2). A better wind performance at Open Space (2) is observed under the Proposed Scheme.
- d. According to the vector plots, in the Baseline Scheme, the upcoming wind skims over the podium of Site 2B1 underneath the two towers, reaching the enclosed area. However, due to the strong flow along Muk Lai Road, less wind passes through the building separation between the two blocks in Site 2B1. As a result, the wind performance in the enclosed area of Site 2B1 is worse in the Proposed Scheme.
- e. The upcoming SW wind travels from southwest to northeast along Prince Edward Road East/ Olympic Avenue. The elongated tower and podium along the northwestern boundary in the Proposed Scheme slightly improve the wind performance at the area to the north of it and CDA (3) due to the channelized effect.
- f. Situated in the downwind area of the Subject Site, CDA (3) experiences a larger wake zone in the Proposed Scheme due to the increased building footprint.
- g. According to the vector plots, the upcoming wind from the Kai Tak River consistently flows towards Site 1M2. In the Baseline Scheme, the stronger wind flow through the building separations in CDA (3) counteracts and decreases the wind performance at Site 1M2. Compared to the Baseline Scheme, slightly better wind performance is observed at Site 1M2 under the Proposed Scheme due to the previously mentioned weaker wind flow in CDA (3) as mentioned in point f.

is directed towards the southwest. This downwash wind reaches both Site 2A3 and Muk Lai Road, resulting in a higher VR observed at Muk Lai Road in the Proposed Scheme.

- b. In both schemes, the high-rise building in Site 2A4 collects high-level wind and diverts it towards Site 2A3 and the Subject Site. However, in the Proposed Scheme, the stronger downwash wind counters this flow in the northern portion of Site 2A3. As a result, decreased VR is observed in the northern portion of Site 2A3, while higher VR is noted in the southern portion.
- c. According to the vector plot, the upcoming wind flow between Sites 2A4 and 2A5 is diverted northeast along Open Space (1). Meanwhile, high-level wind collected by the northern block of Kai Yan Court is directed towards Site 2A3 due to the downwash effect. In the Proposed Scheme, the stronger wind flow along Muk Lai Street interacts with these flows in Open Space (1), reducing the wind performance in that area. For the Open Space (2), the stronger wind flow along Muk Lai Street is likely benefit the surrounding area, i.e. a better wind performance is observed in this area.
- d. In the Baseline Scheme, the upcoming wind skims over the podium of Site 2B1 underneath the two towers, reaching the enclosed area. However, due to the strong flow along Muk Lai Road, less wind passes through the building separation between the two blocks in Site 2B1. As a result, the wind performance in the enclosed area of Site 2B1 is worse in the Proposed Scheme.
- e. In the Baseline Scheme, the southern block of Kai Yan Court captures highlevel wind and directs it both northwest and southeast along the MTR buffer zone. In the Proposed Scheme, the stronger flow along Muk Lai Street may disrupt and reduce this downwash flow. However, this wind still continues to flow into the area between the southern block and the retail block in Site 2B1. As such, slightly lower VR is observed at MTR buffer zone section near Kai Yan Court but highly VR near Site 2B1.
- f. Situated in the downwind area of the Subject Site, the northern portion of Lung Tsun Bridge Corridor, CDA (3) and Site 1M2 experience a larger wake zone in the Proposed Scheme due to the increased building footprint.

5. CONCLUSION

- 5.1.1 The proposed development, which is located in Kai Tak development area, have been evaluated from an air ventilation perspective.
- 5.1.2 According to section 4.2 above, it is noted that the SVR is better in the Proposed Scheme in summer condition. On the other hand, for the LVR, the Proposed Scheme demonstrates slightly better performance to the Baseline Scheme under both annual and summer wind conditions. The increased SVR in the Proposed Scheme under summer condition can be attributed to the presence of the enlarged podium along southwest boundary and the additional block along the northwestern boundary which are likely to divert more wind along the site boundary.
- 5.1.3 There are some variations between the Baseline Scheme and Proposed Scheme. The VR is higher under the Proposed Scheme at Olympic Avenue (annual condition), Open Space (3) (summer condition), Lung Tsun Stone Bridge (summer condition), Open Space (2) (annual and summer condition), Pedestrian Walkway between Kai Tak 2B1 and Kai Yan Court (summer condition), Muk Lai Street (summer condition), Carpenter Road and Shek Ku Lung Road (annual condition), Sa Po Road (summer condition) and Shek Ku Lung Road Playground (summer condition).
- 5.1.4 On the other hand, the VR is higher under the Baseline Scheme at CDA (3) (summer condition), Kai Tak 2B1 (summer condition), Kai Yan Court (annual condition), Kai Tak 2B3 (annual and summer conditions), MTR Buffer Zone (summer condition), Muk Shun Street (annual and summer conditions), Site 2A3 (annual and summer conditions), Prince Edward Road East (annual condition), Proposed Open Space under URA Project KC-015 and KC-017 (annual condition) and Kai Tak Road (annual condition).
- 5.1.5 Based on the design features and the assessment result, since the LVR is comparable in both annual and summer condition, it is concluded that the proposed building design would not induce significant adverse impact to the nearby environment.

Figures

Appendix 1

Master Layout Plan for Baseline Scheme

Appendix 6

Supplementary Document for Future/ Committed Developments

2c. Public Housing Development Sites 2B5

Top View

Top view_zoom in

North view

East View

South view

West View

2c. Public Housing Development Sites 2B6 (Kai Yuet Court)

圖例 NOTATION

N.

地帶 ZC	ONES				
С	商業	Commercial	G/IC	政府、機構或社區	Government, Institution or Community
CDA	綜合發展區	Comprehensive Development Area	0	休憩用地	Open Space
R(A)	住宅(甲類)	Residential (Group A)	OU	其他指定用途	Other Specified Uses
R(B)	住宅(乙類)	Residential (Group B)	OU(A)	其他指定用途 (美化市容地帶)	Other Specified Uses (Amenity Area)
交通 C0	OMMUNICATIONS				
- 一頭貼 Station	鐵路及車站(地下)	Railway and Station (Underground)		高架道路	Elevated Road
重站 Station	鐵路及車站(高架)	Railway and Station (Elevated)		行人專用區或街道	Pedestrian Precinct/Street
	主要道路及路口	Major Road and Junction			
其他 M	ISCELLANEOUS				
	規劃範圍界線	Boundary of Planning Scheme	[_NBA_]	非建築用地	Non-Building Area
	建築物高度 管制區界線	Building Height Control Zone Boundary	******	指定為「海濱長廊」 的地區	Area Designated for 'Waterfront Promenade'
PFS	加油站	Petrol Filling Station		只限於指定為「商店 及服務行業」和「食肆」 用途的地區	Area Designated for 'Shop and Services' and 'Eating Place' uses only
<u>_15</u>	最高建築物高度 (在主水平基準上若干米)	Maximum Building Height (in metres above Principal Datum)			

摘錄自2022年10月28日刊憲之啟德分區計劃大綱核准圖,圖則編號為S/K22/8。

Adopted from part of the approved Kai Tak Outline Zoning Plan No. S/K22/8 gazetted on 28 October 2022.

註:

- 1. 賣方建議買方到該發展項目作實地考察,以對該發展項目、其周邊地區環境及附近的公共設施有較佳的了解。
- 由於該發展項目的邊界不規則的技術原因,此圖所顯示的範圍可能超過《一手住宅物業銷售條例》所要求顯示的 範圍。
- 3. 政府可根據《城市規劃條例》,隨時更改分區計劃大綱圖。
- 4. 在售樓説明書印製日期適用的最新版本的分區計劃大綱圖可於房委會客務中心開放時間內免費查閱。

Notes:

- 1. The Vendor advises purchasers to conduct on-site visit for a better understanding of the Development, its surrounding environment and the public facilities nearby.
- 2. The plan may show more than the area required under the Residential Properties (First-hand Sales) Ordinance due to the technical reason that the boundary of the Development is irregular.
- 3. The Government may revise the Outline Zoning Plan in accordance with the Town Planning Ordinance as and when necessary.
- 4. The latest version of Outline Zoning Plan as at the date of printing of the sales brochure is available for free inspection during opening hours at the HA Customer Service Centre.

15

發展項目的布局圖 Layout Plan of the Development

PEDESTRIAN STREET

20 啟悅苑 KAI YUET COURT
發展項目的住宅物業的樓面平面圖 Floor Plans of Residential Properties in the Development

A座1樓平面圖 Block A 1/F Floor Plan

24 啟悅苑 KAI YUET COURT

發展項目中的建築物的橫截面圖 Cross-section Plan of Building in the Development

	日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	B座 Block B 天台 Roof 31/#住宅單位 31/# Residential Flats 30/# 在空間位 30/# Residential Flats		A@ MOK A BLOCK A BLOCK A TOL \$8888 PEDESTRI	世代 高学校
	29樓住宅單位 29/F Residential Flats	29棲住宅單位 29/F Residential Flats		KEY PLAN	
	20後日七半回 20/F Residential Flats	20復日七年回 20/F Residential Flats 27/提供空留价 27/E Residential Flats			
	2/76 使中学单位 20/F Residential Flats	2/geterate 2// Residential Flats	*		
	25樓住宅單位 25/F Residential Flats	25樓住宅單位 25/F Residential Flats		N和街及行入專用街 但 10 任 興 建 中。	
	24樓住宅單位 24/F Residential Flats	24 樓住宅單位 24/F Residential Flats	* This s	ection of Muk Wo Street and Pedes	trian Streets are
	23樓住宅單位 23/F Residential Flats	23樓住宅單位 23/F Residential Flats	still u	nder construction.	
	22樓住宅單位 22/F Residential Flats	22樓住宅單位 22/F Residential Flats			
	21樓住宅單位 21/F Residential Flats	21樓住宅單位 21/F Residential Flats			
	20樓住宅單位 20/F Residential Flats	20樓住宅單位 20/F Residential Flats			
	19樓住宅單位 19/F Residential Flats	19櫻住宅單位 19/F Residential Flats			
	18棲住宅單位 18/F Residential Flats	18 櫻住宅單位 18/F Residential Flats	圖例 №	NOTATION	
	17樓住宅單位 17/F Residential Flats	17樓住宅單位 17/F Residential Flats			
	16棲住宅單位 16/F Residential Flats	16 復住宅單位 16/F Residential Flats			Boundary Line of the
	15樓住宅單位 15/F Residential Flats	15 櫻住宅單位 15/F Residential Flats			Development
	14樓住宅單位 14/F Residential Flats	14樱住宅單位 14/F Residential Flats			Bereiepinent
	13樓住宅單位 13/F Residential Flats	13樓住宅單位 13/F Residential Flats		7	Height (in metres) above the
	12樓住宅單位 12/F Residential Flats	12樓住宅單位 12/F Residential Flats	V	自龙工小 坐牛工间及(小)	Hong Kong Principal Datum
	11樓住宅單位 11/F Residential Flats	11樓住宅單位 11/F Residential Flats			
	10復住宅單位 10/F Residential Flats	10 復住宅單位 10/F Residential Flats			
	9樓住宅單位 9/F Residential Flats	9樓住宅單位 9/F Residential Flats		 計 神 建 筑 物 (Δ ∝) 	的一段沐和街*为香港主水平
	8 慢性毛単位 8/F Residential Flats	8樓住宅単位 8/F Residential Flats		1. 帧定注米彻(7注)	1) 投标相因 杨日尼王八十
	/履住宅単位 //F Residential Flats	/ 復任宅単位 //F Residential Flats		基準以上7.00米。	
	6欄住宅単位 6/F Residential Flats	blg性モ単位 b/F Residential Flats		The part of Mule M	o Otroat [*] adia cont to the building
1	5個日本単位 5/F Residential Flats	5便士七半山 5/F Residential Flats	I	The part of work w	o Street adjacent to the building
1	4復日七半世 4/1 Residential Flats	4復世七単位 サイド Residential Flats		(Block A) is 7.00	metres above the Hong Kong
最低住宅樓層水平 Level of the Lowest	フィークロー フ/E Residential Flats	フ線仕空留位 2/E Residential Flats	最低住宅樓 Level of the	^{層水平} Lowest Dringing Dotume	
Residential Floor +14.50	2後日七半日 2/1 Nesidential Flats	2後日の単位 2/1 Residential Flats	Residential	Floor Principal Datum.	
7.50米(m) +7.00 +7.00 Planter			マークレークレークレーク 零進大樓 RETAIL BLOCK 8.98米 +5.52	2. 毗連建築物(B座) (m) 2. 毗連建築物(B座))的一段啟德車站廣場為香港 5.52米。
法和函+ MUK WO STREET*	地應 Basement	停車編 ar Park	設備率結構 KAI TAK SI SQUARE	The part of Kai T the building (Bloc	ak Station Square adjacent to k B) is 5.52 metres above the

Hong Kong Principal Datum.

行人專用街道* PEDESTRIAN STREET*

指示圖 KEY PLAN

* 此段沐和街及行人專用街道仍在興建中。

* This section of Muk Wo Street and Pedestrian Streets are still under construction.

圖例 NOTATION

	發展項目的邊界	Boundary Line of the Development
\bigtriangledown	香港主水平基準上高度(米)	Height (in metres) above the Hong Kong Principal Datum

 毗連建築物(A座)的一段行人專用街道*(東北面)為香港主水平 基準以上7.41米。

The part of Pedestrian Street^{*} (North East Side) adjacent to the building (Block A) is 7.41 metres above the Hong Kong Principal Datum.

2. 毗連建築物(A座)的一段行人專用街道*(西南面)為香港主水平 基準以上7.093米。

The part of Pedestrian Street^{*} (South West Side) adjacent to the building (Block A) is 7.093 metres above the Hong Kong Principal Datum.

行人專用街道*(西南面)

1) 八導用创題"(四角面) PEDESTRIAN STREET* (South West Side)

_

7.09米(m

PEDESTRIAN STREET

地庫 Basement

* 此段沐和街及行人專用街道仍在興建中。

* This section of Muk Wo Street and Pedestrian Streets are still under construction

	發展項目的邊界	Boundary Line of the Development
\bigtriangledown	香港主水平基準上高度(米)	Height (in metres) above the Hong Kong Principal Datum

1. 毗連建築物(B座)的一段行人專用街道*(東北面)為香港主水平 基準以上7.41米。

The part of Pedestrian Street* (North East Side) adjacent to the building (Block B) is 7.41 metres above the Hong Kong

2. 毗連建築物(B座)的一段行人專用街道*(西南面)為香港主水平 基準以上6.431米。

The part of Pedestrian Street* (South West Side) adjacent to the building (Block B) is 6.431 metres above the Hong Kong Principal Datum.

0 10 20 30 40 50m

	Agreement No. CE 35/2006 (CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works - Investigation, Design and Construction	Title	Proposed Bui North Apro	lding n Area	Heights o ı - Propos
••		Scale	1:1,000 @ A3	Date	November 2

Site 2A1

of Subjected Sites at Former osed Scheme (Sheet 2 of 2)

2021

Figure No.

5.8c

Appendix 4

Replacement Pages of Visual Impact Assessment

LIST OF FIGURES

Figures 1	Land Uses in Vicinity of the Application Site					
Figures 2a and 2b	Locations of VPs					
Figure 3	Photomontage of VP1: Planned Kai Tak Sports Park (Shing					
	Kai Road) - under Construction					
Figure <mark>4</mark>	Photomontage of VP2: Nga Tsin Wai Road					
Figure <mark>5</mark>	Photomontage of VP3: Shek Ku Lung Road Playground					
Figure 6	Photomontage of VP4: Prince Edward Road East					
-	Footbridge (Near Kai Tak Community Hall)					
Figure 7	Photomontage of VP5: Open Space at Lung Tsun Stone					
-	Bridge Preservation Corridor (Close-up Viewpoint) - under					
	Construction					
Figure 8	Photomontage of VP6: Quarry Bay Park (Distant					
-	Viewpoint)					
Figure 9a	Notional Scheme (Extracted from Figure 5.6b of					
-	Attachment V of MPC Paper No. 9/21)					
Figure 9b	Notional Scheme (Extracted from Figure 5.8c of					
-	Attachment V of MPC Paper No. 9/21)					

2.2. Identification and Classification of Viewpoints

2.2.1. With reference to para. 4.5 of TPB PG No. 41, the visual assessment is based on public views and local vantage points that are easily accessible and popular to the public, e.g. key pedestrian nodes, public areas for outdoor facilities, recreation, rest, leisure, walking and prominent travel routes. In this regard, 6 public VPs are identified in the vicinity of the Application Site and their locations are shown in **Figures 2a** and **2b**.

VP1 – Planned Kai Tak Sports Park (Shing Kai Road) - under Construction

- 2.2.2. VP1 is about 600m from the proposed development and is about 140m from the junction of Shing Kai Road and Sung Wong Toi Road, and the viewing angle passes through the Sports Park. It is located at the southwest of the planned Kai Tak Sports Park, which is planned to be a hub for sports and leisure activities and currently under construction. Targeted to be completed by the end of 2024 for an opening in 2025, the planned Kai Tak Sports Park will be the anchor complemented by a comprehensive network of open spaces.
- 2.2.3. As Kai Tak Sports Park is still under construction with restricted access, the VP taken at Shing Kai Road is to represent the view of the future VSRs including users and visitors at the park.
- 2.2.4. The users of the public sports ground will be engaging in active recreational activities and the duration over which the proposed development would remain visible to them is short, the visual sensitivity of VSRs will be **low** to **medium**. The other VSRs will mainly be audience and visitors walking around the Sports Park and their visual sensitivity will be **medium** to **high**.

<u> VP2 – Nga Tsin Wai Road</u>

2.2.5. VP2 was taken at Nga Tsin Wai Road in Kowloon City, about 180m to the west of the proposed development across Prince Edward Road East. This VP is next to existing bus stops at Prince Edward Road East and the Tak Ku Ling Road Rest Garden. It falls within the area of Urban Renewal Authority's "Nga Tsin Wai Road / Carpenter Road Development Scheme", which will be provided with retail facilities to support the gateway square connecting to the Kai Tak Development Area (KTDA). VP2 could represent the view of VSR who travels to/from the bus stops at Prince Edward Road East and Tak Ku Ling Road Rest Garden, and future VSRs including pedestrian travelling to/from the proposed commercial facilities in this area. Their visual sensitivity of VP2 is considered to be **medium**.

Kai Tak Station, the Kai Tak Sports Park, LTSBPC and the residential/ commercial developments nearby.

- 2.2.11. The proposed development and the retail belt are linked with the Station Square axis and is adjacent to LTSBPC, it is one of the nearest buildings that the visitors will see from the Station Square and LTSBPC. The VP was chosen to capture the lower level of the proposed development with the focus on the retail belt design and its interphase with LTSBPC.
- 2.2.12. The potential VSRs of this VP would be the future visitors to the retail belt, LTSBPC, Kai Tak Sports Park, and the underground MTR station and Shopping Street.
- 2.2.13. As this represents a close-up viewpoint with significant view of development, the sensitivity of VP5 is considered to be **high**.

VP6 – Quarry Bay Park (Distant Viewpoint)

- 2.2.14. VP6 is a distant viewpoint of more than 5km from the Application Site. Victoria Harbour and the ridgeline are key visual assets of Hong Kong and its view shall be properly preserved according to Chapter 11 of Hong Kong Planning Standards and Guidelines. Among the recommended strategic vantage points, the Quarry Bay Park has an exposed view to To Kwa wan and Ma Tau Kok waterfront and is therefore considered to have highest relevancy to the development at the Application Site.
- 2.2.15. Due to far distance from the Application Site, the visual sensitivity of VP6 is judged to be **low**.

2.3. Assessment of Visual Impacts

2.3.1. As the area is planned for Kai Tak Development, the assessment evaluates the potential visual impact of the **Proposed Scheme** as compared with the **Notional Scheme**. The Notional Scheme of the subject site is prepared based on Figure 5.6 of Attachment V of MPC Paper No. 9/21 (i.e. 'Agreement No. CE 35/2006 (CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works – Investigation, Design and Construction Further Review of Land Use in Kai Tak Development') (Figures 9a and 9b). Other existing, planned/committed developments in the surroundings, including proposed developments in approved s.16 application no. A/K22/16, A/K22/30 and A/K22/35 have been considered and reflected in the photomontages. The Proposed Scheme has incorporated a proposed minor

relaxation of building height restriction from +125mPD to +129.035mPD. The viewpoint locations of representative VSRs are shown in **Figures 2a** and **2b**. Their impacts are assessed and summarized below:

<u>VP1 – Planned Kai Tak Sports Park (Shing Kai Road) - under Construction</u> (Figure 3)

2.3.2. VP1 is about 600m from the proposed development and is from about 140m from the junction of Shing Kai Road and Sung Wong Toi Road. The visual composition of this VP currently has views to the partially completed public sports ground of the Kai Tak Sports Park, existing residential developments along Prince Edward Road East and the various sites which are undergoing construction works. Upon completion of the planned Kai Tak Sports Park and as seen from the photomontages, there is no significant difference between the Notional Scheme and the Proposed Scheme, which has incorporated a minor relaxation of BHR from +125mPD to +129.035mPD. The proposed development in both schemes is not visible due to screening by Sports Park development and other planned buildings and do not obstruct the open sky view in both schemes. In the light of this, there is no visual impact associated with the proposed development. VP1 is identified to experience no visual change at operation phase.

VP2 – Nga Tsin Wai Road (Figure 4)

- 2.3.3. VP2 was taken at Nga Tsin Wai Road in Kowloon City, about 180m to the west of the proposed development across Prince Edward Road East. The visual composition of this VP currently has views to the bus stations and flyover at Prince Edward Road East in the foreground, and existing residential developments and the various sites which are undergoing construction works in Kai Tak at the back. Upon completion of the planned residential/commercial developments and GIC facilities along Prince Edward Road East, there is no significant difference between the Notional Scheme and the Proposed Scheme, which has incorporated a minor relaxation of BHR from +125mPD to +129.035mPD. A portion of the open sky view would be obstructed by the proposed development in both schemes, with a slight to moderate increase in obstruction in the proposed scheme as compared to the notional scheme. The proposed development is considered visually compatible with the other high-rise development under both Notional and Proposed Schemes.
- 2.3.4. The proposed development will stand amongst the planned high-rise developments and visual change of VP2 is judged to be **slight to moderate** at operation phase. The impact significance is considered as **slightly to moderately adverse**.

VP3 – Shek Ku Lung Road Playground (Figure 5)

- 2.3.5. The existing VP has views to flyover in the foreground and the existing highrise development and the developments that are under construction at the Kai Tak Development Area in the background. As seen from the photomontages for both the Notional and Proposed Schemes, the open view from the soccer pitch in Shek Ku Lung Road Playground, approximately 185m away from the proposed development, the proposed development is considered visually compatible with the other high-rise developments (i.e. "CDA(3)" and "CDA(5)" at +100mPD and +135mPD on the OZP respectively) and might slightly dominate the view and setting for both Notional Scheme and Proposed Scheme, which has incorporated a minor relaxation of BHR from +125mPD to +129.035mPD. A portion of the open sky view would be obstructed by the proposed development in both schemes, with a slight to moderate increase in obstruction in the proposed scheme as compared to the notional scheme. The Notional Scheme from CEDD and the Proposed Scheme are comparable in terms of visual change.
- 2.3.6. The proposed development will stand amongst the planned high-rise developments and visual change of VP3 is judged to be **slight to moderate** at operation phase. The impact significance is considered as **slightly to moderately adverse**.

<u>VP4 – Prince Edward Road East Footbridge (Near Kai Tak Community Hall)</u> (Figure 6)

- 2.3.7. VP4 is taken at about 430m to the east of the Application Site at the Prince Edward Road East Footbridge near Kai Tak Community Hall. The existing VP has views to Kowloon City No. 1 Sewage Pumping Station and flyovers in the foreground, existing schools and residential developments, with the various sites which are undergoing construction works in Kai Tak at the back. Upon the completion of "CDA(3)" in the foreground, the proposed development would be largely screened under both Notional Scheme and Proposed Scheme, which has incorporated a minor relaxation of BHR from +125mPD to +129.035mPD. A small portion of the open sky view would be obstructed by proposed development in both schemes and the portion of obstruction is similar in both schemes. There is insignificant change to the overall visual composition under both schemes. The visual impact under both schemes is similar.
- 2.3.8. Considering VP4 is at a considerable distance from the proposed development and that the proposed development will stand amongst the

planned high-rise, visual change of VP4 is judged to be minimal at operation phase. The impact significance is considered as **negligible**.

<u>VP5 – Open Space at Lung Tsun Stone Bridge Preservation Corridor (Close-up</u> <u>Viewpoint) - under Construction (</u>Figure 7)

- 2.3.9. VP5 represents a close-up viewpoint which was taken at the eastern edge of "O(3)" adjoining the Station Square. The retail belt design has strictly followed the requirements in the Planning Brief to provide a continuous low-rise building as a design response to the LTSBPC.
- 2.3.10. The Proposed Scheme tallies with the recommendations of the Notional Scheme by CEDD, the site Kai Tak Area 2A Site 2 (zoned as "CDA(4)") and the planning intention is to ensure their disposition and design would be in harmony with LTSBPC. The retail belt for the "CDA" site in CEDD's scenario is also similar with the Proposed Scheme.
- 2.3.11. The VSRs from this viewpoint is identified to experience slight visual change as a result of the proposed development and mitigation measures (**paragraph 3.1.2** below refers). A portion of the open sky view would be obstructed by the proposed development in the notional scheme and proposed scheme, which has incorporated a minor relaxation of BHR from +125mPD to +129.035mPD, with a slight increase in obstruction in the Proposed Scheme as compared to the Notional Scheme. In addition, the residential development at vicinity including "CDA(5)", and "R(A)6" are planned to be high-rise development, which would help set the urban high rise development context. The impact significance is considered as **slightly adverse**.

VP6 – Quarry Bay Park (Distant Viewpoint) (Figure 8)

2.3.12. The proposed development is considered compatible with the surrounding developments in terms of scale and character. The proposed development will blend-in with the surrounding townscape harmoniously in both Notional Scheme from CEDD and Proposed Scheme. The proposed development is will not be visible due to screening by the completed and planned developments in the foreground in both schemes. The ridgelines at Lion Rock and the open sky view will not be blocked and still provides panoramic views and natural backdrop to the city. Given the far distance, the VSRs is identified to experience no visual change at operation phase, and the visual impact is considered **negligible**.

Table below provides a summary of the assessment of the six VPs and the appraisal of visual changes for the Proposed Scheme and Notional Scheme:

VP	Description	Sensitivity (Low, Medium, High)	Visual Composition	Visual Obstruction	Magnitude of Visual Change on Public Viewers	Effect on Visual Resource	Compatibility of the Proposed Development with the Surrounding Landscape	Visual Impact due to Proposed Scheme	Duration of Impact Under Operation Phases
1	Planned Kai Tak Sports Park (Shing Kai Road) - under Construction	Users of the public sports ground - low to medium. Audience and visitors walking around Kai Tak Sports Park - medium to high.	Upon completion of Kai Tak Sports Park, the proposed building mass will not be visible beyond planned structures for both Notional and Proposed Schemes. The open sky view will not be impacted by the proposed development in both schemes.	Minimal visual obstruction and visual openness remains largely intact. The open sky view will not be impacted by the proposed development in both schemes	Negligible	Minimum visual degradation of existing visual resources. The open sky view will not be impacted by the proposed development in both schemes	Fair	Negligible	Permanent
2	Nga Tsin Wai Road	Medium	Upon completion of the planned residential/ commercial developments and GIC facilities along Prince Edward Road East, the proposed development is considered visually compatible with the other high-rise development. A portion of the open sky view would be obstructed by the proposed development in both schemes, with a slight to moderate increase in obstruction in the proposed scheme as compared to the notional scheme.	Partial blockage of views which reduce visual permeability. A portion of the open sky view would be obstructed by the proposed development in both schemes, with a slight to moderate increase in obstruction in the proposed scheme as compared to the notional scheme.	Slight to Moderate	Slight visual degradation of existing visual resources. A portion of the open sky view would be obstructed by the proposed development in both schemes, with a slight to moderate increase in obstruction in the proposed scheme as compared to the notional scheme.	Fair	Slightly to Moderately Adverse	Permanent
3	Shek Ku Lung Road Playground	Medium to High	Upon completion of the planned development at "CDA(3)" and "CDA(5)" sites, the proposed development is considered visually compatible with the other high-rise development and might slightly dominate the view and setting for both Notional and Proposed Schemes. A portion of the open sky view would be obstructed by the proposed development in both schemes, with a slight to moderate increase in obstruction in the proposed scheme as compared to the notional scheme.	Partial blockage of views which reduce visual permeability. A portion of the open sky view would be obstructed by the proposed development in both schemes, with a slight to moderate increase in obstruction in the proposed scheme as compared to the notional scheme.	<mark>slight to</mark> Moderate	Moderate visual degradation of existing visual resources. A portion of the open sky view would be obstructed by the proposed development in both schemes, with a slight to moderate increase in obstruction in the proposed scheme as compared to the notional scheme.	Fair	Slightly to Moderately Adverse	Permanent
4	Prince Edward Road East Footbridge (Near	Low to Medium	Upon completion of the "CDA(3)" in the foreground, the proposed development would be largely screened under both Proposed and	Partial blockage of views which reduce visual permeability. A small portion of the open sky	Slight	Minimal visual degradation of existing visual resources. A small portion of the open sky view would be	Fair	Negligible	Permanent

4. CONCLUSION

- 4.1. This VIA is prepared in support of a s.16 Planning Application for a proposed comprehensive development including flat, shop & services and eating place with minor relaxation of BHR in "Comprehensive Development Area (4)" zone for Capital Asian Limited at Kai Tak Area 2A Site 2. From a total of 6 VPs that are assessed, the proposed development is only obviously noticeable from 3 viewpoints (i.e. Nga Tsin Wai Road, Shek Ku Lung Road Playground and the close-up viewpoint at the Open Space at LTSBPC). From the other viewpoints, the proposed development will be screened mostly by other future developments around the KTDA. The visual impact of the minor relaxation of BHR from +125mPD to +129.035mDP has been taken into account in the assessment. In gist, the overall visual impact arising from the proposed development will be from "negligible" to "slightly to moderately adverse".
- 4.2. Assuming that full and appropriate implementation of mitigation measures are carried out during operation phase, the visual impacts are perceived to be **acceptable** with mitigation measures.

- End -

Appendix 5 Supplementary Information of Setback Diagram, and Minor updates in Master Layout Plan, 2/F Plan and G/F Plan

Appendix 6 Supplementary Elaboration on MiC

Supplementary Information on MiC

The Proposed Scheme contains a minor relaxation of the BHR from 125mPD to +129.035mPD, i.e. about 4.035m, solely for the purpose of adopting MiC into its residential tower portion (proposed MiC is not adopted in other areas including the three-storey podium with clubhouse, covered landscape area, residential lobbies, E&M, and shops and services and eating place in the proposed development). The adoption of MiC involves thickened double slabs between MiC modules, resulting in an increase in storey height of MiC floor and hence in the overall BH of the building. In the proposed development, the height of residential tower increases from 100.950m to 104.985m (less than 4% increase) due to the increase in thickness of 32 no. of individual slab from about 15cm to about 28 cm under MiC (as compared to the conventional building method without MiC) (i.e. about 12.609cm increase per slab x 32 slabs = about 4.035m total increase in BH), resulting in the total increase in building height of the proposed development from +125mPD to +129.035mPD.

Remark: Illustration above is indicative and subject to change at detailed design stage.

Appendix 7

Minor revision in Landscape Master Plan (updated only to reflect the omission of the footbridge on retail belt roof in plans and key plans in sections)

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place in "Comprehensive Development Area (4)" zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission) Circulation Demarcation Plan - G/F (+6.50mPD)

Dwg. No. : 2023208-CDP-03b Date : AUG 2024 (A3-size)

Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission) Circulation Demarcation Plan - 1/F (+11.50mPD) & 2/F (+15.00mPD & +16.50mPD) Dwg. No. : 2023208-CDP-04b Date : AUG 2024 (A3-size)

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place in "Comprehensive Development Area (4)" zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission) Greenery Demarcation Plan - G/F (+6.50mPD)

Dwg. No. : 2023208-GDP-01b Date : AUG 2024 (A3-size)

Note:

1. As required by the Planning Brief, a minimum site coverage of greenery of 30% of the site area of the "CDA(4)" zone, including a minimum greening at the pedestrian zone (i.e. the 15m vertical zone from the ground level) of 20% of the site area and a minimum roof greening of 20% of the total roof area shall be provided.

2. The Public Open Space (POS) shall have a minimum site coverage of greenery of 30%.

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place in "Comprehensive Development Area (4)" zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission) Greenery Demarcation Plan - 1/F (+11.50mPD) & 2/F (+15.00mPD & +16.50mPD) Dwg. No. : 2023208-GDP-02b Date : AUG 2024 (A3-size)

Note:

1. As required by the Planning Brief, a minimum site coverage of greenery of 30% of the site area of the "CDA(4)" zone, including a minimum greening at the pedestrian zone (i.e. the 15m vertical zone from the ground level) of 20% of the site area and a minimum roof greening of 20% of the total roof area shall be provided.

2. The Public Open Space (POS) shall have a minimum site coverage of greenery of 30%.

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place in "Comprehensive Development Area (4)" zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission)

Greenery Demarcation Plan - 2/F Roof (+21.50mPD) Dwg. No. : 2023208-GDP-03b Date : AUG 2024 (A3-size)

Note:

1. As required by the Planning Brief, a minimum site coverage of greenery of 30% of the site area of the "CDA(4)" zone, including a minimum greening at the pedestrian zone (i.e. the 15m vertical zone from the ground level) of 20% of the site area and a minimum roof greening of 20% of the total roof area shall be provided.

2. The Public Open Space (POS) shall have a minimum site coverage of greenery of 30%.

SCALE . 1:500 (A3)

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place in "Comprehensive Development Area (4)" zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission)

Landscape Master Plan - Composite Plan Dwg. No. : 2023208-LMP-01b Date : AUG 2024 (A3-size)

LANDSCAPE COMPONENTS:

- 1 Arrival Plaza
- 2 Ornamental Garden
- 3 Seating Garden
- 4 Outdoor Lounge Area
- 5 Terraced Landscape
- 6 Viewing Terrace
- 7 Public Pedestrian Passageway

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place in "Comprehensive Development Area (4)" zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission) Landscape Master Plan - G/F (+6.50mPD) Dwg. No.: 2023208-LMP-02b Date : AUG 2024 (A3-size)

LANDSCAPE COMPONENTS:

- 1 Arrival Plaza
- 2 Ornamental Garden
- 3 Seating Garden
- 4 Public Pedestrian Passageway

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place in "Comprehensive Development Area (4)" zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission) Landscape Master Plan - 1/F (+11.50mPD) & 2/F (+15.00mPD & +16.50mPD) Dwg. No. : 2023208-LMP-03b Date : AUG 2024 (A3-size)

+6.5mPD

APPLICATION SITE BOUNDARY
PUBLIC OPEN SPACE BOUNDARY (not included in Application Site)
PROPOSED NEW TREES (10 nos. within Application Site)
PROPOSED SHRUB PLANTING
PROPOSED PAVING
PROPOSED CHILDREN PLAY AREA
PROPOSED SEATING/BENCHES
PROPOSED LEVELS
PEDESTRIAN ACCESS

LANDSCAPE COMPONENTS:

- 1 Covered Landscape
- 2 Children Play Area
- 3 Outdoor Lounge Area
- 4 Terraced Landscape
- 5 Viewing Terrace
- 6 Seating Area

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place in "Comprehensive Development Area (4 Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission) Open Space Demarcation Plan - G/F (+6.50mPD), 1/F (+11.50mPD) & 2/F (+15.00mPD & +16.50mPD) Dwg. No. : 2023208-ODP-01b

LEGEND:		
	(Not less than 2,232 sqm)	
	PUBLIC OPEN SPACE (Not less than 1,100 sqm)	
(ITSBPC)		
	0m 2m 5m 10m 20m SCALE . 1:500 (A3)	
)" zone,		

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place in "Comprehensive Development Area (4)" zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission)

Landscape Section Dwg. No. : 2023208-SEC-01b Date : AUG 2024 (A3-size)

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place in "Comprehensive Development Area (4)" zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission)

Landscape Section Dwg. No. : 2023208-SEC-02b Date : AUG 2024 (A3-size)

20m

Proposed Comprehensive Development including Flat, Shop & Services and Eating Place in "Comprehensive Development Area (4)" zone, Kai Tak Area 2A Site 2, Kai Tak Development Area, Kowloon (Master Layout Plan Submission)

Landscape Section - Blow Up Section across Retail Belt Dwg. No. : 2023208-SEC-03b Date : AUG 2024 (A3-size)

BLOW UP SECTION ACROSS RETAIL BELT

4m

