Proposed Concrete Batching Plant in "Industrial" Zone at Nos.13- 17 Wah Sing Street, Kwai Chung S16 Planning Application

(Planning Application No: A/KC/509)

Appendix I

Revised Traffic Impact Assessment

Traffic Impact Assessment Final Report January 2025

Prepared by: CKM Asia Limited

CONTENTS

<u>CH</u>	<u>APTER</u>	PAGE
1.	INTRODUCTION Background Structure of Report	1
2.	EXISTING SITUATION The Subject Site Public Transport Facilities Pedestrian Facilities Existing Traffic Flows Queueing of Taxis for Refilling Liquefied Petroleum Gas ("LPG") at J02 Performance of the Surveyed Junctions	2
3.	THE PROPOSED CONCRETE BATCHING PLANT Development Schedule Vehicular Access Points Operation of Proposed Concrete Batching Plant Internal Transport Facilities Swept Path Analysis Traffic Management Plan	6
4.	TRAFFIC IMPACT Design Year Traffic Forecasting Methodology 2029 Traffic Flows 2029 Junction Capacity Analysis Junction Improvement Scheme at J02	8
5.	Figures Appendix A – Detailed Calculation Appendix B – Swept Path Analysis Appendix C – Junction Improvement Scheme proposed by Kwai On Factory Redevelopment	12

TABLES

NUMBER

- 2.1 Road-Based Public Transport Services Operating near the Subject Site2.2 Existing Junction Performance
- 3.1 Details of Delivery to / from the Proposed Concrete Batching Plant
- 3.2 Internal Transport Facilities
- 4.1 2019-based TPEDM Data for Kwai Chung District
- 4.2 Projections of Population Distribution 2023-2031
- 4.3 AADT of the Station in the Vicinity of the Subject Site
- 4.4 Details of Major Planned Developments
- 4.5 Traffic Generation of the Proposed Concrete Batching Plant
- 4.6 2029 Junction Performance
- 4.7 2029 Junction Performance with Further Improvement

FIGURES

<u>NUMBER</u>

1.1	Location of the Subject Site
2.1	Public Transport Facilities in the Vicinity of the Subject Site
2.2	Location of Surveyed Junctions and Area of Influence
2.3	Existing Junction Layout of Kwai Chung Road / Kwai On Road / Kwai Yik Road
2.4	Existing Junction Layout of Tai Lin Pai Road / Kwai On Road
2.5	Existing Junction Layout of Tai Lin Pai Road / Kung Yip Street
2.6	Existing Junction Layout of Kung Yip Street / Wah Sing Street
2.7	Existing Junction Layout of Kwai Chung Road / Tai Lin Pai Road / Kwai Foo Road
2.8	Existing Junction Layout of Tai Lin Pai Road / San Kwai Street
2.9	Year 2024 Observed Peak Hour Traffic Flows
3.1	Ground Floor
4.1	Year 2029 Peak Hour Traffic Flows without the Proposed Concrete Batching Plant
4.2	Year 2029 Peak Hour Traffic Flows with the Proposed Concrete Batching Plant
<mark>4.3</mark>	Ingress and Egress Routes for the Proposed Concrete Batching Plant
<mark>4.4</mark>	Junction Improvement Scheme at Tai Lin Pai Road / Kwai On Road

1.0 INTRODUCTION

Background

- 1.1 The Subject Site is located at 13 17 Wah Sing Street in Kwai Chung. Figure 1.1 shows the location of the Subject Site.
- 1.2 On 24th May 2024, the Town Planning Board ("TPB") approved the S16 Planning Application of Proposed minor relaxation of plot ratio restriction for Permitted Warehouse Use (excluding Dangerous Goods Godown) in "Industrial" Zone at the Subject Site (TPB ref: A/KC/505) ("the Approved Warehouse"). The Owner now intends to redevelop the Subject Site into a Proposed Concrete Batching Plant").
- 1.3 CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Owner to conduct a traffic impact assessment in support of the Proposed Concrete Batching Plant. This report presents the findings of the Traffic Impact Assessment.

Structure of Report

1.4 The report is structured as follows:

Chapter One - Gives the background of the project;

Chapter Two - Describes the existing situation;

Chapter Three - Explains the Proposed Concrete Batching Plant and presents

the internal transport facilities provided;

Chapter Four - Describes the traffic impact analysis;

Chapter Five - Gives the overall conclusion.

2.0 EXISTING SITUATION

The Subject Site

2.1 The Subject Site fronts onto Wah Sing Street to the east and Kwai Chung Town Lot 111 RP in DD445 to the west and south.

Public Transport Facilities

2.2 The Subject Site is well-served by public transport facilities, and access to these services is convenient. Details of public transport services operating in the vicinity of the Subject Site are given in Table 2.1 and shown in Figure 2.1.

TABLE 2.1 ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING NEAR THE SUBJECT SITE

Route Routing Frequency (minutes) KMB 30 Cheung Sha Wan – Allway Gardens 25 – 30 KMB 31 Tsuen Wan West Station – Shek Lei (Circular) 10 – 20 KMB 31B Olympic Station – Shek Lei (Tai Loong Street) 12 – 25 KMB 31M Shek Lei (Lei Pui Street) – Kwai Fong Station 5 – 15 KMB 31P ⁽¹⁾ Shek Lei Commercial Complex → Kwai Fong Station AM Peak KMB 32 Olympic Station – Shek Wai Kok 20 – 28 KMB 32H Cheung Shan – Lai Chi Kok 30 – 60 KMB 32M Kwai Fong Station – Cheung Shan (Circular) 15 – 25 KMB 33A Mong Kok (Park Avenue) – Tsuen Wan (Nina Tower) 17 – 25 KMB 34 Tsuen Wan (Bayview Garden) – Kwai Shing (Central) 12 – 20 KMB 35A Tsim Sha Tsui East – On Yam Estate 5 – 20 KMB 36A Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue 15 – 30 KMB 36B Jordan (West Kowloon Station) – Lei Muk Shue 12 – 25 KMB 36M Kwai Fong Station – Lei Muk Shue 12 – 25 KMB 36M Kwai Fong Station – Swai East (Mody Road) AM, PM Peak KMB 36B		NEAR THE SUBJECT SITE	
KMB 31 Tsuen Wan West Station − Shek Lei (Circular) 10 − 20 KMB 31B Olympic Station − Shek Lei (Tai Loong Street) 12 − 25 KMB 31M Shek Lei (Lei Pui Street) − Kwai Fong Station 5 − 15 KMB 31P ⁽¹⁾ Shek Lei Commercial Complex → Kwai Fong Station AM Peak KMB 32 Olympic Station − Shek Wai Kok 20 − 28 KMB 32H Cheung Shan − Lai Chi Kok 30 − 60 KMB 32M Kwai Fong Station − Cheung Shan (Circular) 15 − 25 KMB 33A Mong Kok (Park Avenue) − Tsuen Wan (Nina Tower) 17 − 25 KMB 34 Tsuen Wan (Bayview Garden) − Kwai Shing (Central) 12 − 20 KMB 35A Tsim Sha Tsui East − On Yam Estate 5 − 20 KMB 35A Tsim Sha Tsui East − Tsim Sha Tsui East AM, PM Peak KMB 36A Cheung Sha Wan (Sham Mong Road) − Lei Muk Shue 15 − 30 KMB 36B Jordan (West Kowloon Station) − Lei Muk Shue 12 − 25 KMB 36M Kwai Fong Station − Lei Muk Shue 5 − 12 KMB 36M Kwai Shing (Central) − Olympic Station 12 − 20 KMB 37M Kwai Shing (Sham Mong Road) ← Lei Muk Shue 5 − 12	Route	Routing	
KMB 31B Olympic Station – Shek Lei (Tai Loong Street) 12 – 25 KMB 31M Shek Lei (Lei Pui Street) – Kwai Fong Station 5 – 15 KMB 31P ⁽¹⁾ Shek Lei Commercial Complex → Kwai Fong Station AM Peak KMB 32 Olympic Station – Shek Wai Kok 20 – 28 KMB 32H Cheung Shan – Lai Chi Kok 30 – 60 KMB 32M Kwai Fong Station – Cheung Shan (Circular) 15 – 25 KMB 33A Mong Kok (Park Avenue) – Tsuen Wan (Nina Tower) 17 – 25 KMB 34 Tsuen Wan (Bayview Garden) – Kwai Shing (Central) 12 – 20 KMB 35A Tsim Sha Tsui East – On Yam Estate 5 – 20 KMB 35X (2) On Yam Estate – Tsim Sha Tsui East AM, PM Peak KMB 36A Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue 15 – 30 KMB 36B Jordan (West Kowloon Station) – Lei Muk Shue 12 – 25 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36M Kwai Shing (Central) – Olympic Station 12 – 20 KMB 37M Kwai Shing (Sation – Kwai Shing Central) (Circular) 8 – 20	KMB 30	Cheung Sha Wan – Allway Gardens	25 – 30
KMB 31B Olympic Station – Shek Lei (Tai Loong Street) 12 – 25 KMB 31M Shek Lei (Lei Pui Street) – Kwai Fong Station 5 – 15 KMB 31P ⁽¹⁾ Shek Lei Commercial Complex → Kwai Fong Station AM Peak KMB 32P Olympic Station – Shek Wai Kok 20 – 28 KMB 32H Cheung Shan – Lai Chi Kok 30 – 60 KMB 32M Kwai Fong Station – Cheung Shan (Circular) 15 – 25 KMB 33A Mong Kok (Park Avenue) – Tsuen Wan (Nina Tower) 17 – 25 KMB 34 Tsuen Wan (Bayview Garden) – Kwai Shing (Central) 12 – 20 KMB 35A Tsim Sha Tsui East – On Yam Estate 5 – 20 KMB 35A Tsim Sha Tsui East – Tsim Sha Tsui East AM, PM Peak KMB 36A Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue 15 – 30 KMB 36B Jordan (West Kowloon Station) – Lei Muk Shue 12 – 25 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36M Kwai Fong Station – Lei Muk Shue 12 – 25 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36M Kwai Shing (Central) – Olympic Station 12 – 20 <th< td=""><td>KMB 31</td><td>Tsuen Wan West Station – Shek Lei (Circular)</td><td>10 – 20</td></th<>	KMB 31	Tsuen Wan West Station – Shek Lei (Circular)	10 – 20
KMB 31P ⁽¹⁾ Shek Lei Commercial Complex → Kwai Fong Station AM Peak KMB 32 Olympic Station – Shek Wai Kok 20 – 28 KMB 32H Cheung Shan – Lai Chi Kok 30 – 60 KMB 32M Kwai Fong Station – Cheung Shan (Circular) 15 – 25 KMB 33A Mong Kok (Park Avenue) – Tsuen Wan (Nina Tower) 17 – 25 KMB 34 Tsuen Wan (Bayview Garden) – Kwai Shing (Central) 12 – 20 KMB 35A Tsim Sha Tsui East – On Yam Estate 5 – 20 KMB 35A Tsim Sha Tsui East – On Yam Estate 5 – 20 KMB 36A Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue 15 – 30 KMB 36B Jordan (West Kowloon Station) – Lei Muk Shue 12 – 25 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36M Kwai Fong Station – Lei Muk Shue 12 – 25 KMB 36M Kwai Shing (Central) – Olympic Station 12 – 20 KMB 37M Kwai Shing (Central) – Olympic Station 12 – 20 KMB 38 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38B ⁽¹⁾ Kwai Shing (East) – Ping Tin 6 – 20 KMB 38P ⁽¹⁾ Kwai	KMB 31B	Olympic Station – Shek Lei (Tai Loong Street)	12 – 25
KMB 32 Olympic Station – Shek Wai Kok 20 – 28 KMB 32H Cheung Shan – Lai Chi Kok 30 – 60 KMB 32M Kwai Fong Station – Cheung Shan (Circular) 15 – 25 KMB 33A Mong Kok (Park Avenue) – Tsuen Wan (Nina Tower) 17 – 25 KMB 34 Tsuen Wan (Bayview Garden) – Kwai Shing (Central) 12 – 20 KMB 35A Tsim Sha Tsui East – On Yam Estate 5 – 20 KMB 35A Tsim Sha Tsui East – On Yam Estate AM, PM Peak KMB 36A Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue 15 – 30 KMB 36B Jordan (West Kowloon Station) – Lei Muk Shue 12 – 25 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36M Kwai Shing (Central) – Olympic Station 12 – 25 KMB 36M Kwai Shing (Central) – Olympic Station 12 – 20 KMB 37 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38B ⁽¹⁾ Riviera Gardens – Shek Mun Estate AM, PM Peak KMB 38P ⁽¹⁾ Kwai Shing (Central)	KMB 31M	Shek Lei (Lei Pui Street) – Kwai Fong Station	5 –15
KMB 32H Cheung Shan – Lai Chi Kok 30 – 60 KMB 32M Kwai Fong Station – Cheung Shan (Circular) 15 – 25 KMB 33A Mong Kok (Park Avenue) – Tsuen Wan (Nina Tower) 17 – 25 KMB 34 Tsuen Wan (Bayview Garden) – Kwai Shing (Central) 12 – 20 KMB 35A Tsim Sha Tsui East – On Yam Estate 5 – 20 KMB 35X ¹²⁹ On Yam Estate – Tsim Sha Tsui East AM, PM Peak KMB 36A Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue 15 – 30 KMB 36B Jordan (West Kowloon Station) – Lei Muk Shue 12 – 25 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36M Kwai Shing (Central) – Olympic Station 12 – 20 KMB 37 Kwai Shing (Central) – Olympic Station 12 – 20 KMB 37 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38A Mei Foo – Riviera Gardens 20 – 30 KMB 38P ⁽¹⁾ Riviera Gardens – Shek Mun Estate AM, PM Peak KMB 40 Laguna City – Tsuen Wa	KMB 31P ⁽¹⁾	Shek Lei Commercial Complex → Kwai Fong Station	AM Peak
KMB 32H Cheung Shan – Lai Chi Kok 30 – 60 KMB 32M Kwai Fong Station – Cheung Shan (Circular) 15 – 25 KMB 33A Mong Kok (Park Avenue) – Tsuen Wan (Nina Tower) 17 – 25 KMB 34 Tsuen Wan (Bayview Garden) – Kwai Shing (Central) 12 – 20 KMB 35A Tsim Sha Tsui East – On Yam Estate 5 – 20 KMB 35X ¹²⁹ On Yam Estate – Tsim Sha Tsui East AM, PM Peak KMB 36A Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue 15 – 30 KMB 36B Jordan (West Kowloon Station) – Lei Muk Shue 12 – 25 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36M Kwai Shing (Central) – Olympic Station 12 – 20 KMB 37 Kwai Shing (Central) – Olympic Station 12 – 20 KMB 37 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38A Mei Foo – Riviera Gardens 20 – 30 KMB 38P ⁽¹⁾ Riviera Gardens – Shek Mun Estate AM, PM Peak KMB 40 Laguna City – Tsuen Wa	KMB 32	Olympic Station – Shek Wai Kok	20 – 28
KMB 32M Kwai Fong Station – Cheung Shan (Circular) 15 – 25 KMB 33A Mong Kok (Park Avenue) – Tsuen Wan (Nina Tower) 17 – 25 KMB 34 Tsuen Wan (Bayview Garden) – Kwai Shing (Central) 12 – 20 KMB 35A Tsim Sha Tsui East – On Yam Estate 5 – 20 KMB 35X ⁽²⁾ On Yam Estate – Tsim Sha Tsui East AM, PM Peak KMB 36A Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue 15 – 30 KMB 36B Jordan (West Kowloon Station) – Lei Muk Shue 12 – 25 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36M Kwai Shing (Central) – Olympic Station 12 – 20 KMB 37 Kwai Shing (Central) – Olympic Station 12 – 20 KMB 38 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38B ⁽¹⁾ Riviera Gardens – Shek Mun Estate AM, PM Peak KMB 38P ⁽¹⁾ Kwai Shing (Central) – Ping Tin AM, PM Peak KMB 40 Laguna City – Tsuen Wan (Belvedere Garden) 11 – 25 KMB 40P	KMB 32H		30 – 60
KMB 34 Tsuen Wan (Bayview Garden) – Kwai Shing (Central) 12 – 20 KMB 35A Tsim Sha Tsui East – On Yam Estate 5 – 20 KMB 35X ⁽²⁾ On Yam Estate – Tsim Sha Tsui East AM, PM Peak KMB 36A Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue 15 – 30 KMB 36B Jordan (West Kowloon Station) – Lei Muk Shue 12 – 25 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36X ⁽¹⁾ Lei Muk Shue – Tsim Sha Tsui East (Mody Road) AM, PM Peak KMB 37 Kwai Shing (Central) – Olympic Station 12 – 20 KMB 37M Kwai Shing (Central) – Olympic Station 12 – 20 KMB 38 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38B ⁽¹⁾ Riviera Gardens – Shek Mun Estate AM, PM Peak KMB 38P ⁽¹⁾ Kwai Shing (Central) – Ping Tin AM, PM Peak KMB 40 Laguna City – Tsuen Wan (Belvedere Garden) 11 – 25 KMB 40P Tsuen Wan (Nina Tower) – Kwun Tong Ferry 8 – 30 KMB 40F ⁽¹⁾ Nai Chung – Kwai Chung (Kwai Fong Estate) AM, PM Peak	KMB 32M		15 – 25
KMB 34 Tsuen Wan (Bayview Garden) – Kwai Shing (Central) 12 – 20 KMB 35A Tsim Sha Tsui East – On Yam Estate 5 – 20 KMB 35X ⁽²⁾ On Yam Estate – Tsim Sha Tsui East AM, PM Peak KMB 36A Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue 15 – 30 KMB 36B Jordan (West Kowloon Station) – Lei Muk Shue 5 – 12 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36X ⁽¹⁾ Lei Muk Shue – Tsim Sha Tsui East (Mody Road) AM, PM Peak KMB 37 Kwai Shing (Central) – Olympic Station 12 – 20 KMB 38 (Wai Shing (Central) – Olympic Station 12 – 20 KMB 38 (Wai Shing (East) – Ping Tin 6 – 20 KMB 38A Mei Foo – Riviera Gardens 20 – 30 KMB 38B ⁽¹⁾ Riviera Gardens – Shek Mun Estate AM, PM Peak KMB 38P ⁽¹⁾ Kwai Shing (Central) – Ping Tin AM, PM Peak KMB 40 (Shing (Central) – Ping Tin AM, PM Peak KMB 40A ⁽¹⁾ Ping Tin – Kwai Hing Station AM, PM Peak KMB 40P Ping Tin – Kwai Hing Station AM, PM Peak KMB 40P Nai Chung – Kwai Chung (Kwai Fong Estate)	KMB 33A	Mong Kok (Park Avenue) – Tsuen Wan (Nina Tower)	17 – 25
KMB 35A Tsim Sha Tsui East − On Yam Estate 5 − 20 KMB 35X ⁽²⁾ On Yam Estate − Tsim Sha Tsui East AM, PM Peak KMB 36A Cheung Sha Wan (Sham Mong Road) − Lei Muk Shue 15 − 30 KMB 36B Jordan (West Kowloon Station) − Lei Muk Shue 12 − 25 KMB 36M Kwai Fong Station − Lei Muk Shue 5 − 12 KMB 36X ⁽¹⁾ Lei Muk Shue − Tsim Sha Tsui East (Mody Road) AM, PM Peak KMB 37 Kwai Shing (Central) − Olympic Station 12 − 20 KMB 37M Kwai Shing (Central) − Olympic Station 12 − 20 KMB 38 Kwai Shing (East) − Ping Tin 6 − 20 KMB 38 Riviera Gardens − Shek Mun Estate AM, PM Peak KMB 38P ⁽¹⁾ Riviera Gardens − Shek Mun Estate AM, PM Peak KMB 38P ⁽¹⁾ Kwai Shing (Central) − Ping Tin AM, PM Peak KMB 40 Laguna City − Tsuen Wan (Belvedere Garden) 11 − 25 KMB 40A ⁽¹⁾ Ping Tin − Kwai Hing Station AM, PM Peak KMB 40P Tsuen Wan (Nina Tower) − Kwun Tong Ferry 8 − 30 KMB 40E ⁽¹⁾ Nai Chung – Kwai Chung (Kwai Fong Estate) AM, PM Peak	KMB 34		12 – 20
KMB 36A Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue 15 – 30 KMB 36B Jordan (West Kowloon Station) – Lei Muk Shue 12 – 25 KMB 36M Kwai Fong Station – Lei Muk Shue 5 – 12 KMB 36X ⁽¹⁾ Lei Muk Shue – Tsim Sha Tsui East (Mody Road) AM, PM Peak KMB 37 Kwai Shing (Central) – Olympic Station 12 – 20 KMB 37M Kwai Hing Station → Kwai Shing Central (Circular) 8 – 20 KMB 38 Kwai Shing (East) – Ping Tin 6 – 20 KMB 38A Mei Foo – Riviera Gardens 20 – 30 KMB 38B ⁽¹⁾ Riviera Gardens – Shek Mun Estate AM, PM Peak KMB 38P ⁽¹⁾ Kwai Shing (Central) – Ping Tin AM, PM Peak KMB 40 Laguna City – Tsuen Wan (Belvedere Garden) 11 – 25 KMB 40P Ping Tin – Kwai Hing Station AM, PM Peak KMB 40P Tsuen Wan (Nina Tower) – Kwun Tong Ferry 8 – 30 KMB 40E ⁽¹⁾ Nai Chung – Kwai Chung (Kwai Fong Estate) AM, PM Peak KMB 40X Wu Kai Sha Station – Kwai Chung Estate 5 – 15 KMB 43 Cheung Hong Estate – Tsuen Wan West Station 12 – 20	KMB 35A		5 – 20
KMB 36BJordan (West Kowloon Station) – Lei Muk Shue12 – 25KMB 36MKwai Fong Station – Lei Muk Shue5 – 12KMB 36X ⁽¹⁾ Lei Muk Shue – Tsim Sha Tsui East (Mody Road)AM, PM PeakKMB 37Kwai Shing (Central) – Olympic Station12 – 20KMB 37MKwai Hing Station → Kwai Shing Central (Circular)8 – 20KMB 38Kwai Shing (East) – Ping Tin6 – 20KMB 38AMei Foo – Riviera Gardens20 – 30KMB 38B ⁽¹⁾ Riviera Gardens – Shek Mun EstateAM, PM PeakKMB 38P ⁽¹⁾ Kwai Shing (Central) – Ping TinAM, PM PeakKMB 40Laguna City – Tsuen Wan (Belvedere Garden)11 – 25KMB 40A ⁽¹⁾ Ping Tin – Kwai Hing StationAM, PM PeakKMB 40PTsuen Wan (Nina Tower) – Kwun Tong Ferry8 – 30KMB 40E ⁽¹⁾ Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB 40XWu Kai Sha Station – Kwai Chung Estate6 – 20KMB 40XWu Kai Sha Station – Kwai Chung Estate5 – 15KMB 43Cheung Hong Estate – Tsuen Wan West Station12 – 20KMB 43ACheung Wang Estate – Shek Lei (Tai Loong Street)6 – 20KMB 43C ⁽¹⁾ Cheung Wang Estate → Shek Lei (Tai Loong Street)6 – 20KMB 43C ⁽¹⁾ Shek Yam → Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate11 – 20KMB 46MMei Tin – Kwai Fong Station (Circular)10 – 30KMB 46XMei Tin – Kwai Fong Station (Circular)5 – 20	KMB 35X ⁽²⁾	On Yam Estate – Tsim Sha Tsui East	AM, PM Peak
KMB 36BJordan (West Kowloon Station) – Lei Muk Shue12 – 25KMB 36MKwai Fong Station – Lei Muk Shue5 – 12KMB 36X ⁽¹⁾ Lei Muk Shue – Tsim Sha Tsui East (Mody Road)AM, PM PeakKMB 37Kwai Shing (Central) – Olympic Station12 – 20KMB 37MKwai Hing Station → Kwai Shing Central (Circular)8 – 20KMB 38Kwai Shing (East) – Ping Tin6 – 20KMB 38AMei Foo – Riviera Gardens20 – 30KMB 38B ⁽¹⁾ Riviera Gardens – Shek Mun EstateAM, PM PeakKMB 38P ⁽¹⁾ Kwai Shing (Central) – Ping TinAM, PM PeakKMB 40Laguna City – Tsuen Wan (Belvedere Garden)11 – 25KMB 40A ⁽¹⁾ Ping Tin – Kwai Hing StationAM, PM PeakKMB 40PTsuen Wan (Nina Tower) – Kwun Tong Ferry8 – 30KMB 40E ⁽¹⁾ Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB 40XWu Kai Sha Station – Kwai Chung Estate6 – 20KMB 40XWu Kai Sha Station – Kwai Chung Estate5 – 15KMB 43Cheung Hong Estate – Tsuen Wan West Station12 – 20KMB 43ACheung Wang Estate – Shek Lei (Tai Loong Street)6 – 20KMB 43C ⁽¹⁾ Cheung Wang Estate → Shek Lei (Tai Loong Street)6 – 20KMB 43C ⁽¹⁾ Shek Yam → Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate11 – 20KMB 46MMei Tin – Kwai Fong Station (Circular)10 – 30KMB 46XMei Tin – Kwai Fong Station (Circular)5 – 20	KMB 36A	Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue	15 – 30
KMB 36MKwai Fong Station – Lei Muk Shue $5-12$ KMB 36X ⁽¹⁾ Lei Muk Shue – Tsim Sha Tsui East (Mody Road)AM, PM PeakKMB 37Kwai Shing (Central) – Olympic Station $12-20$ KMB 37MKwai Hing Station → Kwai Shing Central (Circular) $8-20$ KMB 38Kwai Shing (East) – Ping Tin $6-20$ KMB 38AMei Foo – Riviera Gardens $20-30$ KMB 38B ⁽¹⁾ Riviera Gardens – Shek Mun EstateAM, PM PeakKMB 38P ⁽¹⁾ Kwai Shing (Central) – Ping TinAM, PM PeakKMB 40Laguna City – Tsuen Wan (Belvedere Garden) $11-25$ KMB 40A ⁽¹⁾ Ping Tin – Kwai Hing StationAM, PM PeakKMB 40PTsuen Wan (Nina Tower) – Kwun Tong Ferry $8-30$ KMB 40E ⁽¹⁾ Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB 40XWu Kai Sha Station – Kwai Chung Estate $6-20$ KMB 42CCheung Hang Estate – Lam Tin Station $5-15$ KMB 43Cheung Hong Estate – Tsuen Wan West Station $12-20$ KMB 43ACheung Wang Estate – Shek Lei (Tai Loong Street) $6-20$ KMB 43D ⁽¹⁾ Cheung Wang Estate → Kwai ShingAM PeakKMB 43S ⁽¹⁾ Shek Yam → Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate $11-20$ KMB 46P ⁽²⁾ Mei Tin – Kwai Fong Station (Circular) $10-30$ KMB 46XMei Foo – Hin Keng $5-20$	KMB 36B		
KMB 36X(1)Lei Muk Shue – Tsim Sha Tsui East (Mody Road)AM, PM PeakKMB 37Kwai Shing (Central) – Olympic Station12 – 20KMB 37MKwai Hing Station → Kwai Shing Central (Circular)8 – 20KMB 38Kwai Shing (East) – Ping Tin6 – 20KMB 38AMei Foo – Riviera Gardens20 – 30KMB 38B(1)Riviera Gardens – Shek Mun EstateAM, PM PeakKMB 38P(1)Kwai Shing (Central) – Ping TinAM, PM PeakKMB 40Laguna City – Tsuen Wan (Belvedere Garden)11 – 25KMB 40A(1)Ping Tin – Kwai Hing StationAM, PM PeakKMB 40PTsuen Wan (Nina Tower) – Kwun Tong Ferry8 – 30KMB 40E(1)Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB 40XWu Kai Sha Station – Kwai Chung Estate6 – 20KMB 42CCheung Hang Estate – Lam Tin Station5 – 15KMB 43Cheung Hong Estate – Tsuen Wan West Station12 – 20KMB 43ACheung Wang Estate – Shek Lei (Tai Loong Street)6 – 20KMB 43D(1)Cheung Wang Estate → Shek Lei (Tai Loong Street)6 – 20KMB 43S(1)Shek Yam → Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate11 – 20KMB 46P(2)Mei Tin – Kwai Fong Station (Circular)10 – 30KMB 46XMei Foo – Hin Keng5 – 20			
KMB 37Kwai Shing (Central) – Olympic Station12 – 20KMB 37MKwai Hing Station → Kwai Shing Central (Circular)8 – 20KMB 38Kwai Shing (East) – Ping Tin6 – 20KMB 38AMei Foo – Riviera Gardens20 – 30KMB 38B ⁽¹⁾ Riviera Gardens – Shek Mun EstateAM, PM PeakKMB 38P ⁽¹⁾ Kwai Shing (Central) – Ping TinAM, PM PeakKMB 40Laguna City – Tsuen Wan (Belvedere Garden)11 – 25KMB 40A ⁽¹⁾ Ping Tin – Kwai Hing StationAM, PM PeakKMB 40PTsuen Wan (Nina Tower) – Kwun Tong Ferry8 – 30KMB 40E ⁽¹⁾ Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB 40XWu Kai Sha Station – Kwai Chung Estate6 – 20KMB 42CCheung Hang Estate – Lam Tin Station5 – 15KMB 43Cheung Hong Estate – Tsuen Wan West Station12 – 20KMB 43ACheung Wang Estate – Shek Lei (Tai Loong Street)6 – 20KMB 43D ⁽¹⁾ Cheung Wang Estate → Shek Lei (Tai Loong Street)6 – 20KMB 43S ⁽¹⁾ Shek Yam → Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate11 – 20KMB 46P ⁽²⁾ Mei Tin – Kwai Fong Station (Circular)10 – 30KMB 46XMei Foo – Hin Keng5 – 20	KMB 36X ⁽¹⁾		AM, PM Peak
KMB 37MKwai Hing Station → Kwai Shing Central (Circular)8 – 20KMB 38Kwai Shing (East) – Ping Tin6 – 20KMB 38AMei Foo – Riviera Gardens20 – 30KMB 38B(1)Riviera Gardens – Shek Mun EstateAM, PM PeakKMB 38P(1)Kwai Shing (Central) – Ping TinAM, PM PeakKMB 40Laguna City – Tsuen Wan (Belvedere Garden)11 – 25KMB 40A(1)Ping Tin – Kwai Hing StationAM, PM PeakKMB 40PTsuen Wan (Nina Tower) – Kwun Tong Ferry8 – 30KMB 40E(1)Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB 40XWu Kai Sha Station – Kwai Chung Estate6 – 20KMB 42CCheung Hang Estate – Lam Tin Station5 – 15KMB 43Cheung Hong Estate – Tsuen Wan West Station12 – 20KMB 43ACheung Wang Estate – Shek Lei (Tai Loong Street)6 – 20KMB 43D(1)Cheung Wang Estate → Kwai ShingAM PeakKMB 43S(1)Shek Yam → Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate11 – 20KMB 46P(2)Mei Tin – Kwai Fong Station (Circular)10 – 30KMB 46XMei Foo – Hin Keng5 – 20			
KMB 38Kwai Shing (East) – Ping Tin6 – 20KMB 38AMei Foo – Riviera Gardens20 – 30KMB 38B ⁽¹⁾ Riviera Gardens – Shek Mun EstateAM, PM PeakKMB 38P ⁽¹⁾ Kwai Shing (Central) – Ping TinAM, PM PeakKMB 40Laguna City – Tsuen Wan (Belvedere Garden)11 – 25KMB 40A ⁽¹⁾ Ping Tin – Kwai Hing StationAM, PM PeakKMB 40PTsuen Wan (Nina Tower) – Kwun Tong Ferry8 – 30KMB 40E ⁽¹⁾ Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB 40XWu Kai Sha Station – Kwai Chung Estate6 – 20KMB 42CCheung Hang Estate – Lam Tin Station5 – 15KMB 43Cheung Hong Estate – Tsuen Wan West Station12 – 20KMB 43ACheung Wang Estate – Shek Lei (Tai Loong Street)6 – 20KMB 43D ⁽¹⁾ Cheung Wang Estate → Kwai ShingAM PeakKMB 43S ⁽¹⁾ Shek Yam → Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate11 – 20KMB 46P ⁽²⁾ Mei Tin – Kwai Fong Station (Circular)10 – 30KMB 46XMei Foo – Hin Keng5 – 20	KMB 37M		8 – 20
KMB 38AMei Foo - Riviera Gardens $20-30$ KMB 38B(1)Riviera Gardens - Shek Mun EstateAM, PM PeakKMB 38P(1)Kwai Shing (Central) - Ping TinAM, PM PeakKMB 40Laguna City - Tsuen Wan (Belvedere Garden) $11-25$ KMB 40A(1)Ping Tin - Kwai Hing StationAM, PM PeakKMB 40PTsuen Wan (Nina Tower) - Kwun Tong Ferry $8-30$ KMB 40E(1)Nai Chung - Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB 40XWu Kai Sha Station - Kwai Chung Estate $6-20$ KMB 42CCheung Hang Estate - Lam Tin Station $5-15$ KMB 43Cheung Hong Estate - Tsuen Wan West Station $12-20$ KMB 43ACheung Wang Estate - Shek Lei (Tai Loong Street) $6-20$ KMB 43D(1)Cheung Wang Estate → Kwai ShingAM PeakKMB 43S(1)Shek Yam → Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station - Kwai Chung Estate $11-20$ KMB 46P(2)Mei Tin - Kwai Fong Station (Circular) $10-30$ KMB 46XMei Foo - Hin Keng $5-20$	KMB 38		6 – 20
KMB $38B^{(1)}$ Riviera Gardens – Shek Mun EstateAM, PM PeakKMB $38P^{(1)}$ Kwai Shing (Central) – Ping TinAM, PM PeakKMB 40 Laguna City – Tsuen Wan (Belvedere Garden) $11 - 25$ KMB $40A^{(1)}$ Ping Tin – Kwai Hing StationAM, PM PeakKMB $40P$ Tsuen Wan (Nina Tower) – Kwun Tong Ferry $8 - 30$ KMB $40E^{(1)}$ Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB $40X$ Wu Kai Sha Station – Kwai Chung Estate $6 - 20$ KMB $42C$ Cheung Hang Estate – Lam Tin Station $5 - 15$ KMB 43 Cheung Hong Estate – Tsuen Wan West Station $12 - 20$ KMB $43A$ Cheung Wang Estate – Shek Lei (Tai Loong Street) $6 - 20$ KMB $43D^{(1)}$ Cheung Wang Estate \rightarrow Kwai ShingAM PeakKMB $43S^{(1)}$ Shek Yam \rightarrow Hong Kong Science ParkAM PeakKMB $44M$ Tsing Yi Station – Kwai Chung Estate $11 - 20$ KMB $46P^{(2)}$ Mei Tin – Kwai Fong Station (Circular) $10 - 30$ KMB $46X$ Mei Foo – Hin Keng $5 - 20$	KMB 38A		
KMB 40Laguna City – Tsuen Wan (Belvedere Garden) $11-25$ KMB 40A ⁽¹⁾ Ping Tin – Kwai Hing StationAM, PM PeakKMB 40PTsuen Wan (Nina Tower) – Kwun Tong Ferry $8-30$ KMB 40E ⁽¹⁾ Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB 40XWu Kai Sha Station – Kwai Chung Estate $6-20$ KMB 42CCheung Hang Estate – Lam Tin Station $5-15$ KMB 43Cheung Hong Estate – Tsuen Wan West Station $12-20$ KMB 43ACheung Wang Estate – Shek Lei (Tai Loong Street) $6-20$ KMB 43D ⁽¹⁾ Cheung Wang Estate \rightarrow Kwai ShingAM PeakKMB 43S ⁽¹⁾ Shek Yam \rightarrow Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate $11-20$ KMB 46P ⁽²⁾ Mei Tin – Kwai Fong Station (Circular) $10-30$ KMB 46XMei Foo – Hin Keng $5-20$	KMB 38B ⁽¹⁾	Riviera Gardens – Shek Mun Estate	
KMB $40A^{(1)}$ Ping Tin – Kwai Hing StationAM, PM PeakKMB $40P$ Tsuen Wan (Nina Tower) – Kwun Tong Ferry $8-30$ KMB $40E^{(1)}$ Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB $40X$ Wu Kai Sha Station – Kwai Chung Estate $6-20$ KMB $42C$ Cheung Hang Estate – Lam Tin Station $5-15$ KMB 43 Cheung Hong Estate – Tsuen Wan West Station $12-20$ KMB $43A$ Cheung Wang Estate – Shek Lei (Tai Loong Street) $6-20$ KMB $43D^{(1)}$ Cheung Wang Estate \rightarrow Kwai ShingAM PeakKMB $43S^{(1)}$ Shek Yam \rightarrow Hong Kong Science ParkAM PeakKMB $44M$ Tsing Yi Station – Kwai Chung Estate $11-20$ KMB $46P^{(2)}$ Mei Tin – Kwai Fong Station (Circular) $10-30$ KMB $46X$ Mei Foo – Hin Keng $5-20$	KMB 38P ⁽¹⁾	Kwai Shing (Central) – Ping Tin	AM, PM Peak
KMB 40PTsuen Wan (Nina Tower) – Kwun Tong Ferry8 – 30KMB 40E(1)Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB 40XWu Kai Sha Station – Kwai Chung Estate6 – 20KMB 42CCheung Hang Estate – Lam Tin Station $5 - 15$ KMB 43Cheung Hong Estate – Tsuen Wan West Station $12 - 20$ KMB 43ACheung Wang Estate – Shek Lei (Tai Loong Street) $6 - 20$ KMB 43D(1)Cheung Wang Estate → Kwai ShingAM PeakKMB 43S(1)Shek Yam → Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate $11 - 20$ KMB 46P(2)Mei Tin – Kwai Fong Station (Circular) $10 - 30$ KMB 46XMei Foo – Hin Keng $5 - 20$	KMB 40	Laguna City – Tsuen Wan (Belvedere Garden)	11 – 25
KMB $40E^{(1)}$ Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB $40X$ Wu Kai Sha Station – Kwai Chung Estate $6-20$ KMB $42C$ Cheung Hang Estate – Lam Tin Station $5-15$ KMB 43 Cheung Hong Estate – Tsuen Wan West Station $12-20$ KMB $43A$ Cheung Wang Estate – Shek Lei (Tai Loong Street) $6-20$ KMB $43D^{(1)}$ Cheung Wang Estate \rightarrow Kwai ShingAM PeakKMB $43S^{(1)}$ Shek Yam \rightarrow Hong Kong Science ParkAM PeakKMB $44M$ Tsing Yi Station – Kwai Chung Estate $11-20$ KMB $46P^{(2)}$ Mei Tin – Kwai Fong Station (Circular) $10-30$ KMB $46X$ Mei Foo – Hin Keng $5-20$	KMB 40A ⁽¹⁾	Ping Tin – Kwai Hing Station	AM, PM Peak
KMB $40E^{(1)}$ Nai Chung – Kwai Chung (Kwai Fong Estate)AM, PM PeakKMB $40X$ Wu Kai Sha Station – Kwai Chung Estate $6-20$ KMB $42C$ Cheung Hang Estate – Lam Tin Station $5-15$ KMB 43 Cheung Hong Estate – Tsuen Wan West Station $12-20$ KMB $43A$ Cheung Wang Estate – Shek Lei (Tai Loong Street) $6-20$ KMB $43D^{(1)}$ Cheung Wang Estate \rightarrow Kwai ShingAM PeakKMB $43S^{(1)}$ Shek Yam \rightarrow Hong Kong Science ParkAM PeakKMB $44M$ Tsing Yi Station – Kwai Chung Estate $11-20$ KMB $46P^{(2)}$ Mei Tin – Kwai Fong Station (Circular) $10-30$ KMB $46X$ Mei Foo – Hin Keng $5-20$	KMB 40P	Tsuen Wan (Nina Tower) – Kwun Tong Ferry	8 – 30
KMB 42CCheung Hang Estate – Lam Tin Station $5-15$ KMB 43Cheung Hong Estate – Tsuen Wan West Station $12-20$ KMB 43ACheung Wang Estate – Shek Lei (Tai Loong Street) $6-20$ KMB $43D^{(1)}$ Cheung Wang Estate \rightarrow Kwai ShingAM PeakKMB $43S^{(1)}$ Shek Yam \rightarrow Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate $11-20$ KMB $46P^{(2)}$ Mei Tin – Kwai Fong Station (Circular) $10-30$ KMB $46X$ Mei Foo – Hin Keng $5-20$	KMB 40E ⁽¹⁾		AM, PM Peak
KMB 43Cheung Hong Estate – Tsuen Wan West Station $12-20$ KMB 43ACheung Wang Estate – Shek Lei (Tai Loong Street) $6-20$ KMB $43D^{(1)}$ Cheung Wang Estate \rightarrow Kwai ShingAM PeakKMB $43S^{(1)}$ Shek Yam \rightarrow Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate $11-20$ KMB $46P^{(2)}$ Mei Tin – Kwai Fong Station (Circular) $10-30$ KMB $46X$ Mei Foo – Hin Keng $5-20$	KMB 40X	Wu Kai Sha Station – Kwai Chung Estate	6 – 20
KMB 43ACheung Wang Estate – Shek Lei (Tai Loong Street) $6-20$ KMB 43D(1)Cheung Wang Estate \rightarrow Kwai ShingAM PeakKMB 43S(1)Shek Yam \rightarrow Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate $11-20$ KMB 46P(2)Mei Tin – Kwai Fong Station (Circular) $10-30$ KMB 46XMei Foo – Hin Keng $5-20$	KMB 42C	Cheung Hang Estate – Lam Tin Station	5 – 15
KMB $43D^{(1)}$ Cheung Wang Estate \rightarrow Kwai ShingAM PeakKMB $43S^{(1)}$ Shek Yam \rightarrow Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate $11 - 20$ KMB $46P^{(2)}$ Mei Tin – Kwai Fong Station (Circular) $10 - 30$ KMB $46X$ Mei Foo – Hin Keng $5 - 20$	KMB 43	Cheung Hong Estate – Tsuen Wan West Station	12 – 20
KMB $43S^{(1)}$ Shek Yam → Hong Kong Science ParkAM PeakKMB 44MTsing Yi Station – Kwai Chung Estate $11 - 20$ KMB $46P^{(2)}$ Mei Tin – Kwai Fong Station (Circular) $10 - 30$ KMB $46X$ Mei Foo – Hin Keng $5 - 20$	KMB 43A	Cheung Wang Estate – Shek Lei (Tai Loong Street)	6 – 20
KMB 44MTsing Yi Station – Kwai Chung Estate11 – 20KMB 46P(2)Mei Tin – Kwai Fong Station (Circular)10 – 30KMB 46XMei Foo – Hin Keng5 – 20	KMB 43D ⁽¹⁾	Cheung Wang Estate → Kwai Shing	AM Peak
KMB 46P(2)Mei Tin – Kwai Fong Station (Circular)10 – 30KMB 46XMei Foo – Hin Keng5 – 20	KMB 43S ⁽¹⁾	Shek Yam → Hong Kong Science Park	AM Peak
KMB $46P^{(2)}$ Mei Tin – Kwai Fong Station (Circular) $10 - 30$ KMB $46X$ Mei Foo – Hin Keng $5 - 20$	KMB 44M	Tsing Yi Station – Kwai Chung Estate	11 – 20
KMB 46X Mei Foo – Hin Keng 5 – 20	KMB 46P ⁽²⁾		
KMR 47A Kwai Fong (South) – Shui Chuen O 20 – 30	KMB 46X		5 – 20
TRIVID 4777 TRIVIAL OF GOODING STATE OF GOODING	KMB 47A	Kwai Fong (South) – Shui Chuen O	20 – 30
KMB 47X Kwai Shing (East) – Chun Shek 6 – 20	KMB 47X	Kwai Shing (East) – Chun Shek	6 – 20

Note: KMB – Kowloon Motor Bus LWB – Long Win Bus CTB – Citybus GMB – Green Minibus

- (1) Monday to Friday. No services on Sundays and Public Holidays
- (2) Monday to Saturday. No services on Sundays and Public Holidays
- (O) Overnight service

ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING TABLE 2.1 NEAR THE SUBJECT SITE (CONT'D)

	NEAR THE SUBJECT SITE (CONT'D)	1
Route	Routing	Frequency (minutes)
KMB 57M	Lai King (North) – Shan King Estate	11 – 30
KMB 58M	Kwai Fong Station – Leung King Estate	3 – 15
KMB 59A	Kwai Fong (Kwai Tsui Estate) – Tuen Mun Pier Head	6 – 60
KMB 61M	Lai King (North) – Yau Oi (South)	8 – 25
KMB 67M	Kwai Fong Station – Siu Hong Court	5 – 20
KMB 69M	Kwai Fong Station – Tin Shui Wai Town Centre	5 – 30
KMB 69P ⁽²⁾	Tin Shui Wai Station → Kwai Fong Station	AM Peak
KMB 73P ⁽¹⁾	Tai Mei Tuk – Tsuen Wan (Nina Tower)	AM Peak
KMB 73P ⁽¹⁾	Tsuen Wan (Nina Tower) → Tai Mei Tuk	PM Peak
KMB 235M	Kwai Fong Station – On Yam Estate	5 – 15
KMB 237A ⁽²⁾	Kwai Shing (Central) → Tsim Sha Tsui East (Mody Road)	AM Peak
KMB 240X ⁽¹⁾	Wong Nai Tau – Kwai Hing Station	AM, PM Peak
KMB 260C ⁽¹⁾	Sam Shing Estate – Kwai Fong Station	AM, PM Peak
KMB 265M	Lai Yiu Estate – Tin Heng Estate	5 – 35
KMB 269A ⁽²⁾	Wetland Park Road → Kwai Chung (Kwai Fong Estate)	AM Peak
KMB 269M	Cho Yiu – Tin Yan Estate	12 – 25
KMB 272P ⁽²⁾	Tai Po (Fu Heng) – Kwai Hing Station	AM, PM Peak
KMB 290	Choi Ming – Tsuen Wan West Station	10 – 20
KMB 290A	Choi Ming – Tsuen Wan West Station	10 – 25
KMB 290B ⁽¹⁾	Tsuen Wan West Station – Tseung Kwan O Industrial Estate	AM, PM Peak
KMB 290E ⁽¹⁾	Tseung Kwan O Industrial Estate – Tseun Wan West Station	AM, PM Peak
KMB 290X	Lohas Park Station – Tsuen Wan West Station	15 – 35
KMB 935 ⁽²⁾	Shek Lei (Tai Loong Street) – Wan Chai (Fleming Road)	AM, PM Peak
KMB 936	Shek Wai Kok → Causeway Bay (Cotton Path)	AM Peak
KMB 936	Causeway Bay (Cotton Path) → Shek Wai Kok	PM Peak
KMB 936A ⁽²⁾	Tsuen Wan (Shek Wai Kok) → Causeway Bay (Cotton Path)	AM Peak
KMB 936A ⁽¹⁾	Causeway Bay (Cotton Path) → Lei Muk Shue	PM Peak
KMB N237 ^(O)	Mei Foo – Kwai Shing (Circular)	30
KMB N260 ^(O)	Mei Foo – Tuen Mun Pier Head	20 – 30
KMB N269 ^(O)	Mei Foo – Tin Tsz	10 – 25
KMB N290 ^(O)	Tsuen Wan West Station → Lohas Park Station	2 per day
KMB X42P ⁽¹⁾	Cheung On Estate → Lam Tin Station	AM Peak
LWB A30	Lei Muk Shue – Airport (Ground Transportation Centre)	30 – 60
LWB A32	Airport (Ground Transportation Centre) – Kwai Chung Estate	30 – 60
LWB E32	Asiaworld-Expo – Kwai Fong (South)	11 – 30
LWB E32A	Tung Chung Development Pier – Kwai Fong (South)	12 – 30
LWB NA32 ^(O)	Hzmb Hong Kong Port – Kwai Chung Estate	2 – 3 per day
CTB 930	Tsuen Wan – Exhibition Centre Station	10 – 30
CTB 930B ⁽¹⁾	Kwai Shing (East) → Causeway Bay (Moreton Terrace)	AM Peak
CTB N930 ^(O)	Causeway Bay (Moreton Terrace) → Tsuen Wan	1 per day
CTB N930 ^(O)	Tsuen Wan → Causeway Bay (Moreton Terrace)	2 per day
GMB 83A	Tsuen Wan (Chuen Lung Street) – On Yam Estate	8 – 30
GMB 86	Tsuen Wan West Station – Shek Lei Estate	10 – 20
GMB 86A ^(O)	Tsuen Wan (Chuen Lung Street) – Shek Lei Estate	15 – 30
GMB 86M	Tsuen Wan (Chuen Lung Street) – Shek Lei Estate	5 – 20
GMB 87K	Kwai Fong Station – Tsuen Wan West Station	6 – 10
GMB 89A	Kwai Hing Station – Tsuen Wan (Ho Pui Street)	8 – 18
GMB 89B	Tsuen Wan West Station – Kwai Shing East Estate	10 – 12
GMB 89M	Kwai Fong Station – Kwai Shing East Estate	5 – 15
GMB 89P	Kwai Chung (Shek Tau Street) – Kwai Fong (Circular)	15
5.0.5 671	1 Sharing (Short rad offoot) Revail Folia (Offodial)	10

Note: KMB – Kowloon Motor Bus LWB – Long Win Bus CTB – Citybus (1) Monday to Friday. No services on Sundays and Public Holidays (2) Monday to Saturday. No services on Sundays and Public Holidays CTB – Citybus GMB – Green Minibus

- (O) Overnight service

TABLE 2.1 ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING NEAR THE SUBJECT SITE (CONT'D)

	, ,	
Route	Routing	Frequency (minutes)
GMB 89S	Kwai Fong Station – Kwai Shing Circuit (Circular)	5 – 15
GMB 94	Shek Wai Kok Estate – Kwai Shing Circuit	8 – 15
GMB 94A	Lei Muk Shue Estate – Kwai Shing Circuit	10 – 15
GMB 302	Hong Kong Garden – Kwai Fong Station	5 – 30
GMB 302	Bellagio – Kwai Fong Station	AM Peak
GMB 313	Fuk Loi Estate – Princess Margaret Hospital	6 – 11
GMB 401	Tsing Yi Ferry Terminus – Shek Yam Estate	7 – 10
GMB 403	Shek Lei Estate – Sha Tin Wai (Circular)	20
GMB 403P	Shek Lei Estate – Shatin Town Centre	6 – 20
GMB 403X	Tai Wai Station – Shek Lei Estate (Circular)	12 – 15
GMB 406 ⁽¹⁾	Shek Lei Estate – Kwai Shing Circuit (Circular)	AM Peak
GMB 407	Cheung Wang Estate – Princess Margaret Hospital	4 – 10
GMB 410	Shek Yam Estate – Princess Margaret Hospital	15 – 20

Note: KMB – Kowloon Motor Bus LWB – Long Win Bus CTB – Citybus GMB – Green Minibus

- (1) Monday to Friday. No services on Sundays and Public Holidays
- (2) Monday to Saturday. No services on Sundays and Public Holidays
- (O) Overnight service

Pedestrian Facilities

2.3 In the vicinity of the Subject Site, footpaths are provided alongside roads, and footbridges are provided across Kwai Chung Road.

Existing Traffic Flows

- 2.4 To quantify the existing traffic flows in the vicinity of the Subject Site, manual classified counts were conducted on Thursday, 10th October 2024 at the following junctions:
 - J01 Junction of Kwai Chung Road / Kwai On Road / Kwai Yik Road;
 - JO2 Junction of Tai Lin Pai Road / Kwai On Road;
 - JO3 Junction of Tai Lin Pai Road / Kung Yip Street;
 - JO4 Junction of Kung Yip Street / Wah Sing Street;
 - JO5 Junction of Kwai Chung Road / Tai Lin Pai Road / Kwai Foo Road; and
 - J06 Junction of Tai Lin Pai Road / San Kwai Street.
- 2.5 In view that junction of Kwai Chung Road / Tai Lin Pai Road is not a signal controlled or a priority junction, the junction performance assessment is not conducted.
- 2.6 The existing road network, the locations of these surveyed junctions and the area of influence ("AOI") are shown in Figure 2.2 and the junction layouts are shown in Figures 2.3 2.8.
- 2.7 The traffic counts are classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. The AM and PM peak hours identified from the surveys are found to be between 0900 1000 hours and 1700 1800 hours respectively. Figure 2.9 presents the 2024 observed AM and PM peak hour traffic flows in pcu/hour.

Queueing of Taxis for Refilling Liquefied Petroleum Gas ("LPG") at J02

- 2.8 Since queuing of taxis for refilling liquefied petroleum gas occurs during the PM peak hour along Tai Lin Pai Road northbound near its junction with Kwai On Road, the effect of taxi queueing is only considered for the PM peak hour junction capacity analysis.
- 2.9 In the junction analysis, the queueing of taxis is regarded as "dead vehicles" occupying part of the slow lane of Tai Lin Pai Road northbound. Despite the presence of the "dead vehicles", the remaining lane width could still serve 2 northbound traffic movements.

Performance of the Surveyed Junctions

2.10 The existing performance of the surveyed junctions are calculated based on the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"), which is published by the Transport Department. The results of the performance of junctions are summarised in Table 2.2, and detailed calculations of junction performance are found in Appendix A.

TABLE 2.2 EXISTING JUNCTION PERFORMANCE

Ref.	Junction	Type of	AM Peak	PM Peak
		Junction	Hour	Hour
		(Parameter)		
J01	Kwai Chung Road / Kwai On Road / Kwai Yik Road	Signal (RC)	36%	42%
J02	Tai Lin Pai Road / Kwai On Road	Priority (RFC)	0.648	0.542 ⁽¹⁾
J03	Tai Lin Pai Road / Kung Yip Street	Signal (RC)	86%	92%
J04	Kung Yip Street / Wah Sing Street	Priority (RFC)	0.330	0.294
J05	Kwai Chung Road / Tai Lin Pai Road / Kwai Foo Road	Signal (RC)	34%	50%
J06	Tai Lin Pai Road / San Kwai Street	Priority (RFC)	0.197	0.148

Note: RC – Reserve Capacity RFC –

(1) The effect of taxi queueing is considered.

RFC – Ratio of Flow to Capacity

2.11 The results in Table 2.2 show that the junctions analysed operate with capacity.

3.0 THE PROPOSED CONCRETE BATCHING PLANT

Development Schedule

3.1 The Proposed Concrete Batching Plant has 4 production lines with peak concrete production capacity of 100m³/hour/line. Sufficient loading / unloading facilities which meet the operational requirements are provided within the Proposed Concrete Batching Plant.

Vehicular Access Points

3.2 The vehicular access to the Proposed Concrete Batching Plant is provided at Wah Sing Street.

Operation of Proposed Concrete Batching Plant

- 3.3 The Proposed Concrete Batching Plant has 2 main activities which generate traffic: (a) delivery of concrete from the Proposed Concrete Batching Plant, and (b) delivery of raw materials, such as aggregate, cementitious materials, etc, to the Proposed Concrete Batching Plant.
- 3.4 Details of vehicle movements related to the concrete production and raw material delivery, are presented in Table 3.1.

TABLE 3.1 DETAILS OF DELIVERY TO / FROM THE PROPOSED CONCRETE BATCHING PLANT

	DATCHING	1 127 (1 4 1			
Type of	Type of	Typical Vehicle	Traffic	Generation (ve	h/hour)
Delivery	Vehicle	Dimension (Approx.)	Peak	Peak Raw	Evening
		, 11	Concrete	Material	(2300 –
			Production	Delivery	0600 hrs)
			(0600 –	(1800 –	,
			1800 hrs)	2300 hrs)	
Concrete mixer	truck [a]				
Concrete	Concrete	10m(L) x 2.5m(W)	Max. 40 ⁽¹⁾	<mark>4</mark>	2
	mixer truck			_	_
Raw material d	elivery truck [b]			
Aggregate/	Aggregate/	Heavy Goods	<mark>16</mark>	<mark>40</mark>	<mark>7</mark>
sand	sand truck	Vehicle: 10m(L) x	_		_
Admixture	Admixture	2.5m(W)	0	<mark>1</mark>	0
	truck		_	_	_
Waste	Waste truck		<mark>0</mark>	0	2
Cement / PFA	Cement /	Articulated Vehicle:	2	<mark>6</mark>	<mark>6</mark>
	PFA tanker	15.4m(L) x 2.5m(W)	_		_
		<u>Total [a] + [b]</u>	<mark>58</mark>	<u>51</u>	<u>17</u>

Note: (1) Maximum concrete production capacity = 100m³ x 4 production lines ÷ typical capacity of 10m³ for a concrete mixer truck = 40 nos.

3.5 Table 3.1 shows the following:

• During the peak concrete production, i.e. 0600 to 1800 hours, the Proposed Concrete Batching Plant is expected to operate at its production capacity. A total of 40 concrete mixer trucks and 18 raw material delivery trucks per hour are generated. It should be noted that the peak concrete production normally occurs at the start of the day, and during lunch, but, not throughout the day. However, to be conservative, peak concrete production is assumed for both the AM and PM peak hours.

The peak raw material delivery period is from 1800 to 2300 hours. Each hour 4 concrete mixers trucks and 47 raw material delivery trucks are generated.

Internal Transport Facilities

3.6 The internal transport facilities provided for the Proposed Concrete Batching Plant are presented in Table 3.2 and the master layout plan is shown in Figure 3.1.

TABLE 3.2 INTERNAL TRANSPORT FACILITIES

Ref.	Туре	Dimension	Quantity
	Ground Flo	oor	
LP01-LP02	Waiting space	11m(L) x 3.5m(W) x 4.7m(H)	2
LP03	Raw material unloading bay for	16m(L) x 3.5m(W) x 4.7m(H)	1
	container		
LP04-LP07	Concrete mixer truck loading point	11m(L) x 3.5m(W) x 4.7m(H)	4
N/A	Raw material unloading area	N/A	3
		Total	10

Swept Path Analysis

3.7 The CAD-based swept path analysis programme, AUTODESK VEHICLE TRACKING, was used to ensure that all vehicles could enter and leave their respective space / bays, with ease. The swept path analysis drawings are found in Appendix B.

Traffic Management Plan

3.8 The operator will adopt the following measures: (i) the control room will monitor the traffic situation in the Proposed Concrete Batching Plant using CCTVs, (ii) GPS tracking units will be installed in the concrete delivery trucks, (iii) a worker is assigned to monitor the real-time delivery of all raw materials, and (iv) a worker will be deployed at the run-in/out to ensure safe entry and exit of vehicles from the Proposed Concrete Batching Plant.

4.0 TRAFFIC IMPACT

Design Year

- 4.1 The Proposed Concrete Batching Plant is expected to be completed in 2026, and the assessment year adopted is 2029, i.e. 3 years after the completion. The 2 scenarios for year 2029 assessed are:
 - (i) Year 2029 AM and PM peak hours without the Concrete Batching Plant;
 - (ii) Year 2029 AM and PM peak hours with the Concrete Batching Plant

Traffic Forecasting Methodology

- 4.2 Since the completion year of the Proposed Concrete Batching Plant is same as the Approved Warehouse, which is 2026, the same traffic forecasting methodology adopted for the Approved Warehouse is applied for the Proposed Concrete Batching Plant.
- 4.3 The 2029 traffic flows used for the junction analysis are produced with reference to the following:
 - (i) 2026 traffic flows derived based on the NTW2 Base District Traffic Model ("BDTM");
 - (ii) estimated traffic growth from 2026 to 2029 based on the higher of: (a) 2019

 based Territorial Population and Employment Data Matrix ("TPEDM") data produced by Planning Department ("PlanD") for Kwai Chung District, (b) Projections of Population Distribution 2023-2031 by PlanD, or (c) historic Annual Average Daily Traffic ("AADT") produced by Transport Department ("TD");
 - (iii) the other developments in the vicinity of the Proposed Concrete Batching Plant; and
 - (iv) Traffic generated by the Proposed Concrete Batching Plant.
- 4.4 The (ii) estimated traffic growth from 2026 to 2029, (iii) the other development in the vicinity of the Proposed Concrete Batching Plant and (iv) traffic generated by the Proposed Concrete Batching Plant are presented in the paragraphs below.

Estimated Growth Rate from 2026 to 2029

4.5 The (a) 2019 – based TPEDM data for Kwai Chung District, and the (b) Projections of Population Distribution 2023-2031, and (c) historic AADT are summarised in Tables 4.1 – 4.3 respectively.

TABLE 4.1 2019-BASED TPEDM DATA FOR KWAI CHUNG DISTRICT

Item	TPEDM Estimation / Projection			Annual Growth Rate			
	2019	2026	2031	2019 to 2026	2026 to 2031	2019 to 2031	
Population	319,150	315,800	319,700	-0.15%	0.25%	0.01%	
Employment	195,950	192,350	183,600	-0.15%	-0.93%	-0.54%	

TABLE 4.2 PROJECTIONS OF POPULATION DISTRIBUTION 2023-2031

District	Year 2026	Year 2029	Annual Growth Rate from 2026 to 2029
Kwai Tsing	488,700	483,900	-0.33%

TABLE 4.3 AADT OF THE STATION IN THE VICINITY OF THE SUBJECT SITE

Year \ Station	5426	5430	5608	5629	5809	5828	6005	Overall
2011	15,660	13,720	29,110	14,960	51,600	10,260	70,640	205,950
2012	15,560	13,620	28,620	14,860	49,900	8,740	57,400	188,700
2013	16,220	14,210	28,500	15,490	49,700	9,120	54,130	187,370
2014	15,720	13,100	30,440	15,620	53,080	9,190	57,810	194,960
2015	16,500	10,540	30,090	14,710	54,590	9,370	59,460	195,260
2016	16,960	10,830	30,350	16,400	53,410	10,220	59,380	197,550
2017	17,270	11,030	30,480	16,700	52,580	10,700	60,970	199,730
2018	17,520	11,200	31,330	16,950	54,030	10,860	45,480	187,370
Average Annual Growth							-1.34%	

Note: Due to the social events in 2019 and the COVID-19 pandemic thereafter, the 2019 to 2023 AADT are not used

5426 – Kwai On Road (From Tai Lin Pai Road to Kwai Chung Road)

5430 – Tai Lin Pai Road (From Kwai Chung Road Southern Junction to Kwai On Road)

5608 – Kwai Chung Road (From Kwai On Road to Kwai Foo Road)

5629 - Tai Lin Pai Road (From Kwai Cheong Road to Kwai On Road)

5809 – Kwai Chung Road (GL) (From Tai Lin Pai Road to Kwai On Road)

5828 – Tai Lin Pai Road (From Kwai Chung Road Southern Junction to Kwai Cheong Road)

6005 – Kwai Chung Road (From Tai Lin Pai Road to Castle Peak Road - Kwai Chung Interchange)

- 4.6 Table 4.1 shows that the highest annual growth rate for population is +0.25% and for employment is -0.26%. Table 4.2 shows that the annual growth rate from 2026 to 2029 is -0.33%. Table 4.3 shows that in the historic AADT of the stations between 2011 and 2018 in the vicinity has average annual growth rate of -1.34% per annum. To be conservative, the growth rate of +0.5% per annum is adopted for the traffic growth between 2026 and 2029.
- Other Developments in the Vicinity of the Proposed Concrete Batching Plant

 4.7 The major planned developments in the vicinity of the Proposed Concrete Batching Plant are summarized in Table 4.4.

TABLE 4.4 DETAILS OF MAJOR PLANNED DEVELOPMENTS

Site	Address	Use	Development Parameters (Approx.)
Α	132 – 134 Tai Lin Pai Road (A/KC/467)	Industrial	around 7,035m ² GFA
В	45 – 51 Tai Lin Pai Road (A/KC/480)	Data Centre	around 24,955m ² GFA
С	10 – 16 Kwai Ting Road (A/KC/483)	Office and Retail	around 19,480m ² GFA
D	11-19 Wing Yip Street (A/KC/488)	Data Centre	around 32,735m ² GFA
Е	2 San Kwai Street (A/KC/499)	Public Housing,	Around 800 flats, 360 m ²
		Retail and Office	Retail GFA and 2300 m ²
			Office GFA

4.8 The major planned developments listed in Table 4.4 have been included in the traffic forecast.

Traffic Generation of the Proposed Concrete Batching Plant

4.9 With reference to Table 3.1, the estimated traffic generation of the Proposed Concrete Batching Plant is given in Table 4.5. To be conservative, the peak concrete production is assumed to occur during both the AM and PM peak hours.

TABLE 4.5 TRAFFIC GENERATION OF THE PROPOSED CONCRETE BATCHING PLANT

Item	AM Pea	k Hour	PM Peak Hour					
	Generation	Attraction	Generation	Attraction				
Total in veh/hr [From Table 3.1]	<mark>58</mark>	<mark>58</mark>	<mark>58</mark>	<mark>58</mark>				
PCU Factor	2.5	2.5	2.5	2.5				
Total in PCU/Hour	<mark>145</mark>	<mark>145</mark>	<mark>145</mark>	<mark>145</mark>				
	<mark>290</mark> (2	-way)	<mark>290</mark> (2-way)					

4.10 Table 4.5 shows that the Proposed Concrete Batching Plant is expected to generate a total of 116 vehicles (2-way), or equivalent to 290 pcu (2-way) during the AM and PM peak hours.

2029 Traffic Flows

4.11 Year 2029 traffic flows for the following cases are derived:

2029 without the Proposed Concrete Batching Plant [A]

= (i) 2026 traffic flows derived with reference to Base District Traffic Model + (ii) estimated total growth from 2026 to 2029, i.e. +0.5% per annum + (iii) traffic generated by other development in the vicinity of the Proposed Concrete Batching Plant

2029 with the Proposed Concrete Batching Plant [B]

= [A] + Traffic generated by the Proposed Concrete Batching Plant (Table 4.5)

4.12 The 2029 peak hour traffic flows for the cases without and with the Proposed Concrete Batching Plant, are shown in Figures 4.1 - 4.2, respectively. The ingress / egress routes for the Proposed Concrete Batching Plant are shown in Figure 4.3.

2029 Junction Capacity Analysis

4.13 The 2029 junction capacity analyses for the cases without and with the Proposed Concrete Batching Plant are summarised in Table 4.6 and the detailed calculations are found in Appendix A.

TABLE 4.6 2029 JUNCTION PERFORMANCE

Ref.	Junction	Type of Junction		Concrete	out the Batching	With the Concrete Batching Plant		
						AM Peak		
				Hour	Hour	Hour	Hour	
J01 ⁽¹⁾	Kwai Chung Road / Kwai On Road / Kwai Yik Road	Signal	RC	39%	53%	<mark>32%</mark>	<mark>41%</mark>	
J02 ⁽¹⁾	Tai Lin Pai Road / Kwai On Road	Signal	RC	6%	46%	<mark>-7%</mark>	<mark>22%</mark>	
J03	Tai Lin Pai Road / Kung Yip Street	Signal	RC	77%	81%	<mark>52%</mark>	<mark>81%</mark>	
J04	Kung Yip Street / Wah Sing Street	Priority	RFC	0.378	0.334	<mark>0.677</mark>	0.625	
	Kwai Chung Road / Tai Lin Pai Road / Kwai Foo Road	Signal	RC	22%	37%	<mark>20%</mark>	<mark>34%</mark>	
J06	Tai Lin Pai Road / San Kwai Street	Priority	RFC	0.341	0.225	0.341	0.225	

Note: RC – Reserve Capacity

RFC – Ratio of Flow to Capacity

4.14 Table 4.6 shows that the junctions analysed have capacity to accommodate the expected traffic growth to 2029 and the traffic generated by the Proposed Concrete Batching Plant, except for J02 Tai Lin Pai Road / Kwai On Road.

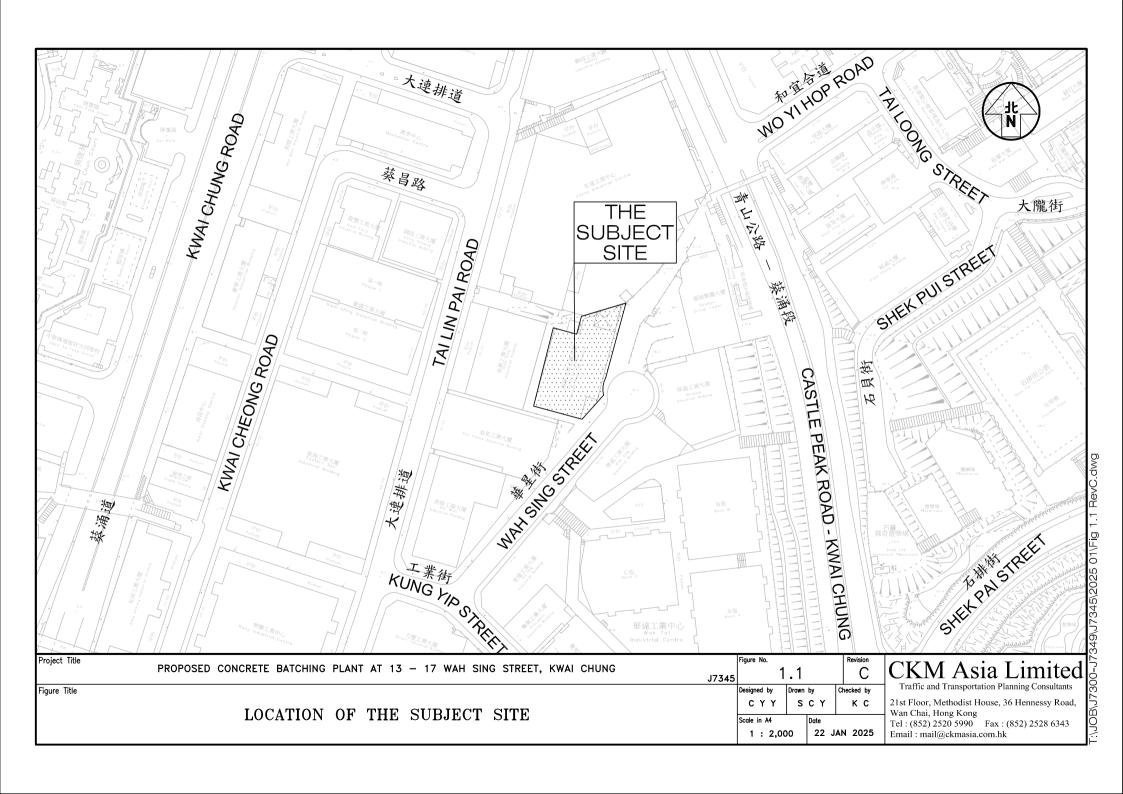
Junction Improvement Scheme at J02

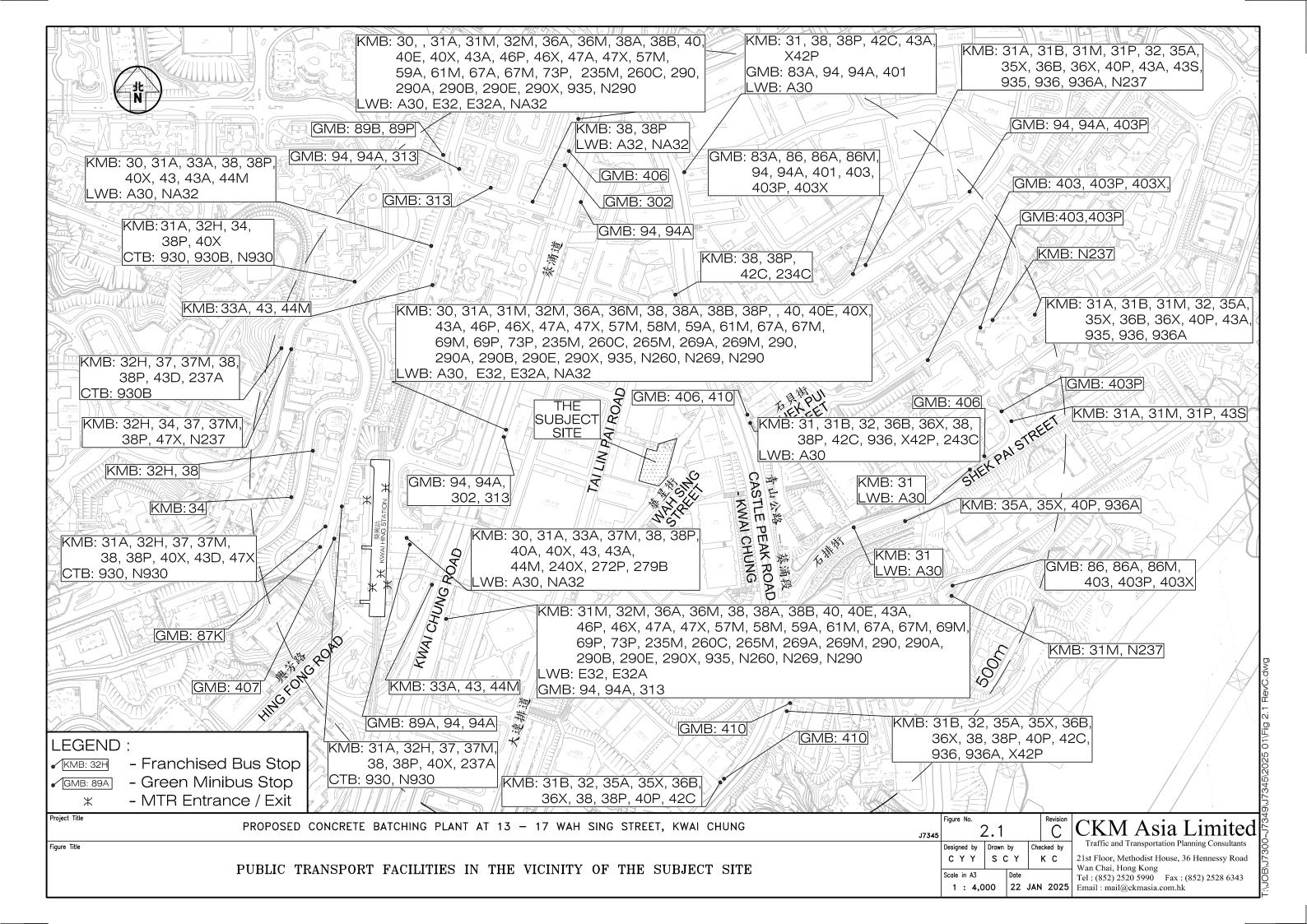
- 4.15 The junction improvement found in Appendix C is proposed by the Kwai On Factory Estate Redevelopment, and includes conversion of the existing priority junction Tai Li Pai Road / Kwai On Road ("J02") into a signalised junction. It is found that with this junction improvement, the RC in 2029 for the case without the Proposed Concrete Batching Plant will be less than 15%. Hence, further improvement ("Further Improvement") is proposed and this involves modification of the road markings and staging plans. The Further Improvement is presented in Figure 4.4.
- 4.16 The capacity analysis is re-conducted with the Further Improvement and the results are presented in Table 4.7, and detailed calculations are found in Pages 20-21 of Appendix A.

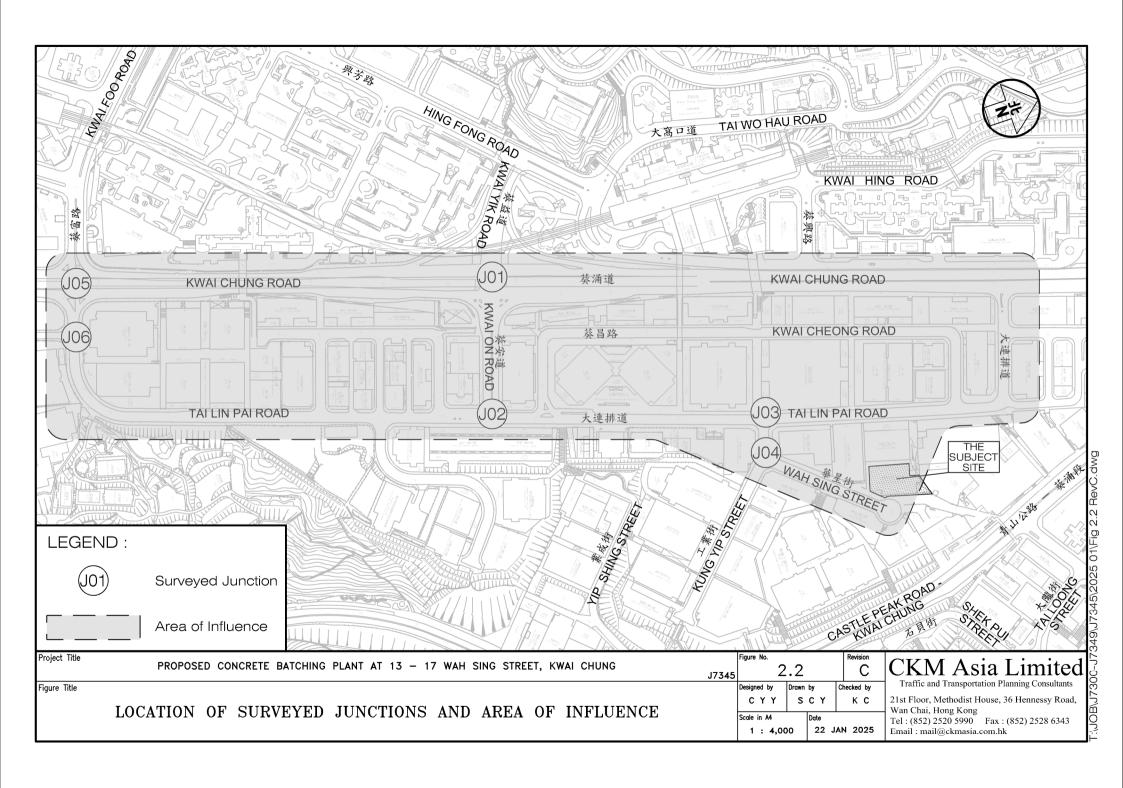
TABLE 4.7 2029 JUNCTION PERFORMANCE WITH FURTHER IMPROVEMENT

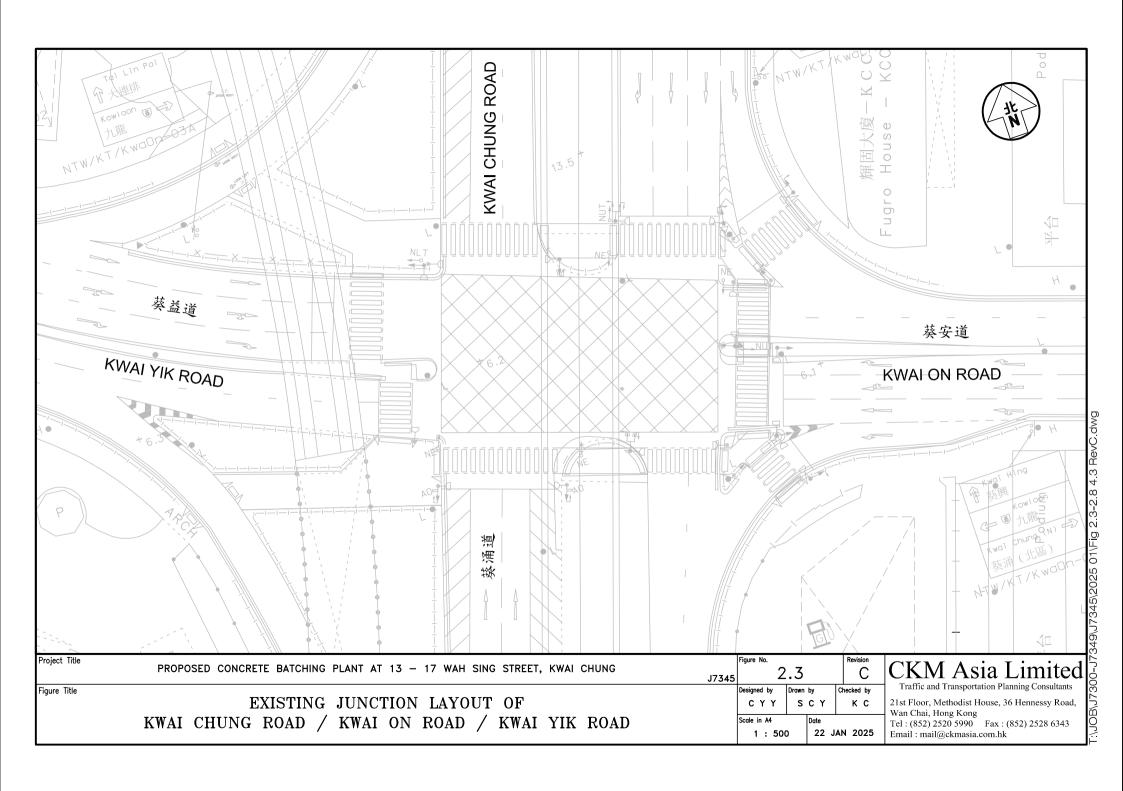
Ref.	Junction	Type of Junction	Parameter	Concrete	he Proposed e Batching lant PM Peak Hour	Propose	th the ed Concrete ing Plant PM Peak Hour
	Tai Lin Pai Road / Kwai On Road	Signal	RC	42%	65%	<mark>33%</mark>	<mark>52%</mark>

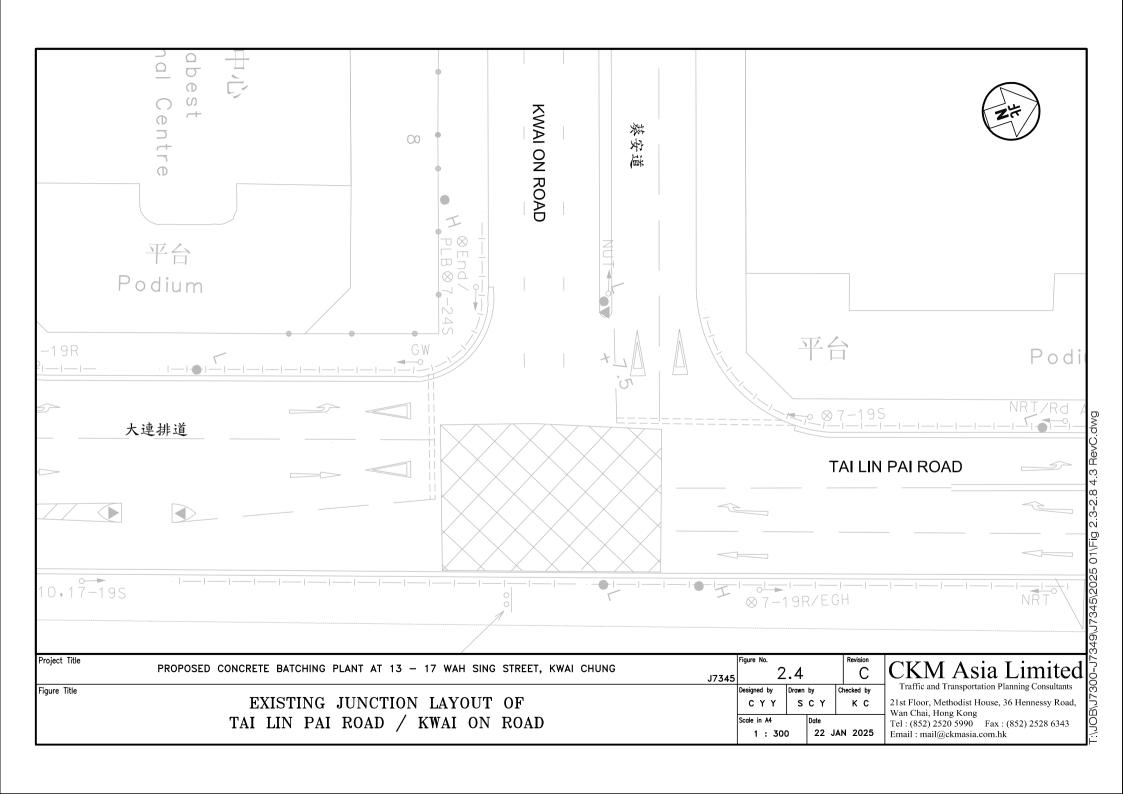
Note: RC – Reserve Capacity

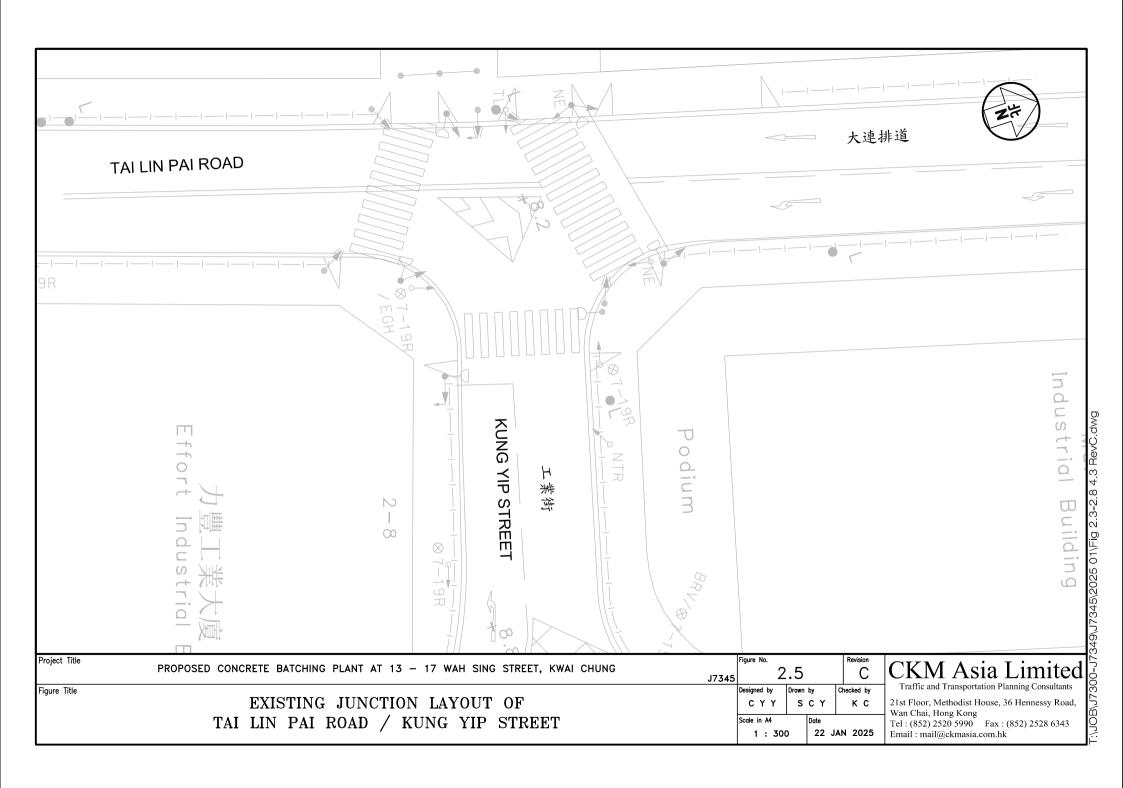

RFC - Ratio of Flow to Capacity

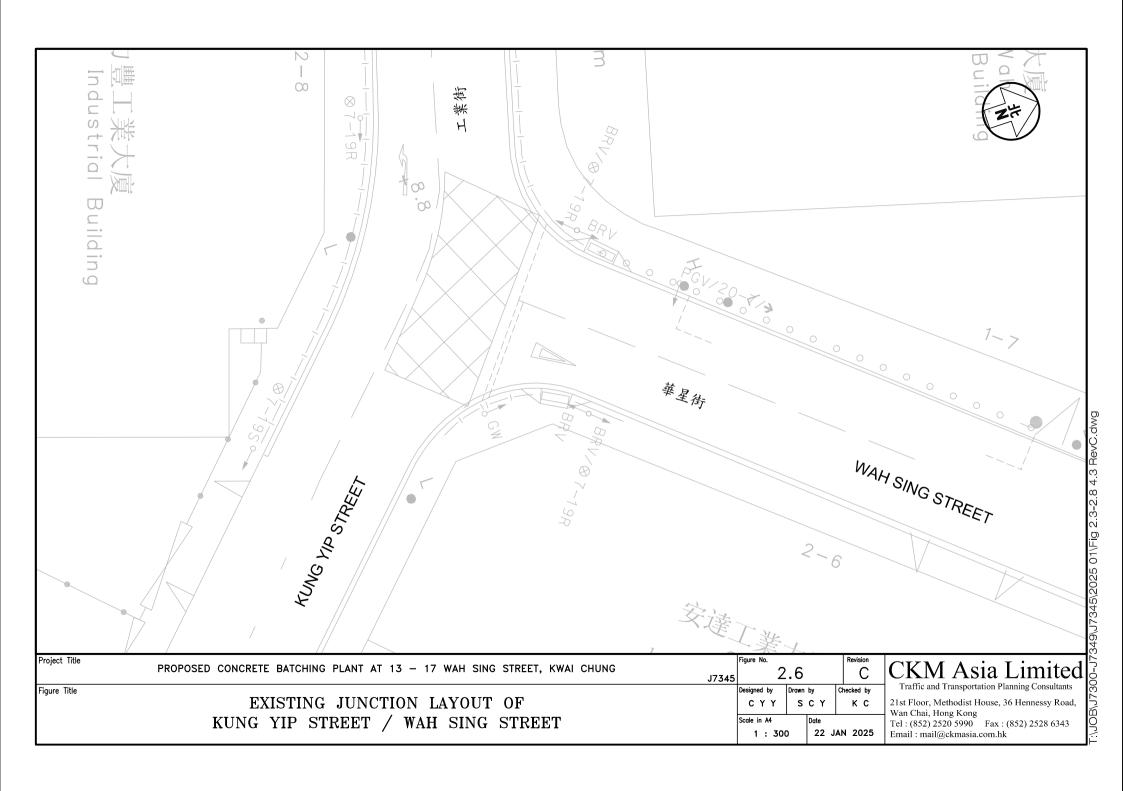

4.17 Table 4.7 shows that J02 with the Further Improvement implemented, could accommodate the expected traffic growth to 2029 and the traffic generated by the Proposed Concrete Batching Plant.

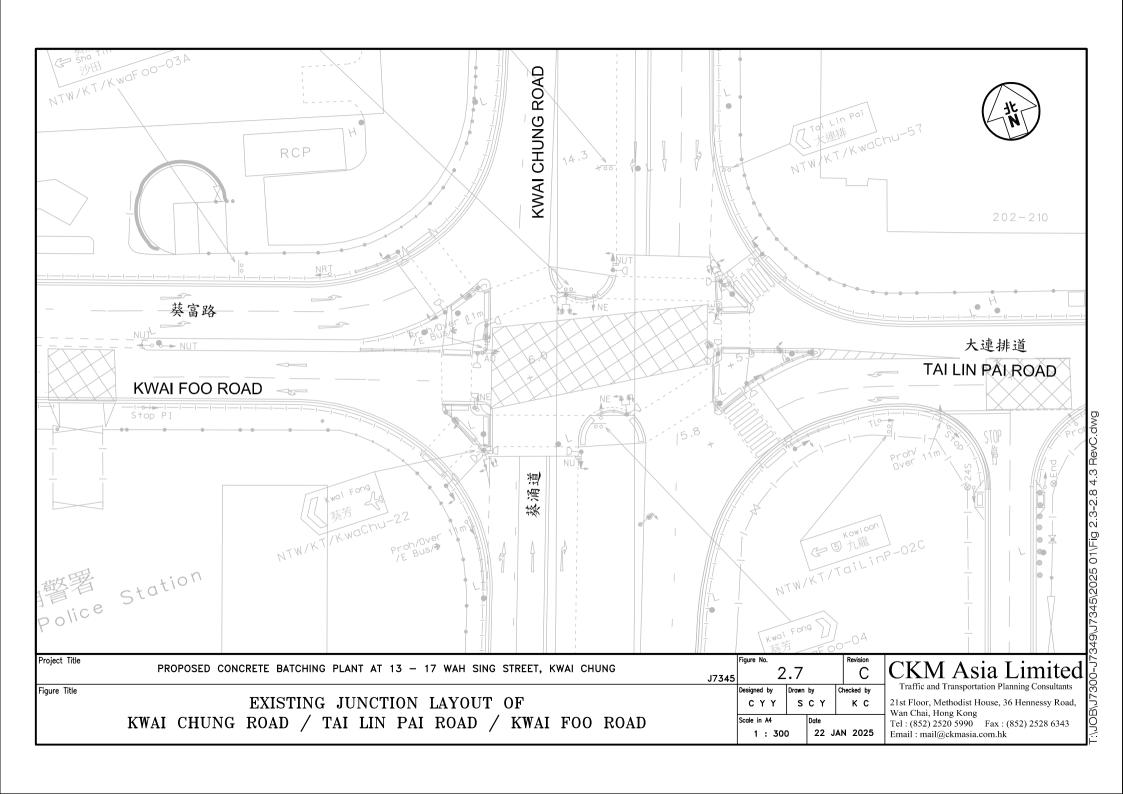

^{(1) –} Junction layout and control is prior to the implementation of the improvement proposed by Kwai On Factory Estate Redevelopment

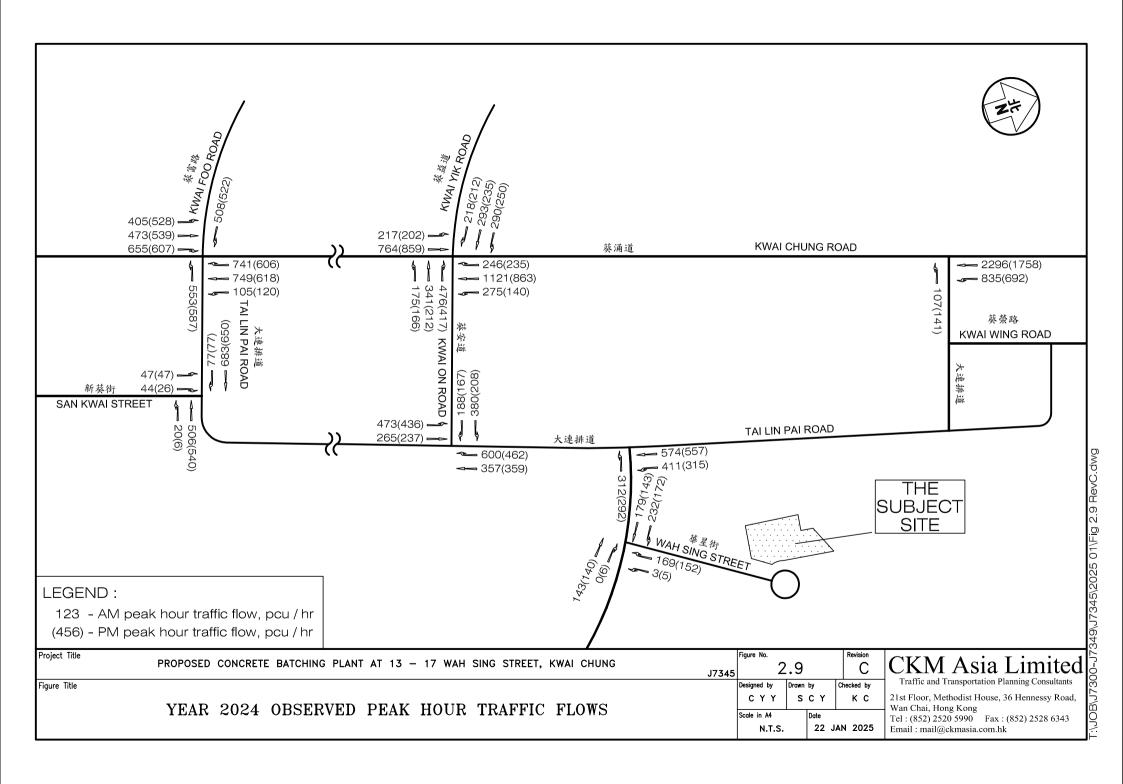

5.0 SUMMARY

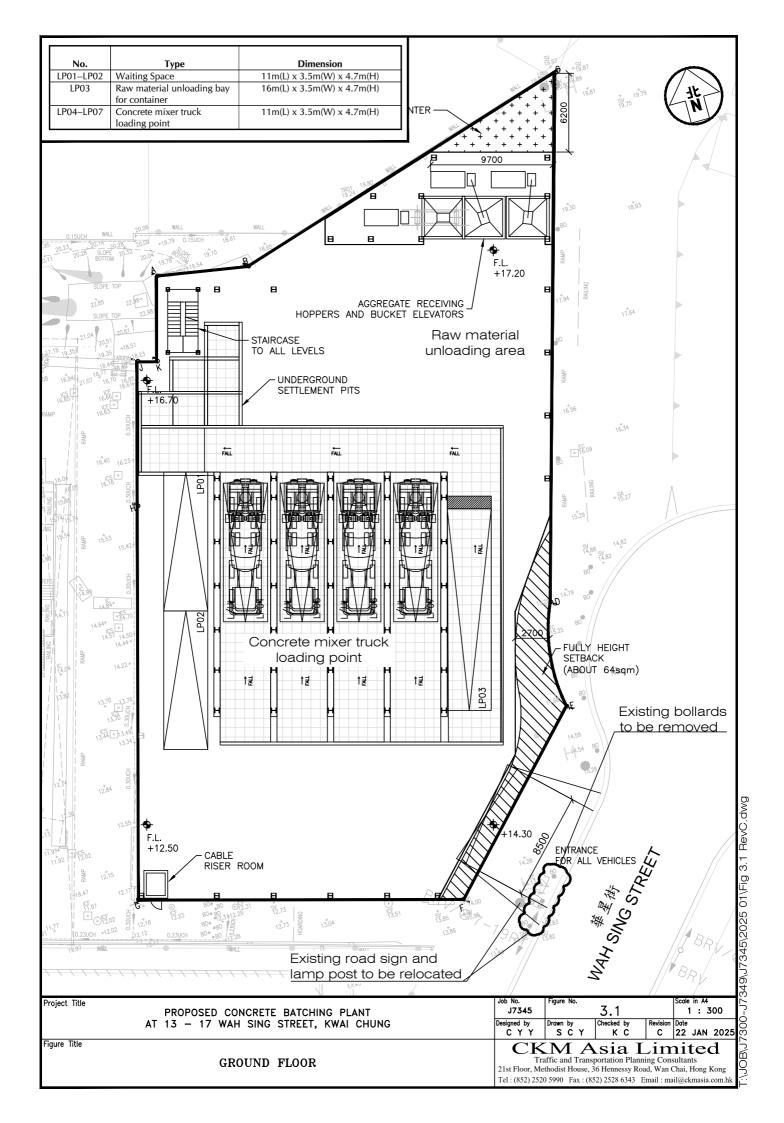

- 5.1 On 24th May 2024, the TPB approved the S16 Planning Application of Proposed minor relaxation of plot ratio restriction for Permitted Warehouse Use (excluding Dangerous Goods Godown) in "Industrial" Zone at 13 17 Wah Sing Street in Kwai Chung the Subject Site (TPB ref: A/KC/505). The Owner now intends to redevelop the Subject Site into a Proposed Concrete Batching Plant.
- 5.2 The Proposed Concrete Batching Plant provides sufficient internal transport facilities meet the operational requirements. The vehicular access to the Proposed Concrete Batching Plant is provided at Wah Sing Street.
- 5.3 Manual classified counts were conducted at junctions located in the vicinity of the Proposed Concrete Batching Plant in order to establish the peak hour traffic flows. Currently, the junctions operate with capacities during the AM and PM peak hours.
- The Proposed Concrete Batching Plant is expected to be completed by 2026, and the junction capacity analysis is undertaken for year 2029. With the Further Improvement implemented, in addition to the improvement proposed by the Hong Kong Housing Authority, at the junction of Tai Lin Pai Road / Kwai On Road, all junctions analysed are found to have sufficient capacity to accommodate the expected traffic flow in 2029 and the traffic generated by the Proposed Concrete Batching Plant.
- 5.5 It is concluded that the Proposed Concrete Batching Plant will result in <u>no</u> adverse traffic impact to the surrounding road network. From traffic engineering grounds, the Proposed Concrete Batching Plant is acceptable.

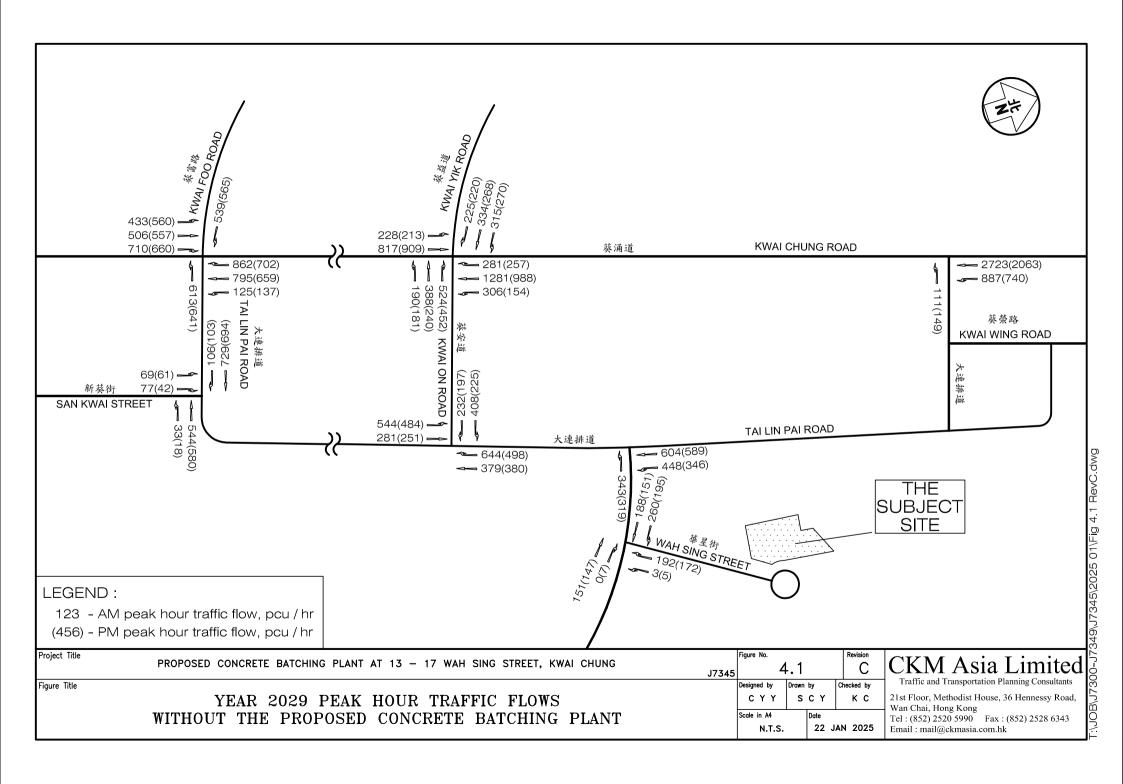


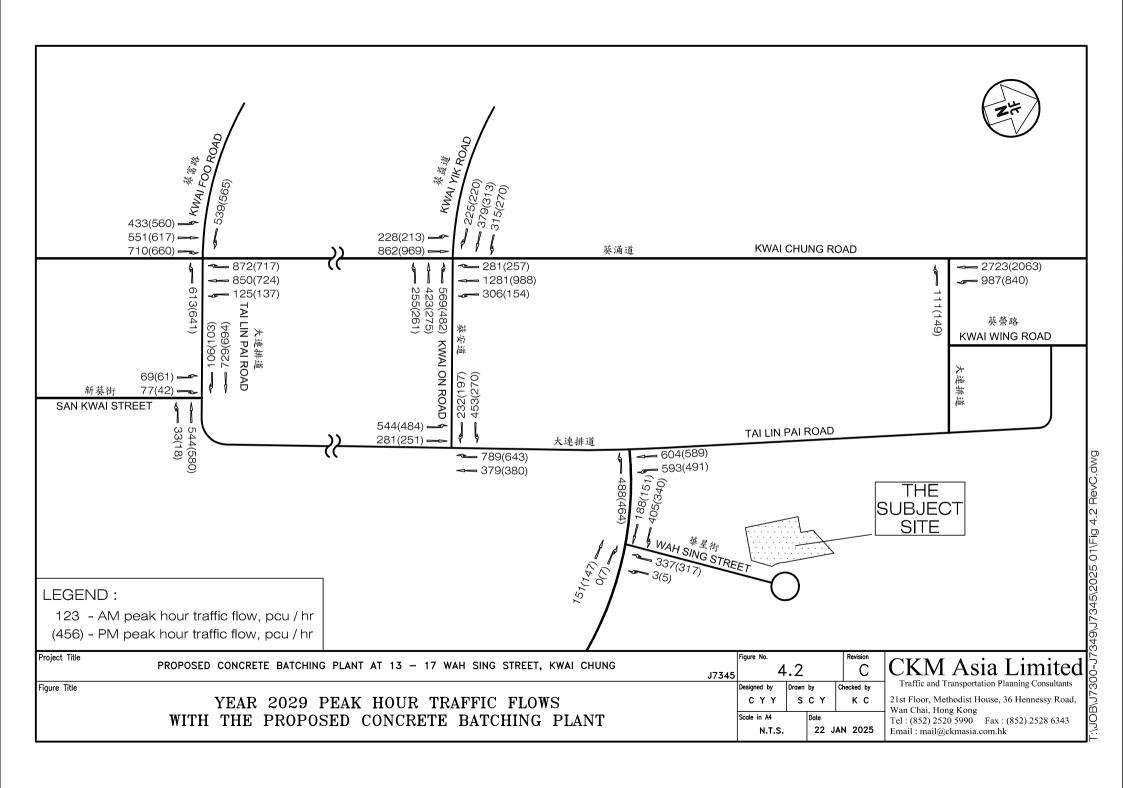


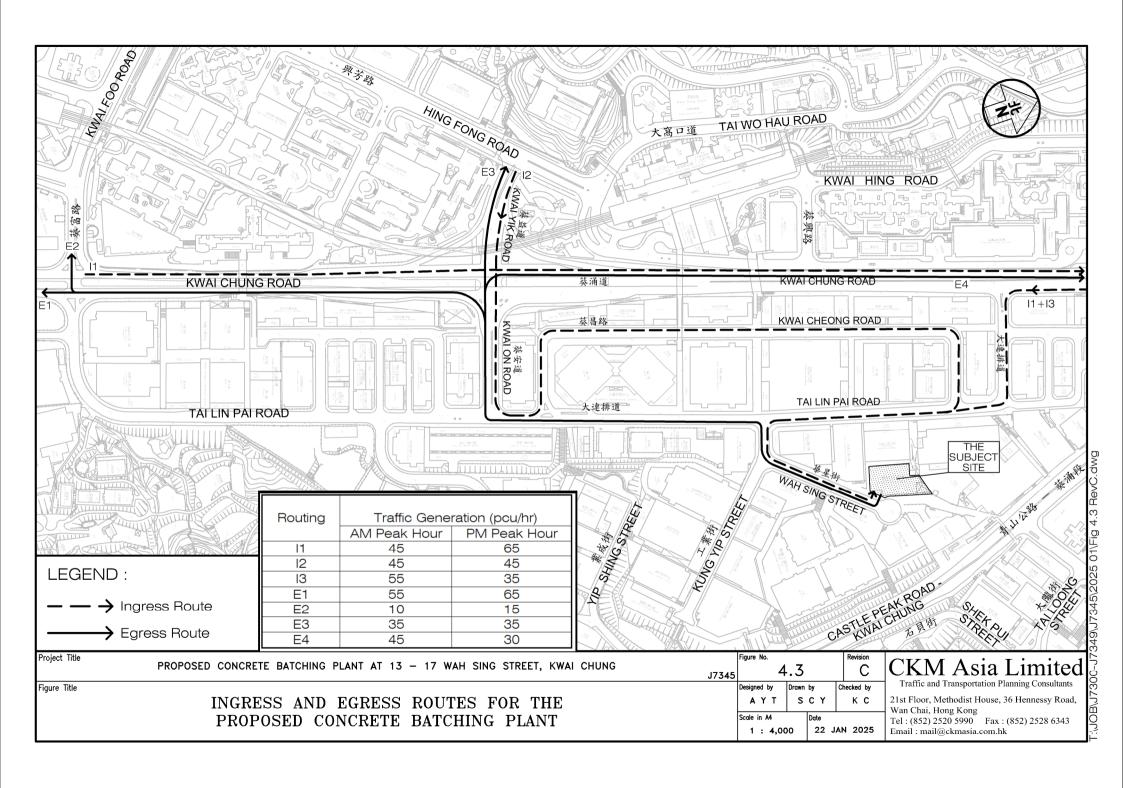


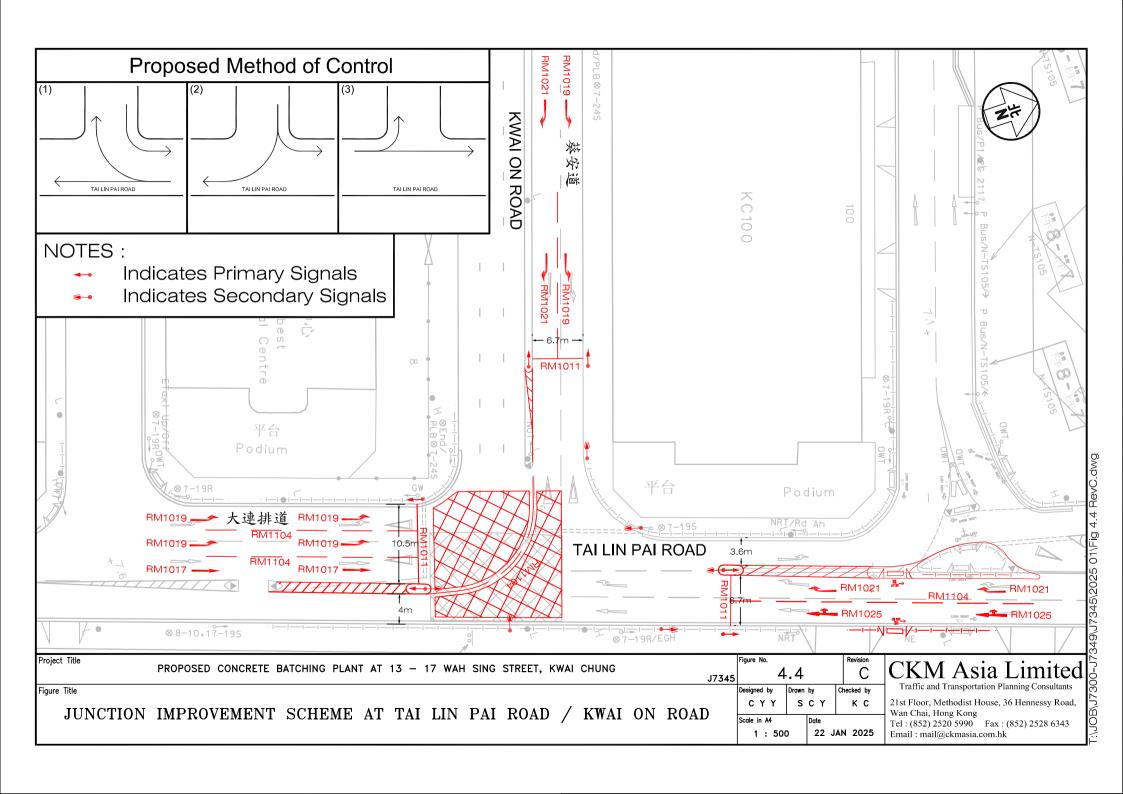


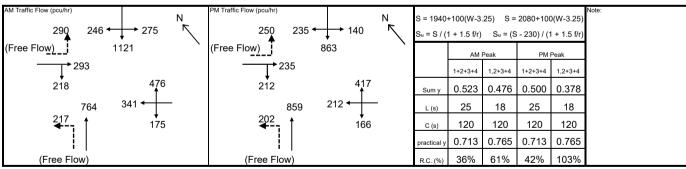


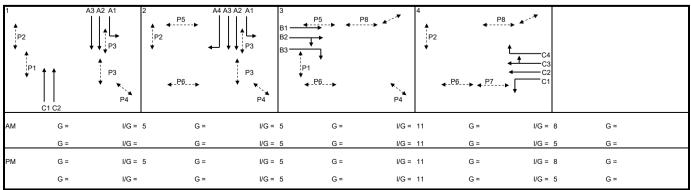








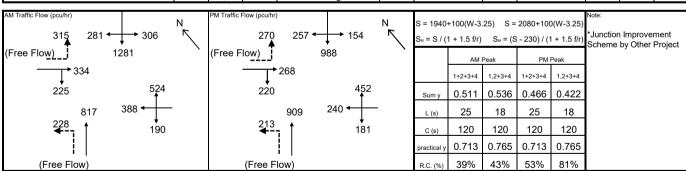


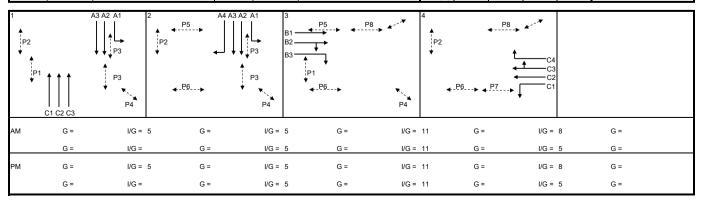

Signal Junction Analysis

Junction:J01 - Kwai Chung Road / Kwai On Road / Kwai Yik RoadJob Number:J7345Scenario:Existing ConditionPage1

Design Year: 2024 Designed By: Checked By: Date: 24 January 2025

							Γ		AM Peak			PM Peak					
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	
Kwai Chung Road SB	LT	A1	1, 2	4.00	25.0		100	1901	275	0.145		100	1901	140	0.074		
Kwai Chung Road SB	SA	A2	1, 2	4.40				2195	561	0.256			2195	432	0.197		
Kwai Chung Road SB	SA	А3	1, 2	4.40				2195	560	0.255			2195	431	0.196		
Kwai Chung Road SB	RT	A4	2	4.40	20.0		100	2042	246	0.120	0.120	100	2042	235	0.115	0.115	
Kwai Yik Road EB	SA	B1	3	3.80				2135	175	0.082			2135	153	0.072		
Kwai Yik Road EB	SA+RT	B2	3	3.80	30.0		31	2102	172	0.082	0.082	45	2088	150	0.072	0.072	
Kwai Yik Road EB	RT	В3	3	3.80	25.0		100	2014	164	0.081		100	2014	144	0.071		
Kwai Chung Road NB	SA	C1	1	3.50				2105	382	0.181	0.181		2105	430	0.204	0.204	
Kwai Chung Road NB	SA	C2	1	3.50				2105	382	0.181			2105	429	0.204		
Kwai On Road WB	LT	D1	4	3.40	25.0		100	1844	175	0.095		100	1844	166	0.090		
Kwai On Road WB	SA	D2	4	2.90				2045	283	0.138	0.139		2045	212	0.104		
Kwai On Road WB	SA+RT	D3	4	2.90	25.0		79	1952	270	0.138		100	1929	210	0.109		
Kwai On Road WB	RT	D4	4	2.90	20.0		100	1902	264	0.139		100	1902	207	0.109	0.109	
pedestrian phase		P1	1, 3		min c	rossing	time =	5	sec GM + 7		7	sec FGM =		12	sec		
		P2	1, 2, 4		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec		
		P3	1, 2		min crossing time =		5	sec	sec GM + 9		sec FGM =		14	sec			
		P4	1, 2, 3				5	sec	sec GM + 10		sec FGM = 1		15	sec			
		P5	2, 3		min c	rossing	time =	6	sec	sec GM + 13		sec FGM =		19	sec		
		P6	2, 3, 4		min c	rossing	time =	7	sec GM +		14	sec FGM =		21	sec		
		P7	4		min c	rossing	time =	5	sec	GM +	10	sec FGM =		15	sec		
		P8	3, 4		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec		

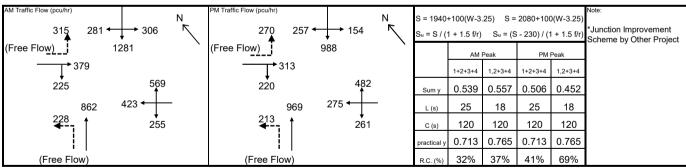

Signal Junction Analysis

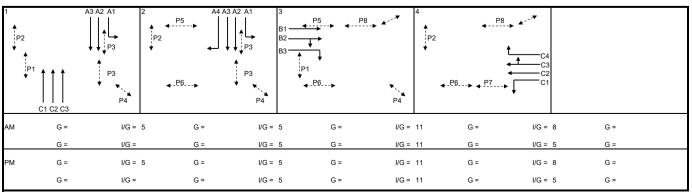

 Junction:
 J01 - Kwai Chung Road / Kwai On Road / Kwai Yik Road
 Job Number:
 J7345

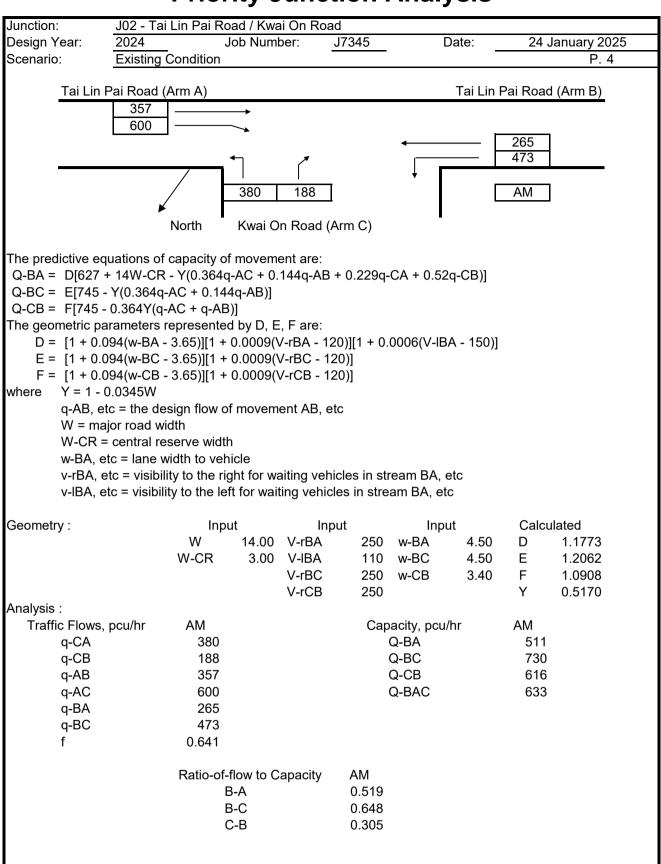
Scenario: Without Proposed Concrete Batching Plant Page 2

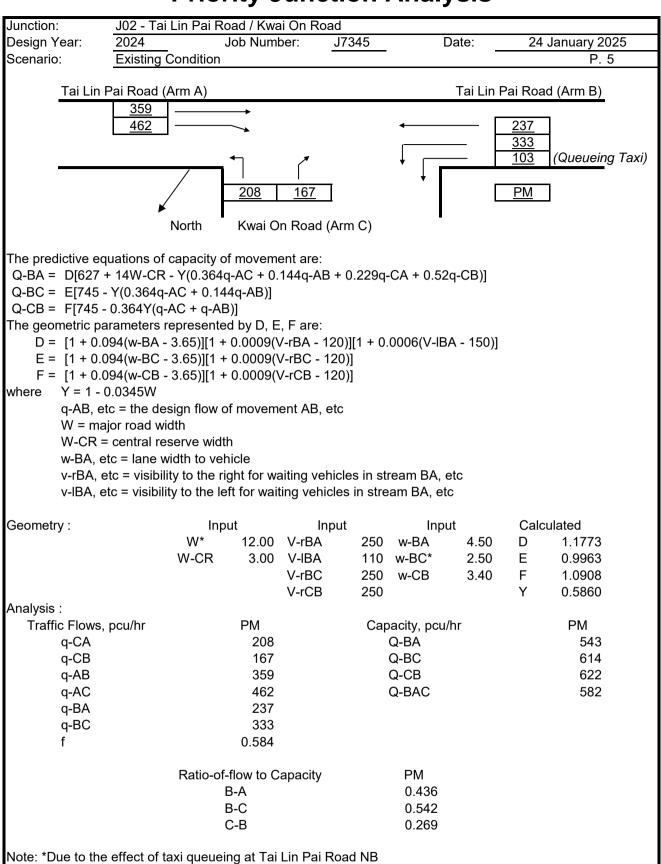
Design Year: 2029 Designed By: Checked By: Date: 24 January 2025

				l		l			AM Peak			PM Peak					
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	
Kwai Chung Road SB	LT	A1	1, 2	4.00	25.0		100	1901	306	0.161		100	1901	154	0.081		
Kwai Chung Road SB	SA	A2	1, 2	4.40				2195	641	0.292			2195	494	0.225		
Kwai Chung Road SB	SA	А3	1, 2	4.40				2195	640	0.292			2195	494	0.225		
Kwai Chung Road SB	RT	A4	2	4.40	20.0		100	2042	281	0.138	0.138	100	2042	257	0.126	0.126	
			_														
Kwai Yik Road EB	SA	B1	3	3.80				2135	191	0.089	0.089		2135	167	0.078	0.078	
Kwai Yik Road EB	SA+RT	B2	3	3.80	30.0		24	2110	188	0.089		38	2095	164	0.078		
Kwai Yik Road EB	RT	В3	3	3.80	25.0		100	2014	180	0.089		100	2014	157	0.078		
Kwai Chung Road NB	SA*	C1	1	3.50				2105	272	0.129	0.130		2105	303	0.144	0.144	
Kwai Chung Road NB	SA	C2	1	3.50				2105	272	0.129			2105	303	0.144		
Kwai Chung Road NB	SA	C3	1	3.50				2105	273	0.130			2105	303	0.144		
Kwai On Road WB	LT	D1	4	3.40	25.0		100	1844	190	0.103		100	1844	181	0.098		
Kwai On Road WB	SA	D2	4	2.90				2045	316	0.155			2045	240	0.117		
Kwai On Road WB	SA+RT	D3	4	2.90	25.0		76	1956	302	0.154	0.155	100	1929	228	0.118		
pedestrian phase		P1	1, 3			rossing		5		GM +	7	sec FGM =		12	sec		
		P2	1, 2, 4			rossing		5		GM +	10		GM =	15	sec		
		P3	1, 2		min crossing time =		5	sec GM +		9	sec FGM =		14	sec			
		P4	1, 2, 3			rossing		5		GM +	10	sec FGM =		15	sec		
		P5	2, 3			rossing		6		GM +	13	sec FGM =		19	sec		
		P6	2, 3, 4			rossing		7		GM +	14	sec FGM =		21	sec		
		P7	4			rossing		5			10	sec FGM =		15	sec		
		P8	3, 4		mın c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec		

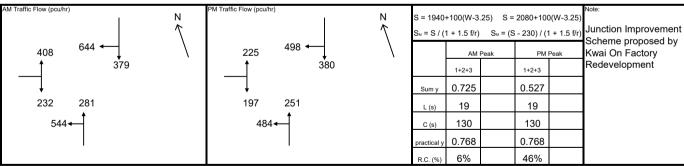





 Junction:
 J01 - Kwai Chung Road / Kwai On Road / Kwai Yik Road
 Job Number:
 J7345


 Scenario:
 With Proposed Concrete Batching Plant
 Page
 3

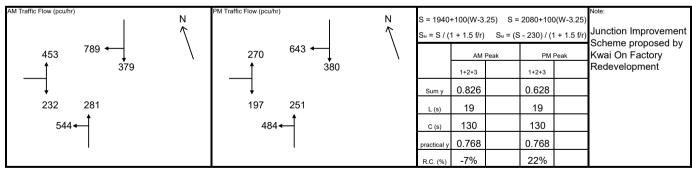
			1				Γ		AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Kwai Chung Road SB	LT	A1	1, 2	4.00	25.0		100	1901	306	0.161		100	1901	154	0.081	
Kwai Chung Road SB	SA	A2	1, 2	4.40				2195	641	0.292			2195	494	0.225	
Kwai Chung Road SB	SA	А3	1, 2	4.40				2195	640	0.292			2195	494	0.225	
Kwai Chung Road SB	RT	A4	2	4.40	20.0		100	2042	281	0.138	0.138	100	2042	257	0.126	0.126
Kwai Yik Road EB	SA	D1	3	3.80				0125	206	0.096	0.096		2135	182	0.085	0.085
Kwai Yik Road EB	SA+RT	B1 B2	3	3.80	30.0		15	2135	206	0.096	0.090	27	2107	180	0.085	0.003
Kwai Yik Road EB	RT	B3	3	3.80	25.0		100	2014	194	0.096		100	2014	171	0.085	
Kwai Chung Road NB	SA*	C1	1	3.50				2105	287	0.136	0.137		2105	323	0.153	0.153
Kwai Chung Road NB	SA	C2	1	3.50				2105	287	0.136			2105	323	0.153	
Kwai Chung Road NB	SA	C3	1	3.50				2105	288	0.137			2105	323	0.153	
Kwai On Road WB	LT	D1	4	3.40	25.0		100	1844	255	0.138		100	1844	261	0.142	
Kwai On Road WB	SA	D2	4	2.90				2045	344	0.168			2045	263	0.129	
Kwai On Road WB	SA+RT	D3	4	2.90	25.0		76	1956	329	0.168	0.168	95	1935	249	0.129	
pedestrian phase		P1	1, 3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		P2	1, 2, 4		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
		P3	1, 2		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
		P4	1, 2, 3		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
		P5	2, 3		min c	rossing	time =	6	sec	GM +	13	sec F	GM =	19	sec	
		P6	2, 3, 4		min c	rossing	time =	7	sec	GM +	14	sec F	GM =	21	sec	
		P7	4		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
		P8	3, 4		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	



 Junction:
 J02 - Tai Lin Pai Road / Kwai On Road
 Job Number:
 J7345

 Scenario:
 Without Proposed Concrete Batching Plant
 Page
 6

								AM Peak					PM Peak		
Approach	Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tai Lin Pai Road SB	A A1	1	3.35				1950	379	0.194			1950	380	0.195	
Tai Lin Pai Road SB F	T A2	1	3.35	18.0		100	1929	644	0.334	0.334	100	1929	498	0.258	0.258
Tai Lin Pai Road NB	T B1	2	3.50	7.0		100	1618	255	0.158	0.158	100	1618	227	0.140	
Tai Lin Pai Road NB I	T B2	2	3.50	10.0		100	1830	289	0.158		100	1830	257	0.140	0.140
Tai Lin Pai Road NB	A B3	2	3.50				2105	281	0.133			2105	251	0.119	
Kwai On Road EB I	T C1	3	3.35	13.0		100	1748	408	0.233	0.233	100	1748	225	0.129	0.129
Kwai On Road EB F	T C2	3	3.35	17.0		100	1921	232	0.121		100	1921	197	0.103	
pedestrian phase	P1	1, 3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
	P2	1, 2, 4		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
	P3	1, 2		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
	P4	1, 2, 3		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
	P5	2, 3		min c	rossing	time =	6	sec	GM +	13	sec F	GM =	19	sec	
	P6	2, 3, 4		min c	rossing	time =	7	sec	GM +	14	sec F	GM =	21	sec	
	P7	4		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
	P8	3, 4		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	


1	A2 A1	2	♣ 1 B2 B3	3 C1 C2	\dashv					
АМ	G =	I/G = 5	G =	I/G = 7	G =	I/G = 10	G =	I/G =	G =	
	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	
РМ	G =	I/G = 5	G =	I/G = 7	G =	I/G = 10	G =	I/G =	G =	
	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	

 Junction:
 J02 - Tai Lin Pai Road / Kwai On Road
 Job Number:
 J7345

 Scenario:
 With Proposed Concrete Batching Plant
 Page
 7

 Design Year:
 2029
 Designed By:
 Checked By:
 Date:
 24 January 2025

	1	1						AM Peak			ı		PM Peak		
Approach	Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tai Lin Pai Road SB SA	A1	1	3.35				1950	379	0.194			1950	380	0.195	
Tai Lin Pai Road SB R1	A2	1	3.35	18.0		100	1929	789	0.409	0.409	100	1929	643	0.333	0.333
Tai Lin Pai Road NB L1	B1	2	3.50	7.0		100	1618	255	0.158	0.158	100	1618	227	0.140	
Tai Lin Pai Road NB L1	B2	2	3.50	10.0		100	1830	289	0.158		100	1830	257	0.140	
Tai Lin Pai Road NB SA	В3	2	3.50				2105	281	0.133			2105	251	0.119	0.140
Kwai On Road EB L1	C1	3	3.35	13.0		100	1748	453	0.259	0.259	100	1748	270	0.154	0.154
Kwai On Road EB R1	C2	3	3.35	17.0		100	1921	232	0.121		100	1921	197	0.103	
pedestrian phase	P1	1, 3		min c	rossing	time =	5	sec (GM +	7	sec F	GM =	12	sec	
	P2	1, 2, 4		min c	rossing	time =	5	sec (GM +	10	sec F	GM =	15	sec	
	P3	1, 2		min c	rossing	time =	5	sec (GM +	9	sec F	GM =	14	sec	
	P4	1, 2, 3		min c	rossing	time =	5	sec (GM +	10	sec F	GM =	15	sec	
	P5	2, 3			rossing		6	sec (GM +	13	sec F	GM =	19	sec	
	P6	2, 3, 4		min c	rossing	time =	7		GM +	14		GM =	21	sec	
	P7	4		min c	rossing	time =	5	sec (GM +	10	sec F	GM =	15	sec	

min crossing time =

6

sec GM +

12

sec FGM =

18

sec

P8

3, 4

1	A2	2	₩ B1 B2 B3	3 C1 C2						
АМ	G =	I/G = 5	G =	I/G = 7	G =	I/G = 10	G =	I/G =	G =	
	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	
РМ	G =	I/G = 5	G =	I/G = 7	G =	I/G = 10	G =	I/G =	G =	
	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	

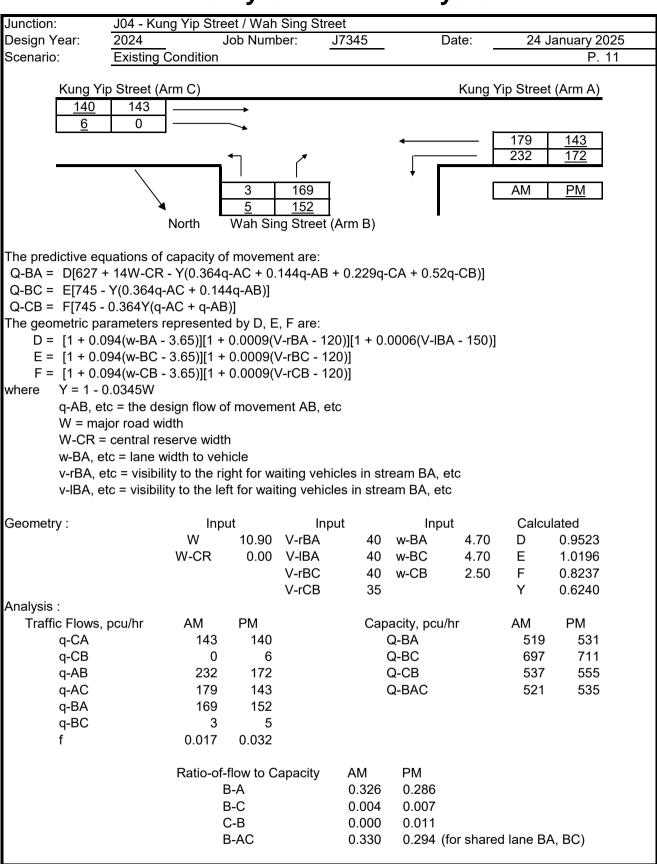
 Junction:
 J03 - Tai Lin Pai Road / Kung Yip Street
 Job Number:
 J7345

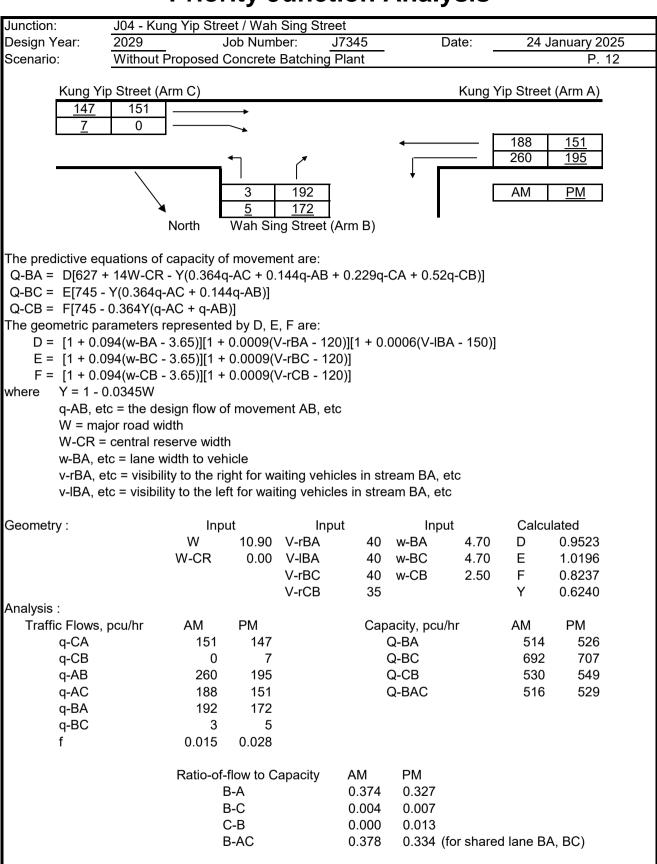
 Scenario:
 Existing Condition
 Page
 8

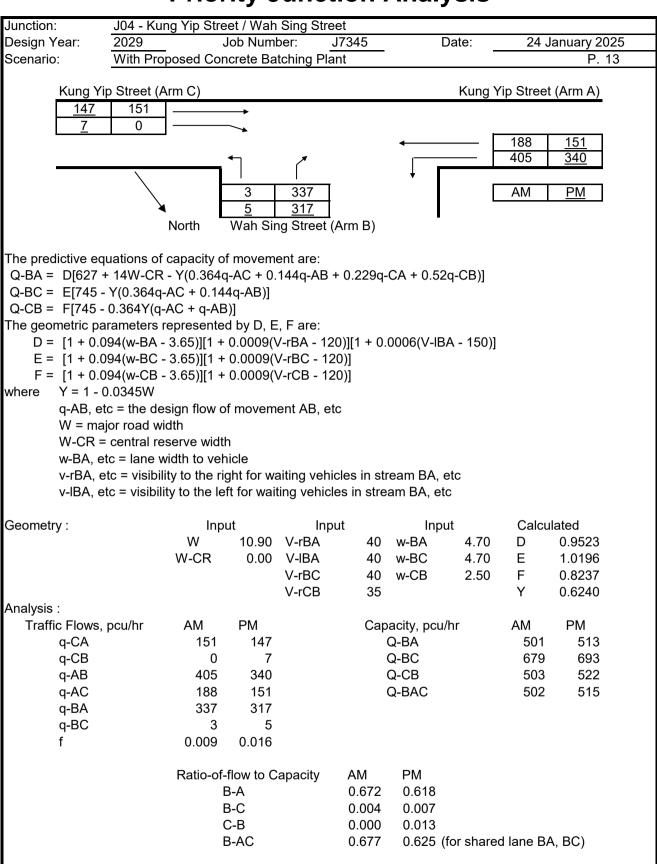
		on and on			. 490
Design Year:	2024	Designed By:	Checked By:	Date:	24 January 2025

Design Year:	2024	Designe	ed By:				•	Checke	d By:				-	Date:	24 J	anuary 2	2025
						1				AM Peak			1		PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tai Lin Pai Roa	ad SB	LT	A1	1	5.20	8.0		100	1798	411	0.229		100	1798	315	0.175	
Tai Lin Pai Roa		SA	A2	1	5.20				2135	574	0.269	0.269		2135	557	0.261	0.261
Kung Yip Stree	et WB	LT	B1	1	4.30	8.0		100	1722	312	0.181		100	1722	292	0.170	
pedestrian pha	ise		P1	2		min c	rossing	time =	6	sec	GM +	13	sec F	GM =	19	sec	
				l	l												
AM Traffic Flow (pcu/hi	r)		Ņ	PM Traffic	Flow (pcu/hr)			N	S = 1940	+ 100 (W-	3.25\$ = 2	080 + 100	(W-3.25)	Note:		
			1						1	S _M = S / (1 + 1.5 f/r)	S _M = (S	5 - 230) / (1	I + 1.5 f/r)			
		411	\				↓ →	315	\		AM	Peak	PM	Peak			
	:	574					557				1		1				
										Sum y	0.269		0.261				
			_					↓	_	L (s)	40		40				
		312						292		C (s)	90		90				
										practical y	0.500		0.500				
										R.C. (%)	86%		92%				
1	A2 A1	2															
				. ▼													
	↓ →	**	⁻ P1														
			71														

 Junction:
 J03 - Tai Lin Pai Road / Kung Yip Street
 Job Number:
 J7345

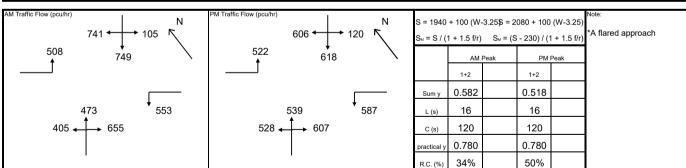

 Scenario:
 Without Proposed Concrete Batching Plant
 Page
 9


									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tai Lin Pai Road SB	LT	A1	1	5.20	8.0		100	1798	448	0.249		100	1798	346	0.192	
Tai Lin Pai Road SB	SA	A2	1	5.20				2135	604	0.283	0.283		2135	589	0.276	0.276
Kung Yip Street WB	LT	B1	1	4.30	8.0		100	1722	343	0.199		100	1722	319	0.185	
pedestrian phase		P1	2		min c	rossing	time =	6	sec	GM +	13	sec F	GM =	19	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic I	Flow (pcu/hr)			N	S = 1940	+ 100 (W	-3.25\$ = 2	080 + 100	(W-3.25)	Note:		
		1				1					S _M = (S					
_	→ 448	\				 	346	\			Peak		Peak			
604		•				589		·		1		1				
									Sum y	0.283		0.276				
	┌	_					┌	_	L (s)	40		40				
	343						319		C (s)	90		90				
									practical y	0.500		0.500				
									R.C. (%)	77%		81%				
1 A2 A1	2								/	•	•					
		مد	* ♠													
	A															
1		P1														


 Junction:
 J03 - Tai Lin Pai Road / Kung Yip Street
 Job Number:
 J7345

 Scenario:
 With Proposed Concrete Batching Plant
 Page
 10

		ı							AM Deels					DM Dl-		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Tai Lin Pai Road SB	LT	Λ1	1	5.20	8.0	Gradient	100	(pcu/hr) 1798	(pcu/hr) 593	0.330	0.330	100	(pcu/hr) 1798	(pcu/hr) 491	0.273	
		A1			0.0		100				0.330	100				0.070
Tai Lin Pai Road SB	SA	A2	1	5.20				2135	604	0.283			2135	589	0.276	0.276
IV		D4		4.00	0.0		400	4700	400	0.000		400	4700	404	0.000	
Kung Yip Street WB	LT	B1	1	4.30	8.0		100	1722	488	0.283		100	1722	464	0.269	
												1				
pedestrian phase		P1	2		min c	rossing	time =	6	sec	GM +	13	sec F	GM =	19	sec	
AMT (" 51 / 11)			D117 #	I										h		
AM Traffic Flow (pcu/hr)		Ņ	PM Traffic	Flow (pcu/hr)			Ņ	S = 1940	+ 100 (W	3.25\$ = 2	080 + 100	(W-3.25)	Note:		
		1						1	S _M = S / (1 + 1.5 f/r)	S _M = (S	6 - 230) / (1	1 + 1.5 f/r)			
	→593	\				\vdash	491	\		AM	Peak	PM	Peak			
	604					589				1		1				
									Sum y	0.330		0.276				
		_						_	L (s)	40		40				
	▼ 488						▼ 464		C (s)	90		90				
									practical y	0.500		0.500				
										52%		81%				
									R.C. (%)	JZ70		0170				
1 A2 A1	2															
			· ·													
 	* -*	. P1														
	— _{B1} ▼.	*******	ļ													
'			·													
AM 0	1/0 - 7		22	1/0	2			1/0	I			110	l .			
AM G=	I/G = 7	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =	I/G = 7	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

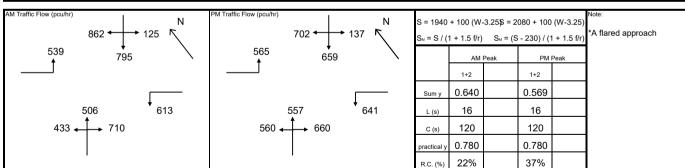


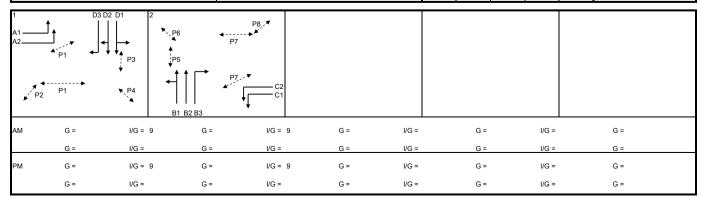
 Junction:
 J05 - Kwai Chung Road / Tai Lin Pai Road / Kwai Foo Road
 Job Number:
 J7345

 Scenario:
 Existing Condition
 Page
 14

Design Year: 2024 Designed By: _____ Checked By: _____ Date: __24 January 2025

			l	1	1	1	1		AM Peak					PM Peak		1
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Kwai Foo Road EB	LT	A1	1	4.10	25.0		100	2042	253	0.124		100	2042	260	0.127	
Kwai Foo Road EB	LT	A2	1	4.10	29.0		100	2059	255	0.124		100	2059	262	0.127	
Kwai Chung Road NB	LT+SA*	B1	2	4.00	22.0		98	1919	414	0.216		100	1916	528	0.276	
Kwai Chung Road NB	SA	B2	2	4.00				2155	464	0.215			2155	539	0.250	
Kwai Chung Road NB	RT	В3	2	4.00	20.0		100	2005	655	0.327	0.327	100	2005	607	0.303	0.303
Tai Lin Pai Road WB	LT	C1	2	3.80	22.0		100	1868	266	0.142		100	1868	282	0.151	
Tai Lin Pai Road WB	LT	C2	2	3.80	26.0		100	2019	287	0.142		100	2019	305	0.151	
Kwai Chung Road SB	LT+SA*	D1	1	4.30	27.0		20	2053	524	0.255	0.255	27	2045	441	0.216	0.216
Kwai Chung Road SB	SA+RT	D2	1	4.30				2185	558	0.255			2185	471	0.216	
Kwai Chung Road SB	RT	D3	1	4.20	18.0		100	2008	513	0.255		100	2008	432	0.215	
pedestrian phase		P1	1		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
		P2	1		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
		P3	1		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
		P4	1		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		P5	2		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		P6	2		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		P7	2			rossing		7		GM +	13		GM =	20	sec	
		P8	2		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	

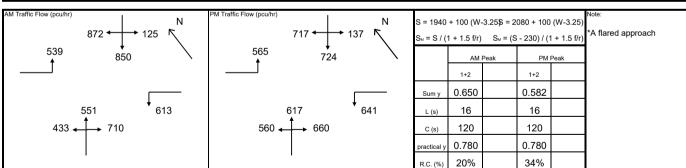



1 A1 —— A2 —— P	♣ P1	P3 P4 P4 P4 P5	P7	P8.** C2 C1						
AM	G =	I/G = 9	G =	I/G = 9	G =	I/G =	G =	I/G =	G =	
	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	
РМ	G =	I/G = 9	G =	I/G = 9	G =	I/G =	G =	I/G =	G =	
	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	

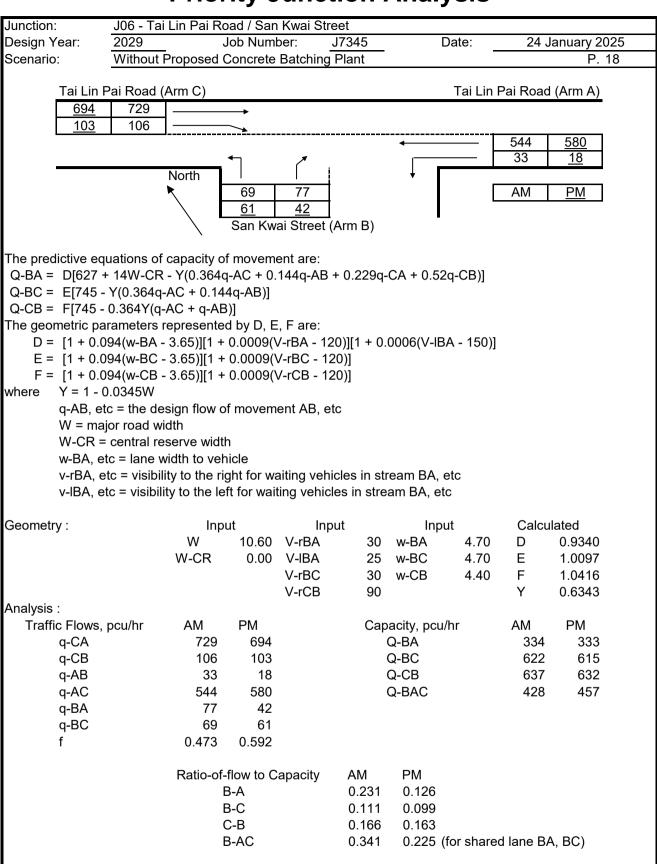
 Junction:
 J05 - Kwai Chung Road / Tai Lin Pai Road / Kwai Foo Road
 Job Number:
 J7345

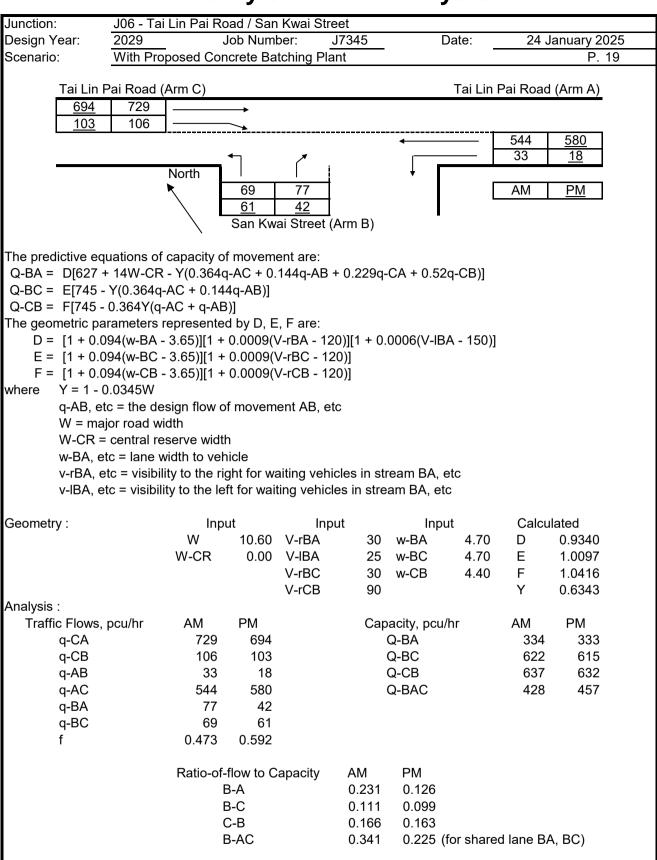
 Scenario:
 Without Proposed Concrete Batching Plant
 Page
 15

Phase A1 A2 B1 B2 B3 C1 C2	Stage 1 1 2 2 2 2	4.10 4.10 4.00 4.00 4.00	25.0 29.0 22.0	% Up-hill Gradient	100 100 98	Sat. Flow (pcu/hr) 2042 2059	Flow (pcu/hr) 268 271	0.131 0.132	Critical y	100 100	Sat. Flow (pcu/hr) 2042 2059	Flow (pcu/hr) 281 284	y value 0.138	Critical y
A2 B1 B2 B3	2 2 2	4.10 4.00 4.00	29.0		100	2059								
B1 B2 B3	2 2 2	4.00	22.0				271	0.132		100	2059	204	l	
B2 B3 C1	2 2	4.00			98	1010						204	0.138	
B3 C1	2					1919	442	0.230		100	1916	560	0.292	
C1		4.00				2155	497	0.231			2155	557	0.258	
	2		20.0		100	2005	710	0.354	0.354	100	2005	660	0.329	0.329
C2		3.80	22.0		100	1868	295	0.158		100	1868	308	0.165	
1	2	3.80	26.0		100	2019	318	0.158		100	2019	333	0.165	
D1	1	4.30	27.0		21	2051	585	0.285	0.286	28	2044	491	0.240	0.240
D2	1	4.30				2185	624	0.286			2185	525	0.240	
D3	1	4.20	18.0		100	2008	573	0.285		100	2008	482	0.240	
P1	1		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
P2	1		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
P3	1		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	<u> </u>
P4	1					5			7			12	sec	
														\vdash
		-												
			min c			1	sec	† ואוכ	13	sec F	GIVI =	20	sec	
	P2 P3	P2 1 P3 1 P4 1 P5 2 P6 2 P7 2	P2 1 P3 1 P4 1 P5 2 P6 2 P7 2	P2 1 min c P3 1 min c P4 1 min c P5 2 min c P6 2 min c P7 2 min c	P2 1 min crossing P3 1 min crossing P4 1 min crossing P5 2 min crossing P6 2 min crossing P7 2 min crossing	P2 1 min crossing time = P3 1 min crossing time = P4 1 min crossing time = P5 2 min crossing time = P6 2 min crossing time =	P2 1 min crossing time = 5 P3 1 min crossing time = 5 P4 1 min crossing time = 5 P5 2 min crossing time = 5 P6 2 min crossing time = 5	P2 1 min crossing time = 5 sec 0 P3 1 min crossing time = 5 sec 0 P4 1 min crossing time = 5 sec 0 P5 2 min crossing time = 5 sec 0 P6 2 min crossing time = 5 sec 0	P2 1 min crossing time = 5 sec GM + P3 1 min crossing time = 5 sec GM + P4 1 min crossing time = 5 sec GM + P5 2 min crossing time = 5 sec GM + P6 2 min crossing time = 5 sec GM +	P2 1 min crossing time = 5 sec GM + 5 P3 1 min crossing time = 5 sec GM + 5 P4 1 min crossing time = 5 sec GM + 7 P5 2 min crossing time = 5 sec GM + 7 P6 2 min crossing time = 5 sec GM + 7	P2 1 min crossing time = 5 sec GM + 5 sec F P3 1 min crossing time = 5 sec GM + 5 sec F P4 1 min crossing time = 5 sec GM + 7 sec F P5 2 min crossing time = 5 sec GM + 7 sec F P6 2 min crossing time = 5 sec GM + 7 sec F	P2 1 min crossing time = 5 sec GM + 5 sec FGM = P3 1 min crossing time = 5 sec GM + 5 sec FGM = P4 1 min crossing time = 5 sec GM + 7 sec FGM = P5 2 min crossing time = 5 sec GM + 7 sec FGM = P6 2 min crossing time = 5 sec GM + 7 sec FGM =	P2 1 min crossing time = 5 sec GM + 5 sec FGM = 10 P3 1 min crossing time = 5 sec GM + 5 sec FGM = 10 P4 1 min crossing time = 5 sec GM + 7 sec FGM = 12 P5 2 min crossing time = 5 sec GM + 7 sec FGM = 12 P6 2 min crossing time = 5 sec GM + 7 sec FGM = 12	P2 1 min crossing time = 5 sec GM + 5 sec FGM = 10 sec P3 1 min crossing time = 5 sec GM + 5 sec FGM = 10 sec P4 1 min crossing time = 5 sec GM + 7 sec FGM = 12 sec P5 2 min crossing time = 5 sec GM + 7 sec FGM = 12 sec P6 2 min crossing time = 5 sec GM + 7 sec FGM = 12 sec P7 2 min crossing time = 7 sec GM + 13 sec FGM = 20 sec



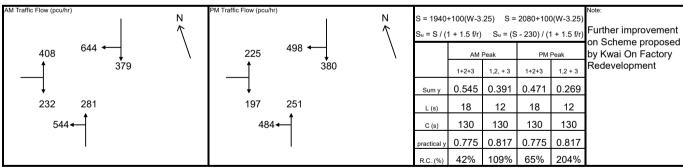
 Junction:
 J05 - Kwai Chung Road / Tai Lin Pai Road / Kwai Foo Road
 Job Number:
 J7345


 Scenario:
 With Proposed Concrete Batching Plant
 Page
 16


					1		AM Peak					PM Peak				
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Kwai Foo Road EB	LT	A1	1	4.10	25.0		100	2042	268	0.131		100	2042	281	0.138	
Kwai Foo Road EB	LT	A2	1	4.10	29.0		100	2059	271	0.132		100	2059	284	0.138	
Kwai Chung Road NB	LT+SA*	В1	2	4.00	22.0		94	1924	464	0.241		100	1916	560	0.292	
Kwai Chung Road NB	SA	B2	2	4.00				2155	520	0.241			2155	617	0.286	
Kwai Chung Road NB	RT	В3	2	4.00	20.0		100	2005	710	0.354	0.354	100	2005	660	0.329	0.329
Tai Lin Pai Road WB	LT	C1	2	3.80	22.0		100	1868	295	0.158		100	1868	308	0.165	
Tai Lin Pai Road WB	LT	C2	2	3.80	26.0		100	2019	318	0.158		100	2019	333	0.165	
Kwai Chung Road SB	LT+SA*	D1	1	4.30	27.0		21	2051	607	0.296		26	2046	517	0.253	0.253
Kwai Chung Road SB	SA+RT	D2	1	4.30				2185	646	0.296			2185	553	0.253	
Kwai Chung Road SB	RT	D3	1	4.20	18.0		100	2008	594	0.296	0.296	100	2008	508	0.253	
pedestrian phase		P1	1		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
		P2	1		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
		P3	1		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
		P4	1		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		P5	2		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
		P6	2		min c	rossing	time =	5	sec	GM +	7	sec FGM =		12	sec	
		P7	2		min c	rossing	time =	7	sec	GM +	13	sec F	GM =	20	sec	
		P8	2		min c	rossing	time =	5	sec	GM +	6	sec FGM = 11		11	sec	

1 A1 —— A2 ——	A P1	P3 P4 P4 B1	P7	P8.** C2 C1						
АМ	G =	I/G = 9	G =	I/G = 9	G =	I/G =	G =	I/G =	G =	
	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	
РМ	G =	I/G = 9	G =	I/G = 9	G =	I/G =	G =	I/G =	G =	
	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	

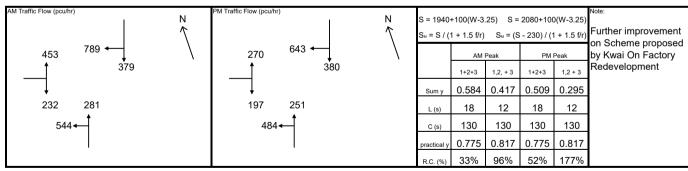
Junction: J06 - Tai Lin Pai Road / San Kwai Street 2024 24 January 2025 Design Year: Job Number: J7345 Date: Scenario: **Existing Condition** Tai Lin Pai Road (Arm C) Tai Lin Pai Road (Arm A) 650 683 77 77 506 540 20 6 North 47 44 AM PM 47 26 San Kwai Street (Arm B) The predictive equations of capacity of movement are: Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)]Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]Q-CB = F[745 - 0.364Y(q-AC + q-AB)]The geometric parameters represented by D, E, F are: D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-lBA - 150)]E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-rBC - 120)]F = [1 + 0.094(w-CB - 3.65)][1 + 0.0009(V-rCB - 120)]where Y = 1 - 0.0345Wq-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width w-BA, etc = lane width to vehicle v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc Geometry: Calculated Input Input Input W 10.60 V-rBA 30 w-BA 4.70 0.9340 D 25 Ε W-CR 0.00 V-IBA w-BC 4.70 1.0097 V-rBC 30 w-CB 4.40 F 1.0416 V-rCB 90 Υ 0.6343 Analysis: Traffic Flows, pcu/hr AM PM Capacity, pcu/hr AM РМ 650 Q-BA q-CA 683 358 357 Q-BC 632 626 q-CB 77 77 q-AB 20 6 Q-CB 649 645 462 q-AC 506 540 Q-BAC 493 q-BA 44 26 q-BC 47 47 0.516 0.644 Ratio-of-flow to Capacity PMΑM B-A 0.073 0.123 B-C 0.074 0.075 C-B 0.119 0.119 B-AC 0.197 0.148 (for shared lane BA, BC)



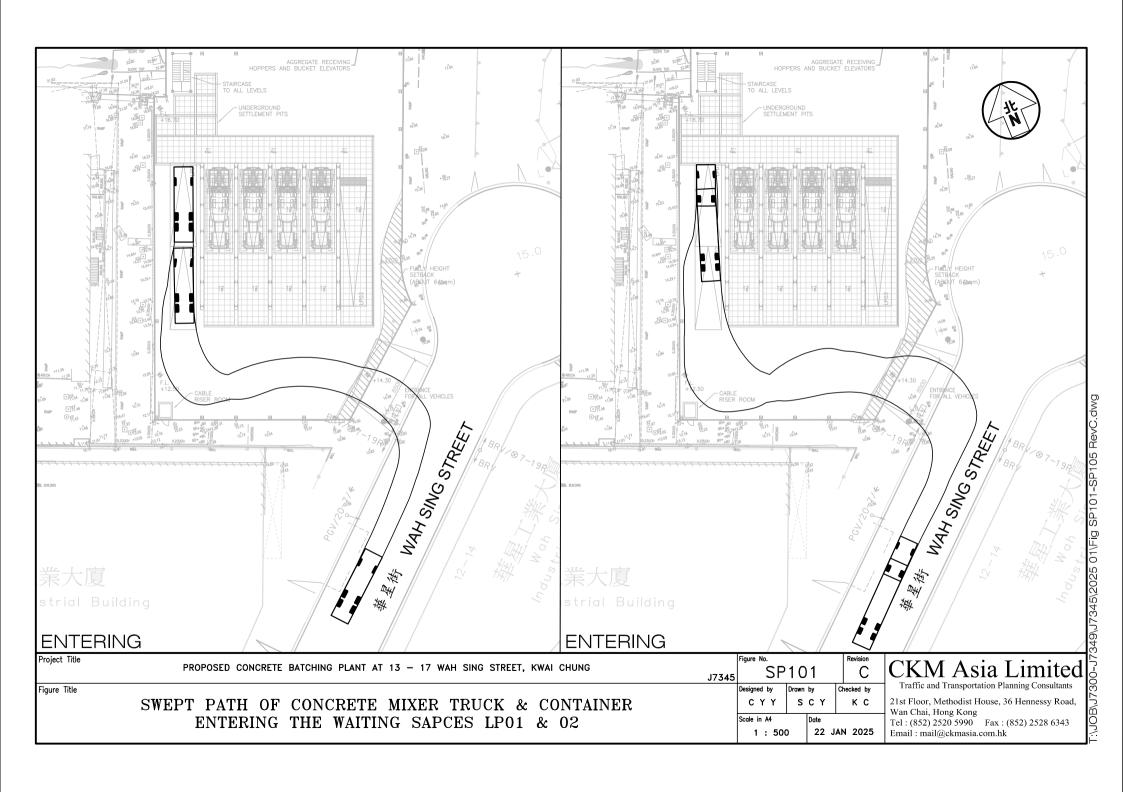
 Junction:
 J02 - Tai Lin Pai Road / Kwai On Road
 Job Number:
 J7345

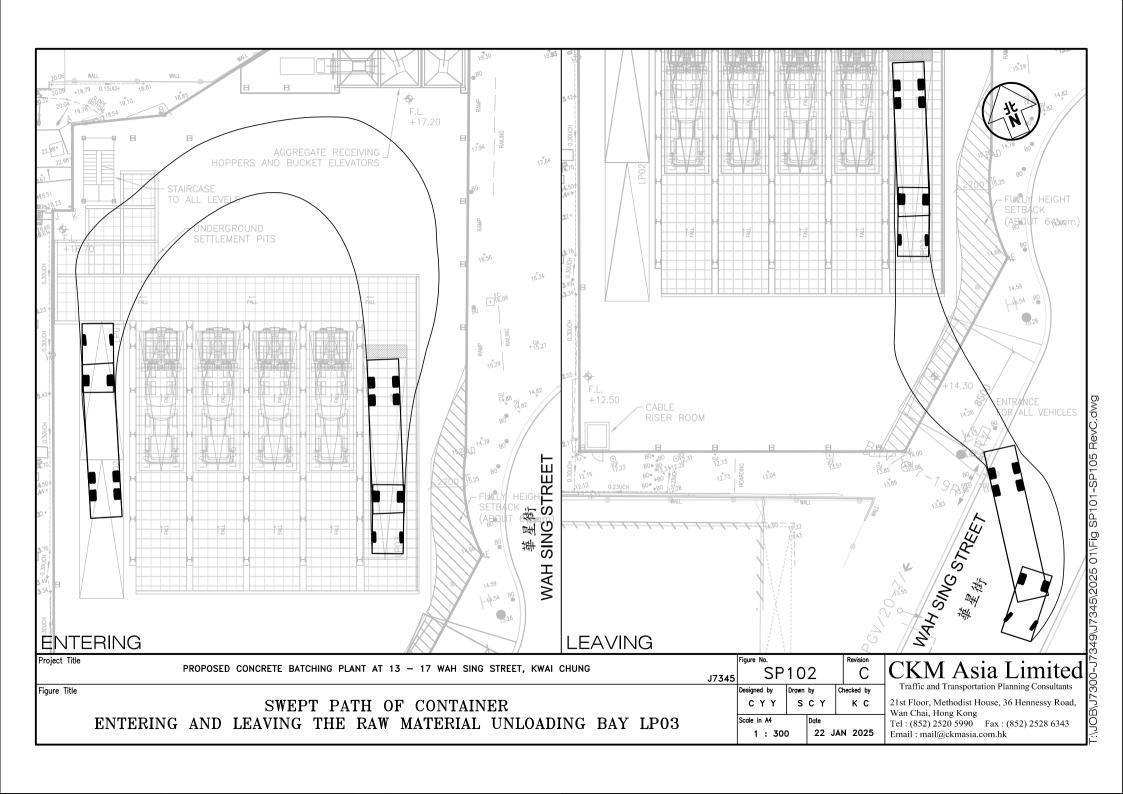
 Scenario:
 Without Proposed Concrete Batching Plant
 Page
 20

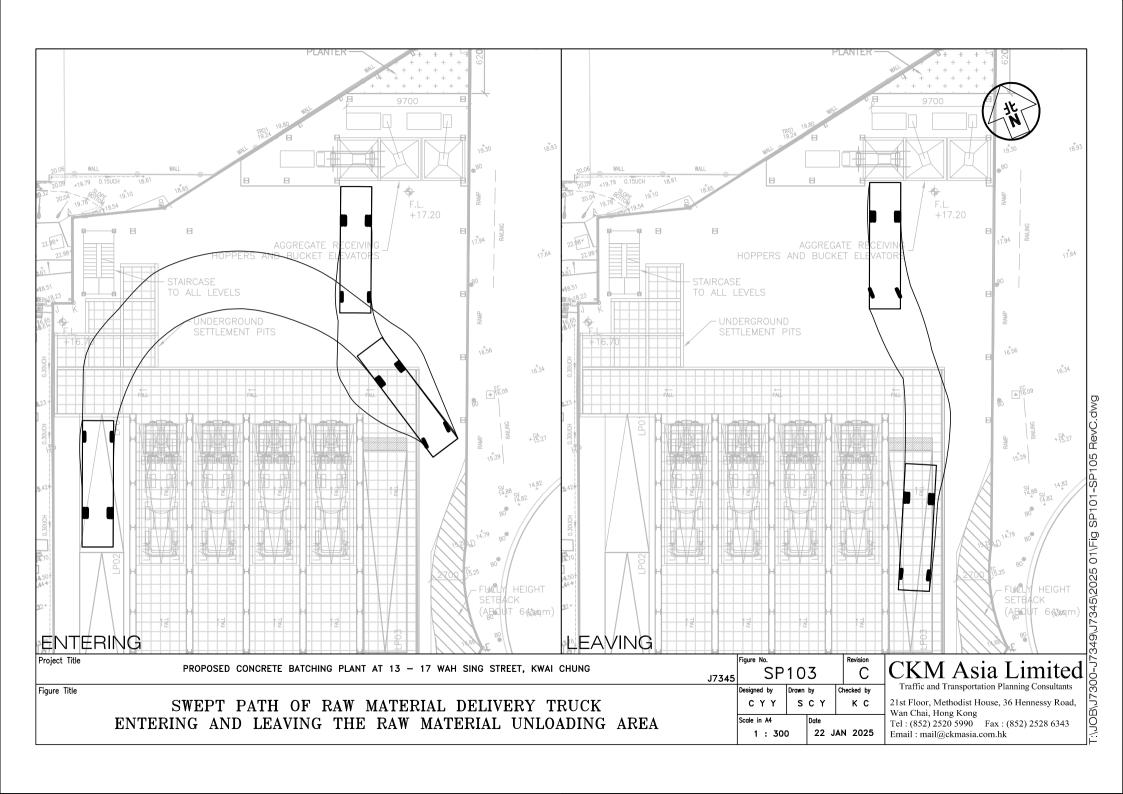
	AM Peak								PM Peak							
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tai Lin Pai Road SB	SA+RT	A1	1	3.35	21.0		26	1914	510	0.266	0.266	13	1932	439	0.227	0.228
Tai Lin Pai Road SB	RT	A2	1	3.35	18.0		100	1929	513	0.266		100	1929	439	0.228	
Tai Lin Pai Road NB	LT*	B1	3	3.50	7.0		100	1618	255	0.158	0.158	100	1618	227	0.140	0.140
Tai Lin Pai Road NB	LT	B2	3	3.50	10.0		100	1830	289	0.158		100	1830	257	0.140	
Tai Lin Pai Road NB	SA	В3	3	3.50				2105	281	0.133			2105	251	0.119	
Kwai On Road EB	LT	C1	1, 2	3.35	13.0		100	1748	408	0.233		100	1748	225	0.129	
Kwai On Road EB	RT	C2	2	3.35	17.0		100	1921	232	0.121	0.121	100	1921	197	0.103	0.103
pedestrian phase																

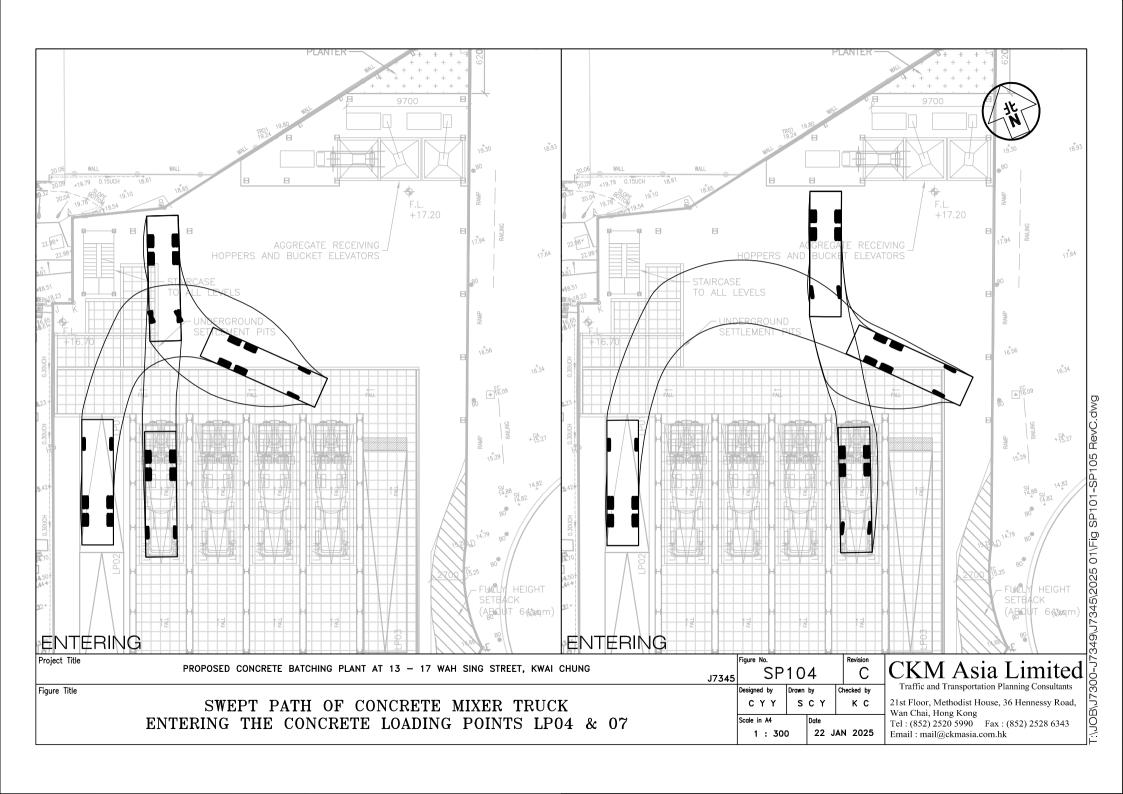


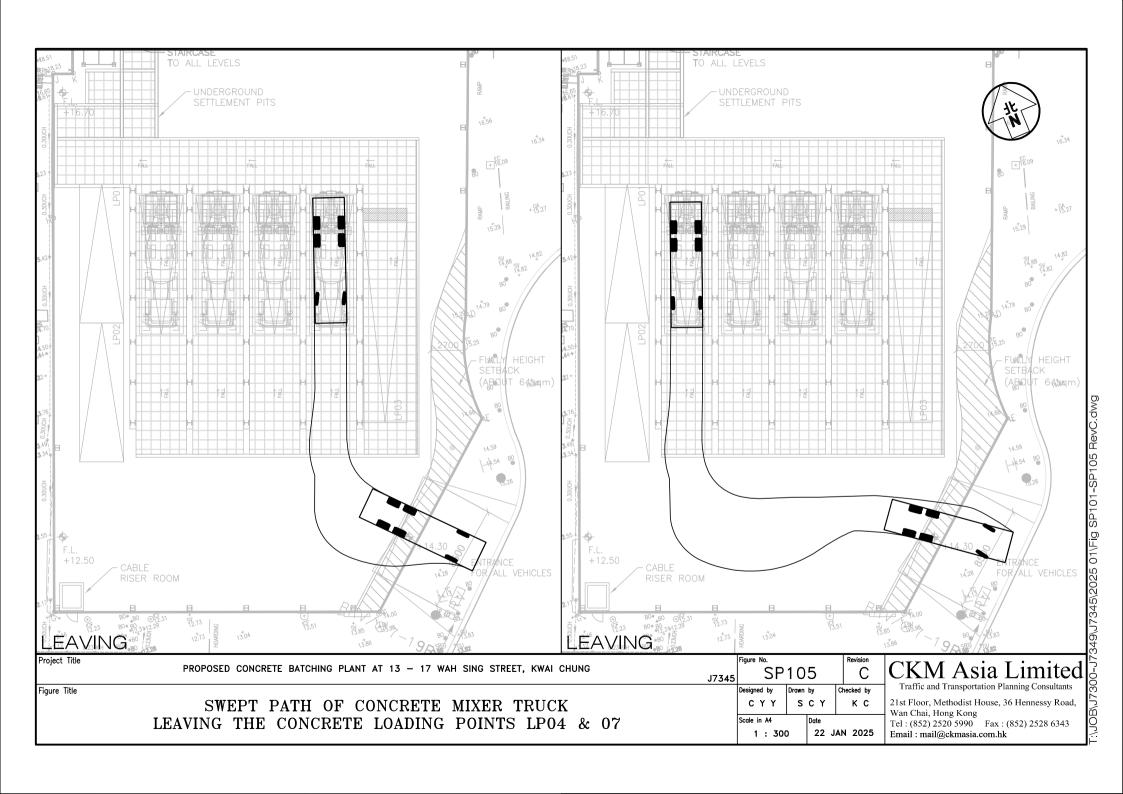
1	C1 A2	A1 2 C C C		3	B1 B2 B3					
АМ	G =	I/G = 6	G =	I/G = 6	G =	I/G = 9	G =	I/G =	G =	
	G =	I/G =	G =	I/G = 5	G =	I/G = 9	G =	I/G =	G =	
РМ	G =	I/G = 6	G =	I/G = 6	G =	I/G = 9	G =	I/G =	G =	
	G =	I/G =	G =	I/G = 5	G =	I/G = 9	G =	I/G =	G =	

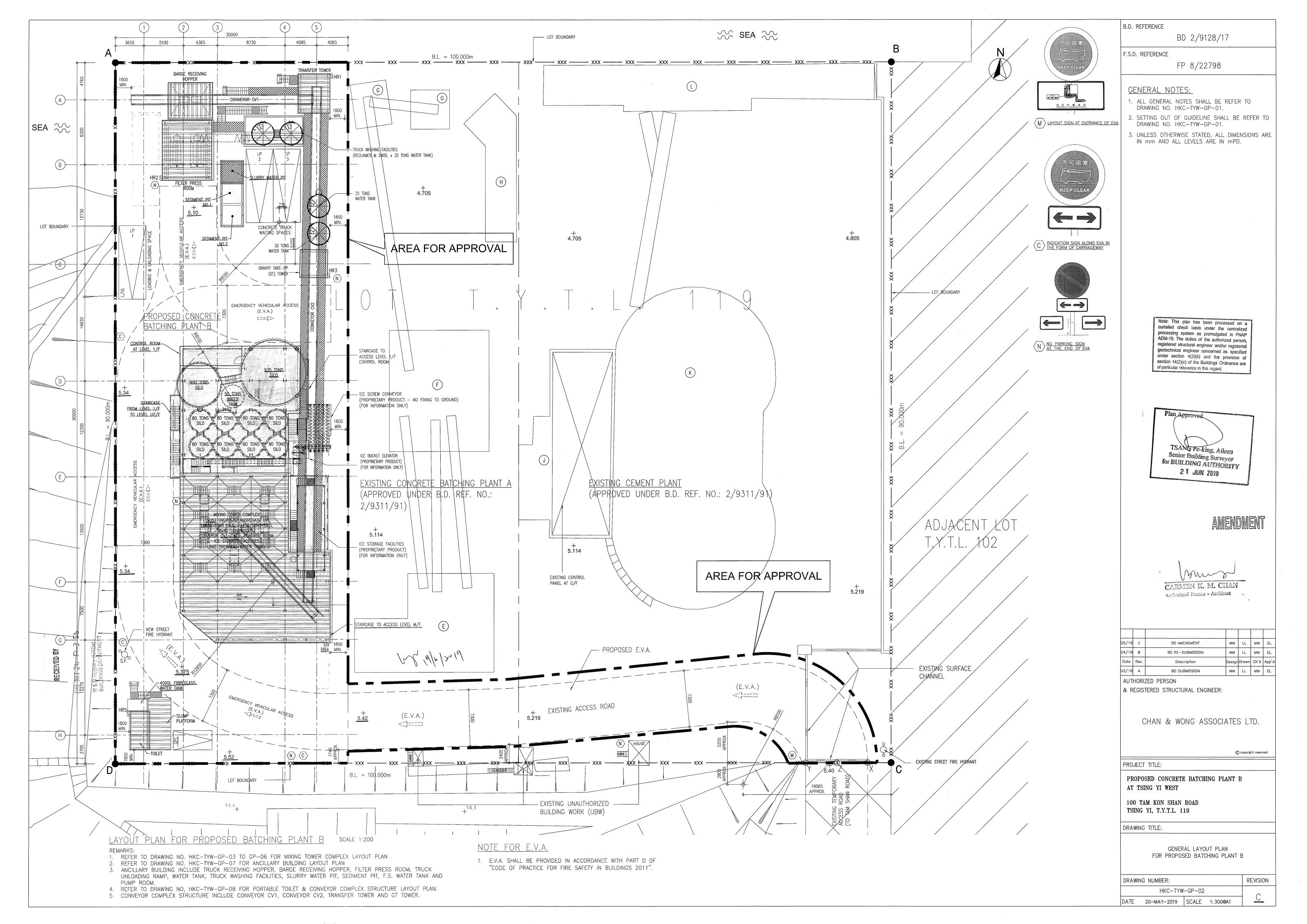

 Junction:
 J02 - Tai Lin Pai Road / Kwai On Road
 Job Number:
 J7345


 Scenario:
 With Proposed Concrete Batching Plant
 Page
 21


	1		1	ı	ı	1		AM Peak			PM Peak					
Approach	Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow	y value	Critical y	
Tai Lin Pai Road SB SA+	RT A1	1	3.35	21.0	Gradient	35	1902	(pcu/hr) 580	0.305	0.305	25	1916	(pcu/hr) 510	0.266		
	RT A2	1	3.35	18.0		100	1929	588	0.305		100	1929	513	0.266	0.266	
Tar Ein Far Noad OB	(1 /12	<u> </u>	0.00	10.0		100	1020	000	0.000		100	1020	010	0.200	0.200	
Tai Lin Pai Road NB	T* B1	3	3.50	7.0		100	1618	255	0.158	0.158	100	1618	227	0.140	0.140	
Tai Lin Pai Road NB	LT B2	3	3.50	10.0		100	1830	289	0.158		100	1830	257	0.140		
Tai Lin Pai Road NB	SA B3	3	3.50				2105	281	0.133			2105	251	0.119		
Kwai On Road EB	LT C1	1, 2	3.35	13.0		100	1748	453	0.259		100	1748	270	0.154		
	RT C2	2	3.35	17.0		100	1921	232		0.121	100	1921	197	0.103	0.103	
KWAI ON ROAD EB	KI C2		3.35	17.0		100	1921	232	0.121	0.121	100	1921	197	0.103	0.103	
pedestrian phase																




1	C1	C C:		3	B1 B2 B3					
AM	G =	I/G = 6	G =	I/G = 6	G =	I/G = 9	G =	I/G =	G =	
	G =	I/G =	G =	I/G = 5	G =	I/G = 9	G =	I/G =	G =	
РМ	G =	I/G = 6	G =	I/G = 6	G =	I/G = 9	G =	I/G =	G =	
	G =	I/G =	G =	I/G = 5	G =	I/G = 9	G =	I/G =	G =	



Appendix 2 – The layout of the Concrete Batching Plant in Tsing Yi

