

Traffic Impact Assessment (TIA)

Traffic Impact Assessment

Final Report January 2025

Prepared by: CKM Asia Limited

Prepared for: International Trademart Company Limited

CONTENTS

<u>CH/</u>	<u>CHAPTER</u>			
1.	INTRODUCTION Background Scope of the TIA Contents of the Report	1		
2.	THE EXISTING SITUATION Site and Road Network Traffic and Pedestrian Surveys Manual Classified Counts Existing Junction and Link Operational Performance Level-of-Service of Pedestrian Facilities Traffic Generation of KITEC Public Transport Services and Surveys Shuttle Bus Service	3		
3.	THE PROPOSED REDEVELOPMENT Comparison of Development Parameters Provision of Internal Transport Facilities Parking Demand for "Exhibition or Convention Hall" Parking Demand for "Place of Entertainment" Adequacy of Car Parking Provision Internal Transport Layout Improvement to Pedestrian Connectivity and Accessibility Planned Cautionary Crossing at Trademart Drive Provision of Feeder Service Swept Path Analysis	10		
4.	TRAFFIC IMPACT Design Year Traffic and Pedestrian Growth Traffic Forecast Comparison of Traffic Generation Planned Developments 2029 and 2032 Junction and Link Capacity Analysis Pedestrian Generation 2029 and 2032 Level-of-Service Assessment Modal Split of Transport Demand Impact to Public Transport Services Enhancement of Feeder Services to / from MTR Stations	22		

CONTENTS(CONT'D)

5.	SUMMARY		36
	FIGURES		
	APPENDIX A	_	JUNCTION CAPACITY ANALYSIS
	APPENDIX B	_	COMMENT FROM SWD ON TPB NO. A/K22/37
	APPENDIX C	_	PLANNED CAUTIONARY CROSSING AT TRADEMART
			DRIVE (EXTRACT OF EMAIL FROM EKEO)
	APPENDIX D	_	SWEPT PATH ANALYSIS
	APPENDIX E	_	EXTRACTS OF DR 439 AND BDTM STUDY FINAL REPORT
	APPENDIX F	_	DEVELOPMENT PARAMETERS OF KTD (EXTRACT FROM
			TPB PAPER NO. 10236 & 10860 AND MPC PAPER NO. 9/21

TABLES

NUMBER

2.1	Vehicle	classifications	of	traffic	surve	ys
-----	---------	-----------------	----	---------	-------	----

- 2.2 Existing junction operational performance
- 2.3 Existing link capacity assessment
- 2.4 Description of pedestrian walkway LOS
- 2.5 Existing level-of-service assessment
- 2.6 Traffic generation of KITEC
- 2.7 Public transport services operating close to the subject site
- 2.8 Public transport occupancy survey results
- 3.1 Comparison of development parameters
- 3.2 Details of residential flats
- 3.3 Provision of internal transport facilities for the proposed redevelopment
- 3.4 Details of "exhibition or convention hall" events
- 3.5 Average occupancy of KITEC car park for "exhibition or convention hall"
- 3.6 Details of "place of entertainment" events
- 3.7 Average occupancy of KITEC car park for "place of entertainment"
- 3.8 Summary of parking demand analysis
- 4.1 TPEDM data for Kwun Tong
- 4.2 Trip generation rates for "place of entertainment"
- 4.3 Trip generation rates
- 4.4 Comparison of traffic generation
- 4.5 Details of major planned developments
- 4.6 Design year junction operational performance
- 4.7 Design year link capacity assessment
- 4.8 Details of surveyed developments
- 4.9 Pedestrian generation rate for "place of entertainment"
- 4.10 Pedestrian generation rates
- 4.11 Comparison of pedestrian generation
- 4.12 Design year level-of-service assessment
- 4.13 Modal split of public transport demand for Kwun Tong
- 4.14 Public transport demand of the proposed redevelopment
- 4.15 Analysis for feeder service to / from MTR stations
- 4.16 Indicative enhancement proposal to existing bus services

FIGURES

NUMBER

1.	1	Location	of the	subj	ect site

- 2.1 Surveyed junctions
- 2.2 (J1) Junction of Kai Cheung Road / Trademart Drive
- 2.3 (J2) Junction of Kai Cheung Road / Wang Kwong Road
- 2.4 (J3) Junction of Wang Kwong Road / Lam Hing Street
- 2.5 (J4) Junction of Wang Kwong Road / Wang Chin Street
- 2.6 (J5) Junction of Kai Cheung Road / Wang Chiu Road
- 2.7 (J6) Junction of Wang Chiu Road / Lam Hing Street
- 2.8 (J7) Junction of Wang Chiu Road / Sheung Yuet Road
- 2.9 (J8) Junction of Wang Chiu Road / Lam Fung Street
- 2.10 (J9) Junction of Sheung Yee Road / Wang Chiu Road
- 2.11 (J10) Junction of Shing Kai Road / Kai Shing Street / Muk On Street
- 2.12 (J11) Junction of Wang Chiu Road / Kai Lai Road / Kai Lok Street
- 2.13 (J12) Junction of Wang Kwong Road / Kai Wah Street
- 2.14 Existing peak hour traffic flows
- 2.15 Existing peak 15-minute pedestrian flows
- 2.16 Details of the public transport services in the vicinity of the subject site
- 3.1 Ground floor plan
- 3.2 Basement first floor plan
- 3.3 Basement second floor plan
- 3.4 First floor plan
- 3.5 General layout of the proposed northern and southern footbridges
- 4.1 2029 peak hour traffic flows with KITEC
- 4.2 2029 peak hour traffic flows with approved redevelopment
- 4.3 2029 peak hour traffic flows with proposed redevelopment
- 4.4 2032 peak hour traffic flows with KITEC
- 4.5 2032 peak hour traffic flows with approved redevelopment
- 4.6 2032 peak hour traffic flows with proposed redevelopment
- 4.7 (J2) Planned improvement for junction of Kai Cheung Road / Wang Kwong Road
- 4.8 (I3) Planned improvement for junction of Wang Kwong Road / Lam Hing Street
- 4.9 (J5) Planned improvement for junction of Kai Cheung Road / Wang Chiu Road
- 4.10 (J6) Planned improvement for junction of Wang Chiu Road / Lam Hing Street
- 4.11 (J7) Planned improvement for junction of Wang Chiu Road / Sheung Yuet Road
- 4.12 (J8) Planned improvement for junction of Wang Chiu Road / Lam Fung Street
- 4.13 (J9) Planned improvement for junction of Sheung Yee Road / Wang Chiu Road
- 4.14 2029 peak 15-minute pedestrian flows with KITEC
- 4.15 2029 peak 15-minute pedestrian flows with approved redevelopment

FIGURES (CONT'D)

NUMBER

4.16	2029 peak 15-minute pedestrian flows with proposed redevelopment
4.17	2032 peak 15-minute pedestrian flows with KITEC
4.18	2032 peak 15-minute pedestrian flows with approved redevelopment

4.19 2032 peak 15-minute pedestrian flows with proposed redevelopment

1.0 INTRODUCTION

Background

- 1.1 The subject site is located at New Kowloon Inland Lot No. 6032 at 1 Trademart Drive in Kowloon Bay. The existing building at the subject site known as the Kowloon bay International Trade & Exhibition Centre (KITEC) was closed effective 30th June 2024. The location of the subject site is shown in Figure 1.1.
- 1.2 On 17th March 2023, the Town Planning Board (TPB) approved the s16 planning application (TPB No. A/K22/34) for the redevelopment of KITEC with total commercial GFA of 164,872m² (the "Approved Redevelopment"), which includes 132,437m² for "Office", 21,150m² for "Eating Place" and "Shop and Services", and 11,285m² for "Exhibition or Convention Hall".
- 1.3 The Owner of KITEC (the "Applicant") has the intention to modify the Approved Redevelopment into a residential cum commercial development with total GFA of 164,872m² (the "Proposed Redevelopment"). The Proposed Redevelopment consists of the following uses:
 - i. 1,494 residential flats;
 - ii. 35,600m² GFA "Office";
 - iii. 13,403m² GFA "Eating Place" and "Shop and Services";
 - iv. 20,773m² GFA "Exhibition or Convention Hall";
 - v. 1,800-seat "Place of Entertainment";
 - vi. 720-room "Hotel";
 - vii. 2,090m² "Social Welfare Facility"; and
 - viii. 6-classroom "School (Kindergarten).
- 1.4 The subject site is zoned "Other Specified Uses (OU)" annotated "Trade Mart and Commercial Development" under the Approved Kai Tak Outline Zoning Plan (OZP) No. S/K22/8. "Office", "Eating Place", "Shop and Services", "Exhibition or Convention Hall" and "School" are under "Column 1" uses of the OZP, while "Flat" and "Social Welfare Facility (not elsewhere specified)" are "Column 2" uses.
- 1.5 CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned to conduct a Traffic Impact Assessment (TIA) in support of the Proposed Redevelopment. This report describes the TIA undertaken.

Scope of the TIA

- 1.6 The main objectives of this TIA are as follows:
 - To assess the existing traffic issues in the vicinity of the subject site;
 - To provide adequate internal transport facilities for the Proposed Redevelopment;
 - To quantify the traffic generated by the Proposed Redevelopment; and
 - To examine the traffic impact of the Proposed Redevelopment on the local road network.

Traffic Impact Assessment Final Report

Contents of the Report

1.7 After this introduction, the remaining chapters contain the following:

chapter two - describes the existing situation;

chapter three - presents the Proposed Redevelopment;

chapter four - describes the traffic and pedestrian impact analysis; and

chapter five - presents the overall conclusion.

2.0 THE EXISTING SITUATION

Site and Road Network

- 2.1 The subject site fronts onto Trademart Drive to the east, Kai Fuk Road to the west and Kai Cheung Road to the north. The run-in / out of KITEC is located at Trademart Drive near its southern end.
- 2.2 The section of Trademart Drive and Wang Chin Street fronting KITEC are local roads. Lay-bys, taxi stand and motorcycle parking spaces are provided along these roads.
- 2.3 Kai Cheung Road is a dual carriageway 3-lane District Distributor, which connects with Kwun Tong Road to the east and Kai Fuk Road to the west. This road serves the Kowloon Bay Business Area.
- 2.4 Kai Fuk Road is a dual carriageway 3-lane Urban Trunk Road connecting Kai Tak Tunnel to the west and Kwun Tong Road to the east. It connects the central Kowloon and Kwun Tong. The section of Kai Fuk Road fronting KITEC is at grade and slip roads are provided connecting to / from Kwun Tong Bypass.

Traffic and Pedestrian Surveys

2.5 Traffic and pedestrian counts were conducted from 0700 – 1100 hours and 1600 – 2000 hours on Friday 26th September 2024, which was after the closure of KITEC.

Manual Classified Counts

- 2.6 Manual classified counts were conducted at junctions shown in Figure 2.1 in order to establish the peak hour traffic flows. The surveyed junctions include the following:
 - J1 Kai Cheung Road / Trademart Drive
 - J2 Kai Cheung Road / Wang Kwong Road
 - J3 Wang Kwong Road / Lam Hing Street
 - 14 Wang Kwong Road / Wang Chin Street
 - J5 Kai Cheung Road / Wang Chiu Road
 - J6 Wang Chiu Road / Lam Hing Street
 - J7 Wang Chiu Road / Sheung Yuet Road
 - J8 Wang Chiu Road / Lam Fung Street
 - J9 Sheung Yee Road / Wang Chiu Road
 - 110 Shing Kai Road / Muk On Street / Kai Shing Street
 - J11 Wang Chiu Road / Kai Lai Road / Kai Lok Street
 - J12 Wang Kwong Road / Kai Wah Street
- 2.7 The traffic counts were classified by vehicle type to enable traffic flows in passenger car units (pcu) to be calculated. The vehicle classifications are presented in Table 2.1, and the layout of the surveyed junctions is shown in Figures 2.2 2.13.

TABLE 2.1 VEHICLE CLASSIFICATIONS OF TRAFFIC SURVEYS

Ref.	Vehicle Class	Abbreviation
1	Motorcycle	MC
2	Private Car	PC
3	Taxi	TAXI
4	Light Goods Vehicle	LGV
5	Medium Goods Vehicle	MGV
6	Heavy Goods Vehicle	HGV
7	Public Light Bus	PLB
8	Private Light Bus	PrLB
9	Non-franchised Bus	NFB
10	Single Deck Franchised Bus	FBSD
11	Double Deck Franchised Bus	FBDD

2.8 The AM and the PM peak hour traffic flows were found to occur at 0800 – 0900 and 1700 – 1800 hours respectively, and the peak hour traffic flows are illustrated in Figure 2.14.

Existing Junction and Link Operational Performance

2.9 The existing operational performance of the surveyed junctions was calculated based on the analysis method found in Volumes 2 and 4 of Transport Planning and Design Manual (TPDM). The analysis results are summarised in Table 2.2 and detailed calculations are found in Appendix A.

TABLE 2.2 EXISTING JUNCTION OPERATIONAL PERFORMANCE

Ref.	Junction	Type of Junction	Performance Indicator	AM Peak	PM Peak
J1	Kai Cheung Road / Trademart Drive	Priority	RFC	0.086	0.120
J2	Kai Cheung Road / Wang Kwong Road	Signal	RC	31%	46%
J3	Wang Kwong Road / Lam Hing Street	Signal	RC	90%	>100%
J4	Wang Kwong Road / Wang Chin Street	Priority	RFC	0.147	0.135
J5	Kai Cheung Road / Wang Chiu Road	Signal	RC	49%	49%
J6	Wang Chiu Road / Lam Hing Street	Signal	RC	63%	97%
J <i>7</i>	Wang Chiu Road / Sheung Yuet Road	Signal	RC	40%	58%
J8	Wang Chiu Road / Lam Fung Street	Signal	RC	>100%	>100%
J9	Sheung Yee Road / Wang Chiu Road	Signal	RC	34%	45%
J10	Shing Kai Road / Muk On Street / Kai Shing Street	Signal	RC	69%	84%
J11	Wang Chiu Road / Kai Lai Road / Kai Lok Street	Signal	RC	54%	74%
J12	Wang Kwong Road / Kai Wah Street	Signal	RC	51%	61%

Note: RC – Reserve Capacity

RFC - Ratio-of-Flow to Capacity

- 2.10 The above results indicate that the surveyed junctions currently operate with capacities during the AM and PM peak hours.
- 2.11 The existing link capacity for the local road network is assessed, and the link capacity analysis results are shown in Table 2.3.

TABLE 2.3 EXISTING LINK CAPACITY ASSESSMENT

Road Section (1)	Bound	Capacity (veh/hr)	Traffic Flows (veh/hr)		Volume to Capacity Ratio		
			AM Peak	PM Peak	AM Peak	PM Peak	
Kai Cheung Road	Eastbound	3,348 (2)	1,026	1,005	0.31	0.30	
	Westbound	3,600	1,989	1,938	0.55	0.54	
Wang Kwong Road	2-way	1,600	801	690	0.50	0.43	
Wang Chiu Road	2-way	4,000	1,546	1,277	0.39	0.32	
Sheung Yee Road	Eastbound	2,400	1,260	1,136	0.53	0.47	
	Westbound	3,600	217	236	0.06	0.07	
Trademart Drive	Northbound	1,100	103	109	0.09	0.10	
	Southbound	3,600	105	84	0.03	0.02	
Lam Hing Street	2-way	800	515	526	0.64	0.66	
Sheung Yuet Road	Eastbound	2,200	177	169	0.08	0.08	
	Westbound	2,200	242	292	0.11	0.13	

Note: (1) highest traffic flow along the surveyed road sections

2.12 Table 2.3 shows that the analysed road links currently operate with capacities during the AM and PM peak hours.

Level-of-Service of Pedestrian Facilities

- 2.13 To quantify the existing pedestrian flows, pedestrian counts were conducted during the weekday AM and PM peak periods at footpaths which are located in the vicinity of the subject site, and these include the following:
 - F1 Western footpath of Trademart Drive
 - F2 Eastern footpath of Trademart Drive
 - F3 Northern footpath of Lam Hing Street
 - F4 Southern footpath of Lam Hing Street
 - F5 Western footpath of Wang Chin Street
 - F6 Eastern footpath of Wang Chin Street
- 2.14 The level-of-service (LOS) of a pedestrian walkway is dependent on its width and number of pedestrians using the facility. Description of the LOS is obtained from Volume 6 of the TPDM, and is presented in Table 2.4.

TABLE 2.4 DESCRIPTION OF PEDESTRIAN WALKWAY LOS

LOS	Flow Rate (ped/min/m)	Description
Α	≤ 16	Pedestrians basically move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely
		selected, and conflicts between pedestrians are unlikely.
В	16 – 23	Sufficient space is provided for pedestrians to freely select their walking speeds, to bypass other pedestrians and to avoid crossing conflicts with others. At this level, pedestrians begin to be aware of other pedestrians and to respond to their presence in the selection of walking paths.
С	23 – 33	Sufficient space is available to select normal walking speeds and to bypass other pedestrians primarily in unidirectional stream. Where reverse direction or crossing movement exist, minor conflicts will occur, and speed and volume will be somewhat lower.

with reduction factor of 7% to account for 15 – 20% of heavy vehicles

TABLE 2.4 DESCRIPTION OF PEDESTRIAN WALKWAY LOS (CONT'D)

LOS	Flow Rate (ped/min/m)	Description
D	33 – 49	Freedom to select individual walking speeds and bypass other pedestrians is restricted. Where crossing or reverse-flow movements exist, the probability of conflicts is high and its avoidance requires changes of speeds and position. The LOS provides reasonable fluid flow; however considerable friction and interactions between pedestrians are likely to occur.
E	49 – 75	Virtually, all pedestrians would have their normal walking speeds restricted. At the lower range of this LOS, forward movement is possible only by shuffling. Space is insufficient to pass over slower pedestrians. Cross- and reverse-movement are possible only with extreme difficulties. Design volumes approach the limit of walking capacity with resulting stoppages and interruptions to flow.
F	> 75	Walking speeds are severely restricted. Forward progress is made only by shuffling. There are frequent and unavoidable conflicts with other pedestrians. Cross- and reverse-movements are virtually impossible. Flow is sporadic and unstable. Space is more characteristics of queued pedestrians than of moving pedestrian streams.

Source: Volume 6 Chapter 10 of the TPDM

2.15 The peak 15-minute pedestrian flows are illustrated in Figure 2.15, and the corresponding LOS assessment is presented in Table 2.5.

TABLE 2.5 EXISTING LEVEL-OF-SERVICE ASSESSMENT

Ref.	Footpath	Total Width	Effective Width (1)	Peak Period	2-way Peak Pedestrian Flows ⁽²⁾		LOS
					Flow (ped/ 15-min)	Rate (ped/ min/m) (3)	
F1	Western footpath of	4.0	3.0	AM	39	0.9	Α
	Trademart Drive			PM	58	1.3	Α
F2	Eastern footpath of	4.6	3.6	AM	24	0.4	Α
	Trademart Drive			PM	20	0.4	Α
F3	Northern footpath of	2.8	1.8	AM	22	0.8	Α
	Lam Hing Street			PM	40	1.5	Α
F4	Southern footpath of	4.5	3.5	AM	30	0.6	Α
	Lam Hing Street			PM	23	0.4	Α
F5	Western footpath of	3.0	2.0	AM	18	0.6	Α
	Wang Chin Street			PM	23	0.8	Α
F6	Eastern footpath of	3.3	2.3	AM	29	0.8	Α
	Wang Chin Street			PM	35	1.0	Α

Note: (1)

- effective width = total width $-(0.5m \times 2)$
- highest pedestrian flows along the whole section of footpath
- pedestrian flow rate = pedestrian flow \div 15 minutes \div effective width

2.16 The above results indicate that the surveyed footpaths currently operate with LOS A during the AM and PM peak hours. As stated in the TPDM, "LOS C is desirable for most design at streets with dominant 'living' pedestrian activities". Hence, LOS A is considered as an acceptable level of service.

Traffic Generation of KITEC

2.17 The peak hour traffic generation of KITEC prior to its closure is presented in Table 2.6.

TABLE 2.6 TRAFFIC GENERATION OF KITEC

Item	Unit	AM	Peak		
		IN	OUT	IN	OUT
Traffic Generation (1)	pcu/hr	312	230	288	348

Note: (1) survey period from 0700 – 1100 and 1600 – 2000 hours on Friday 24th March 2023. No "Exhibition or Convention Hall" and "Place of Entertainment" events were held on this day.

Public Transport Services and Surveys

- 2.18 Access to road-based and rail-based public transport services from the subject site is convenient. Numerous franchised bus and green minibus routes operate along Kai Fuk Road, Kai Cheung Road, Wang Kwong Road and Wang Chiu Road, which are within 500m or about 8 10 minutes' walk away.
- 2.19 Details of the road-based public transport services operating close to the subject site are presented in Table 2.7 and Figure 2.16.

TABLE 2.7 PUBLIC TRANSPORT SERVICES OPERATING CLOSE TO THE SUBJECT SITE

1	Object Site	
Route No.	Routing	Frequency (min)
KMB 5D	Telford Gardens – Hung Hom (circular)	13 – 30
KMB 5M	MTR Kowloon Bay Station (circular) – Kai Tak (Tak	15 – 30
	Long Estate)	
KMB 11X	On Tai (North) – MTR Hung Hom Station	9 – 25
KMB 13X	Po Tat – Tsim Sha Tsui East	10 – 25
KMB 14X	Tsim Sha Tsui (circular) – Yau Tong (Shung Tak Wai)	15 – 30
KMB 15A	Ping Tin – Tsz Wan Shan (North)	20 – 30
KMB 15X	Lam Tin (Kwong Tin Estate) – MTR Hung Hom Station	20
KMB 23M	Lok Wah – Shun Lee (circular)	15 – 25
KMB 24	Kai Yip – Mong Kok (circular)	20 – 30
KMB 28	Lok Wah – Star Ferry	10 – 25
KMB 28B	Choi Fook – Kai Tak (Kai Ching Estate)	15 – 25
KMB 33	MTR Tsuen Wan West Station – Yau Tong	15 – 30
KMB 38P	Kwai Shing (Central) – Ping Tin	AM & PM peak
KMB 74A	Tai Wo – Kai Yip	60
KMB 74B	Kowloon Bay – Tai Po Central	6 – 15
KMB 80A	Mei Lam – Kwun Tong Ferry	AM peak
KMB 93P	Po Lam – Mong Kok (Park Avenue)	AM & PM peak
KMB 98D	Tsim Sha Tsui East – Hang Hau (North) (Tseung Kwan O Hospital)	8 – 30
KMB 98P	Tsim Sha Tsui East – Hang Hau (North) (Tseung Kwan O Hospital)	AM & PM peak
KMB 108	Kai Yip – Braemar Hill	10 – 30
KMB 213X	On Tai (South) (Hang Tai House) – Tsim Sha Tsui	12 – 30
	(circular)	
KMB 215X	MTR Kowloon Station – Lam Tin (Kwong Tin Estate)	5 – 20
KMB 219X	Tsim Sha Tsui (circular) – Laguna City	15 – 40

TABLE 2.7 PUBLIC TRANSPORT SERVICES OPERATING CLOSE TO THE SUBJECT SITE (CONT'D)

KMB 224XKai Yip – Tsim Sha Tsui East (circular)25 – 30KMB 234DTsing Lung Tau – Kwun Tong (Tsui Ping North Estate)AM & PM peKMB 258XTuen Mun (Po Tin Estate) – Kwun Tong FerryAM & PM peKMB 259STuen Mun (Lung Mun Oasis) – Kwun Tong FerryAM peakKMB / CTB 107Kowloon Bay – Wah Kwai5 – 20KMB / CTB 606Siu Sai Wan (Island Resort) – Choi Wan (Fung Shing Street)20 – 25KMB / CTB 606AShau Kei Wan (Yiu Tung Estate) – Choi Wan (Fung Shing Street)AM peakKMB / CTB 606XKowloon Bay – Siu Sai Wan (Island Resort)AM & PM peakCTB 20Kai Tak (Muk On Street) – Cheung Sha Wan (Hoi Tat)12 – 30CTB 20AHigh Speed Rail West Kowloon Station – Kai Tak25 – 30CTB 22AKai Tak Cruise Terminal – Kowloon Tong (Festival Walk)20 – 35CTB 22DKai Tak Station – Kai Tak Runway AreaAM & PM peCTB 22MKai Tak Cruise Terminal – To Kwa Wan20 – 30CTB 55Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier)AM & PM peCTB 78XQueen's Hill Fanling – Kai Tak15 – 60CTB 608Kowloon City (Shing Tak Street) – Shau Kei Wan10 – 30CTB 790Tsim Sha Tsui (Mody Road) – Oscar By The SeaAM & PM peCTB 793Tseung Kwan O Industrial Estate – So Uk15 – 20CTB 797San Po Kong – LOHAS Park20 – 30CTB 797San Po Kong – LOHAS Park20 – 30CTB 797San Po Kong – LOHAS Park20 – 30CTB 797San Po Kong – LOHAS Park20 – 30<		bject site (colti b)	
KMB 234DTsing Lung Tau – Kwun Tong (Tsui Ping North Estate)AM & PM peKMB 258XTuen Mun (Po Tin Estate) – Kwun Tong FerryAM & PM peKMB 259STuen Mun (Lung Mun Oasis) – Kwun Tong FerryAM peakKMB / CTB 107Kowloon Bay – Wah Kwai5 – 20KMB / CTB 606Siu Sai Wan (Island Resort) – Choi Wan (Fung Shing Street)20 – 25KMB / CTB 606AShau Kei Wan (Yiu Tung Estate) – Choi Wan (Fung Shing Street)AM peakKMB / CTB 606XKowloon Bay – Siu Sai Wan (Island Resort)AM & PM peakCTB 20Kai Tak (Muk On Street) – Cheung Sha Wan (Hoi Tat)12 – 30CTB 20AHigh Speed Rail West Kowloon Station – Kai Tak25 – 30CTB 22Kai Tak Cruise Terminal – Kowloon Tong (Festival Walk)20 – 35CTB 22DKai Tak Station – Kai Tak Runway AreaAM & PM peCTB 22MKai Tak Cruise Terminal – To Kwa Wan20 – 30CTB 55Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier)AM & PM peCTB 78XQueen's Hill Fanling – Kai Tak15 – 60CTB 608Kowloon City (Shing Tak Street) – Shau Kei Wan10 – 30CTB 790Tsim Sha Tsui (Mody Road) – Oscar By The SeaAM & PM peCTB 793Tseung Kwan O Industrial Estate – So Uk15 – 20CTB 795XSo Uk – Oscar by The Sea20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB 798Kai Tak – Airport30 – 60CTB N20	Route No.		Frequency (min)
KMB 258XTuen Mun (Po Tin Estate) – Kwun Tong FerryAM & PM peKMB 259STuen Mun (Lung Mun Oasis) – Kwun Tong FerryAM peakKMB / CTB 107Kowloon Bay – Wah Kwai5 – 20KMB / CTB 606Siu Sai Wan (Island Resort) – Choi Wan (Fung Shing Street)20 – 25KMB / CTB 606AShau Kei Wan (Yiu Tung Estate) – Choi Wan (Fung Shing Street)AM peakKMB / CTB 606XKowloon Bay – Siu Sai Wan (Island Resort)AM & PM peakCTB 20Kai Tak (Muk On Street) – Cheung Sha Wan (Hoi Tat)12 – 30CTB 20AHigh Speed Rail West Kowloon Station – Kai Tak25 – 30CTB 22Kai Tak Cruise Terminal – Kowloon Tong (Festival Walk)20 – 35CTB 22DKai Tak Station – Kai Tak Runway AreaAM & PM peCTB 22MKai Tak Cruise Terminal – To Kwa Wan20 – 30CTB 55Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier)AM & PM peCTB 78XQueen's Hill Fanling – Kai Tak15 – 60CTB 608Kowloon City (Shing Tak Street) – Shau Kei Wan10 – 30CTB 608PSiu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street)AM peakCTB 790Tsim Sha Tsui (Mody Road) – Oscar By The SeaAM & PM peakCTB 795XSo Uk – Oscar by The Sea20 – 30CTB 795XSo Uk – Oscar by The Sea20 – 30CTB 796PTsim Sha Tsui (East) – LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB N20Island Habourview – Kai Tak (Muk On Street)Overnight<	KMB 224X		25 – 30
KMB 259STuen Mun (Lung Mun Oasis) – Kwun Tong FerryAM peakKMB / CTB 107Kowloon Bay – Wah Kwai5 – 20KMB / CTB 606Siu Sai Wan (Island Resort) – Choi Wan (Fung Shing Street)20 – 25KMB / CTB 606AShau Kei Wan (Yiu Tung Estate) – Choi Wan (Fung Shing Street)AM peakKMB / CTB 606XKowloon Bay – Siu Sai Wan (Island Resort)AM & PM peakCTB 20Kai Tak (Muk On Street) – Cheung Sha Wan (Hoi Tat)12 – 30CTB 20AHigh Speed Rail West Kowloon Station – Kai Tak25 – 30CTB 22Kai Tak Cruise Terminal – Kowloon Tong (Festival Walk)20 – 35CTB 22DKai Tak Station – Kai Tak Runway AreaAM & PM peCTB 22MKai Tak Cruise Terminal – To Kwa Wan20 – 30CTB 55Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier)AM & PM peCTB 78XQueen's Hill Fanling – Kai Tak15 – 60CTB 608Kowloon City (Shing Tak Street) – Shau Kei Wan10 – 30CTB 608PSiu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street)AM peakCTB 790Tsim Sha Tsui (Mody Road) – Oscar By The SeaAM & PM peCTB 795XSo Uk – Oscar by The Sea20 – 30CTB 796PTsim Sha Tsui (East) – LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB 796Island Habourview – Kai Tak (Muk On Street)OvernightCTB N796LOHAS Park – Mong KokOvernightGMB 46Richland Gardens – Island Harbourview3 – 15<	KMB 234D		AM & PM peak
KMB / CTB 107Kowloon Bay – Wah Kwai5 – 20KMB / CTB 606Siu Sai Wan (Island Resort) – Choi Wan (Fung Shing Street)20 – 25KMB / CTB 606AShau Kei Wan (Yiu Tung Estate) – Choi Wan (Fung Shing Street)AM peak Shing Street)KMB / CTB 606XKowloon Bay – Siu Sai Wan (Island Resort)AM & PM peak Shing Street)CTB 20Kai Tak (Muk On Street) – Cheung Sha Wan (Hoi Tat)12 – 30CTB 20AHigh Speed Rail West Kowloon Station – Kai Tak25 – 30CTB 22Kai Tak Cruise Terminal – Kowloon Tong (Festival Walk)20 – 35CTB 22Kai Tak Station – Kai Tak Runway AreaAM & PM peCTB 22MKai Tak Station – Kai Tak Runway AreaAM & PM peCTB 55Tuen Mun (Chung Tin and Wo Tin) – Kwun TongAM & PM peFerry Pier)CTB 78XQueen's Hill Fanling – Kai Tak15 – 60CTB 608Kowloon City (Shing Tak Street) – Shau Kei Wan10 – 30CTB 608PSiu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street)AM peak Tak Street)CTB 790Tsim Sha Tsui (Mody Road) – Oscar By The SeaAM & PM peak Tak Street)CTB 793Tseung Kwan O Industrial Estate – So Uk15 – 20CTB 795XSo Uk – Oscar by The Sea20 – 30CTB 796PTsim Sha Tsui (East) – LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB R22STung Chung (Mun Tung Estate) – Tseung Kwan O (PoAM & PM peCTB N20Island Habourview – Kai Tak (Muk On Street)overnight <t< td=""><td>KMB 258X</td><td>Tuen Mun (Po Tin Estate) – Kwun Tong Ferry</td><td>AM & PM peak</td></t<>	KMB 258X	Tuen Mun (Po Tin Estate) – Kwun Tong Ferry	AM & PM peak
KMB / CTB 606Siu Sai Wan (Island Resort) – Choi Wan (Fung Shing Street)20 – 25KMB / CTB 606AShau Kei Wan (Yiu Tung Estate) – Choi Wan (Fung Shing Street)AM peak Shing Street)KMB / CTB 606XKowloon Bay – Siu Sai Wan (Island Resort)AM & PM peCTB 20Kai Tak (Muk On Street) – Cheung Sha Wan (Hoi Tat)12 – 30CTB 20AHigh Speed Rail West Kowloon Station – Kai Tak25 – 30CTB 22AKai Tak Cruise Terminal – Kowloon Tong (Festival Walk)20 – 35CTB 22DKai Tak Station – Kai Tak Runway AreaAM & PM peCTB 22DKai Tak Cruise Terminal – To Kwa Wan20 – 30CTB 55Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier)AM & PM peCTB 78XQueen's Hill Fanling – Kai Tak15 – 60CTB 608Kowloon City (Shing Tak Street) – Shau Kei Wan10 – 30CTB 608PSiu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street)AM peak Tak Street)CTB 790Tsim Sha Tsui (Mody Road) – Oscar By The SeaAM & PM peCTB 793Tseung Kwan O Industrial Estate – So Uk15 – 20CTB 795XSo Uk – Oscar by The Sea20 – 30CTB 796PTsim Sha Tsui (East) – LOHAS Park20 – 30CTB 797San Po Kong – LOHAS Park20 – 30CTB R22STung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)AM & PM peCTB N20Island Habourview – Kai Tak (Muk On Street)overnightCTB N796LOHAS Park – Mong KokovernightCMB 46Richland Gardens – Island Harbourview3 – 15GMB 48Shun L	KMB 259S	Tuen Mun (Lung Mun Oasis) – Kwun Tong Ferry	AM peak
Street) KMB / CTB 606A Shau Kei Wan (Yiu Tung Estate) – Choi Wan (Fung Shing Street) KMB / CTB 606X Kowloon Bay – Siu Sai Wan (Island Resort) CTB 20 Kai Tak (Muk On Street) – Cheung Sha Wan (Hoi Tat) CTB 20A High Speed Rail West Kowloon Station – Kai Tak Cruise Terminal CTB 22 Kai Tak Cruise Terminal – Kowloon Tong (Festival Walk) CTB 22D Kai Tak Station – Kai Tak Runway Area AM & PM pe CTB 22M Kai Tak Cruise Terminal – To Kwa Wan CTB 22M Kai Tak Cruise Terminal – To Kwa Wan CTB 55 Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier) CTB 78X Queen's Hill Fanling – Kai Tak CTB 608 Kowloon City (Shing Tak Street) – Shau Kei Wan CTB 608P Siu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street) CTB 790 Tsim Sha Tsui (Mody Road) – Oscar By The Sea AM & PM pe CTB 795X So Uk – Oscar by The Sea CTB 795X So Uk – Oscar by The Sea CTB 795X So Uk – Oscar by The Sea CTB 796P Tsim Sha Tsui (East) – LOHAS Park 20 – 30 CTB 797 San Po Kong - LOHAS Park 20 – 30 CTB 825 Kai Tak – Airport CTB N20 Island Habourview – Kai Tak (Muk On Street) Overnight CTB N796 LOHAS Park – Mong Kok Overnight GMB 46 Richland Gardens – Island Harbourview 3 – 15 GMB 48 Shun Lee Estate – Kowloon Bay (Enterprise Square) 4 – 8	KMB / CTB 107	Kowloon Bay – Wah Kwai	5 – 20
Shing Street) KMB / CTB 606X Kowloon Bay – Siu Sai Wan (Island Resort) AM & PM per CTB 20 Kai Tak (Muk On Street) – Cheung Sha Wan (Hoi Tat) 12 – 30 CTB 20A High Speed Rail West Kowloon Station – Kai Tak 25 – 30 Cruise Terminal CTB 22 Kai Tak Cruise Terminal – Kowloon Tong (Festival Walk) CTB 22D Kai Tak Station – Kai Tak Runway Area AM & PM per CTB 22M Kai Tak Cruise Terminal – To Kwa Wan 20 – 30 CTB 55 Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier) CTB 78X Queen's Hill Fanling – Kai Tak Street) – Shau Kei Wan 10 – 30 CTB 608 Kowloon City (Shing Tak Street) – Shau Kei Wan 10 – 30 CTB 608P Siu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street) CTB 790 Tsim Sha Tsui (Mody Road) – Oscar By The Sea AM & PM per CTB 793 Tseung Kwan O Industrial Estate – So Uk 15 – 20 CTB 795X So Uk – Oscar by The Sea 20 – 30 CTB 796P Tsim Sha Tsui (East) – LOHAS Park 20 – 30 CTB 797 San Po Kong - LOHAS Park 20 – 30 CTB A25 Kai Tak – Airport 30 – 60 CTB E22S Tung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam) CTB N20 Island Habourview – Kai Tak (Muk On Street) overnight CTB N796 LOHAS Park – Mong Kok overnight GMB 46 Richland Gardens – Island Harbourview 3 – 15 GMB 48 Shun Lee Estate – Kowloon Bay (Enterprise Square) 4 – 8	KMB / CTB 606		20 – 25
KMB / CTB 606XKowloon Bay – Siu Sai Wan (Island Resort)AM & PM peCTB 20Kai Tak (Muk On Street) – Cheung Sha Wan (Hoi Tat)12 – 30CTB 20AHigh Speed Rail West Kowloon Station – Kai Tak Cruise Terminal25 – 30CTB 22Kai Tak Cruise Terminal – Kowloon Tong (Festival Walk)20 – 35CTB 22DKai Tak Station – Kai Tak Runway AreaAM & PM peCTB 22MKai Tak Cruise Terminal – To Kwa Wan20 – 30CTB 55Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier)AM & PM peCTB 78XQueen's Hill Fanling – Kai Tak15 – 60CTB 608Kowloon City (Shing Tak Street) – Shau Kei Wan10 – 30CTB 608PSiu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street)AM peakCTB 790Tsim Sha Tsui (Mody Road) – Oscar By The SeaAM & PM peCTB 793Tseung Kwan O Industrial Estate – So Uk15 – 20CTB 795XSo Uk – Oscar by The Sea20 – 30CTB 796PTsim Sha Tsui (East) – LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB A25Kai Tak – Airport30 – 60CTB E22STung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)AM & PM peCTB N20Island Habourview – Kai Tak (Muk On Street)overnightCTB N796LOHAS Park – Mong KokovernightCMB 46Richland Gardens – Island Harbourview3 – 15GMB 46Richland Gardens – Island Harbourview4 – 8	KMB / CTB 606A		AM peak
CTB 20 Kai Tak (Muk On Street) – Cheung Sha Wan (Hoi Tat) 12 – 30 CTB 20A High Speed Rail West Kowloon Station – Kai Tak 25 – 30 CTB 22 Kai Tak Cruise Terminal – Kowloon Tong (Festival Walk) CTB 22D Kai Tak Station – Kai Tak Runway Area AM & PM pe CTB 22M Kai Tak Cruise Terminal – To Kwa Wan 20 – 30 CTB 55 Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier) CTB 78X Queen's Hill Fanling – Kai Tak Tak Wan 10 – 30 CTB 608 Kowloon City (Shing Tak Street) – Shau Kei Wan 10 – 30 CTB 608P Siu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street) CTB 790 Tsim Sha Tsui (Mody Road) – Oscar By The Sea AM & PM pe CTB 793 Tseung Kwan O Industrial Estate – So Uk 15 – 20 CTB 795X So Uk – Oscar by The Sea 20 – 30 CTB 796P Tsim Sha Tsui (East) – LOHAS Park 20 – 30 CTB 797 San Po Kong - LOHAS Park 20 – 30 CTB A25 Kai Tak – Airport 30 – 60 CTB N20 Island Habourview – Kai Tak (Muk On Street) overnight CTB N796 LOHAS Park – Mong Kok overnight GMB 46 Richland Gardens – Island Harbourview 3 – 15 GMB 48 Shun Lee Estate – Kowloon Bay (Enterprise Square) 4 – 8	KMB / CTB 606X	Kowloon Bay – Siu Sai Wan (Island Resort)	AM & PM peak
CTB 20A High Speed Rail West Kowloon Station – Kai Tak Cruise Terminal CTB 22 Kai Tak Cruise Terminal – Kowloon Tong (Festival Walk) CTB 22D Kai Tak Station – Kai Tak Runway Area CTB 22M Kai Tak Station – Kai Tak Runway Area CTB 22M Kai Tak Cruise Terminal – To Kwa Wan CTB 25 Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier) CTB 78X Queen's Hill Fanling – Kai Tak CTB 608 Kowloon City (Shing Tak Street) – Shau Kei Wan CTB 608 Siu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street) CTB 790 Tsim Sha Tsui (Mody Road) – Oscar By The Sea CTB 793 Tseung Kwan O Industrial Estate – So Uk CTB 795X So Uk – Oscar by The Sea CTB 796P Tsim Sha Tsui (East) – LOHAS Park CTB 797 San Po Kong - LOHAS Park CTB A25 Kai Tak – Airport CTB N20 Island Habourview – Kai Tak (Muk On Street) CTB N796 LOHAS Park – Mong Kok Overnight CMB 46 Richland Gardens – Island Harbourview 3 – 15 GMB 48 Shun Lee Estate – Kowloon Bay (Enterprise Square)	CTB 20		1
Walk) CTB 22D Kai Tak Station – Kai Tak Runway Area AM & PM pe CTB 22M Kai Tak Cruise Terminal – To Kwa Wan 20 – 30 CTB 55 Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier) CTB 78X Queen's Hill Fanling – Kai Tak 15 – 60 CTB 608 Kowloon City (Shing Tak Street) – Shau Kei Wan 10 – 30 CTB 608P Siu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street) CTB 790 Tsim Sha Tsui (Mody Road) – Oscar By The Sea AM & PM peach Tak Street) CTB 793 Tseung Kwan O Industrial Estate – So Uk 15 – 20 CTB 795X So Uk – Oscar by The Sea 20 – 30 CTB 796P Tsim Sha Tsui (East) – LOHAS Park 20 – 30 CTB 797 San Po Kong – LOHAS Park 20 – 30 CTB A25 Kai Tak – Airport 30 – 60 CTB E22S Tung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam) CTB N20 Island Habourview – Kai Tak (Muk On Street) overnight GMB 46 Richland Gardens – Island Harbourview 3 – 15 GMB 48 Shun Lee Estate – Kowloon Bay (Enterprise Square) 4 – 8	CTB 20A	High Speed Rail West Kowloon Station – Kai Tak	
CTB 22MKai Tak Cruise Terminal – To Kwa Wan20 – 30CTB 55Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier)AM & PM per AM & PM per AM & PM per AM & PM per Ferry Pier)CTB 78XQueen's Hill Fanling – Kai Tak15 – 60CTB 608Kowloon City (Shing Tak Street) – Shau Kei Wan10 – 30CTB 608PSiu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street)AM peak Tak Street)CTB 790Tsim Sha Tsui (Mody Road) – Oscar By The SeaAM & PM perCTB 793Tseung Kwan O Industrial Estate – So Uk15 – 20CTB 795XSo Uk – Oscar by The Sea20 – 30CTB 796PTsim Sha Tsui (East) – LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB A25Kai Tak – Airport30 – 60CTB E22STung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)AM & PM per AM & PM per Lam)CTB N20Island Habourview – Kai Tak (Muk On Street)overnightCTB N796LOHAS Park – Mong KokovernightGMB 46Richland Gardens – Island Harbourview3 – 15GMB 48Shun Lee Estate – Kowloon Bay (Enterprise Square)4 – 8	CTB 22		20 – 35
CTB 55Tuen Mun (Chung Tin and Wo Tin) – Kwun Tong Ferry Pier)AM & PM per Ferry Pier)CTB 78XQueen's Hill Fanling – Kai Tak15 – 60CTB 608Kowloon City (Shing Tak Street) – Shau Kei Wan10 – 30CTB 608PSiu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street)AM peak AM peak Tak Street)CTB 790Tsim Sha Tsui (Mody Road) – Oscar By The SeaAM & PM peCTB 793Tseung Kwan O Industrial Estate – So Uk15 – 20CTB 795XSo Uk – Oscar by The Sea20 – 30CTB 796PTsim Sha Tsui (East) – LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB A25Kai Tak – Airport30 – 60CTB E22STung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)AM & PM peCTB N20Island Habourview – Kai Tak (Muk On Street)overnightCTB N796LOHAS Park – Mong KokovernightGMB 46Richland Gardens – Island Harbourview3 – 15GMB 48Shun Lee Estate – Kowloon Bay (Enterprise Square)4 – 8	CTB 22D		AM & PM peak
Ferry Pier) CTB 78X Queen's Hill Fanling – Kai Tak CTB 608 Kowloon City (Shing Tak Street) – Shau Kei Wan CTB 608P Siu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street) CTB 790 Tsim Sha Tsui (Mody Road) – Oscar By The Sea CTB 793 Tseung Kwan O Industrial Estate – So Uk CTB 795X So Uk – Oscar by The Sea CTB 796P Tsim Sha Tsui (East) – LOHAS Park CTB 797 San Po Kong - LOHAS Park CTB A25 Kai Tak – Airport CTB A25 CTB 22S Tung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam) CTB N20 Island Habourview – Kai Tak (Muk On Street) Overnight CTB N796 CMB 46 Richland Gardens – Island Harbourview 3 – 15 GMB 48 Shun Lee Estate – Kowloon Bay (Enterprise Square)	CTB 22M	Kai Tak Cruise Terminal – To Kwa Wan	20 – 30
CTB 608Kowloon City (Shing Tak Street) – Shau Kei Wan10 – 30CTB 608PSiu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street)AM peakCTB 790Tsim Sha Tsui (Mody Road) – Oscar By The SeaAM & PM peCTB 793Tseung Kwan O Industrial Estate – So Uk15 – 20CTB 795XSo Uk – Oscar by The Sea20 – 30CTB 796PTsim Sha Tsui (East) – LOHAS Park20 – 30CTB 797San Po Kong – LOHAS Park20 – 30CTB A25Kai Tak – Airport30 – 60CTB E22STung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)AM & PM peCTB N20Island Habourview – Kai Tak (Muk On Street)overnightCTB N796LOHAS Park – Mong KokovernightGMB 46Richland Gardens – Island Harbourview3 – 15GMB 48Shun Lee Estate – Kowloon Bay (Enterprise Square)4 – 8	CTB 55	· · · · · · · · · · · · · · · · · · ·	AM & PM peak
CTB 608P Siu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street) CTB 790 Tsim Sha Tsui (Mody Road) – Oscar By The Sea AM & PM per CTB 793 Tseung Kwan O Industrial Estate – So Uk CTB 795X So Uk – Oscar by The Sea CTB 796P Tsim Sha Tsui (East) – LOHAS Park CTB 797 San Po Kong – LOHAS Park CTB A25 Kai Tak – Airport CTB E22S Tung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam) CTB N20 Island Habourview – Kai Tak (Muk On Street) Overnight CTB N796 CMB 46 Richland Gardens – Island Harbourview 3 – 15 GMB 48 Shun Lee Estate – Kowloon Bay (Enterprise Square) AM & PM per CTB N20 AM & PM per CTB N20 CTB N20 Siu Sai Wan (Island Resort) – Kowloon Bay (Enterprise Square)	CTB 78X	Queen's Hill Fanling – Kai Tak	15 – 60
CTB 608P Siu Sai Wan (Island Resort) – Kowloon City (Shing Tak Street) CTB 790 Tsim Sha Tsui (Mody Road) – Oscar By The Sea AM & PM per CTB 793 Tseung Kwan O Industrial Estate – So Uk CTB 795X So Uk – Oscar by The Sea CTB 796P Tsim Sha Tsui (East) – LOHAS Park CTB 797 San Po Kong – LOHAS Park CTB A25 Kai Tak – Airport CTB E22S Tung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam) CTB N20 Island Habourview – Kai Tak (Muk On Street) Overnight CTB N796 CMB 46 Richland Gardens – Island Harbourview 3 – 15 GMB 48 Shun Lee Estate – Kowloon Bay (Enterprise Square) AM & PM per CTB N20 AM & PM per CTB N20 CTB N20 Siu Sai Wan (Island Resort) – Kowloon Bay (Enterprise Square)	CTB 608	Kowloon City (Shing Tak Street) – Shau Kei Wan	10 – 30
CTB 793Tseung Kwan O Industrial Estate – So Uk15 – 20CTB 795XSo Uk – Oscar by The Sea20 – 30CTB 796PTsim Sha Tsui (East) – LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB A25Kai Tak – Airport30 – 60CTB E22STung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)AM & PM peCTB N20Island Habourview – Kai Tak (Muk On Street)overnightCTB N796LOHAS Park – Mong KokovernightGMB 46Richland Gardens – Island Harbourview3 – 15GMB 48Shun Lee Estate – Kowloon Bay (Enterprise Square)4 – 8	CTB 608P	Siu Sai Wan (Island Resort) – Kowloon City (Shing	AM peak
CTB 795XSo Uk – Oscar by The Sea20 – 30CTB 796PTsim Sha Tsui (East) – LOHAS Park20 – 30CTB 797San Po Kong - LOHAS Park20 – 30CTB A25Kai Tak – Airport30 – 60CTB E22STung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)AM & PM peCTB N20Island Habourview – Kai Tak (Muk On Street)overnightCTB N796LOHAS Park – Mong KokovernightGMB 46Richland Gardens – Island Harbourview3 – 15GMB 48Shun Lee Estate – Kowloon Bay (Enterprise Square)4 – 8	CTB 790	Tsim Sha Tsui (Mody Road) – Oscar By The Sea	AM & PM peak
CTB 796PTsim Sha Tsui (East) – LOHAS Park20 – 30CTB 797San Po Kong – LOHAS Park20 – 30CTB A25Kai Tak – Airport30 – 60CTB E22STung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)AM & PM peCTB N20Island Habourview – Kai Tak (Muk On Street)overnightCTB N796LOHAS Park – Mong KokovernightGMB 46Richland Gardens – Island Harbourview3 – 15GMB 48Shun Lee Estate – Kowloon Bay (Enterprise Square)4 – 8	CTB 793	Tseung Kwan O Industrial Estate – So Uk	15 – 20
CTB 797San Po Kong - LOHAS Park20 – 30CTB A25Kai Tak – Airport30 – 60CTB E22STung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)AM & PM peCTB N20Island Habourview – Kai Tak (Muk On Street)overnightCTB N796LOHAS Park – Mong KokovernightGMB 46Richland Gardens – Island Harbourview3 – 15GMB 48Shun Lee Estate – Kowloon Bay (Enterprise Square)4 – 8	CTB 795X	So Uk – Oscar by The Sea	20 – 30
CTB 797San Po Kong - LOHAS Park20 – 30CTB A25Kai Tak – Airport30 – 60CTB E22STung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)AM & PM peCTB N20Island Habourview – Kai Tak (Muk On Street)overnightCTB N796LOHAS Park – Mong KokovernightGMB 46Richland Gardens – Island Harbourview3 – 15GMB 48Shun Lee Estate – Kowloon Bay (Enterprise Square)4 – 8	CTB 796P	Tsim Sha Tsui (East) – LOHAS Park	20 – 30
CTB E22STung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)AM & PM pe AM & PM pe Stand Habourview – Kai Tak (Muk On Street)AM & PM pe OvernightCTB N20Island Habourview – Kai Tak (Muk On Street)overnightCTB N796LOHAS Park – Mong KokovernightGMB 46Richland Gardens – Island Harbourview3 – 15GMB 48Shun Lee Estate – Kowloon Bay (Enterprise Square)4 – 8	CTB 797		20 – 30
CTB E22STung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)AM & PM pe AM & PM pe Stand Habourview – Kai Tak (Muk On Street)AM & PM pe OvernightCTB N20Island Habourview – Kai Tak (Muk On Street)overnightCTB N796LOHAS Park – Mong KokovernightGMB 46Richland Gardens – Island Harbourview3 – 15GMB 48Shun Lee Estate – Kowloon Bay (Enterprise Square)4 – 8	CTB A25		1
CTB N796LOHAS Park – Mong KokovernightGMB 46Richland Gardens – Island Harbourview3 – 15GMB 48Shun Lee Estate – Kowloon Bay (Enterprise Square)4 – 8	CTB E22S	Tung Chung (Mun Tung Estate) – Tseung Kwan O (Po	AM & PM peak
GMB 46 Richland Gardens – Island Harbourview 3 – 15 GMB 48 Shun Lee Estate – Kowloon Bay (Enterprise Square) 4 – 8	CTB N20	Island Habourview – Kai Tak (Muk On Street)	overnight
GMB 46 Richland Gardens – Island Harbourview 3 – 15 GMB 48 Shun Lee Estate – Kowloon Bay (Enterprise Square) 4 – 8	CTB N796	LOHAS Park – Mong Kok	overnight
GMB 48 Shun Lee Estate – Kowloon Bay (Enterprise Square) 4 – 8	GMB 46		
GMB 56 Richland Gardens – Kwun Tong (Shung Yan Street) 10 – 20	GMB 56	Richland Gardens – Kwun Tong (Shung Yan Street)	10 – 20
GMB 62S Lam Tin Estate – Tsim Sha Tsui (Haiphong Road) overnight			
GMB 68 Choi Wan Estate – Kowloon Bay (Enterprise Square) 8 – 12			
GMB 69 Laguna City – Kowloon Bay (Lion Rock Road) 20 – 30		, , , , ,	
GMB 87 Lei Yue Mun Estate – Richland Gardens (circular) 15 – 20		,	
GMB 89B On Tai Estate – Kowloon Bay (MegaBox) 12 – 20			
GMB 106 Tseung Kwan O (Po Lam) – Kowloon Bay (Enterprise 7 – 25 Square)		Tseung Kwan O (Po Lam) – Kowloon Bay (Enterprise	
GMB 110 Tiu Keng Leng Station – Kowloon City (circular) 15 – 30	GMB 110	• •	15 – 30
GMB 110A Tiu Keng Leng Station – Kowloon Bay 10 – 30			
GMB 111 Tseung Kwan O (Po Lam) – San Po Kong (Hong Keung Street)		Tseung Kwan O (Po Lam) – San Po Kong (Hong	

Note: KMB – Kowloon Motor Bus

CTB - Citybus

GMB – Green Minibus

2.20 The occupancy of franchised bus and GMB services operating along Kai Fuk Road and Kai Cheung Road was surveyed, and the survey results are summarised in Table 2.8.

TABLE 2.8 PUBLIC TRANSPORT OCCUPANCY SURVEY RESULTS

Peak Hour	Road	Bound	Name of Bus Stop	Level of Public Transport Services (Approx.) (persons/hr)		
				Carrying Capacity ⁽¹⁾ [a]	No. of Passengers on board [b]	Surplus Capacity [a] – [b]
AM	Kai Fuk	NB	KITEC	7,056	3,583	3,473
	Road	SB	KITEC	3,768	1,550	2,218
	Kai Cheung	EB	Kai Shing Street	1,560	660	900
	Road	WB	Wang Chin Street	3,664	1,503	2,161
		Tot	al	<u>16,048</u>	<u>7,296</u>	<u>8,752</u>
PM	Kai Fuk	NB	KITEC	3,888	1,321	2,567
	Road	SB	KITEC	4,008	1,809	2,199
	Kai Cheung	EB	Kai Shing Street	1,080	585	495
	Road	WB	Wang Chin Street	1,990	508	1,482
		Tot	al	<u>10,435</u>	4,223	<u>6,743</u>

Note: EB – eastbound

WB – westbound

NB – northbound

SB-south bound

2.21 Table 2.8 shows that the existing franchised bus and GMB services have surplus capacity of some 8,500 and 6,500 passengers during the AM and PM peak hours respectively.

Shuttle Bus Service

2.22 Prior to closure of KITEC, free shuttle bus service was provided between KITEC and Telford Plaza, near MTR Kowloon Bay Station. The shuttle bus pick-up / drop-off point is located at the northern end of lay-by at Trademart Drive outside KITEC, and the operating hours are from 0645 – 2359 hours daily with headway of around 5 – 15 minutes.

The assumed carrying capacity of a single-deck bus and double-deck bus is 60 and 120 passengers respectively. The capacity of GMB is identified from survey.

3.0 THE PROPOSED REDEVELOPMENT

Comparison of Development Parameters

3.1 A comparison of development parameters for (i) Approved Redevelopment and (ii) Proposed Redevelopment is presented in Table 3.1.

TABLE 3.1 COMPARISON OF DEVELOPMENT PARAMETERS

	Item Development Parameters						
		KITEC (1)	Approved Redevelopment [A] (2)	Proposed	Difference between [A] and [B]		
Site	Area	22,280m ²	22,280m ²	22,280m ²	No change		
	Ratio	7.4	7.4	7.4 ⁽³⁾	No change		
	nestic GFA	0	0	65,949m ²	+65,949m ²		
	of Flat	0	0	1,494 (4)	+1,494 flats		
	Office	63,934m ²	132,437m ²	35,600m ²	-96,837m ² (-73%)		
	Eating Place and Shop and Services	73,982m²	21,150m ²	13,403m ²	-7,747m ² (-37%)		
GFA	Exhibition or Convention Hall	17,598m ^{2 (5)}	11,285m ²	20,773m ²	+9,488m ² (+84%)		
Non-domestic GFA	Hotel	0	0	24,000m ² (720 rooms)	+24,000m ²		
mop-ı	Place of Entertainment	9,325m ² (4,729 seats) ⁽⁶⁾	0	2,500m ² (1,800 seats)	+2,500m ²		
No	Social Welfare Facility	0	0	around 2,090m ^{2 (7)}	+2,090m ²		
	School (Kindergarten)	0	0	557m ² (6 classrooms)	+557m ²		
	Total	164,839m ²	164,872m ²	98,923m ^{2 (8)}	-65,949m ² (-40%)		
S	Car Parking Space	763 ⁽⁹⁾	548 – 604	904			
acilitie	Motorcycle Parking Space	0	56 – 60	69			
port Fa	Loading / Unloading Bay	33	103 – 113	78			
Internal Transport Facilities	Taxi / Private Car Lay-by	9	7	13			
rnal	Tour Bus Lay-by	0	0	5			
Inter	Private Light Bus Parking Space	0	0	3			

Note: (1) based on 2018 A&A works

- extract from TPB No. A/K22/34 approved on 17th March 2023
- include domestic plot ratio of 2.96 and non-domestic plot ratio of 4.44
- (4) average flat size = around 45m²
- include 11,312m² showroom and 6,286m² exhibition-related venues
- (6) include Star Hall with 3,600 seats and cinema with 1,129 seats
- include a Day Care Centre for the Elderly (DE), a Residential Care Home for the Elderly (RCHE) and an Office Base of Social Work Service for Pre-primary Institutions (SWSPPI)
- (8) exclude non-domestic GFA of 1,114m² for the Northern Footbridge Extension and Southern Footbridge, and GFA for the social welfare facilities to be exempted
- (9) According to the existing Lease, the 763 car parking spaces in KITEC are ancillary and belong "to the owners or occupiers of the building or buildings ... and their bona fide guests, visitors or invitees ..."

Provision of Internal Transport Facilities

3.2 The internal transport facilities for the Proposed Redevelopment will be provided on the following basis:

(i) "Flat", "Office" and "Hotel"

3.3 The internal transport facilities for "Flat", "Office" and "Hotel" are provided based on the <u>maximum</u> recommendations found in Chapter 8 of the Hong Kong Planning Standards and Guidelines (HKPSG). The flat mix used to calculate the provision of internal transport facilities for "Flat" is found in Table 3.2, and the GFA for "Office" and "Hotel" are found in Table 3.1.

TABLE 3.2 DETAILS OF RESIDENTIAL FLATS

Size of Residential Flat (GFA)	No. of Flat
≤ 40m ²	426
40 – 70m²	924
70 – 100m²	144
Total No. of Flat	1,494

(ii) "Eating Place", "Shop and Services" and "Exhibition or Convention Hall"

3.4 Internal transport facilities for "Eating Place", "Shop and Services" and "Exhibition or Convention Hall" are calculated based on the GFA found in Table 3.1, and as per the maximum HKPSG recommendation for "Retail".

(iii) "Place of Entertainment"

3.5 To ensure adequate provision of internal transport facilities for the "Place of Entertainment", reference is made to HKPSG maximum recommendations for "Commercial Entertainment Facilities (e.g. cinemas, theatres)" and "Retail" are adopted.

(iv) "Social Welfare Facility" and "School (Kindergarten)"

- 3.6 The internal transport facilities for social welfare facilities are provided to **meet the operational needs** of the privately-financed RCHE and DE.
- 3.7 Reference is made to a previous application, TPB no. ref: A/K22/37 (withdrawn in December 2024), which has the same social welfare facilities at the subject site. The comment from SWD is, "no objection in principle from service perspective for the applicant's proposed development of 60-place RCHE and 30-place DE on conditions that the RCHE and DE including the associated parking spaces and loading and unloading bay are running on privately-financing mode ...". The comment from SWD is found in Appendix B.

(v) Flexibility in Parking Provision

3.8 According to LAO Practice Note No. 4/2006 "Car Parking Requirement in Special Conditions for Residential Developments" issued by Lands Department, "developers are given further flexibility to adjust the number of parking spaces upward or downward by either up to 10% or 5% plus 50 spaces, whichever is the less".

3.9 In view that the Developer will seek modification of the lease subsequent to the approval of this s16 planning application, design flexibility is applied to the parking provision for the Proposed Redevelopment.

(vi) Calculation of Internal Transport Facilities

3.10 Based on the above information, the calculation on the provision of internal transport facilities is found in Table 3.3.

TABLE 3.3 PROVISION OF INTERNAL TRANSPORT FACILITIES FOR THE PROPOSED REDEVELOPMENT

Туре	Use	HKPSG Reco	mmendations	Proposed Provision
Car Parking Space	Flat (for Residents)	= 2.4 for flat size 7 R2 = 1 for developme station R3 = 1 for domestic p Min = (426 × 0.5 + 924 1 × 1 Max = (426 × 0.5 + 924	4 - 7 flats 4 - 4 - 7 flats 4 - 4 - 4 - 7 flats 4 - 4 - 2 - 1 - 1 - 1 flats) 4 - 4 - 2 - 1 - 1 flats) 4 - 4 - 2 - 1 flats) 4 - 4 - 2 - 1 flats 4 - 1 fl	377 nos. [Calculation: 417 – 20 – 20]
			= 417 nos. = $417 \times 5\% = \pm 20 \text{ nos.}$ = $417 \times 5\% = \pm 20 \text{ nos.}$	
	Flat (for Visitor)	5 visitor car parking space more than 75 units per bl Max = 5×4 Design Flexibility [a] (1)	es for developments with lock = 20 nos.	19 nos. [Calculation: 20 – 1]
	Office	1 space per 150 – 200m ² 1 1 space per 200 – 300m ² Min = 15000 ÷ 200 + 2 Max = 15000 ÷ 150 + 2 Design Flexibility [a] (1) =	193 nos. [Calculation: 203 – 10]	
	Eating Place and Shop and Services	1 space per $150 - 300$ m ² Min = $13403 \div 300$ Max = $13403 \div 150$ Design Flexibility [a] (1) =	GFA = 45 nos. = 90 nos.	86 nos. [Calculation: 90 – 4]
	Exhibition or Convention Hall	1 space per $150 - 300\text{m}^2$ Min = $20773 \div 300$ Max = $20773 \div 150$ Design Flexibility [a] (1) =	GFA = 70 nos. = 139 nos.	133 nos. [Calculation: 139 – 6]
	Hotel	1 space per 100 rooms Max = 720 ÷ 100	= 8 nos.	8 nos.
	Place of Entertainment	"Retail" under HKPSG 1 space per 150 – 300m² GFA Min = 2500 ÷ 300 = 9 nos. Max = 2500 ÷ 150	"Commercial Entertainment Facilities" under HKPSG 1 car parking space for every 20 seats Max = 1800 ÷ 20 = 90 nos. (greater)	86 nos. [Calculation: 90 – 4]
		= 17 nos.	Design Flexibility [a] (1) = $90 \times 5\%$ = ± 4 nos.	

TABLE 3.3 PROVISION OF INTERNAL TRANSPORT FACILITIES FOR THE PROPOSED REDEVELOPMENT (CONT'D)

Туре	Use	HKPSG Reco	mmendations	Proposed Provision
Car Parking	School	0 – 1 car parking space for	or every 4 – 6 classrooms	2 nos.
Space	(Kindergarten)	$Max = 6 \div 4 \times 1$	= 2 nos.	
	Total	377 + 19 + 193 + 86 + 133	6 + 8 + 86 + 2 = 904 nos.	904 nos. ⁽³⁾
Motorcycle	Flat	1 space per 100 – 150 fla	ats	15 nos.
Parking Space		$Min = 1494 \div 150$	= 10 nos.	
		$Max = 1494 \div 100$	= 15 nos.	
	Office	5 – 10% of total provision		21 nos.
		$Min = 203 \times 5\%$	= 11 nos.	
		$Max = 203 \times 10\%$	= 21 nos.	
	Eating Place	5 – 10% of total provision	9 nos.	
	and Shop and	$Min = 90 \times 5\%$		
	Services	$Max = 90 \times 10\%$		
	Exhibition or	5 – 10% of total provision	n of car parking space = 7 nos.	14 nos.
	Convention	$Min = 139 \times 5\%$		
	Hall	$Max = 139 \times 10\%$	1	
	Hotel	5 - 10% of total provision Min = $8 \times 5\%$	1 no.	
		$Max = 8 \times 10\%$		
	Place of	5 - 10% of total provision	9 nos.	
	Entertainment		9 1105.	
	Lintertainment	$Max = 90 \times 3\%$ $Max = 90 \times 10\%$		
	Total	15 + 21 + 9 + 14 + 9 + 1	69 nos.	
			= 69 nos.	<u>us</u> 11031
Goods Vehicle	Flat		800 flats or part thereof,	4 nos.
Loading /		subject to minimum 1 ba		(4 HGV)
Unloading Bay	Office	1 bay per 2,000 – 3,000n		18 nos. (4)
		$Min = 35600 \div 3000$	= 12 nos.	(7 HGV +
		$Max = 35600 \div 2000$	= 18 nos.	11 LGV)
	Eating Place	1 bay per 800 – 1,200m ²		17 nos. (4)
	and Shop and	$Min = 13403 \div 1200$	= 12 nos.	(6 HGV +
	Services	$Max = 13403 \div 800$	= 17 nos.	11 LGV)
	Exhibition or Convention	1 bay per $800 - 1,200$ m ² Min = $20773 \div 1200$	of GFA $= 18 \text{ nos.}$	26 nos. (4) (10 HGV
	Hall	$Max = 20773 \div 1200$ $Max = 20773 \div 800$	= 18 nos. = 26 nos.	+ 16 LGV)
	Hotel	0.5 - 1 bay per 100 room		8 nos. (4)
	liotei	$Min = 720 \div 100 \times 0.5$		(3 HGV +
		$Max = 720 \div 100 \times 0.5$	= 8 nos.	5 LGV)
	Place of	"Retail" under HKPSG	4 nos. (4)	
	Entertainment			(2 HGV +
		1,200m ² GFA 1 bay where practicable		2 LGV)
		$Min = 2500 \div 1200$	Min' = 1 no.	
		= 3 nos.		
		$Max = 2500 \div 800$		
		= 4 nos. (greater)		
	Total	4 + 18 + 17 + 26 + 4 + 8	= 77 nos.	77 nos.
				(32 HGV
				+ 45 LGV)

TABLE 3.3 PROVISION OF INTERNAL TRANSPORT FACILITIES FOR THE PROPOSED REDEVELOPMENT (CONT'D)

Туре	Use	HKPSG Reco	Proposed Provision	
Taxi / Private	Office	1 lay-by for every 20,000	m ² of GFA	2 nos.
Car Lay-by		$Max = 35600 \div 20000$		
	Hotel	4 lay-bys for \geq 600 rooms		4 nos.
	Place of	"Retail" under HKPSG "Commercial Entertainment		5 nos.
	Entertainment	No requirements	Facilities" under HKPSG	
			1 lay-by for every 400	
			seats	
			$Max = 1800 \div 400$	
		= 5 nos.		
	School	1 lay-by for every 5 – 8 c		2 nos.
	(Kindergarten)	$Min = 6 \div 8 \qquad = 1 \text{ no.}$		
		$Max = 6 \div 5$	= 2 nos.	
	Total	Min = $2 + 5 + 4 + 1$	= 12 nos.	<u>13</u> nos.
		Max = 2 + 5 + 4 + 2	= 13 nos.	
Tour Bus Lay-	Hotel	2 – 3 tour bus lay-bys for		3 nos.
by	School	Minimum 2 lay-bys for so	chool bus	2 nos.
	(Kindergarten)			
	Total	Min = 2 + 2	= 4 nos.	<u>5</u> nos.
		Max = 3 + 2		
Others	Social	1 shared-use loading / un	<u>1</u> HGV	
	Welfare	vehicle / ambulance		
	Facility	[Dimensions: $11m(L) \times 3$		
		2 private light bus parkin	3 PrLB	
		private light bus parking	-	
		[Dimensions: $8m(L) \times 3m$	$n(W) \times 3.3 m(H)$	

Note: (1) Design flexibility [a] is assumed as \pm 5% and is calculated based on the HKPSG maximum recommendations (applicable to car parking space only)

Parking Demand for "Exhibition or Convention Hall"

3.11 To estimate the occupancy of the KITEC car park, occupancy data were obtained for large-scale events held in 2023 in KITEC for the uses categorised under *"Exhibition or Convention Hall"*. Details of these events are presented in Table 3.4.

Design flexibility [b] is assumed as \pm 5% and is calculated based on the HKPSG maximum recommendations (applicable to car parking space for residents only)

⁽⁴⁾ According to Chapter 8 of HKPSG, 6 car parking spaces for persons with disabilities shall be provided for number of car parking spaces over 450

⁽⁴⁾ Goods vehicle provision is divided into 65% LGV and 35% HGV for "Office", "Eating Place and Shop and Services", "Exhibition or Convention Hall" and "Place of Entertainment"

TABLE 3.4 DETAILS OF "EXHIBITION OR CONVENTION HALL" EVENTS

Date	Large-scale Event	Time (hours)	Type of Event	No. of Participants (Approx.)
Weekday				
19/09/2023	23 rd SISTERS BeautyPro Trade Fair	1000 – 1759	Expo	5,000
(Tuesday)	第23 屆姊妹專業美容展			
20/09/2023	23 rd SISTERS BeautyPro Trade Fair	1000 – 1759	Expo	5,000
(Wednesday)	第23 屆姊妹專業美容展			
21/09/2023	23 rd SISTERS BeautyPro Trade Fair	1000 – 1759	Expo	5,000
(Thursday)	第23 屆姊妹專業美容展			
	Seminar	Day-time	Seminar	1,000
27/10/2023	HK Taiwan Higher Education Exhibition	1100 – 1859	Expo	2,000
(Friday)	2023 年香港臺灣高等教育展			
	Meeting and Seminar	Day-time	Seminar	3,000
02/11/2023	NotTooBig Mega Baby Expo	1200 – 1959	Expo	5,000
(Thursday)	NotTooBig 優質母嬰用品展			
Weekend				
22/04/2023	41st HK Wedding Showcase 2023	1200 – 1959	Expo	20,000
(Saturday)	第 41 屆婚展會			
23/04/2023	41st HK Wedding Showcase 2023	1200 – 1959	Expo	30,000
(Sunday)	第 41 屆婚展會			
24/06/2023	HK Illustration and Creative Show 5	1200 – 1959	Expo	5,000
(Saturday)	香港插畫及文創展 5			
23/09/2023	42 nd HK Wedding Showcase 2023	1200 – 1959	Expo	20,000
(Saturday)	第 42 屆婚展會			
24/09/2023	42 nd HK Wedding Showcase 2023	1200 – 1959	Expo	20,000
(Sunday)	第 42 屆婚展會			
25/11/2023	HK Illustration and Creative Show 7	1200 – 1959	Expo	5,000
(Saturday)	香港插畫及文創展 7			

3.12 To ascertain the parking demand associated to the "Exhibition or Convention Hall" events, the average weekday and weekend car park occupancies for the event dates in Table 3.4 are compared to days without any event in KITEC. The comparison is found in Table 3.5.

TABLE 3.5 AVERAGE OCCUPANCY OF KITEC CAR PARK FOR "EXHIBITION OR CONVENTION HALL"

Time Period Average KITEC Car Park Occu			Park Occupa	ıncv	Parking Demand
(hours)	nours) On the day with "Exhibition On the day			Associated to	
		Hall" Event (1)		iny Event (2)	"Exhibition or
	Vehicle	Percentage (3)	Vehicle	Percentage (3)	Convention Hall"
	[a]		[b]		[a] – [b]
Weekday	T	T T		T	
0800 – 0900	208	27%	204	27%	4
0900 – 1000	312	41%	272	36%	40
1000 – 1100	359	47%	314	41%	45
1100 – 1200	394	52%	340	45%	54
1200 – 1300	401	53%	345	45%	56
1300 – 1400	416	55%	351	46%	65
1400 – 1500	423	55%	370	48%	53
1500 – 1600	416	55%	367	48%	49
1600 – 1700	409	54%	367	48%	42
1700 – 1800	352	46%	312	41%	40
1800 – 1900	271	36%	233	31%	38
1900 – 2000	229	30%	176	23%	53
2000 – 2100	203	27%	15 <i>7</i>	21%	46
2100 – 2200	164	21%	146	19%	18
		Maximum			<u>65</u>
Weekend					
0800 - 0900	144	19%	135	18%	9
0900 – 1000	179	23%	174	23%	5
1000 – 1100	213	28%	210	28%	3
1100 – 1200	259	34%	247	32%	12
1200 – 1300	333	44%	314	41%	19
1300 – 1400	391	51%	368	48%	23
1400 – 1500	448	59%	382	50%	66
1500 – 1600	474	62%	406	53%	68
1600 – 1700	468	61%	402	53%	66
1700 – 1800	415	54%	363	48%	52
1800 – 1900	346	45%	317	42%	29
1900 – 2000	263	34%	240	31%	23
2000 – 2100	201	26%	193	25%	8
2100 – 2200	173	23%	165	22%	8
		Maximum			<u>68</u>

Note: (1) refer to Table 3.4 for survey dates with "Exhibition or Convention Hall" event

3.13 Table 3.5 shows the maximum weekday and weekend parking demand associated to the "Exhibition or Convention Hall" events is 65 and 68 car parking spaces respectively.

survey dates without any event as follows:

weekday — 19/06/2023 (Monday), 06/07/2023 (Thursday) and 24/10/2023 (Tuesday)

weekend — 15/04/2023 (Saturday), 18/06/2023 (Saturday) and 02/07/2023 (Sunday)

⁽³⁾ capacity of KITEC car park = 763 car parking spaces

Parking Demand for "Place of Entertainment"

3.14 Similar to the "Exhibition or Convention Hall" events, occupancy data were obtained for large-scale events held in the Star Hall of KITEC for the uses categorised under "Place of Entertainment". Details of these events are presented in Table 3.6.

TABLE 3.6 DETAILS OF "PLACE OF ENTERTAINMENT" EVENTS

Date	Large-scale Event	Time (hours)	Type of Event	Venue
Weekday				
05/05/2023 (Friday)	Beauty and the Beast in Concert 美女與野獸:電影與管弦樂	2000 – 2230	Concert	Star Hall
20/10/2023 (Friday)	My Little Airport Live 2023 My Little Airport 演唱會 2023	2000 – 2230	Concert	Star Hall
27/10/2023 (Friday)	One Circle "Guide Us" Worship Concert 同心圓「引領」敬拜音樂會 2023	1930 – 2230	Concert	Star Hall
Weekend				
06/05/2023 (Saturday)	Beauty and the Beast in Concert 美女與野獸:電影與管弦樂	2000 – 2230	Concert	Star Hall
24/06/2023 (Saturday)	Nickthereal Concert 2023 Hong Kong 周湯豪 2023 巡迴演唱會香港站	2000 – 2300	Concert	Star Hall
16/07/2023 (Sunday)	King Maker V Final Competition 全民造星 V 總決賽	2000 – 2300	Concert	Star Hall
21/10/2023 (Saturday)	My Little Airport Live 2023 My Little Airport 演唱會 2023	2000 – 2230	Concert	Star Hall
12/11/2023 (Sunday)	ANSW1R PG One 2023 World Tour PG One 王唯楚演唱會 2023 香港站	1930 – 2230	Concert	Star Hall

3.15 To ascertain the parking demand associated to the "Place of Entertainment" events, the average weekday and weekend car park occupancies for the event dates in Table 3.6 are compared to days without any event in KITEC. The comparison is found in Table 3.7.

TABLE 3.7 AVERAGE OCCUPANCY OF KITEC CAR PARK FOR "PLACE OF ENTERTAINMENT"

Time Period (hours)	Av On the day v Entertainm	Parking Demand Associated to <i>"Place of</i>				
	Vehicle	Percentage (3)	without any Event (2) Vehicle Percentage (3)		Entertainment" [a] — [b]	
Weekday	[a]		[b]		[4] [7]	
1800 – 1900	281	37%	233	31%	48	
1900 – 2000	322	42%	176	23%	146	
2000 – 2100	315	41%	157	21%	158	
2100 – 2200	297	39%	146	19%	151	
2200 – 2300	283	37%	138	18%	145	
2300 – 0000 152 20% 120 16%				32		
	Maximum					

TABLE 3.7 AVERAGE OCCUPANCY OF KITEC CAR PARK FOR "PLACE OF ENTERTAINMENT" (CONT'D)

Time Period (hours)	Average KITEC Car Park Occupancy On the day with "Place of Entertainment" Event (1) without any Event (2)				Parking Demand Associated to <i>"Place of</i>
	Vehicle	Percentage (3)	Vehicle Percentage (3)		Entertainment" [a] – [b]
Weekend	[a]		[b]		[a] - [D]
		1		1	
1800 – 1900	373	49%	317	42%	56
1900 – 2000	389	51%	240	31%	149
2000 – 2100	357	47%	193	25%	164
2100 – 2200	322	42%	165	22%	157
2200 – 2300	281	37%	148	19%	133
2300 – 0000	157 21% 118 15%				39
		Maximum			<u>164</u>

Note: (1) refer to Table 3.6 for survey dates with "Place of Entertainment" event

3.16 Table 3.7 shows the maximum weekday and weekend parking demand associated to the "Place of Entertainment" events is 158 and 164 car parking spaces respectively.

Adequacy of Car Parking Provision

3.17 Based on the findings from Tables 3.5 and 3.7, the parking demand for *"Exhibition or Convention Hall"* and *"Place of Entertainment"* events are summarised in Table 3.8.

TABLE 3.8 SUMMARY OF PARKING DEMAND ANALYSIS

Type of Event	Capacity in KITEC [a]	Day of Week	Maximum Parking Demand (veh) [b]	Demand Rate [b] ÷ [a]
"Exhibition or	11,312m ²	Weekday	65	0.5746 veh/100m ²
Convention Hall"		Weekend	68	0.6011 veh/100m ²
"Place of	3,600 seats	Weekday	158	0.0439 veh/seat
Entertainment"		Weekend	164	0.0456 veh/seat

(i) "Exhibition or Convention Hall"

3.18 Based on the maximum weekend parking demand, i.e. 0.6011 veh/100m², the "Exhibition or Convention Hall" use in the Proposed Redevelopment would require 125 car parking spaces [Calculation: 0.6011 × 20773 ÷ 100]. Hence, the provision of 133 car parking spaces for "Exhibition or Convention Hall" is sufficient to accommodate the maximum weekday and weekend parking demand.

survey dates without any event as follows: weekday - 19/06/2023 (Monday), 06/07/2023 (Thursday) and 24/10/2023 (Tuesday) weekend - 15/04/2023 (Saturday), 18/06/2023 (Saturday) and 02/07/2023 (Sunday)

⁽³⁾ capacity of KITEC car park = 763 car parking spaces

Traffic Impact Assessment Final Report

(ii) *"Pl*ace of Entertainment"

3.19 Based on the maximum weekend parking demand, i.e. 0.0456 veh/seat, the "Place of Entertainment" use in the Proposed Redevelopment would require some 82 car parking spaces [Calculation: 0.0456 × 1800]. Hence, the provision of 86 car parking spaces for "Exhibition or Convention Hall" is sufficient to accommodate the maximum weekday and weekend parking demand.

Internal Transport Layout

- 3.20 The run-in / out of the Proposed Redevelopment is provided at Trademart Drive near the southern site boundary, and is <u>close to the existing run-in / out for KITEC</u>. The proposed run-in / out and layout plans with the internal transport facilities, i.e. ground, 1st, basement 1st and 2nd, are presented in Figures 3.1 3.4.
- 3.21 According to Volume 2 of TPDM, "the width of run-ins should be kept to the minimum compatible with satisfactory operation of vehicles using the run-in. The minimum width should be such that a vehicle can enter the run in from the near side lane without encroachment onto an adjacent lane". As shown in Figures SP/GF/101 102, the 8m run-in / out is required so that the 11m HGV and 12m tour bus could enter / leave the Proposed Redevelopment without encroaching into the road kerb / adjacent traffic lane.
- 3.22 In view that internal pick-up / drop-off area is not available in the existing KITEC, the pick-up / drop-off activities, including car, taxi and coach / shuttle bus are conducted at Trademart Drive. To minimise the pick-up / drop-off activities along Trademart Drive, internal pick-up / drop-off area is provided for the Proposed Redevelopment which is on G/F as shown in Figure 3.2.
- 3.23 To minimise the likelihood of vehicle tailback when entering the basement car park, the car park entry gates will be positioned as far away as possible from the run-in / out. Detailed design of internal transport layout including the internal pick-up / drop-off area will be submitted in the GBP stage.

Improvement to Pedestrian Connectivity and Accessibility

3.24 The Kai Tak OZP shows that the existing footbridge across Kai Fuk Road (the existing "Kai Fuk Road footbridge") will connect to the future commercial sites located at the South Apron Area and to the future waterfront promenade via an elevated walkway. To enhance the connectivity and accessibility between Kowloon Bay Business Area and the Kai Tak Development (KTD), the Owner of KITEC has proposed to construct two footbridges, namely the Northern Footbridge Extension and Southern Footbridge.

- 3.25 The Applicant will provide internal walkway(s) to link up the Northern Footbridge Extension (via the Kai Cheung Road footbridge) and the Southern Footbridge with the footpaths at Trademart Drive and / or Kai Cheung Road in accordance to the Lease. The provision of the Northern Footbridge Extension and Southern Footbridge, will form part of the comprehensive elevated pedestrian network for the purpose to enhance the connectivity and accessibility between South Apron Area of KTD, MTR Kai Tak Station and the Kowloon Bay Business Area. Public can access the Northern Footbridge Extension and Southern Footbridge free of charge.
- 3.26 The general layout of the Northern Footbridge Extension and Southern Footbridge is shown in Figure 3.5, and details are described below:

(I) Northern Footbridge Extension

- 3.27 The Proposed Northern Footbridge is an <u>extension of the existing Kai Cheung Road footbridge</u>, which currently link KITEC and Electrical and Mechanical Services Department (EMSD) Headquarters. From the Kai Cheung Road footbridge, the Northern Footbridge Extension runs along the western side of EMSD Headquarters, and across Shing Kai Road and terminates at the Kai Tak River Bank, some 500m from MTR Kai Tak Station.
- 3.28 Barrier-free facility will be provided at the Kai Tak River Bank end of the Proposed Northern Footbridge. Within the Proposed Redevelopment, barrier-free and 24-hour access will be provided connecting the Kai Cheung Road footbridge to the street level.

(II) Southern Footbridge

- 3.29 The eastern landing of Kai Fuk Road footbridge is located adjacent to KITEC, and the western landing will connect to the future commercial sites located at the South Apron Area and to the future waterfront promenade.
- 3.30 The Southern Footbridge will conveniently and directly connect the Proposed Redevelopment with the Kai Fuk Road footbridge. Within the Proposed Redevelopment, barrier-free and 24-hour access will be provided connecting the Proposed Southern Footbridge to the street level.
- 3.31 Detailed design of these two footbridges is on-going and will be dealt with under separate application procedures. After the s16 planning application has been approved, and during the detailed design stage, the design of the internal pedestrian routings between the footbridges and street level will be carried out.

Planned Cautionary Crossing at Trademart Drive

3.32 The Applicant is willing to implement the planned cautionary crossing, as per the design drawing from Energizing Kowloon East Office (EKEO) found in Appendix C, at Trademart Drive as part of the KITEC redevelopment project.

Provision of Feeder Service

3.33 Concurrent with the closure of KITEC, the free shuttle bus service was suspended on 30th June 2024.

- 3.34 For the Approved Redevelopment (TPB No. A/K22/34), the TPB advised the Applicant "to provide sufficient shuttle bus service between the proposed development and MTR Kowloon Bay Station and to explore the possibility to provide additional shuttle bus services for connections with other nearby destinations".
- 3.35 To address the TPB advice and subject to the approval by Transport Department, the Applicant is willing to resume the operation of free shuttle bus service upon completion of the Proposed Redevelopment. Alternatively, feeder service operated by franchised buses could be provided to connect the Proposed Redevelopment and MTR Kowloon Bay or Kai Tak Stations. Descriptions on the feeder service are presented in Paragraphs 4.41 4.46.

Swept Path Analysis

3.36 The CAD-based swept path analysis programme, *Autodesk Vehicle Tracking*, was used to check the ease of manoeuvring of vehicles, and are found to have no problems. The swept path analysis drawings are found in the Appendix D.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Redevelopment is expected to be completed in 2029, thus, the design years adopted for the capacity analysis are 2029 and 2032.

Traffic and Pedestrian Growth

4.2 In order to produce the traffic forecast for year 2032, reference is made to the population and employment data found in the latest "Territorial Population and Employment Data Matrix" ("TPEDM") published by Planning Department and is presented in Table 4.1.

TABLE 4.1 TPEDM DATA FOR KWUN TONG

Year	Population	Employment	Total
2019	693,900	395,350	1,089,250
2031	741,300	408,250	1,149,550
	Annual Growth Rate		0.45%

4.3 Table 4.1 shows that the annual growth rate for population and employment is 0.45% from 2019 – 2031. To err on the high side, the traffic and pedestrian growth rate of <u>0.5%</u> per annum is adopted to produce the traffic forecast for year 2032.

Traffic Forecast

- 4.4 The BDTM from "Quotation No. TD 311/2019 Base District Traffic Models for the Urban Area 2020 Update" (the "BDTM Study") obtained from Transport Department (TD) was adopted to produce the traffic forecast. The Proposed Redevelopment is located within the K2 Base District Traffic Model (BDTM), and the BDTM traffic forecast for year 2031 is used.
- 4.5 To produce the traffic forecast for the design years, traffic flows are estimated with reference to the following:
 - i. peak hour traffic models from the 2026 BDTM (for design year 2029) and 2031 BDTM (for design year 2032);
 - ii. traffic growth rates to the design years, i.e. 0.5% per annum;
 - iii. planned developments located in the vicinity; and
 - iv. traffic generation of the Proposed Redevelopment.

Comparison of Traffic Generation

- 4.6 Trip generation rates used to estimate the traffic generation of the various uses in the Proposed Redevelopment are described as follows:
 - (i) "Flat", "Office", "Eating Place", "Shop and Services", "Exhibition or Convention Hall" and "Hotel"
- 4.7 To estimate traffic generation, trip generation rates found in Volume 1 of the TPDM are adopted for "Flat", "Office" and "Hotel".

4.8 "Eating Place", "Shop and Services" and "Exhibition or Convention Hall" are regarded similar as "Retail", hence, the trip generation rates for "Retail" are adopted for these uses.

(ii) "Social Welfare Facility" and "School (Kindergarten)"

4.9 The TPDM has no trip generation rates for social welfare facilities and kindergarten, therefore, reference is made to "Community Facilities" and "Kindergarten (Private)" found in the Data Record (DR) No. 439, and the BDTM Study Final Report respectively, both which are published by TD. The extracts of DR 439 and the BDTM Study Final Report are attached in Appendix E.

(iii) "Place of Entertainment"

4.10 The peak hour traffic generation for "Place of Entertainment" occurs before the start and end of the events. To estimate the trip generation rate, the weekday peak hour traffic generation obtained for the event dates in Table 3.6 are compared to the days without any event in KITEC. The comparison is found in Table 4.2.

TABLE 4.2 TRIP GENERATION RATE FOR "PLACE OF ENTERTAINMENT"

	Item	Item Unit		art Time	Event Finish Time		
			IN	OUT	IN	OUT	
u	With "Place of	pcu/hr	357	333	219	366	
ic	Entertainment" Event [a]						
Traffic Generation	Without any Event [b]	pcu/hr	171	217	70	106	
L L	Difference	pcu/hr	186	116	149	260	
	[c] = [a] - [b]						
Tr	ip Generation Rate for	pcu/hr/seat	0.0516	0.0321	0.0414	0.0722	
"P	lace of Entertainment"		0.0837		0.1136		
[4	$d] = [c] \div 3,600 \text{ seats}$						

Note:

- (1) survey period from 1800 2000 and 2200 0000 hours
- refer to Table 3.6 for survey dates with "Place of Entertainment" event
- (3) survey dates without any event: 19/06/2023 (Monday), 06/07/2023 (Thursday) and 24/10/2023 (Tuesday)

(iii) Adopted Trip Generation Rate

- 4.11 As mentioned in Table 2.7 and shown in Figure 2.16, the subject site is served by no less than five bus and minibus routes which are located within 500m walk away. Based on Volume 1 of TPDM, the subject site has Accessibility Level A.
- 4.12 To conduct the worst case scenario, the event start time for "Place of Entertainment" is assumed to coincide with the AM peak hour. During the PM peak hour, the higher trip generation rates among the event start and finish times are adopted, i.e. 0.1136 pcu/hr/seat (2-way).
- 4.13 The adopted trip generation rates are presented in Table 4.3, and the calculated traffic generation in Table 4.4.

TABLE 4.3 TRIP GENERATION RATES

Use	Unit	Trip Generation Rates				
		AM	Peak	PM	Peak	
		IN	OUT	IN	OUT	
Residential (average flat size 60m ²) (1) (2)	pcu/hr/flat	0.0425	0.0718	0.0370	0.0286	
Office (2)	pcu/hr/100m ²	0.2452	0.1703	0.1175	0.1573	
Eating Place / Shop and Services	pcu/hr/100m ²	0.2434	0.2296	0.3563	0.3100	
/ Exhibition or Convention Hall (2)						
Hotel	pcu/hr/room	0.1457	0.1329	0.1546	0.1290	
Place of Entertainment	pcu/hr/seat	0.0516	0.0321	0.0414	0.0722	
Social Welfare Facility (3)	pcu/hr/100m ²	0.2350	0.2350	0.1150	0.1150	
School (Kindergarten) (4)	pcu/hr/class	6.9375	6.9375	5.4375	5.4375	

Note: (1) Accessibility Level = A, i.e. well served by public transport systems with railway station / light rail transit station / bus terminus or with no less than five bus / mini-bus routes, within 500m of the development site

TABLE 4.4 COMPARISON OF TRAFFIC GENERATION

Use	Quantity		Traff	ic Gener	ation (po	cu/hr)	
			AM Peak	(PM Peak	
		IN	OUT	2-way	IN	OUT	2-way
KITEC (1)							
Office	63,934m ²	157	109	266	76	101	177
Eating Place / Shop and Services	73,982m ²	181	170	351	264	230	494
Exhibition or Convention Hall	17,598m ²	43	41	84	63	55	118
Place of Entertainment	4,729 seats	244	152	396	196	341	537
Total [a]		625	472	1,097	599	727	1,326
Approved Redevelopment (for in	formation o	nly) ⁽²⁾					
Office	132,437m ²	325	226	551	156	209	365
Eating Place / Shop and Services	21,150m ²	52	49	101	76	66	142
Exhibition or Convention Hall	11,285m ²	28	26	54	41	35	76
Total [b]		405	301	706	273	310	583
Proposed Redevelopment							
Flat	1,494 flats	64	108	172	56	43	99
Office	35,600m ²	88	61	149	42	56	98
Eating Place / Shop and Services	13,403m ²	33	31	64	48	42	90
Exhibition or Convention Hall	20,773m ²	51	48	99	75	65	140
Hotel	720 rooms	105	96	201	112	93	205
Place of Entertainment	1,800 seats	93	58	151	75	130	205
Social Welfare Facility	2,090m ²	5	5	10	3	3	6
School (Kindergarten)	6 classes	42	42	84	33	33	66
Total [c]		481	449	930	444	465	908
Difference [c] – [b]		<u>76</u>	148	224	<u>171</u>	<u>155</u>	325
Difference [c] = [b]		(19%)	(49%)	(32%)	(63%)	(50%)	(56%)
Difference [c] – [a]		<u>- 144</u>	<u>-23</u>	<u>- 167</u>	<u>– 155</u>	<u>-262</u>	<u>-418</u>
		(-23%)	(-5%)	(-15%)	(-26%)	(-36%)	(-32%)

Note: (1) based on 2018 A&A works

⁽²⁾ extract from Volume 1 of TPDM

⁽³⁾ extract from DR 439

⁽⁴⁾ extract from Final Report of the BDTM Study

⁽²⁾ extract from TPB No. A/K22/34 approved on 17th March 2023

4.14 Compared with KITEC, the Proposed Redevelopment is expected to generate <u>less</u> <u>traffic</u>, i.e. 167 and 418 pcu/hour (2-way), or equivalent to reduction of <u>15%</u> and 32% traffic during the AM and PM peak hours.

Planned Developments

- 4.15 According to the "BDTM Study", KTD and the strategic road network, e.g. Central Kowloon Route and Trunk Road T2, have been included in the 2031 BDTM.
- 4.16 Reference is made to the Town Planning Board (TPB) Paper No. 10236 "Further Consideration of Review Study of Kai Tak Development and Proposed Amendments to the Approved Kai Tak Outline Zoning Plan No. S/K22/4" published in 2017, MPC Paper No. 9/21: "Proposed Amendments to the Approved Kai Tak Outline Zoning Plan No. S/K22/6" published in 2021 and TPB Paper No. 10860 "... on Proposed Amendments to the Draft Kai Tak Outline Zoning Plan No. S/K22/7 ..." published in 2022. It is noted that the development intensity in KTD has changed and details are found in Appendix F. To reflect the change in traffic generation, the BDTM is updated accordingly.
- 4.17 Apart from the KTD, the development parameters of other major planned developments found in the vicinity of the subject site are also summarised in Table 4.5.

TABLE 4.5 DETAILS OF MAJOR PLANNED DEVELOPMENTS

Ref.	Location	Use	Development Parameters (Approx.)	Planned Completion Year
A	Public Housing Development at Wang Chiu Road	Public Housing	around 4,070 flats and around 1,850m ² GFA retail with community facilities	2025
В	20 Kai Cheung Road	Commercial	office GFA of around 131,421m ² and retail GFA of around 5,840m ²	2025
С	NKIL 5890 at 13 Sheung Yuet Road	Office	office GFA of around 24,423m ²	2023 (1)
D	Development at Kowloon Bay Action Area	Commercial	total GFA of around 500,000m ²	from 2028
E	Public Housing Development at Yip On Factory Estate	Public Housing	around 2,200 flats with associated welfare facilities	2029/30
F	7 Wang Tai Road	Office	office GFA of around 38,500m ²	2026
G	New Acute Hospital at Kai Tak Development Area	Hospital	around 2,400 beds	2026
Н	1 – 5 Kai Hing Road	Residential	around 1,782 flats and retail GFA of around 600m ²	2025
Ι	7 Kai Hing Road	Office	office GFA of around 43,440m2 and retail GFA of around 5,500m ²	2026

Note: (1) redevelopment is yet to complete and construction works were not observed on-site. To err on the high side, traffic generation remains included in the traffic forecast.

4.18 The major planned developments listed in Table 4.5 have been included in the traffic forecast.

2029 and 2032 Junction and Link Capacity Analysis

- 4.19 The 2029 and 2032 junction capacity analyses are conducted for the following scenarios:
 - with KITEC;
 - with Approved Redevelopment; and
 - with Proposed Redevelopment.
- 4.20 The 2029 and 2032 peak hour traffic flows for the 3 scenarios are shown in Figures 4.1 4.6 respectively.
- 4.21 The design year junction capacity analysis for the cases with the Approved Redevelopment and with the Proposed Redevelopment are summarised in Table 4.6, and detailed calculations are found in Appendix A.

TABLE 4.6 DESIGN YEAR JUNCTION OPERATIONAL PERFORMANCE

Ref.	Signal Junction	Reserve Capacity / Ratio-of-Flow to Capacity (1)						
	g ,	With KITEC		With A	pproved lopment	With Proposed Redevelopment		
		AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	
Year 2	2029							
J1	Kai Cheung Road / Trademart Drive	0.555	0.745	0.418	0.464	0.537	0.568	
J2	Kai Cheung Road / Wang Kwong Road ⁽²⁾	22%	29%	23%	32%	22%	31%	
J3	Wang Kwong Road / Lam Hing Street (2)	33%	24%	34%	25%	34%	25%	
J4	Wang Kwong Road / Wang Chin Street	0.213	0.223	0.196	0.188	0.202	0.205	
J5	Kai Cheung Road / Wang Chiu Road (2)	28%	26%	29%	29%	29%	28%	
J6	Wang Chiu Road / Lam Hing Street (2)	20%	38%	20%	38%	20%	38%	
J <i>7</i>	Wang Chiu Road / Sheung Yuet Road (2)	27%	33%	27%	33%	27%	33%	
J8	Wang Chiu Road / Lam Fung Street (2)	57%	54%	59%	55%	58%	54%	
J9	Sheung Yee Road / Wang Chiu Road (2)	22%	29%	22%	29%	22%	29%	
J10	Shing Kai Road / Muk On Street / Kai Shing Street	34%	55%	35%	58%	35%	57%	
J11	Wang Chiu Road / Kai Lai Road / Kai Lok Street	32%	44%	32%	44%	32%	44%	
J12	Wang Kwong Road / Kai Wah Street	28%	44%	28%	44%	28%	44%	

TABLE 4.6 DESIGN YEAR JUNCTION OPERATIONAL PERFORMANCE (CONT'D)

Ref.	Signal Junction	Reserve Capacity / Ratio-of-Flow to Capacity (1)							
		With	KITEC		pproved lopment		roposed lopment		
		AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak		
Year 2	2032								
J1	Kai Cheung Road / Trademart Drive	0.564	0.761	0.425	0.476	0.546	0.582		
J2	Kai Cheung Road / Wang Kwong Road ⁽²⁾	20%	27%	21%	30%	20%	29%		
J3	Wang Kwong Road / Lam Hing Street (2)	32%	22%	32%	23%	32%	23%		
J4	Wang Kwong Road / Wang Chin Street	0.217	0.226	0.199	0.190	0.205	0.208		
J5	Kai Cheung Road / Wang Chiu Road ⁽²⁾	26%	24%	27%	28%	26%	26%		
J6	Wang Chiu Road / Lam Hing Street (2)	19%	36%	19%	36%	19%	36%		
J7	Wang Chiu Road / Sheung Yuet Road ⁽²⁾	25%	31%	25%	31%	25%	31%		
J8	Wang Chiu Road / Lam Fung Street (2)	55%	51%	56%	53%	56%	52%		
J9	Sheung Yee Road / Wang Chiu Road ⁽²⁾	20%	27%	20%	27%	20%	27%		
J10	Shing Kai Road / Muk On Street / Kai Shing Street	32%	53%	33%	56%	33%	54%		
J11	Wang Chiu Road / Kai Lai Road / Kai Lok Street	29%	42%	29%	42%	29%	42%		
J12	Wang Kwong Road / Kai Wah Street	26%	42%	27%	42%	26%	42%		

Note: RC – Reserve Capacity

RFC – Ratio-of-Flow to Capacity

(2) planned junction improvement by others is summarised below:

Ref.	Figure	Project	Improvement under Project	Planned
		Proponent		Completion Year
J2	4.7	Housing	Public Housing Development	2029/30
		Department	at Yip On Factory Estate	
J3	4.8	Applicant of TPB	20 Kai Cheung Road	2025
		No. A/K13/318		
J5	4.9	EKEO	Kowloon Bay Action Area	from 2028
J6	4.10	EKEO	Kowloon Bay Action Area	from 2028
J <i>7</i>	4.11	EKEO	Kowloon Bay Action Area	from 2028
J8	4.12	EKEO	Kowloon Bay Business Area	see * below
			Pedestrian Environment	
			Improvement	
J9	4.13	EKEO	Kowloon Bay Action Area	from 2028

^{*} subject to final design of the proposed Elevated Walkway System in Kowloon Bay

4.22 The 2029 and 2032 link capacity for the local road network is also assessed and the results are shown in Table 4.7.

⁽¹⁾ refer to Table 2.2 for the type of junction and performance indicator

TABLE 4.7 DESIGN YEAR LINK CAPACITY ASSESSMENT

Road Section ⁽¹⁾	Bound		With KITE		TEC With Ap			opme	nt	R	With Proposed Redevelopment		nt
		Flo	ffic ws n/hr)		Ratio		ffic ws /hr)		Ratio		ffic ws 1/hr)		Ratio
		AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Year 2029													
Kai Cheung	EB	1,681	1,765	0.50	0.53	1,654	1,678	0.49	0.50	1,678	1,710	0.50	0.51
Road	WB	2,789	2,530	0.77	0.70	2,748	2,476	0.76	0.69	2,762	2,504	0.77	0.70
Wang Kwong Road	2-way	952	808	0.59	0.51	948	795	0.59	0.50	950	802	0.59	0.50
Wang Chiu Road	2-way	2,166	1,824	0.54	0.46	2,166	1,824	0.54	0.46	2,166	1,824	0.54	0.46
Sheung Yee	EB	1,368	1,282	0.57	0.53	1,365	1,271	0.57	0.53	1,368	1,275	0.57	0.53
Road	WB	458	473	0.13	0.13	458	473	0.13	0.13	485	473	0.13	0.13
Trademart	NB	573	794	0.52	0.72	433	460	0.39	0.42	554	584	0.50	0.53
Drive	SB	385	356	0.11	0.10	337	299	0.09	0.08	354	328	0.10	0.09
Lam Hing Street	2-way	638	604	0.80	0.75	638	604	0.80	0.75	638	604	0.80	0.75
Sheung Yuet	EB	382	293	0.17	0.13	382	293	0.17	0.13	382	293	0.17	0.13
Road	WB	408	527	0.19	0.24	387	490	0.18	0.22	393	509	0.18	0.23
Year 2032													
Kai Cheung	EB	1,706	1,790	0.51	0.53	1,678	1,702	0.50	0.51	1,702	1,734	0.51	0.52
Road	WB	2,829	2,566	0.79	0.71	2,788	2,512	0.77	0.70	,	2,540	0.78	0.71
Wang Kwong Road	2-way	966	821	0.60	0.51	962	808	0.60	0.51	963	814	0.60	0.51
Wang Chiu Road	2-way	2,199	1,851	0.55	0.46	2,199	1,851	0.55	0.46	2,199	1,851	0.55	0.46
Sheung Yee	EB	1,388	1,302	0.58	0.54	1,385	1,291	0.58	0.54	1,388	1,295	0.58	0.54
Road	WB	465	480	0.13	0.13	465	480	0.13	0.13	465	480	0.13	0.13
Trademart	NB	576	798	0.52	0.73	437	464	0.40	0.42	558	588	0.51	0.53
Drive	SB	389	359	0.11	0.10	341	303	0.09	0.08	358	332	0.10	0.09
Lam Hing Street	2-way	648	612	0.81	0.77	648	612	0.81	0.77	648	612	0.81	0.77
Sheung Yuet	EB	388	297	0.18	0.14	388	297	0.18	0.14	388	297	0.18	0.14
Road	WB	413	533	0.19	0.24	393	496	0.18	0.23	399	515	0.18	0.23

Note: EB – eastbound

WB – westbound

NB – northbound

SB – southbound

4.23 The above results indicate that the analysed junctions and road links are expected to operate with sufficient capacity during the peak hours in 2029 and 2032. The junctions analysed have sufficient capacity to accommodate the (i) expected traffic growth, and (ii) traffic generated by the Proposed Redevelopment.

Pedestrian Generation

4.24 The estimation of pedestrian generation rates for various uses in the Proposed Redevelopment are presented below:

highest traffic flow along the surveyed road sections

⁽²⁾ V/C Ratio – Volume to Capacity Ratio

⁽³⁾ refer to Table 2.3 for the capacity of each road

- (i) "Flat", "Office", "Eating Place", "Shop and Services", "Exhibition or Convention Hall", "Hotel", "Social Welfare Facility" and "School (Kindergarten)"
- 4.25 As mentioned in Paragraph 4.8, "Eating Place", "Shop and Services" and "Exhibition or Convention Hall" are regarded similar as "Retail". Details of the surveyed developments, regarded as similar in terms of location, use and accessibility to public transport services, which are used to derive the pedestrian generate for residential, office, retail, hotel, social welfare facility and kindergarten are given in Table 4.8.

TABLE 4.8 DETAILS OF SURVEYED DEVELOPMENTS

Use	Development	Location	Acc. Level (1)	Development Parameters (Approx.)
Residential	Grand Waterfront	38 San Ma Tau Street, To Kwa Wan	А	1,782 flats (average flat size = 51m ²)
Office	Millennium City Phase II	376 – 378 Kwun Tong Road, Kwun Tong	А	office GFA of around 24,800m ²
Retail	The ONE	100 Nathan Road, Tsim Sha Tsui	А	retail GFA of around 37,500m ²
Hotel	Harbour Plaza 8 Degrees	199 Kowloon City Road, Ma Tau Chung	А	704 rooms
Social Welfare Facility	On Tai Estate Ancillary Facilities Block	23 On Sau Road, Kwun Tong	A	around 8,000m ² welfare facilities for elderly and disabled persons
Kindergarten	Kowloon City Baptist Church Kindergarten	206 Argyle Street Kowloon City	А	6 classrooms

Note: (1) Accessibility (Acc.) Level = A, i.e. well served by public transport systems with railway station / light rail transit station / bus terminus or with no less than five bus / mini-bus routes, within 500m of the development site

(ii) "Place of Entertainment"

- 4.26 From the operation of KITEC, it is understood that the event finish time is after the operating hours of most offices, restaurants and shops. Hence, pedestrian generation for "Place of Entertainment" is obtained based on the number of pedestrians leaving KITEC after the event finish time on the dates as shown in Table 3.6.
- 4.27 However, pedestrian generation associated to "Place of Entertainment" during the event start time could not be quantified because the pedestrian entering KITEC could not be distinguished from those visiting other uses, i.e. shops, offices, etc. To err on the high side, the pedestrian generation rate during the event start time is assumed to be the same as the event finish time, and the adopted pedestrian generation rates are presented in Table 4.9.

TABLE 4.9 PEDESTRIAN GENERATION RATE FOR "PLACE OF ENTERTAINMENT"

Item	Unit	On the day w Entertainme	vith <i>"Place of</i> ent" Event ⁽¹⁾
		Event Start Time	Event Finish Time
Pedestrian Generation [a]	ped/15-min		681
Pedestrian Generation Rate = [a] ÷ 3,600 seats	ped/15-min/seat	0.1892 (2)	0.1892

Note: (1) refer to Table 3.6 for survey dates with "Place of Entertainment" event

(iii) Adopted Pedestrian Generation Rate

4.28 By adopting the same assumption mentioned in Paragraph 4.12, the event start time for "Place of Entertainment" is assumed to coincide with the AM peak hour. To conduct the worst case scenario, the event finish time is assumed to coincide with the PM peak hour. Based on the survey findings, the adopted pedestrian generation rates are presented in Table 4.10.

TABLE 4.10 PEDESTRIAN GENERATION RATES

Use	Unit	Pedestrian Generation Rate		ates	
		AM	Peak	PM Peak	
		IN	OUT	IN	OUT
Residential	ped/15-min/flat	0.0202	0.0875	0.0853	0.0348
Office	ped/15-min/100m ²	0.6250	0.1935	0.1613	0.3669
Eating Place / Shop and Services	ped/15-min/100m ²	0.2347	0.1147	1.0348	0.8641
/ Exhibition or Convention Hall					
Hotel	ped/15-min/room	0.0355	0.0668	0.0696	0.0483
Place of Entertainment	ped/15-min/seat	0.1892	0	0	0.1892
Social Welfare Facility	ped/15-min/100m ²	0.1111	0.0889	0.0222	0.3000
School (Kindergarten)	ped/15-min/class	6.6667	5.1667	1.3333	9.8333

4.29 The pedestrian generation rates presented in Table 4.10 are used to calculate the pedestrian generated by Proposed Redevelopment, and the calculated pedestrian generation is presented in Table 4.11.

⁽²⁾ assume the same as the event finish time

TABLE 4.11 COMPARISON OF PEDESTRIAN GENERATION

Use	Quantity	Pedestrian Generation (ped/15-min)					1)
	,	AM Peak			PM Peak		
		IN	OUT	2-way	IN	OUT	2-way
KITEC (1)							
Office	63,934m ²	400	124	524	104	235	339
Eating Place / Shop and Services	73,982m ²	174	85	259	766	640	1,406
Exhibition or Convention Hall	17,598m ²	42	21	63	183	152	335
Place of Entertainment	4,729 seats	895	0	895	0	895	895
Total [a]		1,511	230	1,741	1,053	1,922	2,975
Approved Redevelopment (for in	formation o	nly) ⁽²⁾					
Office	132,437m ²	828	257	1,085	214	486	700
Eating Place / Shop and Services	21,150m ²	50	25	75	219	183	402
Exhibition or Convention Hall	11,285m ²	27	13	40	117	98	215
Total [b]		905	295	1,200	550	767	1,317
Proposed Redevelopment							
Flat	1,494 flats	31	131	162	128	52	180
Office	35,600m ²	223	69	292	58	131	189
Eating Place / Shop and Services	13,403m ²	32	16	48	139	116	255
Exhibition or Convention Hall	20,773m ²	49	24	73	215	180	395
Hotel	720 rooms	26	49	75	51	35	86
Place of Entertainment	1,800 seats	341	0	341	0	341	341
Social Welfare Facility	2,090m ²	3	2	5	1	7	8
School (Kindergarten)	6 classes	41	32	73	8	59	67
Total [c]		746	323	1,069	600	921	1,521
Difference [c] – [b]		<u>– 159</u>	<u>28</u>	<u>- 131</u>	<u>50</u>	<u>154</u>	<u>204</u>
Difference [c] = [b]		(-18%)	(9%)	(-11%)	(9%)	(20%)	(15%)
Difference [c] – [a]		<u>-765</u>	93	-672	<u>-453</u>	-1,001	<u>- 1,454</u>
Difference [c] – [a]		(-51%)	(40%)	(-39%)	(-43%)	(-52%)	(-49%)

Note: (1) base

4.30 Compared with the existing KITEC, the Proposed Redevelopment is expected to generate <u>less pedestrians</u>, i.e. 672 and 1,454 ped/15-min (2-way), or equivalent to reduction of **39% and 49% pedestrians** during the AM and PM peak hours.

2029 and 2032 Level-of-Service Assessment

- 4.31 The design year pedestrian flows are derived with reference to the following:
 - i. observed peak 15-minute pedestrian flows in year 2023;
 - ii. annual growth rate from 2023 to the design years, i.e. 0.5%; and
 - iii. pedestrian generation for 3 scenarios, i.e. with (i) KITEC; (ii) Approved Redevelopment; and (iii) Proposed Redevelopment.
- 4.32 The 2029 and 2032 peak 15-minute pedestrian flows for the 3 scenarios are shown in Figures 4.14 4.19 respectively, and the corresponding LOS assessment is presented in Table 4.12.

based on 2018 A&A works

extract from TPB No. A/K22/34 approved on 17th March 2023

TABLE 4.12 DESIGN YEAR LEVEL-OF-SERVICE ASSESSMENT

D (F					I	5.1.4	1	(1)		
Ref.	Footpath	Peak	2-way Peak Pedestrian Flows (1)								
		Period	With KITEC			With Approved Redevelopment			With Proposed		
				D (100				Redevelopment		
			Flow	Rate	LOS	Flow	Rate	LOS	Flow	Rate	LOS
			(ped/	(ped/		(ped/	(ped/		(ped/	(ped/	
7/	2020		15-min)	min/m)		15-min)	min/m)		15-min)	min/m)	
Year			ı								
F1	Western footpath	AM	825	18.3	В	701	15.6	Α	629	14.0	<u> </u>
	of Trademart Drive	PM	1400	31.1	С	785	17.4	В	898	20.0	В
F2	Eastern footpath of	AM	26	0.5	Α	26	0.5	Α	26	0.5	Α
	Trademart Drive	PM	22	0.4	Α	22	0.4	Α	22	0.4	Α
F3	Northern footpath	AM	198	7.3	Α	145	5.4	Α	132	4.9	Α
	of Lam Hing Street	PM	339	12.6	Α	174	6.4	Α	195	7.2	Α
F4	Southern footpath	AM	205	3.9	Α	151	2.9	Α	138	2.6	Α
	of Lam Hing Street	PM	322	6.1	Α	156	3.0	Α	177	3.4	Α
F5	Western footpath of	AM	239	8.0	Α	207	6.9	Α	203	6.8	Α
	Wang Chin Street	PM	340	11.3	Α	168	5.6	Α	189	6.3	Α
F6	Eastern footpath of	AM	31	0.9	Α	31	0.9	Α	31	0.9	Α
	Wang Chin Street	PM	37	1.1	Α	37	1.1	Α	37	1.1	Α
Year	2032		•						•		
F1	Western footpath	AM	826	18.4	В	702	15.6	Α	630	14.0	Α
	of Trademart Drive	PM	1400	31.1	С	785	17.4	В	898	20.0	В
F2	Eastern footpath of	AM	26	0.5	Α	26	0.5	Α	26	0.5	Α
	Trademart Drive	PM	22	0.4	Α	22	0.4	Α	22	0.4	Α
F3	Northern footpath	AM	198	7.3	Α	145	5.4	Α	132	4.9	Α
	of Lam Hing Street	PM	340	12.6	Α	175	6.5	Α	196	7.3	Α
F4	Southern footpath	AM	206	3.9	Α	152	2.9	Α	139	2.6	Α
	of Lam Hing Street	PM	322	6.1	Α	156	3.0	Α	177	3.4	Α
F5	Western footpath of	AM	239	8.0	Α	207	6.9	Α	203	6.8	Α
	Wang Chin Street	PM	340	11.3	Α	168	5.6	Α	189	6.3	Α
F6	Eastern footpath of	AM	31	0.9	Α	31	0.9	Α	31	0.9	Α
	Wang Chin Street	PM	37	1.1	Α	37	1.1	Α	37	1.1	Α

Note: (1) highest pedestrian flows along the whole section of walkway

4.33 The above results indicate that the analysed footpaths are expected to operate with LOS A to C during the peak hours in 2029 and 2032. The results show that the footpaths analysed has sufficient capacity to accommodate the (i) expected pedestrian growth; and (ii) change in pedestrian flows associated to the Proposed Redevelopment.

Modal Split of Transport Demand

4.34 The projected public transport demand of the Proposed Redevelopment by various transport modes is estimated with reference to the "2021 Population Census" published by Census and Statistics Department (C&SD). The estimated modal split is presented in Table 4.13.

TABLE 4.13 MODAL SPLIT OF PUBLIC TRANSPORT DEMAND FOR KWUN TONG

Publi	c Transport Mode	1	Percentage			
		Working Population	Students	Total		
Railway		99,580	31,832	131,412	419	%
Road-based	Bus / Minibus	87,194	32,514	119,708	37%	
Public Transport	Company Bus / School Bus / Shuttle Service	7,378	11,699	19,077	6%	44%
Service	Taxi	1,844	519	2,363	1%	
On foot only		24,659	23,665	48,324	15	%
	Total	220,655	100,229	320,884	100)%

Source: 2021 Population Census

4.35 Table 4.13 shows that around 41% of daily travellers use railway and 44% use the road-based public transport service, e.g. franchised bus, minibus, taxi, etc. The remaining 15% of population travel to their work places / schools on foot only.

Impact to Public Transport Services

4.36 Based on the findings in Table 4.11, the maximum number of pedestrians generated by the Proposed Redevelopment is found to be 6,084 ped/hr (two-way) [Calculation: 1521 × 4] during the PM peak hour. With the modal split estimated in Table 4.13, the public transport demand of the Proposed Redevelopment is presented in Table 4.14.

TABLE 4.14 PUBLIC TRANSPORT DEMAND OF THE PROPOSED REDEVELOPMENT

Public Transport Mode	Percentage (1)	No. of 2-way Pedestrian Trips (ped/hr)
Railway	41%	2,495
Road-based Public Transport Service	44%	2,677
On foot only	15%	912
Total	100%	<u>6,084</u>

Note: (1) from Table 4.13

- 4.37 To be conservative, it is assumed that all rail passengers will travel to the MTR Kowloon Bay or Kai Tak Stations by interchanging with bus / minibus services, taking into consideration their distances to the Proposed Redevelopment. Hence, the maximum road-based passenger demand is found to be 5,172 ped/hr [Calculation: 2495 + 2677].
- 4.38 As mentioned in Paragraph 2.21, the existing franchised bus and GMB services have surplus capacity of over 8,500 and 6,500 passengers during the AM and PM peak hours respectively. Hence, the surplus capacity would be <u>capable to absorb the additional road-based passenger demand</u> associated to the Proposed Redevelopment.

- 4.39 With reference to Serial No. TLB162 of "Examination of Estimates of Expenditure 2024 25" for Legislative Council Finance Committee Meetings, the maximum carrying capacities of MTR Kwun Tong Line and Tuen Ma Line per direction are 71,400 and 70,000 persons per hour (pph) respectively.
- 4.40 From the findings in Table 4.14, the maximum rail-based passenger demand is found to be 2,495 ped/hr. This is equivalent to only <u>0.88%</u> of the maximum carrying capacity of the MTR Kwun Tong Line and Tuen Ma Line [= 2495 ÷ (71400 + 70000) ÷ 2], which is **insignificant**.

Enhancement of Feeder Services to / from MTR Stations

- 4.41 Serial No. TLB162 of "Examination of Estimates of Expenditure 2024 25" also advises that the current patronages of MTR Kwun Tong Line and Tuen Ma Line are 40,000 and 36,100 pph respectively. By adopting the patronage split for the Proposed Redevelopment, say, 53% of rail-based passengers will use MTR Kowloon Bay Station and the remaining 47% will use MTR Kai Tak Station.
- 4.42 Apart from the existing road-based public transport services, new franchised bus routes or re-routing of existing bus routes are proposed as feeder services to connect the Proposed Redevelopment and MTR Kowloon Bay or Kai Tak Stations. The analysis of proposed feeder services is presented in Table 4.15.

TABLE 4.15 ANALYSIS FOR FEEDER SERVICE TO / FROM MTR STATIONS

Item		Calculation	AM	Peak	PM Peak	
			IN (1)	OUT (2)	IN (1)	OUT (2)
Pedestrian	ped/15-min (3)	[a]	746	323	600	921
Generation	ped/hr	$[b] = [a] \times 4$	2,984	1,292	2,400	3,684
Total Rail-bas	ed Passenger Demand (pph)	$[c] = [b] \times 41\%$ (4)	1,224	530	984	1,511
A ATD	Passenger Demand (pph)	$[d_1] = [c] \times 53\%^{(5)}$	649	281	522	801
MTR Kowloon	Carrying Capacity of	[e ₁]	102	102	102	102
Bay	Double-Deck Bus (per) (6)					
Station	Number of Trips per hour	$[f_1] = [d_1] \div [e_1]$	7	3	6	8
Station	Headway (min)	$[g_1] = 60 \div [f_1]$	8	20	10	7
	Passenger Demand (pph)	$[d_2] = [c] \times 47\%^{(5)}$	576	250	463	711
MTR	Carrying Capacity of	[e ₂]	102	102	102	102
Kai Tak	Double-Decked Bus (per) (6)					
Station	Number of Trips per hour	$[f_2] = [d_2] \div [e_2]$	6	3	5	7
	Headway (min)	$[g_2] = 60 \div [f_2]$	10	20	12	8

Note: (1) from MTR stations to the Proposed Redevelopment

4.43 Table 4.15 shows that 7 and 8 bus trips (one-way) are required connecting the Proposed Redevelopment and MTR Kowloon Bay Station during the AM and PM peak hours respectively. Similarly, 6 and 7 trips (one-way) are required for MTR Kai Tak Station respectively.

⁽²⁾ from the Proposed Redevelopment to MTR stations

⁽³⁾ from Table 4.11

⁽⁴⁾ from Table 4.13

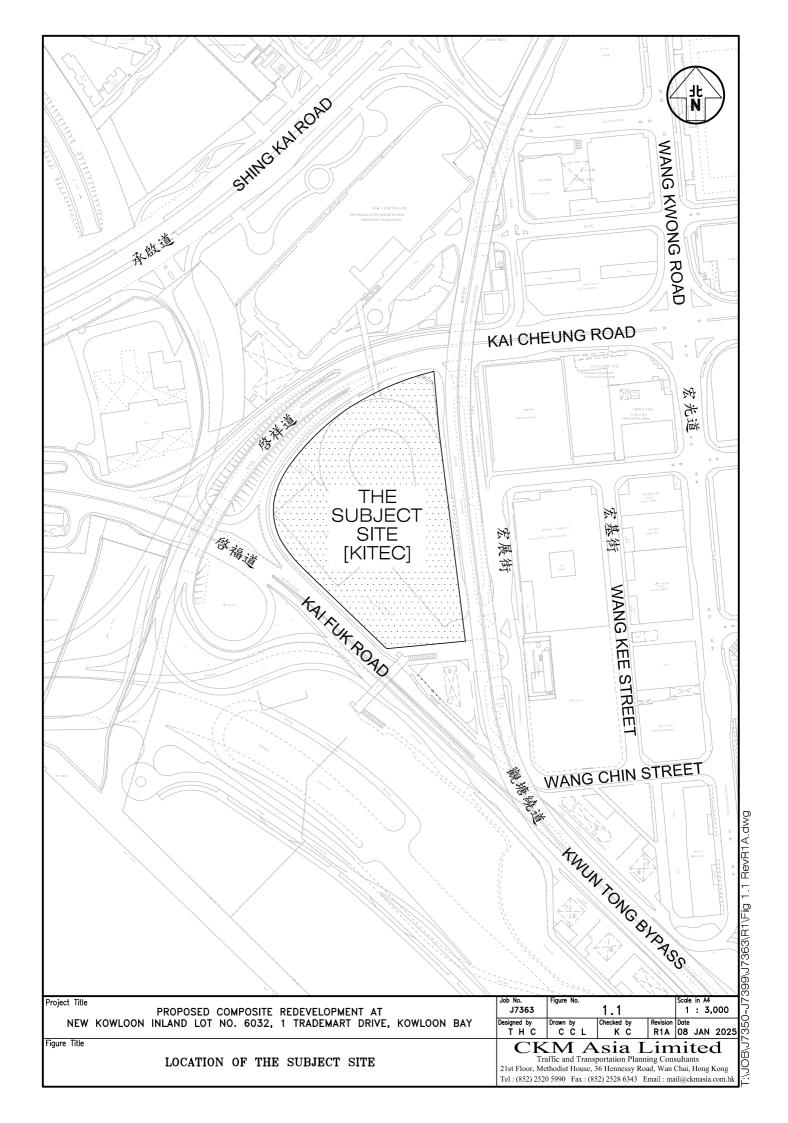
⁽⁵⁾ from Paragraph 4.41

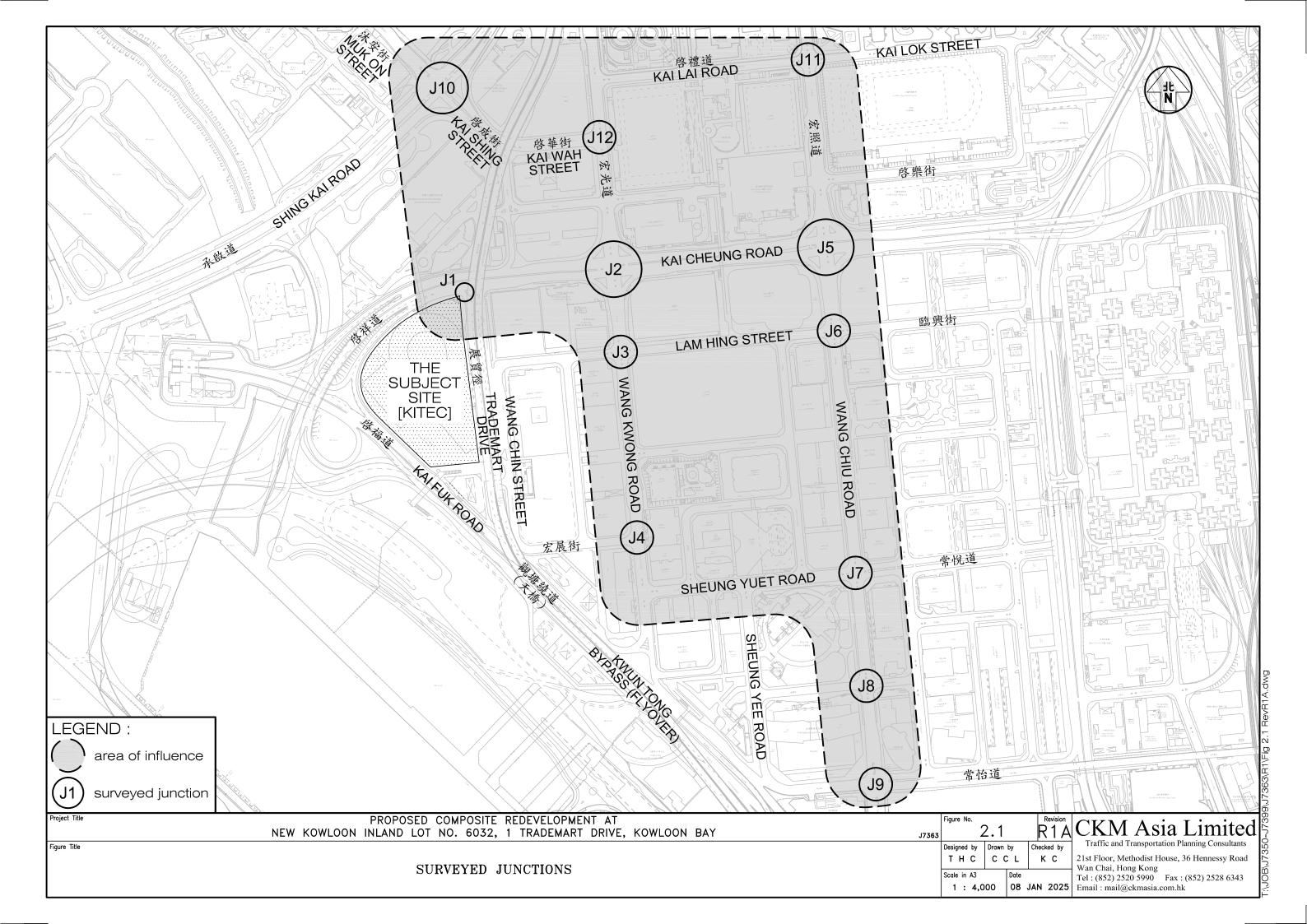
⁽⁶⁾ The assumed carrying capacity of a double-deck bus is 120 passengers. To be conservative, a loading of 102 passengers per double-deck bus, i.e. 85% full, is adopted.

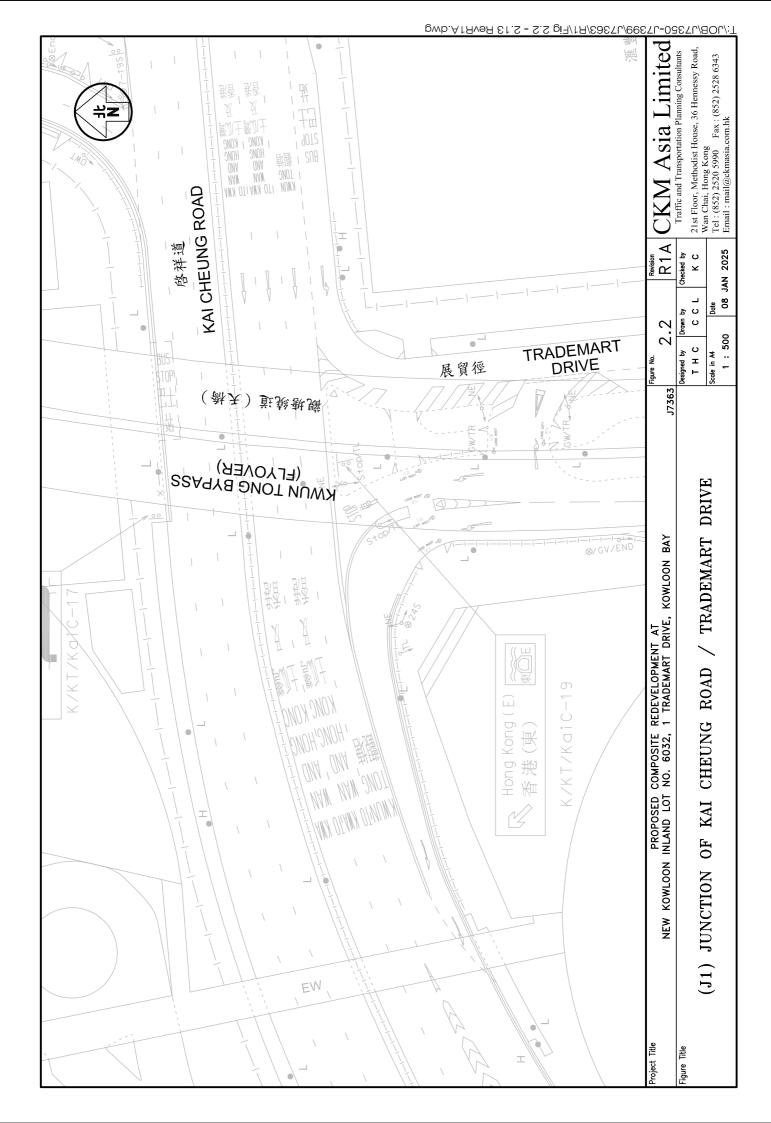
- 4.44 Figure 3.1 shows that a 120m lay-by is currently provided at Trademart Drive fronting the Proposed Redevelopment. Hence, a section of this lay-by could be designated as bus stop / terminus for feeder services.
- 4.45 Alternatively, some existing urban local bus routes operating close to KITEC may include a new enroute bus stop at Trademart Drive to strengthen the connection between the Proposed Redevelopment and MTR Kowloon Bay or Kai Tak Stations. The indicative enhancement proposal is presented in Table 4.16.

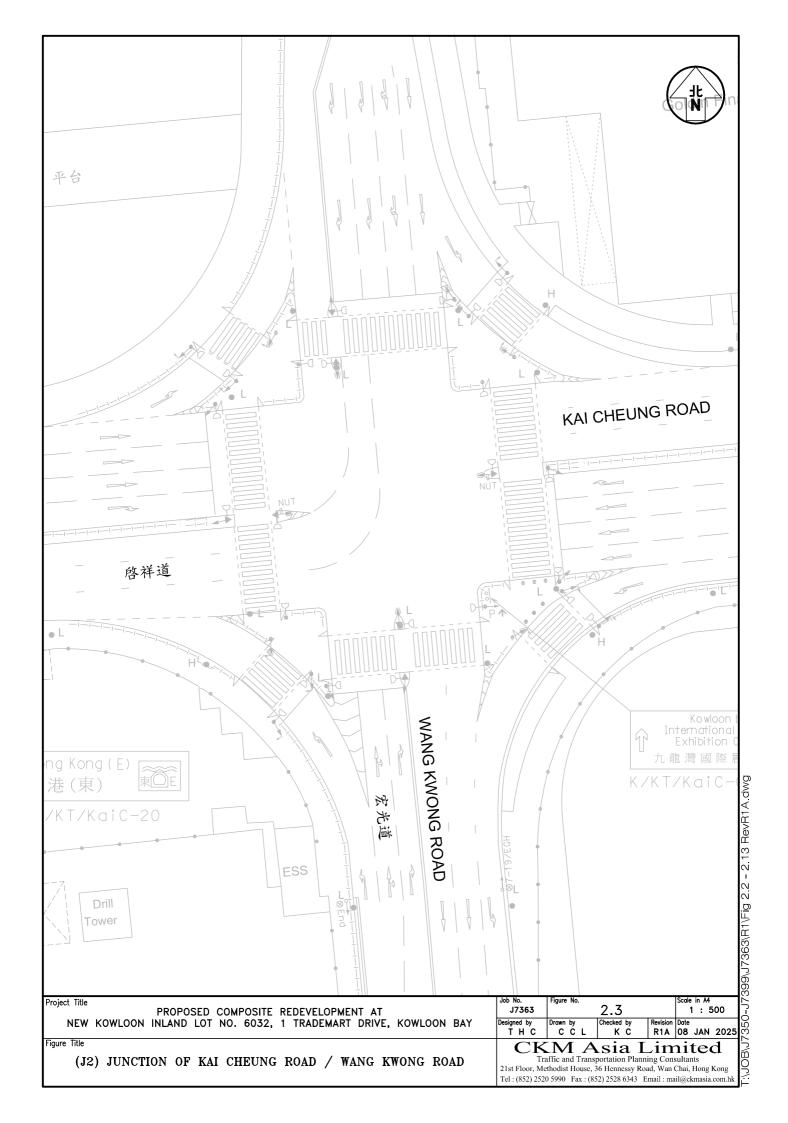
TABLE 4.16 INDICATIVE ENHANCEMENT PROPOSAL TO EXISTING BUS SERVICES

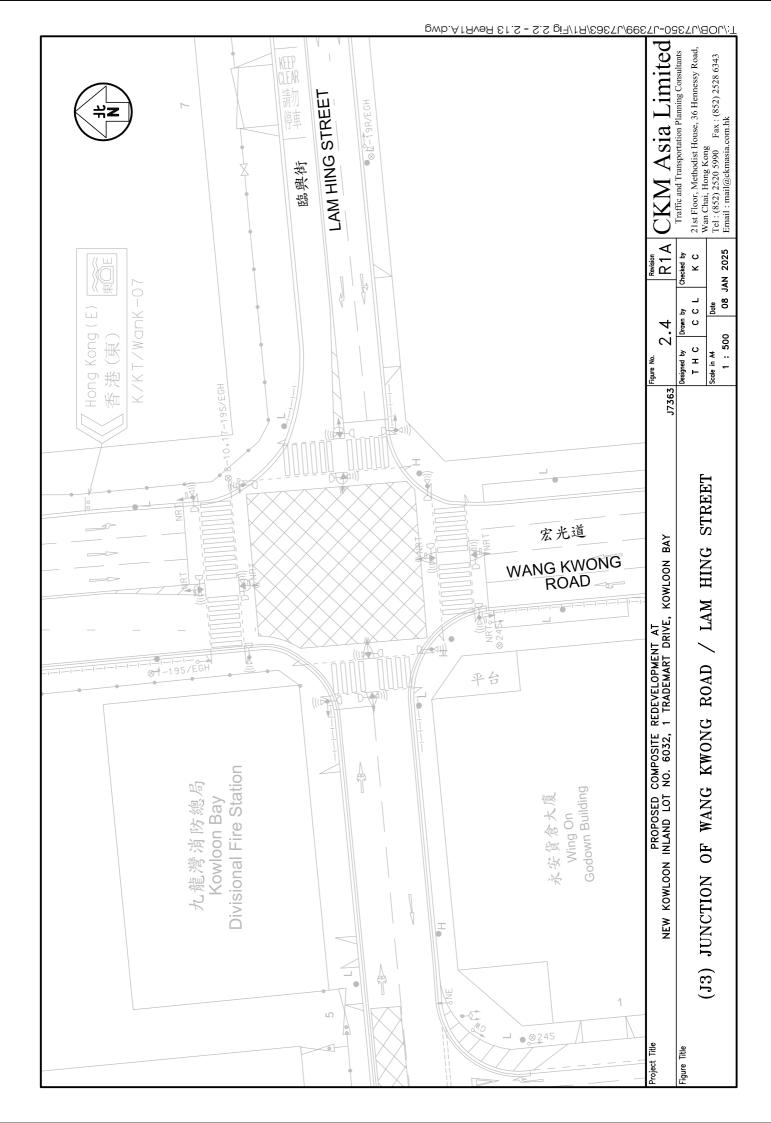
Route No.	Routing	Frequency (min)	Possible Service Enhancement
KMB 5D	Telford Gardens – Hung	13 – 30	add enroute bus stop at Trademart
	Hom (circular)		Drive for journeys to Telford Gardens
KMB 5M	MTR Kowloon Bay	15 – 30	add enroute bus stop at Trademart
	Station (circular) – Kai		Drive for journeys from MTR Kowloon
	Tak (Tak Long Estate)		Bay Station to Kai Tak (Tak Long Estate)
CTB 22M	Kai Tak Cruise Terminal	20 – 30	add enroute bus stop at Trademart
	– To Kwa Wan		Drive for both bounds

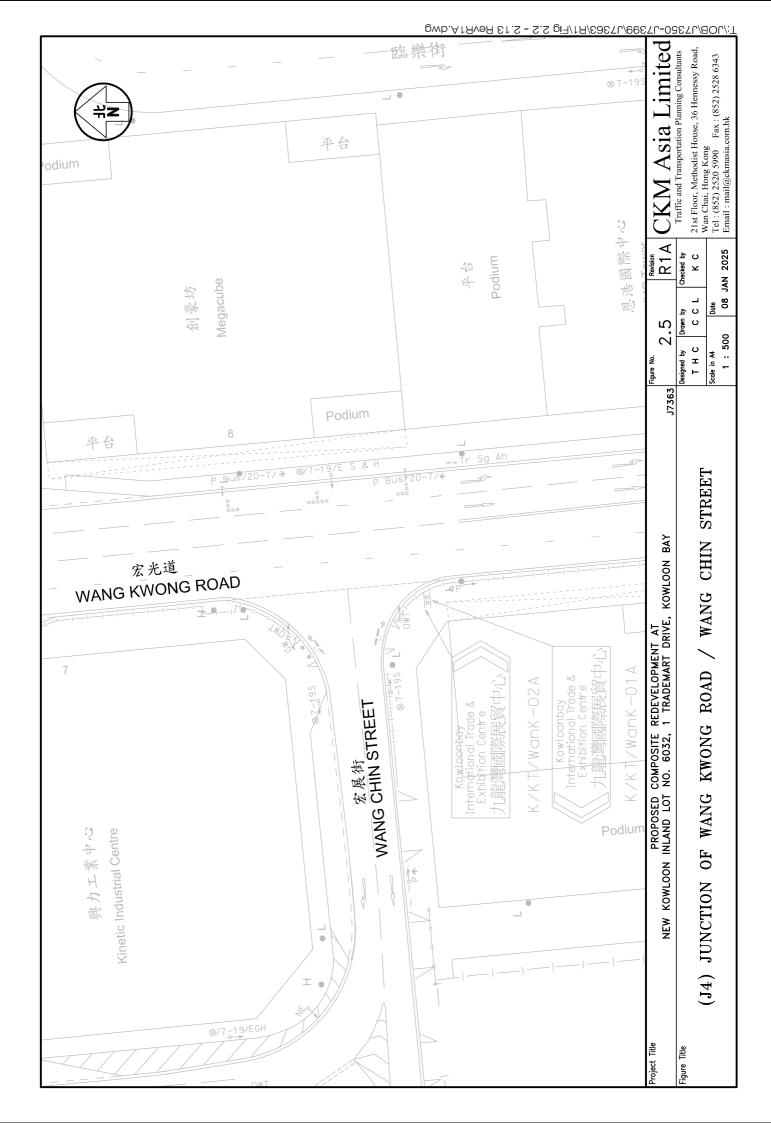

Note: KMB – Kowloon Motor Bus

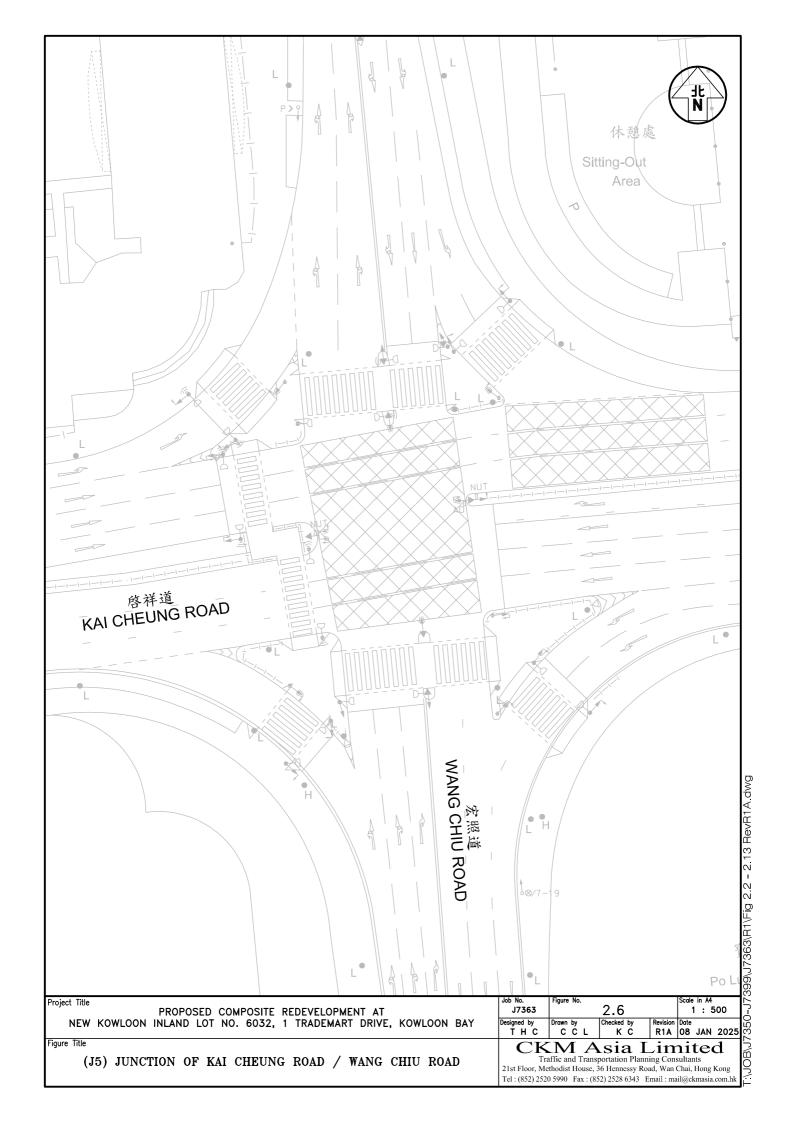

CTB – CityBus

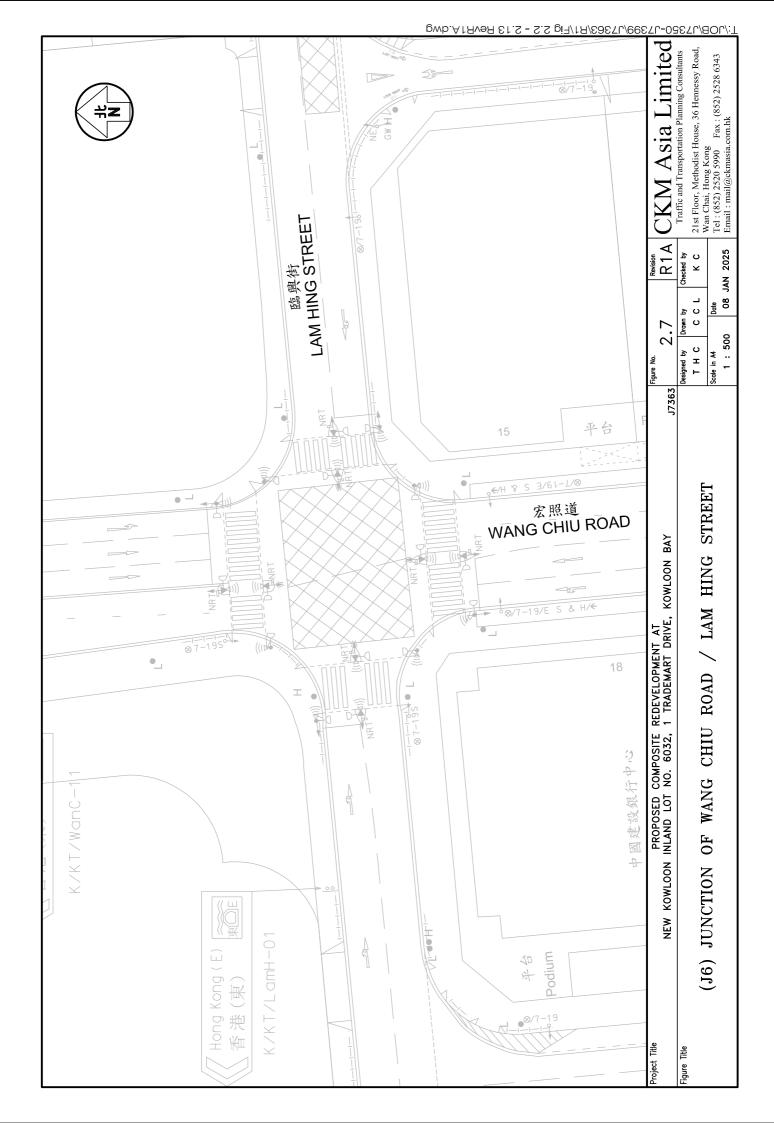

4.46 It is noted that the public transport service network in Kowloon East, including the Kowloon Bay Business Area, is being strengthened progressively to cater for the rapid development and transformation. Hence, the provision of feeder services for the Proposed Redevelopment shall be further reviewed by Transport Department together with the regional public transport service network to suit the operational need in future.

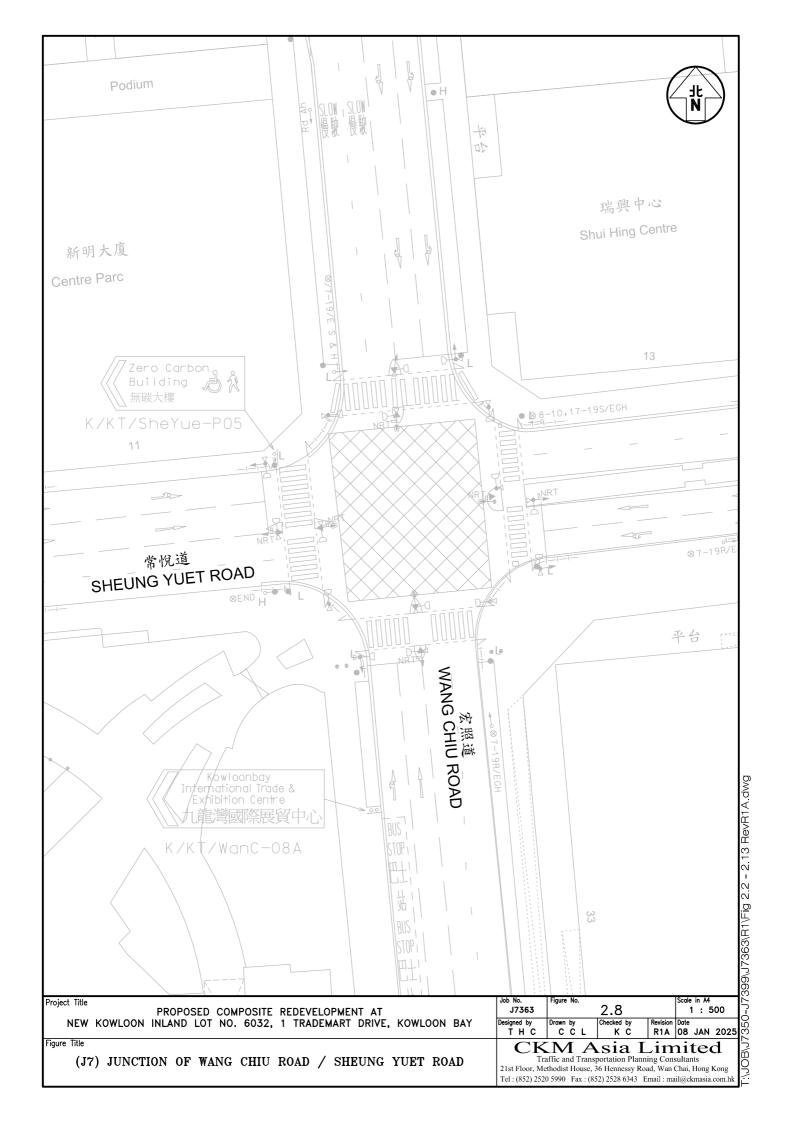

5.0 SUMMARY

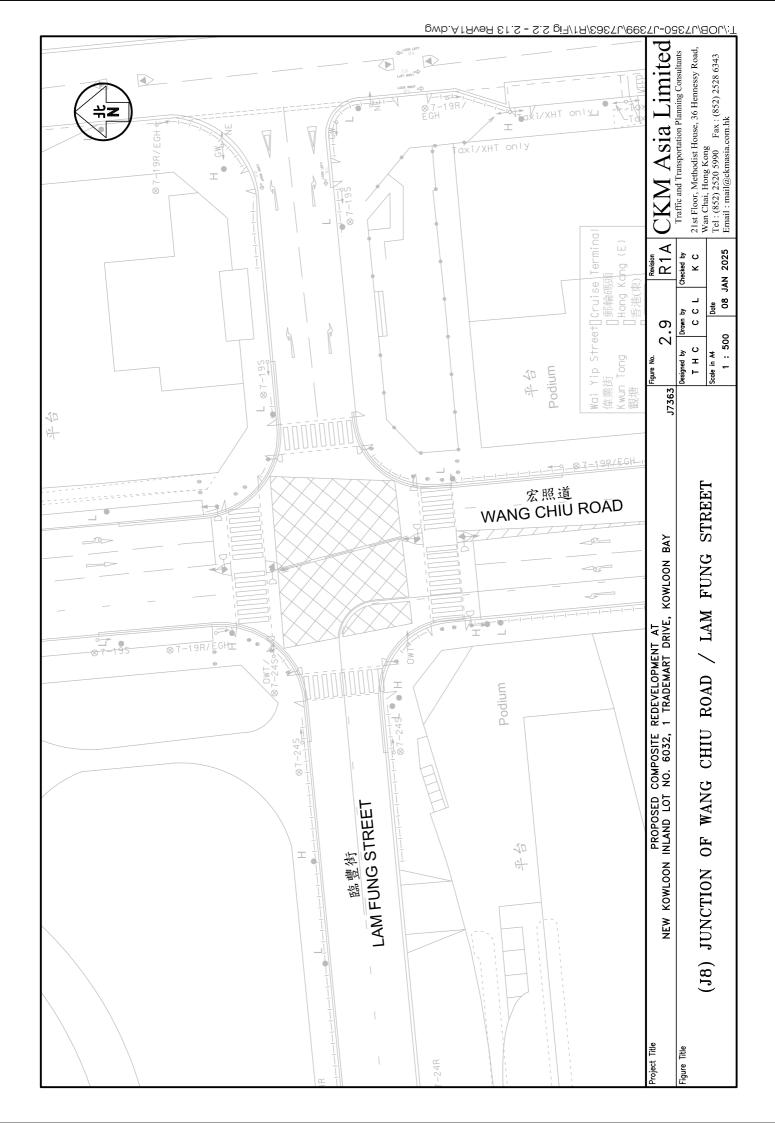

- 5.1 The subject site is located at New Kowloon Inland Lot No. 6032 at 1 Trademart Drive in Kowloon Bay. This s16 planning application is for the redevelopment of KITEC with 1,494 flats, 35,600m² for "Office", 13,403m² for "Eating Place" and "Shop and Services", 20,773m² for "Exhibition or Convention Hall", "Place of Entertainment" with 1,800 seats, 720-room "Hotel" with supporting "Social Welfare Facility" and "School (Kindergarten)".
- 5.2 The internal transport facilities provided for the uses within the Proposed Development comply with the **maximum recommendations of HKPSG**, except for welfare facilities, which are provided to meet the operational needs of the privately-financed RCHE and DE.
- 5.3 Manual classified counts were conducted at key junctions, which are located in the vicinity in order to establish the existing traffic flows during the AM and PM peak hours. The 2029 and 2032 design traffic flows are derived with reference to the latest BDTM and have taken into account the planned developments in the vicinity of the subject site.
- 5.4 The 2029 and 2032 junction and link capacity analyses were undertaken for 3 scenarios with: (i) the existing KITEC; (ii) the Approved Redevelopment (i.e. TPB No. A/K22/34); and (iii) the Proposed Redevelopment. The junctions and road links analysed have sufficient capacity to accommodate the expected traffic volume in 2032 and traffic generated by the Proposed Redevelopment.
- 5.5 Pedestrian counts were conducted at the footpaths in the vicinity of the subject site in order to estimate the future pedestrian flows during the AM and PM peak periods. The LOS assessment demonstrates that the analysed footpaths have sufficient capacity to accommodate the estimated pedestrian flows in 2029 and 2032.
- 5.6 The surplus capacity of the existing franchised bus and GMB services would be capable to absorb the additional road-based passenger demand from the Proposed Redevelopment. The provision of feeder services shall be further reviewed by Transport Department together with the regional public transport service network to suit the operational need in future. In addition, the Proposed Redevelopment is expected to generate insignificant rail-based passenger demand to the MTR Kwun Tong Line and Tuen Ma Line during the AM and PM peak hours.
- 5.7 The TIA concluded that the Proposed Redevelopment will result in <u>no</u> adverse traffic impact to the surrounding road network. From traffic engineering grounds, the Proposed Redevelopment is acceptable.

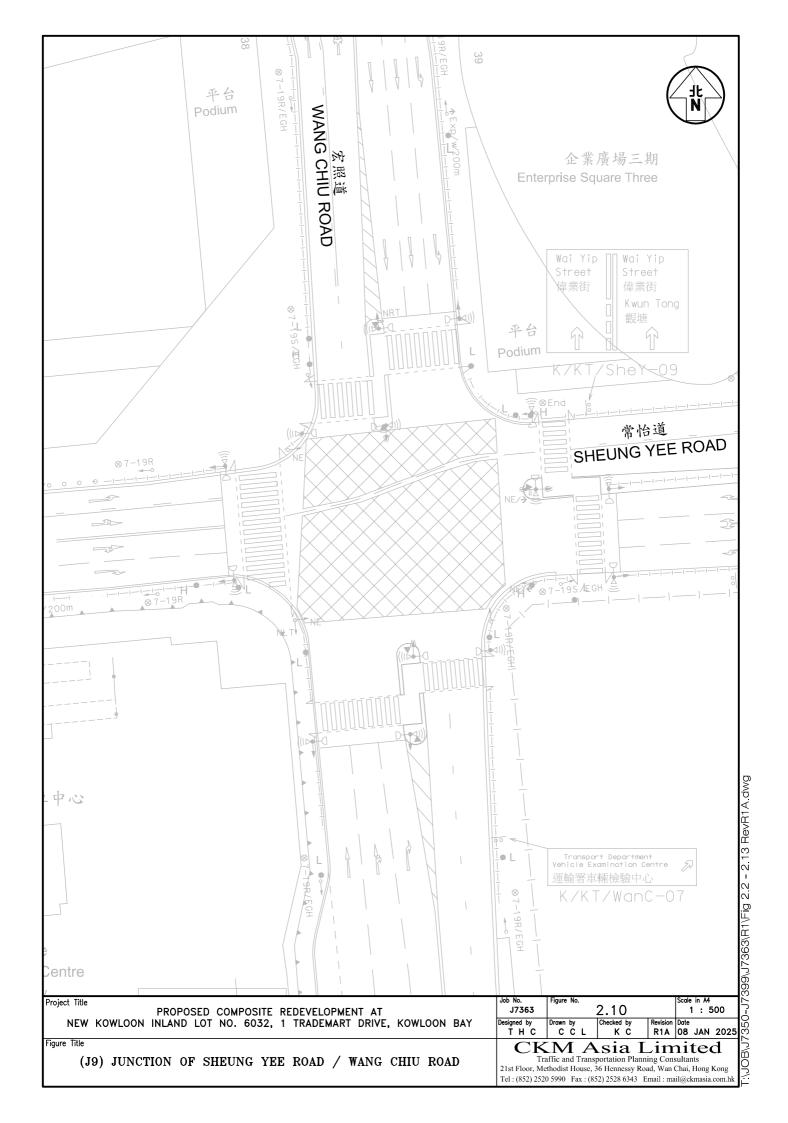


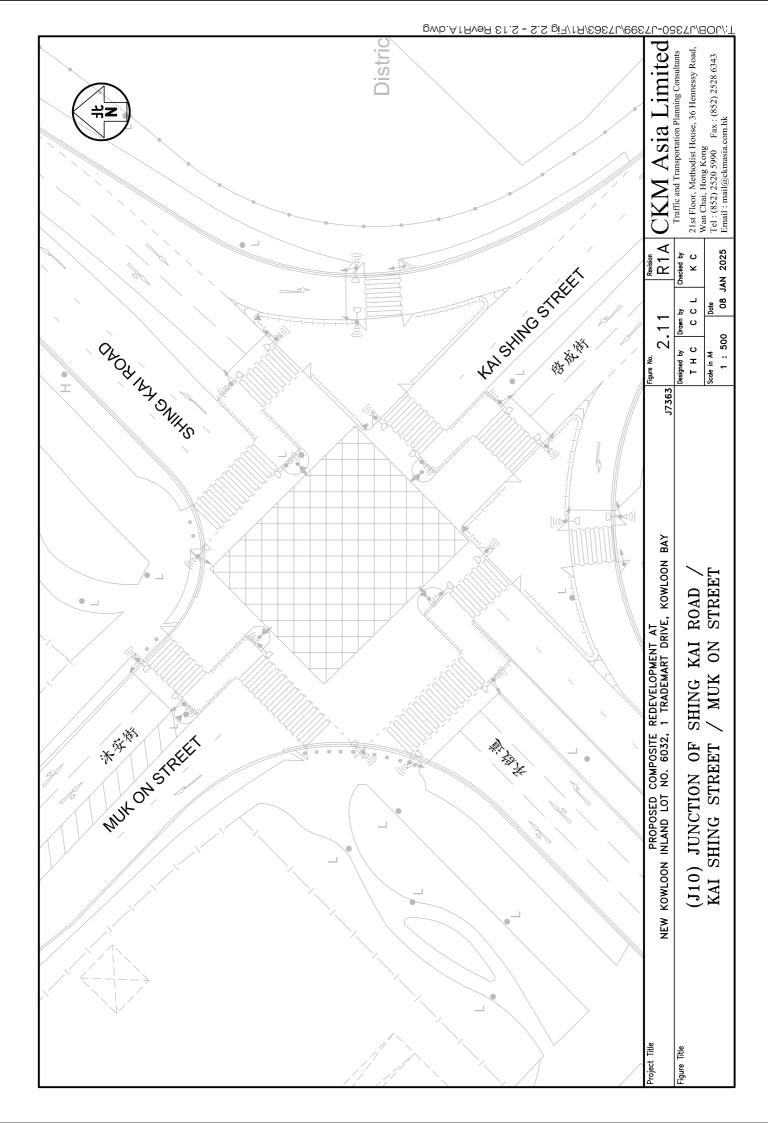


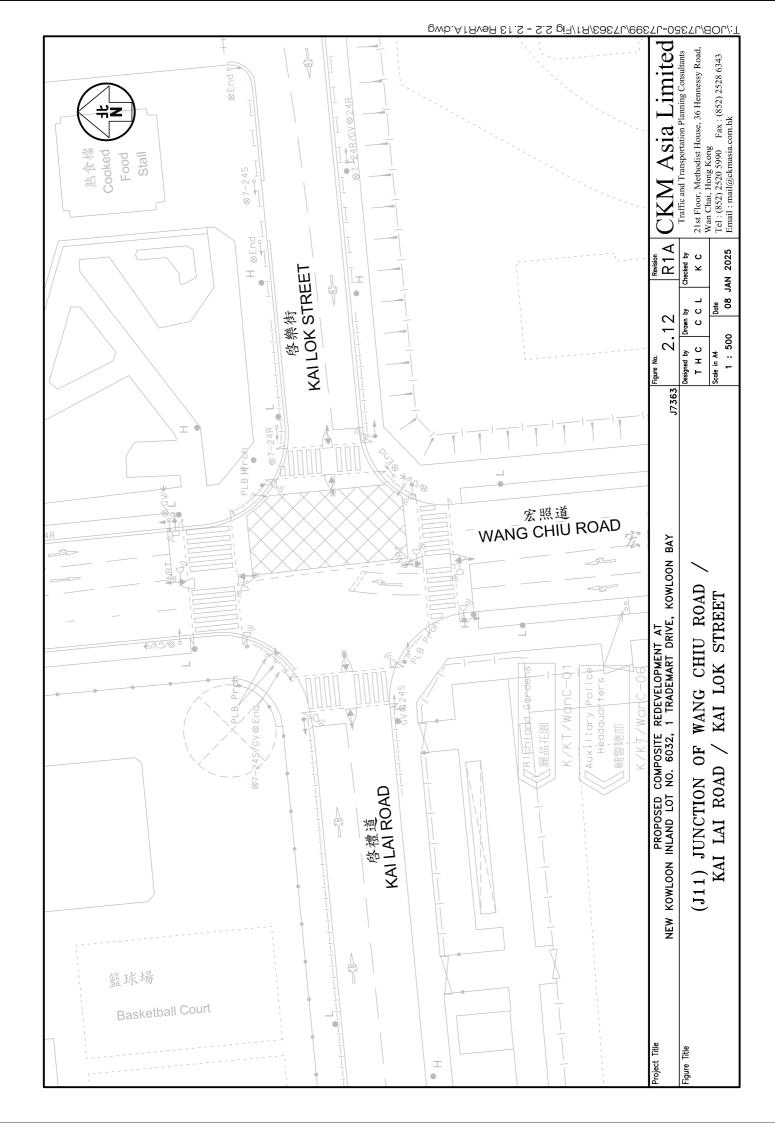


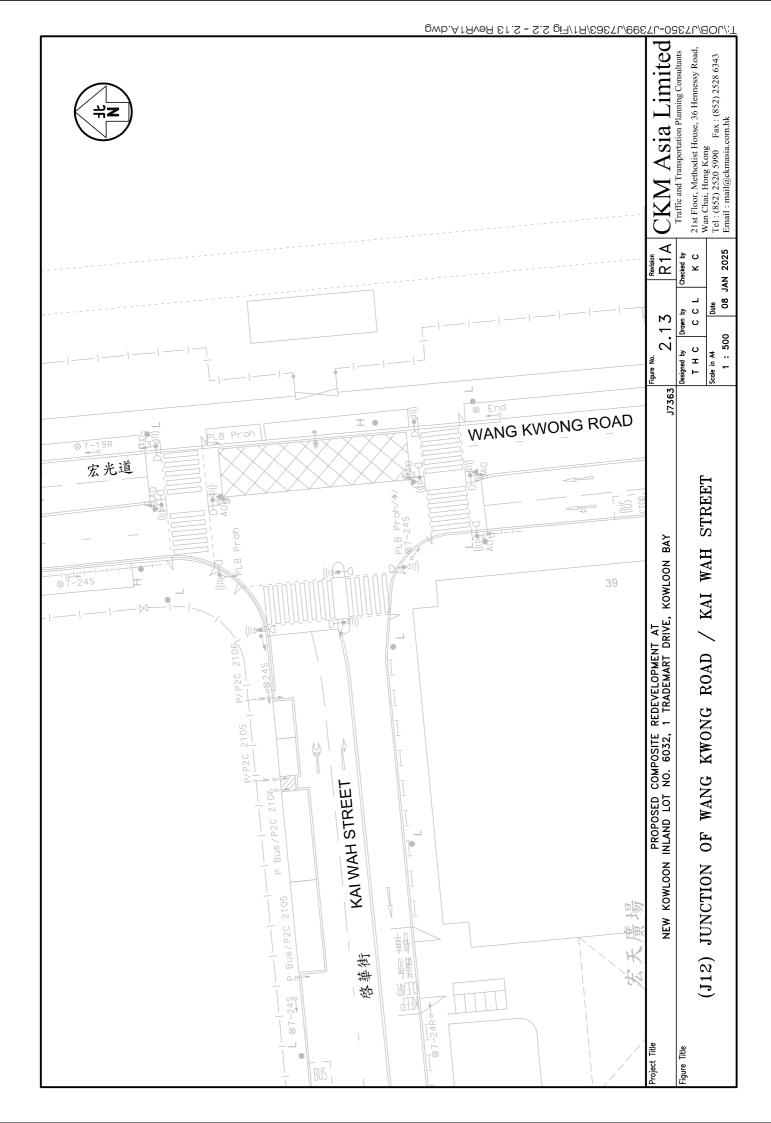


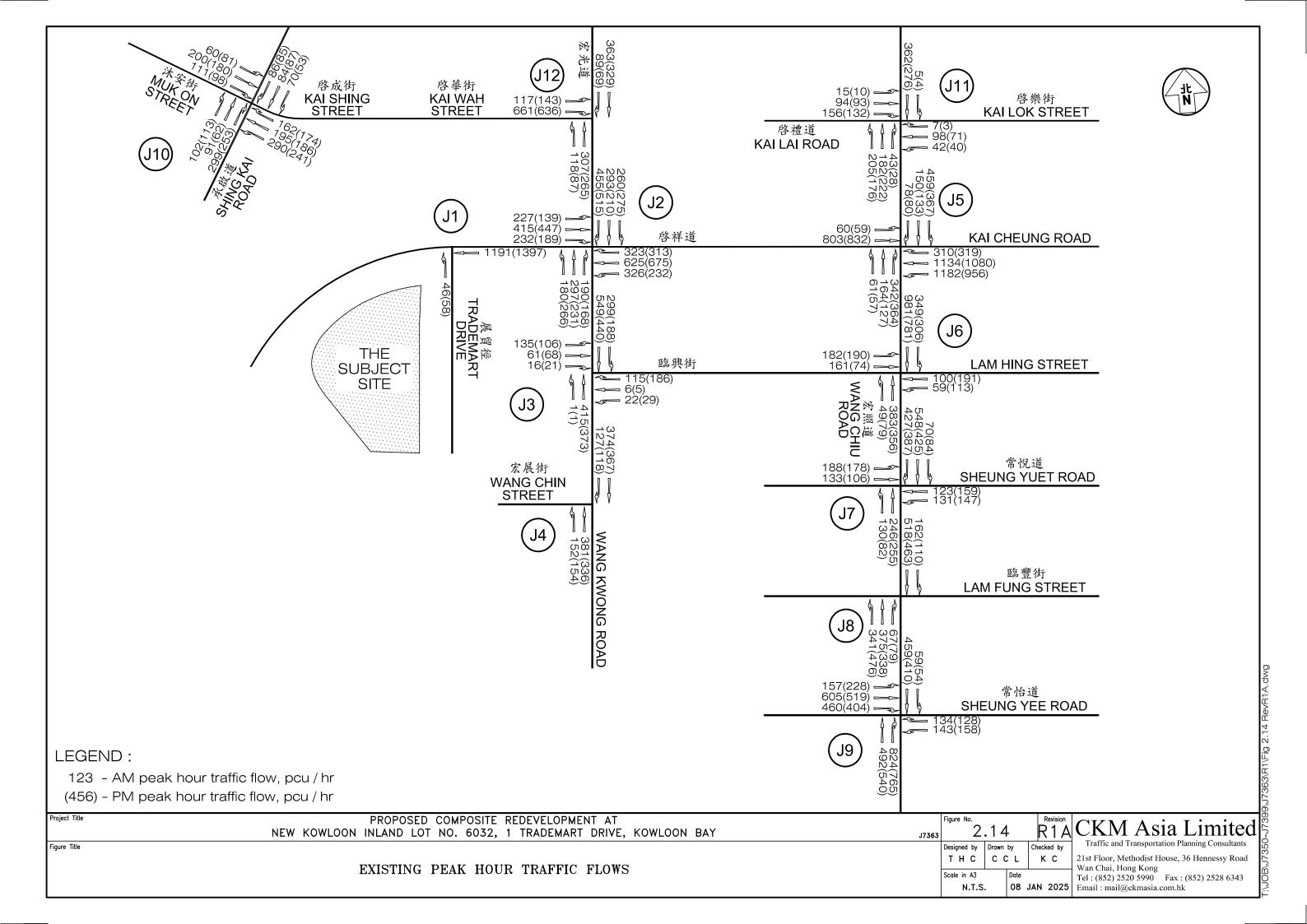


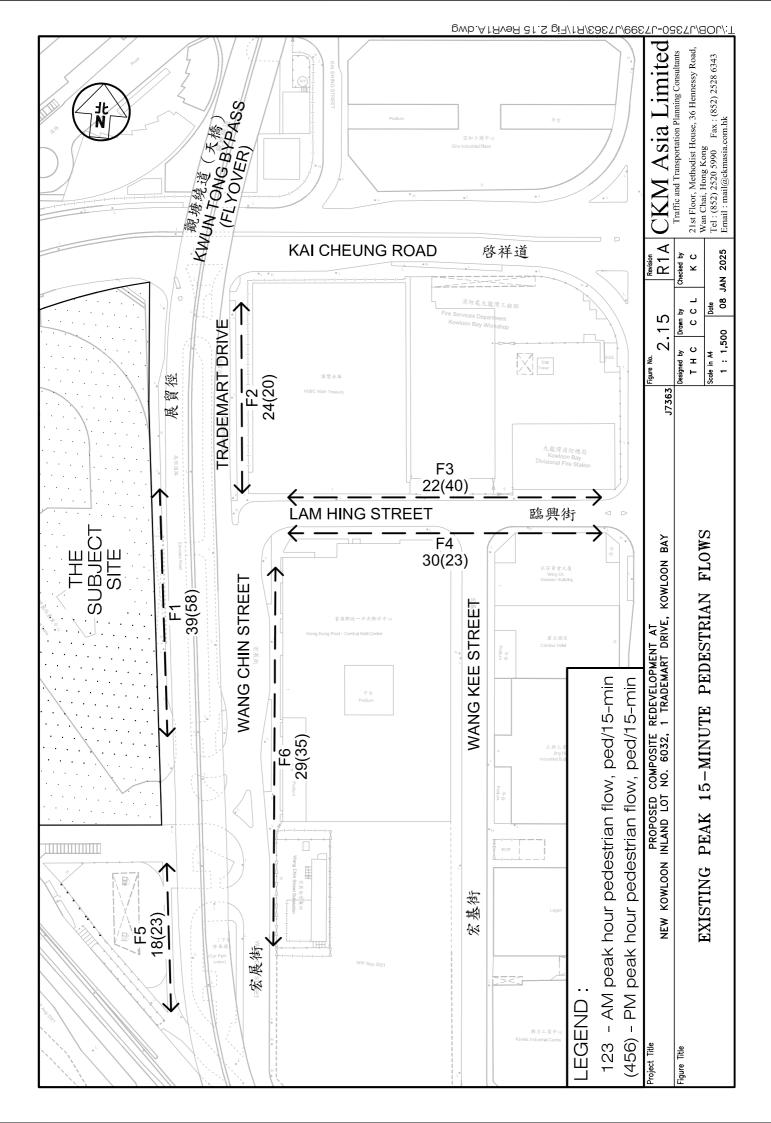


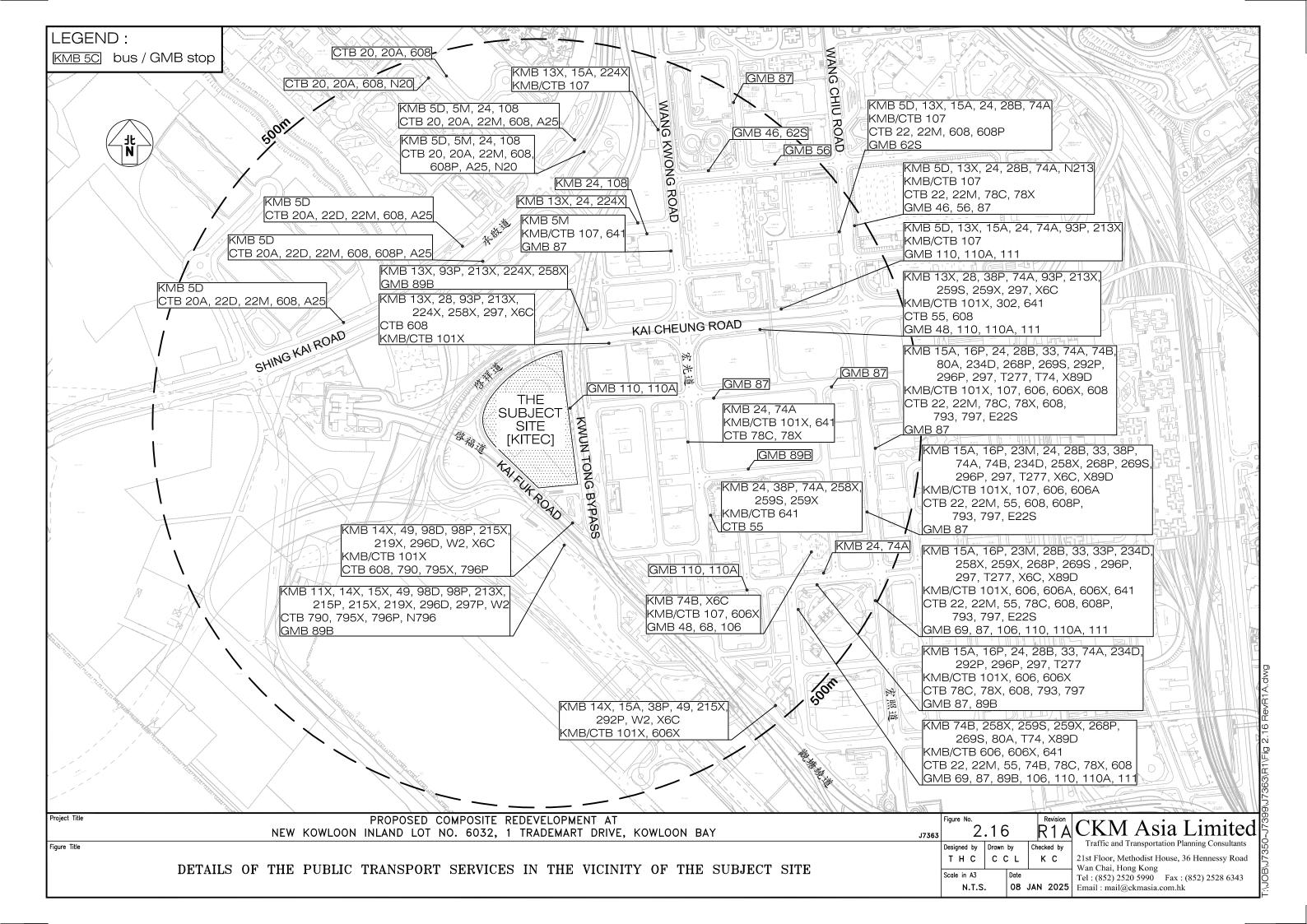


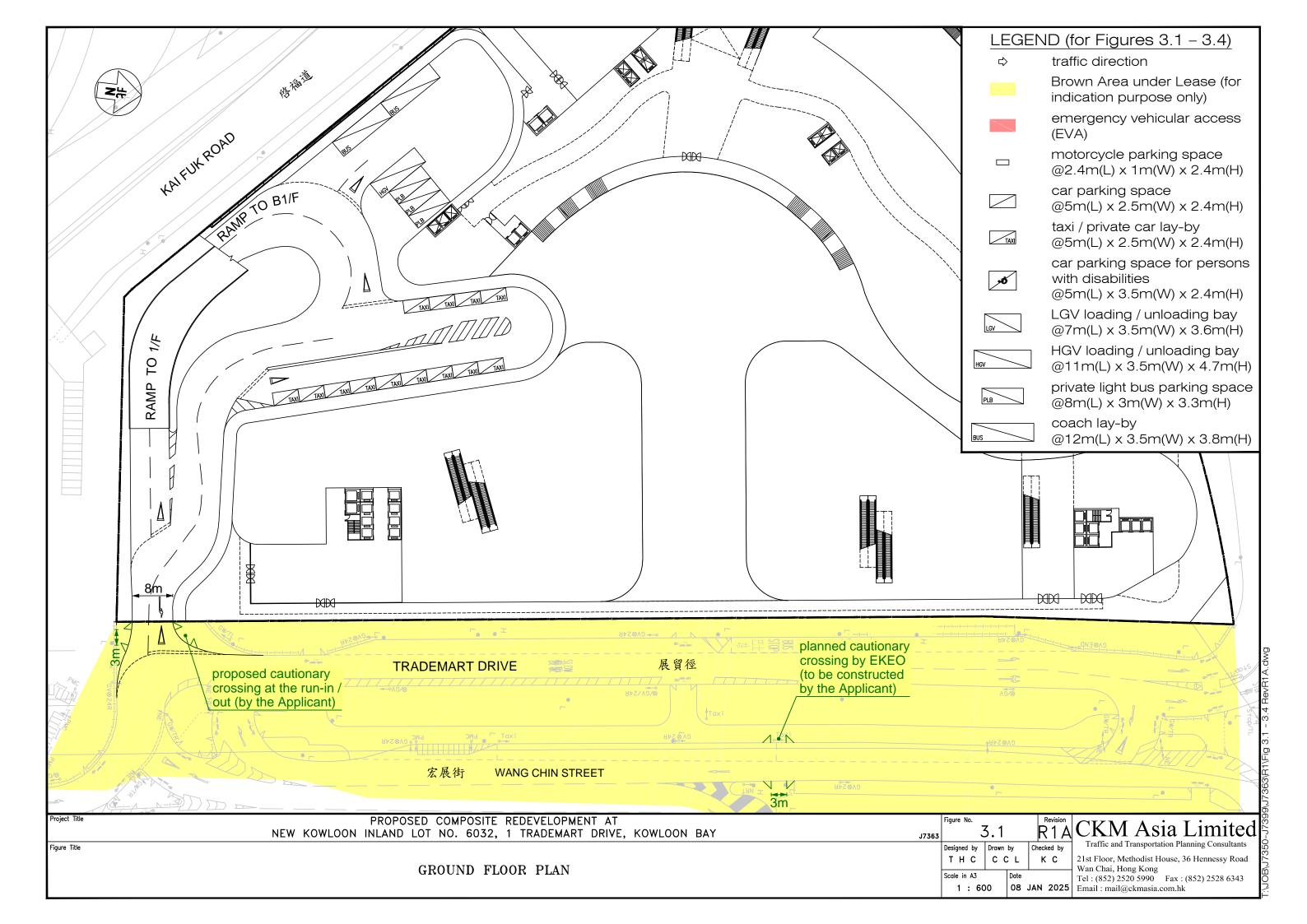


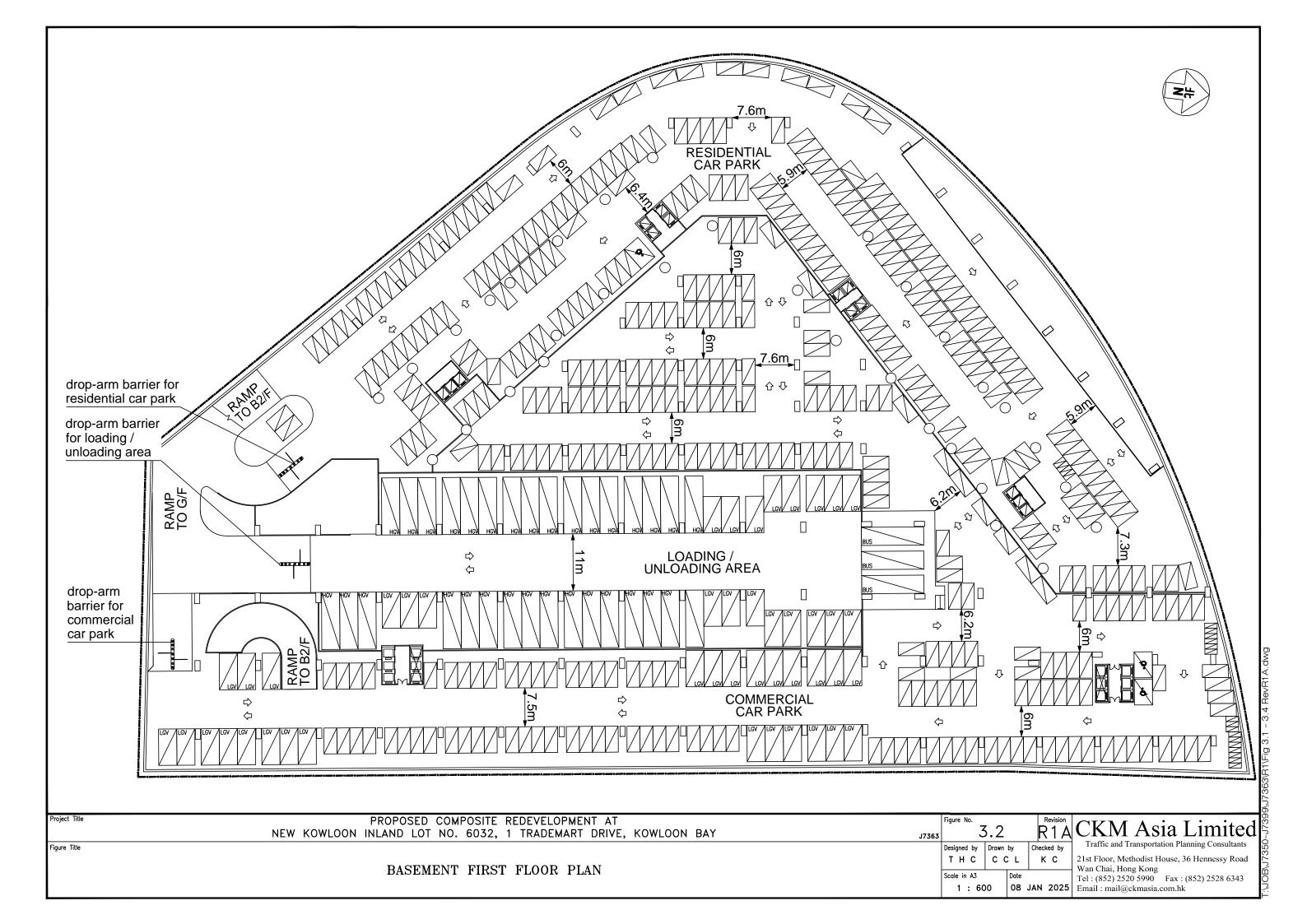


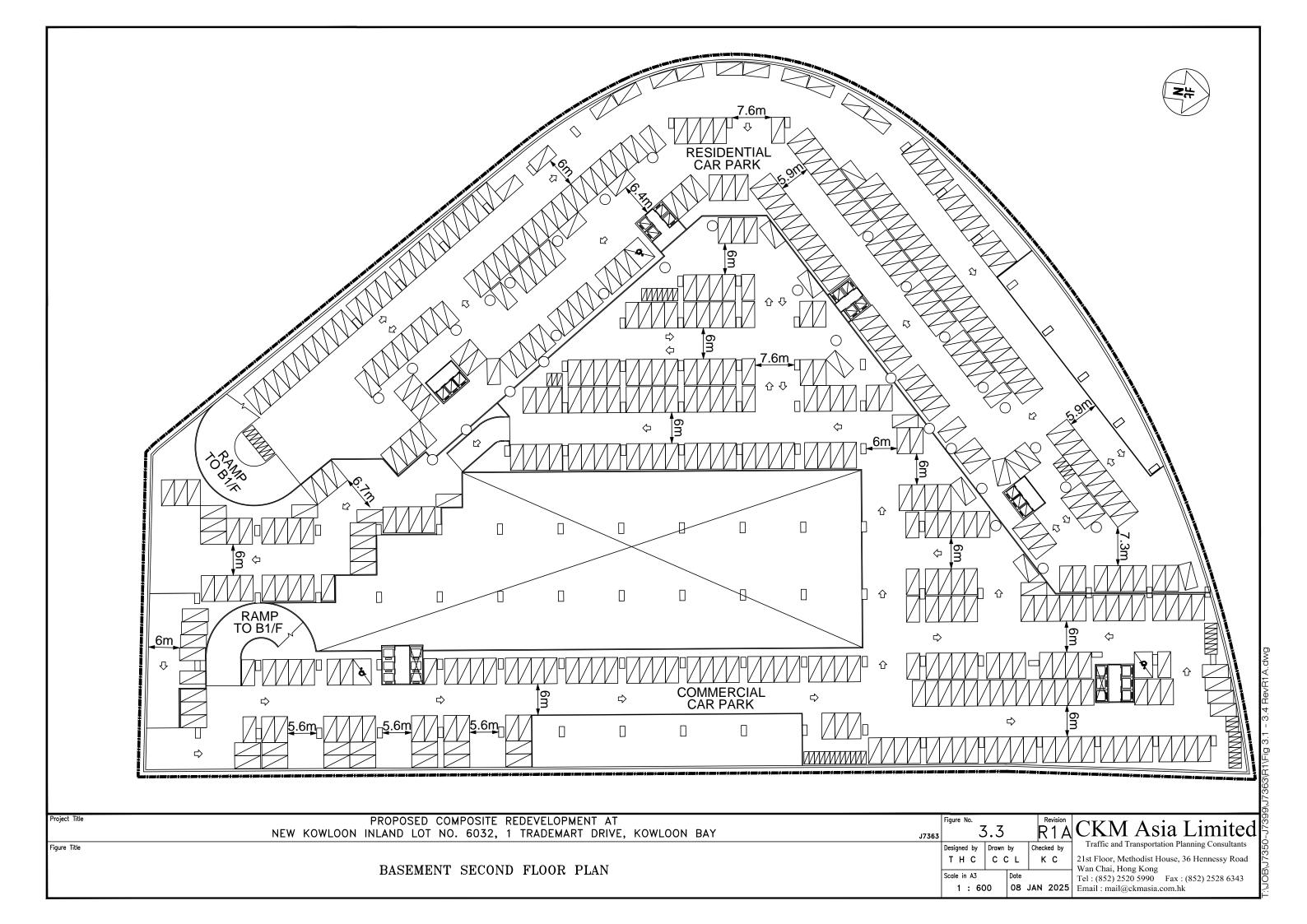


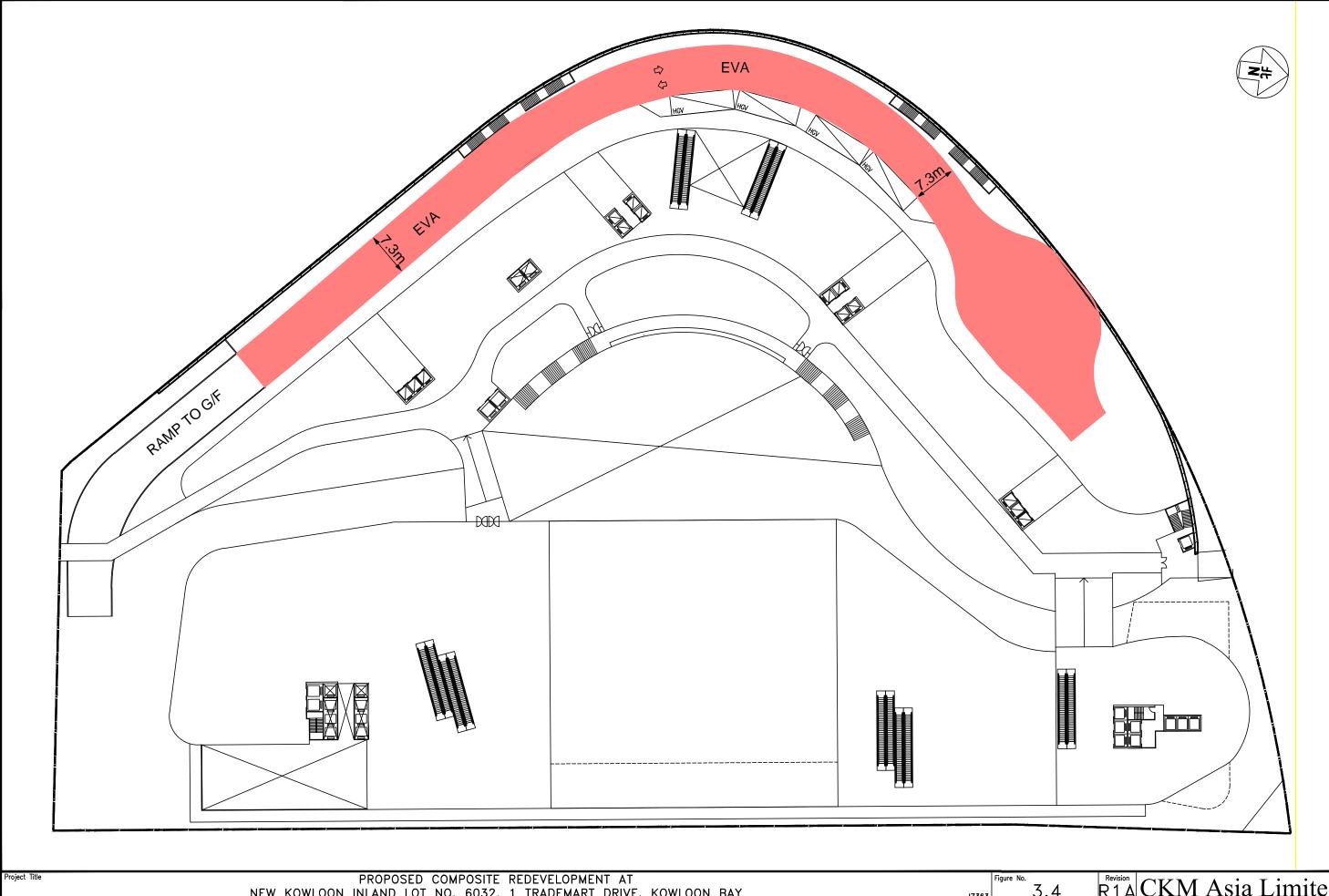












Project Title

PROPOSED COMPOSITE REDEVELOPMENT AT

NEW KOWLOON INLAND LOT NO. 6032, 1 TRADEMART DRIVE, KOWLOON BAY

Figure Title

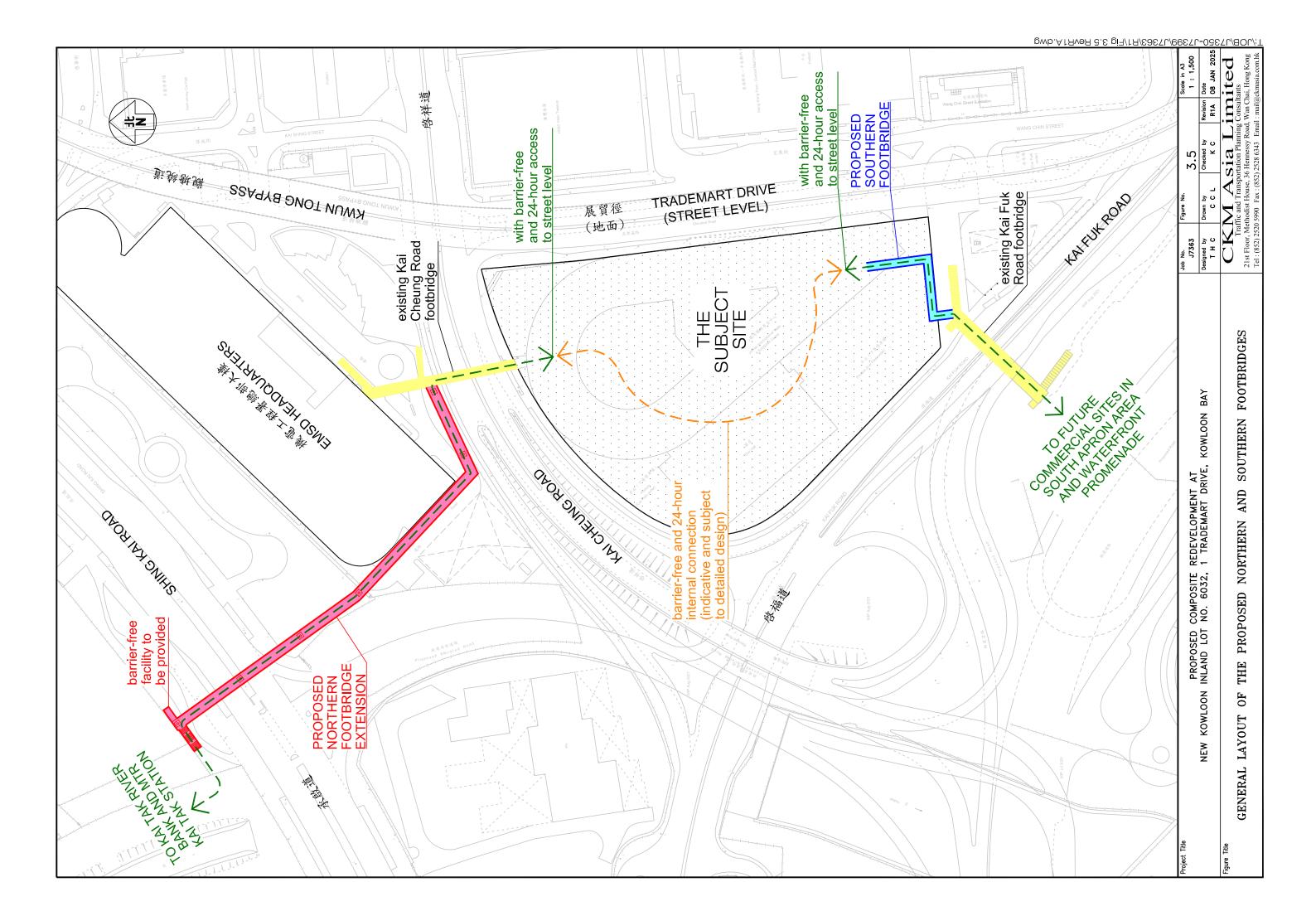
Figure No.

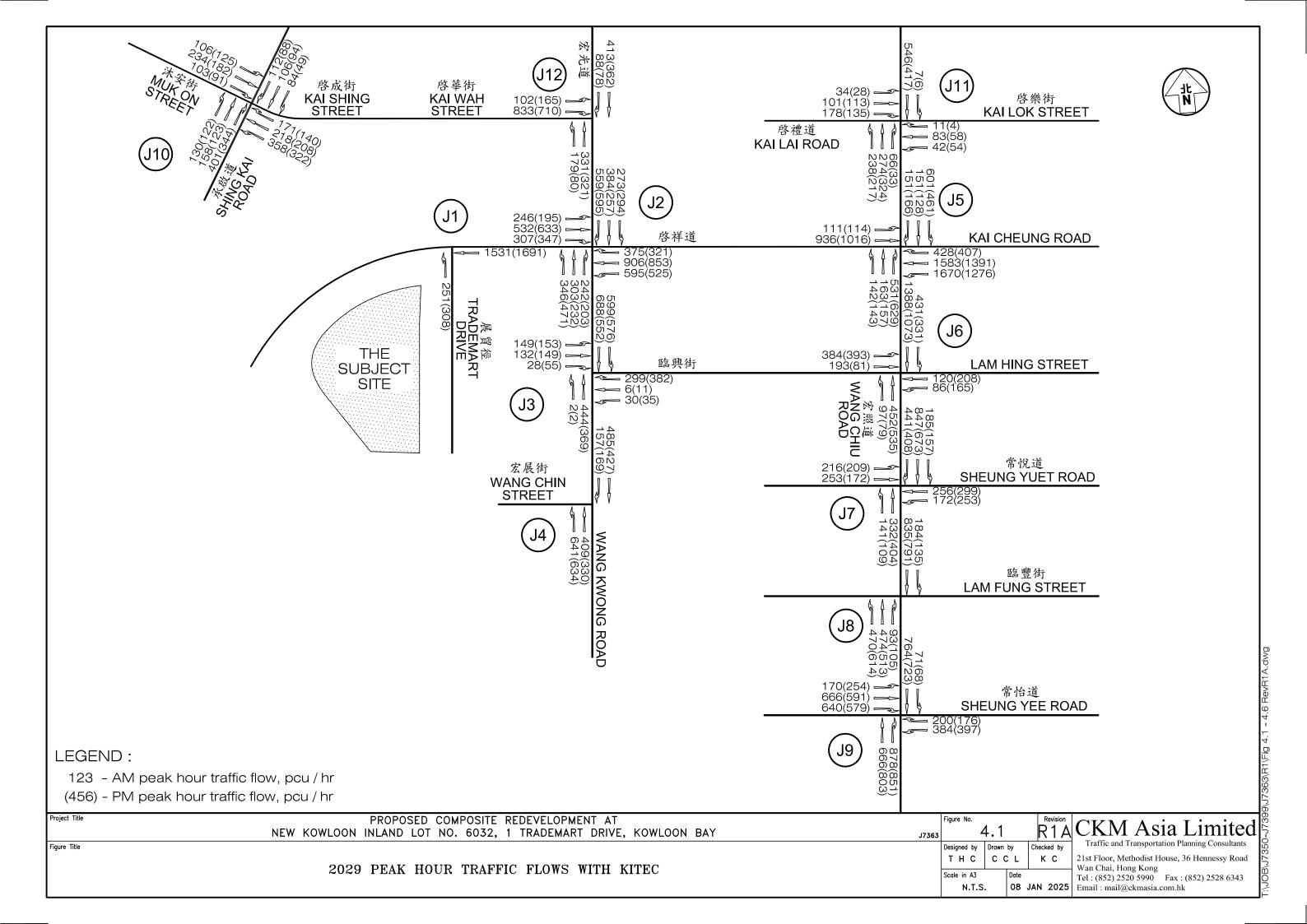
Designed by Th C C C L K C

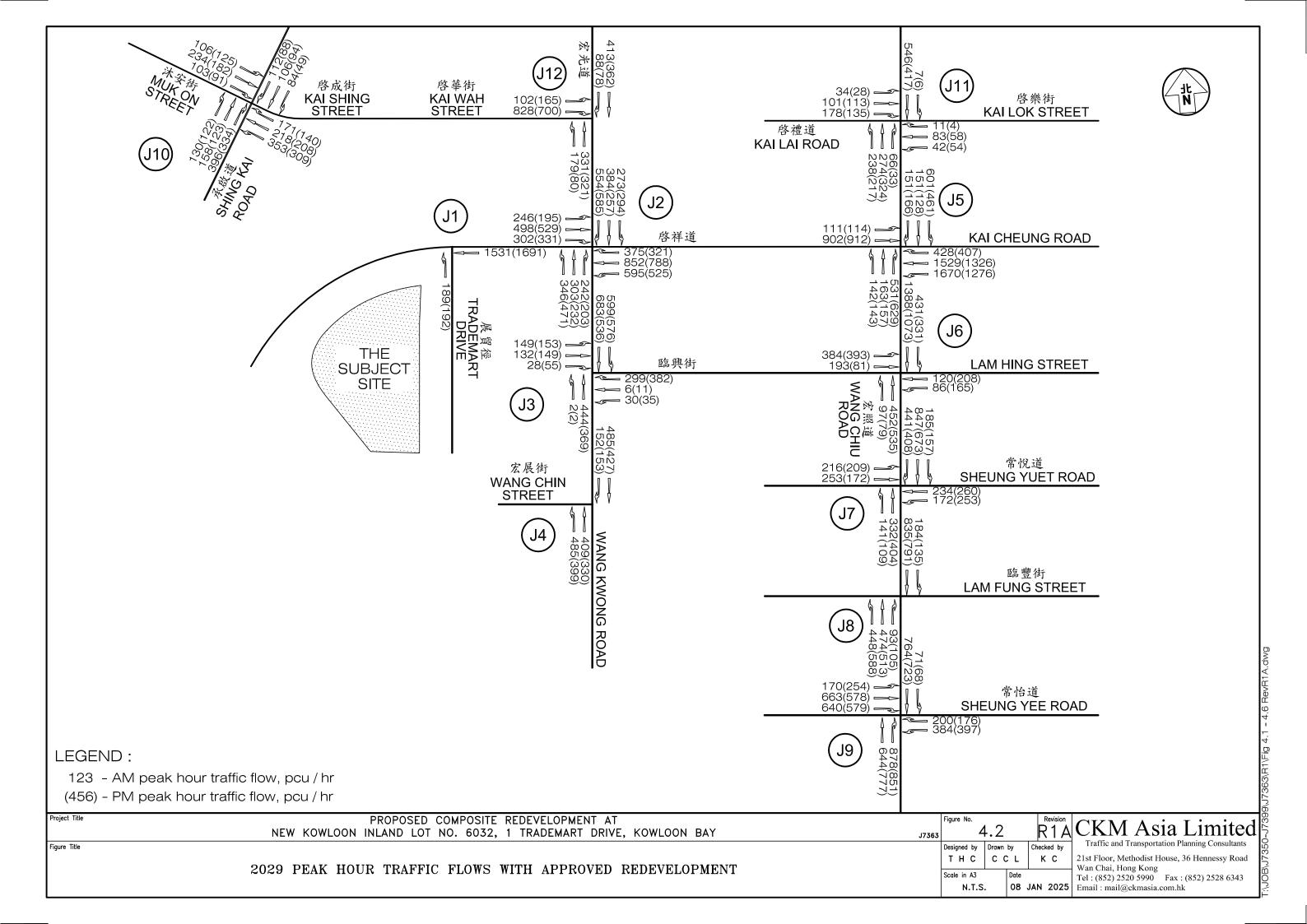
Scale in A3

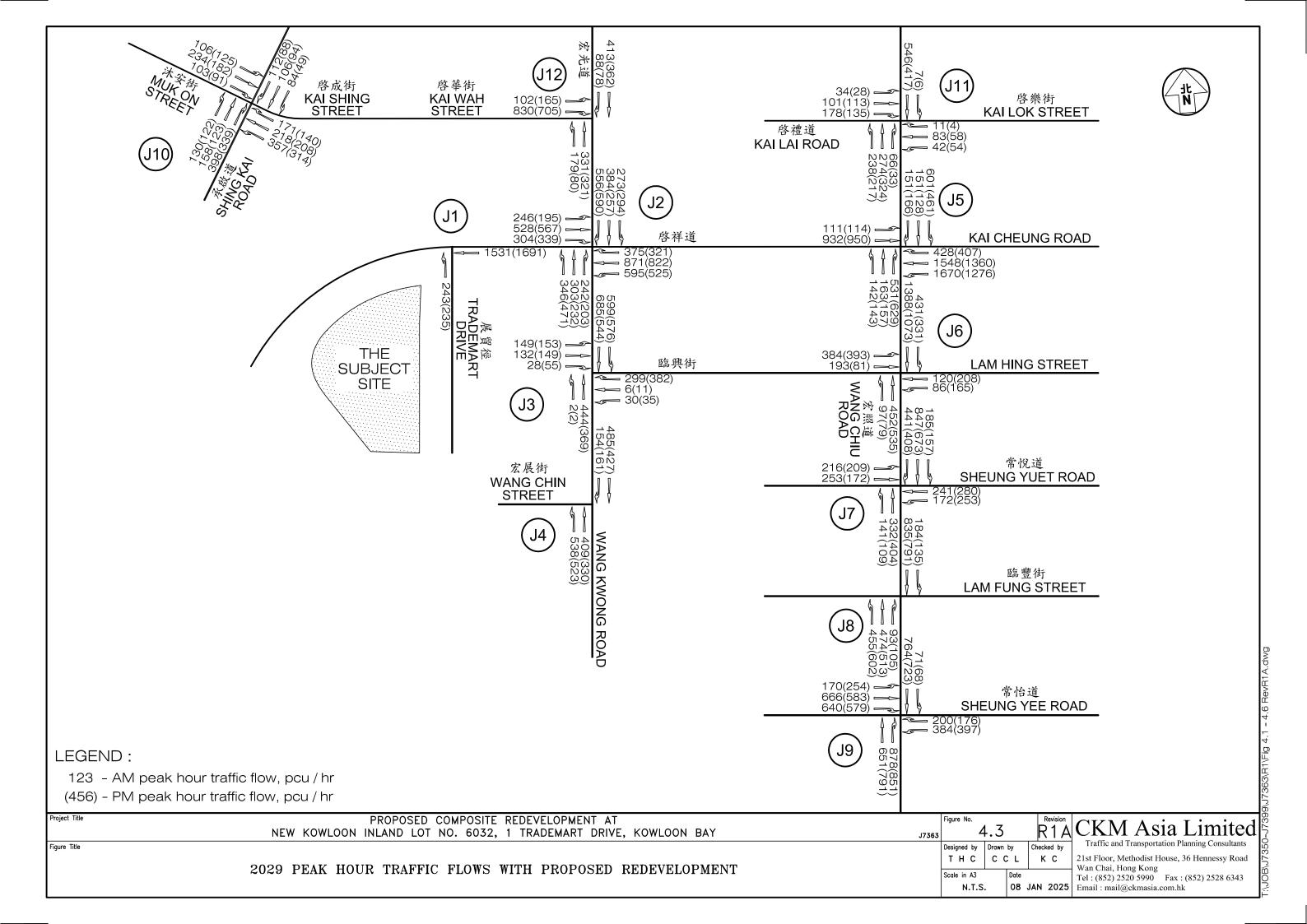
1: 600

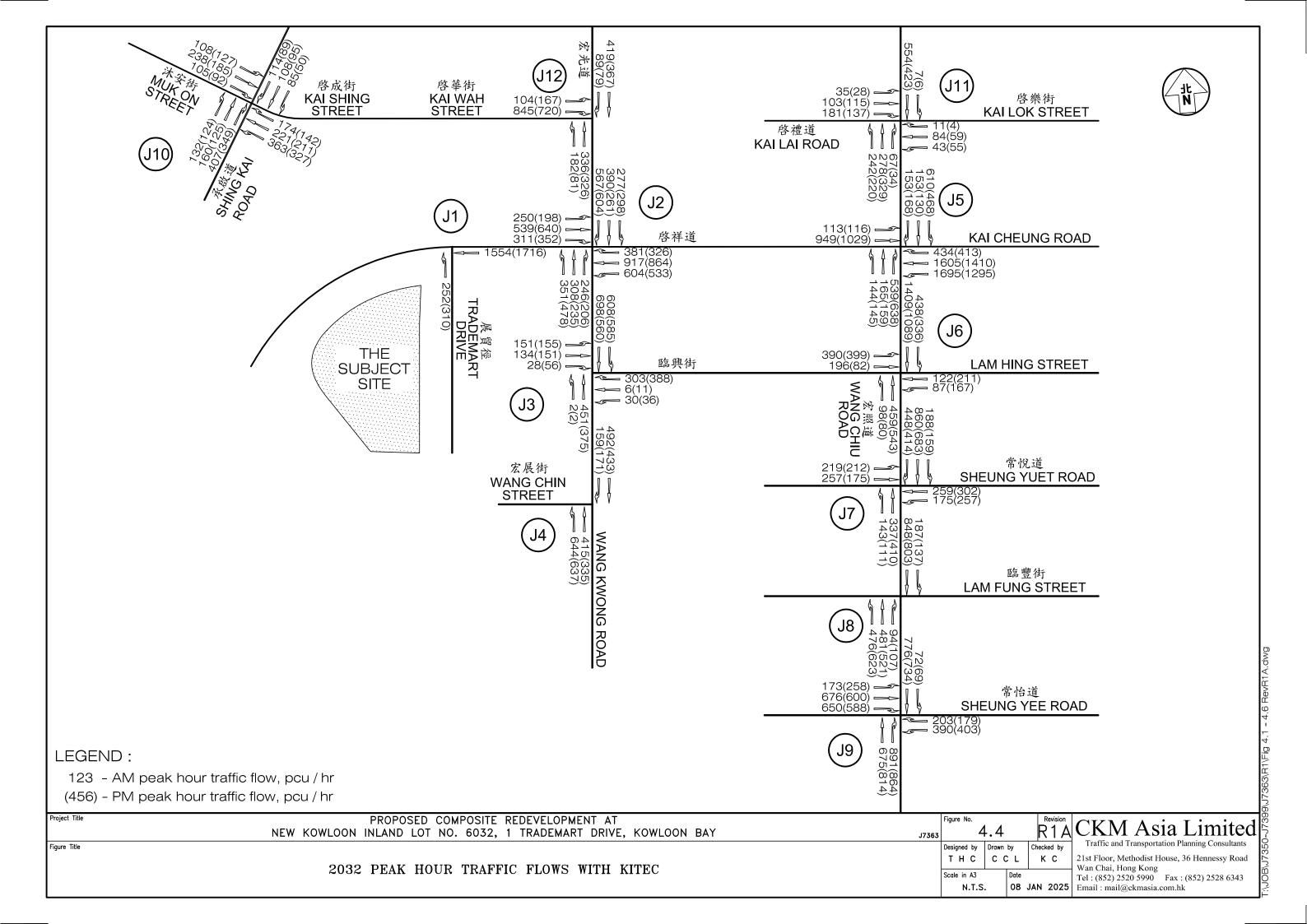
Designed by Th C C C L K C

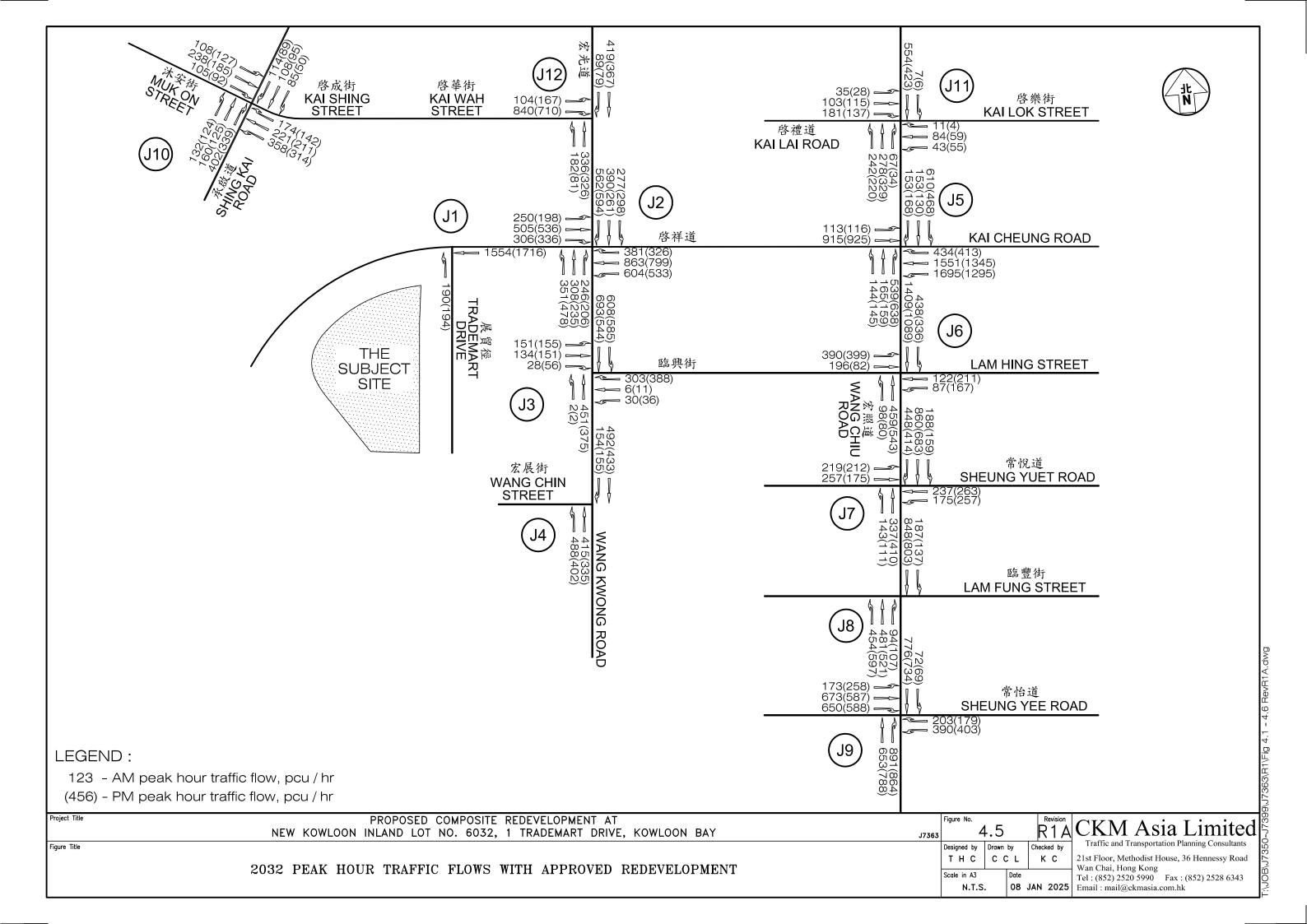

Scale in A3

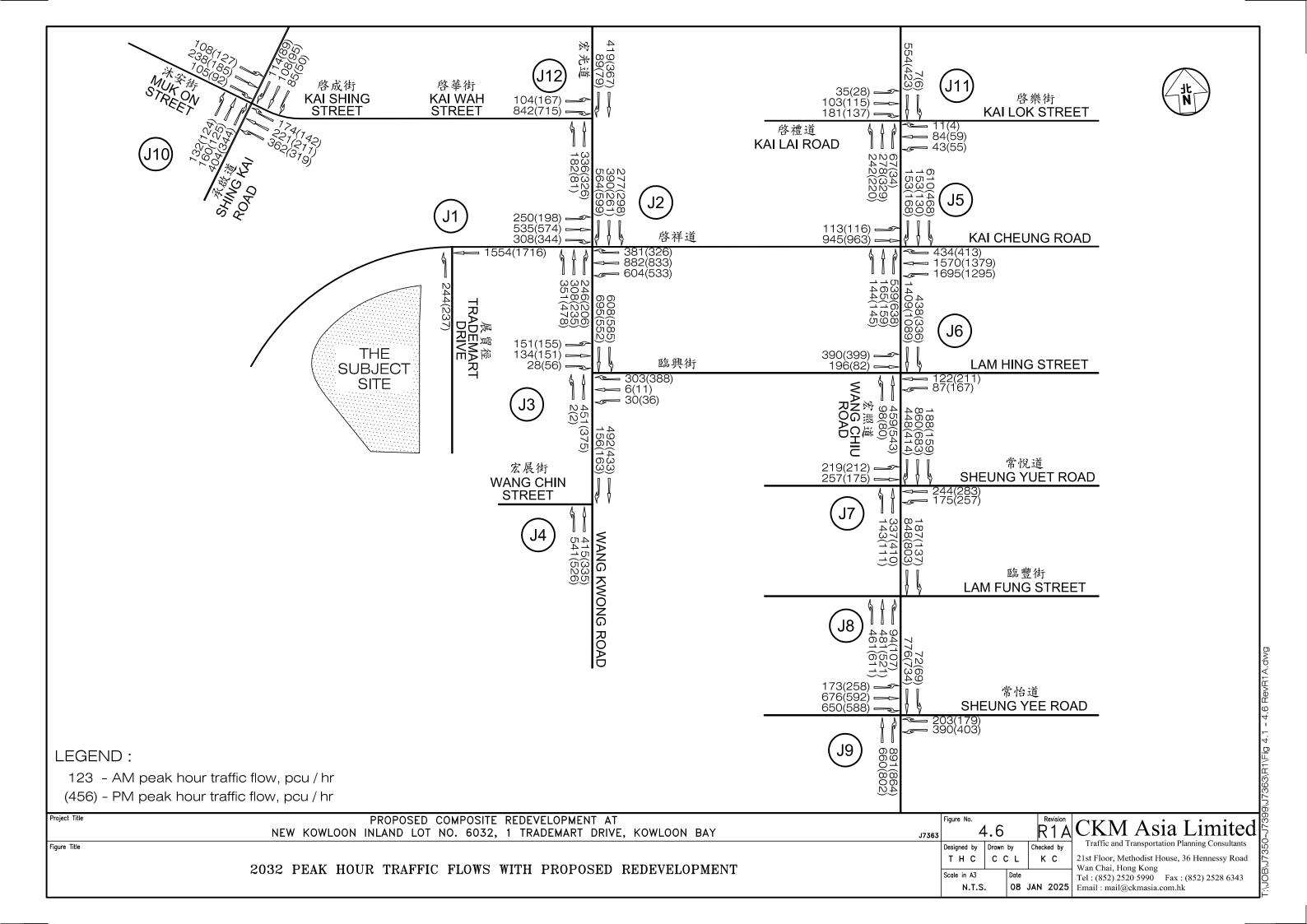

1: 600

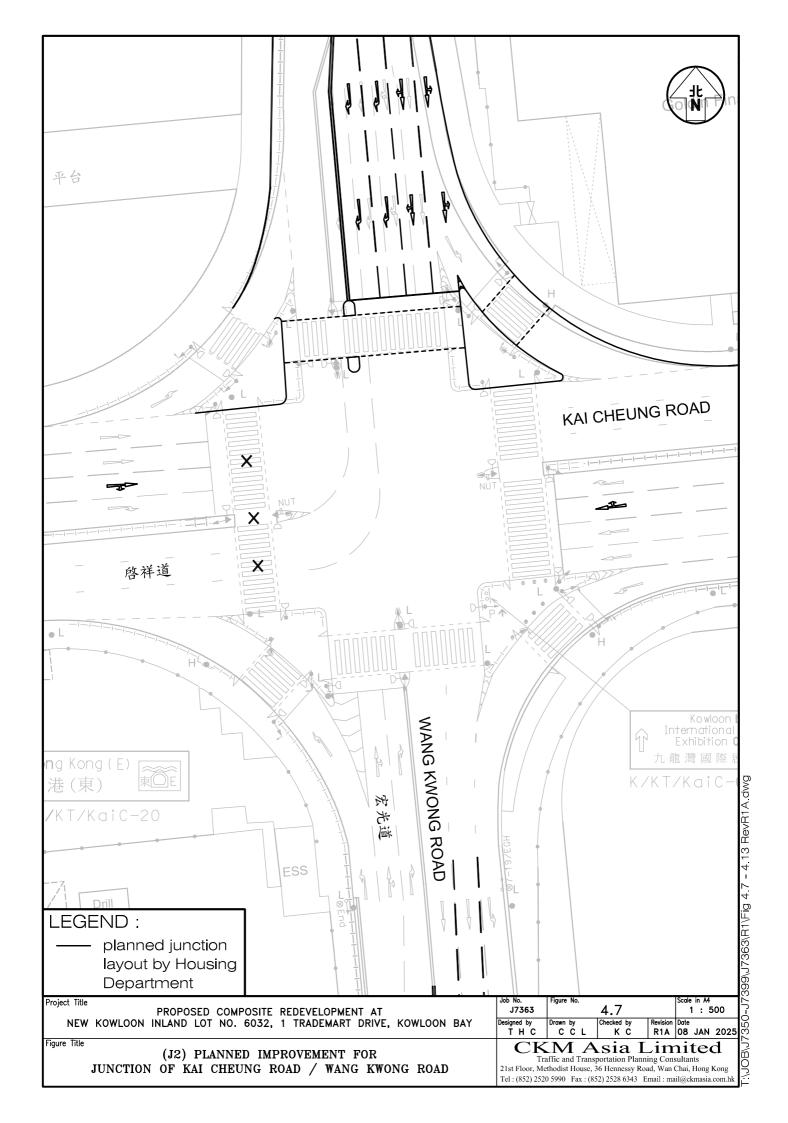

Double Tel: (852) 2520 5990

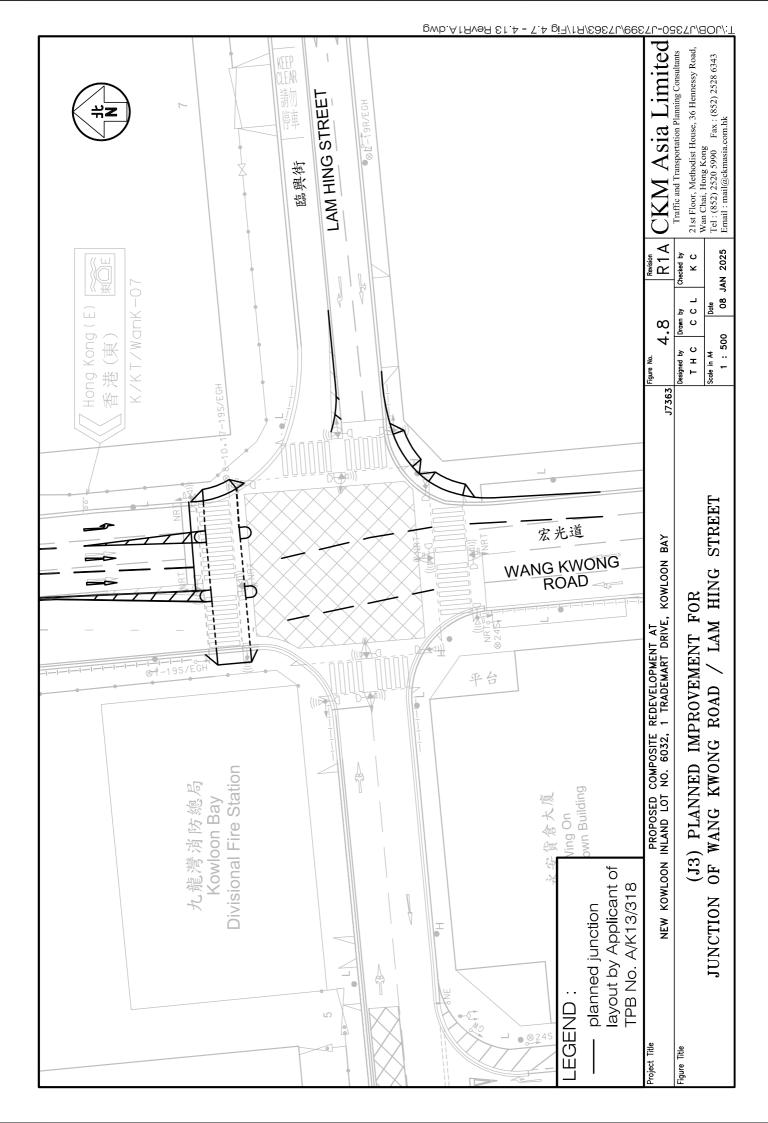

Fax: (852) 2528 6343

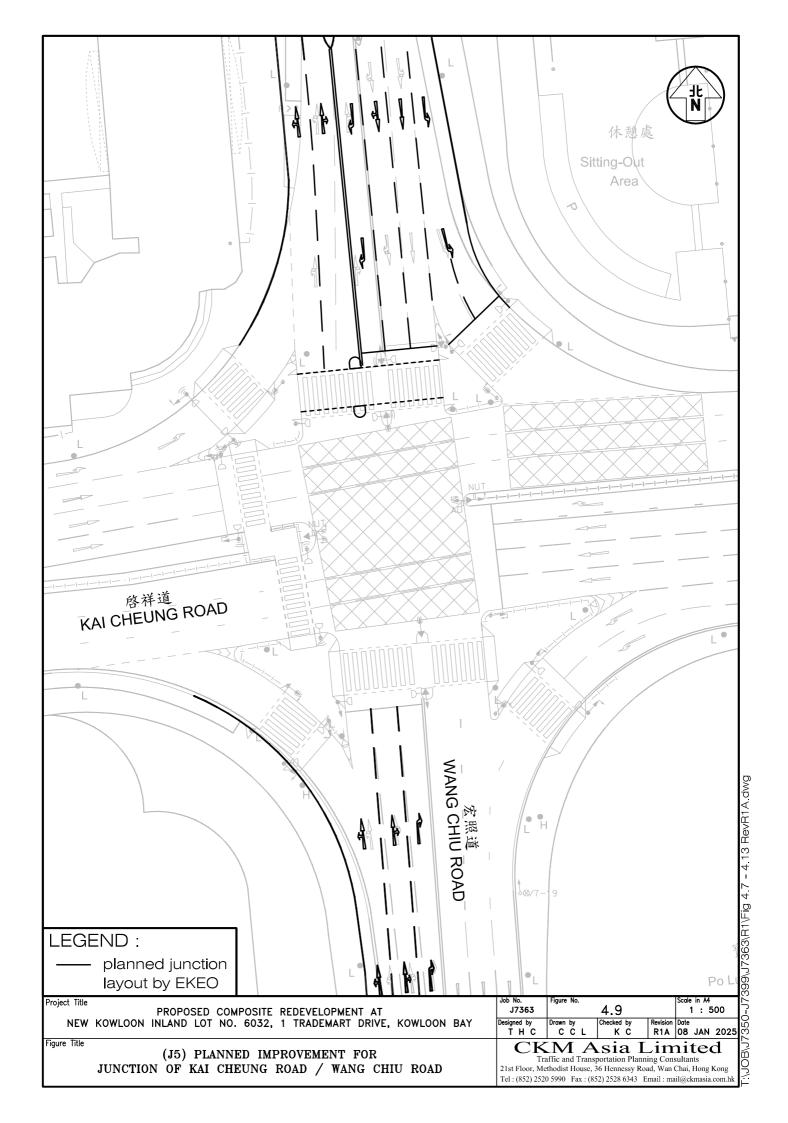

Email: mail@ckmasia.com.hk

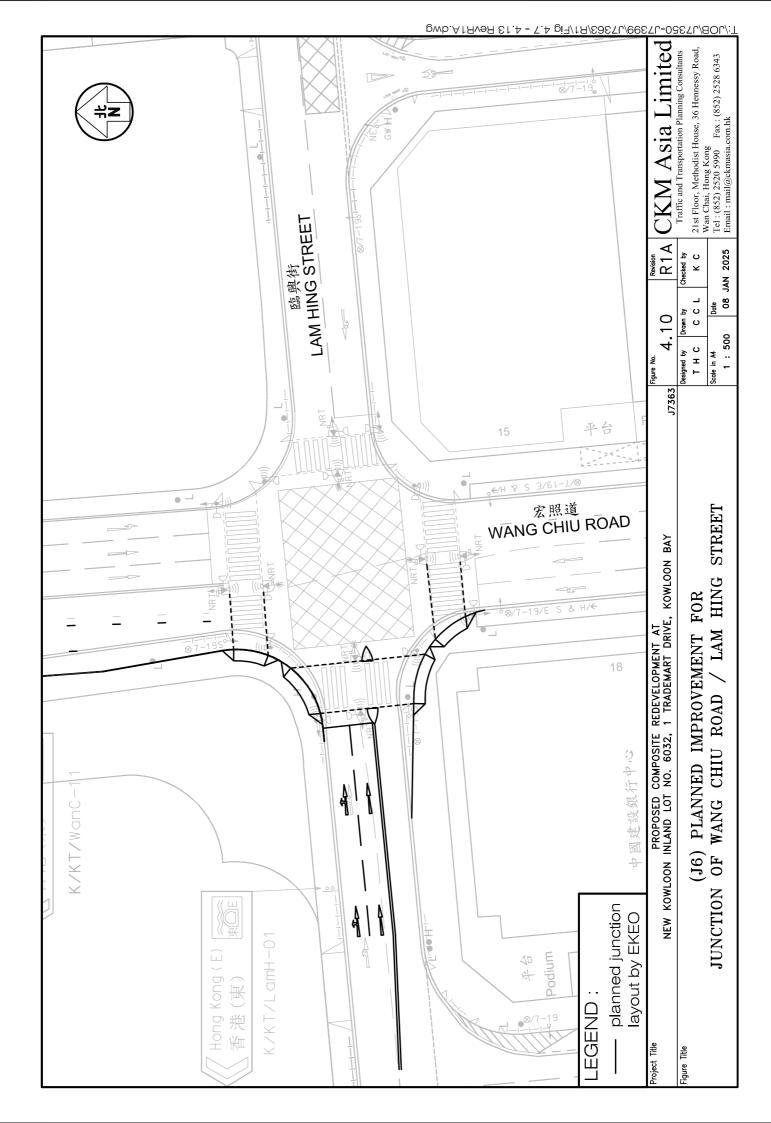


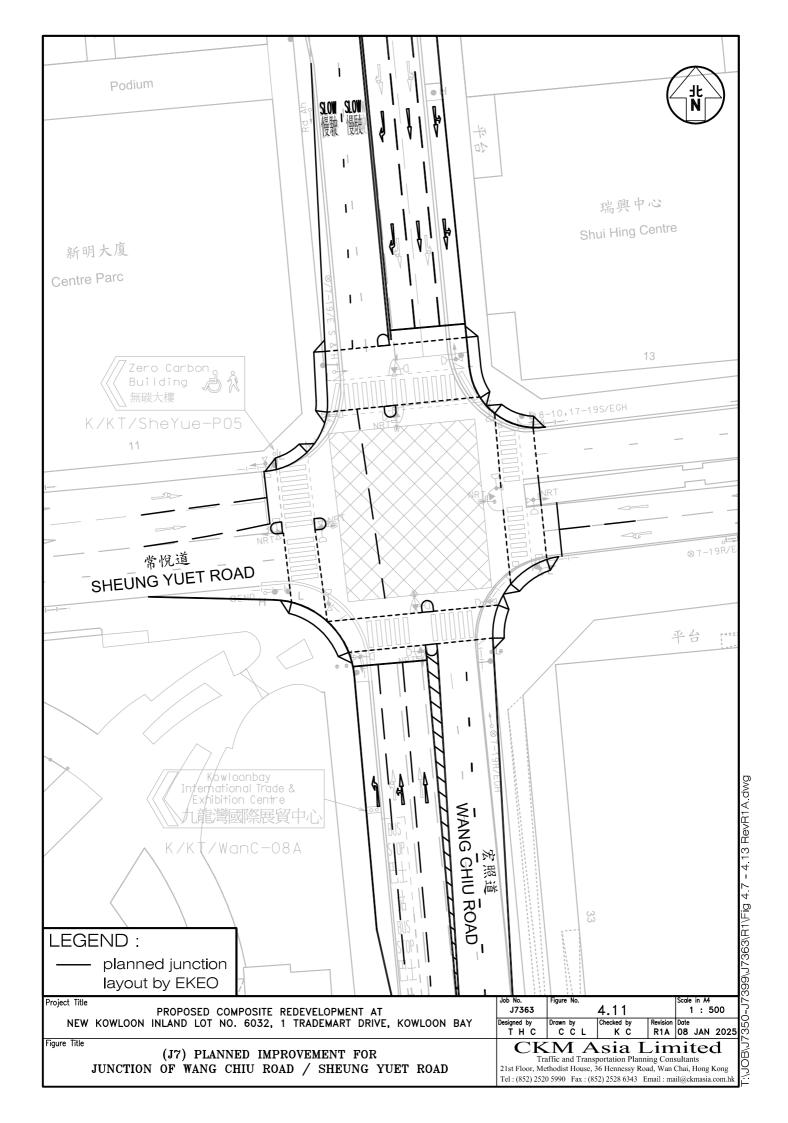


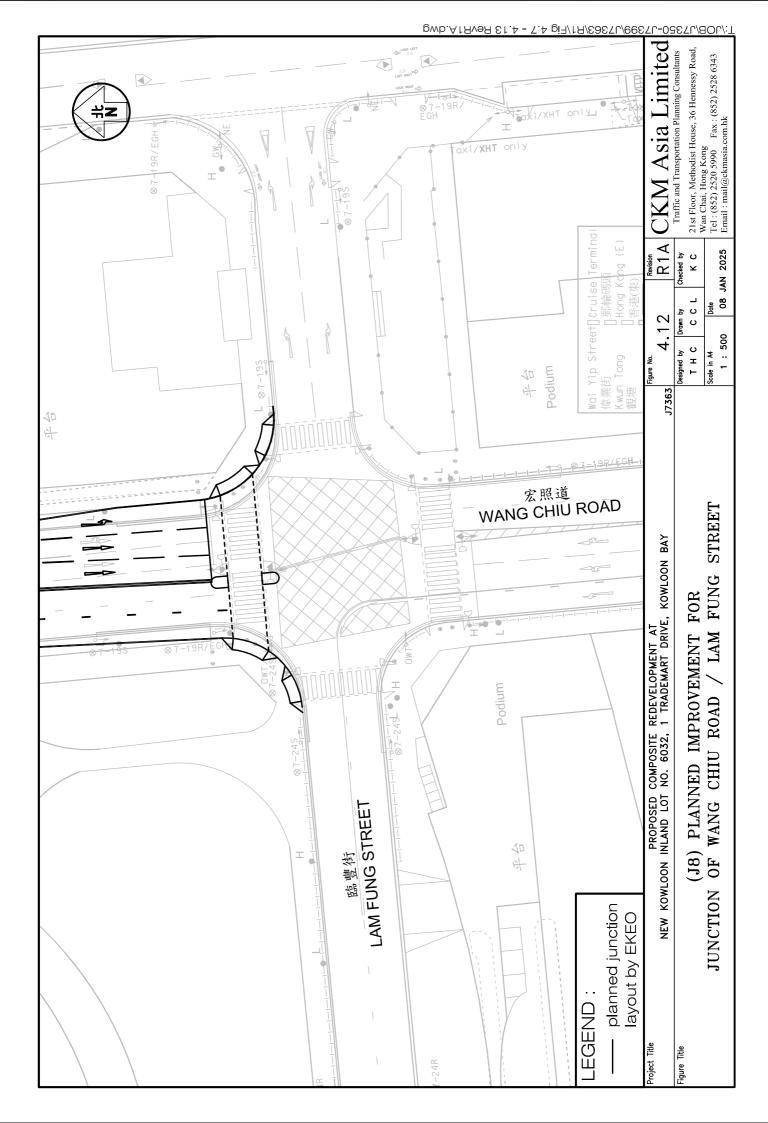


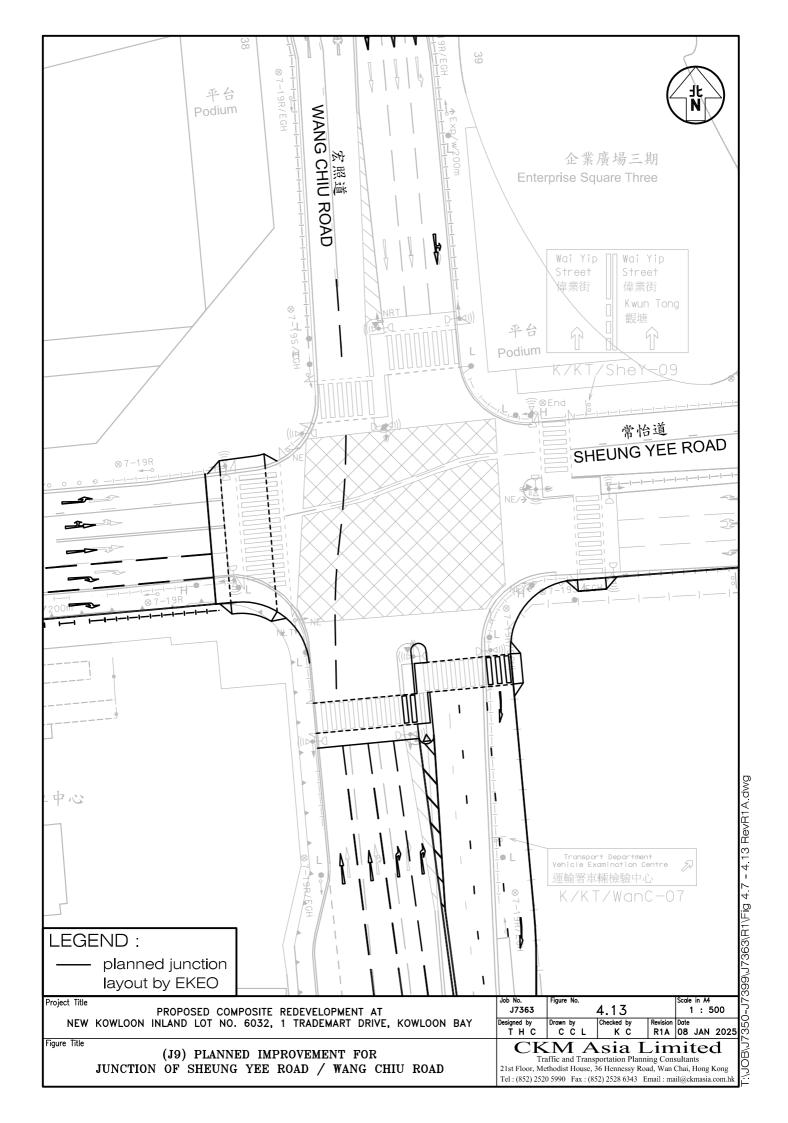


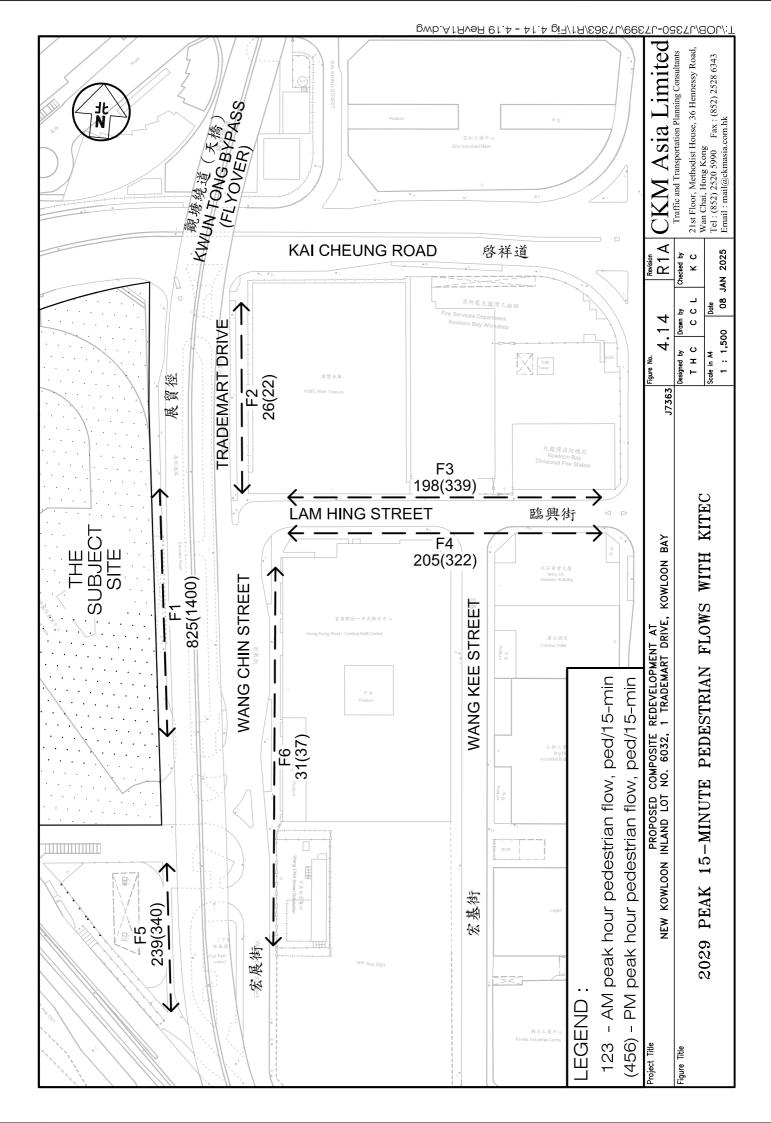


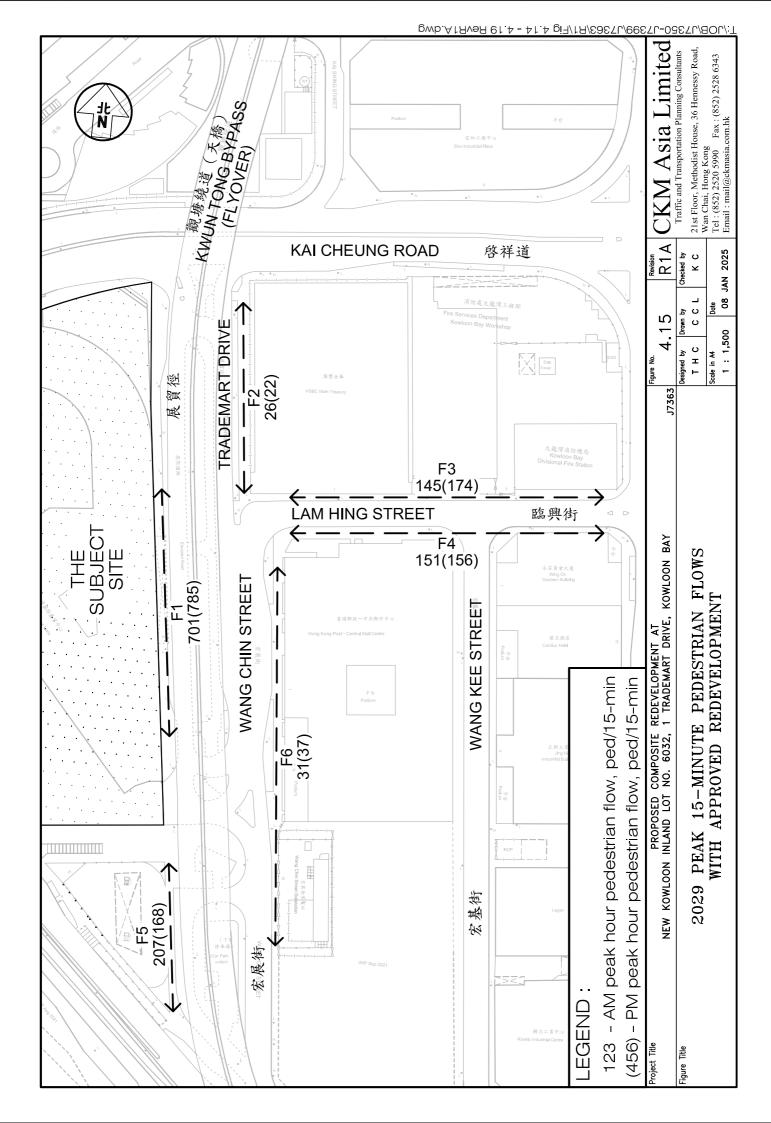


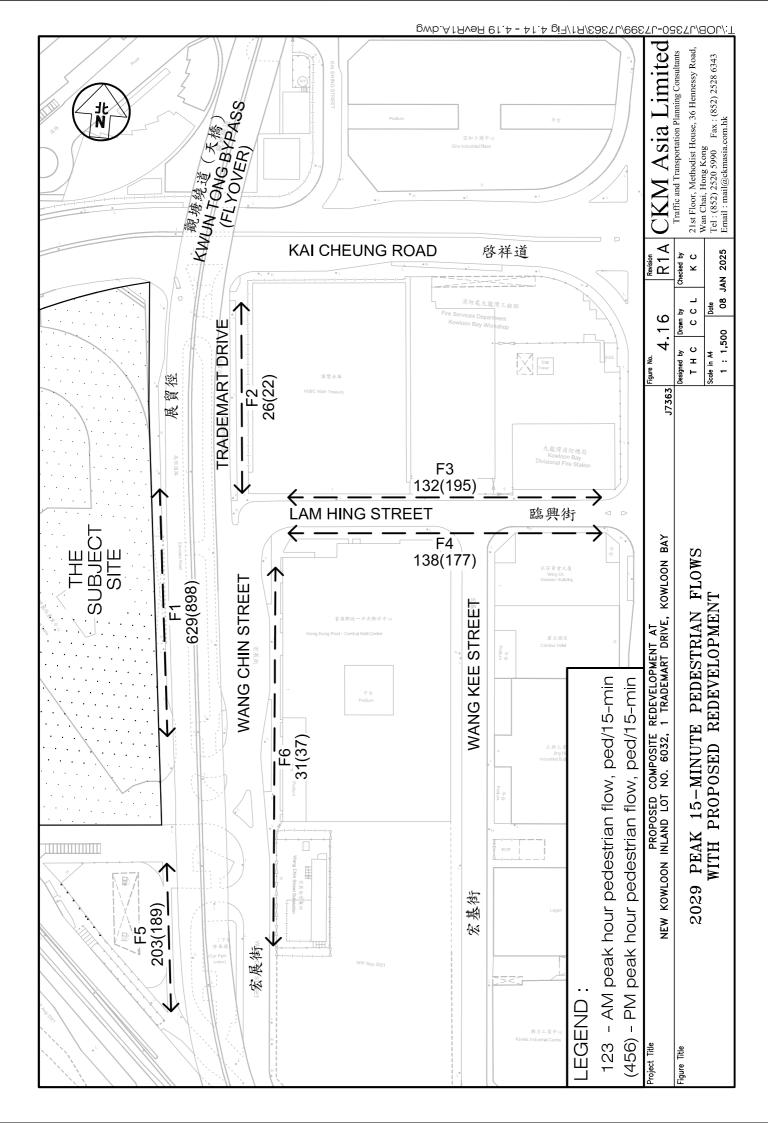


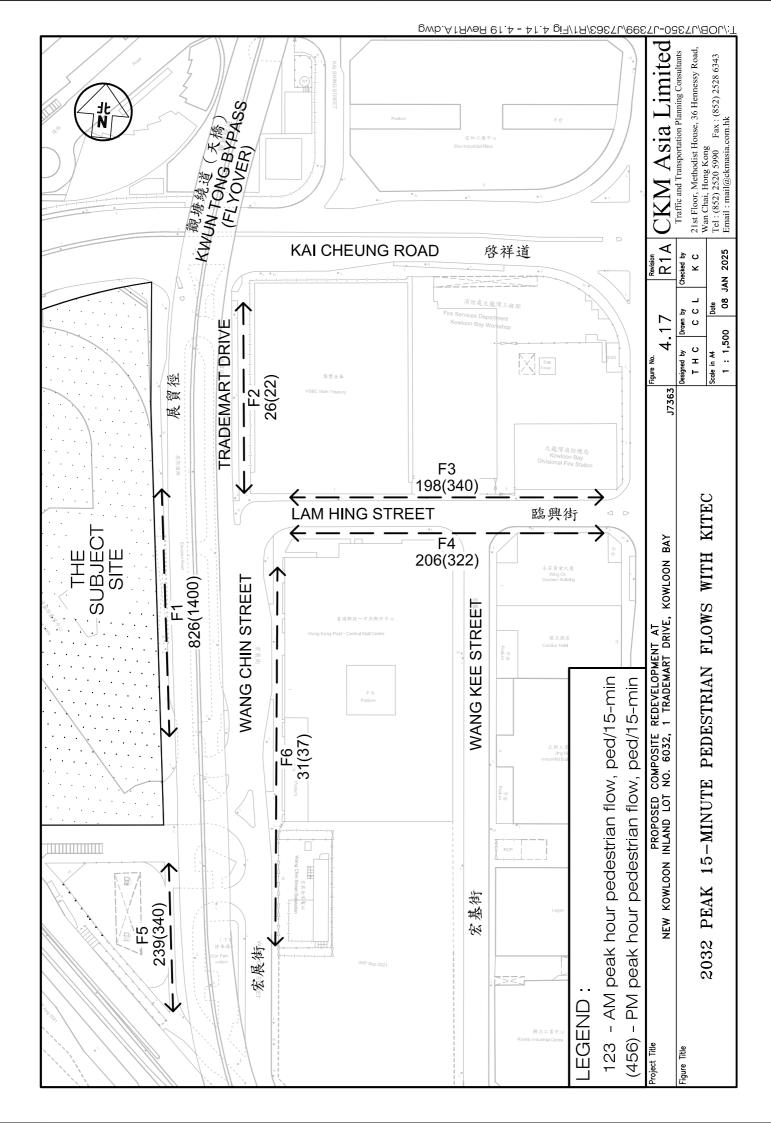


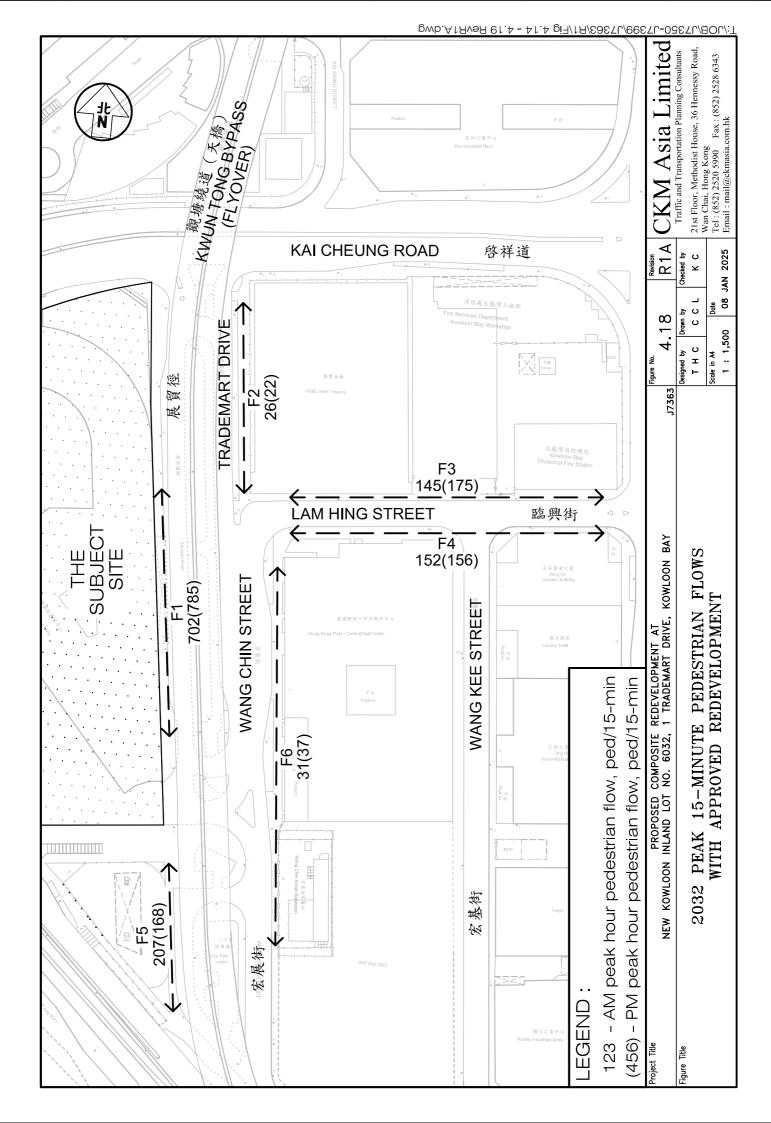


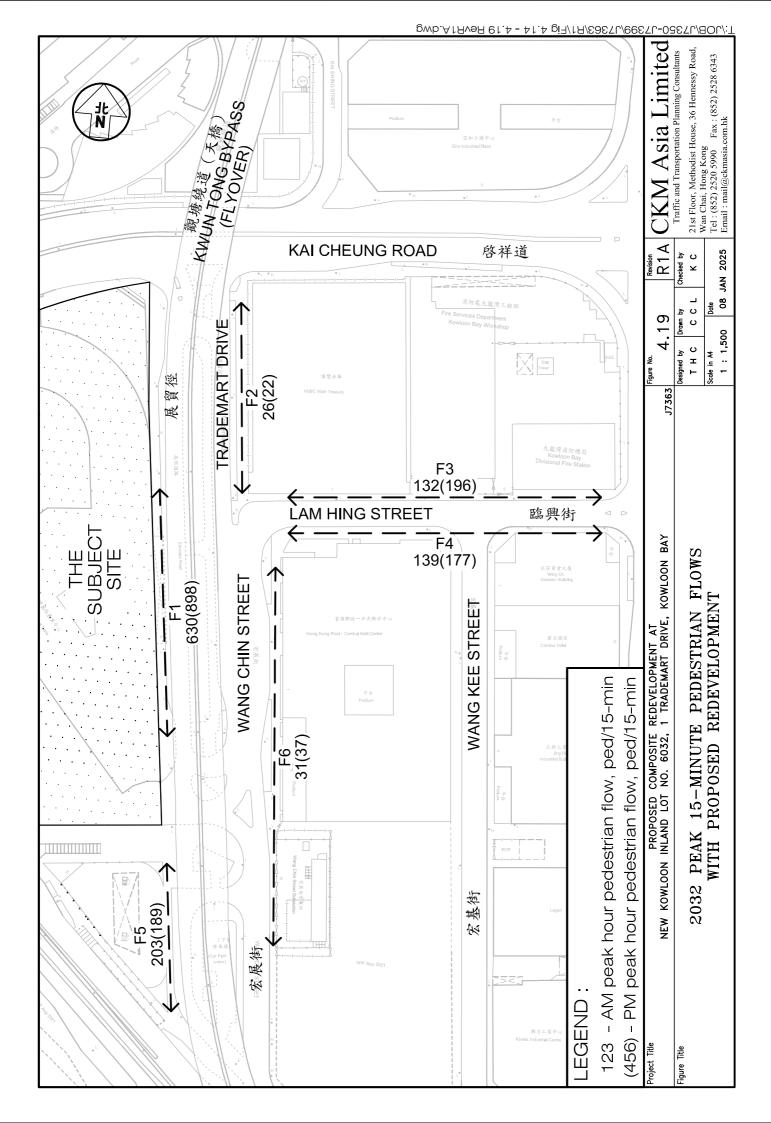


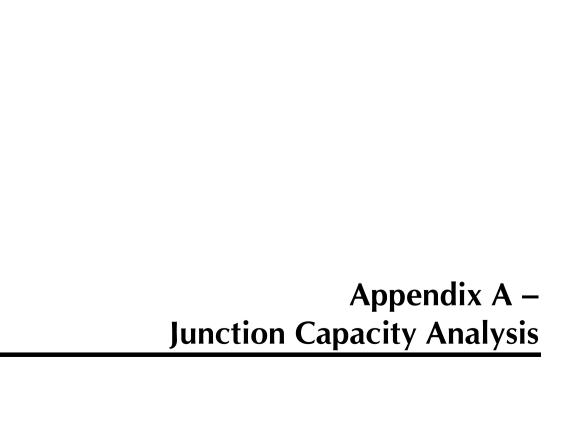


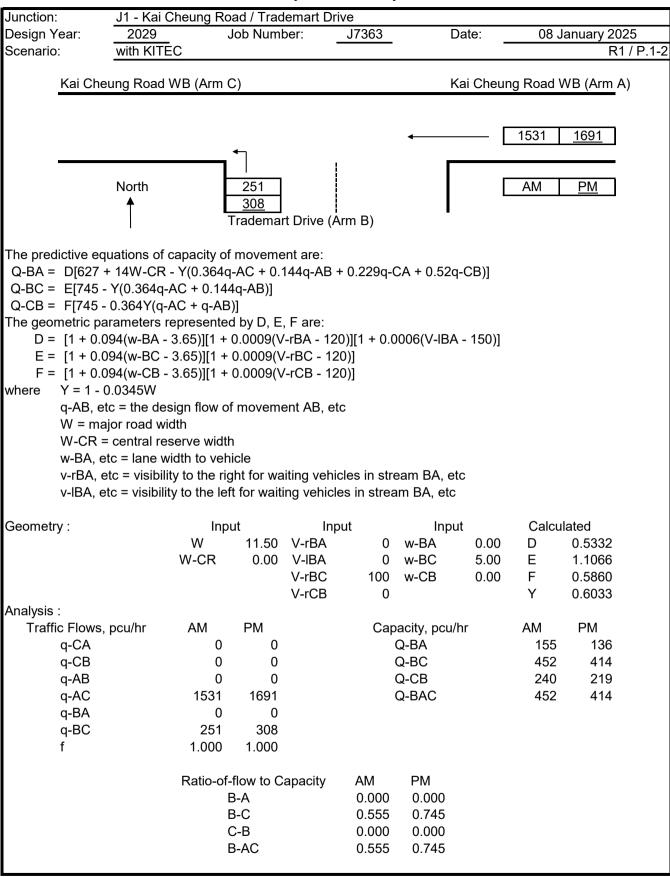


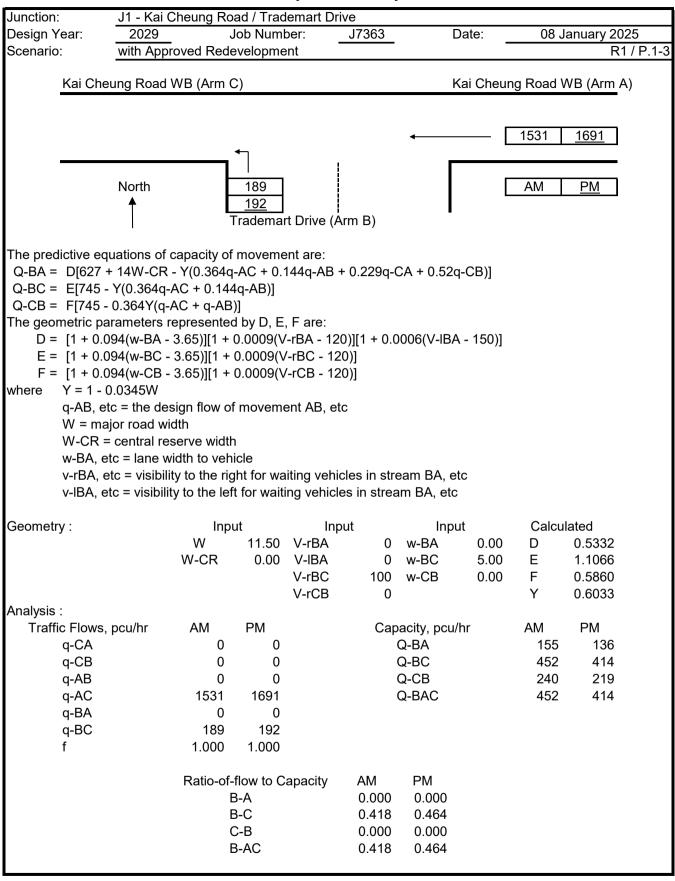


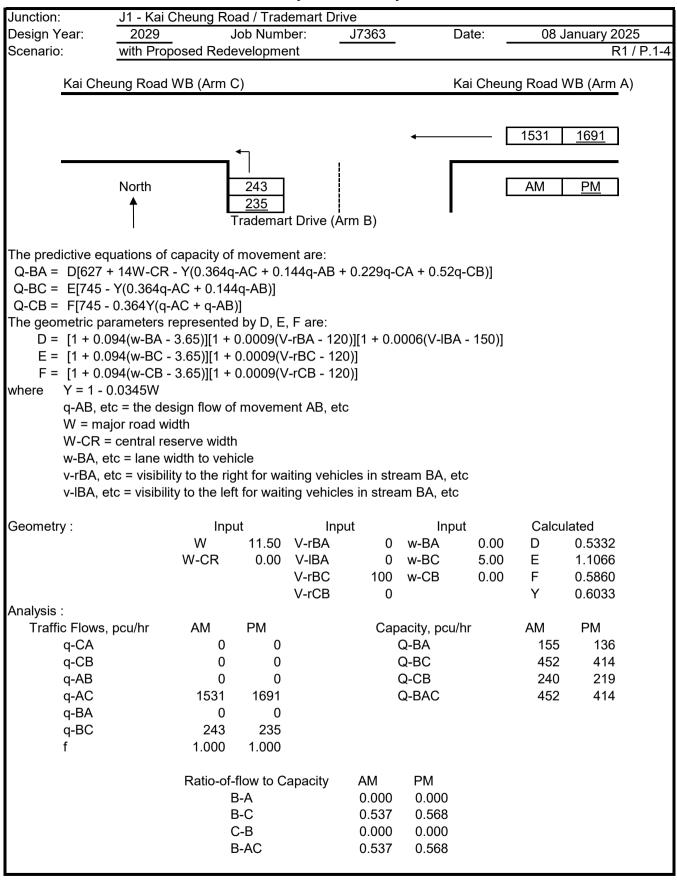


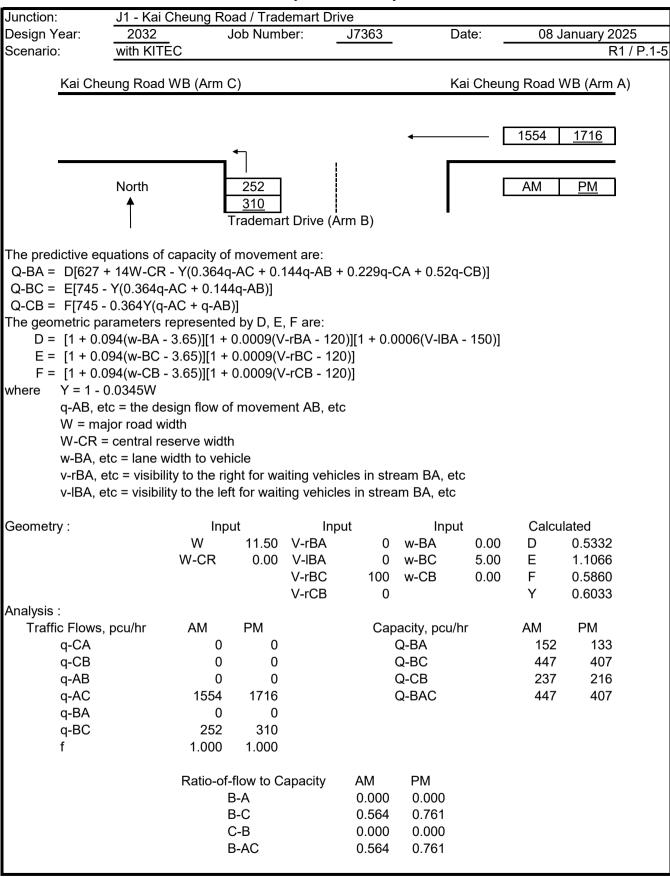


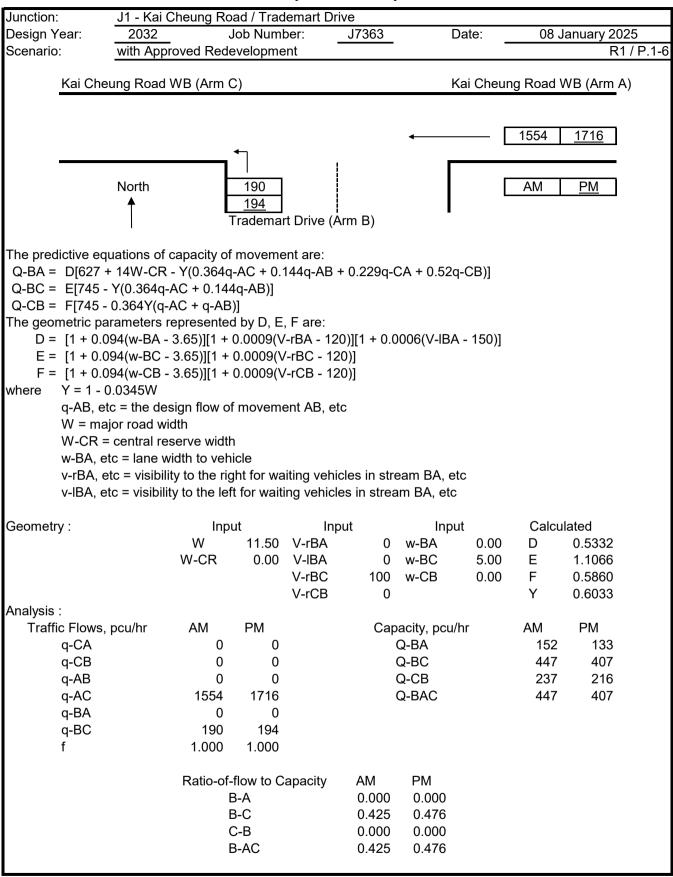


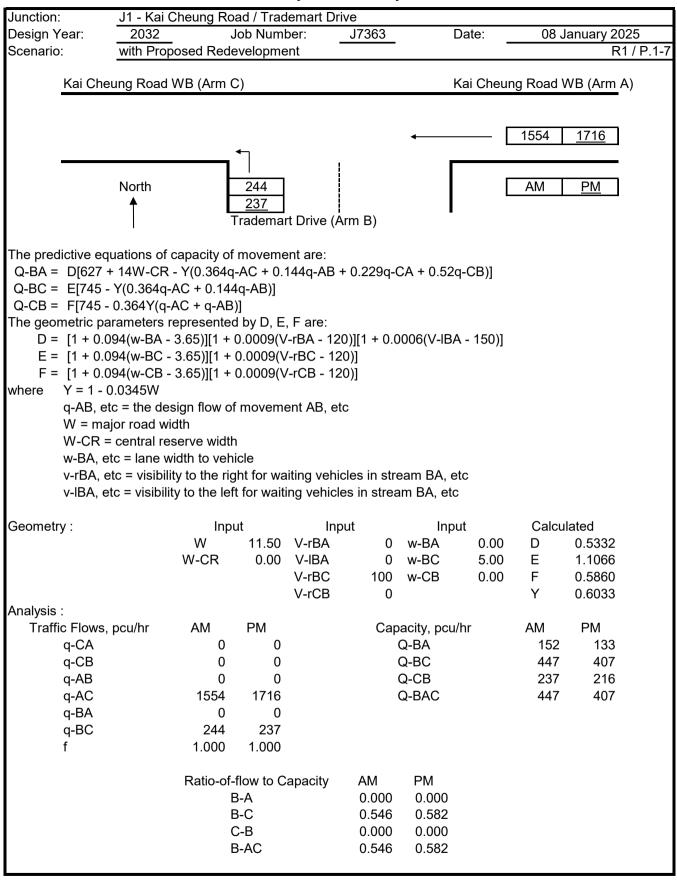












 Junction:
 J2 - Kai Cheung Road / Wang Kwong Road
 Job Number:
 J7363

 Scenario:
 existing condition
 R2 / P.2-1

 Design Year:
 2024
 Designed By:
 Checked By:
 Date:
 08 January 2025

-																
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Kai Cheung Road EB	LT+SA	A1	1	3.50	35.0	Gradient	100	(pcu/hr) 1936	227	0.117		74	(pcu/hr) 1956	(pcu/hr) 187	0.096	
g	SA	A2	1	3.30				2085	208	0.100			2085	199	0.095	
	SA	А3	1	3.30				2085	207	0.099			2085	200	0.096	
	RT	A4	1	3.30	20.0		100	1940	232	0.120	0.120	100	1940	189	0.097	0.097
Wang Kwong Road NB	LT	B1	1, 2	4.00	35.0		100	1932	180	0.093		100	1932	266	0.138	
	SA+RT	B2	2	3.30	30.0		0	2085	297	0.142	0.142	0	2085	231	0.111	0.111
	RT	В3	2	3.30	25.0		100	1967	190	0.097		100	1967	168	0.085	
Kai Cheung Road WB	LT	C1	2, 3	3.50	35.0		100	1884	326	0.173		100	1884	232	0.123	
- C	SA	C2	3	3.30				2085	208	0.100			2085	225	0.108	
	SA	C3	3	3.30				2085	208	0.100			2085	225	0.108	
	SA	C4	3	3.30				2085	208	0.100			2085	225	0.108	
	RT	C5	3	3.30	20.0		100	1940	323	0.167	0.167	100	1940	313	0.161	0.161
Wang Kwong Road SB	LT+SA	D1	4	3.50	35.0		80	1951	325	0.167	0.167	86	1947	321	0.165	0.165
Wang Kwong Koau 36	SA+RT	D2	4	3.50	25.0		34	2063	343	0.166	0.107	51	2042	337	0.165	0.103
	RT	D3	4	3.50	15.0		100	2042	340	0.166		100	2068	342	0.165	
				0.00					0.0	000			2000	0.12	000	
pedestrian phase		7(p)	2, 3, 4		min cı	rossing	time =	5	sec (GM+	5	sec F	GM =	10	sec	
		8(p)	2		min cı	rossing	time =	13	sec (GM +	12	sec F	GM =	25	sec	
		9(p)	3, 4		min cı	rossing	time =	5	sec (GM +	6	sec F	GM =	11	sec	
		10(p)	3		min cı	rossing	time =	10	sec (GM +	9	sec F	GM =	19	sec	
		11(p)	1, 4		min cı	rossing	time =	5	sec (GM +	5	sec F	GM =	10	sec	
		12(p)	4			rossing		14		GM +	12		-GM =	26	sec	
		13(p)	1, 2			rossing		5		<u>GM +</u> GM +	6 12		GM =	11 25	sec	
		14(p)	1			rossing	ume =	13			•		GM =	•	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic I	flow (pcu/hr)				N	S=1940+	100(W-3.	25) S=:	2080+100	(W-3.25)	Note:		
455 4	260	\uparrow		139	515	210	2/5	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	=(S–230)÷	(1+1.5f/r)			
1 †	293	I		†	4.47	210		ı		AM	Check Pedestrian	PM	Check Pedestrian			
415 232	323			189	447		313			Peak	Phase	Peak	Phase			
232	323 625			189		675	313		Sum y	0.595		0.534				
007	Ţ				004	073	232		L (s)	19		19				
297 180 1	326			266	231	160	232		C (s)	140		140				
180 -	90			200	\Box	108			Practical y	0.778 31%		0.778 46%				
1	12				3				R.C. (%)	3170		4070	15			
^ A1	.			13(p)	*.				, x ,				3			
A2 14(p)	7(p) 7(p) 7(p)	†		∡· 13(p)	7(p) ·				7(p) · 🛕	D3	D2 D1					
→ A4	δ(ρ)	į					C5	t			<u>†</u>	12(p)				
B1 *	· 11(p)	B1 B2 E	33		9(p)	←·-·→ 10(p)	C4 C3	<u></u>	9(p) . *		ţ	(P) ▼11(p)				
	*"	7[-	C1 🔽	" · •	- 4-7	C2 C1					• (12)				
AM G = I/G =	5 G=		I/G =	6	G =		I/G =	6	G =		I/G =	6	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	5 G =		I/G =	6	G =		I/G =	6	G =		I/G =	6	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J2 - Kai Cheung Road / Wang Kwong Road
 Job Number:
 J7363

 Scenario:
 with KITEC
 R1 / P.2-2

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
Kai Cheung Road EB	LT+SA	A1	1	3.50	35.0	Gradient	94	(pcu/hr) 1940	(pcu/hr) 262	0.135		68	(pcu/hr) 1961	(pcu/hr) 286	0.146	
tal Officially Road ED	SA	A2	1	3.30	33.0		34	2085	282	0.135			2085	305	0.146	
	SA+RT	A3	1	3.30	25.0		16	2065	279	0.135		21	2059	301	0.146	
	RT	A4	1	3.30	20.0		100	1940	262	0.135	0.135	100	1940	283	0.146	0.14
Wang Kwong Road NB	LT	B1	1, 2	4.00	35.0		100	1932	346	0.179		100	1932	471	0.244	
	SA+RT	B2	2	3.30	30.0		0	2085	303	0.145		0	2085	232	0.111	
	RT	В3	2	3.30	25.0		100	1967	242	0.123		100	1967	203	0.103	
Kai Cheung Road WB	LT	C1	2, 3	3.50	35.0		100	1884	595	0.316	0.316	100	1884	525	0.279	0.27
	SA	C2	3	3.30				2085	327	0.157			2085	284	0.136	
	SA	C3	3	3.30				2085	327	0.157			2085	284	0.136	
	SA+RT	C4	3	3.30	25.0		22	2058	323	0.157		0	2085	285	0.137	
	RT	C5	3	3.30	20.0		100	1940	304	0.157		100	1940	321	0.166	
Wang Kwong Road SB	LT+SA	D1	4	3.50	35.0		70	1959	390	0.199		80	1952	369	0.189	
	SA+RT	D2	4	3.50	25.0		35	2062	410	0.199		53	2040	386	0.189	
	RT	D3	4	3.50	15.0		100	2094	416	0.199	0.199	100	2068	391	0.189	0.18
pedestrian phase		7(p)	2, 3, 4		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
·		9(p)	3, 4		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
		10(p)	3		min c	rossing	time =	10	sec	GM +	9	sec F	GM =	19	sec	
		11(p)	1, 4		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
		12(p)	4		min c	rossing	time =	14	sec	GM +	12	sec F	GM =	26	sec	
		13(p)	1, 2		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
		14(p)	1		min c	rossing	time =	13	sec	GM +	12	sec F	GM =	25	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic F	low (pcu/hr)				N	S=1940+	-100(W–3.	,	2080+100	` ′	Note:		
	273	\uparrow			595	\longrightarrow	294	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	(S–230)÷	(1+1.5f/r)	with pla	nned ju	nction
246 †	384			195 †		257					Check		Check		ement as in Figure	
532				347	633					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
307	375 ∱			3 47			321 †		Sum y	0.650		0.614				
	906					853	+		L (s)	17		17				
303	595				232		525		C (s)	140		140				
346 ← → 2	42			471	←	203			practical y	0.791		0.791				
									R.C. (%)	22%		29%				
I .	2				3				4				5			
A1 14(p)	7(p) 7(p) 7(p)			13(p)	7(p)			13(p)	7(p) .	•	·d∫⊦					
A3 A4										D3	D2 D1					
★		B1 B2 F	33		9(p)		C5		7(p)			12(p)				
B1 ▼	· 11(p)	B1 B2 E	+		9(p)*	←·-·→ 10(p)	C3 C2	☱	9(p)	•	*	▼. 11(p)				
	-			C1 🗸	_		C1	F	1			-				
AM G = I/G =	9 G=		I/G =		G =		I/G =	5	G =		I/G =	6	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	9 G=	_	I/G =	· <u> </u>	G =	· <u> </u>	I/G =	5	G =		I/G =	6	G =	· <u> </u>	I/G =	_
0	_															

 Junction:
 J2 - Kai Cheung Road / Wang Kwong Road
 Job Number:
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.2-3

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
						Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Kai Cheung Road EB	LT+SA	A1	1	3.50	35.0		97	1938	253	0.131	0.131	76	1955	257	0.131	
	SA	A2	1	3.30				2085	272	0.130			2085	274	0.131	
	SA+RT	A3	1	3.30	25.0		19	2061	269	0.130		28	2050	269	0.131	
	RT	A4	1	3.30	20.0		100	1940	252	0.130		100	1940	255	0.131	0.13
Wang Kwong Road NB	LT	B1	1, 2	4.00	35.0		100	1932	346	0.179		100	1932	471	0.244	
	SA+RT	B2	2	3.30	30.0		0	2085	303	0.145		0	2085	232	0.111	
	RT	В3	2	3.30	25.0		100	1967	242	0.123		100	1967	203	0.103	
Kai Cheung Road WB	LT	C1	2, 3	3.50	35.0		100	1884	595	0.316	0.316	100	1884	525	0.279	0.27
	SA	C2	3	3.30				2085	313	0.150			2085	263	0.126	
	SA	C3	3	3.30				2085	313	0.150			2085	263	0.126	
	SA+RT	C4	3	3.30	25.0		27	2052	309	0.151		0	2085	262	0.126	
_	RT	C5	3	3.30	20.0		100	1940	292	0.151		100	1940	321	0.166	
Wang Kwong Road SB	LT+SA	D1	4	3.50	35.0		70	1959	388	0.198		80	1951	366	0.188	
	SA+RT	D2	4	3.50	25.0		34	2063	408	0.198		52	2042	383	0.188	0.18
	RT	D3	4	3.50	15.0		100	2094	415	0.198	0.198	100	2068	387	0.187	
		7()	0 0 1					-		OM :	-		OM	40		
pedestrian phase		7(p) 9(p)	2, 3, 4			rossing		5 5		<u>GM +</u> GM +	5 6		GM = GM =	10 11	sec	
		9(p) 10(p)	3, 4			rossing rossing		10		GM +	9		GM =	19	sec	
		11(p)	1, 4			rossing		5		GM +	5		GM =	10	sec	
		12(p)	4			rossing		14		GM +	12		GM =	26	sec	
		13(p)	1, 2			rossing		5		GM +	6		GM =	11	sec	
		14(p)	1			rossing		13		GM +	12		GM =	25	sec	
		1+(ρ)	'		11111110	10001119		10	300	OIVI ·	12	3001	OWI -	20	300	
AM Traffic Flow (pcu/hr)		N	PM Traffic F	Flow (pcu/hr))			N	S=1940+	100(W-3	,		(VV-3.25)	Note:		
554 ← 246 3	273 84	\uparrow		195	585	257	294	\uparrow	S _M =S÷(1	+1.5f/r)		(S–230)÷		improve	ement as	3
498		!		\rightarrow	529			•		AM Peak	Check Pedestrian Phase	PM Peak	Check Pedestrian Phase	shown	in Figure	4.7
302	375 852 4			↓ 331			321		Sum y	0.645		0.598				
	852					788	321		L (s)	17		17				
303	595				232		1 525		C (s)	140		140				
346 🕕 242				471	←	203	-		practical y	0.791		0.791				
					,				R.C. (%)	23%		32%				
A1 A2 A3 A4 A3 A4		B1 B2 E		. 13(p)	7(p) 7	← ·-· → 10(p)	C5 C4 C3	13(p)	4 7(p) [▼] 、 ▲	←	D2 D1	12(p)	5			

I/G = 5

I/G =

I/G =

I/G =

G=

G =

G =

G=

I/G = 6

I/G =

I/G =

I/G =

G =

I/G =

I/G =

I/G =

I/G =

J2

C1 **↓**

I/G =

I/G =

I/G =

I/G =

G =

G =

G =

G =

G =

CKM Asia Limited

I/G = 9

I/G =

I/G =

I/G =

G=

G =

G =

G =

 Junction:
 J2 - Kai Cheung Road / Wang Kwong Road
 Job Number:
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.2-4

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

							Ī		AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Kai Cheung Road EB	LT+SA	A1	1	3.50	35.0		95	1940	260	0.134		73	1957	268	0.137	
	SA	A2	1	3.30				2085	280	0.134			2085	286	0.137	
	SA+RT	A3	1	3.30	25.0		16	2065	277	0.134		26	2053	281	0.137	
	RT	A4	1	3.30	20.0		100	1940	261	0.135	0.135	100	1940	266	0.137	0.13
Wang Kwong Road NB	LT	B1	1, 2	4.00	35.0		100	1932	346	0.179		100	1932	471	0.244	
· · · · · · · · · · · · · · · · · · ·	SA+RT	B2	2	3.30	30.0		0	2085	303	0.145		0	2085	232	0.111	
	RT	B3	2	3.30	25.0		100	1967	242	0.123		100	1967	203	0.103	
			_	0.00	20.0					020					01100	
Kai Cheung Road WB	LT	C1	2, 3	3.50	35.0		100	1884	595	0.316	0.316	100	1884	525	0.279	0.27
ital ollowing House His	SA	C2	3	3.30	00.0			2085	318	0.153	0.0.0		2085	274	0.131	0.2.
	SA	C3	3	3.30				2085	318	0.153			2085	274	0.131	
	SA+RT	C4	3	3.30	25.0		25	2054	314	0.153		0	2085	274	0.131	
	RT	C5	3	3.30	20.0		100	1940	296	0.153		100	1940	321	0.166	
	IXI	- 00		3.30	20.0		100	1340	230	0.100		100	1340	JZ 1	0.100	
Wang Kwong Road SB	LT+SA	D1	4	3.50	35.0		70	1959	389	0.199	0.199	80	1951	367	0.188	
vvany rwony road 35	SA+RT	D2	4	3.50	25.0		34	2062	409	0.199	0.199	52	2041	384	0.188	
			4				100					100		390		0.10
	RT	D3	4	3.50	15.0		100	2094	415	0.198		100	2068	390	0.189	0.18
								_			_	_				
pedestrian phase		7(p)	2, 3, 4			rossing		5		GM +	5		GM =	10	sec	
		9(p)	3, 4			rossing		5		GM +	6		GM =	11	sec	
		10(p)	3			rossing		10		GM +	9		GM =	19	sec	
		11(p)	1, 4		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
		12(p)	4		min c	rossing	time =	14		GM +	12		GM =	26	sec	
		13(p)	1, 2		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
		14(p)	1		min c	rossing	time =	13	sec	GM +	12	sec F	GM =	25	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic I	Flow (pcu/hr))			N	S=1940+	100(W–3.	25) S=2	2080+100	(W-3.25)	Note:		
556 ←	273	.\ ↑			590	\leftarrow	294	· · ·	S _M =S÷(1	+1.5f/r)	S _M =	(S–230)÷	·(1+1.5f/r)	with pla	nned ju	nction
246	3 84			195		257					Check			improve	ement as in Figure	s
528				\rightarrow	567					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase	SHOWIT	iii i iguit	J 4.1
↓ 304	375			↓ 339			321		Sum y	0.649		0.604				
00 -1	871			000		822	↓			17		17				
303	375 871 				232		525		L (s)	140		140				
346 4 24	000			171	232	203	323		C (s)							
340 ← → 24	4			4/1	\Box	203			practical y	0.791 22%		0.791 31%				
			l .						R.C. (%)	ZZ 7/0		J170	I			
' • †	2			_	3			_	4				5			
A1 A2 14(p)	7(p) 7(p) 7(p)			13(p)	7(p)			13(p)	7(p) .	•	' ←					
A3 A4					7(p) 9(p)			13(p)		D3	D2 D1					
•		B1 B2 E	33			د د	C5 C4	—			Ţ	12(p)				
B1 ▼ .,	11(p)	∽∱ ⊦	+		9(p)	10(p)	C3 C2	\leftarrow	9(p)		•	11(p)				
I	1	11 1		C1 [1		C1		l							
<u>_</u> _																

CKM Asia Limited J2

I/G =

I/G =

G =

G=

G =

G=

I/G =

I/G =

I/G =

G =

I/G =

I/G =

I/G =

G =

G=

G=

I/G =

I/G =

I/G =

I/G =

I/G =

 Junction:
 J2 - Kai Cheung Road / Wang Kwong Road
 Job Number:
 J7363

 Scenario:
 with KITEC
 R1 / P.2-5

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

			ı	ı	1	ı			AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Kai Cheung Road EB	LT+SA	A1	1	3.50	35.0		94	1940	266	0.137		68	1961	290	0.148	
<u> </u>	SA	A2	1	3.30				2085	286	0.137			2085	308	0.148	
	SA+RT	A3	1	3.30	25.0		16	2065	283	0.137		21	2059	305	0.148	
	RT	A4	1	3.30	20.0		100	1940	265	0.137	0.137	100	1940	287	0.148	0.148
Wang Kwong Road NB	LT	B1	1, 2	4.00	35.0		100	1932	351	0.182		100	1932	478	0.247	
······································	SA+RT	B2	2	3.30	30.0		0	2085	308	0.148		0	2085	235	0.113	
	RT	B3	2	3.30	25.0		100	1967	246	0.125		100	1967	206	0.105	
		Во		0.00	20.0		100	1001	210	0.120		100	1001	200	0.100	
Kai Cheung Road WB	LT	C1	2, 3	3.50	35.0		100	1884	604	0.321	0.321	100	1884	533	0.283	0.283
Nai Crieding Noad WD	SA	C2	3	3.30	33.0		100	2085	331	0.321	0.321	100	2085	288	0.138	0.200
	SA	C3	3	3.30				2085		0.159			2085	288	0.138	
					25.0				331			_				
	SA+RT	C4	3	3.30	25.0		22	2058	327	0.159		0	2085	288	0.138	
	RT	C5	3	3.30	20.0		100	1940	309	0.159		100	1940	326	0.168	
	, =			0	05.5			40.77	00-	0.000			46-5		0.455	
Wang Kwong Road SB	LT+SA	D1	4	3.50	35.0		70	1959	395	0.202		79	1952	375	0.192	
	SA+RT	D2	4	3.50	25.0		35	2062	416	0.202		53	2040	392	0.192	0.192
	RT	D3	4	3.50	15.0		100	2094	423	0.202	0.202	100	2068	396	0.191	
pedestrian phase		7(p)	2, 3, 4			rossing		5		GM +	5		GM =	10	sec	
		9(p)	3, 4		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
		10(p)	3		min c	rossing	time =	10	sec	GM +	9	sec F	GM =	19	sec	
		11(p)	1, 4		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
		12(p)	4		min c	rossing	time =	14	sec	GM +	12	sec F	GM =	26	sec	
		13(p)	1, 2		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
		14(p)	1		min c	rossing	time =	13	sec	GM +	12	sec F	GM =	25	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic I	low (pcu/hr))			N	S=1940+	-100(W–3	25) S=:	2080+100	(W-3.25)	Note:		
567 🛨	277	Λ			604	\leftarrow	298	1	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	(1+1.5f/r)	with pla	anned ju	nction
250	390			198		261			,		Check				ement as	
539				\rightarrow	640			•		AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase	SHOWH	in Figure	4.7
311	381			352			326 †		_		riiase	0.623	Filase			
311	917			332		864	ــــــــــــــــــــــــــــــــــــــ		Sum y	0.659						
	1				00-	004	1		L (s)	17		17				
308	604				235 †		533		C (s)	140		140				
351 🕕 2	46			478	$\qquad \qquad $	206			practical y	0.791		0.791				
			<u> </u>						R.C. (%)	20%		27%	<u></u>			
1	2				3				4				5			
A1 A2 14(p)	13(p) 7(p) 7			√ 13(p)	7(p) .			· 13(p)	7(p) ×		╵┽┞╸					
A3 A4										D3	D2 D1					
*		B1 B2 E	33				C5		7(p)		†	12(p)				
B1 ▼	11(p)	_ 1	 →		9(p) , . *	4 · − · → 10(p)	C3	\blacksquare	9(p)	,	Ť	11(p)				
	1 1	$\prod \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_$	-	C1 🖵	•	-	C1	←				4 /				
AM G = 1/G =	9 G=		I/G =		G =		I/G =	5	G =		I/G =	6	G =		1/0	
															I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

CKM Asia Limited J2

I/G =

G =

I/G =

G =

I/G =

G =

I/G =

I/G =

G=

G =

I/G =

I/G =

 Junction:
 J2 - Kai Cheung Road / Wang Kwong Road
 Job Number:
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.2-6

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critica
Kai Cheung Road EB	LT+SA	A1	1	3.50	35.0		98	1937	256	0.132		76	1954	260	0.133	
	SA	A2	1	3.30				2085	276	0.132			2085	278	0.133	
	SA+RT	A3	1	3.30	25.0		18	2063	273	0.132		28	2050	273	0.133	
	RT	A4	1	3.30	20.0		100	1940	256	0.132	0.132	100	1940	259	0.134	0.13
Wang Kwong Road NB	LT	B1	1, 2	4.00	35.0		100	1932	351	0.182		100	1932	478	0.247	
<u> </u>	SA+RT	B2	2	3.30	30.0		0	2085	308	0.148		0	2085	235	0.113	
	RT	B3	2	3.30	25.0		100	1967	246	0.125		100	1967	206	0.105	
Kai Cheung Road WB	LT	C1	2, 3	3.50	35.0		100	1884	604	0.321	0.321	100	1884	533	0.283	0.28
tai oneang nead 112	SA	C2	3	3.30	00.0			2085	318	0.153	0.02		2085	266	0.128	0.20
	SA	C3	3	3.30				2085	318	0.153			2085	266	0.128	
	SA+RT	C4	3	3.30	25.0		27	2051	313	0.153		0	2085	267	0.128	
	RT	C5	3	3.30	20.0		100	1940	295	0.152		100	1940	326	0.128	
	IXI	- 55	J	0.00	20.0		100	10-10	233	0.102		100	10-10	520	0.100	
Wang Kwong Road SB	LT+SA	D1	4	3.50	35.0		70	1959	394	0.201		80	1951	371	0.190	
vvalig Kwolig Koau 35	SA+RT	D2	4	3.50	25.0		34	2063	415	0.201		52	2042	388	0.190	
	SA+RT RT	D2	4	3.50	15.0		100	2094	420	0.201	0.201	100	2042	394	0.190	0.19
	KI	DS	4	3.30	13.0		100	2094	420	0.201	0.201	100	2000	394	0.191	0.18
		7()	0 0 4				· · · · ·	_		014 :	-			40		
pedestrian phase		7(p)	2, 3, 4			rossing		5		GM +	5		GM =	10	sec	
		9(p)	3, 4			rossing ·		5		GM +	6		GM =	11	sec	
		10(p)	3			rossing		10		GM +	9		GM =	19	sec	
		11(p)	1, 4			rossing		5		GM +	5		GM =	10	sec	
		12(p)	4			rossing ·		14		GM +	12		GM =	26	sec	
		13(p)	1, 2			rossing		5		GM +	6		GM =	11	sec	
		14(p)	1		min c	rossing	time =	13	sec	GM +	12	sec F	GM =	25	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic F	low (pcu/hr)				N	S=1940+	100(W-3.	25) S=2	2080+100	(W-3.25)	Note:		
562	→ 277	\uparrow			594	\longleftrightarrow	298	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	(S–230)÷	(1+1.5f/r)	with pla	nned ju	nction
250 390				198		261					Check				ement as in Figure	
→ 505				\rightarrow	536					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase		J	
306	381			336			326		Sum y	0.653		0.607				
	33 🕌					799	\leftarrow		L (s)	17		17				
308	↓ 604				235		533		C (s)	140		140				
351 246	50.			478	1	206			practical y	0.791		0.791				
				0	· [R.C. (%)	21%		30%				
<u> </u>	12				13				14				5			
, †	, T				Ĭ *				, v							
A1 A2 A2 A3 A3	(p) 7(p)			13(p)	7(p) ×			13(p)	7(p)	←	# F					
A3 A4								†		D3	D2 D1					
		B1 B2 B	3		7(p) 9(p)	4 ·-· >	C5 C4	←		,	į	12(p)				
B1 ▼. 11	(p)	┑┡᠇	+		9(p)	10(p)	C3 C2	=	9(p)			11(p)				
				C1 🗸			C1	↓								
G = 1/G = 9 G =			I/G =		G =		I/G =	5	G =		I/G =	6	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

CKM Asia Limited J2

I/G =

G =

I/G =

G =

I/G =

G =

I/G =

G=

I/G =

I/G =

 Junction:
 J2 - Kai Cheung Road / Wang Kwong Road
 Job Number:
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.2-7

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

						-						-				
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Kai Cheung Road EB	LT+SA	A1	1	3.50	25.0		96	1910	261	0.137		74	1933	269	0.139	
	SA	A2	1	3.30				2085	285	0.137			2085	290	0.139	
	SA+RT	А3	1	3.30	25.0		15	2066	282	0.136		26	2054	286	0.139	
	RT	A4	1	3.30	20.0		100	1940	265	0.137	0.137	100	1940	271	0.140	0.14
Wang Kwong Road NB	LT	B1	1, 2	4.00	35.0		100	1932	351	0.182		100	1932	478	0.247	
	SA+RT	B2	2	3.30	30.0		0	2085	308	0.148		0	2085	235	0.113	
	RT	В3	2	3.30	25.0		100	1967	246	0.125		100	1967	206	0.105	
Kai Cheung Road WB	LT	C1	2, 3	3.50	35.0		100	1884	604	0.321	0.321	100	1884	533	0.283	0.28
	SA	C2	3	3.30				2085	323	0.155			2085	278	0.133	
	SA	C3	3	3.30				2085	323	0.155			2085	278	0.133	
	SA+RT	C4	3	3.30	25.0		26	2053	318	0.155		0	2085	277	0.133	
	RT	C5	3	3.30	20.0		100	1940	299	0.154		100	1940	326	0.168	
Wang Kwang Bood SB	LT+SA	D1	4	3.50	35.0		70	1959	394	0.201		80	1951	373	0.191	
Wang Kwong Road SB	SA+RT	D1	4	3.50	25.0		34	2063	415	0.201		52	2041	390	0.191	
	RT	D3	4	3.50	15.0		100	2003	422	0.201	0.202	100	2068	395	0.191	0.19
	IXI	DS	-	3.30	13.0		100	2034	422	0.202	0.202	100	2000	393	0.191	0.13
pedestrian phase		7(p)	2, 3, 4		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
		9(p)	3, 4		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
		10(p)	3		min c	rossing	time =	10	sec	GM +	9	sec F	GM =	19	sec	
		11(p)	1, 4		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
		12(p)	4		min c	rossing	time =	14	sec	GM +	12	sec F	GM =	26	sec	
		13(p)	1, 2		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
		14(p)	1		min c	rossing	time =	13	sec	GM +	12	sec F	GM =	25	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic I	Flow (pcu/hr				N	S=1940+	-100(W–3	.25) S=2	2080+100	(W-3.25)	Note:		
564 🛨	277	↑			599	\leftrightarrow	298	1	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	·(1+1.5f/r)	with pla	anned ju ement a	nction
250	390			198		261					Check		Check		in Figure	
→ 535				\rightarrow	574					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
308	381 1			344			326 †		Sum y	0.659		0.614				
	882 -					833	\leftarrow		L (s)	17		17				
308	604				235		533		C (s)	140		140				
351 ← 24	46			478	\leftarrow	206			practical y	0.791		0.791				
									R.C. (%)	20%		29%				
1	2				3				4				5			
A1 A2 14(p)	13(p) 7(p) 7(p)			13(p)	7(p) .			· 13(p)	7(p) .	-	╵┥┝					
A2 A3 A4				_						D3	D2 D1					
•		B1 B2 E	33				C5 C4	1			<u>†</u>	12(p)				
B1 ▼	· 11(p)	⊢ 	→		9(p)	10(p)	C3 C2	\equiv	7(p) · · · · · · · · · · · · · · · · · · ·	•	•	▼. 11(p)				
				C1 🖵			C1	←	1			-				
AM G = I/G =	9 G=		I/G =		G =		I/G =	5	G =		I/G =	6	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	9 G=		I/G =		G =		I/G =	5	G =		I/G =	6	G =		I/G =	
G =o					_											

 Junction:
 J3 - Wang Kwong Road / Lam Hing Street
 J7363

 Scenario:
 existing condition
 R1 / P.3-1

 Design Year:
 2024
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design Fear. 2024	Design	- a D _J .				•	Oncore	Dy.				-	Date.	000	andary .	
Anneach		Dhasa	Stone	Midth (m)	Dadius (m)	0/ Lle bill	Turning 9/	Cat Flaur	AM Peak	elue	Critical	Turning 0/	Cat Flaur	PM Peak	elue	Critical
Approach		Phase	Stage	vviatn (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Kwong Road NB	LT+SA	A1	1	3.70	15.0		0	1984	201	0.101		1	1984	181	0.091	
	SA	A2	1	3.70				2125	215	0.101			2125	193	0.091	
Wang Kwong Road SB	LT	B1	1	3.40	20.0		100	1819	299	0.164	0.164	100	1819	188	0.103	
	SA	B2	1	3.50				2105	275	0.131			2105	220	0.105	
	SA	В3	1	3.50				2105	274	0.130			2105	220	0.105	0.105
Lam Hing Street EB	LT+SA+RT	C1	3	5.10	15.0		71	1984	212	0.107	0.107	65	1995	195	0.098	0.098
Lam Filing Officer LD	LITOATKI	- 01		0.10	10.0			1304	212	0.107	0.107	- 00	1990	133	0.030	0.030
Lam Lling Ctrast M/D	LTICA	D1	4	2 10	10.0		70	1700	20	0.016		0.5	1707	24	0.000	
Lam Hing Street WB	LT+SA	D1	4	3.10	10.0		79	1722	28	0.016		85	1707	34	0.020	0.000
	RT	D2	4	3.20	20.0		100	1930	115	0.060	0.060	100	1930	186	0.096	0.096
							<u> </u>									
nodostrian phase		E(n)	2		min a	raccina	timo =	11	200	CM	10	200	CM -	21	200	
pedestrian phase		5(p)	2			rossing		11		GM +	10		GM =	21	sec	
		6(p)	2			rossing		7		GM +	6		GM =	13	sec	
		7(p)	2		min c	rossing	time =	9		GM +	8		GM =	17	sec	
		8(p)	2		min c	rossing	time =	10	sec	GM +	9	sec F	GM =	19	sec	
AM Traffic Flow (pcu/hr)			PM Traffic	Flow (pcu/hr)				C=1040+	100/11/2	2E\ C=	2000+100	(W-3.25)	Note:		
	→ 299	N				L	188	N								
125	▼	1		106		•	100	\uparrow	S _M =S÷(1	+1.5t/r)	S _M =	=(S–230)÷	(1+1.5f/r)			
135 1	549	l		106 †		440		l		AM	Check Pedestrian	PM	Check Pedestrian			
61				\rightarrow	68					Peak	Phase	Peak	Pedestrian			
1 6	115 †			21			186 †		Sum y	0.331		0.299				
	6 ←					5	\leftarrow		L (s)	42		42				
415	♦ 22				373		♦ 29		C (s)	140		140				
1 ← 🕇				1	+				practical y	0.630		0.630				
·				·					R.C. (%)	90%		111%				
	10				1				14.0. (70)	0070		11170				
	2				3				4				5			
		5	(p)													
B3 B2 B1		←· -	→		\vdash	C1										
A1 A2	6(p)	į	į	8(p)	*						D2 D1					
1		↓									51	+				
		7	(p)													
		04			ı				1			-	<u> </u>			
AM G = I/G =	9 G=	21	I/G =		G =		I/G =	7	G =		I/G =	6	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	9 G=	21	I/G =	2	G =		I/G =	7	G =		I/G =	6	G =		I/G =	
G = 1/G =	G =		I/G =	:	G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J3 - Wang Kwong Road / Lam Hing Street
 J7363

 Scenario:
 with KITEC
 R1 / P.3-2

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design Year: 2029	Design	ed By:				-	Checke	d By:				-	Date:	08 J	January :	2025
		ı		1	1	1	1		AM Peak			1		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow	Flow	y value	Critical y	Turning %	Sat. Flow	Flow	y value	Critical
Wang Kwong Road NB	LT+SA	A1	1	3.70	15.0	Gradient	1	(pcu/hr) 1983	(pcu/hr) 215	0.108		1	(pcu/hr) 1983	(pcu/hr) 179	0.090	
Wang Rwong Road ND	SA	A2		3.70	13.0		<u> </u>	2125		0.109		'		192	0.090	
	- SA	AZ	1	3.70				2123	231	0.109			2125	192	0.090	
Wang Kwong Road SB	LT	B1	1, 4	3.40	20.0		100	1819	599	0.329		100	1819	576	0.317	
	SA	B2	1	3.50				2105	344	0.163			2105	276	0.131	
	SA	В3	1	3.50				2105	344	0.163	0.163		2105	276	0.131	0.13
Lam Hing Street EB	LT+SA+RT	C1	3	5.10	15.0		57	2010	309	0.154	0.154	58	2008	357	0.178	0.17
Lam Hing Street WB	LT+SA	D1	4	3.10	10.0		83	1711	36	0.021		76	1728	46	0.027	
	RT	D2	4	3.20	20.0		100	1930	299	0.155	0.155	100	1930	382	0.198	0.19
			-						-	-				$\vdash \!\!\!\!\!-$		
			-				-		1	1				\vdash		
pedestrian phase		5(p)	2		min c	rossing	time =	14	sec	GM +	6	sec F	GM =	20	sec	
•		6(p)	2			rossing		7		GM +	6		GM =	13	sec	
			2					9		GM +	8			17		
		7(p)				rossing							GM =		sec	
		8(p)	2		min c	rossing	ume =	11	sec	GM +	10	sec r	GM =	21	sec	
														—		
AM Traffic Flow (pcu/hr)		NI	PM Traffic	Flow (pcu/hr)			NI	S=1940+	-100(W–3	.25) S=:	2080+100	(W-3.25)	Note:		
	→ 599	N ↑				\rightarrow	576	N ↑	S _M =S÷(1	•	,		(1+1.5f/r)	with pla	anned ju	nction
149	♦ 688			153		♦ 552			-W - (.	,		(= ===)		improve	ement a	S
↑		'		†	440			'		AM	Check Pedestrian	PM	Check Pedestrian	shown	in Figure	e 4.8
132	299			Ţ	149		382			Peak	Phase	Peak	Phase			
28	†			55			Î		Sum y	0.472		0.507				
	6 ←					11	\Box		L (s)	42		42				
444	30				369		35		C (s)	140		140		1		
2 ←				2	←				practical y	0.630		0.630		1		
			<u> </u>						R.C. (%)	33%		24%				
1	2				3				4				5			
											L					
J J →		5	(p)		*						B1					
B3 B2 B1		† - · -	·-·•			C1						•				
A1 A2	6(p)	!	į į	8(p)							D2 D1					
₊ ↑↑		* ← · –	·-·• *									*				
		7	(p)													
AM G = I/G =	9 G=	21	I/G =	2	G =		I/G =	7	G =		I/G =	6	G =		I/G =	
					G =			•				J				
	G =	24	I/G =				I/G =	7	G =		I/G =	6	G =		I/G =	
PM G = I/G =	9 G=	21	I/G =		G =		I/G =	7	G =		I/G =	6	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J3 - Wang Kwong Road / Lam Hing Street
 Job Number:
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.3-3

Design Year: 2029 Designed By: Checked By: Date: 08 January 2025

Lam Hing Street EB LT+SA+RT C1 3 5.10 15.0 57 2010 309 0.154 0.154 58 2008 357 0.178 Lam Hing Street WB LT+SA D1 4 3.10 10.0 833 1711 36 0.021 78 1728 46 0.027 RT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 Pedestrian phase 5(p) 2 min crossing time = 14 sec GM+ 6 sec FGM = 20 sec GM+ 6 sec FGM = 13 sec GM+ 7(p) 2 min crossing time = 7 sec GM+ 8 sec FGM = 17 sec GM+ 10 sec FGM = 21 sec GM+ 10 se	Design Year:	2029	Designe	ed By:				-	Checke	d By:				-	Date:	08 J	lanuary 2	2025
Process Proc					l		l	l	ı		AM Peak					PM Peak		
Mang Kwong Road NB		Approach		Phase	Stage	Width (m)	Radius (m)		Turning %		Flow	y value	Critical y	Turning %		Flow	y value	Critical
SA A2		Road NB	LT+SA	A1	1	3.70	15.0		1			0.108		1			0.090	
Wang Kwong Road SB																		
SA B2 1 3.50						00						01.00			2.20		0.000	
SA B2 1 3.50	Nana Kwana E	Pood SD	I.T.	D1	1 1	2.40	20.0		100	1010	500	0.220		100	1010	576	0.217	
SA B3 1 3.50	varig Kworig K	toau Sb					20.0		100					100				
Lam Hing Street BB LT+SA+RT C1 3 5.10 15.0 57 2010 300 0.154 0.154 58 2008 357 0.178 Lam Hing Street WB LT+SA D1 4 3.10 10.0 833 1711 36 0.021 78 1728 46 0.027 RT D2 4 3.20 20.0 100 1930 290 0.155 0.155 100 1930 382 0.198 RT D2 4 3.20 20.0 100 1930 290 0.155 0.155 100 1930 382 0.198 D2 4 3.20 20.0 100 1930 290 0.156 0.155 100 1930 382 0.198 D2 4 3.20 20.0 100 1930 290 0.156 0.155 100 1930 382 0.198 D2 4 3.20 20.0 100 1930 290 0.156 0.155 100 1930 382 0.198 D2 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3																		
Lam Hing Street WB LT+SA D1 4 3.10 10.0 83 1711 36 0.021 76 1728 46 0.027 RT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 Dedestrian phase 5(p) 2 min crossing time = 14 sec GM + 6 sec FGM = 20 sec GH + 6 sec FGM = 13 sec GM + 6 sec FGM = 13 sec GM + 8 sec FGM = 17 sec GM + 8 sec FGM = 17 sec GM + 8 sec FGM = 17 sec GM + 10 sec GM + 10 sec FGM = 17 sec GM + 10 sec GM + 10 sec FGM = 17 sec GM + 10 sec GM + 10 sec FGM = 17 sec GM + 10 sec GM + 10 sec GM + 10 sec FGM = 17 sec GM + 10 sec FGM = 17 sec GM + 10 sec GM + 10 sec GM + 10 sec FGM = 17 sec GM + 10 sec FGM = 17 sec GM + 10 sec GM + 10 sec GM + 10 sec FGM = 17 sec GM + 10 sec FGM = 10 sec GM + 10 sec FGM =			SA	В3	1	3.50				2105	341	0.162	0.162		2105	268	0.127	0.12
am Hing Street WB LT+SA D1 4 3.10 10.0 83 1711 36 0.021 76 1728 46 0.027 RT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 PR D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 PR D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 PR D2 4 13.2 10 10 10 10 10 10 10 10 10 10 10 10 10																		
Principle (South Fig. 1) RT D2 4 320 200 100 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 100 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 100 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 100 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 100 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 3 30 30 3.198 RT D	_am Hing Stree	et EB	LT+SA+RT	C1	3	5.10	15.0		57	2010	309	0.154	0.154	58	2008	357	0.178	0.17
Principle (South Fig. 1) RT D2 4 320 200 100 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 100 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 100 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 100 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 100 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 320 200 1930 299 0.155 0.155 100 1930 382 0.198 RT D2 4 3 30 30 3.198 RT D																		
Declestrian phase	am Hing Stree	et WB	LT+SA	D1	4	3.10	10.0		83	1711	36	0.021		76	1728	46	0.027	
Sec			RT	D2	4	3.20	20.0		100	1930	299	0.155	0.155	100	1930	382	0.198	0.19
B(p) 2 min crossing time = 7 sec GM + 6 sec FGM = 13 sec																		
Sec																		
Sec																		
Sec																		
Sec																		
B(p) 2 min crossing time = 7 sec GM + 6 sec FGM = 13 sec						<u> </u>					<u> </u>	<u> </u>						
Sec																		
Sec																		
Sec																		
Sec																		
Sec																		
Traffic Flow (pculm) M Traffic Flow (pculm) N PM Traffic Flow (pculm) S=2 M	edestrian phas	se		5(p)	2		min c	rossing	time =	14	sec	GM +	6	sec F	GM =	20	sec	
Sec				6(p)	2		min c	rossing	time =	7	sec	GM +	6	sec F	GM =	13	sec	
Sec				7(p)	2		min c	rossing	time =	9	sec	GM +	8	sec F	GM =	17	sec	
M Traffic Flow (pculhr) M Traffic Flow (pculhr) 149 683 N 153 536 N Reds First (pculhr) 149 683 153 536 N Reds First (pculhr) N S=1940+100(W-3.25) S=2080+100(W-3.25) Su=(S-230)*(1+1.5fir) With planned jun improvement as shown in Figure Reds First (pculhr) N Reds First (pculhr) AM Peak Physics					2					11			10			21	sec	
149 683 153 536 149 683 153 536 153 536 153 536 153 536 154 556 155 55 55 55 55 55 55 55 55 55 55 55 55				- (1 /				<u> </u>										
149 683 153 536 149 683 153 536 153 536 153 536 153 536 154 556 155 55 55 55 55 55 55 55 55 55 55 55 55																		
149 683																		
149 683 153 536 149 683 153 536 153 536 153 536 153 536 154 556 155 55 55 55 55 55 55 55 55 55 55 55 55																		
149 683 153 536 149 683 153 536 153 536 149 Pedestrian PM Pedestrian Phase Phase Phase Pedestrian Phase Pedestrian Phase Phase Phase Pedestrian Phase P																		
149 683 153 536 AM Check Pedestrian PM Pedestrian Phase	M Traffic Flow (pcu/hr)			N	PM Traffic	Flow (pcu/hr)				N	S=1940+	-100(W–3	.25) S=2	2080+100	(W-3.25)	Note:		
149 683 153 536			→ 599	\uparrow				\downarrow	576	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	(S-230)÷	(1+1.5f/r)	with pla	anned jui	nction
28 299 55 149 55	149		683			153		536					Check		Check	improve	ement as in Figure	4.8
28 444 2	\rightarrow	132				\rightarrow	149						Pedestrian		Pedestrian	SHOWIT	iii i iguic	, 4.0
Sumy 0.471 0.303 L(s) 42 42 L(s) 42	1		299			Ţ			382				Pilase		Pilase			
444 2	28		e 📥			55		11	Î									
2			· ↓					- 11	Į.									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	30				4		35		C (s)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	←				2	\leftarrow				practical y							
B3 B2 B1 $G(p)$ $T(p)$ $T(p)$ $G(p)$ $T(p)$											R.C. (%)	34%		25%				
B3 B2 B1 $G(p)$ $T(p)$			2				3				4				5			
B3 B2 B1 $G(p)$ $T(p)$													L,					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		♦ ♦ B3 B2 B1		← · –	(p) · - · →		1	C1					B1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				↑	†	0(-)		O1					D2	t				
AM $G=$ $I/G=$ 9 $G=$ 21 $I/G=$ 2 $G=$ $I/G=$ 7 $G=$ $I/G=$ 6 $G=$ $I/G=$	A1 A2 ★ ▲		6(p)	; •	į	g(b)								—				
AM $G=$ $I/G=$ 9 $G=$ 21 $I/G=$ 2 $G=$ $I/G=$ 7 $G=$ $I/G=$ 6 $G=$ $I/G=$	+			→ · -	· - · → (n)													
$G = \qquad /G = \qquad G = \qquad /G = $				- /	(P)													
	.M G =	I/G =	9 G=	21	I/G =	2	G =		I/G =	7	G =		I/G =	6	G =		I/G =	
PM G= G= 9 G= 21 G= 2 G= G= 7 G= G= 6 G- G-	G =	I/G =	<u>G</u> =		I/G =	<u> </u>	G =		I/G =		G =		I/G =		G =		I/G =	
	'M G =	I/G =	9 G=	21	I/G =	2	G =		I/G =	7	G =		I/G =	6	G =		I/G =	
G=														-				

 Junction:
 J3 - Wang Kwong Road / Lam Hing Street
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.3-4

Design Year: 2029 Designed By: Checked By: Date: 08 January 2025

Amag Kwong Road NB	Design Year: 2029	Design	ed By:				-	Checke	ed By:				-	Date:	08 .	January 2	2025
Namp Kwong Road NB			I		1	l	I			AM Peak			ı		PM Peak		
Namp Kwong Road NB	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %		Flow	y value	Critical y	Turning %		Flow	y value	Critical
SA A2	Wang Kwong Road NB	LT+SA	A1	1	3.70	15.0		1			0.108		1			0.090	
Wang Kweng Road SB	g																
SA B2 1 3.50 2105 942 0.162 2105 272 0.129 0.125		0,1	712	Ċ	0.70				2120	201	0.100			LILO	102	0.000	
SA B2 1 3.50 2105 942 0.162 2105 272 0.129 0.125	None Kwone Bood CB		D4	1 1	2.40	20.0		100	1010	500	0.220		100	1010	E76	0.217	
SA B3 1 3.50	wang Kwong Road SB					20.0		100					100				
Am Hing Street EB LT+SA+RT C1 3 5.10 15.0 57 2010 309 0.154 0.154 58 2008 357 0.178 0. Am Hing Street WB LT+SA D1 4 3.10 10.0 83 1711 36 0.021 76 1728 46 0.027 R1 D2 4 3.20 20.0 10.0 1930 299 0.155 0.155 10.0 1930 382 0.198 0. Am Hing Street WB LT+SA D1 4 3.20 20.0 10.0 1930 299 0.155 0.155 10.0 1930 382 0.198 0. Am Hing Street WB LT+SA D1 4 4 3.10 10.0 83 1711 36 0.021 76 1728 46 0.027 R1												0.163					
Am Hing Street WB		SA	B3	1	3.50				2105	342	0.162			2105	272	0.129	0.12
Am Hing Street WB																	
RT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 1930 299 0.155 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 1930 299 0.155 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 1930 299 0.155	_am Hing Street EB	LT+SA+RT	C1	3	5.10	15.0		57	2010	309	0.154	0.154	58	2008	357	0.178	0.17
RT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 1930 299 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 1930 299 0.155 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 1930 299 0.155 0.155 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 1930 299 0.155																	
RT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 100 1930 382 0.198 0. RRT D2 4 3.20 20.0 100 1930 299 0.155 0.155 0.0 1930 1930 382 0.198 0. RRT D2 4 3.20 20.0 1930 1930 1930 1930 1930 1930 1930 193	Lam Hing Street WB	LT+SA	D1	4	3.10	10.0		83	1711	36	0.021		76	1728	46	0.027	
Dedestrian phase												0.155					0.19
Sec					0.20	20.0					000	01.00			002	000	00
Sec FGM																	
Sec FGM																	
Sec FGM				1										 			
Sec					-								<u> </u>			ļ	
Sec FGM																	
Sec FGM																	
Sec FGM																	
Sec FGM																	
Sec FGM																	
Sec FGM																	
Sec																	
Tropic 2 min crossing time = 9 sec GM + 8 sec FGM = 17 sec	oedestrian phase								14	1		6				sec	
Sec			6(p)	2		min c	rossing	time =	7	sec	GM +	6	sec F	GM =	13	sec	
M Traffic Flow (poultr) 149 599 N FM Traffic Flow (poultr) 576 N S=1940+100(W-3.25) S=2080+100(W-3.25) S=2080+100(W-3			7(p)	2		min c	rossing	time =	9	sec	GM +	8	sec F	GM =	17	sec	
149 685 153 544 15fr S _M =Se(1+1.5fr) S _M =Se(1+1.5fr)			8(p)	2		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
149 685 153 544 15fr S _M =Se(1+1.5fr) S _M =Se(1+1.5fr)																	
149 685 153 544 15fr S _M =Se(1+1.5fr) S _M =Se(1+1.5fr)																	
149 685 153 544 15fr S _M =Se(1+1.5fr) S _M =Se(1+1.5fr)																	
149 685 153 544 15fr S _M =Se(1+1.5fr) S _M =Se(1+1.5fr)																	
149 685 153 544 15fr S _M =Se(1+1.5fr) S _M =Se(1+1.5fr)																I	
149 685 153 544 AM Check Pedastrian PM Pedak Pedastrian Phase Shown in Figure 4.8 Sum y 0.472 0.505 1 L(s) 42 42 42 1 C(s) 140 140 140 140 1 Practically 0.630 0.630 0.630 1 R.C. (%) 34% 25% B1 A1 A2	AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr	1			N	S=1940+	100(W-3	,		, ,			
AM Peak Phase Peak Phase Shown in Figure 4.8 AM Peak Phase Phase Phase Phase Phase Phase Phase Phase Phase Peak Phase Peak Phase		→ 599	\uparrow				\rightarrow	576	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	-(1+1.5f/r)	with pla	anned ju	nction
132 149	149	685			153		544					Check		Check	shown	ement as	5 - 4 8
28	132					149						Pedestrian		Pedestrian	SHOWIT	iii i iguit	7.0
Sum y 0.472 0.303 L (s) 42	1	299			Į.	•		382				rnase		rnase			
444 30 369 35	28	†			55		4.4	Î		Sum y							
2 — Practical y 0.630		6 🕂					11	Į.		L (s)	42		42				
RC. (%) 34% 25% RC. (%) 45% 25%	444	30				369		35		C (s)	140		140				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 ←				2	-				practical y	0.630		0.630				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										R.C. (%)	34%		25%				
B3 B2 B1 6(p) 8(p) 7(p) 8(p) C1 D2 D1 D2 D1 D2 D1 D3 D3 D4 D4 D5 D5 D5 D5 D5 D5 D5 D5		2				3				4				5			
B3 B2 B1 6(p) 8(p) 7(p) 8(p) C1 D2 D1 D2 D1 D2 D1 D3 D3 D4 D4 D5 D5 D5 D5 D5 D5 D5 D5												L					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 -		5	(p)		•						B1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B3 B2 B1		† 	·-·•			C1						•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1 A2	6(p)	į	į	8(p)									†			
G=	♣ ↑ ↑		* ← · –										+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7	(p)													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1	0	04			I.			7	<u> </u>				<u> </u>			
$_{\text{PM}}$ G= $_{\text{I/G}}$ = 9 G= 21 $_{\text{I/G}}$ = 2 G= $_{\text{I/G}}$ = 7 G= $_{\text{I/G}}$ = 6 G= $_{\text{I/G}}$ =			21						1								
				I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
G=	PM G = I/G =	9 G =	21	I/G =	2	G =		I/G =	7	G =		I/G =	6	G =		I/G =	
	G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J3 - Wang Kwong Road / Lam Hing Street
 J7363

 Scenario:
 with KITEC
 R1 / P.3-5

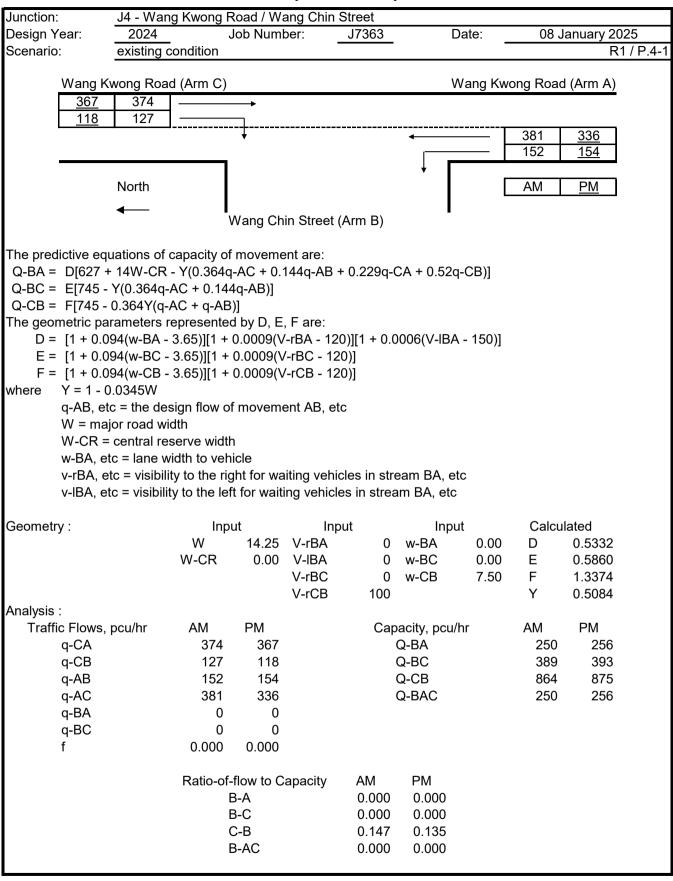
 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

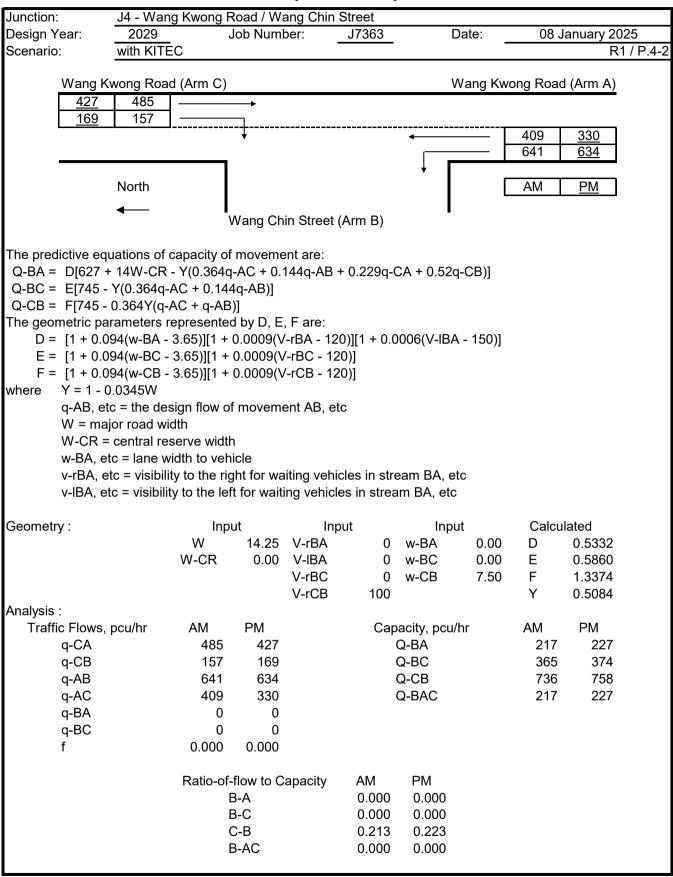
2002	Design	,-					Oncore	, .				•	Date.		anaary 2	
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
Арргоасп		riiase	Stage	widii (iii)	Radius (III)	Gradient	Turning %	(pcu/hr)	(pcu/hr)	y value	Citical y	Turning %	(pcu/hr)	(pcu/hr)	y value	Critical
Wang Kwong Road NB	LT+SA	A1	1	3.70	15.0		1	1983	219	0.110		1	1983	182	0.092	
	SA	A2	1	3.70				2125	234	0.110			2125	195	0.092	
Vang Kwong Road SB	LT	B1	1, 4	3.40	20.0		100	1819	608	0.334		100	1819	585	0.322	
	SA	B2	1	3.50				2105	349	0.166			2105	280	0.133	
	SA	В3	1	3.50				2105	349	0.166	0.166		2105	280	0.133	0.13
am Hing Street EB	LT+SA+RT	C1	3	5.10	15.0		57	2010	313	0.156	0.156	58	2008	362	0.180	0.18
am Hing Street WB	LT+SA	D1	4	3.10	10.0		83	1711	36	0.021		77	1727	47	0.027	
g	RT	D2	4	3.20	20.0		100	1930	303	0.157	0.157	100	1930	388	0.201	0.20
				0.20	20.0					01.01	0.101		.000		0.20	0.20
edestrian phase		5(p)	2		min cr	rossing	time =	14	sec	GM +	6	sec F	GM =	20	sec	
		6(p)	2		min cı	rossing	time =	7	sec	GM +	6	sec F	GM =	13	sec	
		7(p)	2		min cr	rossing	time =	9	sec	GM +	8	sec F	GM =	17	sec	
		8(p)	2		min cr	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
M Traffic Flow (pcu/hr)		Ν	PM Traffic	Flow (pcu/hr)				N	S=1940+	100(W-3.			(VV-3.23)	Note:		
	608	1				ightharpoonup	585	1	S _M =S÷(1	+1.5f/r)	S _M =	(S-230)÷	(1+1.5f/r)	with pla	inned jui	nction
1 <u>5</u> 1	698			155		560					Check		Check	shown	ement as in Figure	4.8
134				\rightarrow	151					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
28	303			↓ 56			388		Sum y	0.478		0.514				
	6 ←					11	\leftarrow		L (s)	42		42				
451	↓ 30				375		↓ 36		C (s)	140		140				
2	30			2	→		00			0.630		0.630				
				2					practical y	32%		22%				
									R.C. (%)	JZ /0		ZZ /0				
	2				3				4				5			
↓ ↓ └→		5	(p)								∟ B1	•				
B3 B2 B1		+·-				C1										
A1 A2	6(p)	į	į	8(p)	,						D2 D1	←				
4 ↑		 	→ ↓								51	+				
7]		7	(p)													
M G = 1/G =	0 -	24		2				7				6	_			
	9 G=	21	I/G =		G =		I/G =	7	G =		I/G =	6	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =	_	G =		I/G =		G =		I/G =	
PM G = I/G =	9 G=	21	I/G =		G =		I/G =	7	G =		I/G =	6	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

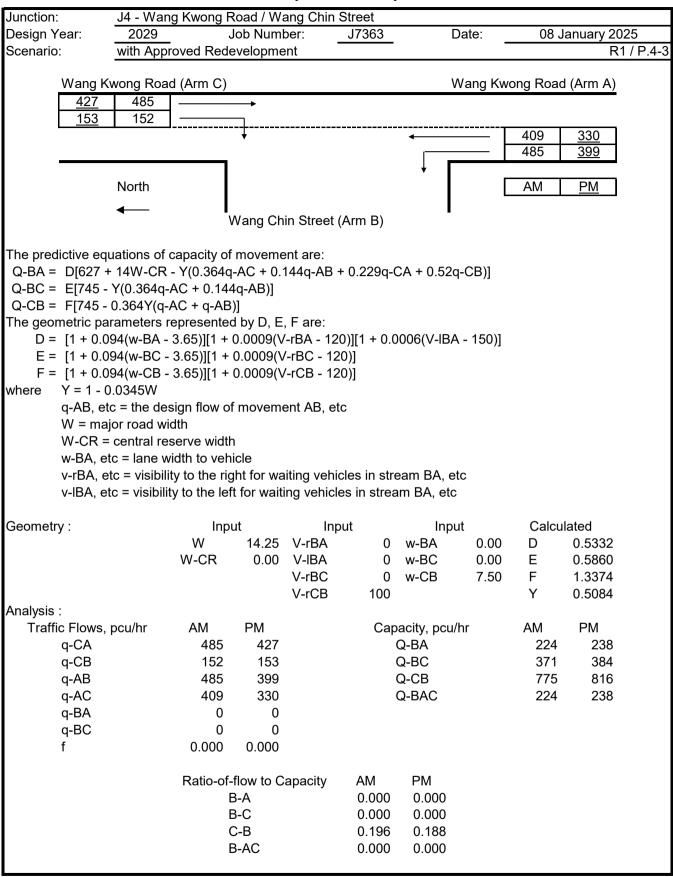
 Junction:
 J3 - Wang Kwong Road / Lam Hing Street
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.3-6

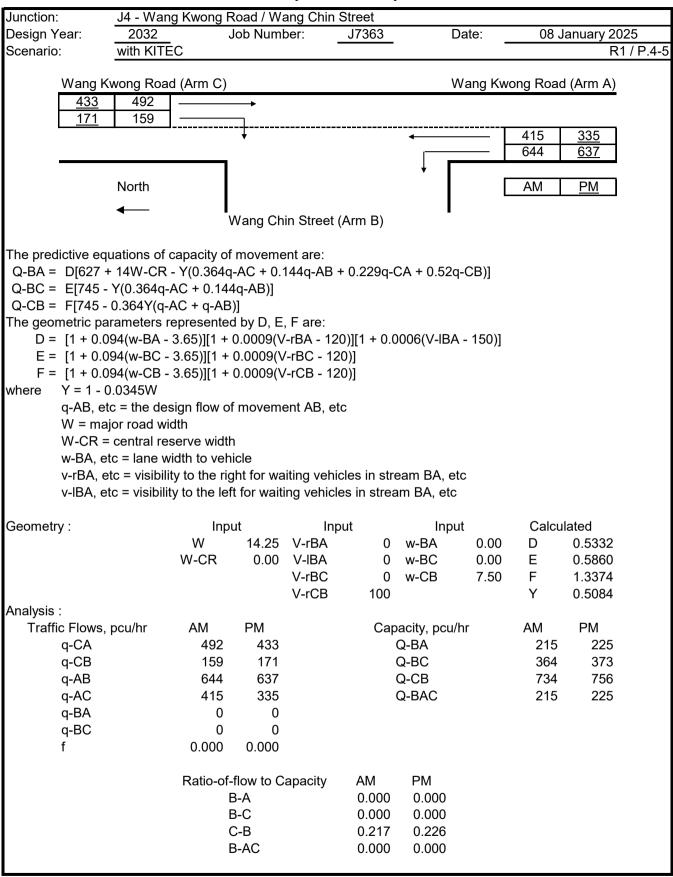
Design Year: 2032 Designed By: Checked By: Date: 08 January 2025

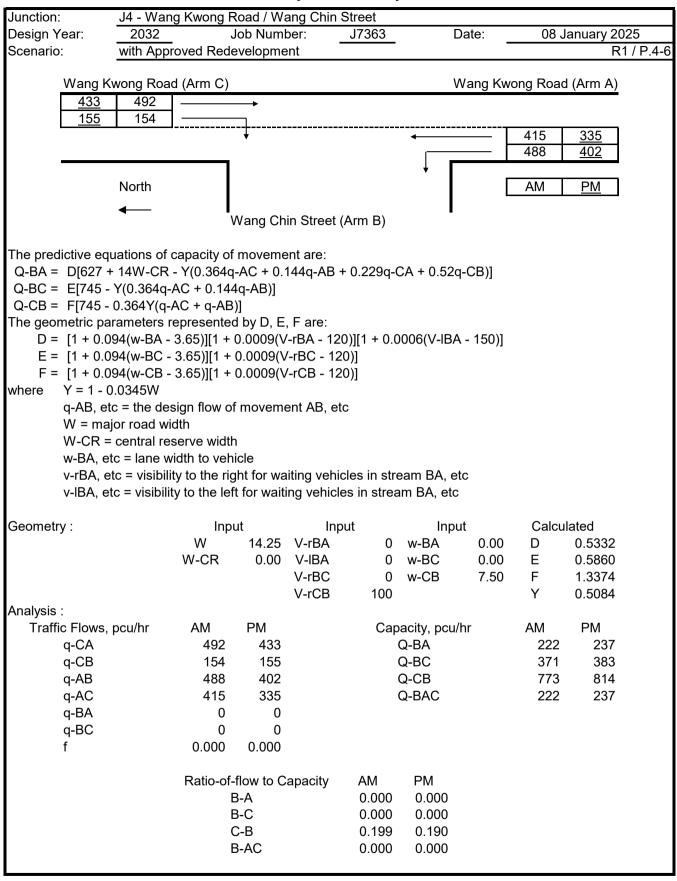

Design Year:	2032	Designe	Ju Dy.					Checke	и Бу.					Date:	U8 J	January 2	2023
				l		l				AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Wang Kwong Ro	oad NB	LT+SA	A1	1	3.70	15.0		1	1983	219	0.110		1	1983	182	0.092	
gg		SA	A2	1	3.70				2125	234	0.110			2125	195	0.092	
		O/ (712	'	0.70				2120	204	0.110			2120	100	0.002	
None Kwone D	and CD	1.7	D4	1 1	2.40	20.0		100	1010	600	0.224		100	1010	EOE	0.222	
Wang Kwong Ro	oad SB	LT	B1	1, 4	3.40	20.0		100	1819	608	0.334		100	1819	585	0.322	
		SA	B2	1	3.50				2105	347		0.165		2105	272	0.129	
		SA	В3	1	3.50				2105	346	0.164			2105	272	0.129	0.12
_am Hing Street	t EB	LT+SA+RT	C1	3	5.10	15.0		57	2010	313	0.156	0.156	58	2008	362	0.180	0.18
Lam Hing Street	t WB	LT+SA	D1	4	3.10	10.0		83	1711	36	0.021		77	1727	47	0.027	
		RT	D2	4	3.20	20.0		100	1930	303	0.157	0.157	100	1930	388	0.201	0.20
					0.20	20.0				000	0.101	0.101				0.20	0.20
																	
			<u> </u>												<u> </u>		
							igsquare										
	_																
											l						
pedestrian phase		5(p)	2		min c	rossing t	time =	14	sec GM + 6		6	sec F	GM =	20	sec		
			6(p)	2		min c	rossing t	time =	7	sec	GM +	6	sec F	GM =	13	sec	
			7(p)	2		min c	rossing t	time =	9	sec	GM +	8	sec F	GM =	17	sec	
			8(p)	2		min c	rossing t	time =	11	sec	GM +	10	sec F	GM =	21	sec	
AM Traffic Flow (pcu/hr)																	
			N	PM Traffic I	Flow (pcu/hr)	1			N	S=1940+	·100(W–3.	25) S=2	2080+100	(W-3.25)	Note:		
		608	N ↑	PM Traffic I	Flow (pcu/hr)	1		585	N ↑	S=1940+ S _M =S÷(1				(vv-3.23) (1+1.5f/r)	with pla	anned ju	nction
151		608	N ↑	PM Traffic I		1	544	585				S _M =		(1+1.5f/r)	with pla	anned ju	3
151		*		PM Traffic I	155 †		*	585			+1.5f/r)	S _M =	=(S–230)÷	(1+1.5f/r) Check Pedestrian	with pla	anned ju ement as in Figure	3
	134	♦ 693		PM Traffic I	155	151	*				+1.5f/r) AM Peak	S _M =	PM Peak	(1+1.5f/r) Check	with pla	ement as	3
Ť		693 303		PM Traffic I	155 †		\$ 544	388			+1.5f/r)	S _M =	=(S−230)÷	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
		♦ 693		PM Traffic I	155		*	388		S _M =S÷(1	+1.5f/r) AM Peak	S _M =	PM Peak	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
		693 303		PM Traffic	155		\$ 544	388		S _M =S÷(1	+1.5f/r) AM Peak 0.478	S _M =	PM Peak 0.511	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
	134 451	693		PM Traffic I	155	151 375	\$ 544	388		S _M =S÷(1	+1.5f/r) AM Peak 0.478 42	S _M =	PM Peak 0.511 42	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
28	134 451	693		PM Traffic I	155	151 375	\$ 544	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M =	PM Peak 0.511 42 140 0.630	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
28	134 451	693		PM Traffic I	155	151 375	\$ 544	388		S _M =S÷(1	+1.5f/r) AM Peak 0.478 42 140	S _M =	PM Peak 0.511 42 140	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
28	134 451	693		PM Traffic I	155	151 375	\$ 544	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M =	PM Peak 0.511 42 140 0.630	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
28	451	693	<u> </u>	PM Traffic I	155	151 375	\$ 544	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M =	PM Peak 0.511 42 140 0.630	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
28	134 451	693	<u> </u>		155	151 375	\$ 544	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M = Check Pedestrian Phase	PM Peak 0.511 42 140 0.630	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
28 28	451	693	<u> </u>		155	151 375	11	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M -Check Pedestrian Phase	PM Peak 0.511 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
28	451	693	<u> </u>		155 56	151 375	11	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M - Check Pedestrian Phase	PM Peak 0.511 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
28 28	451	693	5-5		155 56	151 375	11	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M -Check Pedestrian Phase	PM Peak 0.511 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
28 28	451	693 6 303 6 30 30	5	(p)	155 56 2	151 375	11	388	<u></u>	S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M -Check Pedestrian Phase	PM Peak 0.511 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
28 24 A1 A2	451	693	5-5	(p)	155 56 2	151 375	11	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M -Check Pedestrian Phase	PM Peak 0.511 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian	with pla	ement as	s s s s s s s s s s s s s s s s s s s
28 28	451 451 33 B2 B1	693 6 303 6 30 30	5	(p)	155 56 2	375	11	388	<u></u>	S _M =S÷(1 Sum y L (s) C (s) practical y R.C. (%)	+1.5f/r) AM Peak 0.478 42 140 0.630	Check Pedestrian Phase B1 D2 D1	PM Peak 0.511 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian Phase	with pla	ement as	s s e 4.8
28 24 A1 A2 AM G=	451 451 33 B2 B1	693 6 303 6 303 6 (p)	5	(p) (p)	1555 56 2	375 G =	11	388 36	<u></u>	S _M =S÷(1 Sum y L (s) C (s) practical y R.C. (%)	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M - Check Pedestrian Phase B1 D2 D1	PM Peak 0.511 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian Phase	with pla	ement as in Figure	s e 4.8

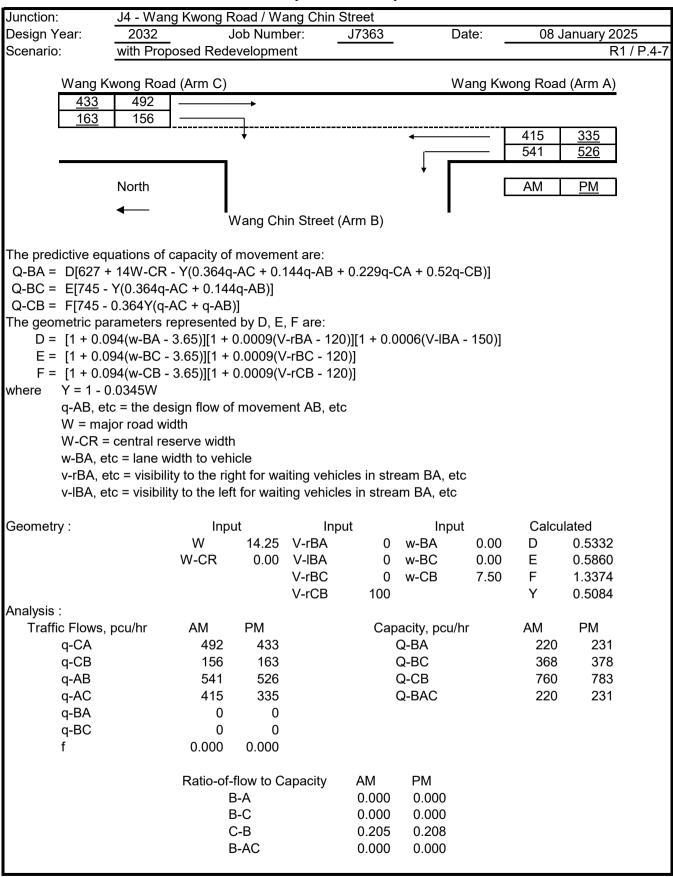

 Junction:
 J3 - Wang Kwong Road / Lam Hing Street
 J7363


 Scenario:
 with Proposed Redevelopment
 R1 / P.3-7


 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025


2002																
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
Арргоасп		riiase	Stage	widii (iii)	Radius (III)	Gradient	Turning %	(pcu/hr)	(pcu/hr)	y value	Citical y	Turning %	(pcu/hr)	(pcu/hr)	y value	Critical
Vang Kwong Road NB	LT+SA	A1	1	3.70	15.0		1	1983	219	0.110		1	1983	182	0.092	
	SA	A2	1	3.70				2125	234	0.110			2125	195	0.092	
Vang Kwong Road SB	LT	B1	1, 4	3.40	20.0		100	1819	608	0.334		100	1819	585	0.322	
	SA	B2	1	3.50				2105	348	0.165			2105	276	0.131	
	SA	В3	1	3.50				2105	347	0.165	0.165		2105	276	0.131	0.13
am Hing Street EB	LT+SA+RT	C1	3	5.10	15.0		57	2010	313	0.156	0.156	58	2008	362	0.180	0.18
<u> </u>																
am Hing Street WB	LT+SA	D1	4	3.10	10.0		83	1711	36	0.021		77	1727	47	0.027	
Lant tining Officer WD	RT	D2	4	3.20	20.0		100	1930	303	0.157	0.157	100	1930	388	0.201	0.20
	IXI	DZ		3.20	20.0		100	1330	303	0.107	0.137	100	1330	300	0.201	0.20
				-												
				-												
pedestrian phase		5(p)	2		min crossing tim		time =	14	sec (sec GM +		sec F	GM =	20	sec	
·		6(p)	2			rossing		7	sec (GM +	6	sec F	GM =	13	sec	
		7(p)	2			rossing		9		GM +	8		GM =	17	sec	
		8(p)	2			rossing		11		GM +	10		GM =	21	sec	
		υ(ρ)			111111111111111111111111111111111111111	iossing	unic –	- ' '	300	OIVI 1	10	3601	Olvi –	21	300	
AM Traffic Flow (pcu/hr)	1	N	PM Traffic	Flow (pcu/hr)				N	S=1940+	100(W-3.	25) S=2	2080+100	(W-3.25)	Note:		
MM Traffic Flow (pcu/hr)	→ 608	N \	PM Traffic I	Flow (pcu/hr)			585	N ↑	S=1940+ S _M =S÷(1				(vv-3.23) (1+1.5f/r)	with pla	nned jui	nction
	608		PM Traffic I	Flow (pcu/hr)		552	585				S _M =		(1+1.5f/r)	with pla	ement as	3
151 †	▼		PM Traffic I	155 †		•	585			+1.5f/r)	S _M =	=(S−230)÷	(1+1.5f/r) Check Pedestrian	with pla	inned jui ement as in Figure	3
151 → 134	▼		PM Traffic I	155	151	•	585		S _M =S÷(1	+1.5f/r) AM Peak	S _M =	PM Peak	(1+1.5f/r) Check	with pla	ement as	3
151 ↑	695 303		PM Traffic I	155 †		552			S _M =S÷(1	+1.5f/r) AM Peak 0.478	S _M =	PM Peak 0.512	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
151 134 28	695		PM Traffic I	155	151	•	388		S _M =S÷(1	+1.5f/r) AM Peak 0.478 42	S _M =	PM Peak 0.512	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
151 134 28	695 303		PM Traffic I	155	151 375	552			S _M =S÷(1	+1.5f/r) AM Peak 0.478 42 140	S _M =	PM Peak 0.512 42 140	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
151 134 28	695		PM Traffic I	155	151	552	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M =	PM Peak 0.512 42 140 0.630	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
151 134 28	695		PM Traffic I	155	151 375	552	388		S _M =S÷(1	+1.5f/r) AM Peak 0.478 42 140	S _M =	PM Peak 0.512 42 140	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
151 134 28	695		PM Traffic I	155	151 375	552	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M =	PM Peak 0.512 42 140 0.630	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
151 134 28	695	<u> </u>		155	151 375	552	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M -Check Pedestrian Phase	PM Peak 0.512 42 140 0.630	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
151 134 28	695	<u> </u>	PM Traffic I	155	151 375	552	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M =	PM Peak 0.512 42 140 0.630	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
151 134 28 451 2 ← 1 B3 B2 B1	695	<u> </u>		155 56	151 375	552	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M -Check Pedestrian Phase	PM Peak 0.512 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
151 134 28 451 2 ←	695	<u> </u>		155	151 375	552	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M - Check Pedestrian Phase	PM Peak 0.512 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
151 134 28 451 2 ← 1 B3 B2 B1	695	5-1	(p)	155 56	151 375	552	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M -Check Pedestrian Phase	PM Peak 0.512 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
151 134 28 451 2 ← 134 B3 B2 B1	695	5		155 56	151 375	552	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M -Check Pedestrian Phase	PM Peak 0.512 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian	with pla	ement as	3
151 134 28 451 2 ← 134 B3 B2 B1	695	5-1	(p)	155 56 2	151 375	552	388		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M -Check Pedestrian Phase	PM Peak 0.512 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian	with pla	ement as	4.8
151 28 134 28 451 2 ← 1 B3 B2 B1	695 6 303 30 2 6(p)	5	(p)	155 56 2 8(p)	375	552	388	<u></u>	S _M =S÷(1 Sum y L (s) C (s) practical y R.C. (%)	+1.5f/r) AM Peak 0.478 42 140 0.630	Check Pedestrian Phase B1 D2 D1	PM Peak 0.512 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian Phase	with pla	ement as	4.8 ± 4.8
151 28 451 2 451 2 451 A1 A2 451 B3 B2 B1	695 695 696 6(p)	5	(p) (p)	155 56 2	375 G =	552	388 36	<u></u>	S _M =S÷(1 Sum y L (s) C (s) practical y R.C. (%)	+1.5f/r) AM Peak 0.478 42 140 0.630	S _M - Check Pedestrian Phase B1 D2 D1	PM Peak 0.512 42 140 0.630 23%	(1+1.5f/r) Check Pedestrian Phase	with pla	ement as in Figure	\$ 2 4.8





 Junction:
 J5 - Kai Cheung Road / Wang Chiu Road
 J7363

 Scenario:
 existing condition
 R1 / P.5-1

 Scenario:
 existing condition
 R1 / P.5-7

 Design Year:
 2024
 Designed By:
 Checked By:
 Date:
 08 January 2025

				ı		ı			AM Post		1			PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Kai Cheung Road EB	LT	A1	1	4.00	40.0	Gradient	100	1942	60	0.031		100	1942	59	0.030	
	SA	A2	1	3.50				2105	270	0.128			2105	280	0.133	0.133
	SA	A3	1	3.50				2105	270	0.128			2105	280	0.133	
	SA	A4	1	3.00				2055	263	0.128	0.128		2055	272	0.132	
Kai Cheung Road WB	LT	B1	1, 2, 4	4.00	35.0		100	1932	577	0.299		100	1932	466	0.241	
	LT	B2	1, 2, 4	3.50	40.0		100	2029	605	0.298		100	2029	490	0.242	
	SA	В3	1, 2	4.00				2155	550	0.255			2155	524	0.243	
	SA	B4	1, 2	3.50				2285	584	0.256			2285	556	0.243	
	RT	B5	2	2.70	15.0		100	1841	310	0.168	0.168	100	1841	319	0.173	0.173
Wang Chiu Road SB	LT	C1	2, 3	3.50	40.0		100	1920	459	0.239		100	1920	367	0.191	
	SA+RT	C2	3	3.50	30.0		34	2182	228	0.104	0.104	38	2182	213	0.098	0.098
Wang Chiu Road NB	LT+SA	D1	4	3.50	40.0		32	1993	190	0.095		31	1994	184	0.092	
	SA+RT	D2	4	3.50	25.0		82	2007	191	0.095		100	1986	183	0.092	
	RT	D3	4	3.50	20.0		100	1958	186	0.095	0.095	100	1958	181	0.092	0.092
pedestrian phase		8(p)	1		min c	rossing	time =	9	sec	GM +	7	sec F	GM =	16	sec	
		9(p)	1		min c	rossing	time =	5	sec	GM +	8	sec F	GM =	13	sec	
		10(p)	1, 2		min c	rossing	time =	10		GM +	9	sec F	GM =	19	sec	
		11(p)	1, 2, 3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		12(p)	2, 3, 4			rossing		5		GM +	9		GM =	14	sec	
		13(p)	2, 3, 4			rossing		5		GM +	6		GM =	11	sec	
		14(p)	3			rossing		5		GM +	7		GM =	12	sec	
		15(p)	4		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic F	Flow (pcu/hr)				N	S=1940+	-100(W–3	.25) S=2	2080+100	(W-3.25)	Note:		
78 ◆	459	1			80	\leftrightarrow	367	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	(1+1.5f/r)			
60 ↑	150			59 ↑		133					Check		Check			
803				─	832					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
	310 1						319 †		Sum y	0.496		0.496				
	1134 +					1080	+		L (s)	25		25				
164	1182				127		956		C (s)	140		140				
61 🕕 3	42			57	\leftarrow	364			practical y	0.739		0.739				
									R.C. (%)	49%		49%				
1	2				3				4				5			
	. • 9(p) 13(p) · .				13(p) ·		- ↓L	•	13(p) 🔏			. · ▼9(p)				
A2	A1 8(p) 9(p) 13(p) C1 A3 12(p)				13(p) 12(p)	<u>†</u>	C2 C1		12(p)							
B4 ←	8(p) 13(p) 12(p) 85 84 83 83 82 11(p) 10(p) 82					₩			15(p)	D1 D2 [2					
11(p) 10(p) B3 B2	12(p) B5 C1 12(p) B5 B4 B3 B3 B2 B1 11(p) 10(p) B2 B1							14(p)	"*		D3 B2 → B1	<u> </u>				
A B1	10(p) B1 11(p) 10(p)				11(p)			•	[`][[- В1	+				
AM G = I/G =	G = 1/G = 5 G =				G =		I/G =	11	G =		I/G =	8	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
. 1/0 =	G =		#G =		G =		./G =		G =		./0 =		G =		i/G =	

CKM Asia Limited J5

I/G = 11

G =

I/G =

G =

I/G =

G =

I/G =

G =

G =

I/G = 5

 Junction:
 J5 - Kai Cheung Road / Wang Chiu Road
 J7363

 Scenario:
 with KITEC
 R1 / P.5-2

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Kai Cheung Road EB	LT	A1	1	4.00	40.0		100	1942	111	0.057		100	1942	114	0.059	
	SA	A2	1	3.50				2105	314	0.149			2105	341	0.162	
	SA	А3	1	3.50				2105	314	0.149			2105	341	0.162	
	SA	A4	1	3.00				2055	308	0.150	0.150		2055	334	0.163	0.163
Kai Cheung Road WB	LT	B1	1, 2, 4	4.00	35.0		100	1932	815	0.422		100	1932	622	0.322	
	LT	B2	1, 2, 4	3.50	40.0		100	2029	855	0.421		100	2029	654	0.322	
	SA	В3	1, 2	4.00				2155	768	0.356			2155	675	0.313	
	SA	B4	1, 2	3.50				2285	815	0.357			2285	716	0.313	
	RT	B5	2	2.70	15.0		100	1841	428	0.232		100	1841	407	0.221	0.221
Wang Chiu Road SB	LT	C1	2, 3	3.50	40.0		100	1920	601	0.313	0.313	100	1920	461	0.240	
	SA	C2	3	3.50				2105	104	0.049			2105	101	0.048	
	SA+RT	C3	3	3.50	30.0		53	2050	101	0.049		72	2031	98	0.048	
	RT	C4	3	3.50	25.0		100	1986	97	0.049		100	1986	95	0.048	0.048
Wang Chiu Road NB	LT+SA	D1	4	3.50	40.0		51	1980	279	0.141		46	1983	311	0.157	
	SA+RT	D2	4	3.50	25.0		91	1996	281	0.141		100	1986	311	0.157	
	RT	D3	4	3.50	20.0		100	1958	276	0.141	0.141	100	1958	307	0.157	0.157
pedestrian phase		8(p)	1		min c	rossing	time =	9	sec	GM +	7	sec F	GM =	16	sec	
		9(p)	1		min c	rossing	time =	5		GM +	8		GM =	13	sec	
		10(p)	1, 2		min c	rossing	time =	10		GM +	9		GM =	19	sec	
		11(p)	1, 2, 3		min c	rossing	time =	5		GM +	7		GM =	12	sec	
		12(p)	2, 3, 4			rossing		5		GM +	9		GM =	14	sec	
		13(p)	2, 3, 4			rossing		5		GM +	6		GM =	11	sec	
		14(p)	3			rossing ·		5		GM +	7		GM =	12	sec	
		15(p)	4			rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic F	Flow (pcu/hr)				N	S=1940+	100(W-3.	,		(W-3.25)	Note:		
151 ←	₩ 601	\uparrow			166	\longleftrightarrow	461	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	(S–230)÷	-(1+1.5f/r)	with pla	nned ju	nction
111 1	51			114 †		128					Check		Check		ement as in Figure	
936				—	1016					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
	428 †						407 ↑		Sum y	0.604		0.588				
1	583 ←					1391	+		L (s)	20		25				
163	1670				157		1276		C (s)	140		140				
142 • • • • • • • • • • • • • • • • • • •	1			143	\leftarrow	629			practical y	0.771		0.739				
									R.C. (%)	28%		26%				
1	2				3		ПП		4				5			
A1 8(p)	9(p) 13(p)		C1		13(p) 13(p)	.لــ	┥╽╏	•	13(p) 🛰			√ • 9(p)				
A2	12(p)	<u>†</u>		+	12(p)	↑ C4	C3 C2 C	ı	12(p) ±		•					
B4 ← B3 ←	,	 	B4 B3	$\stackrel{\overset{\bullet}{\longleftarrow}}{=}$					l I	D1 D2 [2					
11(p) 10(p) B3 B2 B1	11(p)	←·-·→ 10(p)	B3 B2		11(p),			14(p)	***	. 1 🛴	B2	₣				
В1	* *		ВТ	+				•	`		→ B1	+				
AM G = I/G =	8 g=		I/G =		G =		I/G =	7	G =		I/G =	8	G =		I/G =	
G = I/G =	G = G =		I/G =		G =		I/G =	'	G =		I/G =		G =		I/G =	
	5 G=		I/G =		G =		I/G =	11	G =		I/G =		G =		I/G =	
G = 1/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
5 − 1/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

Junction:J5 - Kai Cheung Road / Wang Chiu RoadJob Number:J7363Scenario:with Approved RedevelopmentR1 / P.5-3

 Scenario:
 with Approved Redevelopment
 R1 / P.5-3

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Kai Cheung Road EB	LT	A1	1	4.00	40.0	Gradient	100	(pcu/hr) 1942	(pcu/hr)	0.057		100	(pcu/hr) 1942	(pcu/hr)	0.059	
Ital Officing Road EB	SA	A2	1	3.50	40.0		100	2105	303	0.144		100	2105	306	0.145	
	SA	A3	1	3.50				2105	303	0.144			2105	306	0.145	
	SA	A4	1	3.00				2055	296	0.144	0.144		2055	300	0.146	0.146
				-												
Kai Cheung Road WB	LT	B1	1, 2, 4	4.00	35.0		100	1932	815	0.422		100	1932	622	0.322	
	LT	B2	1, 2, 4	3.50	40.0		100	2029	855	0.421		100	2029	654	0.322	
	SA	В3	1, 2	4.00				2155	742	0.344			2155	644	0.299	
	SA	В4	1, 2	3.50				2285	787	0.344			2285	682	0.298	
	RT	B5	2	2.70	15.0		100	1841	428	0.232		100	1841	407	0.221	0.221
Wang Chiu Road SB	LT	C1	2, 3	3.50	40.0		100	1920	601	0.313	0.313	100	1920	461	0.240	
	SA	C2	3	3.50				2105	104	0.049			2105	101	0.048	
S	A+RT	C3	3	3.50	30.0		53	2050	101	0.049		72	2031	98	0.048	
	RT	C4	3	3.50	25.0		100	1986	97	0.049		100	1986	95	0.048	0.048
Wang Chiu Road NB L	T+SA	D1	4	3.50	40.0		51	1980	279	0.141		46	1983	311	0.157	
S	A+RT	D2	4	3.50	25.0		91	1996	281	0.141		100	1986	311	0.157	
	RT	D3	4	3.50	20.0		100	1958	276	0.141	0.141	100	1958	307	0.157	0.157
pedestrian phase		8(p)	1		min c	rossing	time =	9	sec (GM +	7	sec F	GM =	16	sec	
<u> </u>		9(p)	1			rossing		5		GM +	8		GM =	13	sec	
		10(p)	1, 2			rossing		10		GM +	9		GM =	19	sec	
		11(p)			min cı	rossing	time =	5	sec (GM +	7	sec F	GM =	12	sec	
		12(p)	2, 3, 4		min cı	rossing	time =	5	sec (GM +	9	sec F	GM =	14	sec	
		13(p)	2, 3, 4		min cı	rossing	time =	5	sec (GM +	6	sec F	GM =	11	sec	
		14(p)	3		min cı	rossing	time =	5	sec (GM +	7	sec F	GM =	12	sec	
		15(p)	4		min cı	rossing	time =	5	sec (GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		NI.	PM Traffic F	low (pcu/hr)	1			N	S=1940+	100(W-3.	25) S=2	2080+100	(W-3.25)	Note:		
151 ←	01	N T			166	\longleftrightarrow	461	^ ↑	S _M =S÷(1	•	,		·(1+1.5f/r)	with pla	nned ju	nction
1 <u>1</u> 1 151				114		▼ 128			\		Check			improve	ement a	S
902				<u></u>	912					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase	SHOWIT	iii i iguit	54.5
	428						407		Sum y	0.598	1 Hdoo	0.572	ritado			
1529 💠	1					1326	↓		L (s)	20		25				
163	↓ 1670				157		1276		C (s)	140		140				
142 🕕 531				143	→	629	.2.0		practical y	0.771		0.739				
2 (020			R.C. (%)	29%		29%				
1 2					3				4				5			
A1 8(p) 9(p) 13	3(p) · 🔏		C1		13(p) · 💃	↓].	┥┃┕	•	13(p)			▼9(p)				
A3 A4	12(p))	B5	t	12(p)	C4	C3 C2 C1		12(p)							
B4 ← B3 ← B3	,	,	B4 B3	=	,	•			15(p) ÷	D1 D2 [03					
7 ' 1	1(p)	10(p)	B2 B1	F	11(p)			14(p)	`,	┧┢╌	B 2 B1	F				
-· •				•								•				
AM G = 1/G = 8	G =		I/G =		G =		I/G =	7	G =		I/G =	8	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = 1/G = 5	G =		I/G =	5	G =		I/G =	11	G =		I/G =	8	G =		I/G =	

CKM Asia Limited J5

I/G =

 Junction:
 J5 - Kai Cheung Road / Wang Chiu Road
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.5-4

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

2020 - 2020	Boolgin														andary 1	
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Kai Cheung Road EB	LT	A1	1	4.00	40.0	Gradient	100	(pcu/hr) 1942	(pcu/hr)	0.057		100	(pcu/hr) 1942	(pcu/hr) 114	0.059	
Rai Crieding Road Lb	SA	A2	1	3.50	40.0		100	2105	313	0.149		100	2105	319	0.059	
	SA	A3	1	3.50				2105	313	0.149			2105	319	0.152	
	SA	A4	1	3.00				2055	306	0.149	0.149		2055	312	0.152	0.152
	0/1	714		0.00				2000	000	0.140	0.140		2000	012	0.102	0.102
Kai Cheung Road WB	LT	B1	1, 2, 4	4.00	35.0		100	1932	815	0.422		100	1932	622	0.322	
g	LT	B2	1, 2, 4	3.50	40.0		100	2029	855	0.421		100	2029	654	0.322	
	SA	В3	1, 2	4.00				2155	751	0.348			2155	660	0.306	
	SA	В4	1, 2	3.50				2285	797	0.349			2285	700	0.306	
	RT	B5	2	2.70	15.0		100	1841	428	0.232		100	1841	407	0.221	0.221
Wang Chiu Road SB	LT	C1	2, 3	3.50	40.0		100	1920	601	0.313	0.313	100	1920	461	0.240	
	SA	C2	3	3.50				2105	104	0.049			2105	101	0.048	
	SA+RT	C3	3	3.50	30.0		53	2050	101	0.049		72	2031	98	0.048	
	RT	C4	3	3.50	25.0		100	1986	97	0.049		100	1986	95	0.048	0.048
Wang Chiu Road NB	LT+SA	D1	4	3.50	40.0		51	1980	279	0.141		46	1983	311	0.157	
	SA+RT	D2	4	3.50	25.0		91	1996	281	0.141		100	1986	311	0.157	
	RT	D3	4	3.50	20.0		100	1958	276	0.141	0.141	100	1958	307	0.157	0.157
pedestrian phase		8(p)	1		min c	rossing	time =	9	sec	GM +	7	sec F	GM =	16	sec	
		9(p)	1		min c	rossing	time =	5	sec	GM +	8	sec F	GM =	13	sec	
		10(p)	1, 2		min c	rossing	time =	10	sec	GM +	9	sec F	GM =	19	sec	
		11(p)	1, 2, 3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		12(p)	2, 3, 4		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
		13(p)	2, 3, 4		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
		14(p)	3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		15(p)	4		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic I	low (pcu/hr)				N	S=1940+	-100(W–3	.25) S=:	2080+100	(W-3.25)	Note:		
151 -	601	1			166	\leftrightarrow	461	<u>↑</u>	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	(1+1.5f/r)	with pla	nned ju	nction
111 932	151			114	950	128				AM	Check Pedestrian	PM	Check Pedestrian	shown	ement as in Figure	s e 4.9
932	428				950		407			Peak	Phase	Peak	Phase			
	1548					1360	†		Sum y	0.603		0.578				
	ļ					1300	. ↓		L (s)	20		25				
163	1670				157 ↑		1276		C (s)	140		140				
142	531			143	+	629			practical y	0.771		0.739				
									R.C. (%)	28%		28%				
1	2				3				4			_	5			
A1 A2 A2 A3	9(p) 13(p)	•	C1		13(p)	↓ C4	C3 C2 C	1	13(p) 🔏			9(p)				
A3 A4	12(p)	! 	B5	<u></u>	12(p)	. C4	C3 C2 C	1	12(p)							
B4 ← B3 ← B3 ←		· . ← · – · >	B3	_	7			*	15(p) +	D1 D2 [
11(p) 10(p) B2 B1	11(p)	10(p)	B2 B1	\vdash	11(p)			14(p))	┩┢┌	→ B2 B1					
AM G = I/G =	8 G=		I/G =		G =		I/G =	7	G =		I/G =	8	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
	G =		#G =		G =		// -		G =		//0 =		G =		1/0 =	

CKM Asia Limited J5

I/G = 11

G=

I/G =

G =

I/G =

G =

I/G =

G =

I/G = 5

 Junction:
 J5 - Kai Cheung Road / Wang Chiu Road
 J7363

 Scenario:
 with KITEC
 R1 / P.5-5

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

i			1	ı	ı	ı			AM Peak		-			PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Kai Cheung Road EB	LT	A1	1	4.00	40.0		100	1942	113	0.058		100	1942	116	0.060	
	SA	A2	1	3.50				2105	319	0.152			2105	346	0.164	
	SA	A3	1	3.50				2105	319	0.152	0.152		2105	346	0.164	
	SA	A4	1	3.00				2055	311	0.151			2055	337	0.164	0.164
Kai Okassas Baad MAD		D4	4.0.4	4.00	05.0		400	4000	007	0.400		400	4000	000	0.007	
Kai Cheung Road WB	LT.	B1	1, 2, 4	4.00	35.0		100	1932 2029	827	0.428		100	1932 2029	632	0.327	
	LT	B2	1, 2, 4	3.50	40.0		100		868			100		663	0.327	
	SA SA	B3 B4	1, 2	4.00 3.50				2155 2285	779 826	0.361			2155 2285	684 726	0.317	
	RT	B5	2	2.70	15.0		100	1841	434	0.236		100	1841	413	0.224	0.224
	1(1	В		2.70	10.0		100	1041	707	0.230		100	1041	713	0.224	0.224
Wang Chiu Road SB	LT	C1	2, 3	3.50	40.0		100	1920	610	0.318	0.318	100	1920	468	0.244	
	SA	C2	3	3.50				2105	105	0.050			2105	102	0.048	
	SA+RT	C3	3	3.50	30.0		53	2051	102	0.050		72	2032	99	0.049	
	RT	C4	3	3.50	25.0		100	1986	99	0.050		100	1986	97	0.049	0.049
Warra Chiu Daad ND	LT.CA	D4	4	2.50	40.0		54	4000	202	0.442		40	4000	245	0.450	
Wang Chiu Road NB	LT+SA SA+RT	D1 D2	4	3.50	40.0 25.0		51 91	1980 1996	283 285	0.143		46 100	1983 1986	315 316	0.159	
	RT	D3	4	3.50	20.0		100	1958	280	0.143	0.143	100	1958	311	0.159	0.159
	NI_	D3	4	3.50	20.0		100	1936	200	0.143	0.143	100	1936	311	0.139	0.159
pedestrian phase		8(p)	1		min c	rossing	time =	9	sec (GM +	7	sec F	GM =	16	sec	
		9(p)	1		min c	rossing	time =	5	sec (GM +	8	sec F	GM =	13	sec	
		10(p)	1, 2		min c	rossing	time =	10	sec (GM +	9	sec F	GM =	19	sec	
		11(p)	1, 2, 3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		12(p)	2, 3, 4		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
		13(p)	2, 3, 4		min c	rossing	time =	5	sec (GM +	6	sec F	GM =	11	sec	
		14(p)	3		min c	rossing	time =	5		GM +	7		GM =	12	sec	
		15(p)	4		•	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic I	Flow (pcu/hr				N	S=1940+	100(W-3	.25) S=2	2080+100	(W-3.25)			
	610	\uparrow		440	168	100	468	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	=(S–230)÷	(1+1.5f/r)		anned ju ement a:	
113	153	I		116 1		130		ı		AM	Check Pedestrian	PM	Check Pedestrian		in Figure	
→ 949	434				1029		413			Peak	Phase	Peak	Phase			
	†					4440	†		Sum y	0.612		0.596				
	1605					1410	. ↓	•	L(s)	20		25				
165 <u></u>	1695				159 ↑		1295		C (s)	140		140				
144 ← 1 → 5	39			145	\longrightarrow	638			practical y	0.771		0.739				
									R.C. (%)	26%		24%				
1 A1 0/2)	2				3				4				5			
A1 A2 A3 A3	9(p) 13(p)	•	C1		13(p)	↑ C4	C3 C2 C	1	13(p) ➤			9(p)				
A4 B4 ◆	12(p)	: ↓	B5	<u></u>	12(p)	•	03 02 0		12(p)							
11(p) 10(p) B4 B3 B2 B1	<u> </u>	4 · - · >	B5 B4 B3 B2	←	,			x	15(p) ÷	D1 D2 [D3 B2					
11(p) 10(p) B1	11(p),	10(p)	B1	!	11(p)			14(p)	1	┥┝┌	→ B1					
AM G = I/G =	8 G=		I/G =		G =		I/G =	7	G =	111	I/G =	8	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	5 G=		I/G =	5	G =		I/G =	11	G =		I/G =	8	G =		I/G =	
1 .																

 Junction:
 J5 - Kai Cheung Road / Wang Chiu Road
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.5-6

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

			1													
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Kai Cheung Road EB	LT	A1	1	4.00	40.0		100	1942	113	0.058		100	1942	116	0.060	
	SA	A2	1	3.50				2105	307	0.146			2105	311	0.148	
	SA	А3	1	3.50				2105	307	0.146			2105	311	0.148	0.14
	SA	A4	1	3.00				2055	301	0.146	0.146		2055	303	0.147	
Kai Cheung Road WB	LT	B1	1, 2, 4	4.00	35.0		100	1932	827	0.428		100	1932	632	0.327	
	LT	B2	1, 2, 4	3.50	40.0		100	2029	868	0.428		100	2029	663	0.327	
	SA	ВЗ	1, 2	4.00				2155	753	0.349			2155	653	0.303	
	SA	B4	1, 2	3.50				2285	798	0.349			2285	692	0.303	
	RT	B5	2	2.70	15.0		100	1841	434	0.236		100	1841	413	0.224	0.22
Wang Chiu Road SB	LT	C1	2, 3	3.50	40.0		100	1920	610	0.318	0.318	100	1920	468	0.244	
	SA	C2	3	3.50				2105	105	0.050			2105	102	0.048	
	SA+RT	C3	3	3.50	30.0		53	2051	102	0.050		72	2032	99	0.049	0.04
	RT	C4	3	3.50	25.0		100	1986	99	0.050		100	1986	97	0.049	0.04
Mana Chiu Dood ND	LTICA	D1	4	3.50	40.0		51	1980	283	0.143		46	1983	315	0.159	
Wang Chiu Road NB	LT+SA SA+RT	D2	4	3.50	25.0		91	1996	285	0.143		46 100	1986	316	0.159	
	RT	D3	4	3.50	20.0		100	1958	280	0.143	0.143	100	1958	311	0.159	0.15
	1(1	Бо		0.00	20.0		100	1000	200	0.140	0.140	100	1000	011	0.100	0.10
pedestrian phase		8(p)	1		min c	rossing	timo =	9	soc (GM +	7	50C E	GM =	16	sec	
bedestrian priase		9(p)	1			rossing		5		GM +	8		GM =	13	sec	
		10(p)	1, 2			rossing		10		GM +	9		GM =	19	sec	
		11(p)	1, 2, 3			rossing		5		GM +	7		GM =	12	sec	
			2, 3, 4			rossing		5		GM +	9		GM =	14	sec	
		13(p)	2, 3, 4		min cı	rossing	time =	5	sec (GM +	6	sec F	GM =	11	sec	
		14(p)	3		min cı	rossing	time =	5	sec (GM +	7	sec F	GM =	12	sec	
		15(p)	4		min cı	rossing	time =	5	sec (GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic F	low (pcu/hr)				N	S=1940+	100(W-3.	25) S=2	2080+100	(W-3.25)	Note:		
153 ←	→ 610	\uparrow			168	\longleftrightarrow	468	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	(S–230)÷	(1+1.5f/r)	with pla	nned ju	nction
113 15	53			116 1		130					Check				ement as in Figure	
915				→	925					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
	434 †						413 †		Sum y	0.607		0.580				
1	551 +					1345	•		L(s)	20		25				
165	1695				159		1295		C (s)	140		140				
144 🕕 539				145	\leftarrow	638			practical y	0.771		0.739				
									R.C. (%)	27%		28%				
A1 A2 A3 A3 A4 B4	9(p) 13(p) 12(p)	•	C1 B5 B4 B3	←	3 13(p) 12(p)	C4	C3 C2 C	•	13(p) 12(p)			. ✓ 9(p)	5			
11(p) 10(p) B2 B1	11(p)	←·-·→ 10(p)	B3 B2 B1	 	11(p)			14(p)	15(p) •	D1 D2 [03 B2 → B1	F				
AM G = I/G = {	G =		I/G =		G =		I/G =	7	G =		I/G =	8	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

CKM Asia Limited J5

I/G = 11

G =

I/G =

G =

I/G =

G =

I/G =

G =

I/G = 5

 Junction:
 J5 - Kai Cheung Road / Wang Chiu Road
 Job Number:
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.5-7

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

			1						AM Post					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	Flow	y value	Critical
Kai Cheung Road EB	LT	A1	1	4.00	40.0	Gradient	100	(pcu/hr) 1942	(pcu/hr) 113	0.058		100	(pcu/hr) 1942	(pcu/hr) 116	0.060	
rtar Orleang Road EB	SA	A2	1	3.50	40.0		100	2105	318	0.151		100	2105	324	0.154	
	SA	A3	1	3.50				2105	318	0.151	0.151		2105	324	0.154	0.154
											0.151					0.132
	SA	A4	1	3.00				2055	309	0.150			2055	315	0.153	
Kai Cheung Road WB	LT	B1	1, 2, 4	4.00	35.0		100	1932	827	0.428		100	1932	632	0.327	
	LT	B2	1, 2, 4	3.50	40.0		100	2029	868	0.428		100	2029	663	0.327	
	SA	В3	1, 2	4.00				2155	762	0.354			2155	669	0.310	
	SA	B4	1, 2	3.50				2285	808	0.354			2285	710	0.311	
	RT	B5	2	2.70	15.0		100	1841	434	0.236		100	1841	413	0.224	0.224
Wang Chiu Road SB	LT	C1	2, 3	3.50	40.0		100	1920	610	0.318	0.318	100	1920	468	0.244	
	SA	C2	3	3.50				2105	105	0.050			2105	102	0.048	
	SA+RT	C3	3	3.50	30.0		53	2051	102	0.050		72	2032	99	0.049	
	RT	C4	3	3.50	25.0		100	1986	99	0.050		100	1986	97	0.049	0.049
Wang Chiu Road NB	LT+SA	D1	4	3.50	40.0		51	1980	283	0.143		46	1983	315	0.159	
<u> </u>	SA+RT	D2	4	3.50	25.0		91	1996	285	0.143		100	1986	316	0.159	
	RT	D3	4	3.50	20.0		100	1958	280	0.143	0.143	100	1958	311	0.159	0.159
	111			0.00	20.0		100	1000	200	0.110	0.110	100	1000	011	0.100	0.100
nodestrian phase		9(n)	1		min o	roccina	timo -	9	000	CM+	7	000 5	CM-	16	000	
pedestrian phase		8(p)	1			rossing				GM +			GM =	16	sec	
		9(p)	1			rossing ·		5		GM +	8		GM =	13	sec	
		10(p)	1, 2			rossing		10		GM +	9		-GM =	19	sec	
		11(p)	1, 2, 3			rossing		5		GM +	7		GM =	12	sec	
		12(p)	2, 3, 4			rossing		5		GM +	9		GM =	14	sec	
		13(p)	2, 3, 4			rossing		5		GM +	6		GM =	11	sec	
		14(p)	3			rossing		5		GM +	7	sec F	GM =	12	sec	
		15(p)	4		min cı	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic F	low (pcu/hr)	1			N	S=1940+	100(W–3.	25) S=2	2080+100	(W-3.25)	Note:		
153 🛨	610	.` ↑			168	\leftrightarrow	468	. `	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	(1+1.5f/r)	with pla	nned ju	nction
113	153			116		130					Check		Check	improve	ement as in Figure	S 2 / Q
<u> </u>				⊥,	963					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase	SHOWIT	iii i iguit	7.5
	434						413		_	0.612	riiase	0.586	Filase			
	1570					1379	1		Sum y							
	ţ				. = =	1075	. ↓		L (s)	20		25				
165 <u></u>	1695				159 ↑		1295		C (s)	140		140				
144 🕕 5	39			145	\leftarrow	638			practical y	0.771		0.739				
									R.C. (%)	26%		26%				
1	2				3				4				5			
A1 8(p) A	9(p) 13(p)		C1		13(p) ·	.لــه	┥╽└	•	13(p) 🔏			√ 9(p)				
A3	9(p) 13(p) 12(p))		ŧ	12(p)	↑ C4	C3 C2 C	1	12(p)							
B4 ← B3 ←	11(p)	,	B5 B4 B3		,	÷			l I	D1 D2 [13					
11(p) 10(p) B3 B2 B1	11(p)*	←·-·→ 10(p)	B3 B2	Ţ	11(p) ,			14(p)	\ \ *	, † † .	B2	<u> </u>				
₩ B1	+] ""	- u=7	B1	ţ	" <i>'</i>			*A '(P)	'	7	→ B1	ţ				
								7	<u> </u>							
AM G = I/G =	8 G=		I/G =		G =		I/G =	7	G =		I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

CKM Asia Limited J5

I/G =

G =

I/G =

G =

I/G =

G =

G =

I/G =

G =

I/G =

I/G =

 Junction:
 J6 - Wang Chiu Road / Lam Hing Street
 Job Number:
 J7363

 Scenario:
 existing condition
 R1 / P.6-1

Design Year: 2024 Designed By: Checked By: Date: 08 January 2025

Design Year:	2024	Designe	ed By:				-	Checke	d By:					Date:	08 J	January	2025
			1	1						AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Wang Chiu Ro	ad SB	LT	A1	1	3.50	15.0	Gradient	100	1786	349	0.195		100	1786	306	0.171	
rvang Cilia ito	au OD			1		10.0		100					100				0.10
		SA	A2		3.50				2105	491	0.233			2105	391	0.186	0.18
		SA	A3	1	3.50				2105	490	0.233	0.233		2105	390	0.185	
Wang Chiu Ro	ad NB	LT+SA	B1	1	3.50	15.0		24	1919	206	0.107		38	1892	206	0.109	
		SA	B2	1	3.50				2105	226	0.107			2105	229	0.109	
Lam Hing Stree	et EB	LT+SA	C1	3	5.00	20.0		53	2034	343	0.169	0.169	72	2007	264	0.132	
Lam Hing Stree	et WB	LT+SA	D1	3	5.00	20.0		37	2058	159	0.077		37	2058	304	0.148	0.14
					-						-						
					<u> </u>						<u> </u>						
pedestrian pha	150		3(p)	2		min c	rossing	time -	9	202	GM +	7	soc E	GM =	16	sec	
pedesiliali pila	150																
			4(p)	2			rossing		9		GM +	8		GM =	17	sec	
			5(p)	2		min c	rossing	time =	12	sec	GM +	11	sec F	GM =	23	sec	
AM Traffic Flow (pcu/hr	-)		•	PM Traffic	Flow (pcu/hr))									Note:		•
	,		N		4			000	N		-100(W–3						
		349	\uparrow				*	306	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	(S–230)÷	(1+1.5f/r)			
182 ↑		981			190 †		781					Check		Check			
—	161				—	74					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
										Sum y	0.401		0.333				
		100 🕶					191	←		L (s)	38		38		İ		
	383	100 100				356	191	113							İ		
		59						113		C (s)	140		140		i		
49	' ←				79	\leftarrow				practical y	0.656		0.656		i		
										R.C. (%)	63%		97%				
1		2				3				4				5			
			_	, ,													
	∀ ∀ A3 A2 A1		←	(p) ·-·►		1	C1										
		2(n)	†	†	2(n)		٥.	D1									
B1 B2 ↑ ↑		3(p)	ţ	į	3(p)			וט	+								
			* ← · −	·-·• *													
			4	(p)													
AM G =	I/G =	9 G=	23	I/G =	2	G =		I/G =	6	G =		I/G =		G =		I/G =	
G =	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G=	I/G =	9 G=	23	I/G =		G =		I/G =	6	G =		I/G =		G =		I/G =	
			20						U								
G =	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J6 - Wang Chiu Road / Lam Hing Street
 Job Number:
 J7363

 Scenario:
 with KITEC
 R1 / P.6-2

Design Year: 2029 Designed By: Checked By: Date: 08 January 2025

Design Year:	2029	Designe	ed By:				-	Checke	d By:				-	Date:	08 .	January :	2025
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critica
Vang Chiu Ro	ad SB	LT	A1	1	3.50	15.0		100	1786	431	0.241		100	1786	331	0.185	
rung oma re	aa ob	SA	A2	1	3.50	10.0		100	2105	694	0.330		100	2105	537	0.255	
												0.000					0.01
		SA	A3	1	3.50				2105	694	0.330	0.330		2105	536	0.255	0.25
M Ol- : D -	. J.ND	17.04	D4		0.50	45.0		0.7	4004	000	0.407		07	4040	000	0.450	
Vang Chiu Ro	ad NB	LT+SA	B1	1	3.50	15.0		37	1894	260	0.137		27	1913	292	0.153	
		SA	B2	1	3.50				2105	289	0.137			2105	322	0.153	
am Hing Stree	et EB	LT+SA	C1	2	4.00	15.0		100	1832	384	0.210	0.210	100	1832	393	0.215	0.21
		SA	C2	2	4.00				2155	193	0.090			2155	81	0.038	
am Hing Stree	et WB	LT+SA	D1	2	5.00	15.0		42	2030	206	0.101		44	2025	373	0.184	
edestrian pha	ise		3(p)	3		min c	rossing	time =	10	sec	GM +	8	sec F	GM =	18	sec	
			4(p)	3		min c	rossing	time =	9	sec	GM +	8	sec F	GM =	17	sec	
			5(p)	3		min c	rossing	time =	12	sec	GM +	11	sec F	GM =	23	sec	
M Traffic Flow (pcu/hr	r)		Ν	PM Traffic	Flow (pcu/hr)			Ν	S=1940+	-100(W–3				Note:		
		431	\uparrow				*	331	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	(1+1.5f/r)	with pla	anned ju	nction
384		1388			393		1073					Check		Check	shown	ement as in Figure	s e 4.10
Ш,	193				→	81					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase		Ū	
										Sum y	0.539		0.469				
		120 4					208	←—			39		39				
	450	↓				EOF	200	1		L (s)							
	452 , ∱	86				535 ↑		165		C (s)	140		140				
97	′←				79	←				practical y	0.649		0.649				
										R.C. (%)	20%		38%				
		2				3				4				5			
							-	(m)									
	A3 A2 A1		C1				. 4	(p)									
			C2	D1	←	3(p)	†	†	3(p)								
B1 B2 ↑↑				51	*	σ(ρ)	i ▼	· •	-(P)								
+							← ·-	(p)									
								*									
M G =	I/G =	6 G=		I/G =	10	G =	23	I/G =	2	G =		I/G =		G =		I/G =	
G =	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G =	I/G =	6 G=		I/G =	10	G =	23	I/G =	2	G =		I/G =		G =		I/G =	
G =	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J6 - Wang Chiu Road / Lam Hing Street
 Job Number:
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.6-3

Design Year: 2029 Designed By: Checked By: Date: 08 January 2025

Design Year:	2029	Designe	ed By:					Checke	d By:				•	Date:	08 .	January 2	2025
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critica
Vang Chiu Ro	nad SB	LT	A1	1	3.50	15.0		100	1786	431	0.241		100	1786	331	0.185	
varig Oma rec	Jaa OB	SA	A2	1	3.50	10.0		100	2105	694	0.330		100	2105	537	0.255	
												0.000					0.01
		SA	A3	1	3.50				2105	694	0.330	0.330		2105	536	0.255	0.25
		1.7.04	D.4		0.50	45.0		07	1001	200	0.407		07	1010		0.450	
Wang Chiu Ro	Dad NB	LT+SA	B1	1	3.50	15.0		37	1894	260	0.137		27	1913	292	0.153	
		SA	B2	1	3.50				2105	289	0.137			2105	322	0.153	
am Hing Stre	et EB	LT+SA	C1	2	4.00	15.0		100	1832	384	0.210	0.210	100	1832	393	0.215	0.21
		SA	C2	2	4.00				2155	193	0.090			2155	81	0.038	
am Hing Stre	et WB	LT+SA	D1	2	5.00	15.0		42	2030	206	0.101		44	2025	373	0.184	
edestrian pha	ase		3(p)	3		min c	rossing	time =	10	sec	GM +	8	sec F	GM =	18	sec	
			4(p)	3		min c	rossing	time =	9	sec	GM +	8	sec F	GM =	17	sec	
			5(p)	3		min c	rossing	time =	12	sec	GM +	11	sec F	GM =	23	sec	
																	l
M Traffic Flow (pcu/h	nr)		N	PM Traffic I	Flow (pcu/hr)				Ν	S=1940+	100(W–3.				Note:		
		431	\uparrow				▼	331	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	(S–230)÷	(1+1.5f/r)	with pla	anned ju	nction
384	1:	388			393		1073					Check		Check	shown	ement as in Figure	s e 4.10
	▶ 193				→	81					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase		Ü	
										Sum y	0.539		0.469				
										Guill y			39				
		120 🕶					200	←		1.7-3	.3()		Jy				
	450	120				E0.F	208	165		L (s)	39						
	452 - †	120 120				535 †	208	165		C (s)	140		140				
97	452 7 —	. ↓			79	535	208	165		C (s)	140 0.649		140 0.649				
97	A	. ↓			79		208	165		C (s)	140		140				
97	A	. ↓			79		208	165		C (s)	140 0.649		140 0.649	5			
97	A	. ↓			79					C (s)	140 0.649		140 0.649	5			
97	A	2	C1		79			165		C (s)	140 0.649		140 0.649	5			
	7 🕂	2	C1 C2	D1		3		(p) ↑	3(p)	C (s)	140 0.649		140 0.649	5			
97 B1 B2 ↑↑	7 🕂	2	C1 C2	D1				(p) ↑	3(p)	C (s)	140 0.649		140 0.649	5			
	7 🕂	2	C1 C2	D1		3	55	(p)	3(p)	C (s)	140 0.649		140 0.649	5			
	7 🕂	2	C1 C2	D1		3	55	(p) ↑	3(p)	C (s)	140 0.649		140 0.649	5			
B1 B2	7 - A3 A2 A1	2	C1 C2	D1	-	3	55	(p)	3(p) 2	C (s)	140 0.649	I/G =	140 0.649	5 G =		I/G =	
B1 B2	7 - A3 A2 A1	2	C1 C2		10	3(p)	5((p)		C (s) practical y R.C. (%)	140 0.649	1/G =	140 0.649	5 G = G =		I/G =	
B1 B2	7	86 g =	C1 C2	I/G =	10	3 (p)	5((p)		C (s) practical y R.C. (%) 4	140 0.649		140 0.649				

 Junction:
 J6 - Wang Chiu Road / Lam Hing Street
 Job Number:
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.6-4

Design Year: 2029 Designed By: Checked By: Date: 08 January 2025

Design Year:	2029	Designe	∍d By:					Checke	d By:				ī	Date:	08 J	January 2	2025
						-				AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Nang Chiu Ro	ad SB	LT	A1	1	3.50	15.0		100	1786	431	0.241		100	1786	331	0.185	
		SA	A2	1	3.50				2105	694	0.330			2105	537	0.255	
		SA	A3	1	3.50				2105	694		0.330		2105	536	0.255	0.25
			7.0	<u> </u>	0.00				2100	004	0.000	0.000		2100	000	0.200	0.20
	- I ND	17.04	- D4		0.50	45.0		07	4004	000	0.407		0.7	4040	000	0.450	
Wang Chiu Ro	ad NB	LT+SA	B1	1	3.50	15.0		37	1894	260	0.137		27	1913	292	0.153	
		SA	B2	1	3.50				2105	289	0.137			2105	322	0.153	
					<u> </u>											<u> </u>	
_am Hing Stree	et EB	LT+SA	C1	2	4.00	15.0		100	1832	384	0.210	0.210	100	1832	393	0.215	0.21
		SA	C2	2	4.00				2155	193	0.090			2155	81	0.038	
am Hing Stre	et WB	LT+SA	D1	2	5.00	15.0		42	2030	206	0.101		44	2025	373	0.184	
																1	
											\vdash					<u> </u>	
			-		<u> </u>						$\vdash \vdash \vdash$				<u> </u>	<u> </u>	
				<u> </u>													
edestrian pha	ise		3(p)	3		min cı	rossing t	time =	10	sec	GM +	8	sec F	GM =	18	sec	
			4(p)	3		min c	rossing t	time =	9	sec	GM +	8	sec F	GM =	17	sec	
			5(p)	3		min c	rossing t	time =	12	sec	GM +	11	sec F	GM =	23	sec	
																	l
M Traffic Flow (pcu/hr	r)			PM Traffic F	Class (pass/br)	1						25) 0-4	2000 - 400	//M/ 2.2E)	Mater		
	-,		N	I W Hallio	riow (pcu/iii)	,			N	S=1940+	·100(W–3.			(44–3.23)	Note:		
	-,	431	N ↑	I W Hallo	riow (pcu/iii)	,	\downarrow	331		S=1940+ S _M =S÷(1				·(1+1.5f/r)	with pla	anned jui	nction
384		431 1388	N	I W Halle	3 <u>9</u> 3	,	1073	331				S _M =		-(1+1.5f/r)	with pla	ement as	S
T T	1	*	N	T W Traille	393 †		*	331			+1.5f/r)	S _M =	=(S-230)÷	-(1+1.5f/r) Check Pedestrian	with pla	anned jur ement as in Figure	S
T T		*	N	T W Traine	393 †	81	*	331		S _M =S÷(1	+1.5f/r) AM Peak	S _M =	PM Peak	(VV-3.23) -(1+1.5f/r) Check	with pla	ement as	S
T T	1	¥ 1388	N		393 †		1073	331		S _M =S÷(1	+1.5f/r) AM Peak 0.539	S _M =	PM Peak 0.469	-(1+1.5f/r) Check Pedestrian	with pla	ement as	S
T T	1 ► 193	120	N		393 †	81	*	-		S _M =S÷(1	+1.5f/r) AM Peak 0.539 39	S _M =	PM Peak 0.469	-(1+1.5f/r) Check Pedestrian	with pla	ement as	S
	1 193 452	¥ 1388	N		393	81 535	1073	331		S _M =S÷(1	+1.5f/r) AM Peak 0.539 39 140	S _M =	PM Peak 0.469 39	-(1+1.5f/r) Check Pedestrian	with pla	ement as	S
1,	1 ► 193	120	N		393	81	1073	-		S _M =S÷(1	+1.5f/r) AM Peak 0.539 39 140 0.649	S _M =	PM Peak 0.469 39 140 0.649	-(1+1.5f/r) Check Pedestrian	with pla	ement as	S
1,	1 193 452	120	N		393	81 535	1073	-		S _M =S÷(1	+1.5f/r) AM Peak 0.539 39 140	S _M =	PM Peak 0.469 39	-(1+1.5f/r) Check Pedestrian	with pla	ement as	S
1,	1 193 452	120	N		393	81 535	1073	-		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.539 39 140 0.649	S _M =	PM Peak 0.469 39 140 0.649	-(1+1.5f/r) Check Pedestrian	with pla	ement as	S
1,	1 193 452	120	N		393	81 535	1073	165		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.539 39 140 0.649	S _M =	PM Peak 0.469 39 140 0.649	-(1+1.5f/r) Check Pedestrian	with pla	ement as	S
1,	1 193 452	120 - 86	N		393	81 535	1073	-		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.539 39 140 0.649	S _M =	PM Peak 0.469 39 140 0.649	-(1+1.5f/r) Check Pedestrian	with pla	ement as	S
97	193 452 7	120 - 86	× ←		393 79	535	1073 208	165	<u></u>	S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.539 39 140 0.649	S _M =	PM Peak 0.469 39 140 0.649	-(1+1.5f/r) Check Pedestrian	with pla	ement as	S
	193 452 7	120 - 86	N	D1	393 79	81 535	1073 208	165		S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.539 39 140 0.649	S _M =	PM Peak 0.469 39 140 0.649	-(1+1.5f/r) Check Pedestrian	with pla	ement as	S
97	193 452 7	120 - 86	N		393 79	535	208	165	<u></u>	S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.539 39 140 0.649	S _M =	PM Peak 0.469 39 140 0.649	-(1+1.5f/r) Check Pedestrian	with pla	ement as	S
97	193 452 7	120 - 86	N		393 79	535	1073 208	165	<u></u>	S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.539 39 140 0.649	S _M =	PM Peak 0.469 39 140 0.649	-(1+1.5f/r) Check Pedestrian	with pla	ement as	S
97	193 452 7	120 - 86	N		393 79	535	208	165	<u></u>	S _M =S÷(1 Sum y L (s) C (s) practical y	+1.5f/r) AM Peak 0.539 39 140 0.649	S _M =	PM Peak 0.469 39 140 0.649 38%	-(1+1.5f/r) Check Pedestrian	with pla	ement as	s e 4.10
97	193 452 7 452 A3 A2 A1	120 - 86	N	D1	79	535 	1073 208	165	3 (p)	S _M =S÷(1 Sum y L (s) C (s) practical y R.C. (%)	+1.5f/r) AM Peak 0.539 39 140 0.649 20%	S _M = Check Pedestrian Phase	PM Peak 0.469 39 140 0.649 38%	c(1+1.5f/r) Check Pedestrian Phase	with pla	ement as	s e 4.10
97 B1 B2 MM G =	193 452 7 452 7 11/G =	1388 120	N	D1	79	535 	1073 208	165	3 (p)	S _M =S÷(1 Sum y L (s) C (s) practical y R.C. (%)	+1.5f/r) AM Peak 0.539 39 140 0.649 20%	S _M = Check Pedestrian Phase	PM Peak 0.469 39 140 0.649 38%	((v-3.23) -(1+1.5f/r) Check Pedestrian Phase	with pla	ement as in Figure	s e 4.10

 Junction:
 J6 - Wang Chiu Road / Lam Hing Street
 J7363

 Scenario:
 with KITEC
 R1 / P.6-5

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design Year: 2032	Design	ги Бу.				-	Спеске	ы Бу.				-	Date:		anuary .	2025
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
						Gradient		(pcu/hr)	(pcu/hr)		,		(pcu/hr)	(pcu/hr)		
Vang Chiu Road SB	LT	A1	1	3.50	15.0		100	1786	438	0.245		100	1786	336	0.188	
	SA	A2	1	3.50				2105	705	0.335	0.335		2105	545	0.259	0.2
	SA	A3	1	3.50				2105	704	0.334			2105	544	0.258	
Vang Chiu Road NB	LT+SA	B1	1	3.50	15.0		37	1895	264	0.139		27	1913	297	0.155	
	SA	B2	1	3.50				2105	293	0.139			2105	326	0.155	
am Hing Street EB	LT+SA	C1	2	4.00	15.0		100	1832	390	0.213	0.213	100	1832	399	0.218	0.21
	SA	C2	2	4.00				2155	196	0.091			2155	82	0.038	
_am Hing Street WB	LT+SA	D1	2	5.00	15.0		42	2030	209	0.103		44	2026	378	0.187	
pedestrian phase		3(p)	3		min c	rossing	time =	10	sec	GM +	8	sec F	GM =	18	sec	
		4(p)	3		min c	rossing	time =	9	sec	GM +	8	sec F	GM =	17	sec	
		5(p)	3		min c	rossing	time =	12	sec	GM +	11	sec F	GM =	23	sec	
M Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr)				N	S=1940+	100(W-3			(00-3.23)			
	438	\uparrow				•	336	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	(S-230)÷	(1+1.5f/r)	with pla	anned ju ement a:	nctior s
390	1409			399 1	00	1089		ı		AM	Check Pedestrian	PM	Check Pedestrian	shown	in Figure	e 4.10
→ 196				—	82					Peak	Phase	Peak	Phase			
									Sum y	0.548		0.477				
450	122				5.40	211			L (s)	39		39				
459	87			00	543 †		1 6 7		C (s)	140		140				
98 🕌				80	\vdash				practical y	0.649 19%		0.649 36%				
	Ta .				la la				R.C. (%)	1370		3070	E	l		
A3 A2 A1	<u></u>	C1 C2	D1	•	3(p)	† : : : : *	(p)	3(p)								
AM G = I/G =	6 G=		I/G =	10	G =	23	I/G =	2	G =		I/G =		G =		I/G =	
G = 1/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	6 G=		I/G =		G =	23	I/G =	2	G =		I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J6 - Wang Chiu Road / Lam Hing Street
 Job Number:
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.6-6

Design Year: 2032 Designed By: Checked By: Date: 08 January 2025

Design Year:	2032	Designe	ed By:				-	Checke	d By:				-	Date:	08 .	January :	2025
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Nang Chiu Roa	ad SB	LT	A1	1	3.50	15.0		100	1786	438	0.245		100	1786	336	0.188	
		SA	A2	1	3.50				2105	705	0.335	0.335		2105	545	0.259	0.25
		SA	A3	1	3.50				2105	704	0.334			2105	544	0.258	
			7.0	·	0.00				2.00		0.001			2.00		0.200	
Wang Chiu Roa	ad NID	LT+SA	B1	1	3.50	15.0		37	1895	264	0.139		27	1913	297	0.155	
Wang Chiu No	au ND					13.0		31					21				
		SA	B2	1	3.50				2105	293	0.139			2105	326	0.155	
				_													
_am Hing Stree	et EB	LT+SA	C1	2	4.00	15.0		100	1832	390		0.213	100	1832	399	0.218	0.21
		SA	C2	2	4.00				2155	196	0.091			2155	82	0.038	
_am Hing Stree	et WB	LT+SA	D1	2	5.00	15.0		42	2030	209	0.103		44	2026	378	0.187	
edestrian phas	se		3(p)	3		min c	rossing	time =	10	sec	GM +	8	sec F	GM =	18	sec	
			4(p)	3		min c	rossing	time =	9	sec	GM +	8	sec F	GM =	17	sec	
			5(p)	3		min c	rossing	time =	12	sec	GM +	11	sec F	GM =	23	sec	
M Traffic Flow (pcu/hr)			•	PM Traffic	Flow (pcu/hr)									Note:		•
u . ,		120	N		4			220	N		+100(W-3						4:
000		438	\uparrow		000		*	336	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	(S–230)÷	(1+1.5f/r)	improv	anned ju ement a	nction s
390 †		1409			399 †		1089					Check		Check		in Figure	
<u></u>	196				—	82					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
										Sum y	0.548		0.477				
		122 🕶					211	•		L (s)	39		39				
	459	87				543	•	↓ 167		C (s)	140		140				
98	A	O,			80	A				practical y	0.649		0.649				
90	\neg				00					R.C. (%)	1		36%				
										R.C. (%)	1970		30 /0				
		2				3				4				5			
	$\downarrow \downarrow \hookrightarrow$						5	(p)									
	A3 A2 A1		C1 C2				*										
B1 B2			02	D1	←	3(p)	-	:	3(p)								
1					•		· •	·-·•									
7							4	(p)									
					40	<u> </u>								<u> </u>			
AM G =	I/G =	6 G=		I/G =		G =	23	I/G =	2	G =		I/G =		G =		I/G =	
G =	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G =	I/G =	6 G=		I/G =	10	G =	23	I/G =	2	G =		I/G =		G =		I/G =	
G =	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J6 - Wang Chiu Road / Lam Hing Street
 Job Number:
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.6-7

Design Year: 2032 Designed By: Checked By: Date: 08 January 2025

Design Year:	2032	Designe	ed By:				-	Checke	d By:				-	Date:	08 J	January :	2025
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Nang Chiu Ro	ad SB	LT	A1	1	3.50	15.0		100	1786	438	0.245		100	1786	336	0.188	
rvarig Office (10	aa ob	SA	A2	1	3.50	10.0		100	2105	705	0.335	0.335	100	2105	545	0.259	0.25
												0.555					0.20
		SA	A3	1	3.50				2105	704	0.334			2105	544	0.258	
Wang Chiu Ro	ad NB	LT+SA	B1	1	3.50	15.0		37	1895	264	0.139		27	1913	297	0.155	
		SA	B2	1	3.50				2105	293	0.139			2105	326	0.155	
₋am Hing Stree	et EB	LT+SA	C1	2	4.00	15.0		100	1832	390	0.213	0.213	100	1832	399	0.218	0.21
		SA	C2	2	4.00				2155	196	0.091			2155	82	0.038	
Lam Hing Stree	et WR	LT+SA	D1	2	5.00	15.0		42	2030	209	0.103		44	2026	378	0.187	
Lam Filling Otte	et WD	LITOA	Di		3.00	10.0		72	2000	203	0.100			2020	370	0.107	
					<u> </u>					<u> </u>					<u> </u>		
oedestrian pha	ise		3(p)	3		min c	rossing	time =	10	sec	GM +	8	sec F	GM =	18	sec	
			4(p)	3		min c	rossing	time =	9	sec	GM +	8	sec F	GM =	17	sec	
			5(p)	3		min c	rossing	time =	12	sec	GM +	11	sec F	GM =	23	sec	
M Traffic Flow (pcu/hr	-)		N	PM Traffic	Flow (pcu/hr))			N	S=1940+	+100(W-3	.25) S=2	2080+100	(W-3.25)	Note:		
		→ 438	<u>^</u>				\vdash	336		S _M =S÷(1	+1.5f/r)	S _M =	(S-230)÷	-(1+1.5f/r)	with pla	anned ju	nction
390		1409			399		1089			,			, ,		improve	ement a	S
Ť	196				†	82			'		AM	Check Pedestrian	PM	Pedestrian	snown	in Figure	9 4.10
	190					02					Peak	Phase	Peak	Phase			
										Sum y	0.548		0.477		i		
		122 🕶					211	←		L (s)	39		39		1		
	459	8 7				543		167		C (s)	140		140		1		
98	· 🚅				80	→				practical y	0.649		0.649		i		
										R.C. (%)	19%		36%		İ		
		12		•		13				14	•	•		15			
						3				7				3			
	$\downarrow \downarrow \downarrow \hookrightarrow$	•					5	(p)									
	A3 A2 A1		C1 C2				*	+									
B1 B2				D1	←	3(p)	į		3(p)								
1					•		↓ 	<u>.</u>									
7							4	(p)									
						l								l			
AM G =	I/G =	6 G =		I/G =	10	G =	23	I/G =	2	G =		I/G =		G =		I/G =	
G =	I/G =	G =		I/G =	:	G =		I/G =		G =		I/G =		G =		I/G =	
PM G=	I/G =	6 G=		I/G =	10	G =	23	I/G =	2	G =		I/G =		G =		I/G =	
G =	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
		U -				0 -		., 0 -		<u> </u>		., 0 -		0 -		., 0 =	

 Junction:
 J7 - Wang Chiu Road / Sheung Yuet Road
 J7363

 Scenario:
 existing condition
 R1 / P.7-1

 Design Year:
 2024
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design Year: 2024	Design	еи Бу.				_	Checke								anuary .	
							ı —		AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Wang Chiu Road NB	LT+SA	A1	1	3.50	15.0	Cradicit	74	1829	175	0.096	0.096	52	1868	158	0.085	
rvang Onia rtoda 115	SA	A2	1	3.50	10.0		7-7	2105	201	0.095	0.000	- OZ	2105	179	0.085	0.08
	- SA	AZ	<u>'</u>	3.50				2103	201	0.095			2105	179	0.065	0.00
	1.7.04		_	0.50	45.0		44	4000	540	0.000			4000	440	0.000	
Wang Chiu Road SB	LT+SA	B1	2	3.50	15.0		14	1939	516	0.266		19	1928	442	0.229	
	SA+RT	B2	2	3.50	20.0		81	1985	529	0.267	0.267	85	1979	454	0.229	0.22
Sheung Yuet Road EB	LT+SA	C1	3	4.00	15.0		100	1832	188	0.103	0.103	100	1832	178	0.097	0.09
	SA	C2	3	4.00				2155	133	0.062			2155	106	0.049	
Sheung Yuet Road WB	LT+SA	D1	3	3.50	15.0		113	1766	116	0.066		105	1778	140	0.079	
	SA	D2	3	3.50				2105	138	0.066			2105	166	0.079	
1																
							1									
pedestrian phase		5(p)	4		min c	rossing	time =	9	sec	GM +	9	sec F	GM =	18	sec	
<u> </u>																
AM Traffic Flow (pcu/hr)			DM Troffic	Class (nov/hr)				l				l		Notes	I.	l
		Ν	Рм тгапіст	Flow (pcu/hr)				Ν		-100(W–3			(VV-3.23)	Note:		
	70	1			387	•	84	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	(S-230)÷	(1+1.5f/r)			
188 ∳	548			178 †		425					Check		Check			
133				—	106					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
									Sum y	0.465		0.412				
	123 ←					159	←		L (s)	39		39				
246	131				255		↓ 147			140		140				
A	131			00	255		17/		C (s)							
				82	\blacksquare				practical y	0.649 40%		0.649 58%				
130 ←									R.C. (%)	40%		30%				
130 ←			1										E			
130 ←	2				3				4				5			
130 ←	2		-		3				4	5	(a)		5			
130 ←	2		→ B2 B1		3	C1 C2			4	5ı ← ·-	(p) · - · ▶		5			
1	2		B2 B1		3 	C1 C2	D2		4 - - - 5(p)	+ · -	·-· >	5(p)	5			
130 ←	2		B2 B1		3 	C1 C2	D2 D1		5(p)	+ · -	·-· >	5(p)	5			
1	2		B2 B1		3 	C1 C2			5(p)	† † *	·-· >	5(p)	5			
A1 A2	2				→	C1 C2	D1	+		* · · - 5	(p)		5			
A1 A2 AM G = UG =	6 G=		B2 B1	7	3	C1 C2		+	4 5(p)	† † *	†		G =		I/G =	
A1 A2	G =				→	C1 C2	D1	8		18	(p)	3	G =		I/G =	
A1 A2 AM G = //G =			I/G =		G =	C1 C2	D1	8	G =	* · · - 5	(p)	3				

 Junction:
 J7 - Wang Chiu Road / Sheung Yuet Road
 J7363

 Scenario:
 with KITEC
 R1 / P.7-2

Design Year: 2029 Designed By: Checked By: Date: 08 January 2025

Design Year: 2029	Design	ed By:				-	Checke	d By:				-	Date:	08 .	January :	2025
		1	1	1			ı		AM Peak			<u> </u>		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Chiu Road NB	LT+SA	A1	1	3.30	15.0		61	2014	233	0.116		43	2045	255	0.125	0.125
	SA	A2	1	3.20				2075	240		0.116		2075	258	0.124	
Wang Chiu Road SB	LT+SA	B1	2	3.50	15.0		38	1893	489	0.258		40	1890	393	0.208	0.208
	SA	B2	2	3.50				2105	543		0.258		2105	437	0.208	
	RT	В3	2	3.50	20.0		100	1958	441	0.225		100	1958	408	0.208	
Sheung Yuet Road EB	LT+SA	C1	3	3.50	15.0		100	1786	216	0.121	0.121	100	1786	209	0.117	
	SA	C2	3	3.50				2105	253	0.120			2105	172	0.082	
Sheung Yuet Road WB	LT+SA	D1	3	3.50	15.0		87	1808	198	0.110		100	1786	253	0.142	0.142
	SA	D2	3	3.50				2105	230	0.109			2105	299	0.142	
		-()					<u>. </u>									
pedestrian phase		5(p)	4		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr))			N	S=1940+	-100(W–3	.25) S=:	2080+100	(W-3.25)	Note:		
441	185	1			408	\leftarrow	157		S _M =S÷(1				-(1+1.5f/r)	with pla	anned ju	nction
216	▼ 847			209		▼ 673					Check			improv	ement a	3
253				Ť	172					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase	SHOWH	III FIGUR	74.11
											Phase		Phase			
	256 ←					299			Sum y	0.495		0.474				
000	1				404	200	1		L (s)	42		42				
332	172			400	404 ↑		253		C (s)	140		140				
141 ←				109	←				practical y	0.630		0.630				
									R.C. (%)	27%		33%				
1	2				3				4				5			
			- -' ↓ ţ	•						5	(p)					
			B3 B2 B	1	\Rightarrow	C1 C2				*	+					
A1 A2							D2 D1	=	5(p)	-		5(p)				
I ♣ 1 1 1							DI	*		¹ ←·-	·-·•					
										5	(p)					
AM G = I/G =	6 G=		1/0	. 7			1/0	8		21	1/0	3			110	
			I/G =		G =		I/G =	0	G =	۷1	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =	04	I/G =	2	G =		I/G =	
PM G = I/G =	6 G=		I/G =		G =		I/G =	8	G =	21	I/G =		G =		I/G =	
G = I/G =	G =		I/G =	·	G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J7 - Wang Chiu Road / Sheung Yuet Road
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.7-3

Design Year: 2029 Designed By: Checked By: Date: 08 January 2025

Design Year: 2029	Design	ed By:					Checke	d By:				-	Date:	08 J	January :	2025
		I	I			I			AM Peak			I		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Chiu Road NB	LT+SA	A1	1	3.30	15.0		61	2014	233	0.116		43	2045	255	0.125	0.125
	SA	A2	1	3.20				2075	240		0.116		2075	258	0.124	
Wang Chiu Road SB	LT+SA	B1	2	3.50	15.0		38	1893	489	0.258		40	1890	393	0.208	0.208
3 -	SA	B2	2	3.50				2105	543		0.258		2105	437	0.208	
	RT	В3	2	3.50	20.0		100	1958	441	0.225		100	1958	408	0.208	
Sheung Yuet Road EB	LT+SA	C1	3	3.50	15.0		100	1786	216	0 121	0.121	100	1786	209	0.117	
	SA	C2	3	3.50				2105	253	0.120			2105	172	0.082	
	0/1	OZ.	U	0.00				2100	200	0.120			2100	172	0.002	
Sheung Yuet Road WB	LT+SA	D1	3	3.50	15.0		92	1799	187	0.104		100	1786	253	0.142	0.142
Choung Fuor House VVE	SA	D2	3	3.50	10.0		- 02	2105	219	0.104		100	2105	260	0.124	0.112
	<u> </u>	DZ		3.50				2100	213	0.104			2100	200	0.124	
				 						 			 	\vdash		
													-	\vdash		
				-						-			-	\vdash		
														<u> </u>		
pedestrian phase		5(p)	4		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
AM Traffic Flow (pcu/hr)		Ν	PM Traffic	Flow (pcu/hr				Ν)(W-3.25)			
	185	1			408	→	157	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	+(1+1.5f/r)	with pla	anned ju ement a	nction
216 †	847			209		673					Check		Check	shown	in Figure	e 4.11
253				—	172					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase		-	
									Sum y	0.495		0.474				
	234 🕶					260	•		L (s)	42		42				
332	↓ 172				404		253			140		140		1		
141	112			109			200		C (s)	0.630		0.630		1		
141				109						27%						
									R.C. (%)	2170		33%		<u> </u>		
1	2				3				4				5			
			- ' ↓ ├	•						5	(p)					
			B3 B2 B	1	\vDash	C1 C2				* *	·-·*					
A1 A2							D2 D1		5(p)	į		5(p)				
1							51	*		↓	▶ ↓					
`										5	(p)					
AM G-	6 -			7				0	<u>I -</u>	24		2	<u>-</u>			
AM G = I/G =			I/G =		G =		I/G =	8	G =	21	I/G =		G =		I/G =	
G = I/G =			I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	6 G=		I/G =	7	G =		I/G =	8	G =	21	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =	·	G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J7 - Wang Chiu Road / Sheung Yuet Road
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.7-4

Design Year: 2029 Designed By: Checked By: Date: 08 January 2025

Design Year: 2029	Design	ed By:					Checke	d By:				-	Date:	08 .	January 2	2025
		1					I		AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Chiu Road NB	LT+SA	A1	1	3.30	15.0		61	2014	233	0.116		43	2045	255	0.125	0.125
J	SA	A2	1	3.20				2075	240	0.116	0.116		2075	258	0.124	
Wang Chiu Road SB	LT+SA	B1	2	3.50	15.0		38	1893	489	0.258		40	1890	393	0.208	0.208
rrang oma rroad ob	SA	B2	2	3.50			- 55	2105	543		0.258		2105	437	0.208	0.200
	RT	B3	2	3.50	20.0		100	1958	441	0.225	0.200	100	1958	408	0.208	
	1(1			0.00	20.0		100	1000	771	0.220		100	1000	400	0.200	
Sheung Yuet Road EB	LT+SA	C1	3	3.50	15.0		100	1786	216	0 121	0.121	100	1786	209	0.117	
Choung Tuot House EB	SA	C2	3	3.50	10.0		100	2105	253	0.120	0.121	100	2105	172	0.082	
	- OA	02		3.30				2100	200	0.120			2100	172	0.002	
Sheung Yuet Road WB	LT+SA	D1	3	3.50	15.0		90	1803	191	0.106		100	1786	253	0.142	0.142
Cheding Tuet Noad WD	SA	D2	3	3.50	10.0		30	2105	222	0.105		100	2105	280	0.133	0.142
	SA.	D2	3	3.50				2105	222	0.105			2105	200	0.133	
			1													
							<u> </u>									
pedestrian phase		5(p)	4		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr)				N	S=1940+	+100(W-3	.25) S=:	2080+100	(W-3.25)	Note:		
441 <	185	\uparrow			408	\leftarrow	157		S _M =S÷(1		S _M =	=(S-230)÷	(1+1.5f/r)	with pla	anned ju	nction
216	847			209		673					Check			improv	ement as in Figure	S
₂₅₃				<u></u>	172					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase	SHOWIT	iii i igaic	7.11
										0.495	THESC	0.474	THESC			
	241					280			Sum y							
202	1				40.4	200	1		L (s)	42		42				
332 ↑	172				404 ↑		253		C (s)	140		140				
141 ←				109	\leftarrow				practical y	0.630		0.630				
									R.C. (%)	27%		33%				
1	2				3				4				5			
			┵┤┞	•						_	(n)					
			B3 B2 B	1	ightharpoonup	C1 C2				, 4	(p)					
44.40						62	D2	—	5(p)	. [-	5(p)				
A1 A2							D1	+	- (12)	į	į	/				
										◆ ·-	· - · > (p)					
					<u> </u>				l				<u> </u>			
AM G = I/G =	6 G=		I/G =	. 7	G =		I/G =	8	G =	21	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	6 G=		I/G =	7	G =		I/G =	8	G =	21	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J7 - Wang Chiu Road / Sheung Yuet Road
 J7363

 Scenario:
 with KITEC
 R2 / P.7-5

Design Year: 2032 Designed By: Checked By: Date: 08 January 2025

Design Year: 2032	Design	ed By:				-	Checke	d By:				-	Date:	08 J	lanuary 2	2025
									AM Peak			ı —		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Wang Chiu Road NB	LT+SA	A1	1	3.30	15.0		61	2014	236	0.117		43	2045	259	0.127	0.127
J -	SA	A2	1	3.20				2075	244		0.118		2075	262	0.126	
Wang Chiu Road SB	LT+SA	B1	2	3.50	15.0		38	1893	496	0.262		40	1890	398	0.211	0.21
J -	SA	B2	2	3.50				2105	552		0.262		2105	444	0.211	
	RT	В3	2	3.50	20.0		100	1958	448	0.229		100	1958	414	0.211	
				0.00	20.0					0.220			.000		0.2	
Sheung Yuet Road EB	LT+SA	C1	3	3.50	15.0		100	1786	219	0.123	0.123	100	1786	212	0.119	
oneang ractiteda 22	SA	C2	3	3.50	10.0			2105	257	0.122	01120		2105	175	0.083	
	<u> </u>	- OL		0.00				2100	201	0.122			2100	110	0.000	
Sheung Yuet Road WB	LT+SA	D1	3	3.50	15.0		87	1808	201	0.111		100	1786	257	0.144	0.144
onoung ruot rioud VVD	SA	D2	3	3.50	10.0		- 01	2105	233	0.111		100	2105	302	0.143	0.11
	O/ C	DZ		0.00				2100	200	0.111			2100	002	0.140	
pedestrian phase		5(p)	4		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
AM Traffic Flow (pcu/hr)		NI.	PM Traffic	Flow (pcu/hr)			NI	S=1940+	-100(W–3	.25) S=:	2080+100	(W-3.25)	Note:		
448 ←	188	N ↑			414	\leftarrow	159	N ↑	S _M =S÷(1					with pla	anned ju	nction
219	♦ 860			212		♦ 683			-W - (,		(= ===,		improve	ement as	S
<u></u>		•		Ť	175			'		AM	Check Pedestrian	PM	Pedestrian	shown	in Figure	4.11
- 201					175					Peak	Phase	Peak	Phase			
	259 🛶					302			Sum y	0.502		0.481				
	Ţ	-				302	1		L (s)	42		42				
337 ↑	175				410 ↑		257		C (s)	140		140				
143 ←				111	-				practical y	0.630		0.630				
									R.C. (%)	25%		31%				
1	2				3				4				5			
			┵┤┞	•						-	(n)					
			B3 B2 B	1	ightharpoonup	C1 C2				· +·-	(p)					
A4 A0						02	D2		5(p)	Ţ	Ť	5(p)				
A1 A2							D1	, †	- (F)	į						
7										5	(p)					
				7						04						
AM G = I/G =	6 G=		I/G =		G =		I/G =	8	G =	21	I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	6 G=		I/G =		G =		I/G =	8	G =	21	I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J7 - Wang Chiu Road / Sheung Yuet Road
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.7-6

Design Year: 2032 Designed By: Checked By: Date: 08 January 2025

Design Year: 2032	_ Design	ed By:				-	Checke	d By:					Date:	08 .	January 2	2025
				1			ı		AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Chiu Road NB	LT+SA	A1	1	3.30	15.0		61	2014	236	0.117		43	2045	259	0.127	0.127
	SA		1	3.20				2075	244		0.118		2075	262	0.126	
Wang Chiu Road SB	LT+SA	B1	2	3.50	15.0		38	1893	496	0.262		40	1890	398	0.211	0.211
	SA		2	3.50				2105	552		0.262		2105	444	0.211	
	RT		2	3.50	20.0		100	1958	448	0.229		100	1958	414	0.211	
															V	
Sheung Yuet Road EB	LT+SA	C1	3	3.50	15.0		100	1786	219	0.123	0.123	100	1786	212	0.119	
g	SA		3	3.50				2105	257	0.122			2105	175	0.083	
	- O/ (OZ.	0	0.00				2100	201	0.122			2100	170	0.000	
Sheung Yuet Road Wi	B LT+SA	D1	3	3.50	15.0		92	1799	190	0.106		100	1786	257	0.144	0.144
oneang ruet read tri	SA		3	3.50	10.0		- 02	2105	222	0.105			2105	263	0.125	0
	- OA	DZ		3.30				2100	222	0.100			2100	200	0.120	
		 														
		<u> </u>														
pedestrian phase		5(p)	4		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr))			N	S=1940+	+100(W-3	25) S=	2080+100	(W-3.25)	Note:		
448	188	\uparrow			414	\leftrightarrow	159	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	(S-230)÷	(1+1.5f/r)	with pla	anned ju	nction
219	860			212		683					Check		Check	improve shown	ement as in Figure	s e 4 11
257				<u></u>	175					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase	CHOWN	iii i igai	
									C	0.502		0.481				
	237 🕶	_				263			Sum y							
007	1				440	_00	1		L (s)	42		42				
337	175				410 †		257		C (s)	140		140				
143 ←				111	←				practical y			0.630				
									R.C. (%)	25%		31%				
1	2				3				4				5			
			┵┤┞	•						5	(p)					
			B3 B2 B	1	₩	C1 C2				*						
A1 A2						J.	D2 D1	=	5(p)		Ţ	5(p)				
1							וט	*		į •	.					
7										5	(p)					
<u> </u>	6			7	l				1	04			1			
AM G = I/G =			I/G =		G =		I/G =	8	G =	21	I/G =	3	G =		I/G =	
G = I/G =			I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	= 6 G=		I/G =	7	G =		I/G =	8	G =	21	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =	:	G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J7 - Wang Chiu Road / Sheung Yuet Road
 Job Number:
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.7-7

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design Year: 2032	Design	ed By:				-	Checke	d By:				-	Date:	08 、	January :	2025
		I					ı		AM Peak			I		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Chiu Road NB	LT+SA	A1	1	3.30	15.0		61	2014	236	0.117		43	2045	259	0.127	0.127
	SA	A2	1	3.20				2075	244		0.118		2075	262	0.126	
Wang Chiu Road SB	LT+SA	B1	2	3.50	15.0		38	1893	496	0.262		40	1890	398	0.211	
	SA	B2	2	3.50				2105	552		0.262		2105	444	0.211	0.211
	RT	В3	2	3.50	20.0		100	1958	448	0.229		100	1958	414	0.211	
Sheung Yuet Road EB	LT+SA	C1	3	3.50	15.0		100	1786	219	0 123	0.123	100	1786	212	0.119	
	SA	C2	3	3.50				2105	257	0.122			2105	175	0.083	
	<u> </u>	OZ.	0	0.00				2100	201	0.122			2100	170	0.000	
Sheung Yuet Road WB	LT+SA	D1	3	3.50	15.0		91	1802	193	0.107		100	1786	257	0.144	0.144
Choung Fuot Hour WE	SA	D2	3	3.50	10.0		- 01	2105	226	0.107		100	2105	283	0.134	0.111
	- OA	DZ		3.50				2100	220	0.107			2100	200	0.104	
													-	 		
				 						 		 	 	\vdash		
pedestrian phase		5(p)	4		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
														<u> </u>		
AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr))			N	S=1940+	-100(W–3	.25) S=:	2080+100	(W-3.25)	Note:		
448	188	\uparrow			414	\leftrightarrow	159	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	+(1+1.5f/r)	with pla	anned ju	nction
219	860			212		683					Check		Check	improvi shown	ement as	s • 4 11
257				<u></u>	175					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase	Onown	iii i igaix	
									C	0.502		0.481				
	244 🕶					283	← .		Sum y			42		1		
207	Į.				440		257		L (s)	42				1		
337	175				410 †		25/		C (s)	140		140		1		
143 ←				111	←				practical y			0.630		1		
									R.C. (%)	25%		31%		<u> </u>		
1	2				3				4				5			
			┵┤┞	•						5	(p)					
			B3 B2 B	1	₩	C1 C2				*	·-· >					
A1 A2						J.	D2 D1	=	5(p)	-	Ţ	5(p)				
1 1 1 1							וט	*		į 	.					
1										5	(p)					
				7	<u> </u>				<u> </u>	04			<u> </u>			
AM G = I/G =	6 G=		I/G =		G =		I/G =	8	G =	21	I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	6 G=		I/G =	7	G =		I/G =	8	G =	21	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =	·	G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J8 - Wang Chiu Road / Lam Fung Street
 J7363

 Scenario:
 existing condition
 R1 / P.8-1

 Design Year:
 2024
 Designed By:
 Checked By:
 Date:
 08 January 2025

1								AM Peak					PM Peak		
Approach	Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critica
Vang Chiu Road NB LT	A1	1	3.50	20.0		100	1828	240	0.131		100	1828	276	0.151	
LT+SA	A2	1	3.50	25.0		37	2059	271	0.132		65	2026	306	0.151	
SA+RT	A3	1	3.50	20.0		25	2067	272		0.132	25	2066	311	0.151	0.1
5.7.7.1.			-												
Wang Chiu Road SB LT+SA	B1	2	3.50	15.0		51	1870	320	0 171	0.171	41	1888	271	0.144	0.14
SA	B2	2	3.50			0.	2105	360	0.171	01111		2105	302	0.143	0
SA.	DZ		0.00				2100	300	0.171			2100	302	0.143	
pedestrian phase	3(p)	3		min c	rossing	time =	11	200	GM +	10	sec F	GM =	21	sec	
pedestriari priase	4(p)	3			rossing		10		GM +	9		GM =	19		
														sec	
	5(p)	2, 3			rossing t		5		GM +	14		GM =	19	sec	
	6(p)	3		min c	rossing	time =	5	sec	GM +	11	sec F	GM =	16	sec	
AM Traffic Flow (pcu/hr)	N	PM Traffic F	low (pcu/hr)	1			N	S=1940+	-100(W–3	.25) S=:	2080+100	(W-3.25)	Note:		
<u></u> 162	<u>^</u>				\vdash	110		S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	(1+1.5f/r)			
518					463					Check		Check			
									AM	Pedestrian	PM	Pedestrian			
									Peak	Phase	Peak	Phase			
								Sum y	0.303		0.294				
									1 27	l	37				
								L (s)	37						
375 ↑				338				L (s)	140		140				
375 341 ↑ ↑ ↑ 67			476	338	79				140 0.662		0.662				
375 341			476	338	79			C (s)	140						
375 341 6 7			476	338	79			C (s)	140 0.662		0.662	5			
375 341 ← 67			476	338				C (s)	140 0.662		0.662	5			
375 341		B2 B1	476	338		(p)		C (s)	140 0.662		0.662	5			
341	†	B2 B1	476	3		·-·•	6(p)	C (s)	140 0.662		0.662	5			
375 341	†	B2 B1	476	338 3		·-·•	6(p)	C (s)	140 0.662		0.662	5			
341	† : : : : ! ¥	B2 B1	476	3	4(+ + + + + + + + + + + + + + + + + + +	6(p)	C (s)	140 0.662		0.662	5			
341	†	B2 B1		3	4(·-·•		C (s)	140 0.662		0.662	5			
341	† : : : : · · · · · · · · · · · · · · ·	B2 B1		3	4(+ + + + + + + + + + + + + + + + + + +	6(p)	C (s)	140 0.662 119%	1/G =	0.662	5 G =		VG =	
341	† :			3 5(p)	4((p)		C (s) practical y R.C. (%)	140 0.662 119%	1/G =	0.662 125%	G = G =		VG =	
341	†	I/G =		5(p)	4((p)		C (s) practical y R.C. (%) 4	140 0.662 119%		0.662				

 Junction:
 J8 - Wang Chiu Road / Lam Fung Street
 J7363

 Scenario:
 with KITEC
 R1 / P.8-2

Design Year: 2029 Designed By: _____ Checked By: _____ Date: ____ 08 January 2025

Design Year: 2029	Designe	ғи Бу.				-	Спеске	и Бу.				-	Date:	00 0	anuary 2	2023
							T : 0/	0 . 5	AM Peak			T : 0'	L 0 + E	PM Peak		0.111
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critica
Vang Chiu Road NB	LT	A1	1	3.50	20.0		100	1828	319	0.175	0.175	100	1828	380	0.208	
	LT+SA	A2	1	3.50	25.0		42	2053	358	0.174		55	2037	423	0.208	
	SA+RT	A3	1	3.50	20.0		26	2065	360	0.174		24	2067	429	0.208	0.20
Vang Chiu Road SB	LT+SA	B1	2	3.50	15.0		37	2024	499	0.247		30	2037	455	0.223	
	SA	B2	2	3.50				2105	520	0.247	0.247		2105	471	0.224	0.22
									-							
										-						
										-						
pedestrian phase		3(p)	3			rossing		11		GM +	10		GM =	21	sec	
		4(p)	3			rossing		10		GM +	9		GM =	19	sec	
		5(p)	2, 3			rossing		5		GM +	14		GM =	19	sec	
		6(p)	3		min c	rossing	time =	5	sec	GM +	11	sec F	GM =	16	sec	
M Traffic Flow (pcu/hr)		N	PM Traffic I	Flow (pcu/hr	1			N	S=1940+	-100(W–3				Note:		
ļ	→ 184	\uparrow				•	135	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	(S-230)÷	(1+1.5f/r)	with pla	anned jui ement as	nction
83	5					791		ı			Check		Check	shown	in Figure	4.12
										AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
									Sum y	0.422		0.431				
									L (s)	37		37				
474					513				C (s)	140		140				
470 - 93				614	$\stackrel{\uparrow}{\longleftrightarrow}$	105			practical y	0.662		0.662				
									R.C. (%)	57%		54%				
	2		П		3				4				5			
			_ ∐→	•		4	· \									
			B2 B1			← · −	(p) ·-·►									
44 40 40	5(p)	Ť			5(p)	Ť	†	6(p)								
A1 A2 A3	- (-7)	i ▼			- (12)	i •	,	/								
						3	(p)									
1 11	<u> </u>			0	<u> </u>	04		2	<u> </u>				<u> </u>			
MM G = 1/G = 7			I/G =		G =	21	I/G =	3	G =		I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =	04	I/G =	2	G =		I/G =		G =		I/G =	
PM G = 1/G = 7			I/G =		G =	21	I/G =		G =		I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J8 - Wang Chiu Road / Lam Fung Street
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.8-3

Design Year: 2029 Designed By: _____ Checked By: _____ Date: ____ 08 January 2025

Design Year: 2029	Designe	ъч Бу.				-	Cnecke	u Бу.				-	Date:	00 0	anuary 2	2020
						l			AM Peak		1		1	PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critica
Vang Chiu Road NB	LT	A1	1	3.50	20.0		100	1828	312	0.171		100	1828	371	0.203	
	LT+SA	A2	1	3.50	25.0		39	2057	351	0.171		52	2041	415	0.203	
	SA+RT	А3	1	3.50	20.0		26	2064	352	0.171	0.171	25	2066	420	0.203	0.20
Wang Chiu Road SB	LT+SA	В1	2	3.50	15.0		37	2024	499	0.247		30	2037	455	0.223	
	SA	B2	2	3.50				2105	520	0.247	0.247		2105	471	0.224	0.22
pedestrian phase		3(p)	3		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
•		4(p)	3			rossing		10		GM +	9		GM =	19	sec	
		5(p)	2, 3			rossing		5		GM +	14		GM =	19	sec	
		6(p)	3			rossing		5		GM +	11		GM =	16	sec	
		- (1-)				· · · · · · ·										
M Traffic Flow (pcu/hr)			PM Traffic I	low (pcu/hr										Note:		
	→ 184	N					135	N		-100(W–3					nnad li ii	a ati a m
↓ 83		1				↓ ´ 791	133	\uparrow	S _M =S÷(1	+1.5t/r)	S _M =	=(S–230)÷ I	(1+1.5f/r)	improve	ement as	3
03	10	ı				791		ı		AM	Check Pedestrian	PM	Check Pedestrian	shown	in Figure	4.12
										Peak	Phase	Peak	Phase			
									Sum y	0.418		0.427				
									L (s)	37		37				
474 ▲					513 •				C (s)	140		140				
448 🕕 93				588	$\qquad \qquad $	105			practical y	0.662		0.662				
									R.C. (%)	59%		55%				
	2				3				4				5			
			→			4	(m)									
		•	B2 B1			4 ·-	(p) ►									
A1 A2 A2	5(p)	Ī			5(p)	Ī	Ť	6(p)								
A1 A2 A3		Ī			",	į 	<u>.</u>	•								
						3	(p)									
1 11	,			0	<u> </u>	24		2	1				l			
M G = 1/G = 7			I/G =		G =	21	I/G =	3	G =		I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =	0.4	I/G =		G =		I/G =		G =		I/G =	
PM G = 1/G = 7			I/G =		G =	21	I/G =		G =		I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J8 - Wang Chiu Road / Lam Fung Street
 Job Number:
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.8-4

Design Year: 2029 Designed By: Checked By: Date: 08 January 2025

Design Year:	2029	Design	ed By:				·	Checke	d By:					Date:	08 .	January 2	2025	
			l							AM Peak					PM Peak			
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical	
Wang Chiu Ro	oad NB	LT	A1	1	3.50	20.0		100	1828	314	0.172		100	1828	376	0.206		
		LT+SA	A2	1	3.50	25.0		40	2056	353	0.172		54	2039	419	0.205		
		SA+RT	А3	1	3.50	20.0		26	2064	355		0.172	25	2067	425	0.206	0.20	
Wang Chiu Ro	oad SB	LT+SA	B1	2	3.50	15.0		37	2024	499	0.247		30	2037	455	0.223		
<u> </u>		SA	B2	2	3.50				2105	520	0.247	0.247		2105	471	0.224	0.22	
pedestrian pha	ase		3(p)	3		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec		
			4(p)	3			rossing		10		GM +	9		GM =	19	sec		
			5(p)	2, 3			rossing		5		GM +	14		GM =	19	sec		
			6(p)	3			rossing		5		GM +	11		GM =	16	sec		
			- (1-7				<u>_</u>											
M Traffic Flow (pcu/h	nr)			PM Traffic I	Flow (pcu/hr)					0 4040	100011 0	05) 0	=2080+100(W-3.25) Note:					
		→ 184	N					135	N	S=1940+100(W-3.25) S _M =S÷(1+1.5f/r)					with planned junctio improvement as			
	8:	¥ 101 35	\uparrow				↓ 791	100	\uparrow	3 _M -3+(1								
			ı						'		AM	Check Pedestrian	PM	Pedestrian	shown	in Figure	4.12	
											Peak	Phase	Peak	Phase				
										Sum y	0.419		0.429					
						_				L (s)	37		37					
474					_	513 ↑				C (s)	140		140					
	455 4593				602	\leftarrow	105			practical y	0.662		0.662					
455																		
455										R.C. (%)	58%		54%					
455		2				3				R.C. (%)	58%		54%	5				
458		2				3	4	(p)		R.C. (%)	58%		54%	5				
458		2	<u> </u>	B2 B1		3	4. ← ·-	(p) ••••••		R.C. (%)	58%		54%	5				
455	93	2 5(p)	†	B2 B1		3 5(p)	+	··-·•	6(p)	R.C. (%)	58%		54%	5				
1	93	5(p)	†	B2 B1		3	† : : : : : :	†	6(p)	R.C. (%)	58%		54%	5				
	93	5(p)	† : : : · · · · · · · · · · · · · · · ·	B2 B1		3	† : : : : : :	··-·•	6(p)	R.C. (%)	58%		54%	5				
A1 A2	93 A3	5(p)	† : : : : · · · · · · · · · · · · · · ·	B2 B1		3	† : : : : : :	†	6(p)	R.C. (%)	58%	I/G =	54%	5 G =		l/G =		
	93 A3		† : : : · · · · · · · · · · · · · · · ·		. 8	3 5(p)	★ ·-	(p)		4	58%	I/G =	54%	G = G =		I/G =		
A1 A2	A3 I/G = 1/G =	7 G=	† : : : · · · · · · · · · · · · · · · ·	I/G =	8	5(p) G =	★ ·-	(p)		G =	58%		54%					

 Junction:
 J8 - Wang Chiu Road / Lam Fung Street
 J7363

 Scenario:
 with KITEC
 R1 / P.8-5

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design Year: 2032	Designe	ғи Бу.				-	Cnecke	и Бу.				-	Date.	06 J	anuary .	2025
									AM Peak					PM Peak		1
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Wang Chiu Road NB	LT	A1	1	3.50	20.0		100	1828	323	0.177		100	1828	385	0.211	
	LT+SA	A2	1	3.50	25.0		42	2053	363	0.177		55	2037	430	0.211	
	SA+RT	А3	1	3.50	20.0		26	2065	365	0.177	0.177	25	2067	436	value valu	0.21
Wang Chiu Road SB	LT+SA	B1	2	3.50	15.0		37	2024	507	0.251		30	2037	462	0.227	
	SA	B2	2	3.50				2105	528	0.251	0.251		2105	478		0.22
							l					l				
							l					l				
							1					1				
nodestrian phase		2(n)	2		min o	rassina	tima =	11	222	CM	10	200 [CM -	21	222	
pedestrian phase		3(p)	3			rossing		11		GM +	10		GM =	21		
		4(p)	3			rossing ·		10		GM +	9		GM =	19		
		5(p)	2, 3			rossing ·		5		GM +	14		GM =	19		
		6(p)	3		min c	rossing	time =	5	sec	GM +	11	sec F	GM =	16	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic I	Flow (pcu/hr)				N	S=1940+	-100(W–3	.25) S=:	2080+100	(W-3.25)	Note:		
	187	\uparrow				\rightarrow	137	\uparrow	S _M =S÷(1		S _M =	=(S-230)÷	(1+1.5f/r)	with pla	nned ju	nction
8	348					803					Check		Check	improve shown	ement as in Figure	s e 4.12
										AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase		Ū	
									Sum y	0.428		0.438				
									L (s)	37		37				
481					521				C (s)	140		140				
476 476 94				623	↓	107			practical y	0.662		0.662				
				523					R.C. (%)	55%		51%				
1	12				13				4		ı		5			
	2				3				4							
			↓ ↓ ↓			4	(p)									
		†	B2 B1			+	··-·•									
A1 A2 A3	5(p)				5(p)	-		6(p)								
┥┩╇		•				▼	·-·• *									
						3	(p)									
AM G = I/G =	7 G=		I/G =	8	G =	21	I/G =	3	G =		I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
	7 G=		I/G =		G =	21	I/G =		G =		I/G =		G =		I/G =	
G = I/G =	. G=		I/G =		G =	•	I/G =		G =		I/G =		G =		I/G =	
- 1/6 -	G =		1/G =		G =		i/G =		G =		i/G =		G -		i/G =	

 Junction:
 J8 - Wang Chiu Road / Lam Fung Street
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.8-6

Design Year: 2032 Designed By: Checked By: Date: 08 January 2025

Design Year:	2032	Design	ed By:				-	Checke	d By:				-	Date:	08 .	January :	2025
			1	1	ı	1	1	ı		AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %		Flow	y value	Critical y	Turning %		Flow	y value	Critical y
Wang Chiu Ro	and NIP	LT	A1	1	3.50	20.0	Gradient	100	(pcu/hr) 1828	(pcu/hr) 316	0.173		100	(pcu/hr) 1828	(pcu/hr) 377	0.206	
Wang Chiu K	Dau IND	LT+SA	A2	1	3.50	25.0		39	2057	356	0.173		52	2041	421	0.206	
				1				26	2064			0.173	25	2066	427	0.207	0.207
		SA+RT	A3	'	3.50	20.0		20	2004	357	0.173	0.173	25	2000	421	0.207	0.207
		1.7.04	D.4		0.50	45.0		07	0004	507	0.054			0007	400	0.007	
Wang Chiu Ro	oad SB	LT+SA	B1	2	3.50	15.0		37	2024	507	0.251		30	2037	462	0.227	
		SA	B2	2	3.50				2105	528	0.251	0.251		2105	478	0.227	0.227
															<u> </u>		
											ļ			ļ	<u> </u>		
															<u> </u>		
pedestrian pha	ase		3(p)	3 min c		nin crossing time = 1			sec GM +	GM +	10	sec FGM =		21	sec		
			4(p)	3			rossing		10		GM +	9		GM =	19	sec	
			5(p)	2, 3		min c	rossing	time =	5	sec	GM +	14	sec F	GM =	19	sec	
			6(p)	3			rossing		5	sec	GM +	11	sec F	GM =	16	sec	
AM Traffic Flow (pcu/h	nr)			PM Traffic	Flow (pcu/hr	1				C-1010	100/11/ 2	2E\ C-	2000 - 400)(W-3.25)	Note:		
		→ 187	N ↑					137	N) with planned junction		
		848					↓ 803	101	T					improvement as			
		040	ı				000		'		AM	Check Pedestrian	PM	Check Pedestrian	shown	in Figure	e 4.12
											Peak	Phase	Peak	Phase			
										Sum y	0.424		0.434		1		
										L (s)	37		37		1		
	481 ▲					521 •				C (s)	140		140		1		
454	4 + 9	4			597	\longrightarrow	107			practical y	0.662		0.662				
										R.C. (%)	56%		53%		<u> </u>		
1		2				3				4				5			
					•		1	(p)									
				B2 B1			, 4	··-· >									
A1 A2	A 2	5(p)	Ţ			5(p)	Ĭ		6(p)								
1 1	.`` →		Ĭ ▼				▼ ← ·-	.									
	-						3	(p)									
AM G =	I/G =	7 G=		I/G =	. 8	G =	21	I/G =	3	G =		I/G =		G =		I/G =	
G =							۷ ا		J								
G = PM G =	I/G =	7 G=		I/G =		G =	21	I/G =	3	G =		I/G =		G =		I/G =	
	I/G =			I/G =		G =	21	I/G =	3	G =		I/G =		G =		I/G =	
G =	G = I/G =	G =		I/G =	: 	G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J8 - Wang Chiu Road / Lam Fung Street
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.8-7

Design Year: 2032 Designed By: _____ Checked By: _____ Date: ____ 08 January 2025

Design Year: 2032	Designe	ғи Бу.				-	Спеске	и Бу.				-	Date:	00 0	anuary 2	2023
			0.				T : 0/	0 . 5	AM Peak		Low	T : 01	0 / 5	PM Peak		0.111
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critica
Vang Chiu Road NB	LT	A1	1	3.50	20.0		100	1828	318	0.174		100	1828	382	0.209	
	LT+SA	A2	1	3.50	25.0		40	2056	358	0.174		54	2039	426	0.209	
	SA+RT	A3	1	3.50	20.0		26	2065	360	0.174	0.174	25	2067	431	0.209	0.20
Vang Chiu Road SB	LT+SA	B1	2	3.50	15.0		37	2024	507	0.251		30	2037	462	0.227	
	SA	B2	2	3.50				2105	528	0.251	0.251		2105	478	0.227	0.22
									-							
			-							-						
			-							-						
									-							
pedestrian phase		3(p)	3			rossing		11		GM +	10		GM =	21	sec	
		4(p)	3			rossing		10		GM +	9		GM =	19	sec	
		5(p)	2, 3			rossing		5		GM +	14		GM =	19	sec	
		6(p)	3		min c	rossing	time =	5	sec	GM +	11	sec F	GM =	16	sec	
M Traffic Flow (pcu/hr)		N	PM Traffic I	Flow (pcu/hr)	1			N	S=1940+	-100(W–3			(٧٧–3.23)	Note:		
ļ	→ 187	\uparrow				•	137	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	(1+1.5f/r)	with pla	anned jui	nction
84	8					803					Check		Check	shown	ement as in Figure	• 4.12
										AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
									Sum y	0.425		0.436				
									L (s)	37		37				
481					521				C (s)	140		140				
461 🕕 94				611	$\stackrel{\uparrow}{\longleftrightarrow}$	107			practical y	0.662		0.662				
									R.C. (%)	56%		52%				
	2		П		3				4				5			
			→	•												
			▼ ▼ B2 B1			← -	(p) ·-·►									
A4 A0 A0	5(p)	Ť			5(p)	†	†	6(p)								
A1 A2 A3	3(12)	i			5(5)	į	i,	· u /								
						3	(p)									
1	<u> </u>			0	<u> </u>	04		2	<u> </u>				<u> </u>			
MM G = 1/G = 7			I/G =		G =	21	I/G =	3	G =		I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =	04	I/G =	2	G =		I/G =		G =		I/G =	
PM G = 1/G = 7			I/G =		G =	21	I/G =		G =		I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J9 - Sheung Yee Road / Wang Chiu Road
 Job Number:
 J7363

 Scenario:
 existing condition
 R1 / P.9-1

 Design Year:
 2024
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design Year: 2024	Design	ed By:				-	Checke	ed By:				-	Date:	08 .	lanuary :	2025
		1	ı	1	1	1	1		AM Peak			Г		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow	Flow	y value	Critical y	Turning %	Sat. Flow	Flow	y value	Critical y
Wang Chiu Road NB	SA	A1	1	4.00		Gradient		(pcu/hr) 2015	(pcu/hr) 434	0.215			(pcu/hr) 2015	(pcu/hr) 429	0.213	
Wally Cillu Road NB					20.0		07					75				
	SA+RT	A2	1	4.00	30.0		87	2065	445	0.215		75	2077	443	0.213	
	RT	A3	1	4.00	25.0		100	2033	437	0.215	0.215	100	2033	433	0.213	0.213
Sheung Yee Road EB	LT	B1	2	3.50	10.0		100	1709	157	0.092		100	1709	228	0.133	
	LT+SA	B2	2	3.50	15.0		0	2105	366	0.174		0	2105	317	0.151	
	SA+RT	В3	2	3.50	25.0		33	2064	359	0.174		35	2062	311	0.151	
	RT	В4	2	3.50	20.0		100	1958	340	0.174	0.174	100	1958	295	0.151	0.151
Wang Chiu Road SB	<u>LT</u>	C1	3	3.50	15.0		100	1786	59	0.033		100	1786	54	0.030	
	SA	C2	3	3.50				2105	230	0.109			2105	205	0.097	
	SA	C3	3	3.50				2105	229	0.109	0.109		2105	205	0.097	0.097
Sheung Yee Road WB	LT	D1	4	3.50	20.0		100	1828	88	0.048		100	1828	91	0.050	
	LT+RT	D2	4	3.50	25.0		100	1986	95	0.048		100	1986	98	0.049	
	RT	D3	4	3.50	20.0		100	1958	94	0.048	0.048	100	1958	97	0.050	0.050
pedestrian phase		5(p)	1, 3, 4		min c	rossing	time =	9	sec	GM +	22	sec F	GM =	31	sec	
		6(p)	3		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
		7(p)	1, 2, 4		min c	rossing	time =	5	sec	GM +	11	sec F	GM =	16	sec	
		8(p)	1, 2, 3		min c	rossing	time =	5	sec	GM +	12	sec F	GM =	17	sec	
		9(p)	1		min crossing		time =	5	sec	sec GM +		sec F	GM =	15	sec	
		10(p)	2, 3, 4		min c	rossing	time =	5	sec	GM +	13	sec F	GM =	18	sec	
		11(p)	4		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr))			N	S=1940+	-100(W–3	.25) S=:	2080+100				
	→ 59	1				*	54	\uparrow	S _M =S÷(1+1.5f/r)		S _M =	=(S-230)÷	(1+1.5f/r)			
157 ↑	459			228		410					Check		Check			
→ 605				\rightarrow	519					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
↓ 460	134			↓ 404			128		Sum y	0.545	0.497	0.511	0.461			
.00									L (s)	21	36	21	36			
492	↓ 143				540		↓ 158		C (s)	140	140	140	140			
82					†	765	100									
0.	24					700			practical y	0.765	0.669	0.765	0.669			
l	In .				I a				R.C. (%)	40%	34%	50%	45%			
←·-·→ 7(p)	2		←·-· ► 7(p)		3	← · - · → 6(p)			4		←·-·→ 7(p)	†	5			
†		B1 B2	47		. •	- 47	↓ ↓ C3 C2 C	1	. +		47	i 11(p) ▼				
5(p) ;	+	B3		†	5(p)		00 02 0	†	5(p) ;			D3 🚣				
A1 A2 A3	3(p)	B4		▼ 8(p)				▼ 8(p)				D2 🛨				
		← · . · · → 10(p)				← :				←·-· → 10(p)		D1 √				
AM G = 1/G =	7 G=	то(р)	I/G =	7	G =	то(р)	I/G =	6	G =	то(р)	I/G =	5	G =		I/G =	
G = I/G =	7 G=		I/G =	_	G =		I/G =	_	G =	14	I/G =	_	G =		I/G =	
PM G = I/G =	7 G=		I/G =	_	G =		I/G =		G =		I/G =	_	G =		I/G =	
G = 1/G =	7 G=		I/G =	7	G =		I/G =	9	G =	14	I/G =	2	G =		I/G =	

 Junction:
 J9 - Sheung Yee Road / Wang Chiu Road
 J7363

 Scenario:
 with KITEC
 R1 / P.9-2

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

_		B:				0/ 11	T		AM Peak		0.111			PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critica
Nang Chiu Road NB	SA	A1	1	3.50				1965	322	0.164			1965	388	0.197	
	SA	A2	1	3.50				2105	344	0.163			2105	415	0.197	
	RT	A3	1	3.50	30.0		100	2005	441	0.220		100	2005	428	0.213	
	RT	A4	1	3.50	25.0		100	1986	437		0.220	100	1986	423	0.213	0.2
		,		0.00	20.0					0.220	0.220	.00		.20	0.2.0	0.2
Sheung Yee Road EB	LT	B1	2	3.50	10.0		100	1709	170	0.099		100	1709	244	0.143	
Sileung Tee Road Lb							0			0.055		3				
	LT+SA	B2	2	3.50	15.0		U	2105	333			3	2098	300	0.143	
	SA	B3	2	3.50	00.0		400	2105	333	0.158		400	2105	301	0.143	
	RT	B4	2	3.50	20.0		100	1958	332	0.169		100	1958	300	0.153	
	RT	B5	2	3.40	10.0		100	1822	308	0.169	0.169	100	1822	279	0.153	0.15
Wang Chiu Road SB	LT+SA	C1	3	3.50	15.0		27	1913	261	0.136		28	1912	247	0.129	
	SA	C2	3	3.50				2105	287	0.136			2105	272	0.129	
	SA	C3	3	3.50				2105	287	0.136	0.136		2105	272	0.129	0.12
Sheung Yee Road WB	LT	D1	4	3.50	20.0		100	1828	185	0.101		100	1828	181	0.099	
	LT+RT	D2	4	3.50	25.0		100	1986	201	0.101		100	1986	197	0.099	
	RT	D3	4	3.50	20.0		100	1958	198	0.101	0.101	100	1958	195	0.100	0.10
andostrian phase		5/n)	1, 3, 4		min o	roccina	timo -	10	000 (GM +	22	200 5	GM =	32	sec	
pedestrian phase						rossing										
		6(p)	3			rossing t		5		GM +	10		GM =	15	sec	
			1, 2, 4			rossing		5		GM +	11		GM =	16	sec	
		8(p)	1, 2, 3		min c	rossing	time =	5	sec (GM +	12	sec F	GM =	17	sec	
		9(p)	1		min c	rossing	time =	5	sec (GM +	10	sec F	GM =	15	sec	
		10(p)	2, 3, 4		min c	rossing	time =	6	sec (GM +	13	sec F	GM =	19	sec	
		11(p)	4		min c	rossing	time =	5	sec (GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)			PM Traffic F	low (pcu/hr)	1			N.	S=1940+	100(W-3	25) S=2	2080+100	(W-3.25)	Note:		
	→ 71	N ↑					68	N 1	S _M =S÷(1	`	,		(1+1.5f/r)		anned iu	nctior
170	♦ 764			254		♦ 723			OM 0-(1	1.01/1		(0 200)		improve	ement as	S
666		ı		T	F04	. 20		'		AM	Check Pedestrian	PM	Check Pedestrian	shown	in Figure	e 4.13
→ hhh				\rightarrow	591					Peak	Phase	Peak	Phase			
1	200			Ţ			176					0.595	0.495			
640	200			579			176 1		Sum y	0.627	0.389	0.000	0.100			
1	200			Ţ			176		Sum y	0.627 21	36	21	36			
1	200 384			Ţ	803		176 397									
640	384			Ţ	- ↑	851	<u> </u>		L (s)	21	36	21	36			
640 666	384			Ţ	- ↑	851	<u> </u>		L (s)	21 140	36 140	21 140	36 140			
666 666 687	384			Ţ	- ↑	851	<u> </u>		L (s) C (s) practical y	21 140 0.765	36 140 0.669	21 140 0.765	36 140 0.669			
640 666 666 87	384		← · → 7(p)	Ţ	- ↑	* ·-· *	<u> </u>	<u> </u>	L (s) C (s) practical y	21 140 0.765	36 140 0.669 72%	21 140 0.765 29%	36 140 0.669			
640 666 666 7(p)	384	B1 B2	←·-·→ 7(p)	Ţ	3	←·-·→ 6(p)	397	•	L (s) C (s) practical y R.C. (%)	21 140 0.765	36 140 0.669	21 140 0.765	36 140 0.669			
640 666 7(p)	384	B2 B3		579 ↑	- ↑	←·-·→ 6(p)	397	+	L (s) C (s) practical y	21 140 0.765	36 140 0.669 72%	21 140 0.765 29%	36 140 0.669			
640 666 7(p)	384 78	B2 B3 B4		Ţ	3	←·-·→ 6(p)	397	↑ 8(p)	L (s) C (s) practical y R.C. (%)	21 140 0.765	36 140 0.669 72%	21 140 0.765 29% 11(p) D3 1 D2 1	36 140 0.669			
640 666 7(p) A1 A2 A3 A4 ** ** ** ** ** ** ** ** **	384 78	B2 B3 B4 B5		579 ↑	3	◆·-· 6(p)	397	+	L (s) C (s) practical y R.C. (%)	21 140 0.765 22%	36 140 0.669 72%	21 140 0.765 29%	36 140 0.669			
640 666 7(p) 5(p)	384 78	B2 B3 B4		579 ↑	3	←·-·→ 6(p)	397	+	L (s) C (s) practical y R.C. (%)	21 140 0.765	36 140 0.669 72%	21 140 0.765 29% 11(p) D3 1 D2 1	36 140 0.669			
640 666 7(p) A1 A2 A3 A4 ** ** ** ** ** ** ** ** **	384 78	B2 B3 B4 B5		\$79	3	◆·-· 6(p)	397	+	L (s) C (s) practical y R.C. (%)	21 140 0.765 22%	36 140 0.669 72%	21 140 0.765 29%	36 140 0.669		l/G =	
640 666 7(p) A1 A2 A3 A4 9(p)	384 78	B2 B3 B4 B5	7(p)	579 *** *** *** *** *** *** *** *** ***	3 5(p) †	◆·-· 6(p)	397 C3 C2 C4	↑ : 8(p)	L (s) C (s) practical y R.C. (%) 4	21 140 0.765 22%	36 140 0.669 72%	21 140 0.765 29%	36 140 0.669 35%		1/G =	
640 666 7(p) A1 A2 A3 A4 9(p) MM G = I/G =	7 G =	B2 B3 B4 B5	7(p)	\$79 \$79 \$\bigset{\frac{1}{2}}{5} \text{8(p)}	3 5(p) i	◆·-· 6(p)	397 C3 C2 C	↑ : 8(p) •	L (s) C (s) practical y R.C. (%) 4 5(p) G =	21 140 0.765 22%	36 140 0.669 72%	21 140 0.765 29% † 11(p) D3 † D2 † D1 †	36 140 0.669 35% 5			

Junction:J9 - Sheung Yee Road / Wang Chiu RoadJob Number:J7363Scenario:with Approved RedevelopmentR1 / P.9-3

 Scenario:
 with Approved Redevelopment
 R1 / P.9-3

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

<u> </u>	3	,				-		,				-				
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Wang Chiu Road NB	SA	A1	1	3.50				1965	311	0.158			1965	375	0.191	
	SA	A2	1	3.50				2105	333	0.158			2105	402	0.191	
	RT	A3	1	3.50	30.0		100	2005	441	0.220		100	2005	428	0.213	
	RT	A4	1	3.50	25.0		100	1986	437	0.220	0.220	100	1986	423	0.213	0.21
Sheung Yee Road EB	LT	B1	2	3.50	10.0		100	1709	170	0.099		100	1709	241	0.141	
	LT+SA	B2	2	3.50	15.0		0	2105	332	0.158		4	2096	295	0.141	
	SA	В3	2	3.50				2105	331	0.157			2105	296	0.141	
	RT	B4	2	3.50	20.0		100	1958	332	0.169		100	1958	300	0.153	
	RT	B5	2	3.40	10.0		100	1822	308	0.169	0.169	100	1822	279	0.153	0.15
			_													
Vang Chiu Road SB	LT+SA	C1	3	3.50	15.0		27	1913	261	0.136		28	1912	247	0.129	
	SA	C2	3	3.50				2105	287	0.136			2105	272	0.129	
	SA	C3	3	3.50				2105	287	0.136	0.136		2105	272	0.129	0.12
Sheung Yee Road WB	LT	D1	4	3.50	20.0		100	1828	185	0.101		100	1828	181	0.099	
J	LT+RT	D2	4	3.50	25.0		100	1986	201	0.101		100	1986	197	0.099	
	RT	D3	4	3.50	20.0		100	1958	198	0.101	0.101	100	1958	195	0.100	0.10
edestrian phase		5(p)	1, 3, 4		min c	rossing	time =	10	sec	GM +	22	sec F	GM =	32	sec	
		6(p)	3		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
		7(p)	1, 2, 4		min c	rossing	time =	5	sec	GM +	11	sec F	GM =	16	sec	
		8(p)	1, 2, 3		min c	rossing	time =	5	sec	GM +	12	sec F	GM =	17	sec	
		9(p)	1		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
		10(p)	2, 3, 4		min c	rossing	time =	6	sec	GM +	13	sec F	GM =	19	sec	
		11(p)	4		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
M Traffic Flow (pcu/hr)		N	PM Traffic I	Flow (pcu/hr)	1			N	S=1940+	-100(W–3	.25) S=:	2080+100)(W-3.25)	Note:		
	 7 1	^				\vdash	68	1	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	(1+1.5f/r)	with pla	anned ju	nction
170 7	' 64			254		723					Check			improv	ement a: in Figure	S
663					578					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase	SHOWIT	iii i igaix	7.10
↓ 640	200			↓ 579			176		Sum y	0.627	0.526	0.595	0.495			
040	\vdash			07.5					L (s)	21	36	21	36			
644	↓ 384				777		↓ 397		C (s)	140	140	140	140			
87					+	851	001		practical y	0.765	0.669	0.765	0.669			
	O					001			R.C. (%)	22%	27%	29%	35%			
'	12		l .		13				14.0. (70)	22,0	2170	2070	5			
← ·-· → 7(p)			←·-·→ 7(p)			←·-·→ 6(p)		_	ľ		←·-·→ 7(p)	†				
+		B1 B2	<i>τ</i> (p)		•	0(р)	C3 C2 C	1	•		/(P)	11(p)				
5(p) ;		B3		†	5(p)				5(p) ↓			D3 🚣				
A1 A2 A3 A4	p)	B4 B5		8(p) ▼				† ; 8(p)				D2 D1				
	*	+ · - · → 10(p)				← : - : → 10(p)				←::::: >		וט 🔻				
9(p)	7	10(p)		-		10(p)				10(p)		-	<u> </u>			
	7 G= 7 G=		I/G =		G =		I/G =	_	G =	1.1	I/G =		G =		I/G =	
	_		I/G =		G =		I/G =	_	G =	14	I/G =		G =		I/G =	
	_		I/G =		G =		I/G =	_	G =	1.4	I/G =		G =		I/G =	
G = I/G =	7 G=		I/G =	7	G =		I/G =	9	G =	14	I/G =	2	G =		I/G =	

Junction:J9 - Sheung Yee Road / Wang Chiu RoadJob Number:J7363Scenario:with Proposed RedevelopmentR1 / P.9-4

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

													•			
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Wang Chiu Road NB	SA	A1	1	3.50				1965	314	0.160			1965	382	0.194	
	SA	A2	1	3.50				2105	337	0.160			2105	409	0.194	
	RT	А3	1	3.50	30.0		100	2005	441	0.220		100	2005	428	0.213	
	RT	A4	1	3.50	25.0		100	1986	437	0.220	0.220	100	1986	423	0.213	0.21
Sheung Yee Road EB	LT	B1	2	3.50	10.0		100	1709	170	0.099		100	1709	242	0.142	
	LT+SA	B2	2	3.50	15.0		0	2105	333	0.158		4	2097	297	0.142	
	SA	В3	2	3.50				2105	333	0.158			2105	298	0.142	
	RT	B4	2	3.50	20.0		100	1958	332	0.169		100	1958	300	0.153	
	RT	B5	2	3.40	10.0		100	1822	308	0.169	0.169	100	1822	279	0.153	0.15
Vang Chiu Road SB	LT+SA	C1	3	3.50	15.0		27	1913	261	0.136		28	1912	247	0.129	
	SA	C2	3	3.50				2105	287	0.136			2105	272	0.129	
	SA	C3	3	3.50				2105	287	0.136	0.136		2105	272	0.129	0.12
Sheung Yee Road WB	LT	D1	4	3.50	20.0		100	1828	185	0.101		100	1828	181	0.099	
	LT+RT	D2	4	3.50	25.0		100	1986	201	0.101		100	1986	197	0.099	
	RT	D3	4	3.50	20.0		100	1958	198	0.101	0.101	100	1958	195	0.100	0.10
edestrian phase		5(p)	1, 3, 4		min cı	rossing	time =	10	sec	GM +	22	sec F	GM =	32	sec	
		6(p)	3		min cı	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
		7(p)	1, 2, 4		min cı	rossing	time =	5	sec	GM +	11	sec F	GM =	16	sec	
		8(p)	1, 2, 3		min cı	rossing	time =	5	sec	GM +	12	sec F	GM =	17	sec	
		9(p)	1		min cı	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
		10(p)	2, 3, 4		min cı	rossing	time =	6	sec	GM +	13	sec F	GM =	19	sec	
		11(p)	4		min cı	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
M Traffic Flow (pcu/hr)		N	PM Traffic F	low (pcu/hr)	1			N	S=1940+	-100(W–3.	25) S=:	2080+100	(W-3.25)	Note:		
	→ 71	1				\vdash	68	1	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	(1+1.5f/r)	with pla	ınned jui	nction
170	764			254		723					Check			improve	ement as in Figure	3
→ 666				\rightarrow	583					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase	SHOWIT	iii i igaic	, 4.10
↓ 640	200			↓ 579			176		Sum y	0.627	0.526	0.595	0.495			
0.10	<u> </u>			010			_		L (s)	21	36	21	36			
651	↓ 384				791		↓ 397		C (s)	140	140	140	140			
- 8					†	851	001		practical y	0.765	0.669	0.765	0.669			
						001			R.C. (%)	22%	27%	29%	35%			
	2		•		3				4			•	5			
← ·-· → 7(p)		D.4	←·-·→ 7(p)			←·-·→ 6(p)		*			←·-·→ 7(p)	†				
†		B1 B2	/		*		C3 C2 C	1	E/=\ 1		/	11(p)				
5(p) ;	9(p)	B3		↑	5(p)			4	5(p) ;			D3 1				
A1 A2 A3 A4	8(p)	B4 B5		▼ 8(p)				8(p) ▼				D2 1				
		← ·-· → 10(p)				← ·-· → 10(p)				← ·-· → 10(p)		•				
1111	7 -	ιυ(β)		7	.=	ιυ(ρ)		6	<u> </u>	ιυ(ρ)			_		=	
M G = I/G =	7 G=		I/G =		G =		I/G =	6	G =	4.4	I/G =	_	G =		I/G =	
G = I/G =	7 G=		I/G =	7	G =		I/G =	9	G =	14	I/G =	2	G =		I/G =	

CKM Asia Limited J9

I/G = 6

I/G =

9

G=

14

I/G = 5

I/G = 2

G =

I/G =

G =

G =

I/G = 7

I/G =

7

G =

I/G = 7

I/G = 7

 Junction:
 J9 - Sheung Yee Road / Wang Chiu Road
 J7363

 Scenario:
 with KITEC
 R1 / P.9-5

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

									AM Peak					PM Peak		1
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Chiu Road NB	SA	A1	1	3.50				1965	326	0.166			1965	393	0.200	
	SA	A2	1	3.50				2105	349	0.166			2105	421	0.200	
	RT	A3	1	3.50	30.0		100	2005	448	0.223		100	2005	434	0.216	
	RT	A4	1	3.50	25.0		100	1986	443	0.223	0.223	100	1986	430	0.217	0.217
Sheung Yee Road EB	LT	B1	2	3.50	10.0		100	1709	173	0.101		100	1709	248	0.145	
	LT+SA	B2	2	3.50	15.0		0	2105	338	0.161		3	2098	305	0.145	
	SA	В3	2	3.50				2105	338	0.161			2105	305	0.145	
	RT	B4	2	3.50	20.0		100	1958	337	0.172		100	1958	305	0.156	0.156
	RT	B5	2	3.40	10.0		100	1822	313	0.172	0.172	100	1822	283	0.155	
Wang Chiu Road SB	LT+SA	C1	3	3.50	15.0		27	1913	265	0.139	0.139	27	1912	251	0.131	
	SA	C2	3	3.50				2105	292	0.139			2105	276	0.131	
	SA	C3	3	3.50				2105	291	0.138			2105	276	0.131	0.131
Sheung Yee Road WB	LT	D1	4	3.50	20.0		100	1828	188	0.103		100	1828	184	0.101	
	LT+RT	D2	4	3.50	25.0		100	1986	204	0.103		100	1986	200	0.101	
	RT	D3	4	3.50	20.0		100	1958	201	0.103	0.103	100	1958	198	0.101	0.101
pedestrian phase		5(p)	1, 3, 4		min c	rossing	time =	10	sec	GM +	22	sec F	GM =	32	sec	
		6(p)	3		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
		7(p)	1, 2, 4		min c	rossing	time =	5	sec	GM +	11	sec F	GM =	16	sec	
		8(p)	1, 2, 3		min c	rossing	time =	5	sec	GM +	12	sec F	GM =	17	sec	
		9(p)	1		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
		10(p)	2, 3, 4		min c	rossing	time =	6	sec	GM +	13	sec F	GM =	19	sec	
		11(p)	4		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic I	Flow (pcu/hr)	١			N	S=1940+	-100(W-3	25) S=:	2080+100	(W-3.25)	Note:		
		.\ ↑				\vdash	69	Λ	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	(1+1.5f/r)		nned ju	
173	776			258		734					Check		Check		ement a: in Figure	
676				\rightarrow	600					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase	CHOWN	igui	7 1.10
↓ 650	203			↓ 588			179		Sum y	0.636	0.534	0.605	0.503			
	<u> </u>			500			\vdash		L (s)	21	36	21	36	1		
675	↓ 390				814		↓ 403		C (s)	140	140	140	140	1		
89					†	864			practical y	0.765	0.669	0.765	0.669	İ		
									R.C. (%)	20%	25%	27%	33%			
1	2		•		3				4	•			5	-		
		n.	←·-·→ 7(p)			← · - · → 6(p)		>			←·-·→ 7(p)	†				
l →		B1 B2	· (P)			-(٣/	↓ ↓ ↓ C3 C2 C1	ı			· (P)	11(p)				
5(p) ; ▼ ↑	, <u> </u>	B3		†	5(p) : ▼			↑ ; 8(p)	5(p)			D3 1				
A1 A2 A3 A4	3(p)	B4 B5		8(p) ▼				▼ 8(p)				D2 				
│	•	4 ·-· >				+ ; <u>=</u> :, +				← : → 10(p)		·· •				
9(p) ◆	1	10(p)			1	← :-: → 10(p)				10(p)						

CKM Asia Limited J9

6

9

9

I/G =

I/G =

I/G = 6

I/G =

G=

G =

G =

14

14

I/G = 5

I/G =

I/G = 5

I/G = 2

G =

G =

G =

I/G =

I/G =

I/G =

AM G=

PM G=

G =

I/G = 7

I/G =

I/G = 7

I/G = 7

G=

G =

G =

7

I/G =

I/G =

I/G =

I/G = 7

G =

G =

G =

 Junction:
 J9 - Sheung Yee Road / Wang Chiu Road
 Job Number:
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.9-6

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	v volue	Critical y	Turning %	Sat. Flow	PM Peak Flow	y yoluo	Critical
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-nill Gradient	Turning %	(pcu/hr)	(pcu/hr)	y value	Critical y	Turning %	(pcu/hr)	(pcu/hr)	y value	Critical
Wang Chiu Road NB	SA	A1	1	3.50				1965	315	0.160			1965	380	0.193	
	SA	A2	1	3.50				2105	338	0.161			2105	408	0.194	
	RT	А3	1	3.50	30.0		100	2005	448	0.223		100	2005	434	0.216	
	RT	A4	1	3.50	25.0		100	1986	443	0.223	0.223	100	1986	430	0.217	0.217
Sheung Yee Road EB	LT	B1	2	3.50	10.0		100	1709	173	0.101		100	1709	244	0.143	
-	T+SA	B2	2	3.50	15.0		0	2105	337	0.160		5	2095	300	0.143	
	SA	B3	2	3.50	10.0			2105	336	0.160			2105	301	0.143	
	RT	B4	2	3.50	20.0		100	1958	337	0.172		100	1958	305	0.156	0.15
											0.470					0.10
	RT	B5	2	3.40	10.0		100	1822	313	0.172	0.172	100	1822	283	0.155	
			_													
Wang Chiu Road SB L1	T+SA	C1	3	3.50	15.0		27	1913	265	0.139	0.139	27	1912	251	0.131	
	SA	C2	3	3.50				2105	292	0.139			2105	276	0.131	
	SA	C3	3	3.50				2105	291	0.138			2105	276	0.131	0.13
Sheung Yee Road WB	LT	D1	4	3.50	20.0		100	1828	188	0.103		100	1828	184	0.101	
Lī	Γ+RT	D2	4	3.50	25.0		100	1986	204	0.103		100	1986	200	0.101	
	RT	D3	4	3.50	20.0		100	1958	201	0.103	0.103	100	1958	198	0.101	0.10
pedestrian phase		5(p)	1, 3, 4		min c	rossing	time =	10	sec (GM +	22	sec F	GM =	32	sec	
		6(p)	3			rossing		5		GM +	10		GM =	15	sec	
		7(p)	1, 2, 4			rossing		5		GM +	11		GM =	16	sec	
			1, 2, 3					5		GM +	12			17		
		8(p)				rossing							GM =		sec	
		9(p)	1			rossing		5		GM +	10		GM =	15	sec	
			2, 3, 4			rossing t		6		GM +	13		GM =	19	sec	
		11(p)	4		min c	rossing	time =	5	sec (GM +	9	sec F	GM =	14	sec	
M Traffic Flow (pcu/hr)		N	PM Traffic F	low (pcu/hr)	1			N	S=1940+	100(W-3.	25) S=2	2080+100	(W-3.25)	Note:		
→ 72	2	.· ↑				\vdash	69	↑	S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	(1+1.5f/r)	with pla	nned ju	nction
173 776				258		734					Check			improve	ement a in Figure	S
673				\rightarrow	587					AM	Pedestrian	PM	Pedestrian	SHOWIT	iii i iguit	- 4 .13
↓ .	203			Ţ			179			Peak	Phase	Peak	Phase			
650				588			<u> </u>		Sum y	0.636	0.534	0.605	0.503			
	ļ						ļ		L (s)	21	36	21	36			
*	390				788 †		403		C (s)	140	140	140	140			
→ 891					\vdash	864			practical y	0.765	0.669	0.765	0.669			
									R.C. (%)	20%	25%	27%	33%			
2			4		3	4			4		4		5			
7(p)	в	31	7(p)			6(p)		>			7(p)	↑ 11(p)				
↑ 5(p) ;	<u>↑</u> B	32			∮ 5(p) ;		C3 C2 C1	ı	↑ 5(p) ;			÷ .				
▼		33 34		♦ : 8(p)	-(P) 			↑ ; 8(p)	-(P) \			D3 †				
A1 A2 A3 A4 ↑ ↑		35		▼ O(b)				▼ ^{O(β)}				D1 +				
→ · · · · → 9(p)		10(p)				←∵−∵ 10(p)				← :-: → 10(p)						
		πυ(p)				1U(p)				1U(p)						

CKM Asia Limited J9

G =

G =

G=

6

9

9

G=

G =

G =

14

14

I/G =

I/G = 6

I/G =

5

I/G =

I/G = 5

I/G = 2

G =

G =

I/G =

I/G =

I/G =

AM G=

G =

I/G =

I/G =

I/G =

7

G=

G =

G =

I/G =

I/G =

I/G =

I/G = 7

 Junction:
 J9 - Sheung Yee Road / Wang Chiu Road
 Job Number:
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.9-7

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

Sheung Yee Road EB	Design Year: 2032	Designe	ъч Бу.					Cnecke	u Бу.				•	Date:	00 0	anuary .	2023
Wang Chiu Road NB SA A1 1 3.50 50 1 100 1966 379 0.162 2 100 1966 387 0.197 187 187 187 187 187 187 187 187 187 18																	
SA A2 1 3.50 30.0 1.00 2005 448 0.223 100 2005 434 0.219 2005 435 0.219 0.219 0.229 100 2005 434 0.219 0.219 0.229 0.219 0.229 0.219 0.229	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %			y value	Critical y	Turning %			y value	Critica
RT A3 1 1 3.50 30.0 100 2005 448 0.223 100 2005 434 0.246 0.271 0.2 RT A4 1 1 3.50 25.0 100 1986 445 0.223 0.223 100 1986 430 0.217 0.2 Sheung Yee Road EB	Wang Chiu Road NB	SA	A1	1	3.50				1965	319	0.162			1965	387	0.197	
RT A4		SA	A2	1	3.50				2105	341	0.162			2105	415	0.197	
Sheung Yee Road EB		RT	A3	1	3.50	30.0		100	2005	448	0.223		100	2005	434	0.216	
LT+SA B2 2 3.50 15.0 0 2105 338 0.161 4 2097 302 0.144		RT	A4	1	3.50	25.0		100	1986	443	0.223	0.223	100	1986	430	0.217	0.21
LT+SA B2 2 3.50 15.0 0 2105 338 0.161 4 2097 302 0.144																	
SA B3 2 3.50 200 100 1986 337 0.172 100 1986 305 0.143 RT B4 2 3.50 20.0 100 1986 337 0.172 0.172 100 1986 305 0.156 0.15 RT B5 2 3.40 100 100 1822 313 0.172 0.172 0.172 100 1986 305 0.156 0.15 Wang Chiu Road SB	Sheung Yee Road EB	LT	B1	2	3.50	10.0		100	1709	173	0.101		100	1709	246	0.144	
RT B4 2 3.50 20.0 100 1958 337 0.172 100 1958 305 0.156 0.15 RT B5 2 3.40 10.0 100 1922 313 0.172 0.172 100 1958 305 0.156 0.15 Wang Chiu Road SB LT+SA C1 3 3.50 15.0 27 1913 265 0.139 0.139 27 1912 251 0.131 1 SA C2 3 3.50 1 2105 292 0.139 2105 292 0.139 2105 276 0.131 0.13 SA C3 3 3.50 1 2105 292 0.139 2105 276 0.131 0.13 SA C3 3 3.50 1 2105 292 0.139 1 2105 276 0.131 0.13 Sheung Yee Road WB LT D1 4 3.50 20.0 100 1986 204 0.103 100 1988 200 0.101 1828 188 0.101 0.15 Sheung Yee Road WB LT D1 4 3.50 20.0 100 1986 204 0.103 100 1988 200 0.101 1828 188 0.101 0.15 Sheung Yee Road WB LT D1 4 3.50 20.0 100 1986 204 0.103 100 1988 200 0.101 1828 188 0.101 0.15 Sheung Yee Road WB LT D1 1 4 3.50 20.0 100 1988 204 0.103 100 1988 200 0.101 1828 188 0.101 0.15 Sheung Yee Road WB LT D1 4 3.50 20.0 100 1988 204 0.103 100 1988 200 0.101 1828 188 0.101 0.15 Sheung Yee Road WB LT D1 4 3.50 20.0 100 1988 204 0.103 100 1988 200 0.101 1828 188 0.101 0.15 Sheung Yee Road WB LT D1 4 3.50 20.0 100 1988 204 0.103 100 1988 200 0.101 1828 188 0.101 0.15 Sheung Yee Road WB LT D1 4 3.50 20.0 100 1988 204 0.103 100 1988 200 0.101 1828 188 0.101 0.15 Sheung Yee Road WB LT D1 4 3.50 20.0 100 1988 204 0.103 100 1988 200 0.101 1828 188 0.101 0.15 Sheung Yee Road WB LT D1 4 3.50 20.0 100 1988 204 0.103 100 1988 200 0.101 1828 188 0.101 0.15 Sheung Yee Road WB LT D1 4 3.50 20.0 100 1988 204 0.103 100 1988 200 0.101 1988 200 0		LT+SA	B2	2	3.50	15.0		0	2105	338	0.161		4	2097	302	0.144	
RT B5 2 3.40 10.0 100 1822 313 0.172 0.172 100 1822 283 0.156 Nang Chiu Road SB LT+SA C1 3 5.50 15.0 27 1913 265 0.139 0.139 27 1912 251 0.131 SA C2 3 3.50 15.0 27 1913 265 0.139 0.139 27 1912 251 0.131 SA C2 3 3.50 15.0 2105 291 0.138 1 2105 276 0.131 0.13 Sheung Yee Road WB LT D1 4 3.50 20.0 100 1828 188 0.103 100 1828 184 0.101 117		SA	В3	2	3.50				2105	338	0.161			2105	302	0.143	
Mang Chiu Road SB		RT	B4	2	3.50	20.0		100	1958	337	0.172		100	1958	305	0.156	0.15
SA C2 3 3 3.50		RT	B5	2	3.40	10.0		100	1822	313	0.172	0.172	100	1822	283	0.155	
SA C2 3 3 3.50																	
Sheung Yee Road WB LT D1 4 3.50 2.00 100 1828 188 0.103 100 1986 2.04 0.103 100 1986 2.00 0.101 RT D3 4 3.50 2.00 100 1986 2.04 0.103 100 1988 0.103 100 1988 100 1986 2.00 0.101 0.102 RT D3 4 3.50 2.00 100 1988 2.01 0.103 0.103 100 1988 198 0.101 0.11 0.	Nang Chiu Road SB	LT+SA	C1	3	3.50	15.0		27	1913	265	0.139	0.139	27	1912	251	0.131	
Sheung Yee Road WB LT DI 4 3.50 20.0 100 1828 188 0.103 100 1828 184 0.101 1 100 1828 184 0.101 1 100 1828 184 0.101 1 100 1828 184 0.101 1 100 1828 184 0.101 1 100 1828 184 0.101 0.101 1828 184 0.1		SA	C2	3	3.50				2105	292	0.139			2105	276	0.131	
Sheung Yee Road WB LT D1 4 3.50 20.0 100 1828 188 0.103 100 1828 184 0.101 1 100 1828 184 0.101 1 100 1828 184 0.101 1 100 1828 184 0.101 1 100 1828 184 0.101 1 100 1828 184 0.101 1 100 1828 184 0.101 0.101 1828 184 0.1				3													0.13
LT+RT D2 4 3.50 25.0 100 1986 204 0.103 100 1986 200 0.101 0.11																	
LT+RT D2	Sheung Yee Road WB	LT	D1	4	3.50	20.0		100	1828	188	0.103		100	1828	184	0.101	
Pedestrian phase 5(p) 1, 3, 4 min crossing time 10 sec GM + 22 sec FGM = 32 sec																	
Decestrian phase 5(p) 1, 3, 4 min crossing time = 10 sec GM + 22 sec FGM = 32 sec GM + 10 sec FGM = 15 sec GM + 11 sec FGM = 16 sec GM + 11 sec FGM = 16 sec GM + 16 sec GM + 17 sec GM + 18 sec GM + 18 sec GM + 19 sec FGM = 16 sec GM + 10 sec FGM = 17 sec GM + 10 sec FGM = 17 sec GM + 10 sec FGM = 17 sec GM + 10 sec FGM = 17 sec GM + 10 sec FGM = 17 sec GM + 10 sec FGM = 18 sec GM + 18 sec GM +												0.103					0.10
G(p) 3					0.00	20.0				201	000	000		1000		0	0
G(p) 3																	
Sec Sec																	
G(p) 3	andastrian phase		5(n)	1 2 /		min c	roccina	time -	10	200	CM +	22	coc E	GM -	32	200	
T(p) 1, 2, 4 min crossing time = 5 sec GM + 11 sec FGM = 16 sec	Dedestrian priase																
Sec Sec																	
9(p) 1 min crossing time = 5 sec GM + 10 sec FGM = 15 sec 10(p) 2, 3, 4 min crossing time = 6 sec GM + 13 sec FGM = 19 sec 11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 11(p) 4 sec																	
10(p) 2, 3, 4 min crossing time = 6 sec GM + 13 sec FGM = 19 sec 11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 11(p) 4 sec 11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 11(p) 4 sec GM + 9 sec FGM = 14 sec 11(p) 5 sec GM + 9 sec FGM = 14 sec 11(p) 5 sec GM + 9 sec FGM = 14 sec 11(p) 5 sec GM + 9 sec FGM = 14 sec 11(p) 5 sec GM + 9 sec FGM = 14 sec 11(p) 5 sec GM + 9 sec FGM = 14 sec 11(p) 5 sec GM + 9 sec FGM = 14 sec 11(p) 5 sec GM + 9 sec FGM = 14 sec 11(p) 5 sec GM + 9 sec FGM = 14 sec 11(p) 5 sec GM + 9 sec FGM = 14 sec 11(p) 5 sec GM + 9 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p) 5 sec FGM = 14 sec 11(p)																	
11(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec M Traffic Flow (poulhr)																	
Mit Traffic Flow (pculhr) 72 N 734 FM Traffic Flow (pculhr) 75 N S=1940+100(W-3.25) S=2080+100(W-3.25) Sumy (0.636 0.534 0.605 0.503 0.604 0.605 0.503 0.604 0.605 0.503 0.605 0.609 0.765 0.669 0.765 0.																	
173 776			11(p)	4		min c	rossing	time =	5	sec	GM +	9	sec F	·GM =	14	sec	
173 776																	
173 776	AM Traffic Flow (pcu/hr)		N	PM Traffic F	low (pcu/hr)				N	S=1940+	100(W-3.	,		` ′			
All Peak Pedestrian PN Peak Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Pedestrian PN Peak Peak Pedestrian PN Peak Pedestria		▼	\uparrow				•	69	\uparrow	S _M =S÷(1	+1.5f/r)	S _M =	=(S–230)÷	(1+1.5f/r)	with pla	nned ju	nction
5(p)	173 1	776			258 •		734					Check					
Silling 0.500 0.505 0.505 0.505 0.505 0.505 0.609 0.765 0.669 0.765 0.76	676				\rightarrow	592								Pedestrian		Ū	
L (s) 21 36 21 36 C (s) 140 140 140 Practically 0.765 0.669 0.765 0.669 R.C. (%) 20% 25% 27% 33% C (s) 140 140 140 140	↓ 650	203			↓ 588			179		Sum y	0.636	0.534	0.605	0.503			
802 403		<u> </u>								L (s)	21		21	36			
891 864 practical y 0.765 0.669 0.765 0.669 R.C. (%) 20% 25% 27% 33% 86p)	660	↓ 390				802		↓ 403									
R.C. (%) 20% 25% 27% 33% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% 27% R.C. (%) 20% 25% R.	↑					+	864										
7(p)																	
7(p)	· · · · · · · · · · · · · · · · · · ·	12				3		T T T		4			ı	5			
5(p)		[*]				0			_	-		←·-·→	†	J			
B3 B4 B5 B5 B5 B6 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5	†	_ 		/(p)		•	0(p)	1 1 1				/(p)	; 11(p) ▼				
## G = G = 7	5(p) ; ▼ •		B3		†	5(p)				5(p)			D3 				
## G = G = 7	A1 A2 A3 A4	8(p)			8(p) ▼				8(p) ▼				•				
MM G =		*					 .				 .		וט 🕈				
G = G = 7 G = G = 7 G = G = 9 G = 14 G = 2 G =	9(p)		10(p)				10(p)				10(p)						
PM G =	AM G = I/G =	7 G=		I/G =	7	G =		I/G =	6	G =		I/G =	5	G =		I/G =	
	G = <u>I/G</u> =	7 <u>G</u> =		I/G =	7	G =		I/G =	9	G =	14	I/G =	2	G =		I/G =	
	PM G = I/G =	7 G=		I/G =	7	G =		I/G =	6	G =		I/G =	5	G =		I/G =	
		7 G=		I/G =	7	G =		I/G =	9	G =	14	I/G =	_	G =		I/G =	

Junction: J10 - Shing Kai Road / Kai Shing Street / Muk On Street Job Number: J7363

Scenario: existing condition R1 / P.10-1

 Design Year:
 2024
 Designed By:
 Checked By:
 Date:
 08 January 2025

									AM Peak		1			PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Muk On Street SB	LT+SA	A1	1	3.60	15.0		61	1862	115	0.062		49	1883	109	0.058	
	SA+RT	A2	1	3.60	20.0		69	2011	125	0.062	0.062	73	2005	116	0.058	0.058
Shing Kai Road EB	LT+SA	B1	2	3.70	30.0		50	1937	120	0.062		65	1922	124	0.065	0.065
	SA+RT	B2	2	3.70	20.0		-6	2135	132	0.062		0	2125	137	0.064	
	RT	B3	2	3.70	15.0		100	1932	119	0.062	0.062	100	1932	98	0.051	
Shing Kai Road WB	LT+SA	C1	3	3.70	40.0		89	2081	326	0.157		79	2088	304	0.146	
	SA+RT	C3	3	3.70	20.0		50	2048	321	0.157	0.157	59	2036	297	0.146	0.146
Kai Shing Street NB	LT+SA	D1	4	3.70	40.0		53	2461	193	0.078	0.444	65	2452	175	0.071	0.440
	RT	D2	4	3.70	20.0		100	2125	299	0.141	0.141	100	2125	253	0.119	0.119
nodestrian phase		6(n)	2, 3, 4		min o	roccina	timo -	5	200	GM +	9	000 5	CM -	14	000	
pedestrian phase		6(p) 7(p)	1			rossing rossing		<u> </u>		GM +	20		GM = GM =	14 28	sec	
		8(p)	1, 3, 4			rossing		8		GM +	21		GM =	29	sec	
		9(p)	4			rossing		5		GM +	9		GM =	14	sec	
		10(p)	3		min c	rossing	time =	7	sec (GM+	17	sec F	GM =	24	sec	
		11(p)	3, 4		min c	rossing	time =	5	sec (GM +	9	sec F	GM =	14	sec	
		12(p)	1, 2		min c	rossing	time =	5	sec (GM +	9	sec F	GM =	14	sec	
		13(p)	1, 2, 3		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic F	low (pcu/hr)	1			N	S=1940+	100(W-3.	25) S=:	2080+100	(W-3.25)	Note:		
86 ◆	70	7			85	•	53	1	S _M =S÷(1	+1.5f/r)	S _M =	(S-230)÷	(1+1.5f/r)			
60 1	84			81 †		87				444	Check	PM	Check			
200	400			Ţ	180		474			AM Peak	Pedestrian Phase	Peak	Pedestrian Phase			
111	162			98			174 †		Sum y	0.421	0.297	0.387	0.265			
	195	•				186	Į.		L (s)	28	27	28	27			
91	290				62 1		241		C (s)	135	135	135	135			
102	99			113	\rightarrow	253			practical y	0.713	0.720	0.713	0.720			
	In .				2				R.C. (%)	69%	142%	84%	172%			
8(p) 7(p)	2		←·-·→ 6(p)		· •		←·-·→ 6(p)	†	*		←·-·→ 6(p)		5			
8(p) A2 A1	1	B1	о(р)		8(p) ;		σ(p)	10(p)	8(p) ;		Э(Р)					
		B2 B3					C2	★	9(p)							
!	12(p)	50		↑ i 12(p)			C1	•	1	D1 D2		↑ i 12(p)				
4+ 13(p)	12(p)	← :-: →		12(p)	10(p)	← : – : → 13(p)	←:-:→ 11(p)		'		← :-: →	12(p)				
AM G = I/G =	6 G=		I/G =	12	G =		I/G =	6	G =	- '	I/G =	8	G =		I/G =	
G = 14 I/G =	G =		I/G =	3	G =		I/G =	6	G =		I/G =	6	G =		I/G =	
PM G = I/G =	6 G=		I/G =	12	G =		I/G =	6	G =		I/G =	8	G =		I/G =	_
G = 14 I/G =	G =		I/G =	3	G =		I/G =	6	G =		I/G =	6	G =		I/G =	

 Junction:
 J10 - Shing Kai Road / Kai Shing Street / Muk On Street
 Job Number:
 J7363

 Scenario:
 with KITEC
 R1 / P.10-2

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

Approach Phase Stage Width (m) Radius (m) % Up-hill Turning % Sat. Flow Flow y value Critical y Turning % Sat. F			
	PM Peak Flow Flow		Critical y
Gradient (pcu/hr) (pcu/hr) (pcu/hr)	/hr) (pcu/hr)		Jillicai y
Muk On Street SB LT+SA A1 1 3.60 15.0 58 1868 146 0.078 0.078 44 189			0.059
SA+RT A2 1 3.60 20.0 72 2007 156 0.078 74 200	04 119	0.059	
Shing Kai Road EB LT+SA B1 2 3.70 30.0 66 1922 161 0.084 86 190		0.076).076
SA+RT B2 2 3.70 20.0 0 2125 179 0.084 0.084 0 212		0.076	
RT B3 2 3.70 15.0 100 1932 103 0.053 100 1932	32 91	0.047	
Shing Kai Road WB LT+SA C1 3 3.70 40.0 95 2077 376 0.181 96 207	76 336	0.162	
SA+RT C3 3 3.70 20.0 46 2054 371 0.181 0.181 42 206		0.162	n 163
57.47.1 55 6 5.75 25.5 16 2501 677 67.61 67.61 12 250	00 001	0.102	2.102
Kai Shing Street NB LT+SA D1 4 3.70 40.0 45 2466 288 0.117 50 246	63 245	0.099	
RT D2 4 3.70 20.0 100 2125 401 0.189 0.189 100 212		0.162	0.162
pedestrian phase 6(p) 2, 3, 4 min crossing time = 5 sec GM + 9 sec FGM :	= 14	sec	
7(p) 1 min crossing time = 8 sec GM + 20 sec FGM :		sec	
8(p) 1, 3, 4 min crossing time = 8 sec GM + 21 sec FGM :		sec	
9(p) 4 min crossing time = 5 sec GM + 9 sec FGM:		sec	
10(p) 3 min crossing time = 7 sec GM + 17 sec FGM :		sec	
11(p) 3, 4 min crossing time = 5 sec GM + 9 sec FGM :		sec	
12(p) 1, 2 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 13(p) 1, 3 min crossing time = 1		sec	
	1	360	
N 3-1940+100(W-3.23) 3-2000+100(W-3.			
112 \longleftrightarrow 84	5f/r)		
106 106 125 94 Check Che			
234 Peak Phase Peak Phase			
103	24		
218 L (s) 28 27 28 27			
158 358 123 322 <u>c (s)</u> 135 135 135 13			
130 401			
R.C. (%) 34% 95% 55% 122	2%		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
-us/ t			
A2 A1			
↑			
i 12(p) i 12(p			
13(p) $12(p)$ $13(p)$ $13(p)$ $11(p)$ $11(p)$ $11(p)$ $11(p)$			
AM $G=$ $I/G=$ $G=$ $I/G=$ $G=$ $I/G=$ $G=$ $I/G=$ $S=$ $S=$ $S=$ $S=$ $S=$ $S=$ $S=$ S	G =	I/G =	
	G =	I/G =	
	G =	I/G =	
G= 14 $I/G=$ $G=$ $I/G=$ 3 $G=$ $I/G=$ 6 $G=$ $I/G=$ 6	G =	I/G =	

 Junction:
 J10 - Shing Kai Road / Kai Shing Street / Muk On Street
 Job Number:
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.10-3

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

Muk On Street SB	59 0.05 59 0.07 76 0.07 76 447 59 0.15	0.059 0.059 0.076 0.076 0.047 0.159 0.159	Flow (pou/hr) 112 119 145 162 91 330 327	1892 2004 1903 2125 1932 2078 2059	44 74 86 0 100	0.078	0.078 0.078 0.084 0.084	Flow (pcu/hr)	(pcu/hr)	Turning %		Radius (m)	Width (m)	Stage	Phase	n	Approach
SAHRT A2 1 3.60 20.0 72 2007 156 0.078 74 2004 119 0.059 Shing Kai Road EB LT+SA B1 2 3.70 30.0 66 1922 161 0.084 86 1903 145 0.076 SA+RT B2 2 3.70 15.0 100 1932 179 0.084 0.084 0 2125 162 0.076 RT B3 2 3.70 15.0 100 1932 103 0.053 100 1932 91 0.047 Shing Kai Road WB LT+SA C1 3 3.70 40.0 95 2077 373 0.180 94 2078 330 0.159 SA+RT C3 3 3 3.70 40.0 45 2466 288 0.117 50 2463 245 0.099 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 Pedestrian phase 6(p) 2, 3, 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec FM = 7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec	76 0.0° 76 47 59 0.11 59 99	0.059 0.076 0.076 0.047 0.159 0.159 0.099	119 145 162 91 330 327	1903 2125 1932 2078 2059	74 86 0 100		0.078 0.084 0.084		1868								
Shing Kai Road EB	59 0.11 59 99	0.076 0.076 0.047 0.159 0.159	145 162 91 330 327 245	1903 2125 1932 2078 2059	86 0 100	0.084	0.084	156		58		15.0	3.60	1	A1	LT+SA	Muk On Street SB
SA+RT B2 2 3.70 20.0 0 2125 179 0.084 0.084 0 2125 162 0.076 RT B3 2 3.70 15.0 100 1932 103 0.053 100 1932 91 0.047 Shing Kai Road WB LT+SA C1 3 3.70 40.0 95 2077 373 0.180 94 2078 330 0.159 SA+RT C3 3 3.70 40.0 46 2054 369 0.180 0.180 43 2059 327 0.159 Kai Shing Street NB LT+SA D1 4 3.70 40.0 45 2466 288 0.117 50 2463 245 0.099 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 pedestrian phase 6(p) 2, 3, 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec FGM = 7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec	76 47 59 0.11 59	0.076 0.047 0.159 0.159 0.099	162 91 330 327 245	2125 1932 2078 2059	0 100 94	0.084	0.084		2007	72		20.0	3.60	1	A2	SA+RT	
SA+RT B2 2 3.70 20.0 0 2125 179 0.084 0.084 0 2125 162 0.076 RT B3 2 3.70 15.0 100 1932 103 0.053 100 1932 91 0.047 Shing Kai Road WB LT+SA C1 3 3.70 40.0 95 2077 373 0.180 94 2078 330 0.159 SA+RT C3 3 3.70 40.0 46 2054 369 0.180 0.180 43 2059 327 0.159 Kai Shing Street NB LT+SA D1 4 3.70 40.0 45 2466 288 0.117 50 2463 245 0.099 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 pedestrian phase 6(p) 2, 3, 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec FGM = 7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec	76 47 59 0.11 59	0.076 0.047 0.159 0.159 0.099	162 91 330 327 245	2125 1932 2078 2059	0 100 94	0.084	0.084										
RT B3 2 3.70 15.0 100 1932 103 0.053 100 1932 91 0.047 Shing Kai Road WB LT+SA C1 3 3.70 40.0 95 2077 373 0.180 94 2078 330 0.159 SA+RT C3 3 3.70 40.0 46 2054 369 0.180 0.180 43 2059 327 0.159 Kai Shing Street NB LT+SA D1 4 3.70 40.0 45 2466 288 0.117 50 2463 245 0.099 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 RT D2 A 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 RT D2 A 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 RT D2 A 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157	59 0.18 59 99	0.047 0.159 0.159 0.099	91 330 327 245	1932 2078 2059	100	0.084											Shing Kai Road EB
Shing Kai Road WB	59 0.18 59	0.159 0.159 0.099	330 327 245	2078 2059	94		0.053										
SA+RT C3 3 3.70 20.0 46 2054 369 0.180 0.180 43 2059 327 0.159 Kai Shing Street NB LT+SA D1 4 3.70 40.0 45 2466 288 0.117 50 2463 245 0.099 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157	99	0.159	327 245	2059				103	1932	100		15.0	3.70	2	В3	<u> RI</u>	
SA+RT C3 3 3.70 20.0 46 2054 369 0.180 0.180 43 2059 327 0.159 Kai Shing Street NB LT+SA D1 4 3.70 40.0 45 2466 288 0.117 50 2463 245 0.099 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157	99	0.159	327 245	2059			0.190	272	2077	05		40.0	2 70	2	C1	I T±QA	Shing Kai Bood WP
Kai Shing Street NB LT+SA D1 4 3.70 40.0 45 2466 288 0.117 50 2463 245 0.099 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157 RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157	99	0.099	245		45	0.180											Shirig Kai Road WB
RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157				0460		0.100	0.100	309	2004	40		20.0	3.70	3	03	SATILI	
RT D2 4 3.70 20.0 100 2125 396 0.186 0.186 100 2125 334 0.157				Z403 I	50		0.117	288	2466	45		40.0	3.70	4	D1	LT+SA	Kai Shing Street NB
pedestrian phase 6(p) 2, 3, 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec 7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec						0.186					ļ						
7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec																	
7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec																	
7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec		1															
7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec																	
7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec																	
7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec																	
7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec																	
7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec																	
7(p) 1 min crossing time = 8 sec GM + 20 sec FGM = 28 sec	\bot	<u> </u>															
	:C	sec	14	GM =	sec F	9	GM+	sec (5	time =	rossing	min c		2, 3, 4	6(p)		pedestrian phase
	C	sec	28	GM =	sec F	20	GM +	sec (8	time =	rossing	min c		1	7(p)		
8(p) 1, 3, 4 min crossing time = 8 sec GM + 21 sec FGM = 29 sec	C	sec	29	GM =	sec F	21	GM +	sec (8	time =	rossing	min c		1, 3, 4	8(p)		
9(p) 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec	:C	sec	14	GM =	sec F	9	GM+	sec (5	time =	rossing	min c		4	9(p)		
10(p) 3 min crossing time = 7 sec GM + 17 sec FGM = 24 sec	C	sec		GM =	sec F	17	GM +	sec (7	time =	rossing	min c			10(p)		
11(p) 3, 4 min crossing time = 5 sec GM + 9 sec FGM = 14 sec	:C	sec	14	GM =	sec F	9	GM +	sec (
12(p) 1, 2 min crossing time = 5 sec GM + 9 sec FGM = 14 sec																	
13(p) 1, 2, 3 min crossing time = 5 sec GM + 9 sec FGM = 14 sec	:C	sec	14	GM =	sec F	9	GM +	sec (5	time =	rossing	min c		1, 2, 3	13(p)		
AM Traffic Flow (pcu/hr) N PM Traffic Flow (pcu/hr) N S=1940+100(W-3.25) S=2080+100(W-3.25) Note:			Note:	(W-3.25)	2080+100	25) S=2	100(W-3.	S=1940+	N				Flow (pcu/hr)	PM Traffic F	N		AM Traffic Flow (pcu/hr)
112 \longleftrightarrow 84				(1+1.5f/r)	=(S-230)÷	S=	. 4 56(-)	S _M =S÷(1	7	49	\leftrightarrow	88			7	2	112
106 106 125 94 Check Check						O _M -	+1.51/г)		•		94						
234 Peak Phase Peak Phase						Check			1				125 †				106 †
103 171 91 140 sum y 0.528 0.366 0.451 0.316				Pedestrian	РМ	Check Pedestrian	AM					182			,	106	
218 — 208 — L(s) 28 27 28 27				Pedestrian Phase	PM Peak	Check Pedestrian Phase	AM Peak	Sum y		140 †		182	\rightarrow			106 171	106
* I I I I I				Pedestrian Phase	PM Peak	Check Pedestrian Phase 0.366	AM Peak 0.528			†		182	\rightarrow		,	106 171	106
				Pedestrian Phase	PM Peak	Check Pedestrian Phase 0.366	AM Peak 0.528	L (s)	-	†	208	123	91		,	106 171 218 171 353	106 103 234 103
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Pedestrian Phase 0.316 27 135	PM Peak 0.451 28 135	Check Pedestrian Phase 0.366 27 135	AM Peak 0.528 28 135	L (s)	•	+	208	123	91			106 171 218 171 353	106 103 103
				Pedestrian Phase 0.316 27 135 0.720	PM Peak 0.451 28 135 0.713	Check Pedestrian Phase 0.366 27 135 0.720	AM Peak 0.528 28 135 0.713	L (s) C (s) practical y	-	+	208	123	91		,	106 171 218 171 353	106 103 234 103
130 - 396 122 - 334 practical y 0.713 0.720 0.713 0.720 R.C. (%) 35% 97% 58% 128%				Pedestrian Phase 0.316 27 135 0.720	PM Peak 0.451 28 135 0.713	Check Pedestrian Phase 0.366 27 135 0.720	AM Peak 0.528 28 135 0.713 35%	L (s) C (s) practical y R.C. (%)		309	208	123	91			106 171 218 171 353	106 103 234 103
130 - 396 122 - 334 practical y 0.713 0.720 0.713 0.720 R.C. (%) 35% 97% 58% 128%				Pedestrian Phase 0.316 27 135 0.720	PM Peak 0.451 28 135 0.713	Check Pedestrian Phase 0.366 27 135 0.720 97%	AM Peak 0.528 28 135 0.713 35%	L (s) C (s) practical y R.C. (%)	† ; 10(p)	309	208	123	91	← ·-· → 6(p)		106 218 ← 171 218 → 353 353	106 103 234 103 158 130
130 - 396 122 - 334 practical y 0.713 0.720 0.713 0.720 R.C. (%) 35% 97% 58% 128% 1				Pedestrian Phase 0.316 27 135 0.720	PM Peak 0.451 28 135 0.713	Check Pedestrian Phase 0.366 27 135 0.720 97%	AM Peak 0.528 28 135 0.713 35%	L (s) C (s) practical y R.C. (%)		309 6(p)	208	123	91	←·-·→ 6(p)	B1	106 218 ← 171 218 → 353 353	106 103 234 103 158 130
130 → 396 122 → 334 practical y 0.713 0.720 0.713 0.720 R.C. (%) 35% 97% 58% 128% 1 8(p)				Pedestrian Phase 0.316 27 135 0.720	PM Peak 0.451 28 135 0.713	Check Pedestrian Phase 0.366 27 135 0.720 97%	AM Peak 0.528 28 135 0.713 35%	L (s) C (s) practical y R.C. (%)		309 6(p)	208	123	91	←·-· 6(p)	B1 B2	106 218 ← 171 218 → 353 353	106 103 234 103 158
130 - 396 122 - 334 practical y 0.713 0.720 0.713 0.720 R.C. (%) 35% 97% 58% 128% 1				Pedestrian Phase 0.316 27 135 0.720	PM Peak 0.451 28 135 0.713 58%	Check Pedestrian Phase 0.366 27 135 0.720 97%	AM Peak 0.528 28 135 0.713 35%	L (s) C (s) practical y R.C. (%)		309 6(p)	208	123	122	←·-· 6(p)	B1 B2	106 218 - 171 218 - 353 396	106 234 103 158 130
130 - 396 122 - 334 practical y 0.713 0.720 0.713 0.720 R.C. (%) 35% 97% 58% 128% 1 8(p)				Pedestrian Phase 0.316 27 135 0.720	PM Peak 0.451 28 135 0.713 58%	Check Pedestrian Phase 0.366 27 135 0.720 97%	AM Peak 0.528 28 135 0.713 35%	L (s) C (s) practical y R.C. (%)		309 309 C2 C1	208	123	91 122	← ·-· → 6(p)	B1 B2 B3	106 218 171 218 353 396	106 103 158 130 158 130 158 130 158
130 - 396 122 - 334 practical y 0.713 0.720 0.713 0.720 R.C. (%) 35% 97% 58% 128% 148(p) 1 10(p)	I/G =	l/G =		Pedestrian Phase 0.316 27 135 0.720 128%	PM Peak 0.451 28 135 0.713 58%	Check Pedestrian Phase 0.366 27 135 0.720 97%	AM Peak 0.528 28 135 0.713 35%	L (s) C (s) practical y R.C. (%)	+	309 	208	123 8(p)	91 122		B1 B2 B3	106 218 353 396	106 103 158 130 158 130 158 130 158
130 - 396 122 - 334 practical y 0.713 0.720 0.713 0.720 R.C. (%) 35% 97% 58% 128% 1 8(p)				Pedestrian Phase 0.316 27 135 0.720 128%	PM Peak 0.451 28 135 0.713 58%	Check Pedestrian Phase 0.366 27 135 0.720 97% 6(p)	AM Peak 0.528 28 135 0.713 35%	L (s) C (s) practical y R.C. (%) 4 8(p) 9(p) 4 G =	6	309 C2 C1 11(p)	208	123 8(p); G =	91 122 12(p) 12(p)	I/G =	B1 B2 B3	106 218 353 396 2 12(p) 12(p) 12(p) 6 G =	106 103 158 130 158 130 1 8(p) 1 7(p) 1 A2 A1
130 - 396 122 - 334 practical y 0.713 0.720 0.713 0.720 R.C. (%) 35% 97% 58% 128% 128	I/G =	I/G =		Pedestrian Phase 0.316 27 135 0.720 128% 5	PM Peak 0.451 28 135 0.713 58%	Check Pedestrian Phase 0.366 27 135 0.720 97%	AM Peak 0.528 28 135 0.713 35%	L (s) C (s) practical y R.C. (%) 4 8(p) 7 9(p) 7 G = G = G =	6 6	309 C2 C1 11(p) I/G =	208	123 8(p) i	91 122	I/G =	B1 B2 B3	106 218 171 218 353 396	106 103 158 130 158 130 158 130 158 130 158 130 158 130 158 130 158 130 158 130 158 130 158 130 158 158 158 158 158 158 158 158

 Junction:
 J10 - Shing Kai Road / Kai Shing Street / Muk On Street
 Job Number:
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.10-4

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

	1			1	1				AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Muk On Street SB L	T+SA	A1	1	3.60	15.0		58	1868	146	0.078	0.078	44	1892	112	0.059	0.05
SA	A+RT	A2	1	3.60	20.0		72	2007	156	0.078		74	2004	119	0.059	
Older Wei David ED	T . O A	D4		0.70	00.0		- 00	4000	404	0.004		00	4000	445	0.070	0.07
-	T+SA A+RT	B1 B2	2	3.70	30.0		66 0	1922 2125	161 179	0.084	0.084	86 0	1903 2125	145 162	0.076	0.07
3/	RT	B3	2	3.70	15.0		100	1932	103	0.053	0.004	100	1932	91	0.076	
				0.70	10.0		100	1002	100	0.000		100	1002	01	0.011	
Shing Kai Road WB L	T+SA	C1	3	3.70	40.0		95	2077	375	0.181		95	2077	332	0.160	
S	A+RT	C3	3	3.70	20.0		46	2054	371	0.181	0.181	42	2059	330	0.160	0.16
Kai Shing Street NB L	T+SA	D1	4	3.70	40.0		45	2466	288	0.117		50	2463	245	0.099	
	RT	D2	4	3.70	20.0		100	2125	398	0.187	0.187	100	2125	339	0.160	0.16
pedestrian phase		6(p)	2, 3, 4		min cı	ossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
		7(p)	1		min cı	ossing	time =	8	sec	GM +	20	sec F	GM =	28	sec	
		8(p)	1, 3, 4		min cı	ossing	time =	8		GM +	21	sec F	GM =	29	sec	
	-	9(p)	4			ossing		5		GM +	9		GM =	14	sec	
		10(p)	3			ossing		7		GM +	17		GM =	24	sec	
		11(p)	3, 4 1, 2			ossing ossing		5 5		<u>GM +</u> GM +	9		GM = GM =	14 14	sec	
		12(p) 13(p)	1, 2, 3			rossing		5		GM +	9		GM =	14	sec	
AM Traffic Flow (pcu/hr)		10(р)		low (pcu/hr)		J								Note:	300	
	1	N	· w mamo	ion (poain)		\bot	49	N		100(W–3.	,	2080+100	, ,	110.0.		
112 + 8	+	7		125	00	94	43	7	S _M =S÷(1	+1.5f/r)		=(S-230)÷				
234				Ť	182	01				AM	Check Pedestrian	PM	Check Pedestrian			
102	171			91	102		140		_	Peak 0.530	Phase	Peak	Phase			
218 ←	1			91		208	†		Sum y	0.530	0.368 27	0.455 28	0.320			
	357				123		1 314		L (s)	135	135	135	135			
130 - 398	007				→	339	011		practical y	0.713	0.720	0.713	0.720			
					` `				R.C. (%)	35%	96%	57%	125%			
1 2					3				4				5			
8(p) 7(p)			←·-·→ 6(p)		8(p) ;		←·-· 6(p)	10(p)	♦ 8(p) i		←·-·→ 6(p)					
8(p) 7(p) 4 h	<u> </u>	B1			-(F) †			▼								
. +	▼	B2 B3					C2	\leftarrow	9(p)	D1 D2						
12(p)	•			12(p)			C1	· †		→		12(p)				
13(p) · 12(p)	•	← . – . → 13(p)		12(p)	10(p) . ✓	←→	←∵-∵ 11(p)				← : → 11(p)	12(p)				
AM G = 1/G = 6	G =		I/G =	12	G =		I/G =	6	G =	- 1	I/G =	8	G =		I/G =	
G = 14 I/G =	G =		I/G =	3	G =		I/G =	6	G =		I/G =	_	G =		I/G =	
PM G = 1/G = 6	G =		I/G =	12	G =		I/G =	6	G =		I/G =	8	G =		I/G =	
G = 14 I/G =	G =		I/G =	3	G =		I/G =	6	G =		I/G =	6	G =		I/G =	

Junction: J10 - Shing Kai Road / Kai Shing Street / Muk On Street Job Number: J7363

 Scenario:
 with KITEC
 R1 / P.10-5

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design real. 2002	Design	- a D _J .					Onconc	Dy.				•	Date.		arraary 2	
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
						Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Muk On Street SB	LT+SA		1	3.60	15.0		57	1868	148	0.079	0.079	44	1892	114	0.060	0.060
	SA+RT	A2	1	3.60	20.0		72	2007	159	0.079		74	2004	120	0.060	
Shing Kai Road EB	LT+SA	B1	2	3.70	30.0		66	1922	164	0.085		86	1903	147	0.077	
	SA+RT	B2	2	3.70	20.0		0	2125	182	0.086	0.086	0	2125	165	0.078	0.078
	RT	В3	2	3.70	15.0		100	1932	105	0.054		100	1932	92	0.048	
Shing Kai Road WB	LT+SA		3	3.70	40.0		95	2077	381	0.183	0.404	96	2076	341	0.164	0.405
	SA+RT	C3	3	3.70	20.0		46	2054	377	0.184	0.184	42	2060	339	0.165	0.165
Kai Shing Street NB	LT+SA	D1	4	3.70	40.0		45	2466	292	0.118		50	2463	249	0.101	
_	RT	D2	4	3.70	20.0		100	2125	407	0.192	0.192	100	2125	349	0.164	0.164
pedestrian phase		6(p)	2, 3, 4		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
		7(p)	1		min c	rossing	time =	8	sec	GM +	20	sec F	GM =	28	sec	
		8(p)	1, 3, 4		min c	rossing	time =	8	sec	GM +	21	sec F	GM =	29	sec	
		9(p)	4			rossing		5		GM +	9		GM =	14	sec	
		10(p)	3			rossing		7		GM +	17		GM =	24	sec	
		11(p) 12(p)	3, 4 1, 2			rossing rossing		5 5		<u>GM +</u> GM +	9		GM = GM =	14 14	sec sec	
		13(p)	1, 2, 3			rossing		5		GM +	9		GM =	14	sec	
AM Traffic Flow (pcu/hr)				Flow (pcu/hr)		I				-100(W–3.			(W-3.25)		ı	
114 <	85	N /			89	\longleftrightarrow	50	N Z	S _M =S÷(1				·(1+1.5f/r)			
108	♦ 108	/		127		♦ 95		/	-W - (·	,	Check	()	Check			
238				T	185					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
105	174 •			↓ 92			142 •		Sum y	0.540	0.375	0.467	0.329			
	221 🕌					211	-		L (s)	28	27	28	27			
160	363				125		327		C (s)	135	135	135	135			
132 - 4	107			124	\leftarrow	349			practical y	0.713	0.720	0.713	0.720			
									R.C. (%)	32%	92%	53%	119%			
1	2		←·-·→ 6(p)		3		*·-· *	_	4		*·-·		5			
8(p) 7(p)			6(p)		8(p) ;		6(p)	10(p)	8(p)		6(p)					
▼ A2 A1	\Rightarrow	B1 B2					-	· . †	9(p) †							
+	. 📑	B3		†			C2 C1	\Rightarrow	•	D1 D2		†				
<u> </u>	12(p)	←;;;; •, >		12(p)	10(p)	′ ←;, >	← ;;;;;>	•	•	\dashv	←;,,,, >	12(p)				
13(p)	12(p)	13(p)		12(p)		13(p)	11(p)				11(p)	12(p)				
AM G = I/G =	6 G=		I/G =		G =		I/G =	_	G =		I/G =		G =		I/G =	
G = 14	G = 6		I/G =		G =		I/G =		G = G =		I/G =	_	G =		I/G =	
G = 14 I/G =	O G = G =		I/G =		G =		I/G =	_	G = G =		I/G =		G = G =		I/G =	
	G =		110 -	~	G =		./6 =	~	G =		./6 =	•	G =		1/0 -	

 Junction:
 J10 - Shing Kai Road / Kai Shing Street / Muk On Street
 Job Number:
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.10-6

 Scenario:
 with Approved Redevelopment
 R1 / P.10-6

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Muk On Street SB L	_T+SA	A1	1	3.60	15.0		57	1868	148	0.079	0.079	44	1892	114	0.060	0.060
S	SA+RT	A2	1	3.60	20.0		72	2007	159	0.079		74	2004	120	0.060	
Shing Kai Road EB L	_T+SA	B1	2	3.70	30.0		66	1922	164	0.085		86	1903	147	0.077	
S	SA+RT	B2	2	3.70	20.0		0	2125	182	0.086	0.086	0	2125	165	0.078	0.07
	RT	В3	2	3.70	15.0		100	1932	105	0.054		100	1932	92	0.048	
Shing Kai Road WB L	_T+SA	C1	3	3.70	40.0		94	2077	379	0.182		94	2078	335	0.161	
S	SA+RT	C3	3	3.70	20.0		47	2053	374	0.182	0.182	43	2059	332	0.161	0.16
Kai Shing Street NB L	_T+SA	D1	4	3.70	40.0		45	2466	292	0.118	0.400	50	2463	249	0.101	0.40
	RT	D2	4	3.70	20.0		100	2125	402	0.189	0.189	100	2125	339	0.160	0.16
pedestrian phase		6(p)	2, 3, 4		min c	ossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
		7(p)	1		min c	ossing	time =	8	sec	GM +	20	sec F	GM =	28	sec	
		8(p)	1, 3, 4		min c	ossing	time =	8	sec	GM +	21		GM =	29	sec	
		9(p)	4		min c	ossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
		10(p)	3		min c	ossing	time =	7	sec	GM +	17	sec F	GM =	24	sec	
		11(p)	3, 4		min c	ossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
		12(p)	1, 2		min c	ossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
		13(p)	1, 2, 3		min c	ossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic F	low (pcu/hr)				N	S=1940+	100(W-3.	25) S=2	2080+100	(W-3.25)	Note:		
114 ← → 8	35	7			89	\longleftrightarrow	50		S _M =S÷(1	+1.5f/r)	S _M =	(S–230)÷	(1+1.5f/r)			
108 108		/		127		95		/			Check		Check			
238				\rightarrow	185					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
↓ 105	174 •			↓ 92			142		Sum y	0.536	0.371	0.459	0.321			
221	\leftarrow					211	•		L (s)	28	27	28	27			
160	358				125		314		C (s)	135	135	135	135			
132 - 402				124	\leftarrow	339			practical y	0.713	0.720	0.713	0.720			
									R.C. (%)	33%	94%	56%	124%			
1 2	2				3				4				5			
8(p) † 7(p)			← · – · → 6(p)		8(p)		←·-·→ 6(p)	↑ : 10(p)	1 8(p) i		←·-·→ 6(p)					
"		B1			** 7 ₩			₩ "	X							
	▼	B2 B3					C2		9(p)	D4 D2						
† <u>i</u> 12(p)	•			↑ i 12(p)			C1	+		D1 D2		↑ i 12(p)				
4→ 13(p) 12(p)		← ·-· → 13(p)		12(p)	10(p) . ✓	← ·-· → 13(p)	← ·-· → 11(p)]		← :-: → 11(p)	12(p)				
AM G = 1/G = 6	G =		I/G =		G =		I/G =	6	G =		I/G =	8	G =		I/G =	
G = 14 I/G =	G =		I/G =	3	G =		I/G =	6	G =		I/G =	6	G =		I/G =	
PM G = 1/G = 6	G =		I/G =		G =		I/G =		G =		I/G =	_	G =		I/G =	
0 - 11								_				_				

CKM Asia Limited J10

6

6

I/G = 3

14

Junction: J10 - Shing Kai Road / Kai Shing Street / Muk On Street Job Number: J7363

Scenario: with Proposed Redevelopment R1 / P.10-7

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design real. 2002	Design	- , .					Oncore	, .					Date.		andary 2	
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Made On Other et OD	17.04			0.00	45.0	Gradient	F-7	(pcu/hr)	(pcu/hr)	0.070	0.070	4.4	(pcu/hr)	(pcu/hr)	0.000	0.000
Muk On Street SB	LT+SA SA+RT	A1 A2	1	3.60	15.0 20.0		57 72	1868 2007	148 159	0.079	0.079	74	1892 2004	114 120	0.060	0.060
	OA TIXT	72	'	3.00	20.0		12	2001	139	0.019		74	2004	120	0.000	
Shing Kai Road EB	LT+SA	B1	2	3.70	30.0		66	1922	164	0.085		86	1903	147	0.077	
	SA+RT	B2	2	3.70	20.0		0	2125	182	0.086	0.086	0	2125	165	0.078	0.078
	RT	В3	2	3.70	15.0		100	1932	105	0.054		100	1932	92	0.048	
Shing Kai Road WB	LT+SA SA+RT	C1 C3	3	3.70	40.0		95 46	2077	381 376	0.183	0.183	95 42	2077	337 335	0.162 0.163	0.163
	SATKI	C3	3	3.70	20.0		40	2004	370	0.103	0.163	42	2000	333	0.103	0.103
Kai Shing Street NB	LT+SA	D1	4	3.70	40.0		45	2466	292	0.118		50	2463	249	0.101	
	RT	D2	4	3.70	20.0		100	2125	404	0.190	0.190	100	2125	344	0.162	0.162
pedestrian phase		6(p)	2, 3, 4		min cı	rossing	time =	5	sec (GM +	9	sec F	GM =	14	sec	
		7(p)	1			rossing		8		GM +	20		GM =	28	sec	
		8(p)	1, 3, 4			rossing		8		GM +	21		GM =	29	sec	
		9(p) 10(p)	3			rossing rossing		5 7		<u>GM +</u> GM +	9 17		GM = GM =	14 24	sec	
		11(p)	3, 4			rossing		5		GM +	9		GM =	14	sec	
		12(p)	1, 2			rossing		5		GM +	9		GM =	14	sec	
		13(p)	1, 2, 3		min cı	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic I	Flow (pcu/hr)			N	S=1940+	100(W-3.	25) S=2	2080+100	(W-3.25)	Note:		
114 •	85	7			89	\longleftrightarrow	50	7	S _M =S÷(1	+1.5f/r)			(1+1.5f/r)			
108 1	108	,		127 †		95		/			Check		Check			
→ 238				-	185					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
105	174 †			92			142 †		Sum y	0.538	0.373	0.462	0.325			
	221					211	1		L (s)	28	27	28	27			
160 ↑	362				125 ↑		319		C (s)	135	135	135	135			
132	404			124	\rightarrow	344			practical y	0.713	0.720	0.713				
	In .				I a				R.C. (%)	33%	93%	54%	122%			
	2		←·-·→ 6(p)		8(p) <u>i</u>		←·-·→ 6(p)	†	†		←·-·→ 6(p)		5			
8(p) ;	1	B1	- 47		8(p)		- 11 7	10(p)	8(p) ;		- 117					
		B2 B3					C2	_	9(p)	D. D.						
[12(p)	-		↑ <u>i</u> 12(p)			C1	+] .	D1 D2		↑ <u>i</u> 12(p)				
← : – : → 13(p)	12(p)	← ·-· → 13(p)		12(p)	10(p) . ✓	← :-: → 13(p)	← . – . → 11(p)]		← : → 11(p)	12(p)				
AM G = I/G =	6 G=		I/G =	12	G =		I/G =	6	G =	•	I/G =	8	G =		I/G =	
G = 14 I/G =	G =		I/G =	3	G =		I/G =	6	G =		I/G =	6	G =		I/G =	
PM G = I/G =	6 G=		I/G =	12	G =		I/G =	6	G =		I/G =	8	G =		I/G =	
G = 14 I/G =	G =		I/G =	3	G =		I/G =	6	G =		I/G =	6	G =		I/G =	

Junction: J11 - Wang Chiu Road / Kai Lai Road / Kai Lok Street Job Number: J7363

Scenario: existing condition R1 / P.11-1

 Design Year:
 2024
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design Year: 2024	Design	ed By:				-	Checke	ed By:				-	Date:	08 .	January :	2025
				1			1		AM Peak			I		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow	y value	Critical
Wang Chiu Road NB	LT+SA	A1	1	3.10	15.0	Gradient	100	1750	(pcu/hr) 205	0 117	0.117	89	1767	(pcu/hr) 197	0.111	
Wang Chiu Noau ND				3.20	15.0			2036			0.117	12	2050	229		0.11
	SA+RT	A2	1	3.20	15.0		19	2030	225	0.111		12	2000	229	0.112	0.11
							_									
Wang Chiu Road SB	LT+SA		1	3.40	15.0		3	1949	177	0.091		3	1949	135	0.069	
	SA	B2	1	3.40				2095	190	0.091			2095	145	0.069	
Kai Lai Road EB	LT+SA+RT	C1	2	4.40	10.0		65	1874	265	0.141	0.141	60	1884	235	0.125	0.12
Kai Lok Road WB	LT+SA+RT	D1	3	4.00	10.0		33	1919	147	0.077	0.077	38	1907	114	0.060	0.06
pedestrian phase		5(p)	4		min c	rossing	time =	16	sec	GM +	8	sec F	GM =	24	sec	
AM Traffic Flow (pcu/hr)		l	DM Troffic	Flow (pcu/hr		_			1		l	ı		Note:		l
an riamo rion (pozini)		N	i iii iidiiio	rion (pourin	,			N		-100(W–3	•		,			
	5	1				*	4	1	S _M =S÷(1	+1.5f/r)	S _M =	=(S–230)÷	(1+1.5f/r)			
15 ↑	362	1		10 †		276		′			Check		Check			
94				\rightarrow	93					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
1 5 6	7 ♦			132			3 ≜		Sum y	0.335		0.296				
	98 🕕					71	-	·	L (s)	47		47				
182	42				222		40		C (s)	110		110				
205 4				176	→	28	.5		practical y			0.515				
200	.5			170	\top	20			R.C. (%)	54%		74%				
					1				R.C. (%)	J+ /0		1 4 70				
1	2				3				4				5			
↓ ∤										5	(p)					
B2 B1	\vdash	C1								+·-	··-·*					
A1 A2	•						D1	1	5(p)	į		5(p)				
↓ 1 ↓								•		↓						
										5	(p)					
M C- ::	6 .		=	7				10		24		2				
AM G = I/G =	6 G=		I/G =		G =		I/G =	10	G =	24	I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	6 G=		I/G =	7	G =		I/G =	10	G =	24	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

Junction: J11 - Wang Chiu Road / Kai Lai Road / Kai Lok Street Job Number: J7363

 Scenario:
 with KITEC
 R1 / P.11-2

Design Year: 2029 Designed By: _____ Checked By: _____ Date: ____ 08 January 2025

Design Year: 2029	Designe	ви Бу.				-	Checke	и Бу.	-			-	Date:	00 0	anuary A	2023
			I		I	I	1		AM Peak			ı		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)		y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critica
Wang Chiu Road NB	LT+SA	A1	1	3.10	15.0	Gradient	88	1769	269	0.152		81	1780	267	0.150	
valig Ciliu (Cad 14D	SA+RT	A2	1	3.20	15.0		21	2032	309		0.152		2053	307	0.150	0.15
	SATRI	AZ	'	3.20	13.0		21	2032	309	0.132	0.132	11	2000	307	0.150	0.10
W 01: D 10D	1.7.04	- D.4		0.40	45.0			4050	007	0.407		_	1010	004	0.405	
Wang Chiu Road SB	LT+SA	B1	1	3.40	15.0		3	1950	267	0.137		3	1949	204	0.105	
	SA	B2	1	3.40				2095	286	0.137			2095	219	0.105	
Kai Lai Road EB	LT+SA+RT	C1	2	4.40	10.0		68	1865	313	0.168	0.168	59	1888	276	0.146	0.14
Kai Lok Road WB	LT+SA+RT	D1	3	4.00	10.0		39	1904	136	0.071	0.071	50	1874	116	0.062	0.06
		-/ \										_				
pedestrian phase		5(p)	4		min c	rossing	time =	16	sec	GM +	8	sec F	GM =	24	sec	
AM Traffic Flow (pcu/hr)			PM Traffic I	Flow (pcu/hr)				S=1940+	-100(W-3	25) S=	2080+100	(W-3 25)	Note:		
	→ 7	N 1				\rightarrow	6	N 1	S _M =S÷(1				·(1+1.5f/r)			
34	♦ 546	1		28 †		♦ 417		/	O _M O (.	1.0.,,		(0 200)				
34 101					113					AM	Check Pedestrian	PM	Check Pedestrian			
	11			- 1	113		1			Peak	Phase	Peak	Phase			
1 7 8	83 -			135			Ť		Sum y	0.391		0.358				
	83 😽					58	\leftarrow	•	L (s)	47		47				
274	42				324		5 4		C (s)	110		110				
238	66			217	←	33			practical y	0.515		0.515				
									R.C. (%)	32%		44%				
1	2				3				4				5			
♦ ♦ B2 B1	<u> </u>	0.4								5ı ← ·-	(p) ·•·•					
	1	CI					5.4	. †		†	†	- ()				
A1 A2 ↑ ↑							D1		5(p)	<u> </u>	<u>!</u>	5(p)				
← →										▼ ← · –	· - · ▶ ▼					
										5	(P)					
AM G = I/G =	6 G=		I/G =	7	G =		I/G =	10	G =	24	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =	·	G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	6 g=		I/G =	7	G =		I/G =	10	G =	24	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
1/6 =	3-		1,0 -		<u> </u>		1/0 -		5-		1,0 =		0-		1,0 =	

Junction: J11 - Wang Chiu Road / Kai Lai Road / Kai Lok Street Job Number: J7363

Scenario: with Approved Redevelopment R1 / P.11-3

Design Year: 2029 Designed By: _____ Checked By: _____ Date: ____ 08 January 2025

Design Year: 2029	Design	ви Бу.				-	Checke	зи Бу.	-			-	Date:	00 0	anuary A	2023
							1		AM Peak			ı		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critica
Wang Chiu Road NB	LT+SA	A1	1	3.10	15.0	Ordalone	88	1769	269	0.152		81	1780	267	0.150	
varig Office (Codd 14D	SA+RT	A2	1	3.20	15.0		21	2032	309		0.152		2053	307	0.150	0.15
	JATKI	72		3.20	13.0		- 21	2032	309	0.132	0.132	- ' '	2000	301	0.130	0.10
	1.7.04	- D.4		0.40	45.0			4050	007	0.407		_	1010	004	0.405	
Wang Chiu Road SB	LT+SA	B1	1	3.40	15.0		3	1950	267	0.137		3	1949	204	0.105	
	SA	B2	1	3.40				2095	286	0.137			2095	219	0.105	
Kai Lai Road EB	LT+SA+RT	C1	2	4.40	10.0		68	1865	313	0.168	0.168	59	1888	276	0.146	0.14
Kai Lok Road WB	LT+SA+RT	D1	3	4.00	10.0		39	1904	136	0.071	0.071	50	1874	116	0.062	0.06
			 	 		 				 		 				
												-				
oedestrian phase		5(p)	4		min c	rossing	time =	16	sec	GM +	8	sec F	GM =	24	sec	
AM Traffic Flow (pcu/hr)		Ν	PM Traffic I	Flow (pcu/hr)			Ν	S=1940+	-100(W–3	.25) S=:	2080+100	(W-3.25)	Note:		
	→ 7	1				•	6	1	S _M =S÷(1	+1.5f/r)	S _M =	=(S–230)÷	+(1+1.5f/r)			
34 †	546	1		28 †		417		1			Check		Check			
101					113					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
↓ 178	11 †			↓ 135			4		Sum y	0.391		0.358				
170	83 🕌			100		58	1									
074	12				204		54		L (s)	47		47				
274	42				324 ↑		54		C (s)	110		110				
238	00			217	$\qquad \qquad $. 33			practical y	0.515		0.515				
									R.C. (%)	32%		44%				
1	2				3				4				5			
↓ -											(n)					
B2 B1		C1								. 4	(p) ·-·►					
	+						D1	←	5(p)	†	†	5(p)				
A1 A2 ↑ ↑							DI	+	3(p)	į ▼	: 	-(٢)				
\dashv										←· -	· - · > '					
											/		<u> </u>			
AM G = I/G =	6 G=		I/G =	7	G =		I/G =	10	G =	24	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	6 g =		I/G =	7	G =		I/G =	10	G =	24	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
1/6 =	3-		1,0 -		<u> </u>		1/0 -		5-		1,0 =		5-		1,0 =	

Junction: J11 - Wang Chiu Road / Kai Lai Road / Kai Lok Street Job Number: J7363

Scenario: with Proposed Redevelopment R1 / P.11-4

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design real. 2029	Design	еи Бу.				-	Checke	а Бу.				•	Date.	00 3	ianuary .	2025
									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Wang Chiu Road NB	LT+SA	A1	1	3.10	15.0		88	1769	269	0.152		81	1780	267	0.150	
<u> </u>	SA+RT		1	3.20	15.0		21	2032	309		0.152		2053	307	0.150	0.15
	571111	- 1	•	0.20				2002	000	0.102	01.102		2000		000	00
Nana Chiu Bood SB	I T±CA	D1	1	3.40	15.0		3	1050	267	0 127		3	1949	204	0.105	
Wang Chiu Road SB	LT+SA		1		15.0		3	1950	267	0.137		<u> </u>			0.105	
	SA	B2	1	3.40				2095	286	0.137			2095	219	0.105	
Kai Lai Road EB	LT+SA+RT	C1	2	4.40	10.0		68	1865	313	0.168	0.168	59	1888	276	0.146	0.14
Kai Lok Road WB	LT+SA+RT	D1	3	4.00	10.0		39	1904	136	0.071	0.071	50	1874	116	0.062	0.06
															<u> </u>	
				 		 									 	
pedestrian phase		5(p)	4		min c	rossing	time =	16	sec	GM +	8	sec F	GM =	24	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr)	1			N	S=1940+	+100(W-3	.25) S=	2080+100)(W-3.25)	Note:		
	→ 7	1				\rightarrow	6		S _M =S÷(1				÷(1+1.5f/r)			
34 †	546	/		28 †		417		/			Check		Check			
101				\rightarrow	113					AM	Pedestrian	PM	Pedestrian			
178	11			- 1			4			Peak	Phase	Peak	Phase			
1/8	11 82 . T			135		E0	. 1		Sum y	0.391		0.358				
	83 😽	•				58		•	L (s)	47		47		İ		
274	42				324		5 4		C (s)	110		110		İ		
238	66			217	\longleftrightarrow	33			practical y	0.515		0.515		1		
									R.C. (%)	32%		44%		<u> </u>		
1	2				3				4				5			
↓ → B2 B1	↑ .									5 ← . –	(p)					
52 51		C1						. 🕇		†	†					
A1 A2							D1	←	5(p)) ! i	!	5(p)				
← →										▼	·-·*					
										5	(p)					
AM G = I/G =	6 G=		I/G =	7	G =		I/G =	10	G =	24	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	6 G=			7	G =		I/G =		G =		I/G =		G =			
															I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

Junction: J11 - Wang Chiu Road / Kai Lai Road / Kai Lok Street Job Number: J7363

 Scenario:
 with KITEC
 R1 / P.11-5

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design Fear. 2032	Designe	ғи Бу.				-	Checke	и Бу.				-		00 0		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
Wang Chiu Road NB	LT+SA	A1	1	3.10	15.0	Gradient	89	(pcu/hr) 1768	(pcu/hr) 273	0.154		81	(pcu/hr) 1780	(pcu/hr) 271	0.152	
Varig Office (Voca 14D	SA+RT	A2	1	3.20	15.0		21	2032	314		0.155		2053	312	0.152	0.15
Wang Chiu Road SB	LT+SA	B1	1	3.40	15.0		3	1950	270	0.138		3	1949	207	0.106	
	SA	B2	1	3.40				2095	291	0.139			2095	222	0.106	
Kai Lai Road EB	LT+SA+RT	C1	2	4.40	10.0		68	1866	319	0.171	0.171	59	1888	280	0.148	0.14
Kai Lok Road WB	LT+SA+RT	D1	3	4.00	10.0		39	1903	138	0.073	0.073	50	1874	118	0.063	0.06
pedestrian phase		5(p)	4		min c	rossing	time =	16	sec	GM +	8	sec F	GM =	24	sec	
_																
			In													
M Traffic Flow (pcu/hr)	7	N 1	PM Traffic	Flow (pcu/hr)		▼	6	,	S=1940+ S _M =S÷(1				(W-3.25) (1+1.5f/r)			
35 103	554	1		28	115	423		1		AM Peak	Check Pedestrian Phase	PM Peak	Check Pedestrian Phase			
181	84			137		50	. 1		Sum y	0.398		0.363				
278	04				329	59	55		L (s)	47		47				
242	43 7			220	329	34	55		C (s)	110 0.515		110 0.515				
212	•			220					R.C. (%)	29%		42%				
	2				3				4				5			
11.										5	(p)					
↓ ↓ B2 B1		C1					_	1		+ · -	·-·*	F(-)				
A1 A2		C1					D1	-	· 5(p)	† † †	(p)	5(p)				
	6 G = G =	C1	I/G =	7	G = G =		D1	10	G = G =	24	·-·•	3	G =		I/G =	

CKM Asia Limited J11

I/G =

I/G =

I/G =

 Junction:
 J11 - Wang Chiu Road / Kai Lai Road / Kai Lok Street
 Job Number:
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.11-6

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

besign rear. <u>2002</u>	Design	ou 2 y .				•	Oncone	-				-	Date.		randary .	
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
						Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Vang Chiu Road NB	LT+SA		1	3.10			89	1768	273	0.154		81	1780	271	0.152	
	SA+RT	A2	1	3.20	15.0		21	2032	314	0.155	0.155	11	2053	312	0.152	0.15
Mana Chiu Baad CB	LTICA	D4	1	2.40	15.0		3	1050	270	0.120		3	1949	207	0.106	
Wang Chiu Road SB	LT+SA SA	B1 B2	1	3.40	15.0		3	1950 2095	270 291	0.138		3	2095	207 222	0.106 0.106	
	<u> </u>	DZ.	'	3.40				2095	291	0.139			2093	222	0.100	
Kai Lai Road EB	LT+SA+RT	C1	2	4.40	10.0		68	1866	319	0.171	0.171	59	1888	280	0.148	0.14
Kai Lok Road WB	LT+SA+RT	D1	3	4.00	10.0		39	1903	138	0.073	0.073	50	1874	118	0.063	0.06
pedestrian phase		5(p)	4		min c	rossing	time =	16	sec	GM +	8	sec F	GM =	24	sec	
AM Traffic Flow (pcu/hr)	→ 7	N 1	PM Traffic	Flow (pcu/hr)	_	• 6	N 1	S=1940+ S _M =S÷(1)(W-3.25) -(1+1.5f/r)			
35 †	554	/		28 †		¥ 423		/	\	AM	Check Pedestrian	PM	Check Pedestrian			
181	11			137	115		4		0	Peak 0.398	Phase	Peak 0.363	Phase			
101	84 🕌			107		59	1	-	Sum y	47		47				
278	43				329		55		C (s)	110		110				
242	67			220	$\stackrel{\uparrow}{\longleftrightarrow}$	34			practical y			0.515				
Ì					` `				R.C. (%)			42%				
	2				3				4				5			
B2 B1	1									5	(p)					
A1 A2		C1					D1	+	5(p)	, <u>†</u>	† :	5(p)				
+										5	(p)					
AM G = I/G = G = I/G =	6 G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
G = I/G = PM G = I/G =	6 G=		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

Junction: J11 - Wang Chiu Road / Kai Lai Road / Kai Lok Street Job Number: J7363

Scenario: with Proposed Redevelopment R1 / P.11-7

Design Year: 2032 Designed By: _____ Checked By: _____ Date: ____ 08 January 2025

besign real. <u>2002</u>	Design	,				•	Onconc	,	-			-	Date.		andary 2	
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
						Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Vang Chiu Road NB	LT+SA	A1	1	3.10			89	1768	273	0.154		81	1780	271	0.152	
	SA+RT	A2	1	3.20	15.0		21	2032	314	0.155	0.155	11	2053	312	0.152	0.15
Nana Chiu Daad CD	LTICA	D1	1	2.40	15.0		3	1050	270	0.120		3	1949	207	0.106	
Wang Chiu Road SB	LT+SA SA	B1 B2	1	3.40	15.0		3	1950 2095	270 291	0.138		<u> </u>	2095	207 222	0.106 0.106	
	<u> </u>	DZ	1	3.40				2093	291	0.139			2095	222	0.100	
Kai Lai Road EB	LT+SA+RT	C1	2	4.40	10.0		68	1866	319	0.171	0.171	59	1888	280	0.148	0.14
Kai Lok Road WB	LT+SA+RT	D1	3	4.00	10.0		39	1903	138	0.073	0.073	50	1874	118	0.063	0.06
oedestrian phase		5(p)	4		min cı	rossing	time =	16	sec	GM +	8	sec F	GM =	24	sec	
AM Traffic Flow (pcu/hr)	→ 7	N 1	PM Traffic I	Flow (pcu/hr)	_	· 6	N 1	S=1940+ S _M =S÷(1				(W-3.25) (1+1.5f/r)			
35	♦ 554	1		28		♦ 423		/	OM 0.(1	1.01/1/	Check	(0 200)	Check			
103					115					AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
↓ 181	11			↓ 137			4		Sum y	0.398		0.363				
	84 🕌					59	\leftarrow		L (s)	47		47				
278	43				329		55		C (s)	110		110				
242				220	\leftarrow	34			practical y			0.515				
					` `				R.C. (%)	29%		42%				
	2				3				4				5			
↓ ↓ B2 B1										5	(p)					
		C1					Π1	←	5(p)	† ·	†	5(p)				
A1 A2							וט	+	5(β)	+	·-·•	~(P)				
AM G = I/G =	6 G=		I/G =	7	G =		I/G =	10	G =	24	(p) I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	6 G =		I/G =	7	G =		I/G =	10	G =	24	I/G =	3	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J12 - Wang Kwong Road / Kai Wah Street
 J7363

 Scenario:
 existing condition
 R1 / P.12-1

Design Year: 2024 Designed By: Checked By: Date: 08 January 2025

Design Year: 2024	Design	ed By:				-	Checke	d By:				-	Date:	08 .	January 2	2025
		l	ı		l	I			AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Kwong Road SB	SA	A1	1	3.40		Ordaloni		1955	223	0.114			1955	196	0.100	
Traing (World Noad OB	SA+RT	A2	1	3.30	15.0		39	2007	229	0.114	0.114	34	2016	202	0.100	0.100
	OATIVI	\\Z	<u>'</u>	0.00	10.0		00	2001	223	0.114	0.114	34	2010	202	0.100	0.100
Wana Kwana Daad ND	LTICA	B1	2	3.50	10.0		61	1801	194	0.108		54	1010	160	0.089	
Wang Kwong Road NB	LT+SA		2		10.0		01				0.400	54	1819	162		0.000
	SA	B2	2	3.80				2135	231	0.108	0.108		2135	190	0.089	0.089
			_													
Kai Wah Street EB	LT+RT	C1	3	3.10	15.0		100	1877	382	0.203		100	1750	369	0.211	0.211
	RT	C2	3	3.40	20.0		100	1949	396	0.203	0.203	100	1949	410	0.210	
pedestrian phase		4(p)	4		min c	rossing	time =	8	Sec	GM +	7	sec F	GM =	15	sec	
pedestilari pilase			4					12		GM +	10		GM =	22		
		5(p)				rossing								14	sec	
		6(p)	4		min c	rossing	ume =	8	sec	GM +	6	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr				N	S=1940+	-100(W–3	.25) S=2	2080+100	(W-3.25)	Note:		
89 ←	1	1			69	\leftarrow			S _M =S÷(1	+1.5f/r)	S _M =	=(S-230)÷	(1+1.5f/r)			
117 3	¥ 363	/		143		329		/			Check		Check			
\dashv				\dashv						AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
↓ 661				↓ 636					Q1	0.425		0.400				
301				550					Sum y	40		40				
207					265				L (s)							
307					265 				C (s)	140		140				
118 🗲				87	\neg				practical y			0.643				
									R.C. (%)	51%		61%				
1	2				3				4				5			
← ↓ ↓										4	(p)					
A2 A1					C1					_ ←	· - · >					
		B1 B2			→ C2				5(p)	-						
		♣								↓						
		1								6	(p)					
AM G = I/G =	7 G=		I/G =	. 7	G =		1/0	5	G =	22	I/G =	2	G =		1/0	
							I/G =	J		22					I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
	7 G=		I/G =		G =		I/G =	5	G =	22	I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J12 - Wang Kwong Road / Kai Wah Street
 J7363

 Scenario:
 with KITEC
 R1 / P.12-2

Design Year: 2029 Designed By: Checked By: Date: 08 January 2025

Design Year: 2029	Design	ed By:				-	Checke	d By:				-	Date:	08 J	lanuary 2	2025
		I	1		I	I	1		AM Peak			ı		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Kwong Road SB	SA	A1	1	3.40				1955	247	0.126			1955	217	0.111	
J	SA+RT	A2	1	3.30	15.0		35	2015	254	0.126	0.126	35	2015	223	0.111	0.111
Wang Kwong Road NB	LT+SA	B1	2	3.50	10.0		78	1760	230	0.131		43	1846	186	0.101	
Wang Kwong Koad ND	SA	B2	1	3.80	10.0		70		280		0.131	40		215	0.101	0.101
	SA	DZ	2	3.00				2135	200	0.131	0.131		2135	215	0.101	0.101
														—		
Kai Wah Street EB	LT+RT	C1	3	3.10	15.0		100	1877	459		0.245	100	1750	414	0.237	
	RT	C2	3	3.40	20.0		100	1949	476	0.244		100	1949	461	0.237	0.237
														<u> </u>		
														<u> </u>		
															-	
		4()						_		014	_	_		1-		
pedestrian phase		4(p)	4			rossing		8		GM +	7		GM =	15	sec	
		5(p)	4			rossing		12		GM +	10		GM =	22	sec	
		6(p)	4		min c	rossing	time =	8	sec	GM +	6	sec F	GM =	14	sec	
														<u> </u>		
AM Traffic Flow (pcu/hr)			PM Traffic	Flow (pcu/hr)				S=1040+	100//// 3	25) 9-	2080±100	(W-3.25)	Note:		
88 ←		N			78	•		N								
	↓ 113	1		165		↓ 362		1	S _M =S÷(1	+1.51/г)	S _M =	=(S-230)÷	(1+1.5f/r)			
102	+13	,		103		302		•		AM	Check Pedestrian	PM	Check Pedestrian			
				\neg						Peak	Phase	Peak	Phase			
833				7 10					Sum y	0.502		0.448				
									L (s)	40		40				
331					321				C (s)	140		140		l		
179 ←				80	\leftarrow				practical y	0.643		0.643				
									R.C. (%)	28%		44%				
1 1	12				13				14				15			
A2 A1					+					4	(p)					
AZ AT					C1					<u> † </u>	•					
		B1 B2			→ C2				5(p)	-						
		- ↑↑								▼						
									<u></u>	6	(p)					
AM G = I/G =	7 G=		I/G =	. 7	G =		I/G =	5	G =	22	I/G =	2	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
* *	7 G=		I/G =		G =		I/G =	5	G =	22	I/G =		G =		I/G =	
								J								
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J12 - Wang Kwong Road / Kai Wah Street
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.12-3

Design Year: 2029 Designed By: Checked By: Date: 08 January 2025

Design Year: 2029	Design	ed By:				-	Checke	d By:				-	Date:	08 J	lanuary 2	2025
		I	1		I				AM Peak			ı		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Kwong Road SB	SA	A1	1	3.40				1955	247	0.126			1955	217	0.111	
J	SA+RT	A2	1	3.30	15.0		35	2015	254	0.126	0.126	35	2015	223	0.111	0.111
Wang Kwong Road NB	LT+SA	B1	2	3.50	10.0		78	1760	230	0.131		43	1846	186	0.101	
rrang rmeng read rib	SA	B2	2	3.80	10.0			2135	280		0.131		2135	215	0.101	0.101
	O/ C	DZ		0.00				2100	200	0.101	0.101		2100	210	0.101	0.101
Kai Wah Street EB	LT+RT	C1	3	3.10	15.0		100	1877	456	0.243		100	1750	409	0.234	
Ital Wall Glicet LD	RT	C2	3	3.40	20.0		100	1949	474		0.243	100	1949	456	0.234	0.234
	IXI	UZ.	3	3.40	20.0		100	1343	4/4	0.243	0.243	100	1343	430	0.234	0.234
pedestrian phase		4(p)	4		min c	rossing	time =	8	sec	GM +	7	sec F	GM =	15	sec	
J		5(p)	4			rossing		12		GM +	10		GM =	22	sec	
		6(p)	4			rossing		8		GM +	6		GM =	14	sec	
		υ(ρ)			111111111111111111111111111111111111111	iossing	unic –	0	300	OIVI 1		3001	OW -	17	300	
AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr)			N	S=1940+	-100(W–3	.25) S=:	2080+100	(W-3.25)	Note:		
88 ←	1	1			78	\dashv			S _M =S÷(1				(1+1.5f/r)			
102	113	/		165		362		/			Check		Check			
				_						AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
↓ 828				↓ 700					0	0.500	THESC	0.445	THESC			
020				700					Sum y							
204					204				L (s)	40		40				
331					321 1				C (s)	140		140				
179 🕶				80					practical y	0.643		0.643				
									R.C. (%)	28%		44%				
1	2				3				4				5			
← ↓ ↓										4	(p)					
A2 A1					C1					_ ← -	· - · >					
		B1 B2			— † C2				5(p)	Ī						
		1 1								↓ •	•					
										6	(p)					
AM 0-	7			7	1				I				1			
	7 G=		I/G =		G =		I/G =	5	G =	22	I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	7 G=		I/G =	. 7	G =		I/G =	5	G =	22	I/G =	2	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J12 - Wang Kwong Road / Kai Wah Street
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.12-4

Design Year: 2029 Designed By: Checked By: Date: 08 January 2025

Design Year: 2029	Design	ed By:				-	Checke	d By:				-	Date:	08 .	January :	2025
		1	l		1	1			AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Kwong Road SB	SA	A1	1	3.40				1955	247	0.126			1955	217	0.111	
J J	SA+RT	A2	1	3.30	15.0		35	2015	254	0.126	0.126	35	2015	223	0.111	0.111
Wang Kwong Road NB	LT+SA	B1	2	3.50	10.0		78	1760	230	0.131		43	1846	186	0.101	
Traing (troing (toda (to	SA	B2	2	3.80	10.0			2135	280		0.131		2135	215	0.101	0 101
	0,1			0.00				2100	200	0.101	0.101		2100	210	0.101	0.10
Kai Wah Street EB	LT+RT	C1	3	3.10	15.0		100	1877	457	0.243		100	1750	412	0.235	
ital Wall Officer EB	RT	C2	3	3.40	20.0		100	1949	475	0.244	0.244	100	1949	458	0.235	0.235
	IXI	02		3.40	20.0		100	1343	475	0.244	0.244	100	1343	400	0.200	0.20
				 					 	 						
pedestrian phase		4(p)	4		min c	rossing	time =	8		GM +	7		GM =	15	sec	
		5(p)	4		min c	rossing	time =	12	sec	GM +	10	sec F	GM =	22	sec	
		6(p)	4		min c	rossing	time =	8	sec	GM +	6	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		NI	PM Traffic	Flow (pcu/hr)			N	S=1940+	-100(W–3	.25) S=2	2080+100	(W-3.25)	Note:		
88 ←		N 1			78	\leftarrow			S _M =S÷(1				· ·(1+1.5f/r)			
102 4	† 13	/		165		362		/	\		Check	,	Check			
\perp				1						AM	Pedestrian	PM	Pedestrian			
↓				↓						Peak	Phase	Peak	Phase			
830				705					Sum y	0.501		0.446				
					60 :				L (s)	40		40				
331					321				C (s)	140		140				
179 ←				80	$\overline{}$				practical y			0.643				
									R.C. (%)	28%		44%				
1	2				3				4				5			
← ↓ ↓										4	(p)					
A2 A1					— 1 c₁					* *·-	+					
		B1 B2			→ C2				5(p)	į						
		₊ ↑								↓ ←	•					
										6	(p)					
AM G = I/G =	7 G=		I/G =	7	G =		I/G =	5	G =	22	I/G =	2	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =	J	G =	~~	I/G =		G =		I/G =	
	7 G=		I/G =		G =		I/G =	5	G =	22	I/G =		G =		I/G =	
								J								
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J12 - Wang Kwong Road / Kai Wah Street
 J7363

 Scenario:
 with KITEC
 R1 / P.12-5

 Design Year:
 2032
 Designed By:
 Checked By:
 Date:
 08 January 2025

Design Year: 2032	Designe	еа ву:				-	Checke	еа ву:				-	Date:	08.0	anuary .	2025
					l		1		AM Peak			ī		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Kwong Road SB	SA	A1	1	3.40		Oradion		1955	250	0.128			1955	220	0.113	
					45.0		24				0.400	25				0.440
	SA+RT	A2	1	3.30	15.0		34	2015	258	0.128	0.128	35	2015	226	0.112	0.112
Wang Kwong Road NB	LT+SA	B1	2	3.50	10.0		78	1760	234	0.133		43	1846	189	0.102	
	SA	B2	2	3.80				2135	284	0.133	0.133		2135	218	0.102	0.102
Kai Wah Street EB	LT+RT	C1	3	3.10	15.0		100	1877	466	0 248	0.248	100	1750	420	0.240	
rtai vvaii Oticet EB	RT	C2	3		20.0		100	1949	483	0.248	0.240	100	1949	467	0.240	0.240
	KI	02	3	3.40	20.0		100	1949	403	0.246		100	1949	407	0.240	0.240
				t		t			t	t		İ				
				 		 			 	 		 				
			-	-		-			-	-						
								_			_	_				
pedestrian phase		4(p)	4			rossing		8		GM +	7		GM =	15	sec	
		5(p)	4		min c	rossing	time =	12	sec	GM +	10	sec F	GM =	22	sec	
		6(p)	4		min c	rossing	time =	8	sec	GM +	6	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr)				N	S=1940+	-100(W–3	.25) S=:	2080+100	(W-3.25)	Note:		
89 ←		7			79	-			S _M =S÷(1				(1+1.5f/r)			
† 104 419		- /		167		367		/	-W - (:	,		(= ===)				
I 1		•		Ť		001				AM	Check Pedestrian	PM	Check Pedestrian			
				\neg						Peak	Phase	Peak	Phase			
845				720					Sum y	0.509		0.454				
									L (s)	40		40				
336					326				C (s)	140		140				
182				81	†					0.643		0.643				
102				01	.				practical y							
									R.C. (%)	26%		42%				
1	2				3				4				5			
										4	()					
A2 A1										← · −	(p) ·-·►					
					↓				·	†						
		B1 B2 ▲ ▲			→ C2				5(p)	<u>.</u>						
		←								* ←	·-· >					
										6	(p)					
AM G = 1/G = 7	G =		I/G =	7	G =		I/G =	5	G =	22	I/G =	2	G =		I/G =	
G = I/G =			I/G =		G =		I/G =		G =	=	I/G =				I/G =	
	G =							_					G =			
PM G = 1/G = 7	G =		I/G =	7	G =		I/G =	5	G =	22	I/G =	2	G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J12 - Wang Kwong Road / Kai Wah Street
 J7363

 Scenario:
 with Approved Redevelopment
 R1 / P.12-6

Design Year: 2032 Designed By: Checked By: Date: 08 January 2025

Design Year: 2032	Design	ed By:				-	Checke	ed By:				-	Date:	08 J	lanuary 2	2025
					I		1		AM Peak			ı		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Kwong Road SB	SA	A1	1	3.40				1955	250	0.128			1955	220	0.113	0.113
	SA+RT		1	3.30	15.0		34	2015	258	0.128	0.128	35	2015	226	0.112	
Wang Kwong Road NB	LT+SA	B1	2	3.50	10.0		78	1760	234	0.133		43	1846	189	0.102	
······································	SA		2	3.80				2135	284		0.133		2135	218	0.102	0.102
	<u> </u>		_	0.00				2100	201	0.100	0.100		2100	210	0.102	0.102
Kai Wah Street EB	LT+RT	C1	3	3.10	15.0		100	1877	463	0.247		100	1750	415	0.237	
rtai vvair oticet EB	RT		3	3.40	20.0		100	1949	481	0.247	0.247	100	1949	462	0.237	0.237
	IXI	02	3	3.40	20.0		100	1343	401	0.247	0.241	100	1343	402	0.231	0.231
							 					 			\vdash	
						-			-	-					\vdash	
pedestrian phase		4(p)	4		min crossing time =			8	sec GM + 7		sec FGM =		15	sec		
		5(p)		4 min crossing				12			10		sec FGM =		sec	
		6(p)	4			rossing		8		GM +	6		GM =	22 14	sec	
		υ(ρ)	7		111111111111111111111111111111111111111	iossing	une –		300	OIVI 1		3001	OIVI -	17	300	
															\vdash	
AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr)			N	S=1940+	-100(W–3	.25) S=:	2080+100	(W-3.25)	Note:		
89 ←		1			79								(1+1.5f/r)			
104 4	19	/		1 67		367		/			Check		Check			
				\dashv						AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
↓ 840				7 ₁₀					0	0.508	THESC	0.452	Tilasc			
040									Sum y							
000					326				L (s)	40		40				
336				81					C (s)	140		140				
182 ←				٠.					practical y	0.643		0.643				
									R.C. (%)	27%		42%				
1	2				3				4				5			
-										4	(p)					
A2 A1					C1					_ ← -	· - · >					
		B1 B2			— † C2				5(p)	Ī						
		1 1								↓ •	•					
		٦١								6	(p)					
AM 0-				7	1				I							
	7 G=		I/G =		G =		I/G =		G =	22	I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =	
PM G = I/G =	7 G=		I/G =	. 7	G =		I/G =	5	G =	22	I/G =	2	G =		I/G =	
G = I/G =	G =		I/G =	:	G =		I/G =		G =		I/G =		G =		I/G =	

 Junction:
 J12 - Wang Kwong Road / Kai Wah Street
 J7363

 Scenario:
 with Proposed Redevelopment
 R1 / P.12-7

Design Year: 2032 Designed By: Checked By: Date: 08 January 2025

Design Year: 2032	Design	ed By:				-	Checke	ed By:				-	Date:	08 J	lanuary 2	2025
<u> </u>		I	1		I		1		AM Peak			ı		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Wang Kwong Road SB	SA	A1	1	3.40				1955	250	0.128			1955	220	0.113	0.113
J	SA+RT	A2	1	3.30	15.0		34	2015	258	0.128	0.128	35	2015	226	0.112	
Wang Kwong Road NB	LT+SA	B1	2	3.50	10.0		78	1760	234	0.133		43	1846	189	0.102	
Wang Kwong Koad ND	SA	B2	2	3.80	10.0		70	2135	284		0.133	40	2135	218	0.102	0.102
	- SA	DZ		3.00				2133	204	0.133	0.133		2133	210	0.102	0.102
K : W O FD				0.40	45.0		400	4077	404	0.047	0.047	400	4750	447	0.000	
Kai Wah Street EB	LT+RT	C1	3	3.10	15.0		100	1877	464	0.247	0.247	100	1750	417	0.238	
	RT	C2	3	3.40	20.0		100	1949	482	0.247		100	1949	465	0.239	0.239
																
														<u> </u>		
														<u> </u>		
														<u> </u>		
pedestrian phase		4(p)	4				time =	8	sec GM + 7		sec FGM =		15	sec		
		5(p)	4		min c	rossing	time =	12	sec	GM +	10	sec F	GM =	22	sec	
		6(p)	4		min c	rossing	time =	8	sec	GM +	6	sec F	GM =	14	sec	
														<u> </u>		
														<u> </u>		
AM Traffic Flow (pcu/hr)	ı		PM Traffic	Flow (pcu/hr	\				1					Note:		
		N						N					(W-3.25)			
89 410		1		407	79	•		1	S _M =S÷(1+1.5f/r)			=(S–230)÷	(1+1.5f/r)			
104 4	19	'		167 1		367		'			Check		Check			
				\exists						AM Peak	Pedestrian Phase	PM Peak	Pedestrian Phase			
♦ 842				▼ 715					Sum y	0.508		0.453				
									L (s)	40		40				
336					326				C (s)	140		140				
182 ←				81	†				practical y	0.643		0.643				
102 1			01 7							26%		42%				
									R.C. (%)	20 /0		42 /0				
	2				3				4				5			
-										4	(p)					
A2 A1					— 1 C1					←· -	+					
		B1 B2			C2				5(p)	į						
		₊ ↑ 1								↓ ←						
										6	(p)					
AM G = I/G =	7 G=			. 7			1/0	5		22	1/0	2			110	
			I/G =		G =		I/G =		G =	22	I/G =		G =		I/G =	
G = I/G =	G =		I/G =		G =		I/G =	_	G =		I/G =		G =		I/G =	
	7 G =		I/G =	. 7	G =		I/G =	5	G =	22	I/G =	2	G =		I/G =	
G = I/G =	G =		I/G =	:	G =		I/G =		G =		I/G =		G =		I/G =	

Appendix B – Comment from SWD on Social Welfare Facilities (extract from TPB No. A/K22/37)

Comments from Social Welfare Department (Contact: Mr. Michael PANG, Tel.: 2116 5939)

I refer to your preceding email and memo seeking our comments on the proposed social welfare facilities involved in the captioned planning application for the redevelopment of Kowloon Bay International Trade and Exhibition Centre at 1 Trademart Drive, Kowloon Bay. Comments from the Social Welfare Department (SWD) are appended in the ensuing paragraphs.

Our comments on the applicant's pre-submission were given to the applicant vide email of 27.2.2024. That is, SWD does not support the applicant's proposal of providing 30-place Residential Care Home for the Elderly (RCHE) and 20-place Day Care Centre for the Elderly (DE) which were proposed to be handed over to the Government as Government Accommodation upon completion of construction. The applicant has subsequently provided response-to-comment (R-to-C) in April 2024 advising that the capacity of the RCHE and DE, which would be privately operated by the applicant, would be expanded to 60 places and 30 places respectively. The applicant has also confirmed in the R-to-C that Office Base of Social Work Service for Pre-primary Institutions (SWSPPI) would be incorporated into the development for handing over to SWD, but 30-place Supported Hostel for Mentally Handicapped Persons would not be considered.

We note that the aforesaid R-to-C has been reflected in the applicant's formal submission of the captioned planning application. Our comments on the applicant's pre-submission

are also valid for the formal submission. If the applicant proposes to hand over the 60-place RCHE and 30-place DE to SWD upon completion of construction, the proposal is not agreeable from service point of view. Nevertheless, to enable market diversity in the provision of residential / day care services for addressing the demand for quality service, we have no objection in principle from service perspective for the applicant's proposed development of 60-place RCHE and 30-place DE on conditions that -

- (i) the RCHE and DE including the associated parking spaces and loading and unloading bay are running on privately-financing mode with no financial implication, both capital and recurrent, on the Government; and
- (ii) the design and construction of the RCHE and DE shall comply with the height restriction, all relevant ordinances, regulations, licensing and statutory requirements. Specifically, the RCHE shall comply with the (i) Residential Care Homes (Elderly Persons) Ordinance (Cap. 459) and its subsidiary legislation; and (ii) the latest version of the Code of Practice for Residential Care Homes (Elderly Persons), etc. No part of an RCHE shall be situated at a height more than 24m above the ground floor, measuring vertically from the ground of the building to the floor of the premises at which the RCHE is to be situated.

As regards the provision of bare-shell premises for the SWSPPI which will be designed and constructed by the applicant and handed over to the Government upon completion, the applicant should confirm that -

- (i) the proposed GFA of 165 square metres is able to meet the design and construction of SWSPPI in accordance with the approved Schedule of Accommodation and other requirements as requested by SWD. According to the approved Schedule of Accommodation, the net operational floor area of SWSPPI is 95 square metres while the internal floor area is about 124 square metres;
- (ii) the SWSPPI does not have any parking space and loading and unloading bay; and (iii) no part of the welfare premises of SWSPPI is situated at a height more than 24 metres above the ground level, measuring vertically from the ground of the building to the highest floor level of the premises at which the welfare premises is to be situated.

Appendix C – Planned Cautionary Crossing at Trademart Drive (Extract of Email from EKEO)

From: chriswong@devb.gov.hk

Sent: Wednesday, 13 April, 2022 17:47

To: CKM Asia

Cc: Ada KY YAU; whcheng@devb.gov.hk; kelvinchan@devb.gov.hk

Subject: Re: Fw: TMD1: Redevelopment of KITEC at 1 Trademart Drive, Kowloon

Bay - s16 planning application (TPB No. S/K22/34)

Dear Mr. TANG,

I refer to your email on 13 April 2022.

Regarding the proposed cautionary crossing at Wang Chin Street, please refer to Item 8 (page 10 of the pdf file) at the following link: https://www.districtcouncils.gov.hk/kt/doc/2020_2023/tc/committee_meetings_doc/TDTC/21292/TDTC_12_2021_R.pdf

We understand that TD has requested the applicant to supplement with a TIA report. Please liaise with TD in this regard.

---- Forwarded by EKEO Enquiry/DEVB/HKSARG on 13/04/2022 15:15 -----

From: "CKM Asia" < mail@ckmasia.com.hk >

To: <<u>ekeo@devb.gov.hk</u>>
Date: 13/04/2022 15:09

Subject: TMD1: Redevelopment of KITEC at 1 Trademart Drive, Kowloon Bay - s16 planning application (TPB No.

S/K22/34)

Attn: DevB (EKEO) – Mr Kelvin Chan [Place Making Mgr (Planning) 1]

Dear Mr Chan,

We refer to the s16 planning application (TPB No. S/K22/34) for the captioned site.

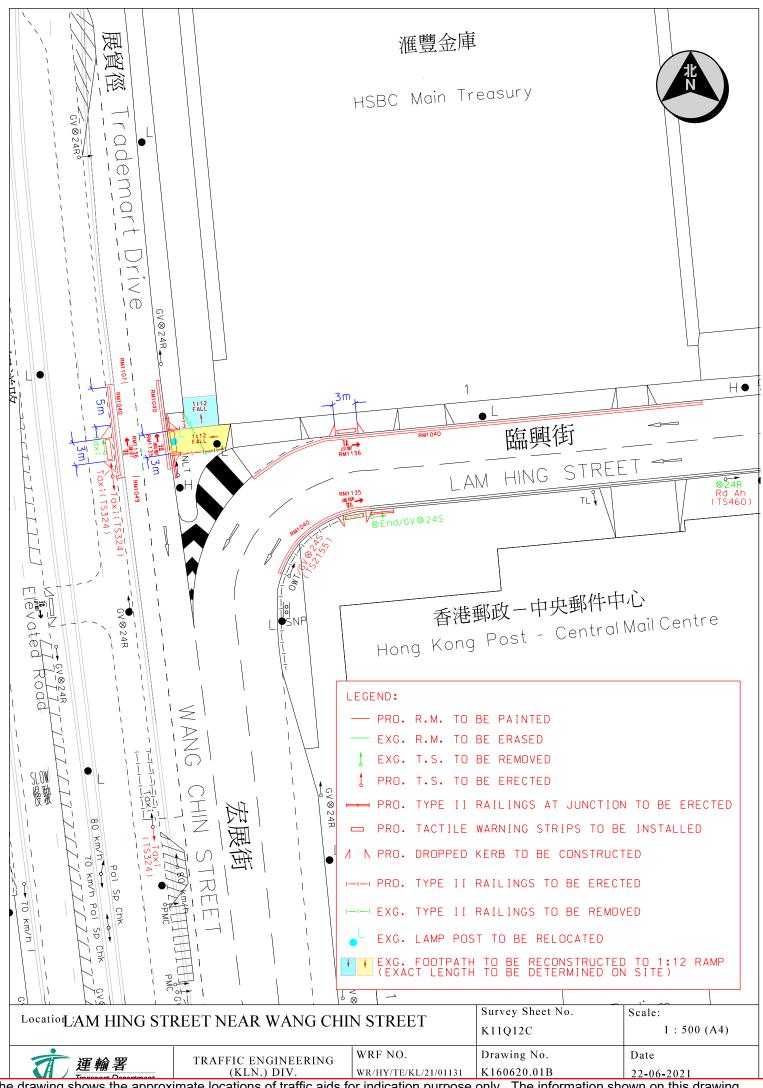
According to the attached comment from Transport Department (TD), "(5) It is noted that EKEO has proposed to add a cautionary crossing at Trademart Drive. Please ask the applicant to seek EKEO's views and consider their request".

As discussed yesterday, we would appreciate if you could provide more technical details (such as location, dimensions, etc) of the proposed cautionary crossing for information and to facilitate our response to TD comment.

Thank you for your attention.

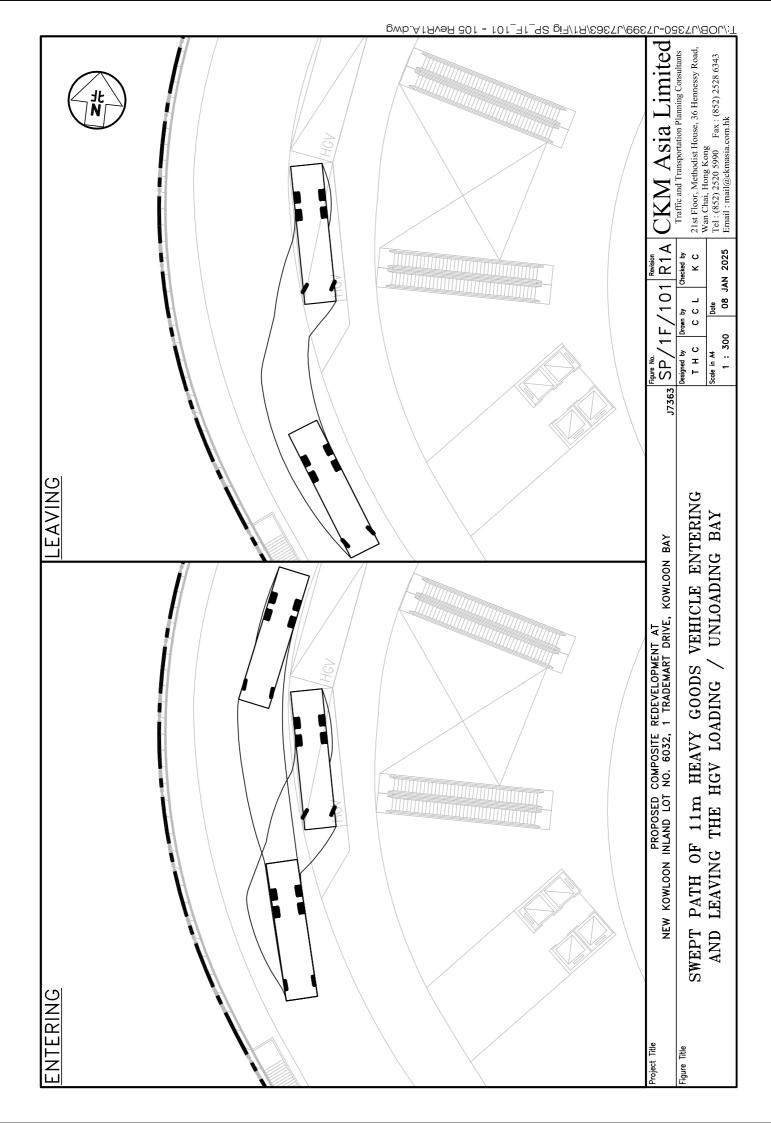
Regards,

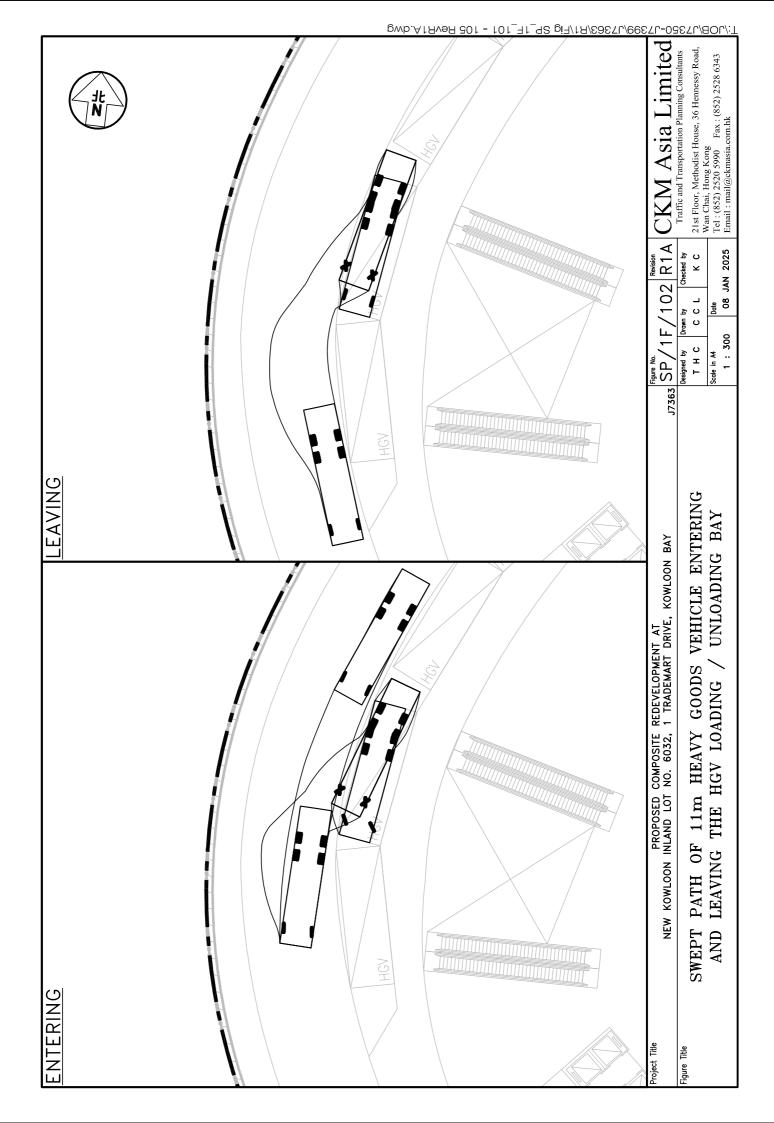
H.C. Tang

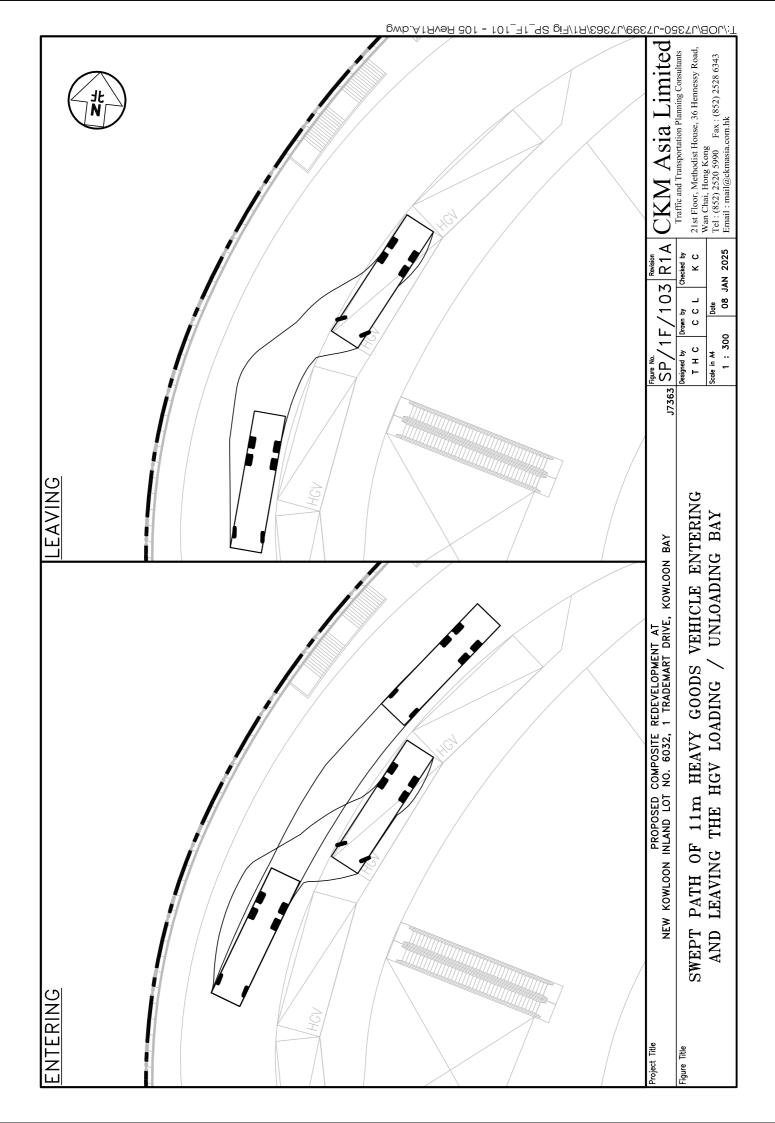

CKM Asia Limited Traffic and Transportation Planning Consultants

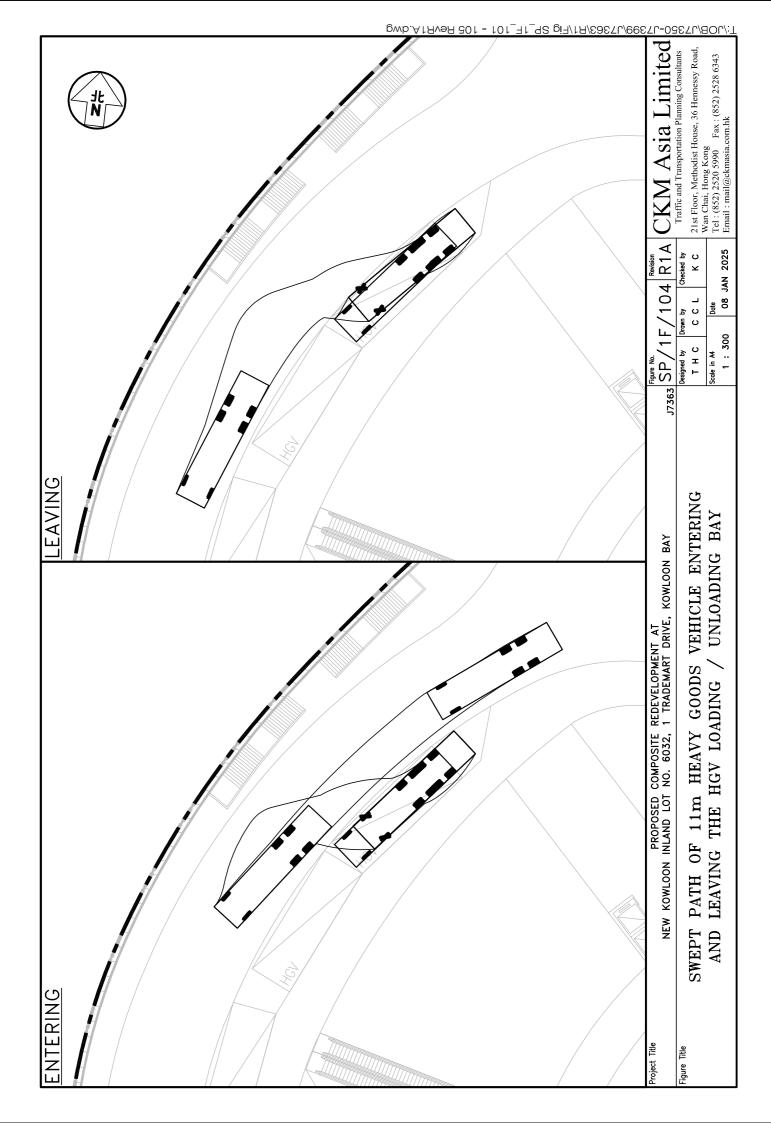
Phone: (852) 2520 5990 Fax: (852) 2528 6343

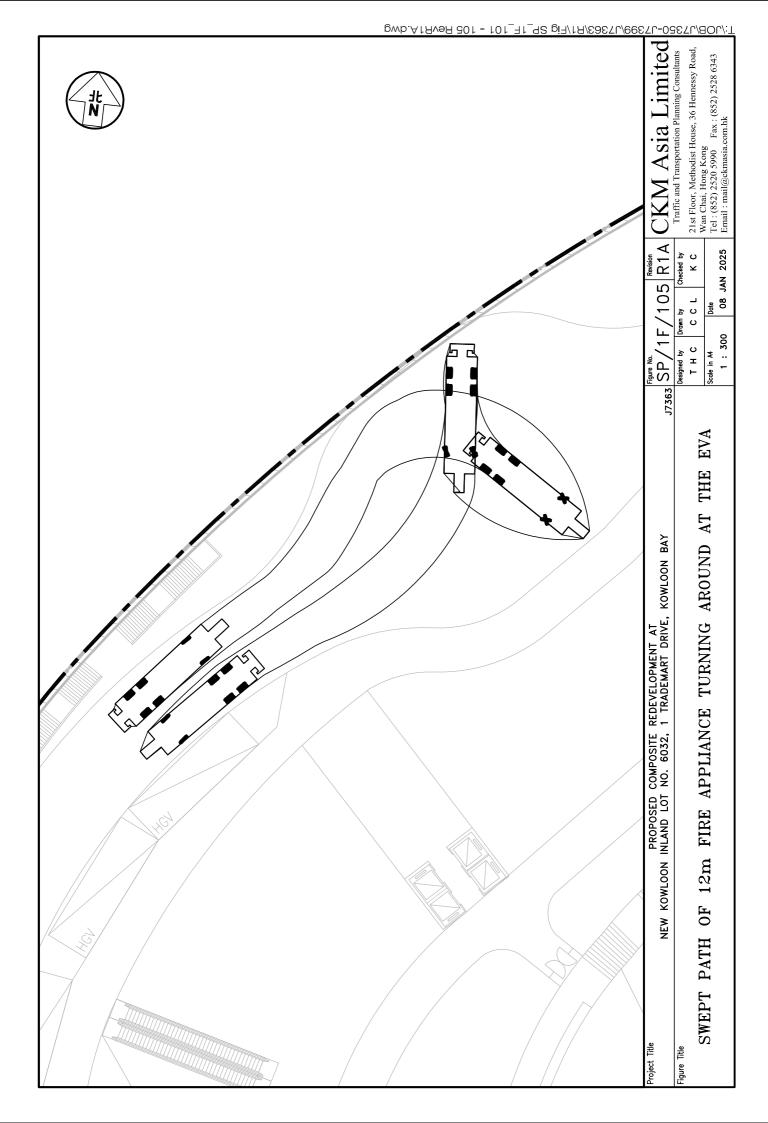
Email: mail@ckmasia.com.hk Website: www.ckmasia.com.hk

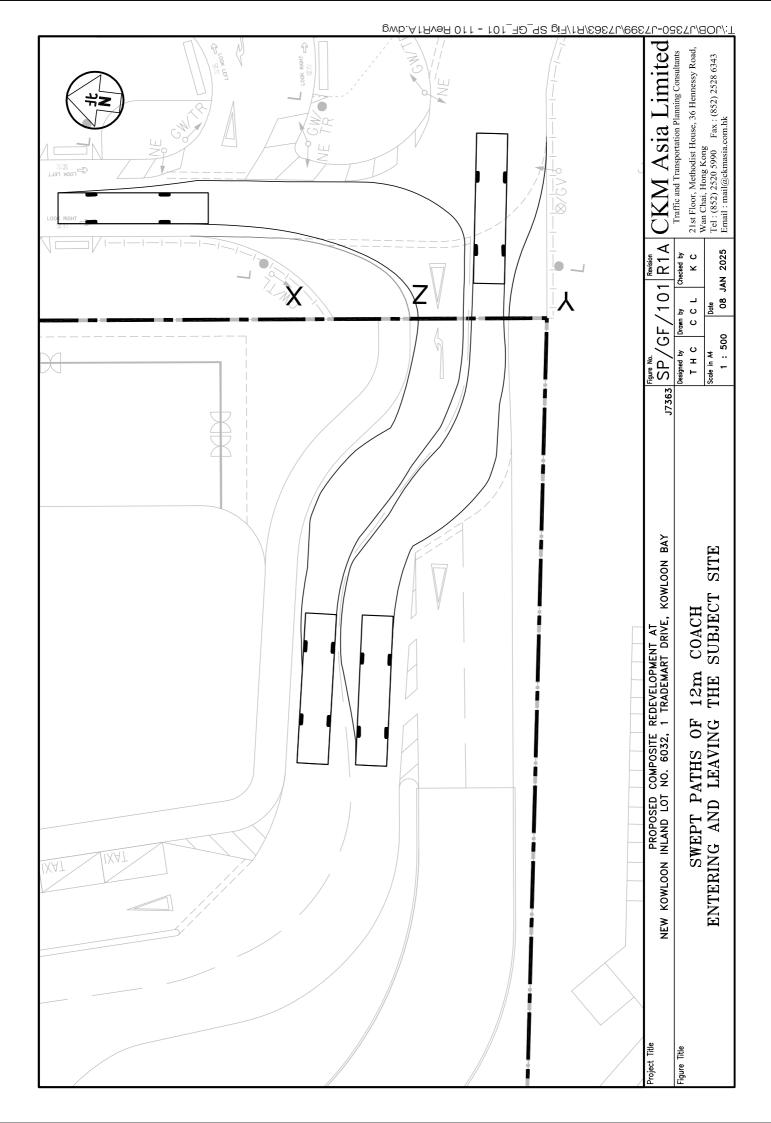

Address: 21/F, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong

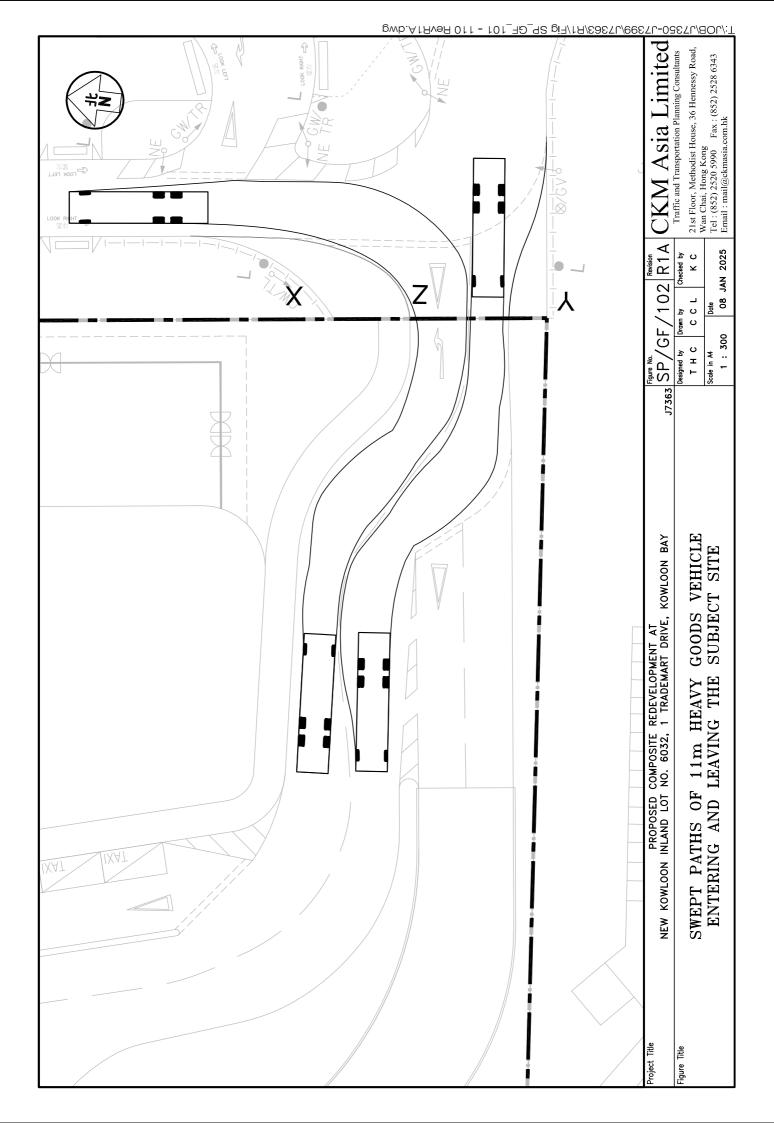

[attachment "TD comment.pdf" deleted by Matthew MT YUI/DEVB/HKSARG]

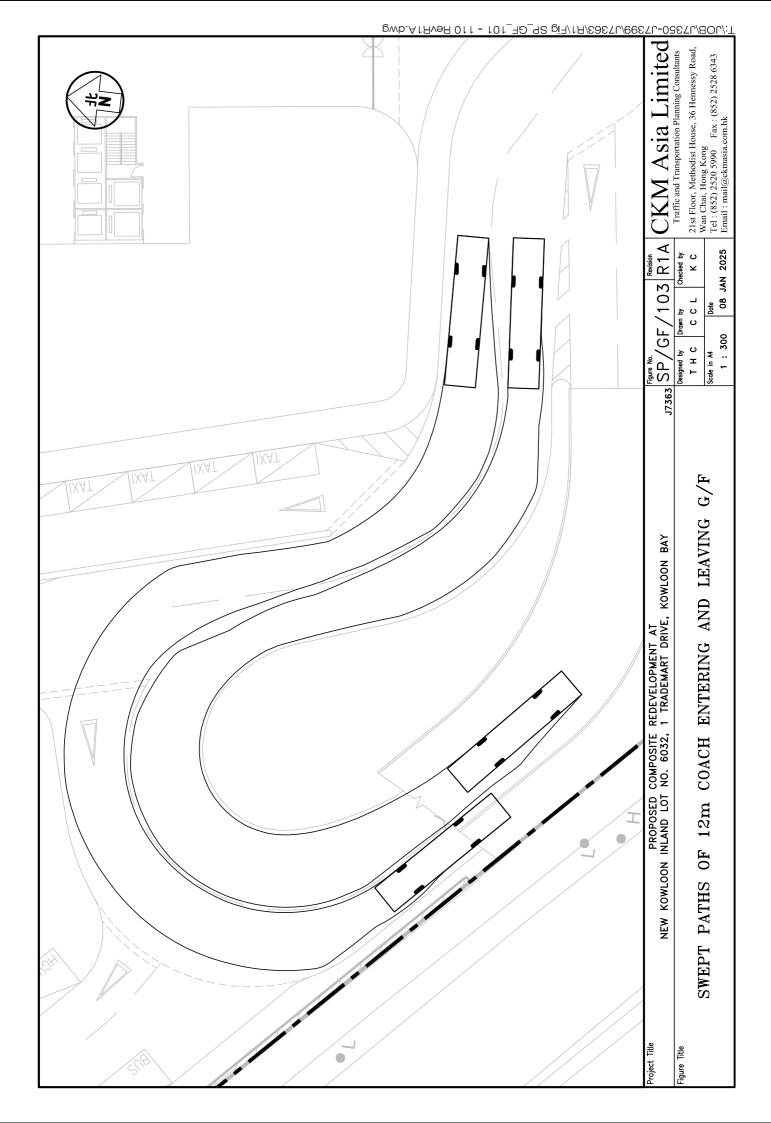


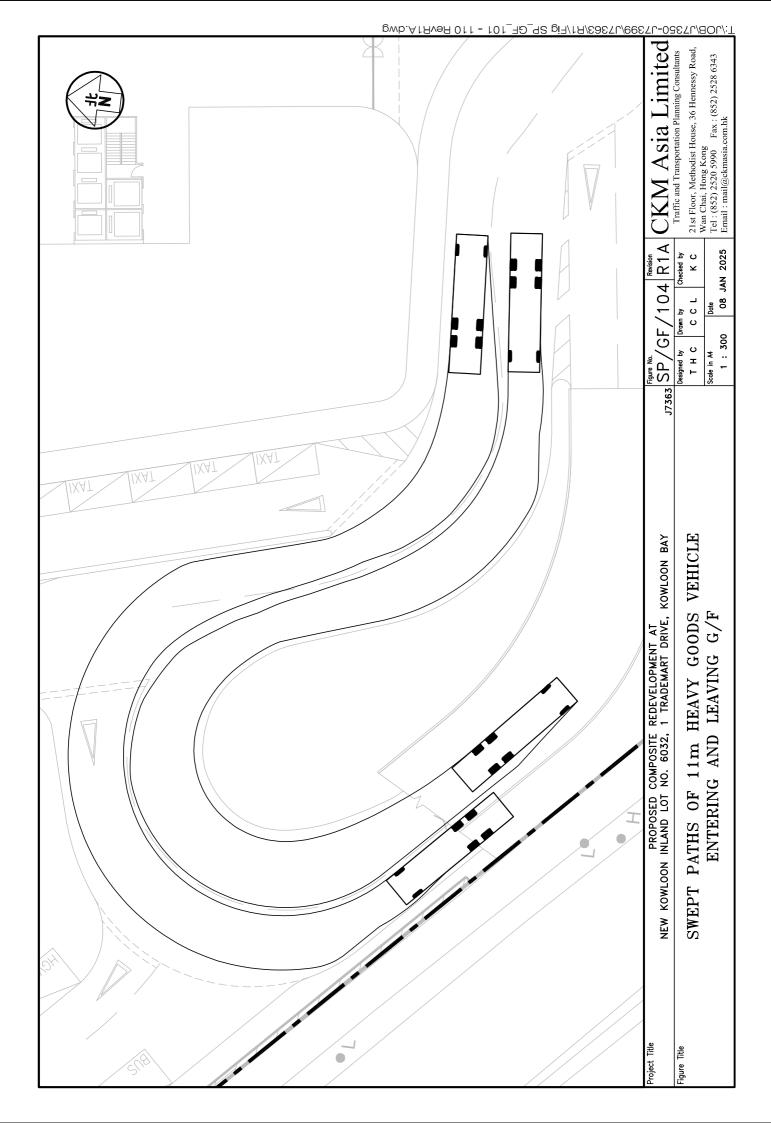

The drawing shows the approximate locations of traffic aids for indication purpose only. The information shown on this drawing should be interpreted by professional engineers. Reproduction by permission only.

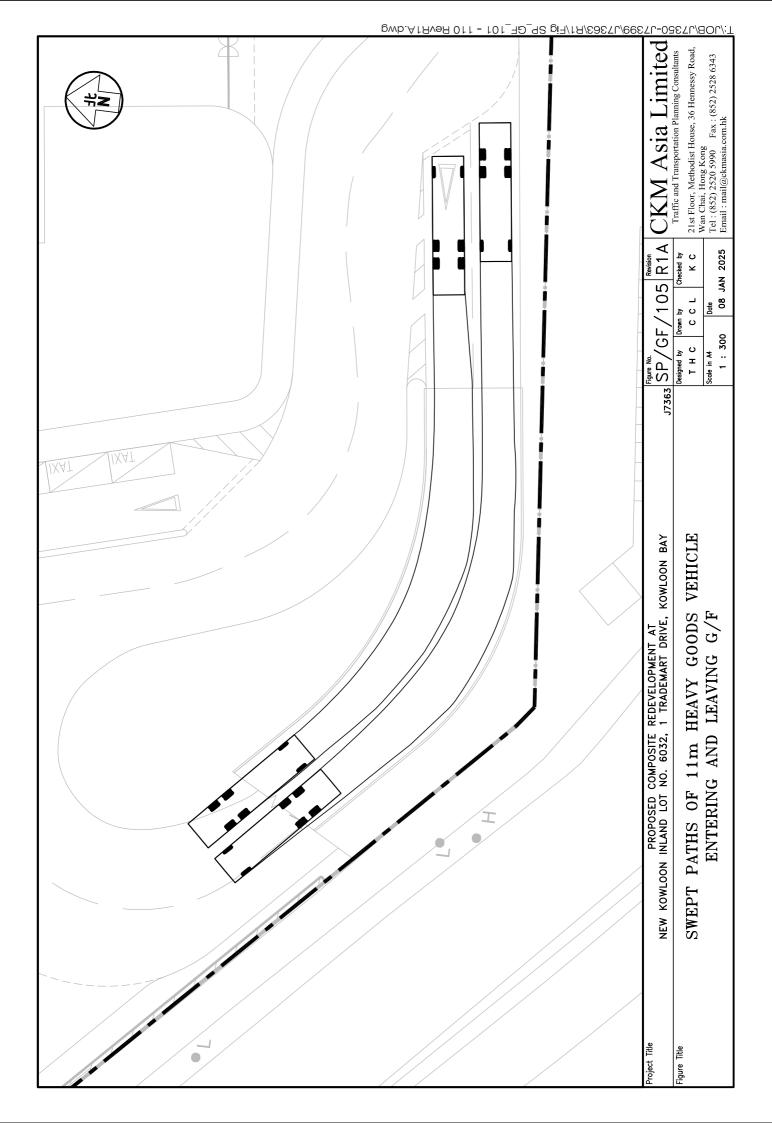


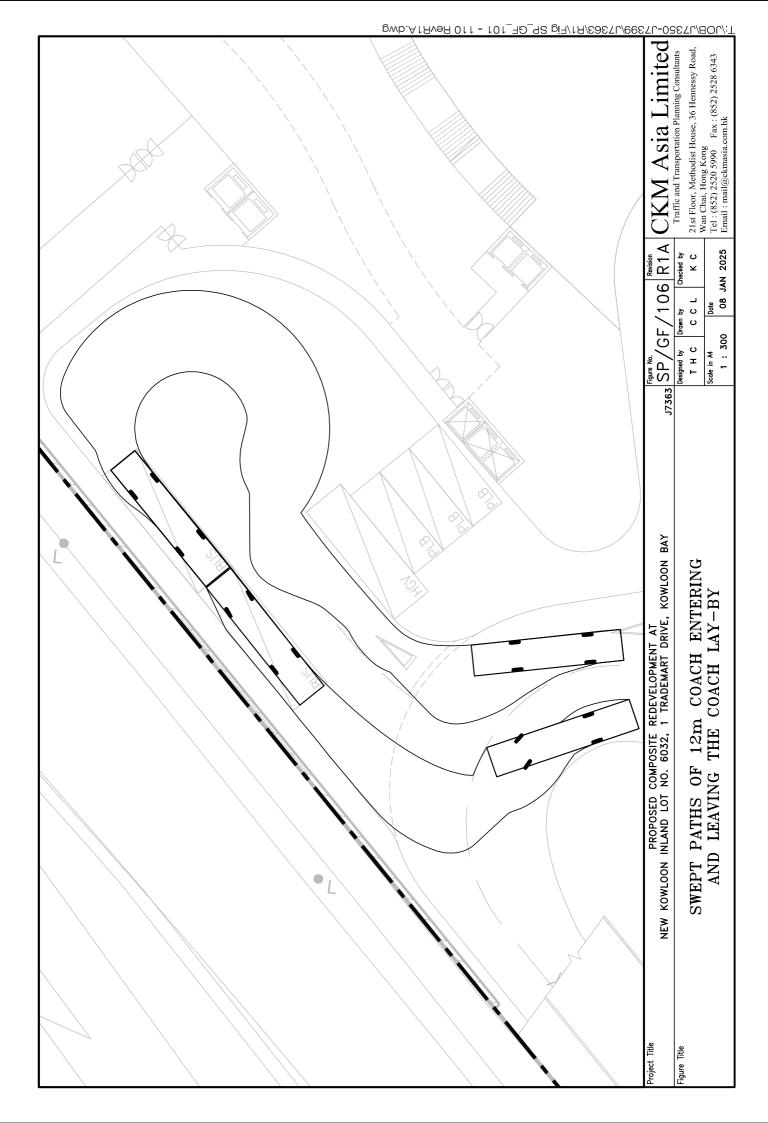


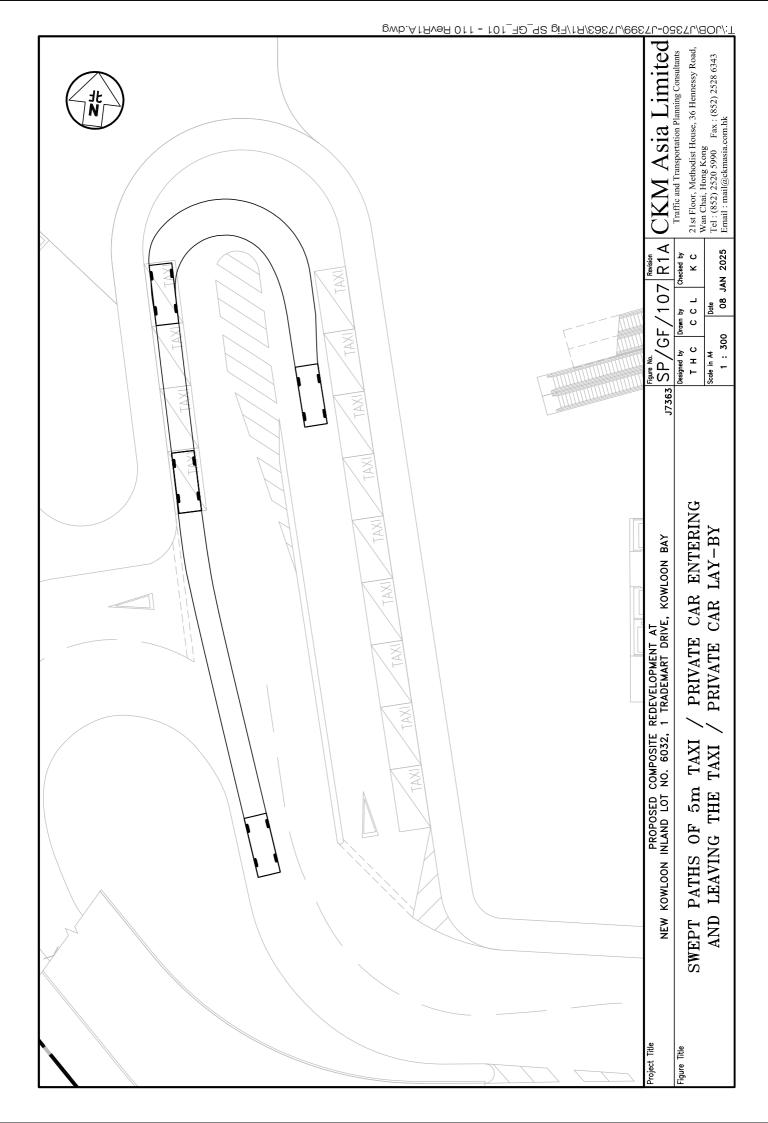


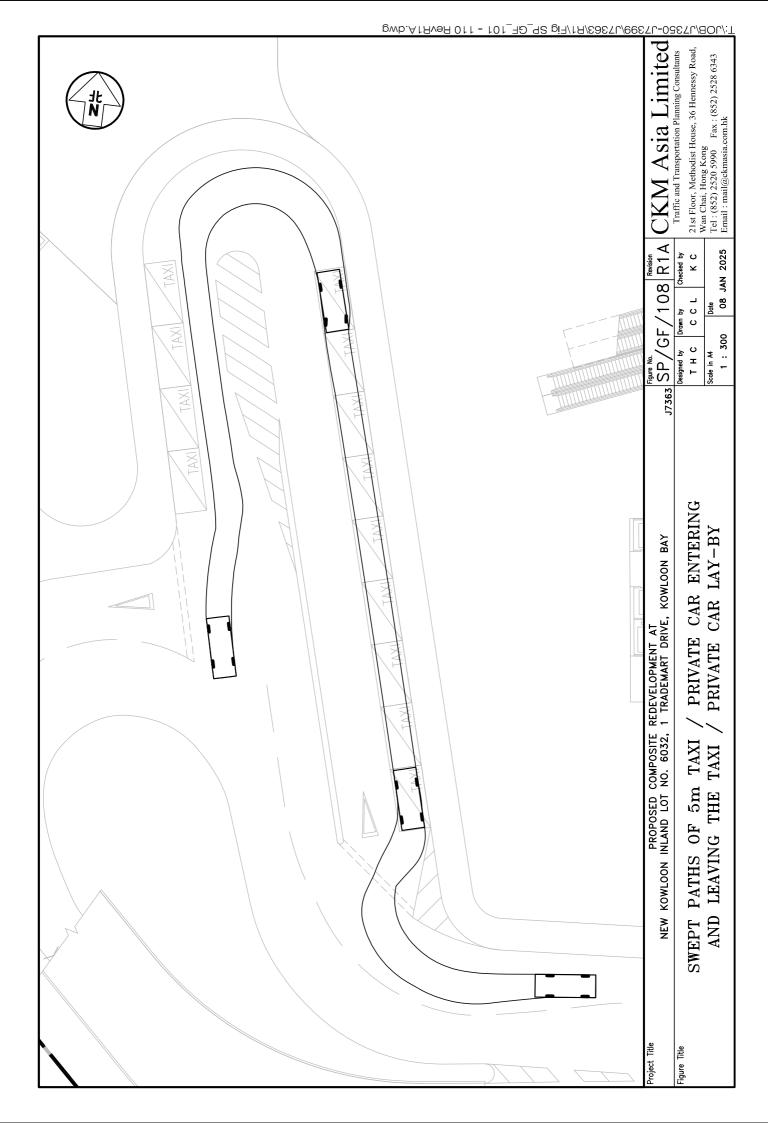


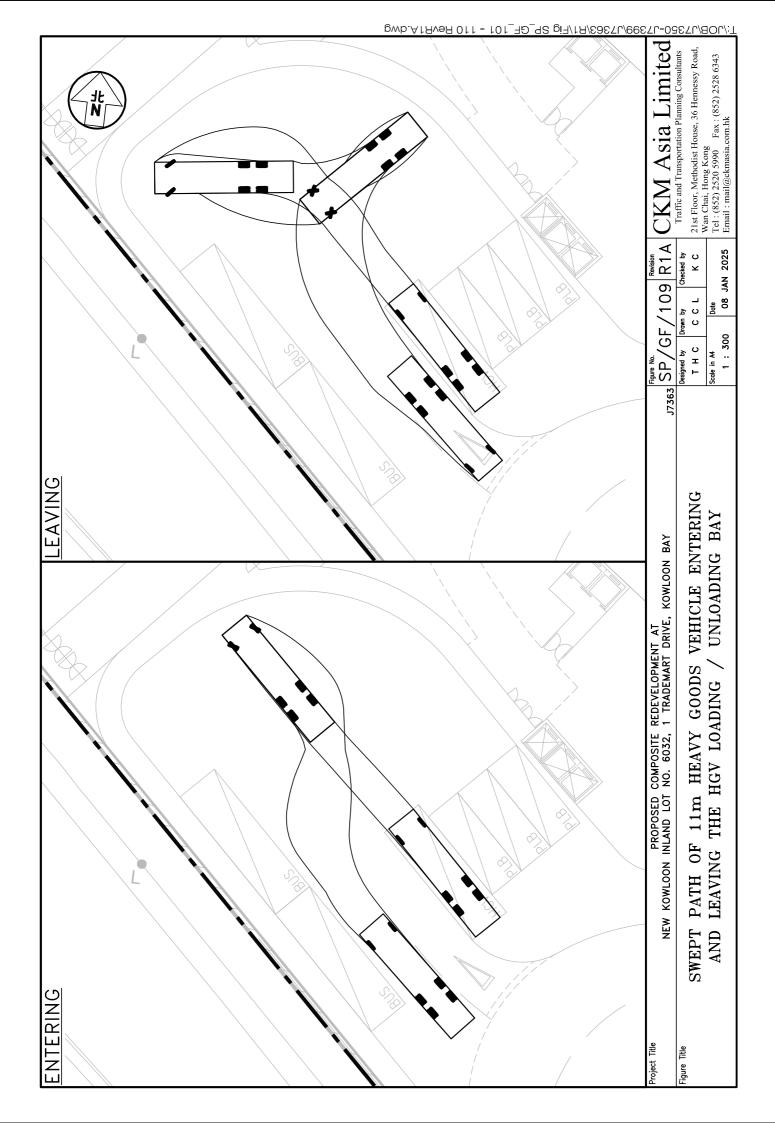


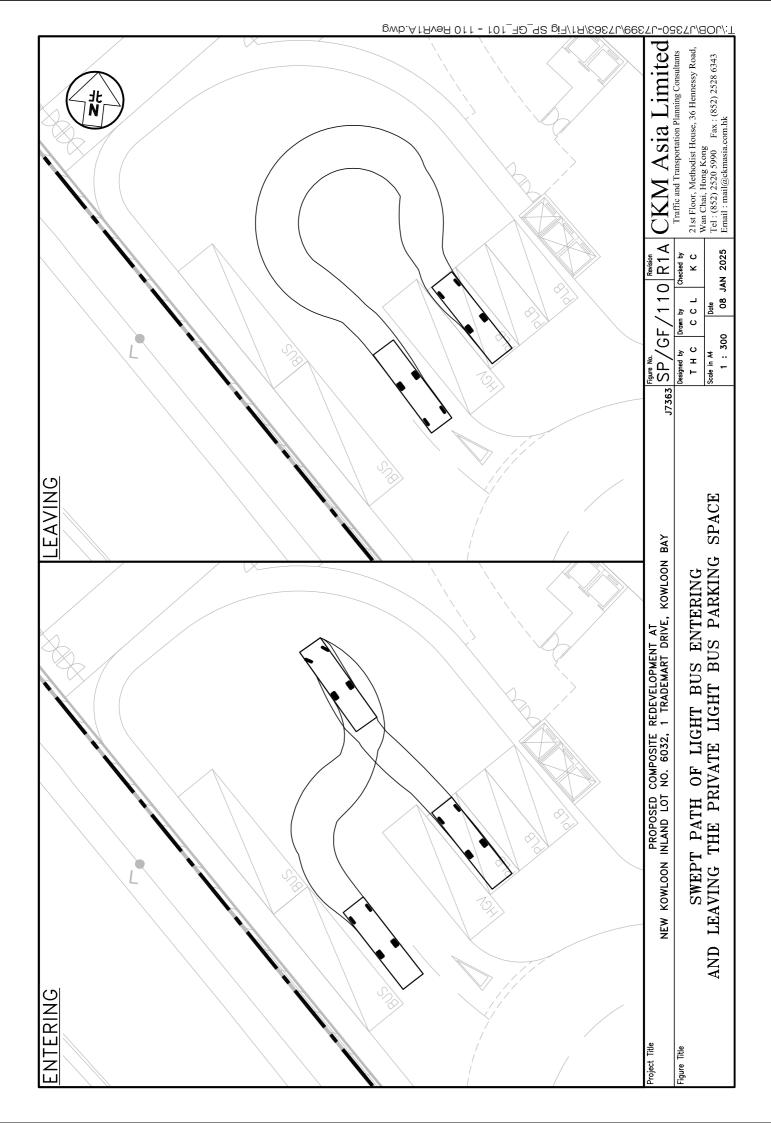


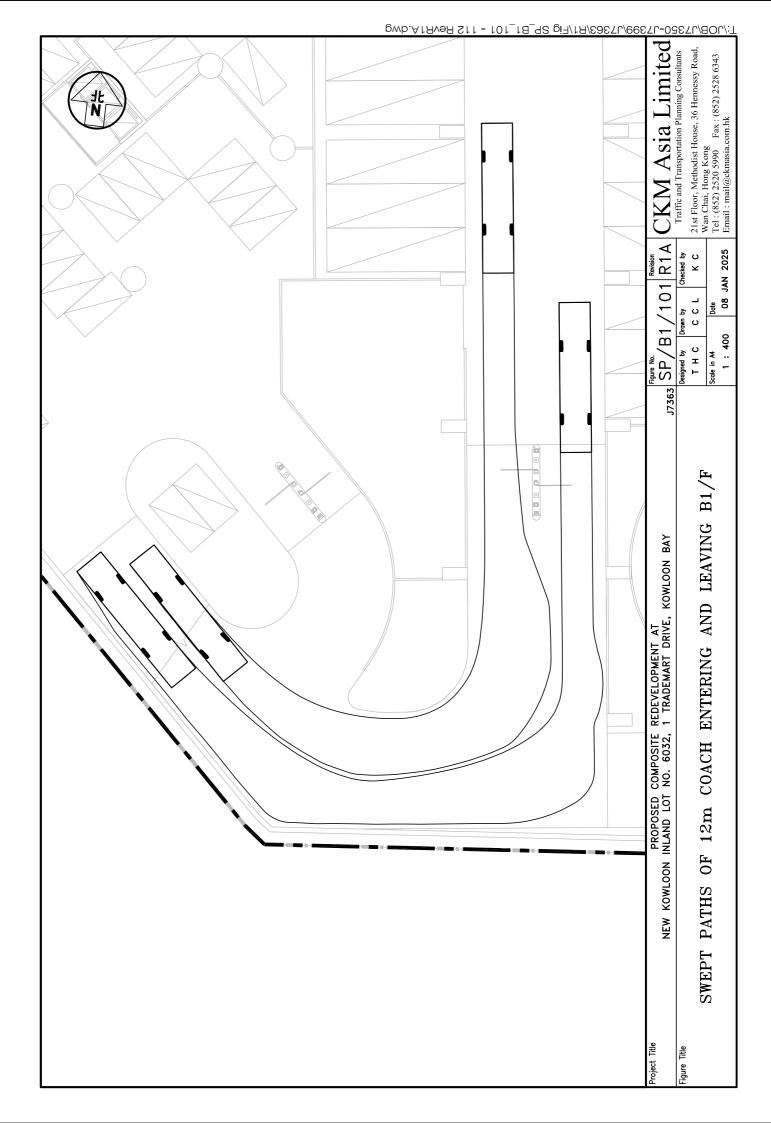


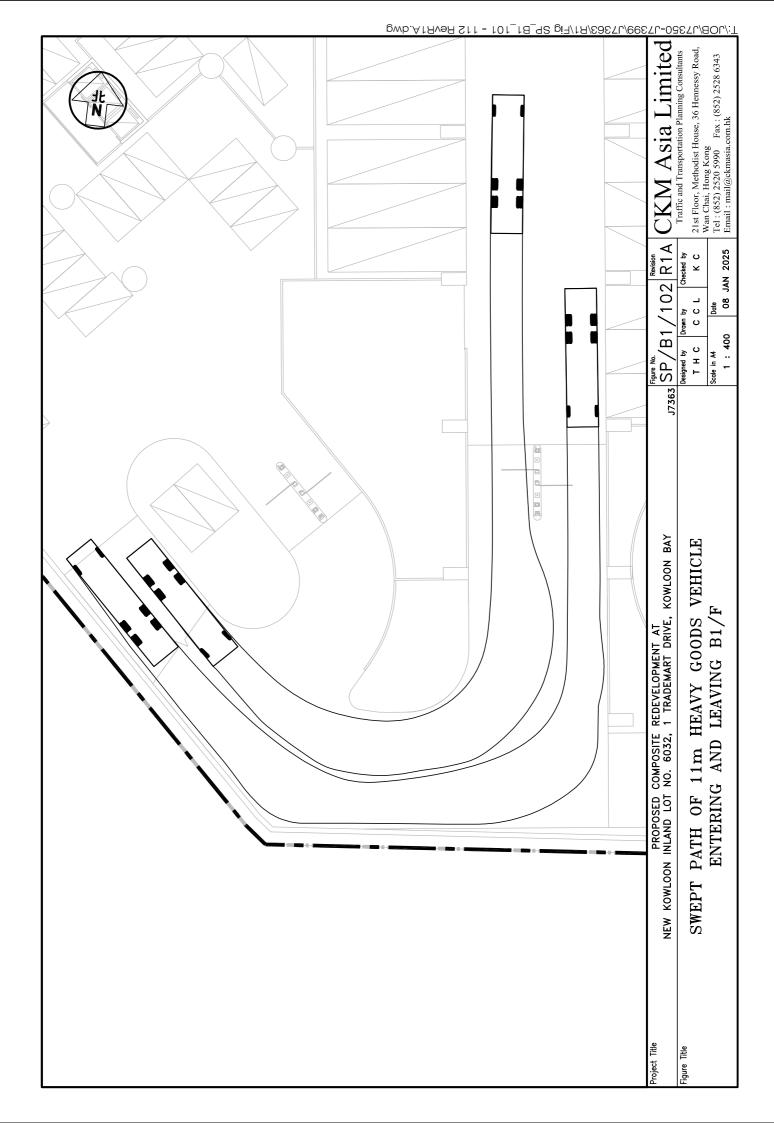


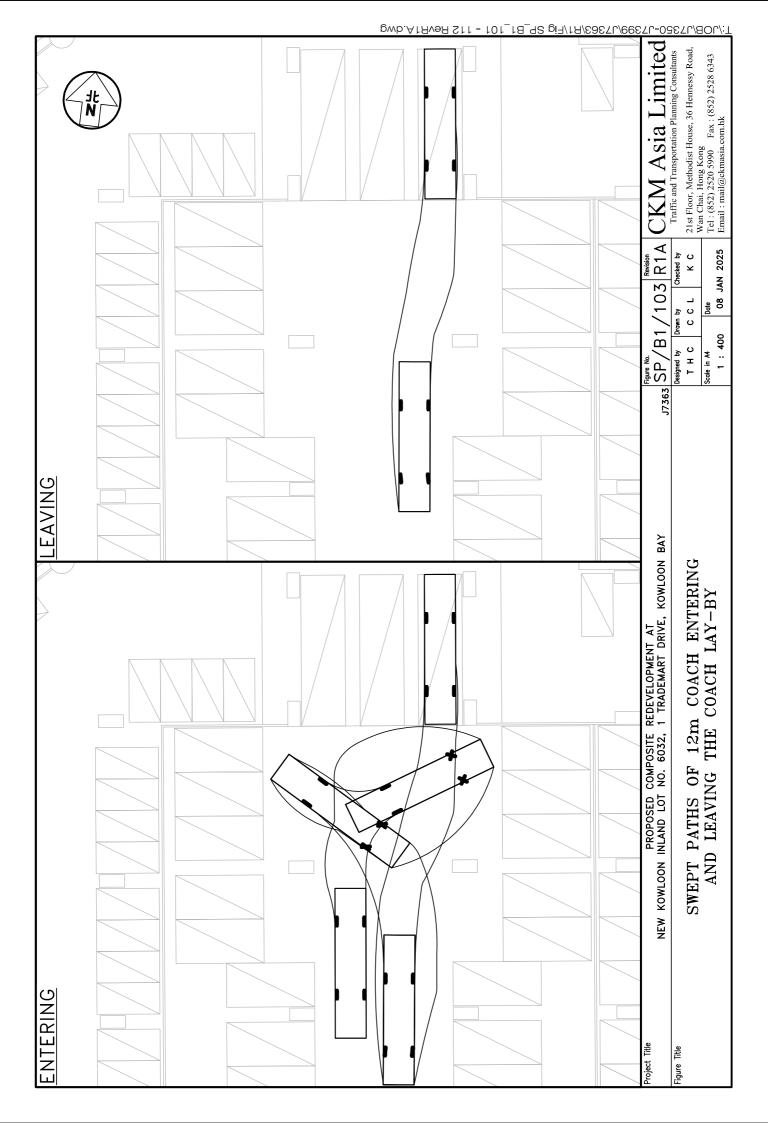


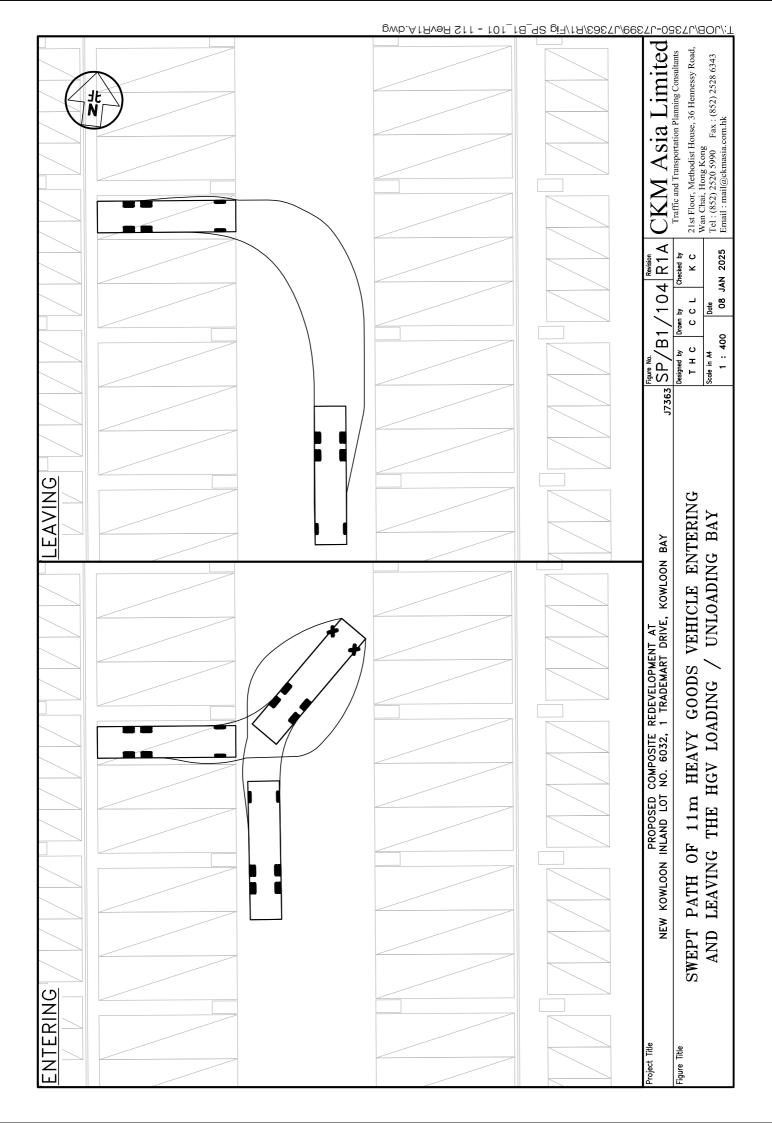


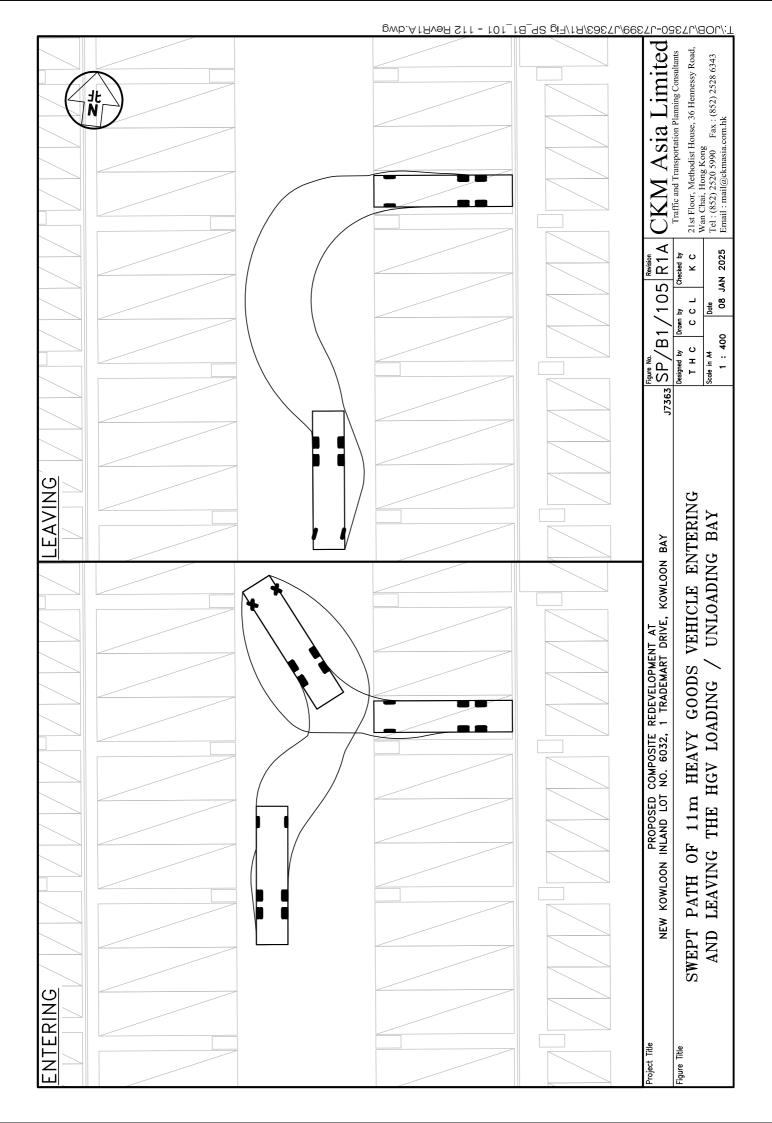


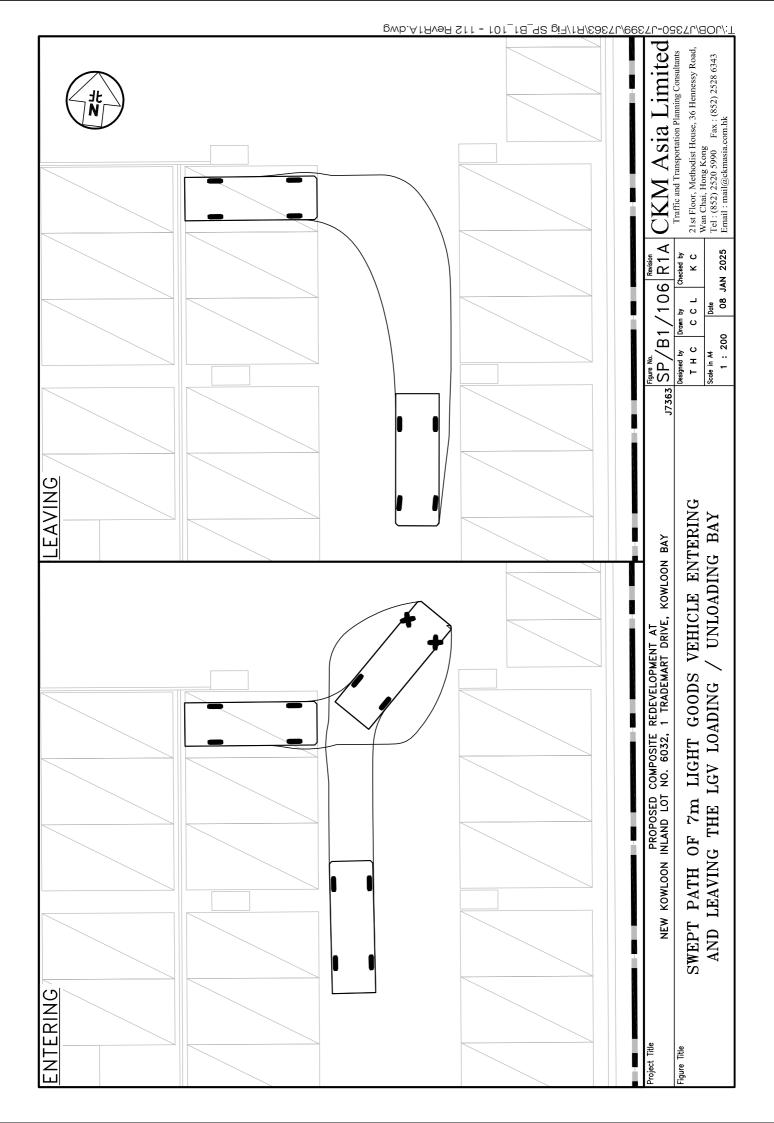


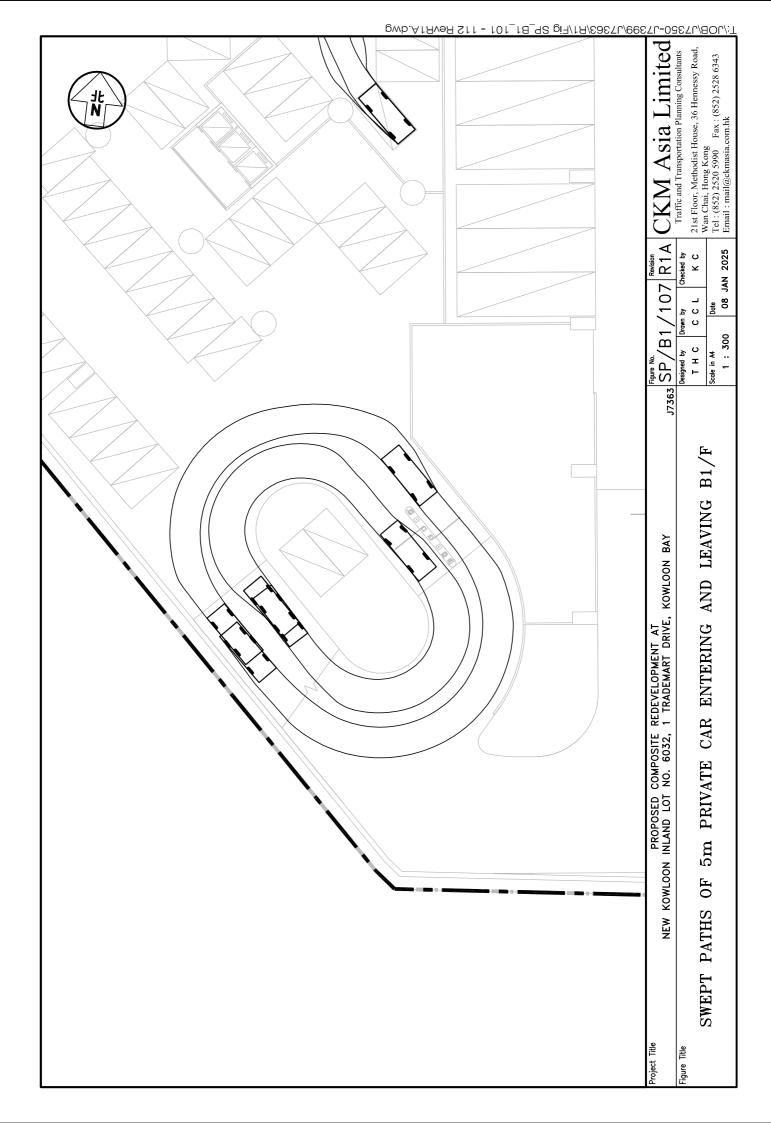


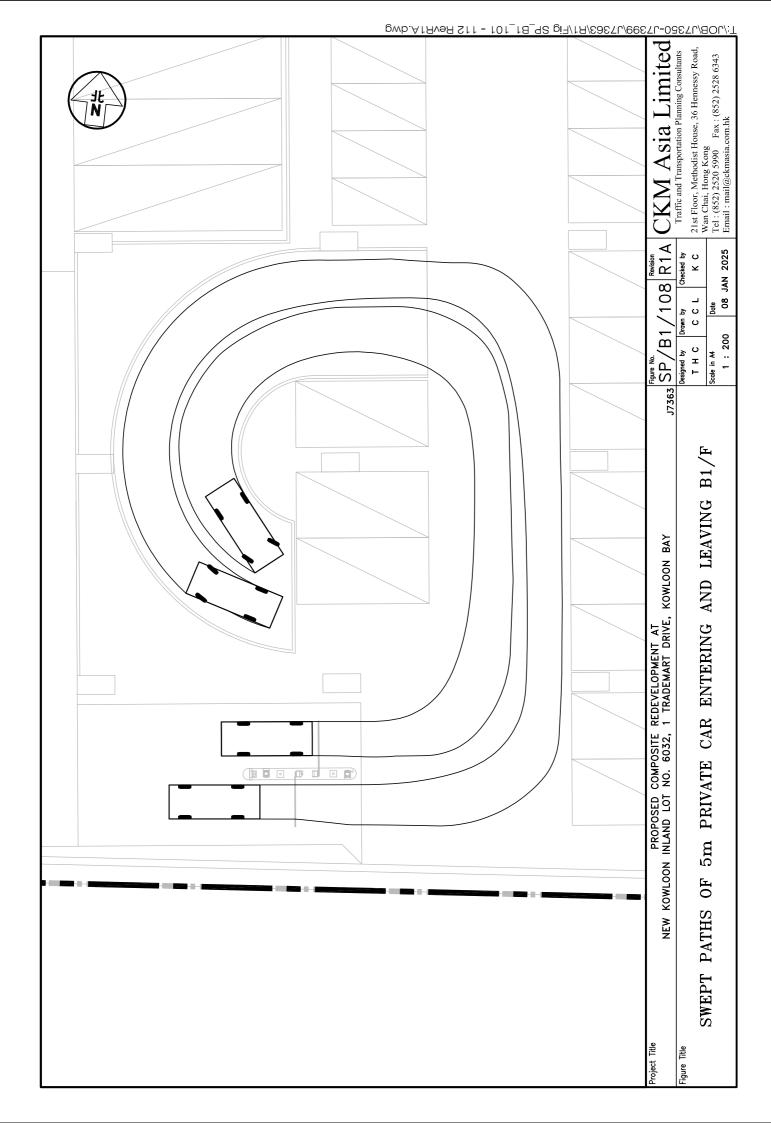


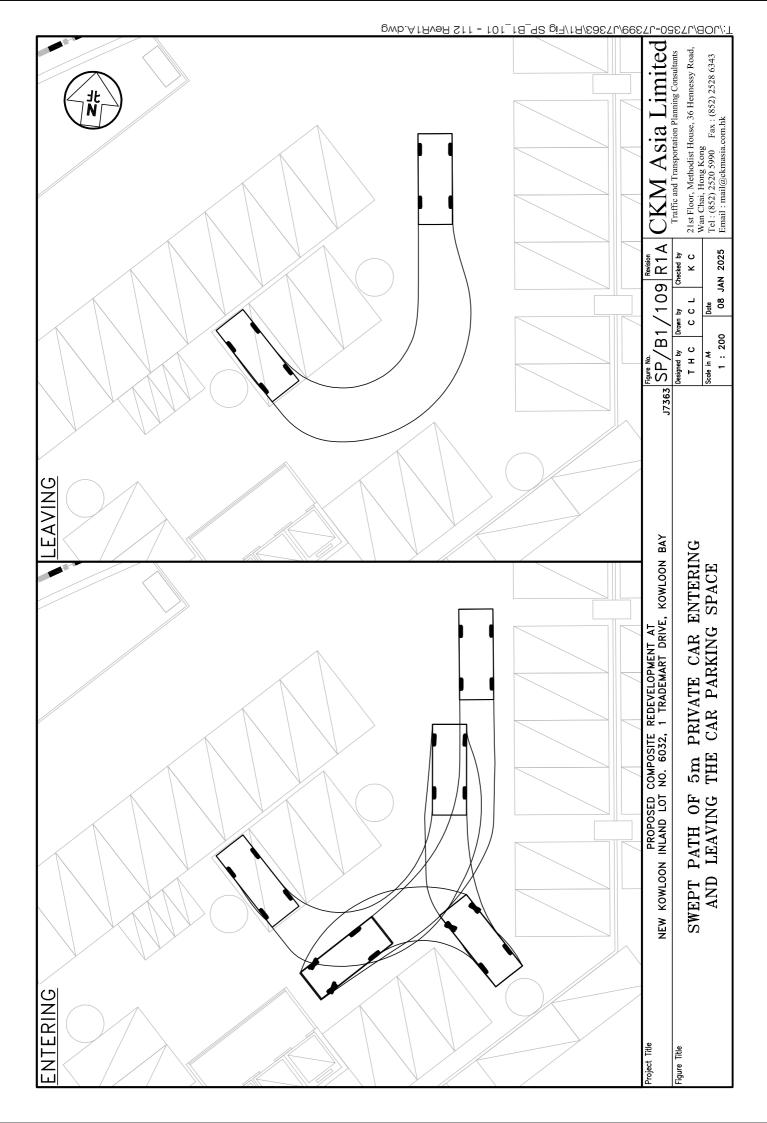




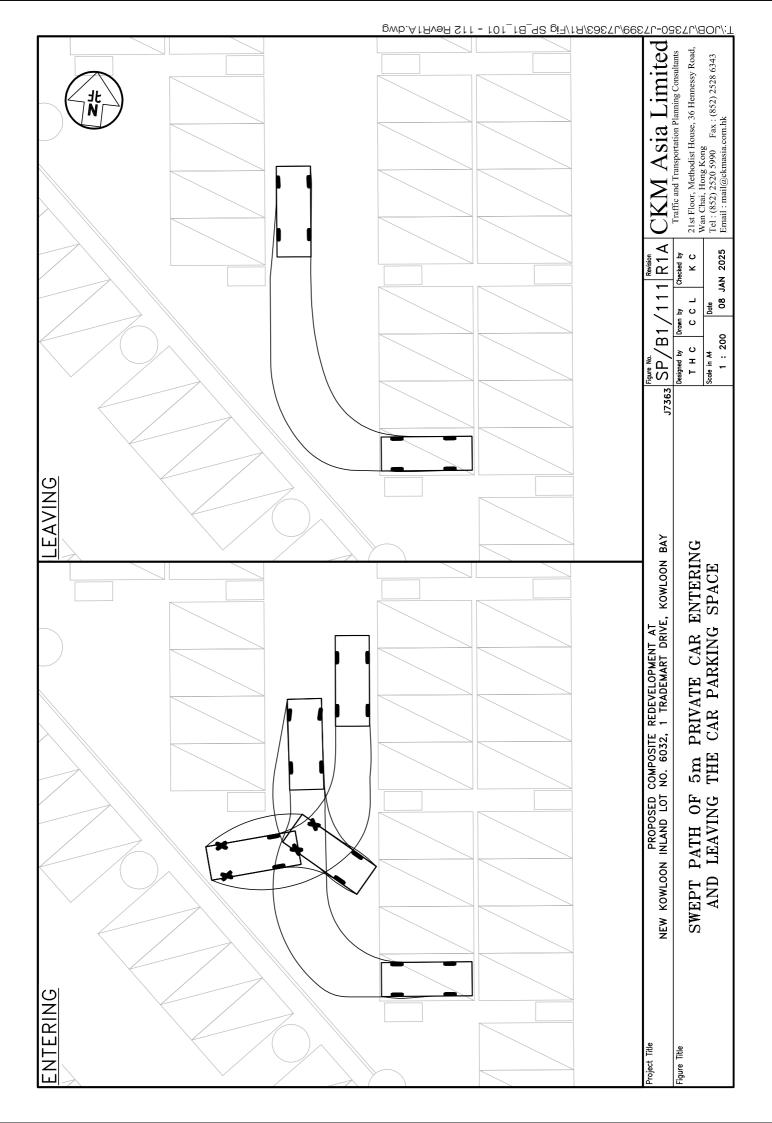


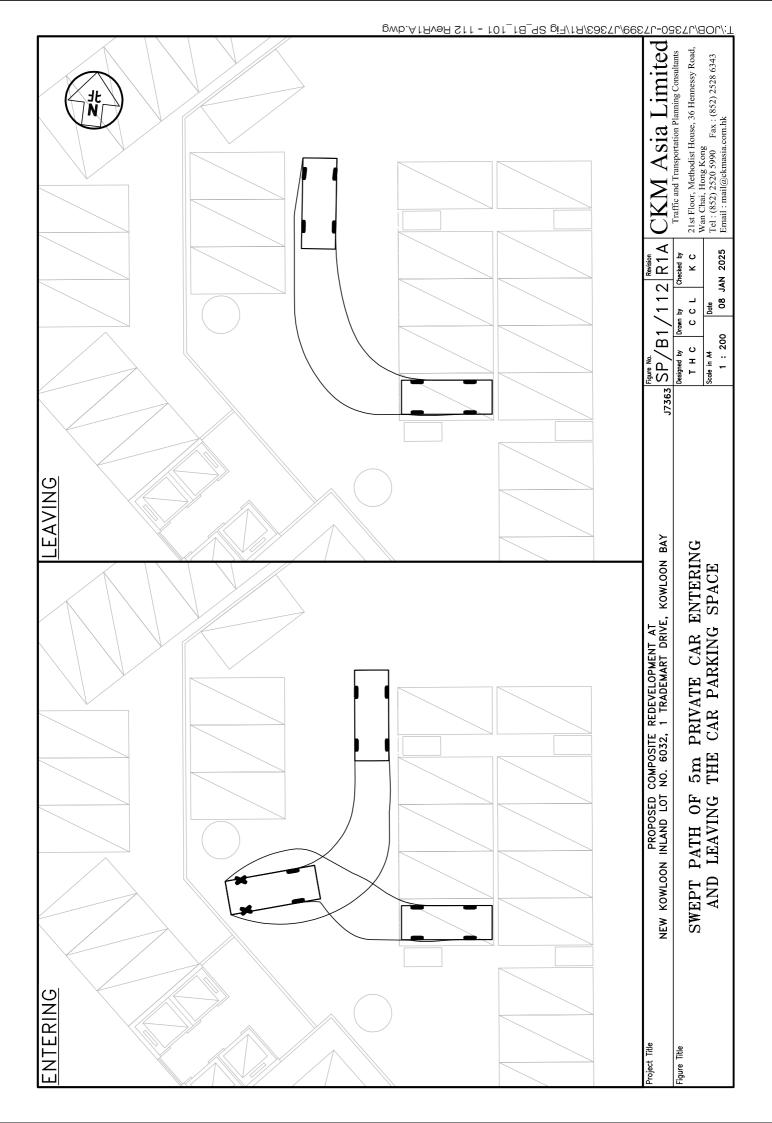


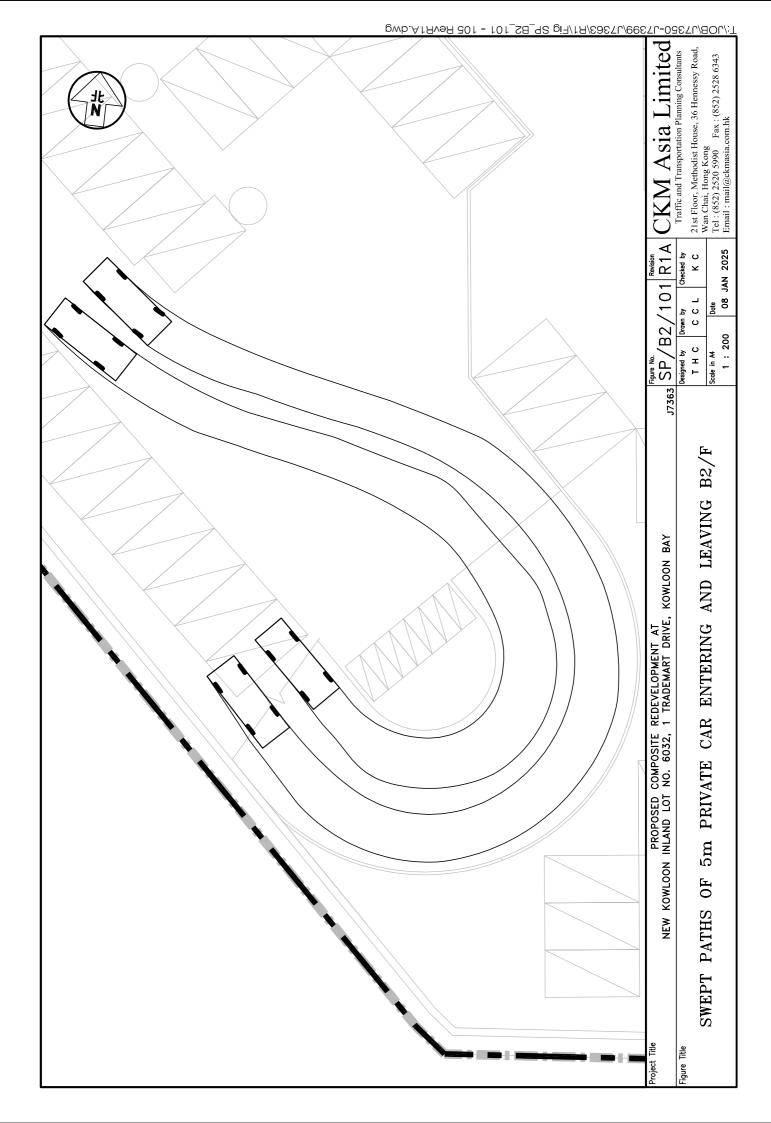


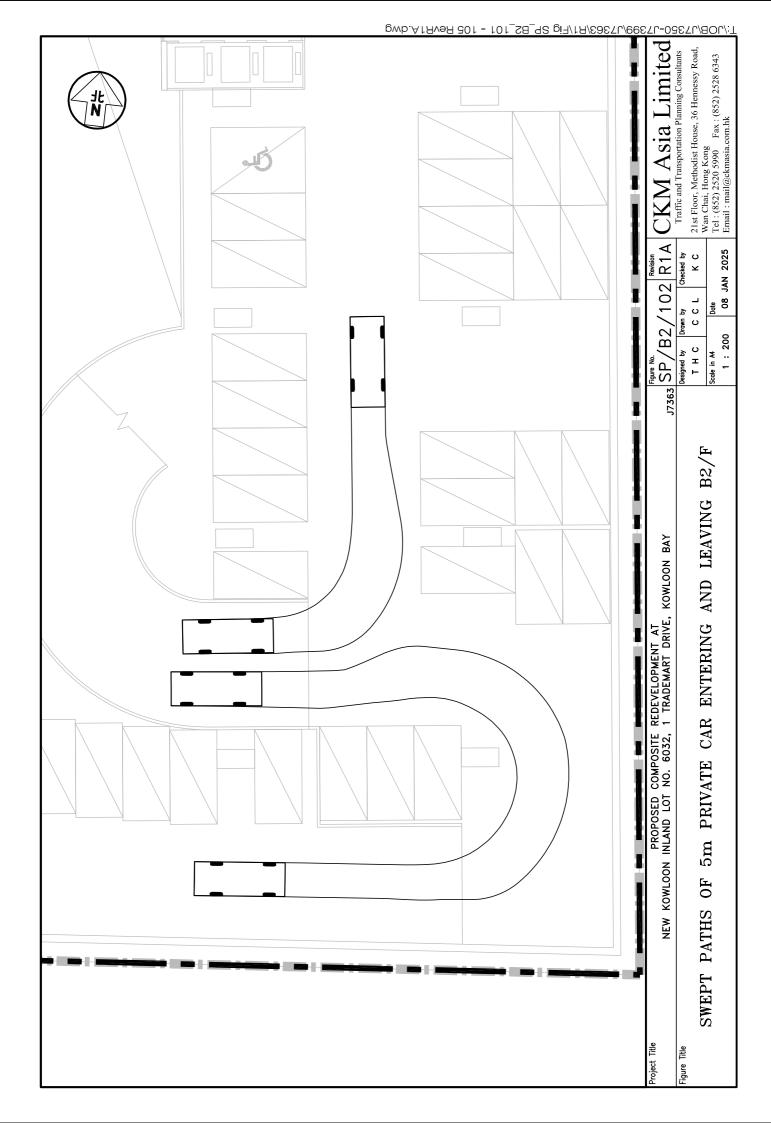


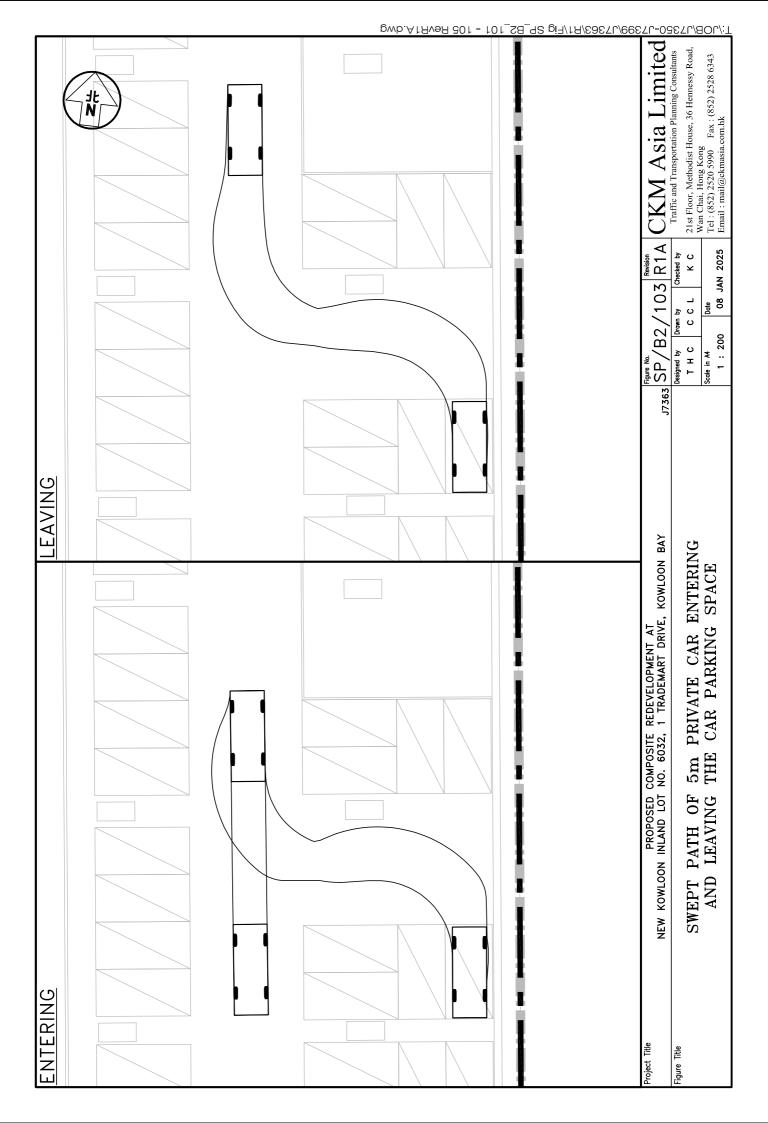


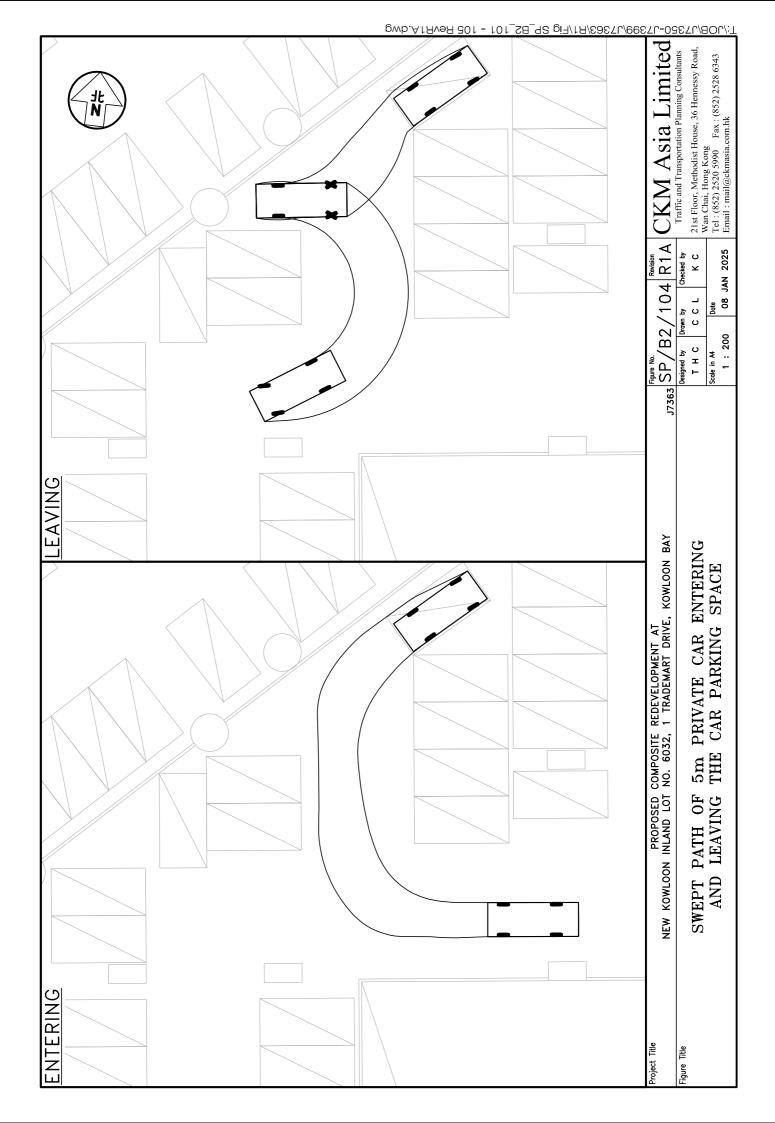


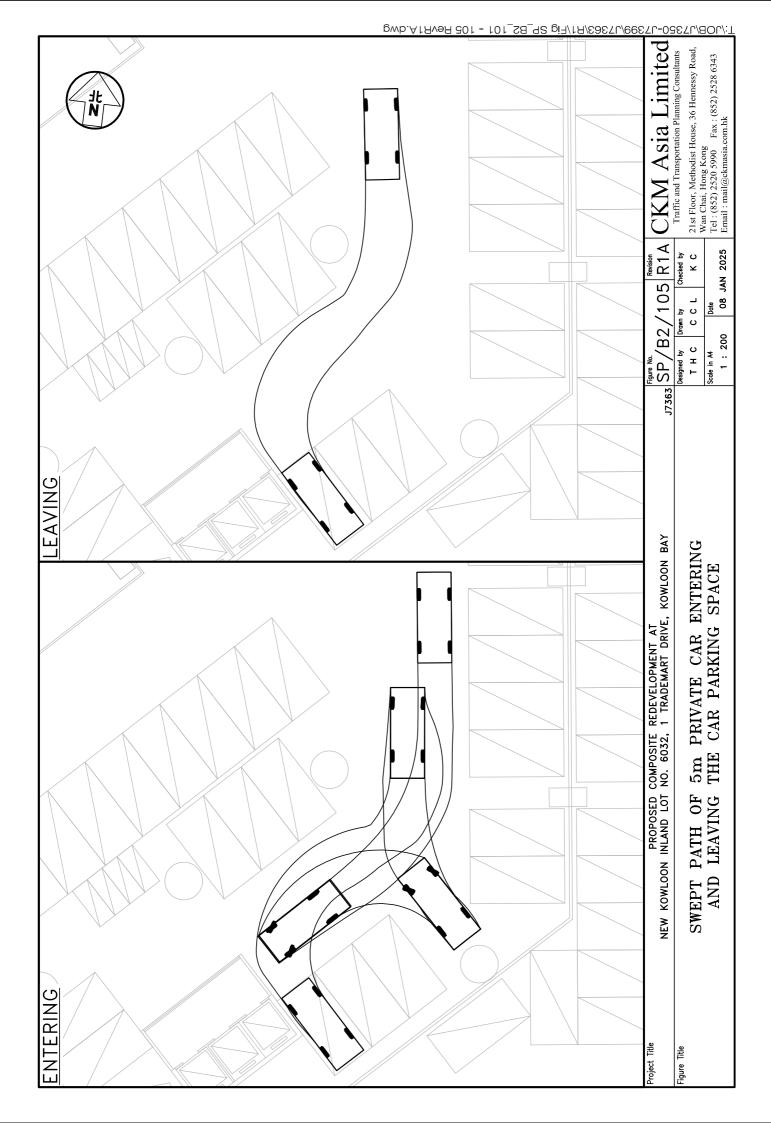












Appendix E – Extracts of DR 439 and BDTM Study Final Report

Table 1 Summary of Trip Rates used by Government/Consultants in studies between 1990 and 1995 (continued)

		()				
Serviced Apartment	0.2000	0.2200	0.2200	0.2300	WKR	95
(pcu/hr/unit)				:		
Education Primary Sch	7	30	1	1	MOS	95
(pcu/30 class room sch)	/	30	1	1	MOS	93 .
Education Secondary Sch	7	24	1	1	MOS	95
(pcu/30 class room sch)	,	24			14100	
				$\chi \chi \chi$	7	
Community Facilities (pcu/hr/100sq.mGFA)	0.2350	0.2350	0.1150	0.1150	₹ QRC	95
Tititile.	Mo.0300	10000	₩ .0410₩	₩ _{0.051}	MOS	95

APPENDIX A CR - Central Reclamtion Phase III - LTIA (1995 by AH)

B CSW - Cheung Sha Wan Shipyard Redevelopment (1994 by DEL)

C CWE - Choi Wan Estate TINAS (1994 by MVA)

D FT - Residential Development at Fu Tei, Tuen Mun (1994 by WSA)

E HMT - Homantin Comprehensive Development TI & EAS (1994 by MVA)

F HWE - Hing Wah Estate Redevelopment (1993 by WSA)

G KTS - King Tung Street Task Force Site TIA (1995 by OVA)

H LTE - Lam Tin Estate Development (1992 by WSA)

I MOS - Ma On Shan Potential Development TIA (1995 by MVA)

J MS - Study of Military Sites in the NT for RD (1995 by Urbis)

K PS - Ping Shan Development - Stage II TIS (1994 by MVA)

L QRC - Queen's Road Central/Garden Road Redevelopment (1995 by MVA)

M SLD - Siu Lam Development TIS (1993 by MVA)

N SYE - Shek Yam Estate Redevelopment TI & EAS (1994 by WSA)

P UCS - Un Chau Street Redevelopment TEIS (1994 by MVA)

Q WKR - West Kowloon Reclamation CTAR & EIA (1995 by Acer)

R WTS - Upper Wong Tai Sin Estate Redevelopment (1994 by WSA)

Extract of BDTM Study Final Report

Appendix Q Proposed Trip Rates

	Use	Unit	Average	AM	Peak	PM Peak			
	Ose	Offic	Flat Size	Generation	Attraction	Generation	Attraction	Source	
		Resi	idential De	velopment					
	Public Rental Housing		30	0.0242	0.0226	0.0177	0.0201		
	Public Kental Housing		40	0.0432	0.0326	0.0237	0.0301		
	HOS/PSPS		50	0.0622	0.0426	0.0297	0.0401		
		1	60	0.0718	0.0425	0.0286	0.0370		
	High-Density / R(A)		70	0.0888	0.0515	0.0356	0.0480		
			80	0.1058	0.0605	0.0426	0.0590		
			100	0.1887	0.0942	0.0862	0.1214		
	Medium-Density / R(B)	pcu/hr/flat	120	0.2246	0.1157	0.1068	0.1468	TPDM	
			140	0.2604	0.1372	0.1275	0.1722		
			100	0.1961	0.1116	0.0955	0.1321		
	Medium-Density / R(B)		120	0.2325	0.1461	0.1340	0.1662		
			140	0.2689	0.1805	0.1725	0.2004		
			180	0.2772	0.1769	0.1635	0.2394		
	Low-Density / R(C)		240	0.3012	0.2189	0.2235	0.3234		
			300	0.3252	0.2609	0.2835	0.4074		
			Schoo	ol					
	Kindergarten			2.3056	2.3056	0.0286	0.0286		
	Primary School	pcu/hr/class operating		0.5000	0.4667	0.6000	0.5000	TGS	
	Secondary School	pcu/III/class operating		0.6364	0.8788	0.2727	0.0909		
	Training Centre & Tutorial School			1.1754	2.5789	3.0370	3.5185		
$\overline{}$				\0019\	Q0280	Q: 0 559~	√ 0.0356√		
	Kindergarten (Private)		` , ` , ` ,	6.9375	6.9375	5.4375	5.4375)	
\mathcal{C}	Primary Sethod (Private)	peu/hr/class-operating		<u> </u>	₹	→ 5.8273	Z-8243	+n-house *	
	Secondary School (Private)			7.7667	8.7667	3.9667	3.8000		
Non-Residential Developments									
	Industrial			0.0926	0.1386	0.1350	0.1049		
	Office	pcu/hr/100 sgm GFA		0.1703	0.2452	0.1573	0.1175	TPDM	
	Retail / Shopping Complex	pcu/III/ 100 sqiii GFA		0.2296	0.2424	0.3100	0.3563	TPDM	
	(Office + Retail)			0.2296	0.2434	0.3100	0.3363		
	Hospital	pcu/hr/bed		0.1849	0.2737	0.2591	0.2048	TGS	
	Hotel	pcu/hr/guest room		0.1329	0.1457	0.1290	0.1546	TPDM	

TPDM - Transport Planning and Design Manual Volume 1 Chapter 3 Annex D

TGS - TD 05/2006 Traffic Generation Survey 2006
In-house - Trip Generation of Island School, Yew Chung International Primary School and Hong Kong (Ascot) Preschool are adopted.

Appendix F – Development Parameters of KTD (Extract from TPB Paper No. 10236 & 10860 and MPC Paper No. 9/21)

Comparisons of Development Parameters for Sites under Review Study and Final Refined Scheme

		Zoning			Maxim	num PR		BHR (mPD)						
	Proposed		Final	Final		Proposed Final			Proposed Final					
Sites		Under	Refined	OZP	Approved s.16	Under	Refined	OZP	Approved	Under	Refined			
Sites	OZP	Review	Scheme			Review	Scheme for		s.16	Review	Scheme for			
		Study	for Area 4			Study	Area 4			Study	Area 4			
2A1	C:	DA	-	5	-	6.5	-	80	-	100	-			
2A2	C.	DA	-	4.5	-	6.5	-	70	-	90	-			
2A3		С	-	4.5	-	6.5	-	70	-	90	-			
2A4		С	-	4.5	-	6.5	-	60	-	80	-			
		2A5(A):								45				
2A5	C	G/IC	-	4.5		-	-	60		43	-			
ZAS		2A5(B):	_	4.3	_	6.5	_	00	_	80	_			
		С	_			0.5	_			80				
2A6	С	2A10:	-	4.5	_	6.5	-	60	_	80	_			
2A7	G/IC	С	-	-			-	30			-			
2B1		DA	-	5	-	6.5 + 0.3*	-	110	-	135	-			
2B2		R	-	5	-	6.5 + 0.1*	-	100	-	125	-			
2B3		R	-	5	-	6.5 + 0.1*	-	85	-	115	-			
2B4	R		-	5	-	6.5 + 0.1*	-	85	-	115	-			
2B5	R		-	5	-	6.5 + 0.1*	-	85	-	100	-			
2B6		R	-	5	-	6.5 + 0.1*	-	85	-	100	-			
3A6			-	-	-	8	-	45	-	100	-			
3B1			-	-	-	5.8	-	45	-	80	-			
3B2	G/IC	С	-	-	-	5.8	-	45	-	80	-			
3B3			-	-	-	5.8	-	45	-	80	-			
3B4			-	-	-	5.8	-	45	-	80	-			
3E1	С	R	-	9.5	-	4.5	-	100	-	100	-			
3E2	OU/O		-	-	-		-	15	-	80	-			
4A1		R		3	3.4	6.5	6.1	65/80	80	90	110			
4B1		R		3	3.8	6.5	7	55 5.5	65	75	120			
4B2		R		3	4.4	6.5	6.1	55	75	85	110			
4B3		R		3	3.9	6.5	5.5	65	75	80	95			
4B4	D	R		3	3.7	6.5	5.5	55	65	75	95			
4B5		R C		3	-	6.3	6.5	45	-	65	108			
4A2	C R		4	5	6.5 + 0.15*	5.9 + 0.2*	45	55	80	110				
4C1	C			4		6.5 + 0.15*		45	55	75 75	120			
4C2	C	C C R		4	5.9	6.5 + 0.15*	5.9 + 0.2*	55 45	65	75 55	110			
4C3 4C4			4	5 5	5	5.3 + 0.2*	45 45	55	55	95 95				
4C4 4C5	С		4			7.5 6		55	55 45	+				
4C5 4E1	C		D	4	-	4 6.5	5.3 + 0.2*	45 -	-	45 80	95			
_	O R			-	-	6.5 $6.5 + 0.15*$	5.3 + 0.2* 5.3 + 0.2*		-	80	95			
4E2	О		R	-	-	U.3 + U.15*	3.3 + 0.2*	-	-	80	95			

^{*}non-domestic PR for proposed residential sites

Bundle	Site	Site		Proposed							
		Area ^[b]	Zoning	Max. PR	Max. SC	Max. BH	Zoning	Max. Dom.	Max. Non-	Max. SC	Max. BH
				1 K	SC	ы		PR ^[c]	dom. PR ^[c]	SC	DII
1	2A2	$6,270 \text{m}^2$	"CDA(4)"	6.6	65%	90mPD	"CDA(4)"	$6.5^{[d]}$	$1.0^{[d]}$	65%	125mPD ^[e]
			[commercial]				[residential]				
	2A3	$5,968m^2$	"C(3)"	6.5	65%	90mPD	"R(A)6"	6.5	1.0	65%	125mPD
2	2A4 ^[a]	$6,555 \text{m}^2$	"C(3)"	6.5	65%	80mPD	"R(A)5"	6.5	1.5	65%	125mPD
	2A5(B) ^[a]	$3,374m^2$	"C(3)"	6.5	65%	80mPD					115mPD
	$2A10^{[a]}$	$6,100 \text{m}^2$	"C(3)"	6.5	65%	80mPD					100mPD

Notes:

- [a] Sites 2A4, 2A5(B) and 2A10 to be under the same "R(A)5" zoning are proposed to be indicated as a linked single site on the OZP for the purpose of determination of the maximum PR. Individual sites should each be subject to the proposed maximum SC of 65%
- [b] Site areas are subject to detailed survey.
- Floor spaces for (i) railway facilities in the "R(A)5" zone (which is to cater for the existing railway facilities in Site 2A10); and (ii) government, institutional or community (GIC) facilities in the "CDA(4)", "R(A)5" and "R(A)6" zones, as required by the Government, are proposed to be disregarded from PR calculation.
- [d] A maximum PR of 7.5 is proposed to be stipulated in the Notes of the OZP for the "CDA(4)" zone. The recommended maximum domestic PR of 6.5 and maximum non-domestic PR of 1.0 are to be stipulated under planning brief and land sale conditions.
- [e] The retail belt area of the "CDA(4)" zone abutting the LTSBPC (**Plan 9a**) is subject to a maximum BH of 2 storeys in accordance with the Notes of the OZP.
 - 4.3 The proposed increase in the maximum BHs for the five individual sites from 80 to 90mPD to 100 to 125mPD is for ensuring that the residential use at the sites, which is subject to a lower permissible SC under the Building (Planning) Regulations than non-domestic use, could achieve the proposed maximum domestic PR of 6.5. Such an increase in BHs is still in keeping with the general stepped BH profile of the locality which is descending progressively from the northeast to the southwest^[8] (Plan 9a), and is in line with the broad urban design framework of KTD on creating a dynamic skyline.
 - 4.4 To accord with the policy initiative of providing more welfare facilities in private development sites, a certain amount of gross floor area (GFA) (equivalent to not less than 5% of the proposed domestic GFA of the site in general) for provision of government/social welfare facilities mainly based on the wish-list of the Social Welfare Department (SWD) has been incorporated in the notional schemes of the reviewed sites and assumed to be disregarded from PR/GFA calculation for testing in the Review Study, such that the maximum permissible PR for the sites would not be compromised. For the two bundled sites, upon consulting SWD, the following welfare facilities have been reserved at the sites for addressing the needs of the local and the community on the services:

The highest BH of 135mPD in the locality of Area 2 relates to the proposed public housing development at Site 2B1, with the BHs of the adjacent residential sites descending progressively from the northeast to the southwest to the levels of 125mPD, 115mPD and 100mPD.

"R(B)7" with maximum PRs of 5.5/6.1/7.0, and have all been sold for private residential developments. To the south and further southeast of the three reviewed sites are the existing Kai Tak Cruise Terminal (KTCT) and a site zoned "OU" annotated "Tourism Related Uses to include Commercial, Hotel and Entertainment" ("OU(TRU)") intended for the development of the proposed Tourism Node (TN). While Sites 4B5 and 4C4 are currently vacant, Site 4C5 is occupied as a temporary depot for franchised buses.

Rezoning Proposals

4.8 The Review Study recommended the three reviewed sites to be rezoned from commercial to residential use subject to maximum domestic PRs of 5.7/6.6/7.0 (average domestic PR of 6.5), maximum non-domestic PRs of 0.3/0.5, maximum SC of 40% and maximum BH of 95/108mPD (same as now) for production of about 3,000 private housing units. Similar to the two bundled sites at the former north apron area, GFAs for GIC/social welfare facilities (equivalent to not less than 5% of the proposed domestic GFA of the site in general) have also been reserved at these sites and are proposed to be disregarded from PR calculation. Site 4B5 is proposed to be rezoned from "C(4)" to "R(B)8" (Item F on Plan 6), Site 4C4 from "C(7)" to "R(B)9" (Item G on Plan 6) and Site 4C5 from "C(5)" to "R(B)10" (Item H on Plan 6). The proposed zonings and development restrictions for the sites are summarised as follows:

Site	Site		Cur	rent		Proposed				
	Area ^[a]	Zoning	Max. Max.		Max.	Zoning	Max.	Max.	Max.	
			PR	SC	BH		$\mathbf{PR}^{[b]}$	SC	BH	
4B5	13,953m ²	"C(4)"	6.5	80%	108mPD	"R(B)8"	$7.5^{[c]}$	40%	108mPD	
4C4	10,692m ²	"C(7)"	7.5	80%	95mPD	"R(B)9"	$6.9^{[d]}$	40%	95mPD	
4C5	$9,480m^2$	"C(5)"	6.0	80%	95mPD	"R(B)10"	5.7 ^[e]	40%	95mPD	

Notes:

- [a] Site areas are subject to detailed survey.
- [b] Floor spaces for GIC facilities in the "R(B)8", "R(B)9" and "R(B)10" zones, as required by the Government, are proposed to be disregarded from PR calculation.
- [c] The proposed maximum PR of 7.5 comprises a maximum domestic PR of 7.0 and a maximum non-domestic PR of 0.5 which are to be stipulated under land sale conditions.
- [d] The proposed maximum PR of 6.9 comprises a maximum domestic PR of 6.6 and a maximum non-domestic PR of 0.3 which are to be stipulated under land sale conditions.
- [e] The proposed maximum PR of 5.7 is for residential use only.
- 4.9 To maintain the feature of an undulating and varied BH profile in the former runway area, with the tallest band of developments in the middle portion and BHs of the developments stepping down on the two sides towards the Metro Park and the runway tip (**Plan 12d**), the BHs of Sites 4B5, 4C4 and 4C5 are proposed to remain unchanged. In proportion to the BH and in consideration of specific site constraints (including the proximity of Site 4C5 to KTCT), the PRs for the three sites have been carefully designed^[10] to achieve an average maximum domestic PR of 6.5.

Site 4C5 is proposed with a smaller maximum domestic PR of 5.7 as half of its south-western site boundary is abutting the existing structure of KTCT and its site configuration is relatively elongated. Site 4B5, which has a more regular site configuration and is subject to a higher maximum BH among the three reviewed sites, is proposed with a larger maximum domestic PR of 7.0.

SCHEDULE OF PROPOSED AMENDMENTS TO THE DRAFT KAI TAK OUTLINE ZONING PLAN NO. S/K22/7 MADE BY THE TOWN PLANNING BOARD UNDER THE TOWN PLANNING ORDINANCE (Chapter 131)

I. Amendments to Matters shown on the Plan

- Item A Rezoning of a site on the south-western side of Shing Fung Road and the north-western side of Shing King Street from "Residential (Group B)9" ("R(B)9") to "Commercial (7)" ("C(7)").
- Item B Rezoning of a site on the south-western side of Shing Fung Road and the south-eastern side of Shing King Street from "R(B)10" to "C(5)".

II. Amendments to the Notes of the Plan

- (a) Revision to the Remarks for the "C" zone to incorporate development restrictions for the "C(5)" and "C(7)" sub-areas.
- (b) Revisions to the Schedule of Uses and the Remarks for the "R(B)" zone to delete all the provisions related to the "R(B)9" and "R(B)10' sub-areas.

Town Planning Board

8 July 2022