Appendix II

Traffic Impact Assessment

Traffic Impact Assessment Final Report October 2024

Prepared by: CKM Asia Limited

CONTENTS

<u>CH</u>	APTER	PAGE
1.	INTRODUCTION Background Structure of Report	1
2.	EXISTING SITUATION The Subject Site Public Transport Facilities Pedestrian Facilities Existing Traffic Flows Queueing of Taxis for Refilling Liquefied Petroleum Gas ("LPG") at J02 Performance of the Surveyed Junctions	2
3.	THE PROPOSED CONCRETE BATCHING PLANT Development Schedule Vehicular Access Points Operation of Proposed Concrete Batching Plant Internal Transport Facilities Swept Path Analysis	6
4.	TRAFFIC IMPACT Design Year Traffic Forecasting Methodology Traffic Generation of the Proposed Concrete Batching Plant 2029 Traffic Flows 2029 Junction Capacity Analysis Junction Improvement Scheme at J02	8
5.	SUMMARY Figures Appendix A – Detailed Calculation Appendix B – Swept Path Analysis Appendix C – Junction Improvement Scheme proposed by Kwai On Factory Redevelopment	11

TABLES

NUMBER

- 2.1 Road-Based Public Transport Services Operating near the Subject Site
- 2.2 Existing Junction Performance
- 3.1 Details of Delivery to / from the Proposed Concrete Batching Plant
- 3.2 Internal Transport Facilities
- 4.1 Traffic Generation of the Proposed Concrete Batching Plant
- 4.2 2029 Junction Performance
- 4.3 2029 Junction Performance with Further Improvement

FIGURES

NUMBER

- 1.1 Location of the Subject Site
- 2.1 Public Transport Facilities in the Vicinity of the Subject Site
- 2.2 Location of Surveyed Junctions and Area of Influence
- 2.3 Existing Junction Layout of Kwai Chung Road / Kwai On Road / Kwai Yik Road
- 2.4 Existing Junction Layout of Tai Lin Pai Road / Kwai On Road
- 2.5 Existing Junction Layout of Tai Lin Pai Road / Kung Yip Street
- 2.6 Existing Junction Layout of Kung Yip Street / Wah Sing Street
- 2.7 Existing Junction Layout of Kwai Chung Road / Tai Lin Pai Road / Kwai Foo Road
- 2.8 Existing Junction Layout of Tai Lin Pai Road / San Kwai Street
- 2.9 Year 2024 Observed Peak Hour Traffic Flows
- 3.1 Ground Floor
- 4.1 Year 2029 Peak Hour Traffic Flows without the Proposed Concrete Batching Plant
- 4.2 Year 2029 Peak Hour Traffic Flows with the Proposed Concrete Batching Plant
- 4.3 Junction Improvement Scheme at Tai Lin Pai Road / Kwai On Road

1.0 INTRODUCTION

Background

- 1.1 The Subject Site is located at 13 17 Wah Sing Street in Kwai Chung. Figure
 1.1 shows the location of the Subject Site.
- 1.2 On 24th May 2024, the Town Planning Board ("TPB") approved the S16 Planning Application of Proposed minor relaxation of plot ratio restriction for Permitted Warehouse Use (excluding Dangerous Goods Godown) in "Industrial" Zone at the Subject Site (TPB ref: A/KC/505) ("the Approved Warehouse"). The Owner now intends to redevelop the Subject Site into a Proposed Concrete Batching Plant ("Proposed Concrete Batching Plant").
- 1.3 CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Owner to conduct a traffic impact assessment in support of the Proposed Concrete Batching Plant. This report presents the findings of the Traffic Impact Assessment.

Structure of Report

1.4 The report is structured as follows:

ents

2.0 EXISTING SITUATION

The Subject Site

2.1 The Subject Site fronts onto Wah Sing Street to the east and a Right-of-Way (i.e. Kwai Chung Town Lot 111 RP in DD445) ("ROW") to the west and south. Inbetween the ROW to the west and Tai Lin Pai Road, is the Gold King Industrial Building. The existing run-in/out of the Subject Site is provided at the ROW, which connects with Tai Lin Pai Road.

Public Transport Facilities

2.2 The Subject Site is well-served by public transport facilities, and access to these services is convenient. Details of public transport services operating in the vicinity of the Subject Site are given in **Table 2.1** and shown in **Figure 2.1**.

TABLE 2.1ROAD-BASEDPUBLICTRANSPORTSERVICESOPERATINGNEAR THE SUBJECT SITE

Route	Routing	Frequency (minutes)
KMB 30	Cheung Sha Wan – Allway Gardens	25 - 30
KMB 31	Tsuen Wan West Station – Shek Lei (Circular)	10 – 20
KMB 31B	Olympic Station – Shek Lei (Tai Loong Street)	12 – 25
KMB 31M	Shek Lei (Lei Pui Street) – Kwai Fong Station	5 –15
KMB 31P ⁽¹⁾	Shek Lei Commercial Complex → Kwai Fong Station	AM Peak
KMB 32	Olympic Station – Shek Wai Kok	20 - 28
KMB 32H	Cheung Shan – Lai Chi Kok	30 - 60
KMB 32M	Kwai Fong Station – Cheung Shan (Circular)	15 – 25
KMB 33A	Mong Kok (Park Avenue) – Tsuen Wan (Nina Tower)	17 – 25
KMB 34	Tsuen Wan (Bayview Garden) – Kwai Shing (Central)	12 – 20
KMB 35A	Tsim Sha Tsui East – On Yam Estate	5 - 20
KMB 35X ⁽²⁾	On Yam Estate – Tsim Sha Tsui East	AM, PM Peak
KMB 36A	Cheung Sha Wan (Sham Mong Road) – Lei Muk Shue	15 - 30
KMB 36B	Jordan (West Kowloon Station) – Lei Muk Shue	12 – 25
KMB 36M	Kwai Fong Station – Lei Muk Shue	5 – 12
KMB 36X ⁽¹⁾	Lei Muk Shue – Tsim Sha Tsui East (Mody Road)	AM, PM Peak
KMB 37	Kwai Shing (Central) – Olympic Station	12 – 20
KMB 37M	Kwai Hing Station → Kwai Shing Central (Circular)	8 - 20
KMB 38	Kwai Shing (East) – Ping Tin	6 - 20
KMB 38A	Mei Foo – Riviera Gardens	20 - 30
KMB 38B ⁽¹⁾	Riviera Gardens – Shek Mun Estate	AM, PM Peak
KMB 38P ⁽¹⁾	Kwai Shing (Central) – Ping Tin	AM, PM Peak
KMB 40	Laguna City – Tsuen Wan (Belvedere Garden)	11 – 25
KMB 40A ⁽¹⁾	Ping Tin – Kwai Hing Station	AM, PM Peak
KMB 40P	Tsuen Wan (Nina Tower) – Kwun Tong Ferry	8 - 30
KMB 40E ⁽¹⁾	Nai Chung – Kwai Chung (Kwai Fong Estate)	AM, PM Peak
KMB 40X	Wu Kai Sha Station – Kwai Chung Estate	6 - 20
KMB 42C	Cheung Hang Estate – Lam Tin Station	5 – 15
KMB 43	Cheung Hong Estate – Tsuen Wan West Station	12 – 20
KMB 43A	Cheung Wang Estate – Shek Lei (Tai Loong Street)	6 – 20
KMB 43D ⁽¹⁾	Cheung Wang Estate → Kwai Shing	AM Peak
KMB 43S ⁽¹⁾	Shek Yam → Hong Kong Science Park	AM Peak
KMB 44M	Tsing Yi Station – Kwai Chung Estate	11 – 20
KMB 46P ⁽²⁾	Mei Tin – Kwai Fong Station (Circular)	10 - 30

Note: KMB – Kowloon Motor Bus LWB – Long Win Bus CTB – Citybus GMB – Green Minibus (1) Monday to Friday. No services on Sundays and Public Holidays

(2) Monday to Saturday. No services on Sundays and Public Holidays

(O) Overnight service

TABLE 2.1ROAD-BASEDPUBLICTRANSPORTSERVICESOPERATINGNEAR THE SUBJECT SITE (CONT'D)

Route	Routing	Frequency
		(minutes)
KMB 46X	Mei Foo – Hin Keng	5 – 20
KMB 47A	Kwai Fong (South) – Shui Chuen O	20 - 30
KMB 47X	Kwai Shing (East) – Chun Shek	6 - 20
KMB 57M	Lai King (North) – Shan King Estate	11 – 30
KMB 58M	Kwai Fong Station – Leung King Estate	3 – 15
KMB 59A	Kwai Fong (Kwai Tsui Estate) – Tuen Mun Pier Head	6 - 60
KMB 61M	Lai King (North) – Yau Oi (South)	8 - 25
KMB 67M	Kwai Fong Station – Siu Hong Court	5 - 20
KMB 69M	Kwai Fong Station – Tin Shui Wai Town Centre	5 - 30
KMB 69P ⁽²⁾	Tin Shui Wai Station → Kwai Fong Station	AM Peak
KMB 73P ⁽¹⁾	Tai Mei Tuk – Tsuen Wan (Nina Tower)	AM Peak
KMB 73P ⁽¹⁾	Tsuen Wan (Nina Tower) → Tai Mei Tuk	PM Peak
KMB 235M	Kwai Fong Station – On Yam Estate	5 – 15
KMB 237A ⁽²⁾	Kwai Shing (Central) → Tsim Sha Tsui East (Mody Road)	AM Peak
KMB 240X ⁽¹⁾	Wong Nai Tau – Kwai Hing Station	AM, PM Peak
KMB 260C ⁽¹⁾	Sam Shing Estate – Kwai Fong Station	AM, PM Peak
KMB 265M	Lai Yiu Estate – Tin Heng Estate	5 - 35
KMB 269A ⁽²⁾	Wetland Park Road → Kwai Chung (Kwai Fong Estate)	AM Peak
KMB 269M	Cho Yiu – Tin Yan Estate	12 - 25
KMB 272P ⁽²⁾	Tai Po (Fu Heng) – Kwai Hing Station	AM, PM Peak
KMB 290	Choi Ming – Tsuen Wan West Station	10 - 20
KMB 290A	Choi Ming – Tsuen Wan West Station	10 - 25
KMB 290B ⁽¹⁾	Tsuen Wan West Station – Tseung Kwan O Industrial Estate	AM, PM Peak
KMB 290E ⁽¹⁾	Tseung Kwan O Industrial Estate – Tseun Wan West Station	AM, PM Peak
KMB 2902	Lohas Park Station – Tsuen Wan West Station	15 – 35
KMB 935 ⁽²⁾	Shek Lei (Tai Loong Street) – Wan Chai (Fleming Road)	AM, PM Peak
KMB 936	Shek Wai Kok \rightarrow Causeway Bay (Cotton Path)	AM Peak
KMB 936	Causeway Bay (Cotton Path) \rightarrow Shek Wai Kok	PM Peak
KMB 936A ⁽²⁾	Tsuen Wan (Shek Wai Kok) → Causeway Bay (Cotton Path)	AM Peak
KMB 936A ⁽¹⁾	Causeway Bay (Cotton Path) \rightarrow Lei Muk Shue	PM Peak
KMB N237 ^(O)	Mei Foo – Kwai Shing (Circular)	30
KMB N260 ^(O)	Mei Foo – Tuen Mun Pier Head	20 - 30
KMB N269 ^(O)	Mei Foo – Tin Tsz	10 - 25
KMB N290 ^(O)	Tsuen Wan West Station → Lohas Park Station	2 per day
KMB X42P ⁽¹⁾	Cheung On Estate \rightarrow Lam Tin Station	AM Peak
LWB A30	Lei Muk Shue – Airport (Ground Transportation Centre)	30 – 60
LWB A32	Airport (Ground Transportation Centre) – Kwai Chung Estate	30 - 60
LWB E32	Asiaworld-Expo – Kwai Fong (South)	11 - 30
LWB E32A	Tung Chung Development Pier – Kwai Fong (South)	12 - 30
LWB NA32 ^(O)	Hzmb Hong Kong Port – Kwai Chung Estate	2 - 3 per day
CTB 930	Tsuen Wan – Exhibition Centre Station	
CTB 930 CTB 930B ⁽¹⁾	Kwai Shing (East) → Causeway Bay (Moreton Terrace)	10 – 30
CTB 930B ^(O)	Causeway Bay (Moreton Terrace) \rightarrow Tsuen Wan	AM Peak 1 per day
CTB N930 ^(O)	Tsuen Wan \rightarrow Causeway Bay (Moreton Terrace)	2 per day
GMB 83A	Tsuen Wan (Chuen Lung Street) – On Yam Estate	
GMB 83A GMB 86		8 - 30
GMB 86A ^(O)	Tsuen Wan West Station – Shek Lei Estate	10 - 20
	Tsuen Wan (Chuen Lung Street) – Shek Lei Estate	15 - 30
GMB 86M GMB 87K	Tsuen Wan (Chuen Lung Street) – Shek Lei Estate	5 - 20
GMB 87K GMB 89A	Kwai Fong Station – Tsuen Wan West Station	6 - 10
	Kwai Hing Station – Tsuen Wan (Ho Pui Street) wloon Motor Bus LWB – Long Win Bus CTB – Citybus GMB – Gr	8 – 18 reen Minibus

Note: KMB – Kowloon Motor Bus LWB – Long Win Bus CTB – Citybus GMB – Green Minibus (1) Monday to Friday. No services on Sundays and Public Holidays

(2) Monday to Saturday. No services on Sundays and Public Holidays (2) Monday to Saturday. No services on Sundays and Public Holidays

(O) Overnight service

TABLE 2.1ROAD-BASEDPUBLICTRANSPORTSERVICESOPERATINGNEAR THE SUBJECT SITE (CONT'D)

Route	Route Routing			
GMB 89B	Tsuen Wan West Station – Kwai Shing East Estate	10 – 12		
GMB 89M	Kwai Fong Station – Kwai Shing East Estate	5 – 15		
GMB 89P	Kwai Chung (Shek Tau Street) – Kwai Fong (Circular)	15		
GMB 89S	Kwai Fong Station – Kwai Shing Circuit (Circular)	5 – 15		
GMB 94	Shek Wai Kok Estate – Kwai Shing Circuit	8 – 15		
GMB 94A	Lei Muk Shue Estate – Kwai Shing Circuit	10 – 15		
GMB 302	Hong Kong Garden – Kwai Fong Station	5 - 30		
GMB 302	Bellagio – Kwai Fong Station	AM Peak		
GMB 313	Fuk Loi Estate – Princess Margaret Hospital	6 – 11		
GMB 401	Tsing Yi Ferry Terminus – Shek Yam Estate	7 – 10		
GMB 403	Shek Lei Estate – Sha Tin Wai (Circular)	20		
GMB 403P	Shek Lei Estate – Shatin Town Centre	6 – 20		
GMB 403X	Tai Wai Station – Shek Lei Estate (Circular)	12 – 15		
GMB 406 ⁽¹⁾	Shek Lei Estate – Kwai Shing Circuit (Circular)	AM Peak		
GMB 407	Cheung Wang Estate – Princess Margaret Hospital	4 - 10		
GMB 410	Shek Yam Estate – Princess Margaret Hospital	15 – 20		

Note: KMB – Kowloon Motor Bus LWB – Long Win Bus CTB – Citybus GMB – Green Minibus (1) Monday to Friday. No services on Sundays and Public Holidays (2) Monday to Saturday. No services on Sundays and Public Holidays

(O) Overnight service

Pedestrian Facilities

2.3 In the vicinity of the Subject Site, footpaths are provided alongside roads, and footbridges are provided across Kwai Chung Road.

Existing Traffic Flows

- 2.4 To quantify the existing traffic flows in the vicinity of the Subject Site, manual classified counts were conducted on Monday, 20th May 2024 at the following junctions:
 - J01 Junction of Kwai Chung Road / Kwai On Road / Kwai Yik Road;
 - J02 Junction of Tai Lin Pai Road / Kwai On Road;
 - J03 Junction of Tai Lin Pai Road / Kung Yip Street;
 - J04 Junction of Kung Yip Street / Wah Sing Street;
 - J05 Junction of Kwai Chung Road / Tai Lin Pai Road / Kwai Foo Road; and
 - J06 Junction of Tai Lin Pai Road / San Kwai Street.
- 2.5 In view that junction of Kwai Chung Road / Tai Lin Pai Road is not a signal controlled or a priority junction, the junction performance assessment is not conducted.
- 2.6 The existing road network, the locations of these surveyed junctions and the area of influence ("AOI") are shown in **Figure 2.2** and the junction layouts are shown in **Figures 2.3 2.8**.
- 2.7 The traffic counts are classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. The AM and PM peak hours identified from the surveys are found to be between 0845 0945 hours and 1715 1815 hours respectively. **Figure 2.9** presents the 2024 observed AM and PM peak hour traffic flows in pcu/hour.

Oueueing of Taxis for Refilling Liquefied Petroleum Gas ("LPG") at 102

- Since queuing of taxis for refilling liquefied petroleum gas occurs during the PM 2.8 peak hour along Tai Lin Pai Road northbound near its junction with Kwai On Road, the effect of taxi queueing is only considered for the PM peak hour iunction capacity analysis. Observation on the queueing was made on Monday. 20th May 2024.
- 2.9 In the junction analysis, the gueueing of taxis is regarded as "dead vehicles" occupying part of the slow lane of Tai Lin Pai Road northbound. Despite the presence of the "dead vehicles", the remaining lane width could still serve 2 northbound traffic movements.

Performance of the Surveyed Junctions

2.10 The existing performance of the surveyed junctions are calculated based on the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"), which is published by the Transport Department. The results of the performance of junctions are summarised in Table 2.2, and detailed calculations of junction performance are found in **Appendix A**.

Ref.	Junction	Type of Junction (Parameter)	AM Peak Hour	PM Peak Hour
J01	Kwai Chung Road / Kwai On Road / Kwai Yik Road	Signal (RC)	40%	46%
J02	Tai Lin Pai Road / Kwai On Road	Priority (RFC)	0.671	0.506(1)
J03	Tai Lin Pai Road / Kung Yip Street	Signal (RC)	109%	90%
J04	Kung Yip Street / Wah Sing Street	Priority (RFC)	0.322	0.315
J05	Kwai Chung Road / Tai Lin Pai Road / Kwai Foo Road	Signal (RC)	31%	49%
J06	Tai Lin Pai Road / San Kwai Street	Priority (RFC)	0.218	0.144
Note:	RC – Reserve Capacity RFC – Ratio of Flow t	to Capacity		

TABLE 2.2 EXISTING IUNCTION PERFORMANCE

RC – Reserve Capacity ⁽¹⁾ The effect of taxi gueueing is considered.

The results in **Table 2.2** show that the junctions analysed operate with capacity. 2.11

3.0 THE PROPOSED CONCRETE BATCHING PLANT

Development Schedule

3.1 The Proposed Concrete Batching Plant has 4 production lines with peak concrete production capacity of 100m³/hour/line. Sufficient loading / unloading facilities which meet the operational requirements are provided within the Proposed Concrete Batching Plant.

Vehicular Access Points

3.2 The vehicular access to the Proposed Concrete Batching Plant is provided at Wah Sing Street.

Operation of Proposed Concrete Batching Plant

- 3.3 The Proposed Concrete Batching Plant has 2 main activities which generate traffic: (a) delivery of concrete from the Proposed Concrete Batching Plant, and (b) delivery of raw materials, such as aggregate, cementitious materials, etc, to the Proposed Concrete Batching Plant.
- 3.4 Details of vehicle movements related to the concrete production and raw material delivery, are presented in **Table 3.1**.

TABLE 3.1	DETAILS OF DELIVERY TO / FROM THE PROPOSED CONCRETE
_	BATCHING PLANT

Type of	Type of	Typical Vehicle	Traffic Generation (veh/hour)			
Delivery	Vehicle	Dimension (Approx.)	Peak Concrete Production (0600 – 1800 hrs)	Peak Raw Material Delivery (1800 – 2300 hrs)	Evening (2300 – 0600 hrs)	
Concrete mixer	truck [a]					
Concrete	Concrete mixer truck	10m(L) x 2.5m(W)	Max. 40 ⁽¹⁾	6	2	
Raw material o	elivery truck [b	1		•		
Aggregate/ sand	Aggregate/ sand truck	Heavy Goods Vehicle: 10m(L) x	18	45	7	
Admixture	Admixture truck	2.5m(W)	0	1	0	
Waste	Waste truck		2	0	0	
Cement / PFA	Cement / PFA tanker	Articulated Vehicles: 15.4m(L) x 2.5m(W)	2	10	7	
		<u> Total [a] + [b]</u>	<u>62</u>	<u>62</u>	<u>16</u>	

Note: ⁽¹⁾ Maximum concrete production capacity = $100m^3 \times 4$ production lines ÷ typical capacity of $10m^3$ for a concrete mixer truck = 40 nos.

3.5 **Table 3.1** shows the following:

- During the <u>peak concrete production</u>, i.e. 0600 to 1800 hours, the Proposed Concrete Batching Plant is expected to operate at its production capacity. A total of 40 concrete mixer trucks and 22 raw material delivery trucks per hour are generated.
- The **peak raw material delivery period** is from 1800 to 2300 hours. Each hour 6 concrete mixers trucks and 56 raw material delivery trucks are generated.

Internal Transport Facilities

3.6 The internal transport facilities provided for the Proposed Concrete Batching Plant are presented in Table 3.2 and the master layout plan is shown in Figure 3.1.

Ref.	Туре	Dimension	Quantity
	Ground Flo	oor	
LP01-LP02	Waiting space	11m(L) x 3.5m(W) x 4.7m(H)	2
LP03	Raw material unloading bay for container	16m(L) x 3.5m(W) x 4.7m(H)	1
LP04-LP07	Concrete mixer truck loading point	11m(L) x 3.5m(W) x 4.7m(H)	4
N/A	Raw material unloading area	N/A	3
		Total	10

TABLE 3.2 INTERNAL TRANSPORT FACILITIES

Swept Path Analysis

3.7 The CAD-based swept path analysis programme, AUTODESK VEHICLE TRACKING, was used to ensure that all vehicles could enter and leave their respective space / bays, with ease. The swept path analysis drawings are found in Appendix B.

4.0 TRAFFIC IMPACT

Design Year

- 4.1 The Proposed Concrete Batching Plant is expected to be completed in 2026, and the assessment year adopted is 2029, i.e. 3 years after the completion. The 2 scenarios for year 2029 assessed are:
 - (i) Year 2029 AM and PM peak hours without the Concrete Batching Plant;
 - (ii) Year 2029 AM and PM peak hours with the Concrete Batching Plant

Traffic Forecasting Methodology

4.2 Since the completion year of the Proposed Concrete Batching Plant is same as the Approved Warehouse, which is 2026, the same traffic forecasting methodology adopted for the Approved Warehouse is applied for the Proposed Concrete Batching Plant.

Traffic Generation of the Proposed Concrete Batching Plant

4.3 With reference to **Table 3.1**, the estimated traffic generation of the Proposed Concrete Batching Plant is given in **Table 4.1**. To be conservative, the peak concrete production is assumed to occur during both the AM and PM peak hours.

TABLE 4.1	TRAFFIC	GENERATION	OF	THE	PROPOSED	CONCRETE
	BATCHIN	g plant				

Item	AM Pea	k Hour	PM Peak Hour			
	Generation	Attraction	Generation	Attraction		
Total in veh/hr [From Table 3.1]	62	62	62	62		
PCU Factor	2.5	2.5	2.5	2.5		
Total in PCU/Hour	155	155	155	155		
	310 (2-way)		310 (2-way)		310 (2	2-way)

4.4 **Table 4.1** shows that the Proposed Concrete Batching Plant is assumed to generate a total of 124 vehicles (2-way), or equivalent to 310 pcu (2-way) during the AM and PM peak hours.

2029 Traffic Flows

- 4.5 Year 2029 traffic flows for the following cases are derived:
 - 2029 without the Proposed = (i) 2026 traffic flows derived with reference to Concrete Batching Plant [A] = (i) 2026 traffic flows derived with reference to Base District Traffic Model + (ii) estimated total growth from 2026 to 2029, i.e. +0.5% per annum + (iii) traffic generated by other development in the vicinity of the Proposed Concrete Batching Plant

2029 with the Proposed = [A] + Traffic generated by the Proposed Concrete Concrete Batching Plant [B] Batching Plant (**Table 4.1**)

4.6 The 2029 peak hour traffic flows for the cases without and with the Proposed Concrete Batching Plant, are shown in **Figures 4.1 - 4.2**, respectively. The ingress and egress routes of the Proposed Concrete Batching Plant are shown in **Figure 4.3**.

2029 Junction Capacity Analysis

4.7 The 2029 junction capacity analyses for the cases without and with the Proposed Concrete Batching Plant are summarised in Table 4.2 and the detailed calculations are found in **Appendix A**.

Ref.	Junction	Type of Junction	Parameter	Without the Concrete Batching Plant		With the g Concrete Batching Plant	
						AM Peak	
10 (1)		<u></u>	5.0	Hour	Hour	Hour	Hour
	Kwai Chung Road / Kwai On Road / Kwai Yik Road	Signal	RC	33%	48%	27%	40%
-	Tai Lin Pai Road / Kwai On Road	Signal	RC	-3%	32%	-10%	20%
	Tai Lin Pai Road / Kung Yip Street	Signal	RC	61%	75%	45%	69%
	Kung Yip Street / Wah Sing Street	Priority	RFC	0.389	0.340	0.716	0.651
	Kwai Chung Road / Tai Lin Pai Road / Kwai Foo Road	Signal	RC	18%	37%	18%	37%
-	Tai Lin Pai Road / San Kwai Street	Priority	RFC	0.387	0.224	0.396	0.228

TABLE 4.2	2029	IUNCTION	PERFORMANCE
	2023	Jonchon	

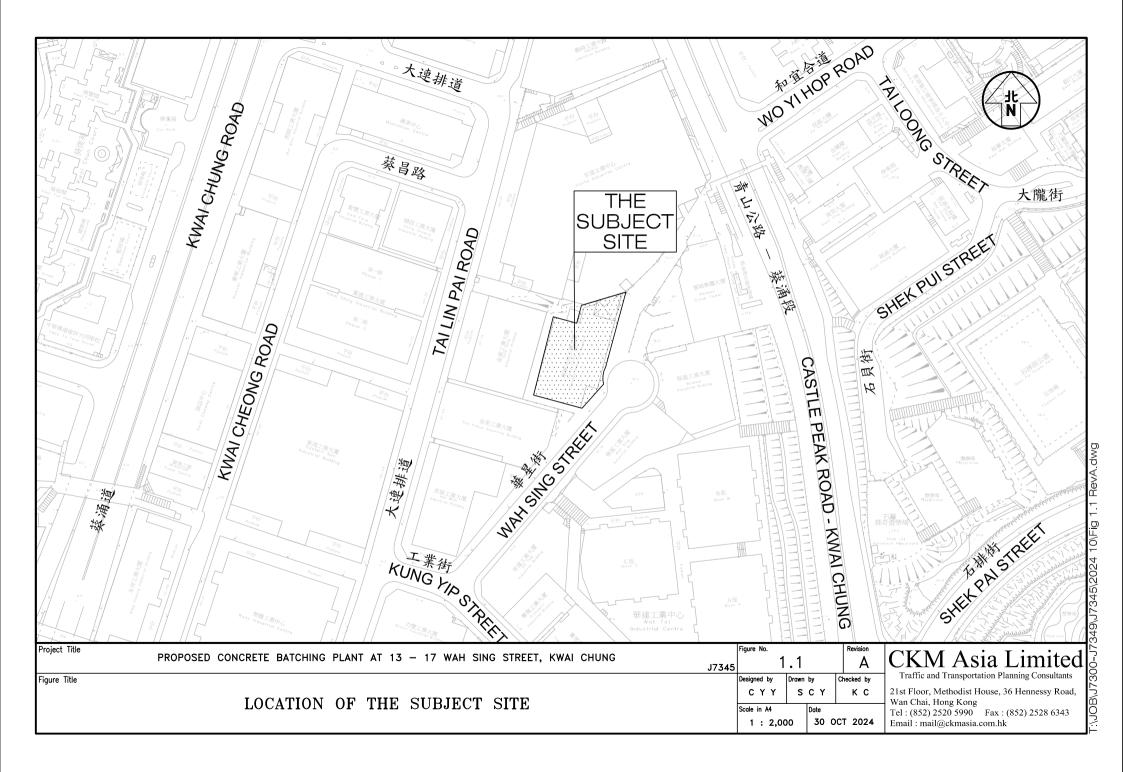
RC – Reserve Capacity RFC – Ratio of Flow to Capacity

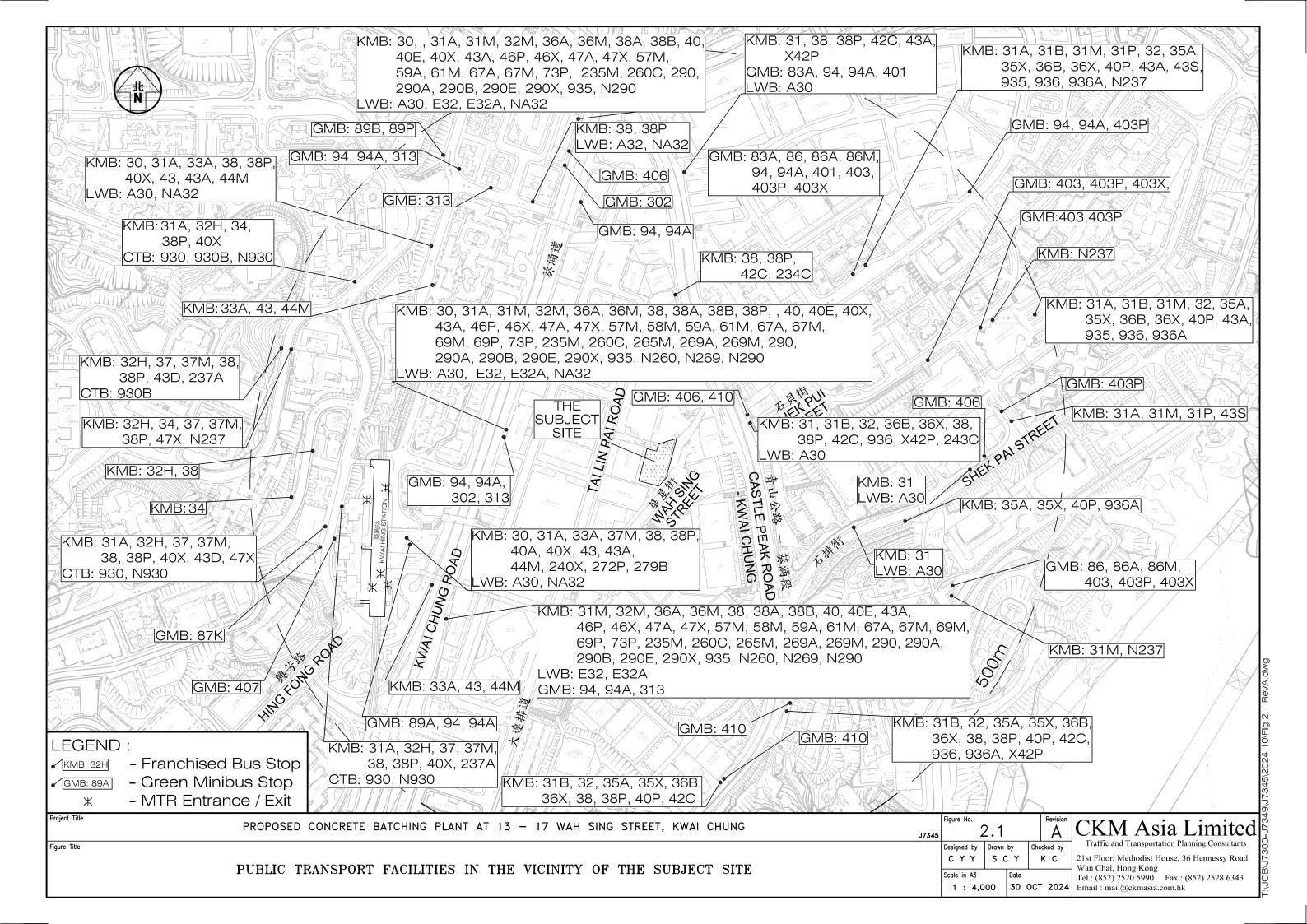
⁽¹⁾ – Junction layout and control is prior to the implementation of the improvement proposed by Kwai On Factory Estate Redevelopment

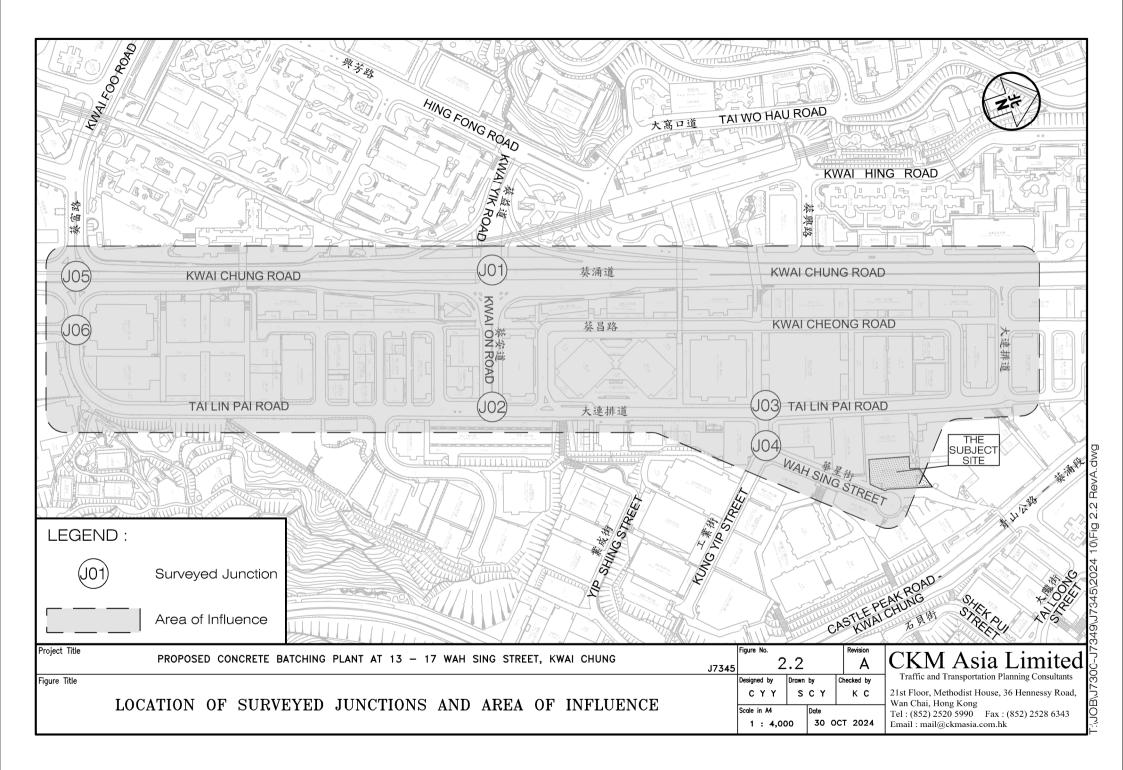
Table 4.2 shows that the junctions analysed have capacity to accommodate the 4.8 expected traffic growth to 2029 and the traffic generated by the Proposed Concrete Batching Plant, except for J02 Tai Lin Pai Road / Kwai On Road.

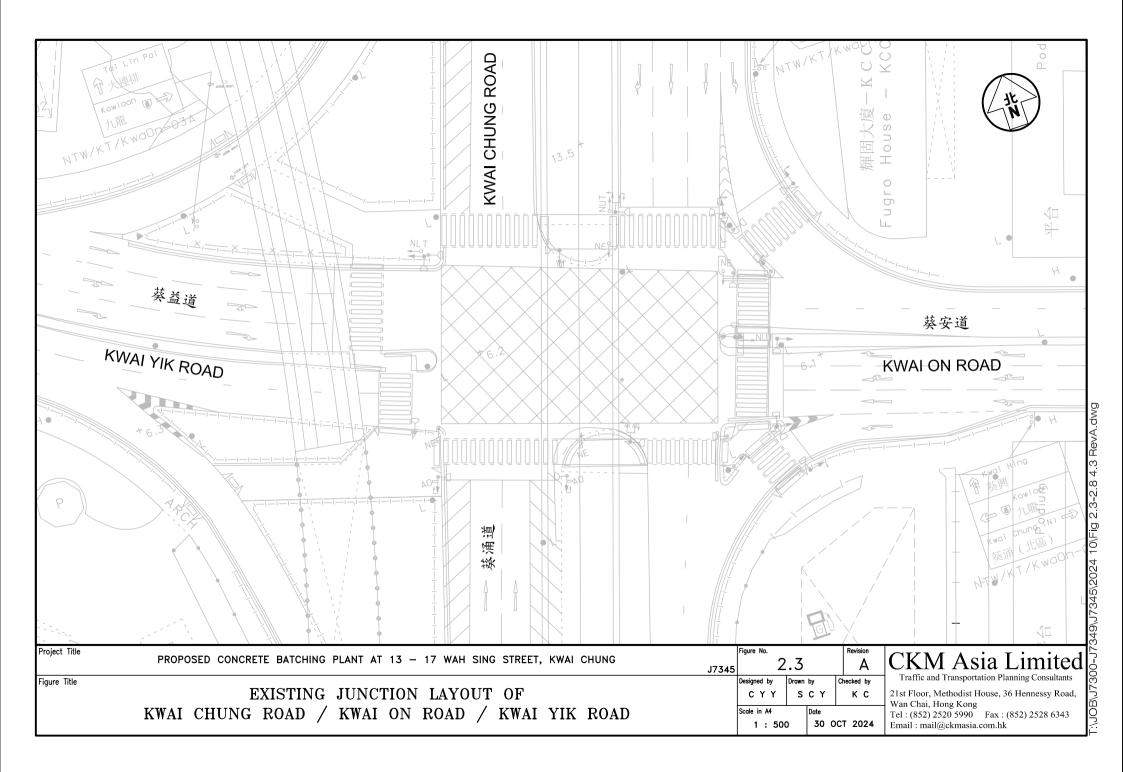
Junction Improvement Scheme at 102

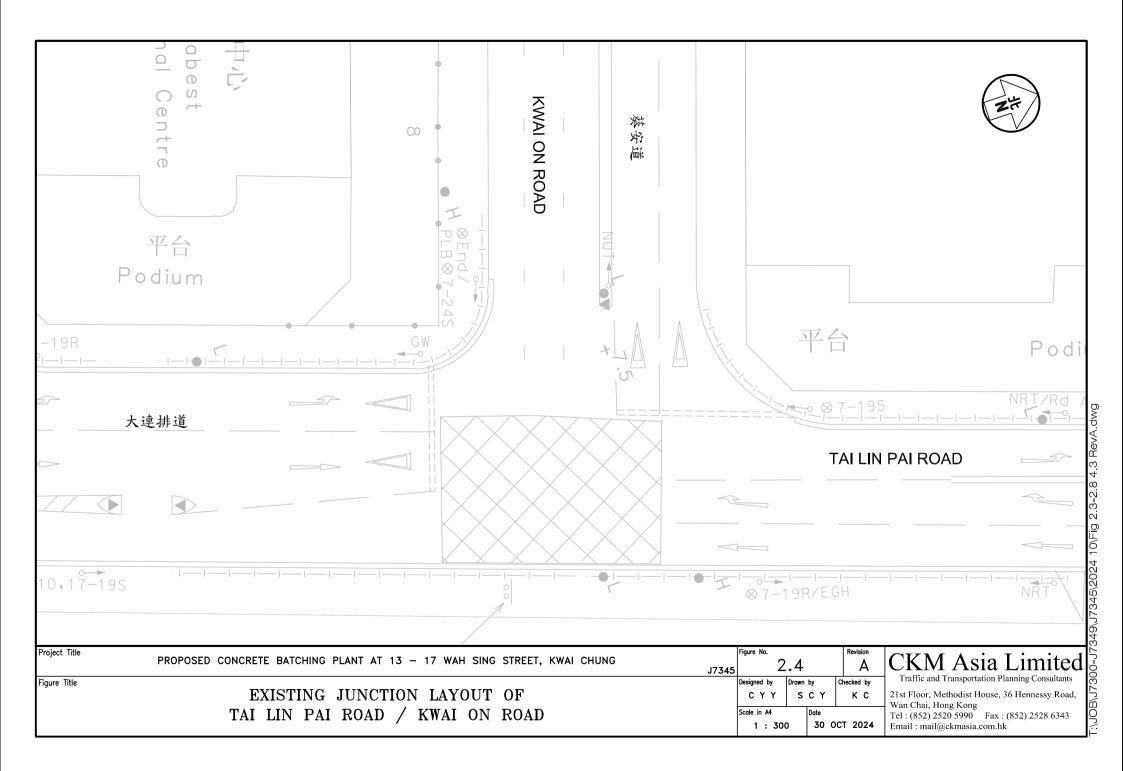
- The junction improvement found in Appendix C is proposed by the Kwai On 4.9 Factory Estate Redevelopment. The improvement includes conversion of the existing priority junction Tai Li Pai Road / Kwai On Road ("102") into a signalised junction.
- It is found that with this junction improvement, the RC in 2029 for the case 4.10 without the Proposed Concrete Batching Plant will be less than 15%. Hence, further improvement ("Further Improvement") is proposed and this involves modification of the road markings and staging plans. The Further Improvement is presented in Figure 4.3.
- 4.11 The capacity analysis is re-conducted with the Further Improvement and the results are presented in Table 4.3, and detailed calculations are found in Pages 20-21 of Appendix A.

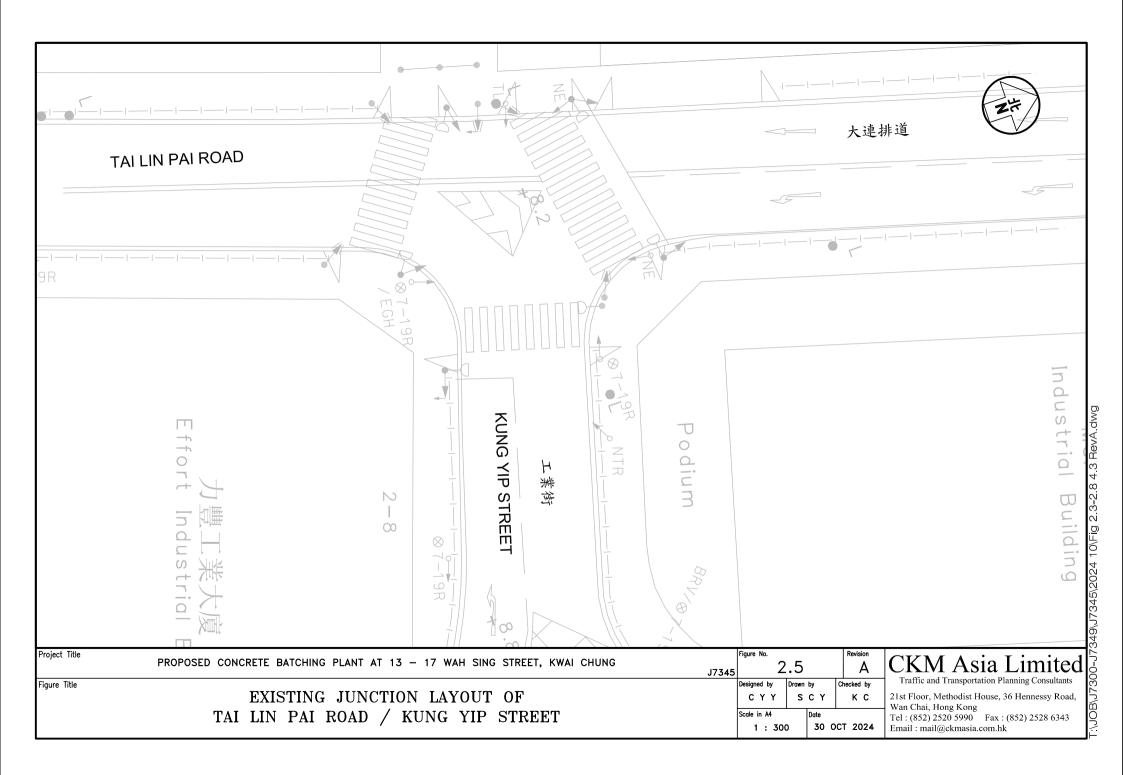

TAB	LE 4.3 2029 JUNC IMPROVEMEN		PERFOR	MANCE	WIT	H FL	JRTHER				
Ref.	Junction	Type of Junction		Proposed		With the Proposed Concrete Batching Plant					
				AM Peak	PM Peak	AM Peak	PM Peak				
				Hour	Hour	Hour	Hour				
J02	Tai Lin Pai Road / Kwai On Road	Signal	RC	25%	51%	18%	40%				
Note: RC – Reserve Capacity RFC – Ratio of Flow to Capacity											

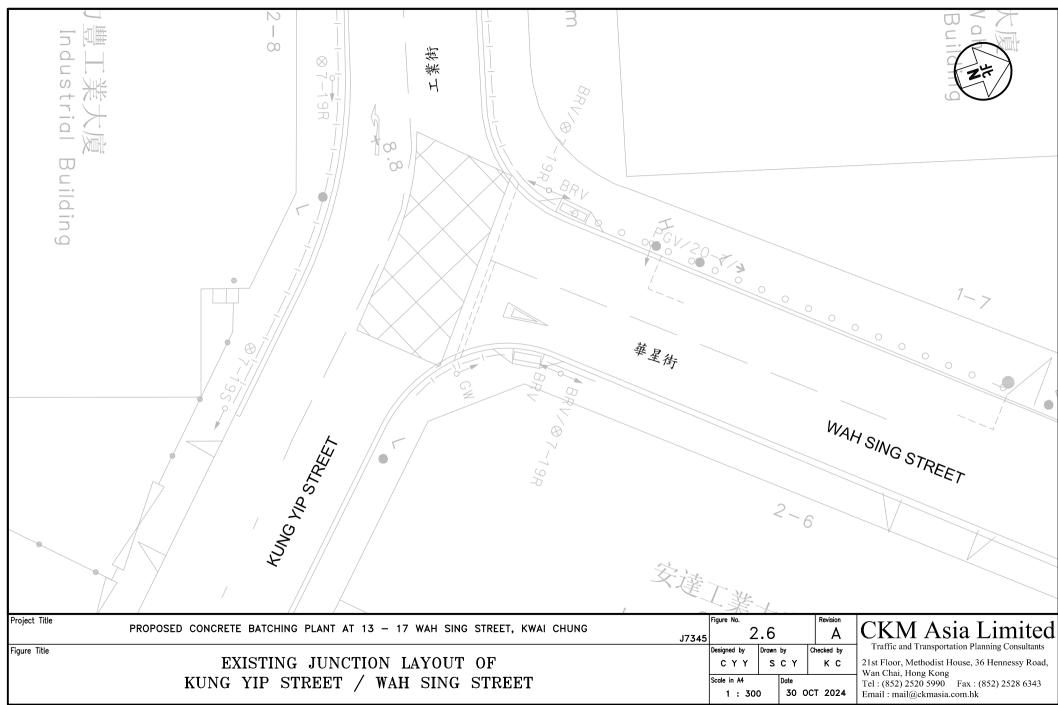

4.12 **Table 4.3** shows that J02 with the Further Improvement implemented, could accommodate the expected traffic growth to 2029 and the traffic generated by the Proposed Concrete Batching Plant.

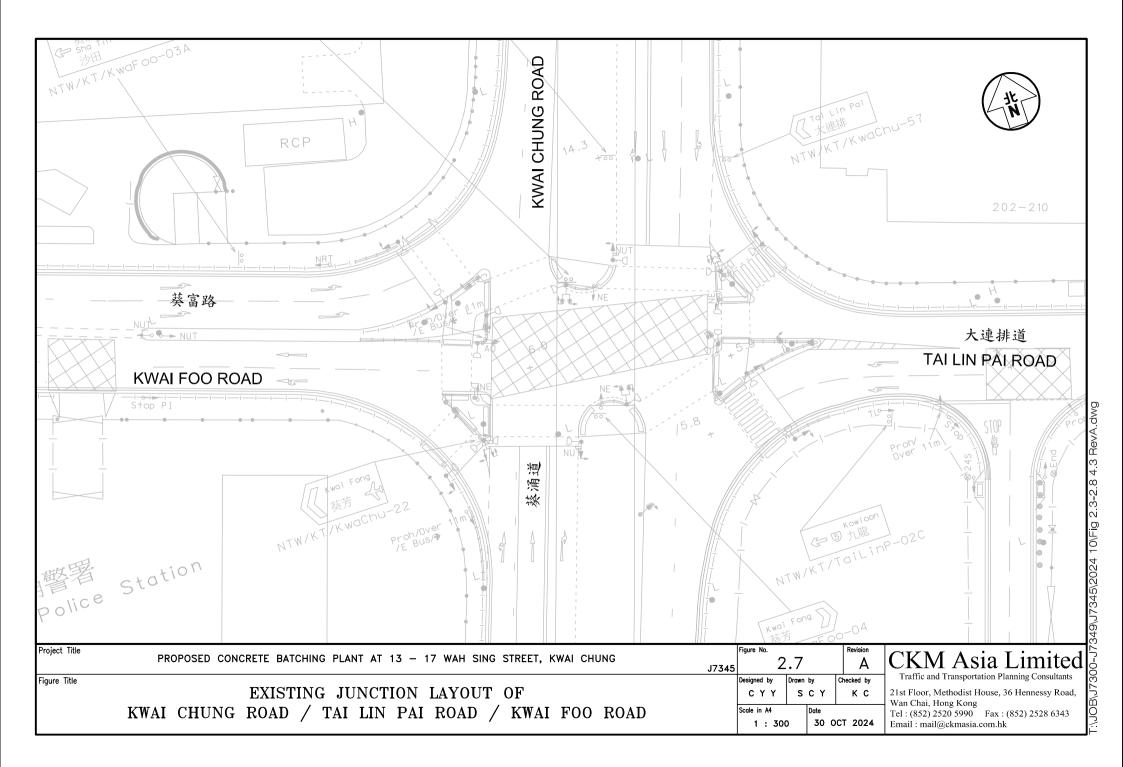

5.0 SUMMARY

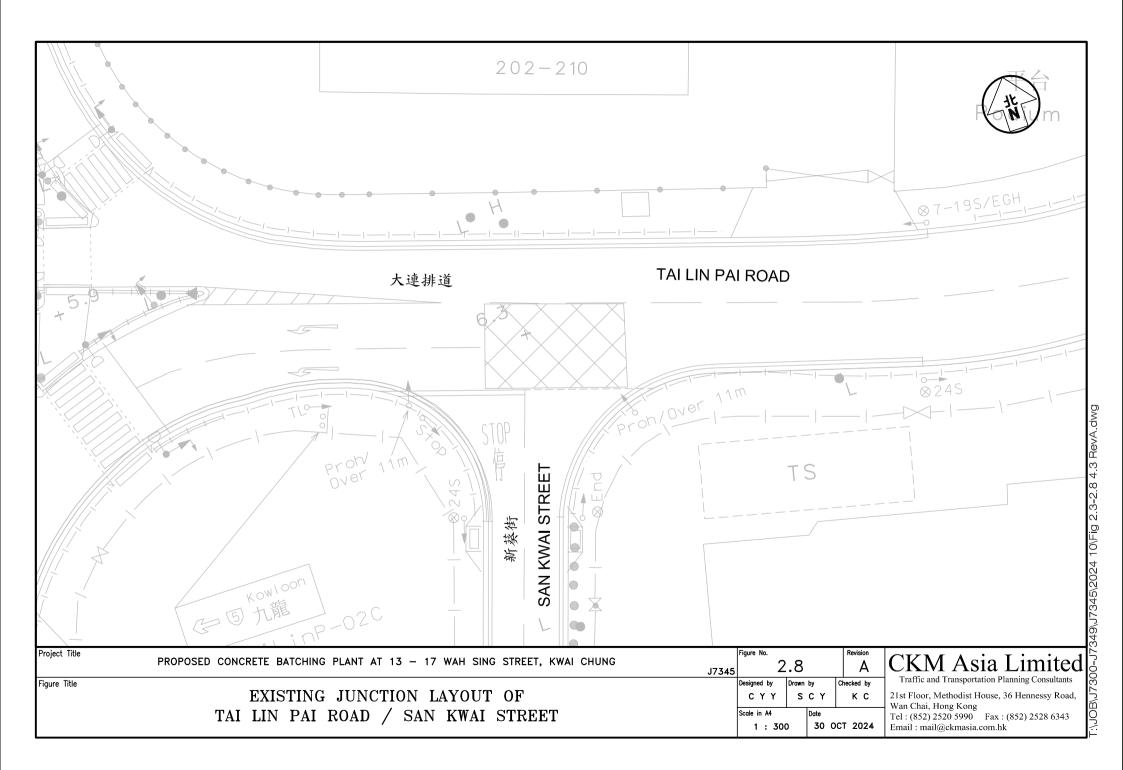

- 5.1 On 24th May 2024, the TPB approved the S16 Planning Application of Proposed minor relaxation of plot ratio restriction for Permitted Warehouse Use (excluding Dangerous Goods Godown) in "Industrial" Zone at 13 17 Wah Sing Street in Kwai Chung the Subject Site (TPB ref: A/KC/505). The Owner now intends to redevelop the Subject Site into a Proposed Concrete Batching Plant.
- 5.2 The Proposed Concrete Batching Plant provides sufficient internal transport facilities meet the operational requirements. The vehicular access to the Proposed Concrete Batching Plant is provided at Wah Sing Street.
- 5.3 Manual classified counts were conducted at junctions located in the vicinity of the Proposed Concrete Batching Plant in order to establish the peak hour traffic flows. Currently, the junctions operate with capacities during the AM and PM peak hours.
- 5.4 The Proposed Concrete Batching Plant is expected to be completed by 2026, and the junction capacity analysis is undertaken for year 2029. With the Further Improvement implemented, in addition to the improvement proposed by the Hong Kong Housing Authority, at the junction of Tai Lin Pai Road / Kwai On Road, all junctions analysed are found to have sufficient capacity to accommodate the expected traffic flow in 2029 and the traffic generated by the Proposed Concrete Batching Plant.
- 5.5 It is concluded that the Proposed Concrete Batching Plant will result in <u>no</u> adverse traffic impact to the surrounding road network. From traffic engineering grounds, the Proposed Concrete Batching Plant is acceptable.

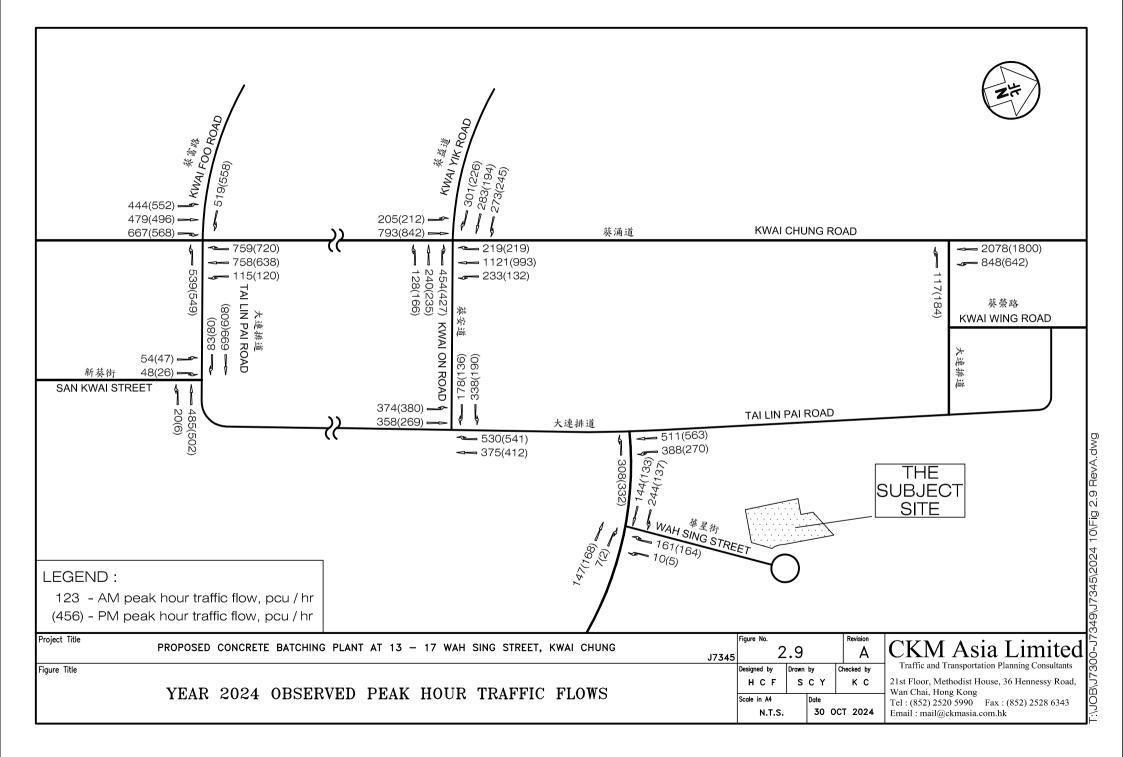

Figures

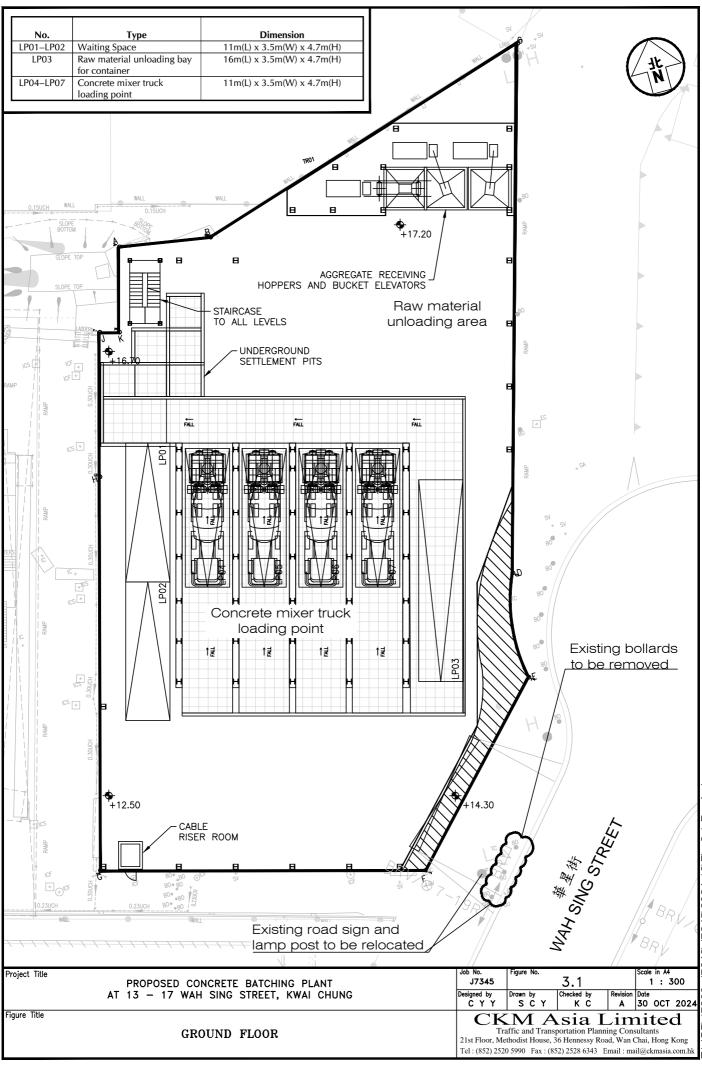




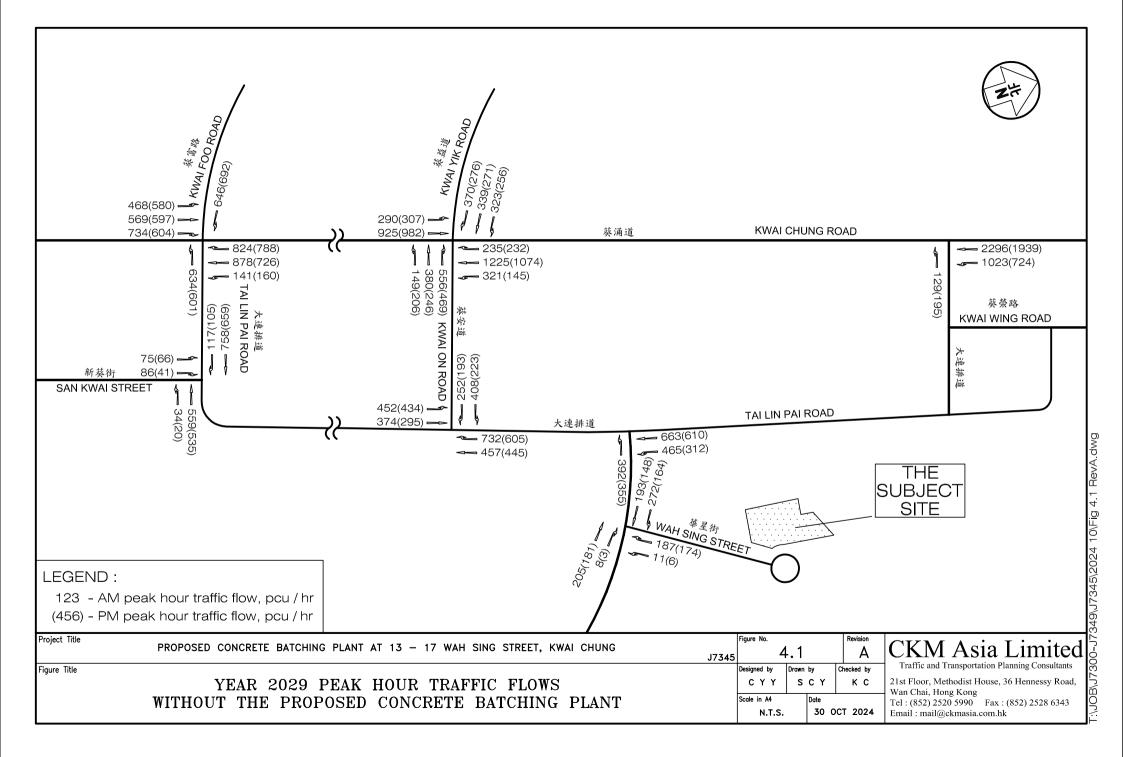


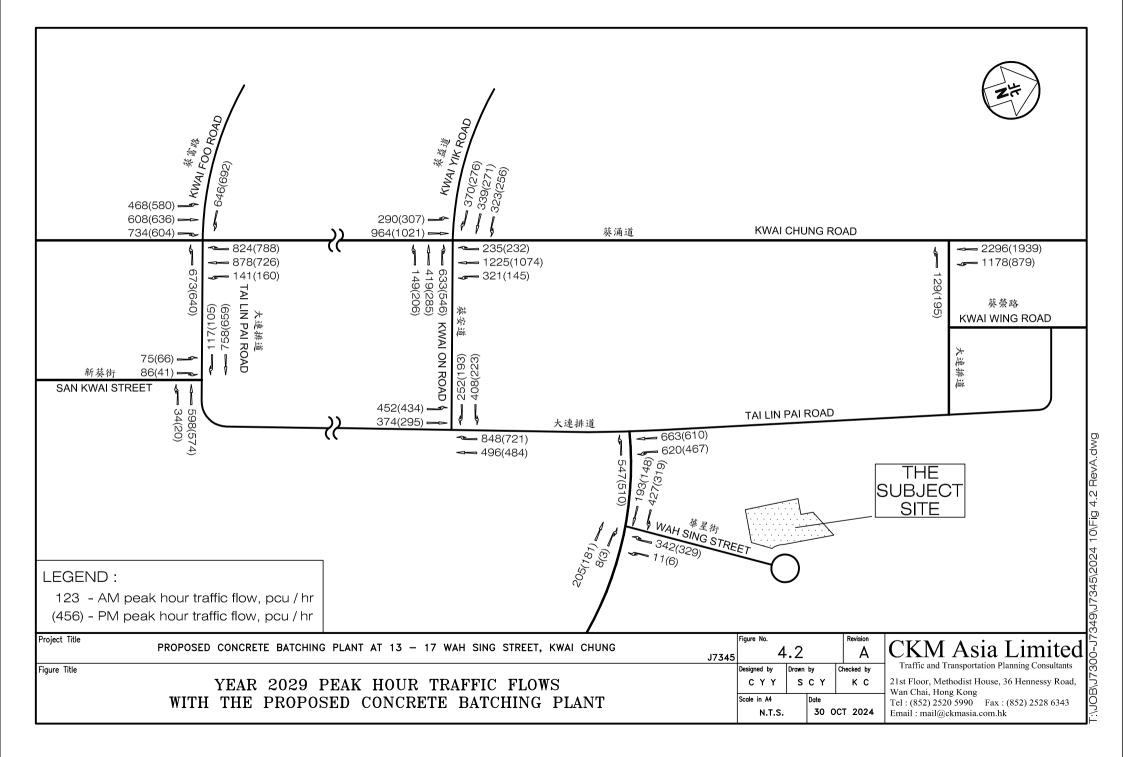


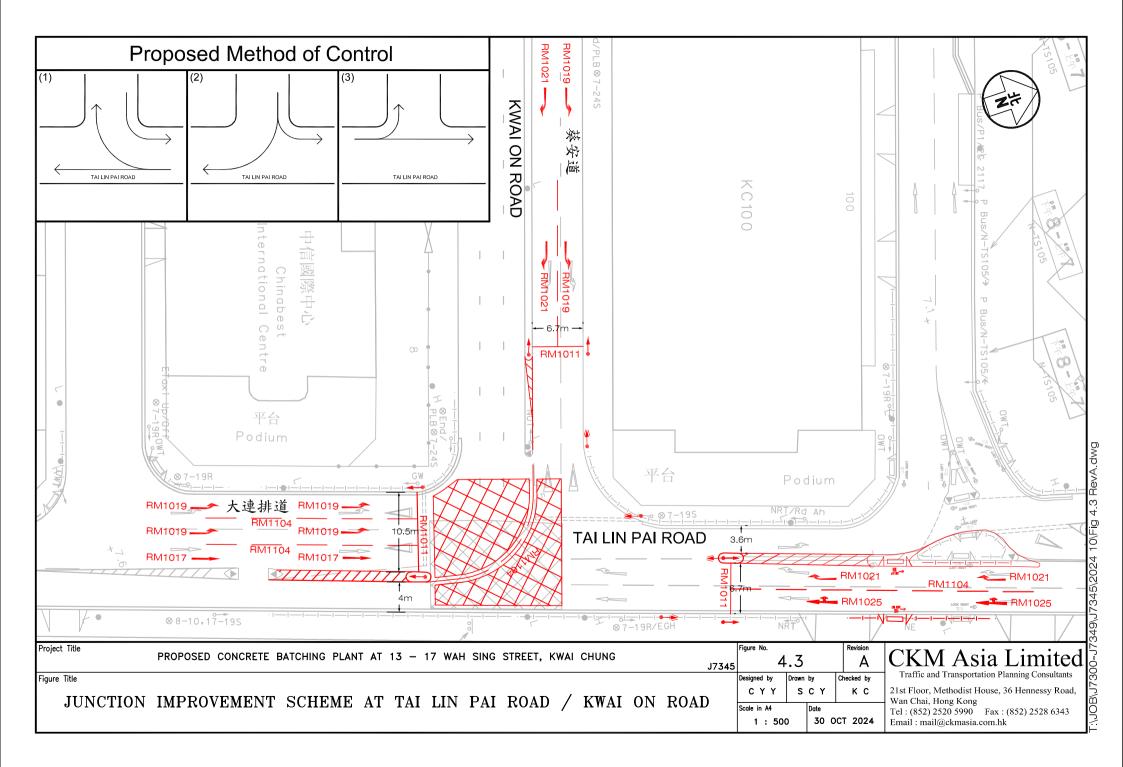




JOB\J7300-J7349\J7345\2024 10\Fig 2.3-2.8 4.3 RevA.dwg





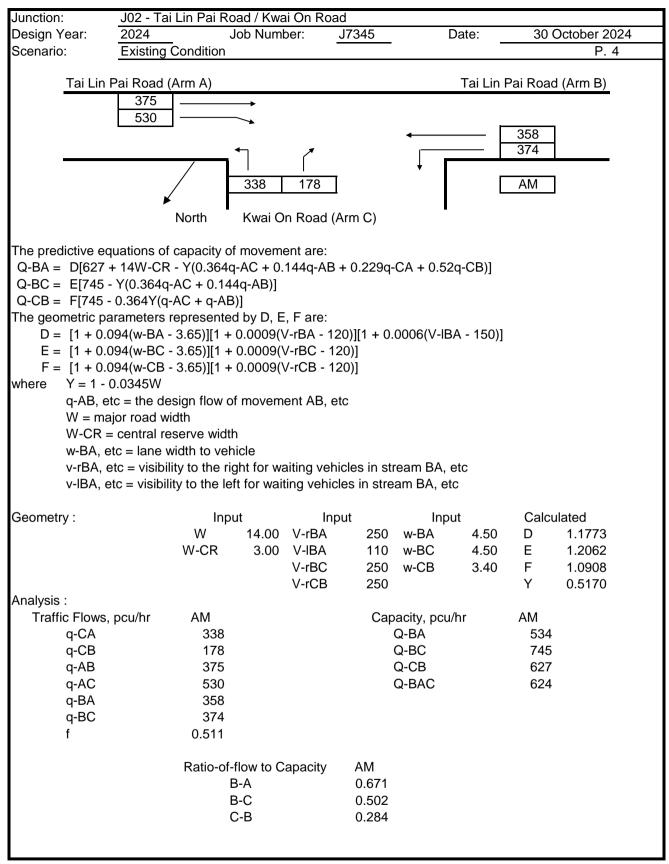


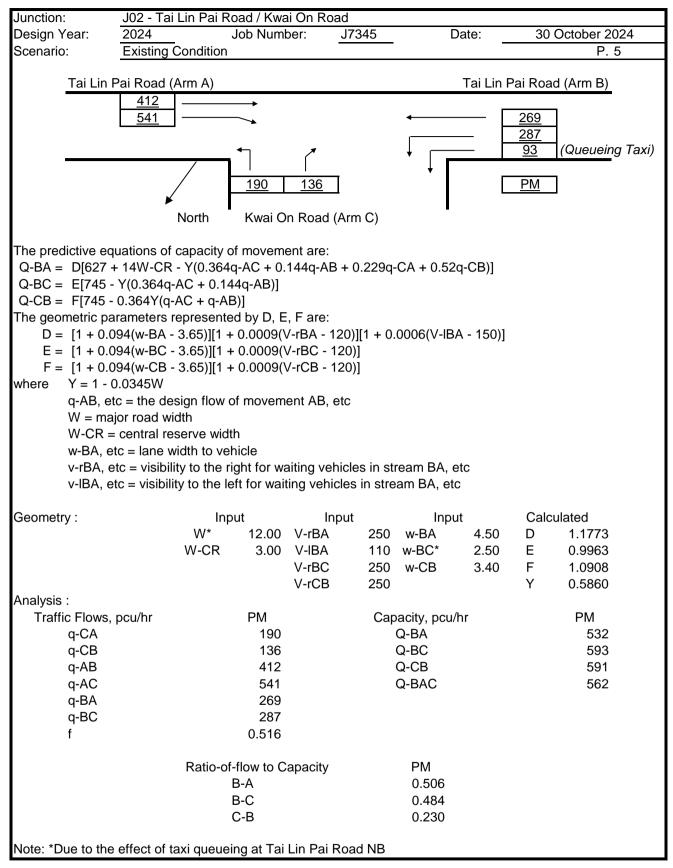
OB\J7300-J7349\J7345\2024 10\Fig 3.1 RevA.dwg

Appendix A – Detailed Calculation

Signal Junction Analysis

Junction:	-	i Chung Road	l / Kwai	On Roa	d / Kwai	Yik Roa	ad							-	Job Nu		J7345
Scenario: Design Year:	Existing C 2024	Designe	ed By:					Checke	ed By:				-	Date:	30 0	Page October 2	1 2024
	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Kwai Chung R	oad SB	LT	A1	1, 2	4.00	25.0	Gradient	100	(pcu/hr) 1901	(pcu/hr) 233	0.123		100	(pcu/hr) 1901	(pcu/hr) 132	0.069	
Kwai Chung R		SA	A2	1, 2	4.40	20.0		100	2195	561	0.256		100	2195	497	0.226	
Kwai Chung R		SA	A3	1, 2	4.40				2195	560	0.255			2195	496	0.226	
Kwai Chung R		RT	A4	2	4.40	20.0		100	2042	219	0.107	0.107	100	2042	219	0.107	0.107
Kwai Yik Road	I EB	SA	B1	3	3.80				2135	200	0.094			2135	144	0.067	
Kwai Yik Road	IEB	SA+RT	B2	3	3.80	30.0		57	2076	195	0.094		64	2069	140	0.068	0.068
Kwai Yik Road	IEB	RT	B3	3	3.80	25.0		100	2014	189	0.094	0.094	100	2014	136	0.068	
			<u> </u>														
Kwai Chung R		SA	C1	1	3.50				2105	397	0.189	0.189		2105	421	0.200	0.200
Kwai Chung R	oad NB	SA	C2	1	3.50				2105	396	0.188			2105	421	0.200	
Kwai On Road	WB	LT	D1	4	3.40	25.0		100	1844	128	0.069		100	1844	166	0.090	
Kwai On Road		SA	D2	4	2.90	20.0		100	2045	240	0.003		100	2045	230	0.030	
Kwai On Road		SA+RT	D3	4	2.90	25.0		100	1929	229	0.119	0.119	98	1931	217	0.112	
Kwai On Road		RT	D4	4	2.90	20.0		100	1902	225	0.118		100	1902	215	0.113	0.113
pedestrian pha	ase		P1	1, 3			rossing		5		GM +	7		GM =	12	sec	
			P2	1, 2, 4			rossing		5		GM +	10		GM =	15	sec	
			P3	1, 2			rossing :		5		GM +	9		GM =	14	sec	
			P4	1, 2, 3		min crossing time			5	sec GM +		10		GM =	15	sec	
			P5 P6	2, 3 2, 3, 4		min crossing tir min crossing tir			6 7			13 14	sec FGM =		19 21	sec	
			P7	2, 3, 4			rossing		5			10	sec FGM =		15	sec sec	
			P8	3, 4			rossing		6		GM +	12		GM =	18	sec	
AM Traffic Flow (pcu/h	nr)				Flow (pcu/hr		1								Note:		
273	} 219 ←	→ 233	N K		245	219	$ \rightarrow $	132	N K		+100(W-3						
(Free Flow)	•	↓ 200 121	\backslash	(Free F	▲	210	↓ 993	102	\mathbf{i}	S _M = S / (1 + 1.5 f/r)						
`	• ►283			、	·	194						Peak		Peak			
301		454			↓ 226			427			1+2+3+4 0.508	1,2+3+4 0.468	1+2+3+4 0.488	1,2+3+4 0.407			
	793	240				842	235	↓		Sum y	25	18	25	18			
205		↓ 128			212			↓ 166		L (s) C (s)	120	120	120	120			
		120						100		practical y	0.713	0.765	0.713	0.765			
(Free F	Flow)				(Free F	low)				R.C. (%)	40%	63%	46%	88%			
1	A3 A2 A1	2		A4 A3 A2		3				4							
► ► ►	↓ ↓ ↓ P3	P2	P5 ▶	, _ , ↑	P3	B1		+ >	****	₽2 ♥		+	▲C4 ▲C4 C3				
	₽3	P4	<u>P6</u>	¥	P3	191 ▼ ◆	<u>P6</u>		P4	*	- <u>P6</u> ▶ ◀	+ ₽7 ↓	C2 C1				
AM G =	:	I/G = 5	G =		I/G =	5	G =		I/G =	11	G =		I/G =	8	G =		
G =		I/G =	G =		I/G =		G =		I/G =	11	G =		I/G =	5	G =		
PM G =		I/G = 5	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =	5	G =		I/G =	11	G =		I/G =	5	G =		


Signal Junction Analysis


Junction:	J01 - Kwa	ai Chung Road	l / Kwai	On Roa		-	ad							-	Job Nu	mber:	J7345
Scenario: Design Year:	Without P 2029	Proposed Cone Designe		atching F	Plant			Checke	d Bv					Date:	30 (Page October 2	2
Besign real.		Design	Su Dy.				-	Oneeke	a by.					Dute.			2024
	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Kwai Chung R	oad SB	LT	A1	1, 2	4.00	25.0	Gradient	100	(pcu/hr) 1901	(pcu/hr) 321	0.169		100	(pcu/hr) 1901	(pcu/hr) 145	0.076	
Kwai Chung R		SA	A2	1, 2	4.40				2195	613	0.279			2195	537	0.245	
Kwai Chung R		SA	A3	1, 2	4.40				2195	612	0.279			2195	537	0.245	
Kwai Chung R	oad SB	RT	A4	2	4.40	20.0		100	2042	235	0.115	0.115	100	2042	232	0.114	0.114
Kwai Yik Road	EB	SA	B1	3	3.80				2135	243	0.114	0.114		2135	188	0.088	0.088
Kwai Yik Road	I EB	SA+RT	B2	3	3.80	30.0		59	2074	236	0.114		55	2078	183	0.088	
Kwai Yik Road	I EB	RT	B3	3	3.80	25.0		100	2014	230	0.114		100	2014	176	0.087	
Kwai Chung R	oad NB	SA*	C1	1	3.50				2105	308	0.146	0.147		2105	327	0.155	0.156
Kwai Chung R	oad NB	SA	C2	1	3.50				2105	308	0.146			2105	327	0.155	
Kwai Chung R		SA	C3	1	3.50				2105	309	0.147			2105	328	0.156	
					1	1									1		
Kwai On Road	IWB	LT	D1	4	3.40	25.0		100	1844	149	0.081		100	1844	206	0.112	
Kwai On Road		SA	D2	4	2.90				2045	325	0.159			2045	246	0.120	
Kwai On Road		SA+RT	D3	4	2.90	25.0		82	1949	309	0.159	0.159	100	1929	235	0.122	
Kwai On Road	IWB	RT	D4	4	2.90	20.0		100	1902	302	0.159		100	1902	234	0.123	0.123
pedestrian pha	ase		P1	1, 3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
· · ·			P2	1, 2, 4			rossing		5		GM +	10		GM =	15	sec	
			P3	1, 2		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
			P4	1, 2, 3		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
			P5	2, 3		min c	rossing	time =	6	sec	GM +	13	sec F	GM =	19	sec	
			P6	2, 3, 4		min crossing		time =	7			14	sec FGM =		21	sec	
			P7	4			rossing		5			10	sec FGM =		15	sec	
			P8	3, 4			rossing	time =	6	Sec	GM +	12	sec F	GM =	18	Sec	
AM Traffic Flow (pcu/h	nr)		N	PM Traffic	Flow (pcu/hr)			И	S = 1940	+100(W-3	.25) S =	2080+10	0(W-3.25)	Note:		
323	3 235 ←	→ 321	$\overline{\}$		256	232	*	145		S _M = S / (1 + 1.5 f/r)	S _M = (S	; - 230) / (<i>*</i>	1 + 1.5 f/r)	*Juncti	on ement S	cheme
(Free Flow)	ſ	1225		(Free F		074	1074				AM	Peak	PM	Peak		er Projec	
	* 339	556			. ↓	271		469			1+2+3+4	1,2+3+4	1+2+3+4	1,2+3+4			
370		Ť			276		040	t		Sum y	0.535	0.552	0.481	0.456			
290	925) ▲	380			307	982 ▲	246	ŧ		L (s)	25	18	25	18			
▲·	7	149			-→]		206		C (s)	120	120	120	120			
(Free I	i Elowi)				(Free F					practical y R.C. (%)	0.713 33%	0.765 38%	0.713 48%	0.765 68%			
(11001	A3 A2 A1	2		A4 A3 A2		1010)				R.C. (%)	5570	3070	4070	0070			
P2 ↓ P1 ↑ ↑ ↑		P2	P5 ►		P3	B1 4 B2 B3 A P1		◆>	¥*	* ₽2 *		←P8 ← ←	C4 C3 C2				
C1 C2 C3		P4	. <u>P6</u>	÷	P4		<u>-P6</u>		P4	•	- <u>P6</u> ▶ ◀	<u>P7</u> ▶ ↓	C1				
AM G = G =		I/G = 5	G = G =		I/G =		G = G =		I/G =		G = G =		I/G =		G = G =		
G =		I/G = 5	G =		I/G =		G =		I/G =		G =		I/G =		G =		
гм G = G =		I/G = 5	G =		I/G =		G =		I/G =		G =		I/G =		G =		
			0 -				5 -				0 -				0 -		

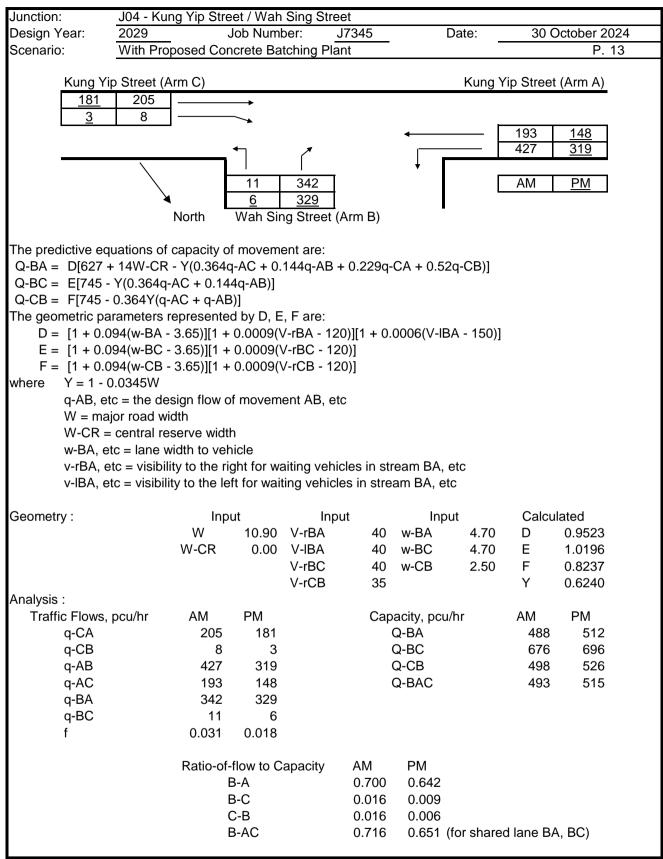
Signal Junction Analysis

Design Year: 2029 Designed By: Checked By: Date: 30 October 2024 Approach Phase Stage Width (m) Radus (m) % Up-hit Turning % State Turning % State Plow P	Junction:	J01 - Kwa	ai Chung Road	l / Kwai	On Roa		-	ad							-	Job Nu	mber:	J7345
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					ing Plar	nt		_	Checke	ed By:					Date:	30 0		3 2024
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-		-	-		1		-			AM Deals			-		DM De els		
$\begin{split} \begin{array}{c c c c c c c c c c c c c c c c c c c $		Approach		Phase	Stage	Width (m)	Radius (m)		Turning %		Flow	y value	Critical y	Turning %		Flow	y value	Critical y
Single Chung Road SB SA A3 1,2 440 200 100 205 612 0.275 Image: Control in the interval of the interval	Kwai Chung R	oad SB	LT	A1	1, 2	4.00	25.0	oradione	100			0.169		100			0.076	
$\begin{split} \begin{array}{cccccccccccccccccccccccccccccccccccc$			SA	A2		4.40				2195	613	0.279			2195	537	0.245	
Kwai Yik Road EB SA B1 3 3.60 P <td>Kwai Chung R</td> <td>oad SB</td> <td>SA</td> <td>A3</td> <td>1, 2</td> <td>4.40</td> <td></td> <td></td> <td></td> <td>2195</td> <td>612</td> <td>0.279</td> <td></td> <td></td> <td>2195</td> <td>537</td> <td>0.245</td> <td></td>	Kwai Chung R	oad SB	SA	A3	1, 2	4.40				2195	612	0.279			2195	537	0.245	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Kwai Chung R	load SB	RT	A4	2	4.40	20.0		100	2042	235	0.115	0.115	100	2042	232	0.114	0.114
Kwai Chung Road IB RT B3 3 380 25.0 100 201 220 1.14 100 2014 176 0.087 Kwai Chung Road NB SA C1 1 3.50 2 2105 321 0.152 1.55 2.105 3210 515 2.105 340 0.162 1.62 Kwai Chung Road NB SA C2 1 3.50 2 2105 321 0.152 2.105 3210 0.162 2.105 340 0.162 1.62 Kwai Chang Road NB SA C2 1 3.50 2 2005 321 0.152 2.105 3.205 2.105 3.205 2.105 3.205 2.105 3.205 2.105 3.205 2.105 3.205 2.105 3.205	Kwai Yik Road	EB	SA	B1	3	3.80				2135	243	0.114	0.114		2135	188	0.088	0.088
Kwai Chung Road NB SA C1 1 3.50 L 2105 321 0.152 0.152 0.152 0.152 0.152 0.153 0.1	Kwai Yik Road	EB	SA+RT	B2	3	3.80	30.0		59	2074	236	0.114		55	2078	183	0.088	
Kwai Chung Road NB SA C2 1 3.50 2105 321 0.152 2105 340 0.162 Kwai Chung Road NB SA C2 1 3.50 2105 321 0.152 2105 341 0.162 Kwai On Road WB LT D1 4 3.40 25.0 100 1844 149 0.081 100 1844 2.06 0.112 Kwai On Road WB SA D2 4 2.90 2.00 100 1844 100 1984 2.06 2.05 2.86 0.178 100 1984 2.06 2.05 2.01 100 1984 0.179 100 1982 273 0.144 0.1 Kwai On Road WB SA HT D3 4 2.90 2.00 100 1902 239 0.178 100 1982 273 0.144 0.1 gedestrian phase P1 1.3 min crossing time = 5 sec GM+ 10 sec FGM= 15 sec pddstrian phase P1 1.2 min crossing time =	Kwai Yik Road	I EB	RT	B3	3	3.80	25.0		100	2014	230	0.114		100	2014	176	0.087	
Kwai Chung Road NB SA C2 1 3.50 2105 321 0.152 2105 340 0.162 Kwai Chung Road NB SA C2 1 3.50 2105 321 0.152 2105 341 0.162 Kwai On Road WB LT D1 4 3.40 25.0 100 1844 149 0.081 100 1844 2.06 0.112 Kwai On Road WB SA D2 4 2.90 2.00 100 1844 100 1984 2.06 2.05 2.86 0.178 100 1984 2.06 2.05 2.01 100 1984 0.179 100 1982 273 0.144 0.1 Kwai On Road WB SA HT D3 4 2.90 2.00 100 1902 239 0.178 100 1982 273 0.144 0.1 gedestrian phase P1 1.3 min crossing time = 5 sec GM+ 10 sec FGM= 15 sec pddstrian phase P1 1.2 min crossing time =	Kwai Chung R	oad NB	SA*	C1	1	3.50				2105	321	0.152	0.153		2105	340	0.162	0.162
Kinki Chung Road NB SA C3 1 3.50 2105 322 0.153 2105 341 0.162 Kwai On Road WB LT D1 4 3.40 250 100 1844 149 0.081 100 1984 206 0.112 Kwai On Road WB SA-RT D3 4 2.00 2.00 844 1947 346 0.179 0.178 100 1929 273 0.144 0.161 Kwai On Road WB SA-RT D3 4 2.00 2.00 100 1902 339 0.178 100 1929 273 0.144 0.161 Kwai On Road WB RT D4 4 2.00 2.00 100 1902 339 0.178 100 1902 273 0.144 0.161 padeastrian phase P1 1.3 min crossing time = 5 sec GM + 7 sec FGM = 112 sec P3 1.2 min crossing time = 5 sec GM + 10 sec FGM = 14 sec sec <t< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					1													
Kwai On Road WB LT D1 4 3.40 25.0 100 1644 149 0.081 00 1944 206 0.112 Kwai On Road WB SA. P2 4 2.90 25.0 84 1947 346 0.778 100 1924 233 0.173 100 1922 273 0.142 Kwai On Road WB SA. PT 04 4 2.90 20.0 100 1902 338 0.178 100 1902 273 0.142 Kwai On Road WB RT D4 4 2.90 20.0 100 1902 338 0.178 100 1902 273 0.142 Kwai On Road WB RT D4 4 2.90 20.0 100 1902 338 0.178 100 1902 273 0.142 0.14 0.1 pedestrian phase P1 1.3 min crossing time = 5 see CM+ 10 see FGM = 12 sec P3 1.2 min crossing time = 5 see CM+ 10 see FGM = 15 <td></td> <td></td> <td></td> <td><u>C</u>3</td> <td>1</td> <td></td>				<u>C</u> 3	1													
Kwai On Road WB SA D2 4 2.90 Mail On Road WB SA+RT D3 4 2.90 25.0 84 1947 348 0.179 100 1922 273 0.142 Kwai On Road WB RT D4 4 2.90 20.0 100 1902 339 0.178 100 1902 273 0.144 0.14 Kwai On Road WB RT D4 4 2.90 20.0 100 1902 339 0.178 100 1902 273 0.144 0.14 Lea La																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Kwai On Road	IWB	LT	D1	4	3.40	25.0		100	1844	149	0.081		100	1844	206	0.112	
Kwai On Road WB RT D4 4 2.90 2.00 100 1902 233 0.178 100 1902 273 0.144 0.1 Mail On Road WB RT D4 4 2.90 2.00 100 1902 233 0.178 100 1902 273 0.144 0.1 pedestrian phase P1 1.3 min crossing time = 5 sec GM + 7 sec FGM = 12 sec P2 1.2 min crossing time = 5 sec GM + 10 sec FGM = 15 sec P4 1.2.3 min crossing time = 5 sec GM + 10 sec FGM = 15 sec P4 1.2.3 min crossing time = 6 sec GM + 10 sec FGM = 11 sec 14 sec 14 sec 15 sec P5 2.3 Min crossing time = 6 sec GM + 13 sec FGM = 15 sec 15 sec P7 4 min crossing time = 5 sec GM + 10 se	Kwai On Road	IWB	SA	D2	4	2.90				2045	365	0.178			2045	285	0.139	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Kwai On Road	IWB	SA+RT	D3	4	2.90	25.0		84		348	0.179	0.179	100	1929	273	0.142	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Kwai On Road	IWB	RT	D4	4	2.90	20.0		100	1902	339	0.178		100	1902	273	0.144	0.144
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pedestrian pha	ase		P1	1.3		min c	rossina	time =	5	sec	GM +	7	sec F	GM =	12	sec	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										5			10					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				P3	1, 2		min crossing		time =	5	sec GM +		9	sec FGM =		14	sec	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				P4	1, 2, 3		min crossing		time =	5	sec GM +		10	sec F	GM =	15	sec	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				P5	2, 3		min crossing		time =	6	sec GM +		13	sec F	GM =	19	sec	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				P6	2, 3, 4		min crossin		time =	7	sec GM +		14			21	sec	
An Traffic Flow (pcubit) (Free Flow) $=$ 1225 = 339 = 370 = 633 = 964 = 149 = 149 = 1225 = 1074 = 1075 = 1073 = 1073 = 1074 = 1075 = 1073 = 1073 = 1074 = 1075 = 1073 = 1073 = 1074 = 1075 = 1073 =					-		min crossing		time =		sec GM +		10	sec F	GM =	15	sec	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				P8	3, 4		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
(Free Flow) = 1225 339 370 419 419 419 419 419 419 419 419 419 419 419 419 419 419 1021 285 410 276 307 1021 285 206 102 120 100 10 10 10 10 10 10	AM Traffic Flow (pcu/h				PM Traffic			←→	145	N			,		` '		on	
$\begin{array}{c} \overrightarrow{339} \\ \overrightarrow{370} \\ \overrightarrow{964} \\ 419 \\ \overrightarrow{419} \\ \overrightarrow{149} \\ \overrightarrow{149} \\ \overrightarrow{149} \\ \overrightarrow{149} \\ \overrightarrow{149} \\ \overrightarrow{1021} \\ 285 \\ \overrightarrow{4} \\ 206 \\ \overrightarrow{1021} \\ 285 \\ \overrightarrow{4} \\ 206 \\ \overrightarrow{1021} \\ 285 \\ \overrightarrow{4} \\ 206 \\ \overrightarrow{120} \\ 120 \\ 12$	(Free Flow)	j 1	1225	\mathbf{X}	(Free F	low)		1074										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>	→ 339				 ,	271									by our		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	370)	633			276			546		Sum y	0.561	0.572	0.507	0.476	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		964	419 +				1021	285			L (s)	25	18		18			
(Free Flow) $(Free Flow)$	290 •	² - 1	* 149			307	ъ †		206		C (s)	120	120	120	120			
$\begin{array}{c} 1 \\ \begin{array}{c} & A3 \ A2 \ A1 \\ \end{array} \\ \begin{array}{c} P2 \\ \hline P4 \\ \end{array} \\ \begin{array}{c} P2 \\ P3 \\ \hline P4 \\ \end{array} \\ \begin{array}{c} P2 \\ \hline P2 \\$											practical y	0.713	0.765	0.713	0.765			
$P_{P2} \xrightarrow{P2} \xrightarrow{P3} \xrightarrow{P2} \xrightarrow{P2} \xrightarrow{P3} \xrightarrow{P3} \xrightarrow{P3} \xrightarrow{P4} \xrightarrow{P2} \xrightarrow{P4} \xrightarrow{P3} \xrightarrow{P3} \xrightarrow{P3} \xrightarrow{P3} \xrightarrow{P4} P$	(Free F	Flow)				(Free F	low)				R.C. (%)	27%	34%	40%	61%			
AM G = I/G = 5 G = I/G = 11 G = I/G = 8 G = G = I/G = G = I/G = 5 G = I/G = 11 G = I/G = 5 G = PM G = I/G = 5 G = I/G = 11 G = I/G = 8 G =		↓ ↓ ₽3	P2		A4 A3 A2	P3	3 B1 B2 B3 P1 V	P5	◆>	P4	4 ↓P2 ↓	- <u>P6</u> > 	←> ←_ ← - - - - - - - - - - - - - - - - -	C4 C3 C2 C1				
PM G= I/G=5 G= I/G=5 G= I/G=11 G= I/G=8 G=			I/G = 5	G =		I/G =	5	G =		I/G =	11	G =		I/G =	8	G =		
G = 1/G = G = 1/G = 5 G = 1/G = 11 G = 1/G = 5 G =	PM G =		I/G = 5	G =		I/G =	5	G =		I/G =	11	G =		I/G =	8	G =		
	G =	:	I/G =	G =		I/G =	5	G =		I/G =	11	G =		I/G =	5	G =		

Priority Junction Analysis

Scenario:		in Pai Road oposed Con												-	Job Nu	Page	J734 6
Design Year:	2029	Design	ed By:					Checke	d By:				-	Date:	30 0	October	2024
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
Tai Lin Pai Roa	ad SB	SA	A1	1	3.35		Gradient		(pcu/hr) 1950	(pcu/hr) 457	0.234			(pcu/hr) 1950	(pcu/hr) 445	0.228	
rai Lin Pai Roa		RT	A2	1	3.35	18.0		100	1929	732	0.379	0.379	100	1929	605	0.314	0.31
「ai Lin Pai Roa	ad NB	LT*	B1	2	3.50	7.0		100	1618	212	0.131		100	1618	204	0.126	
Fai Lin Pai Roa	ad NB	LT	B2	2	3.50	10.0		100	1830	240	0.131		100	1830	230	0.126	
Tai Lin Pai Roa	ad NB	SA	B3	2	3.50				2105	374	0.178	0.178		2105	295	0.140	0.14
Kwai On Road	EB	LT	C1	3	3.35	13.0		100	1748	408	0.233	0.233	100	1748	223	0.128	0.12
Kwai On Road	EB	RT	C2	3	3.35	17.0		100	1921	252	0.131		100	1921	193	0.100	
edestrian pha	ise		P1	1, 3		min c	rossing	time =	5	sec	GM +	7		GM =	12	sec	
			P2 P3	1, 2, 4 1, 2			rossing rossing		5 5		GM + GM +	10 9		GM = GM =	15 14	sec sec	
			P4	1, 2, 3			rossing		5		GM +	10		GM =	15	sec	
			P5	2, 3			rossing		6		GM +	13		GM =	19	sec	
			P6 P7	2, 3, 4 4			rossing rossing		7 5		<u>GM +</u> GM +	14 10		GM = GM =	21 15	sec sec	
			P8	3, 4			rossing		6		GM +	12		GM =	18	sec	
M Traffic Flow (pcu/h	r)		N	PM Traffic I	Flow (pcu/hr)			N					0(W-3.25)	lunatio	n Impro	
408	732 ←				223	605 ◄				S _M = S / (1 + 1.5 f/r)	Schem	e propo: n Facto	sed by
408 1	4	57	1		1		4 45		N		1+2+3	Peak	1+2+3	Peak		elopmen	
\rightarrow					Ţ					Sum y	0.791		0.581				
252	374 . †				193	295 ∱				L (s)	19		19				
452	!←				434	•				C (s)	130 0.768		130 0.768				
	I					I				practical y R.C. (%)	-3%		32%				
	A2 A1	2				3											
						C1	1										
	·	•	<u>-</u>			02	Ţ										
			B1 B2 B3														
.M G =		I/G = 5	G =		I/G =	7	G =		I/G =	10	G =		I/G =		G =		
G =		I/G = 1/G = 5	G = G =		I/G =	7	G = G =		I/G =	10	G = G =		I/G =		G = G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

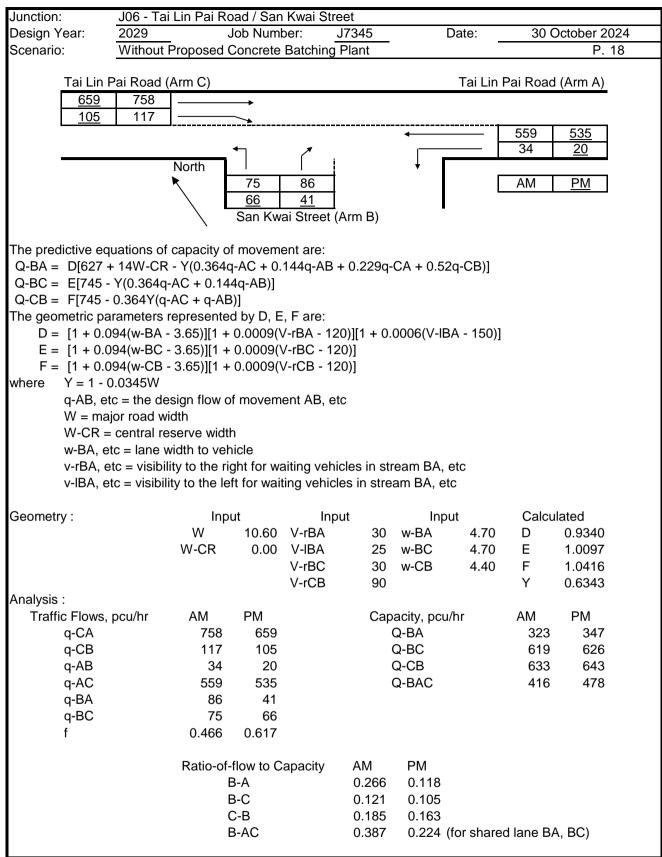
Junction: Scenario:	J02 - Tai Li	n Pai Road /													Job Nu	mber: Page	J734
Design Year:	2029	Designe					-	Checke	ed By:				-	Date:	30 0	Dctober	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
Tai Lin Pai Ro		SA	A1	1	3.35	.,	Gradient		(pcu/hr) 1950	(pcu/hr) 496	0.254		-	(pcu/hr) 1950	(pcu/hr) 484	0.248	
Tai Lin Pai Ro		RT	A1 A2	1	3.35	18.0		100	1930	848		0.440	100	1950	721	0.248	0.374
Tai Lin Pai Ro	ad NB	LT*	B1	2	3.50	7.0		100	1618	212	0.131		100	1618	204	0.126	
Tai Lin Pai Ro	ad NB	LT	B2	2	3.50	10.0		100	1830	240	0.131		100	1830	230	0.126	
Fai Lin Pai Ro	ad NB	SA	B3	2	3.50				2105	374	0.178	0.178		2105	295	0.140	0.14
ƙwai On Road	IEB	LT	C1	3	3.35	13.0		100	1748	408	0.233	0.233	100	1748	223	0.128	0.12
Kwai On Road		RT	C2	3	3.35	17.0		100	1921	252	0.131	0.200	100	1921	193	0.120	0.12
									-								
																	<u> </u>
pedestrian pha	ase		P1	1, 3			rossing		5		GM +	7		GM =	12	sec	
			P2	1, 2, 4			rossing		5		GM +	10		GM =	15 14	sec	
			P3 P4	1, 2 1, 2, 3			rossing		5 5		GM + GM +	9 10		GM = GM =	14	sec sec	
			P5	2, 3			rossing		6		GM +	13		GM =	19	sec	
			P6	2, 3, 4			rossing		7		GM +	14		GM =	21	sec	
			P7	4		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
			P8	3, 4		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
M Traffic Flow (pcu/h	nr)		N	PM Traffic	Flow (pcu/hr)			N	S = 1940	+100(W-3	.25) S =	2080+10)(W-3.25)	Note:		
			7						7		1 + 1.5 f/r)			. ,		n Impro	
408	848 🔶		\setminus		223	721 <	H		\setminus		AM	Peak	PM	Peak	Kwai O	e propo n Facto	ry
1	49	96			1		484				1+2+3		1+2+3		Redeve	elopmen	it
Ļ					ţ					Sum y	0.851		0.641				
252	374 . †				193	295 ∱				L (s)	19		19				
452	<u>-</u>				434	←				C (s)	130		130				
	I					I				practical y R.C. (%)	0.768		0.768 20%				
		2				3				11.0. (70)	1070		2070				
	A2 A1	2				0											
	↓					C1	1										
	*		<u>+</u> †			C2	\neg										
			B1 B2 B3														
AM G =	: I	/G = 5	G =		I/G =	7	G =		I/G =	10	G =		I/G =		G =		
G =	- 1	/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =	: I	/G = 5	G =		I/G =	7	G =		I/G =	10	G =		I/G =		G =		
	- 1	/G =	G =		I/G =				I/G =		G =		I/G =		G =		

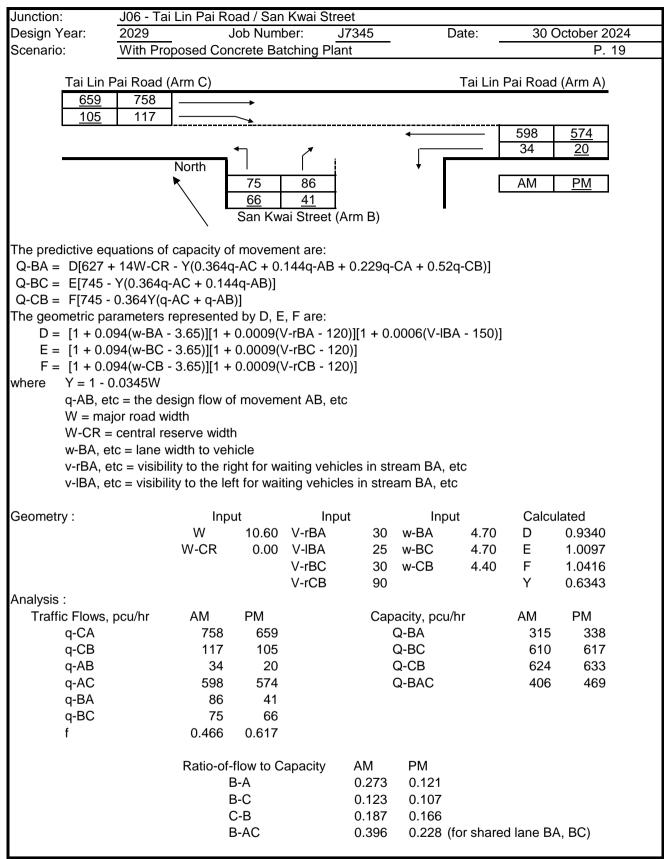

Junction:	J03 - Tai I	in Pai Road	/ Kung \	/ip Stree	et									-	Job Nu	mber:	J7345
Scenario:	Existing C	ondition														Page	8
Design Year:	2024	Design	ed By:				_	Checke	ed By:					Date:	30 0	October 2	2024
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Tai Lia Dai Da				4	5.00		Gradient	100	(pcu/hr)	(pcu/hr)	0.040		400	(pcu/hr)	(pcu/hr)	0.450	
Tai Lin Pai Ro		LT		1	5.20	8.0		100	1798	388	0.216		100	1798	270	0.150	0.004
<u>Tai Lin Pai Ro</u>	ad SB	SA	A2	1	5.20				2135	511	0.239	0.239		2135	563	0.264	0.264
					4.00			400	1700		0.470		400	1700		0.400	
Kung Yip Stree	et wB	LT	B1	1	4.30	8.0		100	1722	308	0.179		100	1722	332	0.193	
pedestrian pha	ase		P1	2		min c	rossing	time =	6	sec	GM +	13	sec F	GM =	19	sec	
AM Traffic Flow (pcu/r	nr)		N	PM Traffic	Flow (pcu/hr)			N	S = 1940	+ 100 (W	·3.2516 = 2	080 + 100	(W-3.25)	Note:		
			\uparrow						•		1 + 1.5 f/r)						
		→ 388					⊢	270				Peak		Peak			
		* 511	•				* 563		•		1		1				
										Sum y	0.239		0.264				
		Ļ						L .		L (s)	40		40				
		308						332		C (s)	90		90				
										practical y	0.500		0.500				
										R.C. (%)	109%		90%				
1	A2 A1	2															
		-		.₹ ♠													
	_ ∟	*															
	•		P1														
		.															
	Ļ	B1		· · · · · · · · · · · · · · · · · · ·													
AM G =	•	I/G = 7	G =	32	I/G =	2	G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 7	G =	32	I/G =	2	G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

Junction:	J03 - Tai	Lin Pai Road	/ Kung \	/ip Stree	ət										Job Nu	mber:	J7345
Scenario:	Without F	Proposed Con	crete Ba	tching F	Plant											Page	9
Design Year:	2029	Design	ed By:				_	Checke	ed By:					Date:	30 0	October 2	2024
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
.	1.05						Gradient	400	(pcu/hr)	(pcu/hr)	0.050		400	(pcu/hr)	(pcu/hr)	0.474	
Tai Lin Pai Ro		LT		1	5.20	8.0		100	1798	465	0.259		100	1798	312	0.174	
Tai Lin Pai Ro	ad SB	SA	A2	1	5.20				2135	663	0.311	0.311		2135	610	0.286	0.286
Kung Yip Stree	et WB	LT	B1	1	4.30	8.0		100	1722	392	0.228		100	1722	355	0.206	
pedestrian pha	ise		P1	2		min c	rossing	time =	6	sec	GM +	13	sec F	GM =	19	sec	
poucoulairplic							recording										
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)			N	S = 1940	+ 100 (W	-3.25)\$ = 2	080 + 100	(W-3.25)	Note:		
			ſ						ſ	S _M = S / (1 + 1.5 f/r)	S₁ = (S	- 230) / (1	l + 1.5 f/r)			
		→ 465					Þ	• 312			AM	Peak	PM	Peak			
		663					610				1		1				
										Sum y	0.311		0.286				
		Ļ						Ļ		L (s)	40		40				
		392						355		C (s)	90		90				
										practical y	0.500		0.500				
										R.C. (%)	61%		75%				
1	A2 A1	2									•	•					
		-		.▼ ▲													
	L .																
	•		P1														
		▼															
	Ţ	B1		.													
				*													
AM G =		I/G = 7	G =	32	I/G =	2	G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 7	G =	32	I/G =	2	G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

Junction:	J03 - Tai I	Lin Pai Road	/ Kung \	/ip Stree	ət									_	Job Nu	mber:	J7345
Scenario:	With Prop	osed Concret	te Batch	ing Plar	nt											Page	10
Design Year:	2029	Design	ed By:				_	Checke	ed By:					Date:	30 C	October 2	2024
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
							Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		,
Tai Lin Pai Ro		LT		1	5.20	8.0		100	1798	620	0.345	0.345	100	1798	467	0.260	
Tai Lin Pai Ro	ad SB	SA	A2	1	5.20				2135	663	0.311			2135	610	0.286	
Kung Yip Stree	et WB	LT	B1	1	4.30	8.0		100	1722	547	0.318		100	1722	510	0.296	0.296
nodestrian pho			P1	2		min o	rocoing	time	6			10			10		
pedestrian pha	ise		ΡI	2		min c	rossing	ume =	0	sec	GM +	13	Sec F	GM =	19	sec	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)			N	S = 1940	+ 100 (W	-3.25)6 = 2	080 + 100	(W-3.25)	Note:		
		1	\uparrow				1		\wedge			S _M = (S					
		→620					-	467			AM	Peak	PM	Peak			
	(◆ 663	•				◆ 610		•		1		1				
										Sum y	0.345		0.296				
										L (s)	40		40				
		• 547						5 10		C (s)	90		90				
										practical y	0.500		0.500				
											45%		69%				
										R.C. (%)	4370		0978				
1	A2 A1	2		.7													
				Ī													
	ŧ	***	P1														
		_															
		— в1															
	•			*													
AM G =	:	I/G = 7	G =	32	I/G =	2	G =		I/G =	•	G =		I/G =	•	G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 7	G =	32	I/G =		G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
3-			0 -				0 4				0 4				5.4		

Junction: J04 - Ku	ung Yip Stre	et / Wah	Sing Stre	et	_				
Design Year: 2024		lob Num		J7345	Da	ate:	30 C	October 2024	4
	Condition		-					P. 11	
Kung Yip Street (Arm C)					Kuna Y	'ip Street	(Arm A)	
<u>168</u> 147		→					-p =	(********)	
2 7		-							
		-			•	—	144	133	
		•┐	~				244	<u>137</u>	
			<u> </u>		+	-			
	. –	10	161				AM	<u>PM</u>	
	● L	<u>5</u>	<u>164</u>						
	North	wan Sir	ng Street (Arm B)					
The predictive equations o	f canacity of	movem	ant ara:						
Q-BA = D[627 + 14W-CF]				+ 0 229a-	CA + 0.52c	I-CB)]			
Q-BC = E[745 - Y(0.3640)]	•		i i i q / D	. 0.2209	0,11 0.020	[00)]			
Q-CB = F[745 - 0.364Y](c)	•	• /•							
The geometric parameters	• • •	<i>,</i> -	, F are:						
D = [1 + 0.094(w-BA	- 3.65)][1 +	0.0009(\	/-rBA - 12	0)][1 + 0.	0006(V-IBA	150)]			
E = [1 + 0.094(w-BC)]	- 3.65)][1 +	0.0009(\	/-rBC - 12	20)]					
F = [1 + 0.094(w-CB)]	- 3.65)][1 +	0.0009(\	/-rCB - 12	20)]					
where $Y = 1 - 0.0345W$		_							
q-AB, etc = the d	-	fmovem	ent AB, et	C					
W = major road v									
W-CR = central r w-BA, etc = lane									
v-rBA, etc = visib			aitina vehi	clas in str	oom BA of	ic.			
v-IBA, etc = visibi			-						
Geometry :	Inpu		Inp	ut	Input		Calcu	lated	
	W		V-rBA	40		4.70	D	0.9523	
	W-CR	0.00	V-IBA	40		4.70	E	1.0196	
			V-rBC	40	w-CB	2.50	F	0.8237	
Analysis :			V-rCB	35			Y	0.6240	
Analysis : Traffic Flows, pcu/hr	AM	PM		Can	acity, pcu/h	r	AM	PM	
q-CA	AW 147	168		•	Q-BA		523	533	
q-CB	7	2			Q-BC		704	716	
q-AB	244	137			Q-CB		541	563	
q-AC	144	133			Q-BAC		531	537	
q-BA	161	164							
q-BC	10	5							
f	0.058	0.030							
	Ratio-of-	flow to C	apacity	AM	PM				
		B-A	apaony	0.308	0.308				
		3-C		0.000	0.007				
		С-В		0.013	0.004				
		B-AC		0.322		or share	d lane BA	, BC)	

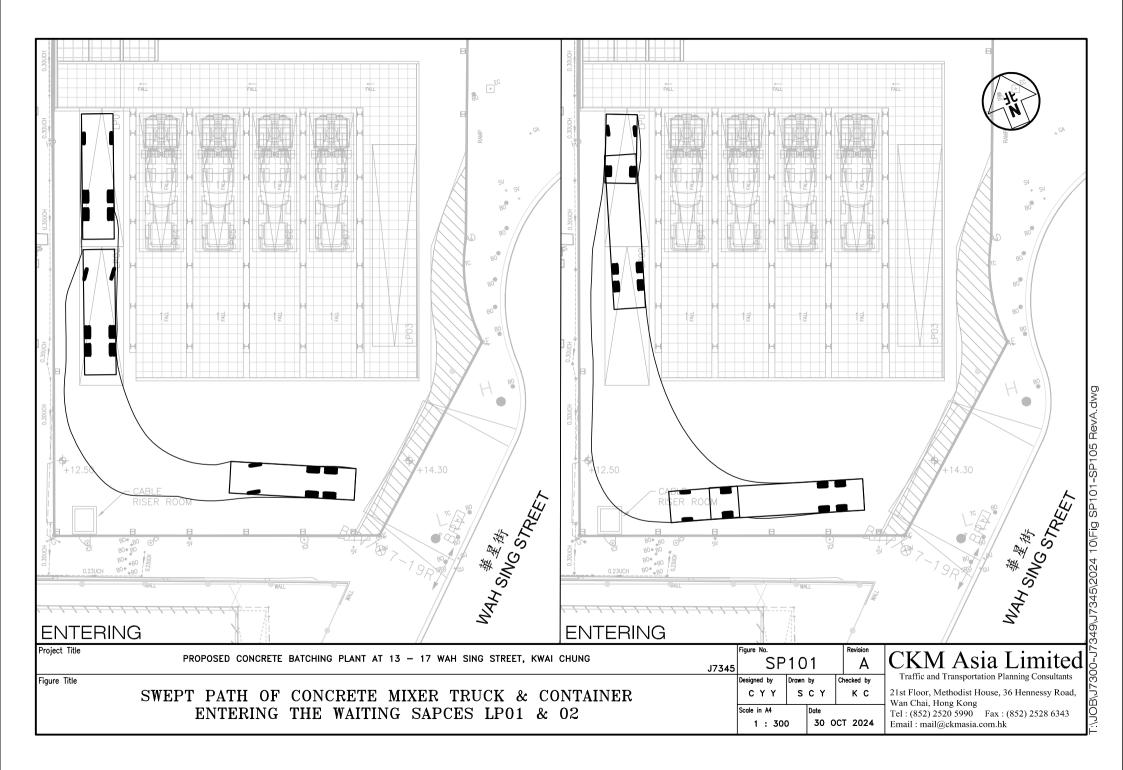


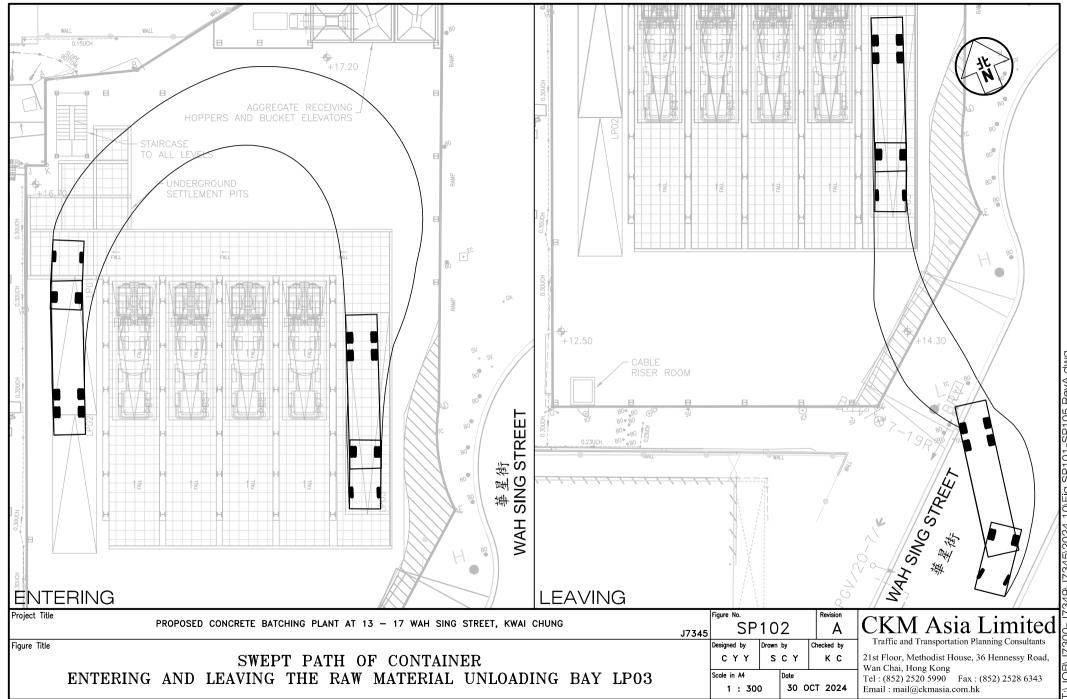

Junction:		i Chung Road	l / Tai Li	in Pai R	oad / Kv	vai Foo	Road		_					-	Job Nu		J7345
Scenario: Design Year:	Existing C 2024	Condition Designe	ed By:					Checke	ed By:					Date:	30 0	Page October 2	14 2024
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Kwai Foo Roa	d ER	LT	A1	1	4.10	25.0	Gradient	100	(pcu/hr) 2042	(pcu/hr) 258	0.126		100	(pcu/hr) 2042	(pcu/hr) 278	0.136	
Kwai Foo Roa		LT	A1 A2	1	4.10	29.0		100	2042	258	0.120		100	2042	278	0.136	
			, (2		1.10	20.0		100	2000	201	0.121		100	2000	200	0.100	
Kwai Chung R	load NB	LT+SA*	B1	2	4.00	22.0		100	1916	444	0.232		100	1916	552	0.288	0.288
Kwai Chung R	load NB	SA	B2	2	4.00				2155	479	0.222			2155	496	0.230	
Kwai Chung R	load NB	RT	B3	2	4.00	20.0		100	2005	667	0.333	0.333	100	2005	568	0.283	
			01		0.00	00.0		400	1000	050	0.400		400	4000	004	0.4.44	
Tai Lin Pai Ro Tai Lin Pai Ro		LT LT	C1 C2	2	3.80 3.80	22.0 26.0		100 100	1868 2019	259 280	0.139		100 100	1868 2019	264 285	0.141 0.141	
Tai Lili Pai Ku		LI	02	2	3.60	20.0		100	2019	200	0.139		100	2019	200	0.141	
Kwai Chung R	load SB	LT+SA*	D1	1	4.30	27.0		21	2051	536	0.261	0.261	25	2047	485	0.237	0.237
Kwai Chung R	load SB	SA+RT	D2	1	4.30				2185	571	0.261			2185	518	0.237	
Kwai Chung R	load SB	RT	D3	1	4.20	18.0		100	2008	525	0.261		100	2008	475	0.237	
pedestrian pha	ase		P1	1		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
			P2	1		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
			P3	1		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
			P4	1			rossing		5		GM +	7		GM =	12	sec	
			P5	2			rossing		5		GM +	7		GM =	12	sec	
			P6 P7	2			rossing rossing		5 7	sec	GM +	7 13		GM = GM =	12 20	sec sec	
			P8	2			rossing		5		GM +	6		GM =	11	sec	
AM Traffic Flow (pcu/h	nr)	1	-		Flow (pcu/hr										Note:		
	759 🗲	+→ 115 下	N			720	\leftrightarrow	120 🗖	-		+ 100 (W-				*A flared	approach	ı
519		↓ ↓	\backslash		558	•	Ļ		\setminus	5∞ = 57 (1 + 1.5 f/r)						
		758	,		1		638		`		AM 1+2	Peak	РМ 1+2	Peak			
			_						_	Sum y	0.594		0.525				
	479	¥ 539				496		↓ 549		L (s)	16		16				
444	4 ← 🕇 → 66	67			552		568			C (s)	120		120				
										practical y	0.780		0.780				
										R.C. (%)	31%		49%				
1 A1 A2 P1 P1		2 P3 P4	↑ →	P7	P8 . *												
AM C			B2 B3		1/0 -	۹ ۹	<u> </u>		I/C -	I	<u> </u>			1	<u> </u>		
AM G = G =		I/G = 9 I/G =	G = G =		I/G = I/G =	9	G = G =		I/G =		G = G =		I/G =		G = G =		
G =		I/G = 9	G =		I/G =	9	G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

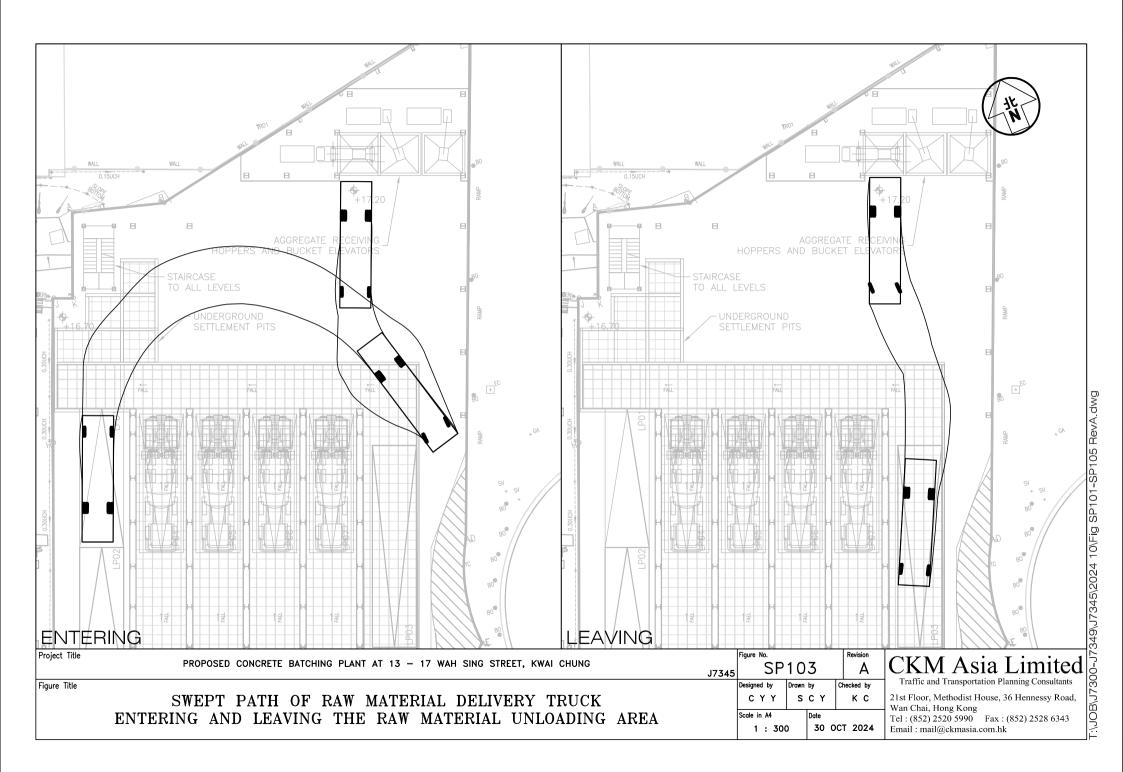
					0	gnar	ouno		ilaiya								
Junction:	J05 - Kwai	Chung Road	l / Tai Li	n Pai R	oad / Kv	vai Foo I	Road							-	Job Nu	mber:	J7345
Scenario:		roposed Cond												_		Page	15
Design Year:	2029	Designe	ed By:					Checke	ed By:					Date:	30 0	October 2	2024
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Kwai Foo Road		LT	A1	1	4.10	25.0	Gradient	100	(pcu/hr) 2042	(pcu/hr) 322	0.158		100	(pcu/hr) 2042	(pcu/hr) 345	0.169	
Kwai Foo Road		LT	A1 A2	1	4.10	29.0		100	2042	322	0.158		100	2042	345	0.169	
Kwai Chung Ro	oad NB	LT+SA*	B1	2	4.00	22.0		96	1921	489	0.255		100	1916	580	0.303	0.303
Kwai Chung Ro	oad NB	SA	B2	2	4.00				2155	548	0.254			2155	597	0.277	
Kwai Chung Ro	oad NB	RT	B3	2	4.00	20.0		100	2005	734	0.366	0.366	100	2005	604	0.301	
Tai Lin Pai Roa			C1	2	3.80	22.0		100	1868	305	0.163		100	1868	289	0.155	
Tai Lin Pai Roa		LT LT	C1 C2	2	3.80	22.0		100	2019	305	0.163		100	2019	312	0.155	
			02		0.00	20.0		100	2010	020	0.100		100	2010	012	0.100	
Kwai Chung Ro	oad SB	LT+SA*	D1	1	4.30	27.0		23	2049	605	0.295	0.295	29	2043	548	0.268	
Kwai Chung Ro	oad SB	SA+RT	D2	1	4.30				2185	645	0.295			2185	587	0.269	0.269
Kwai Chung Ro	oad SB	RT	D3	1	4.20	18.0		100	2008	593	0.295		100	2008	539	0.268	
pedestrian pha	ase		P1	1			rossing		6		GM +	12		GM =	18	sec	
			P2 P3	1			rossing rossing		5 5		GM + GM +	5 5		GM = GM =	10 10	sec sec	
			P4	1			rossing		5		GM +	7		GM =	12	sec	
			P5	2			rossing		5		GM +	7		GM =	12	sec	
			P6	2		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
			P7	2		min c	rossing	time =	7	sec	GM +	13	sec F	GM =	20	sec	
			P8	2			rossing	time =	5	Sec	GM +	6	sec F	GM =	11	sec	
AM Traffic Flow (pcu/h			N	PM Traffic	Flow (pcu/hr				N	S = 1940	+ 100 (W-	·3.25) 5 = 2	080 + 100) (W-3.25)	Note:		
646	824 ←	↓ 141 K			600	788	\rightarrow	160 🔨		S _M = S / (1 + 1.5 f/r)	S™ = (S	; - 230) / ([,]	1 + 1.5 f/r)	*A flared	approact	ו
646 1	8	378	\mathbf{X}		692 1		726		1			Peak	PM	Peak			
											1+2		1+2				
	569	634	_			597		601	_	Sum y	0.661		0.571 16				
468	3				580	+	604	001		L (s) C (s)	120		120				
										practical y	0.780		0.780				
	1					I				R.C. (%)	18%		37%				
1	D3 D2 D1	2			P8./*												
A1		×. P6		∢ P7	P0 2.1												
▲ P1	⊸ ↓ ↓ ↓	P3 ↓P5															
	+ ->		† ┌►	P7 *	•												
P2 P1	*.	P4		٦ آ	C1												
			B2 B3														
AM G =		I/G = 9	G =		I/G =	9	G =		I/G =		G =		I/G =		G =		
G = PM G =		I/G = 9	G = G =		I/G =	9	G = G =		I/G =		G = G =		I/G =		G = G =		
FWI G = G =		I/G =	G =		I/G =	-	G =		I/G =		G =		I/G =		G =		
			-		-		-		-		-		-		-		

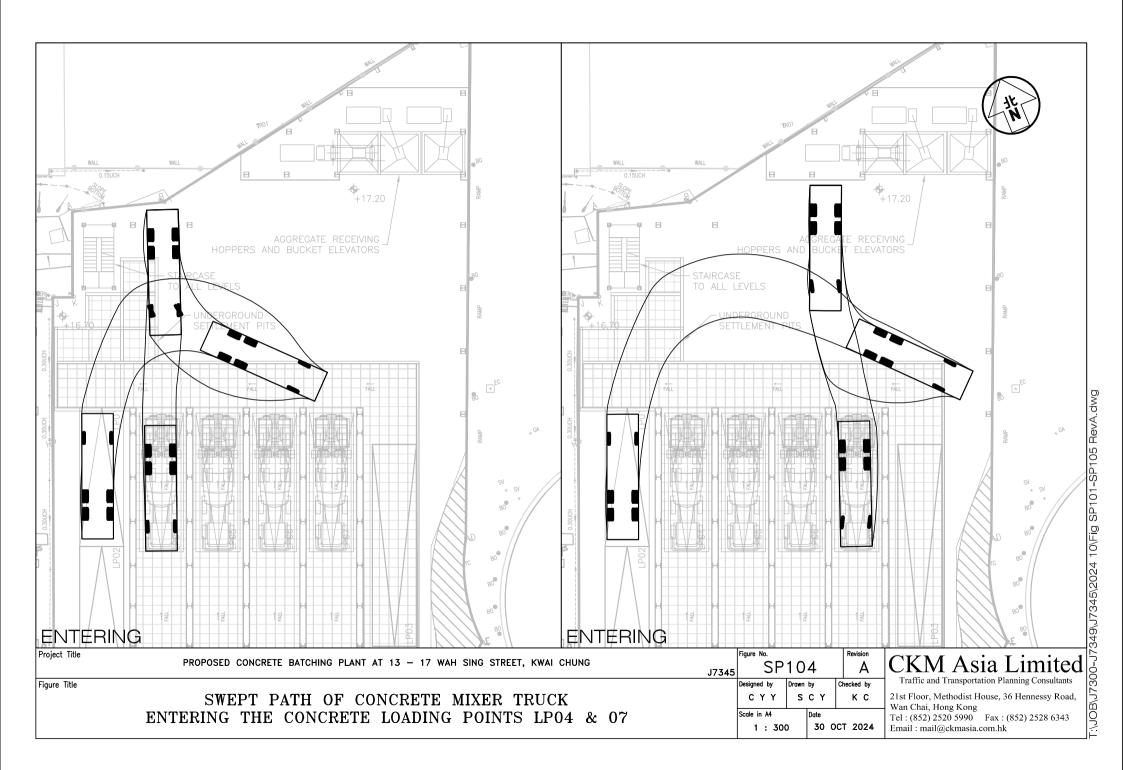
Junction:	J05 - Kwai	Chung Road	l / Tai Li	n Pai R	oad / Kv	-								-	Job Nu	mber:	J7345
Scenario: Design Year:	With Propo	osed Concret Designe		ing Plar	nt		<u>.</u>	Checke	d By:				<u>.</u>	Date:	30 0	Page October :	16 2024
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Kwai Foo Roa	d EB	LT	A1	1	4.10	25.0	Gladient	100	(pcu/iii) 2042	322	0.158		100	2042	345	0.169	
Kwai Foo Roa		LT	A2	1	4.10	29.0		100	2059	324	0.157		100	2059	347	0.169	
Kwai Chung R	oad NB	LT+SA*	B1	2	4.00	22.0		91	1927	508	0.264		100	1916	580	0.303	0.303
Kwai Chung R	oad NB	SA	B2	2	4.00				2155	568	0.264			2155	636	0.295	
Kwai Chung R	oad NB	RT	B3	2	4.00	20.0		100	2005	734	0.366	0.366	100	2005	604	0.301	
Tai Lin Pai Ro	ad WB	LT	C1	2	3.80	22.0		100	1868	323	0.173		100	1868	308	0.165	
Tai Lin Pai Ro	ad WB	LT	C2	2	3.80	26.0		100	2019	350	0.173		100	2019	332	0.164	
Kwai Chung R	oad SB	LT+SA*	D1	1	4.30	27.0		23	2049	605	0.295	0.295	29	2043	548	0.268	
Kwai Chung R	oad SB	SA+RT	D2	1	4.30				2185	645	0.295			2185	587	0.269	0.269
Kwai Chung R	oad SB	RT	D3	1	4.20	18.0		100	2008	593	0.295		100	2008	539	0.268	
pedestrian pha	ase		P1	1		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
			P2 P3	1			rossing t		5 5		GM + GM +	5 5		GM =	10 10	sec	
			Р3 Р4	1			rossing		5		GM +	7		GM =	12	sec sec	
			P5	2		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
			P6	2			rossing		5		GM +	7		GM =	12	sec	
			P7 P8	2			rossing t rossing t		7 5		GM + GM +	13 6		GM = GM =	20 11	sec sec	
AM Traffic Flow (pcu/h	r)	I	N	PM Traffic	Flow (pcu/hr				N						Note:		
	824 ←	<u> </u> → 141 K	N			788	\leftrightarrow	160 🦷	N		+ 100 (W· 1 + 1.5 f/r)				*A flared	approact	n
646 1	8	78	\setminus		692 1		726		\mathbf{X}		AM	Peak	PM	Peak			
			_						_		¹⁺²		¹⁺² 0.571				
	608	673				636		6 40		Sum y L (s)	16		16				
468					580	+	604	0.10		C (s)	120		120				
										practical y	0.780		0.780				
	I					I				R.C. (%)	18%		37%				
1 A1		2 • • • • • • • • • • • • • • • • • • •		∢ P7	P8												
P2 P1	- >		B2 B3	P7*	C2 C1												
AM G = G =		I/G = 9 I/G =	G = G =		I/G =	9	G = G =		I/G = I/G =		G = G =		I/G =		G = G =		
PM G =		I/G = 9	G =		I/G =	9	G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

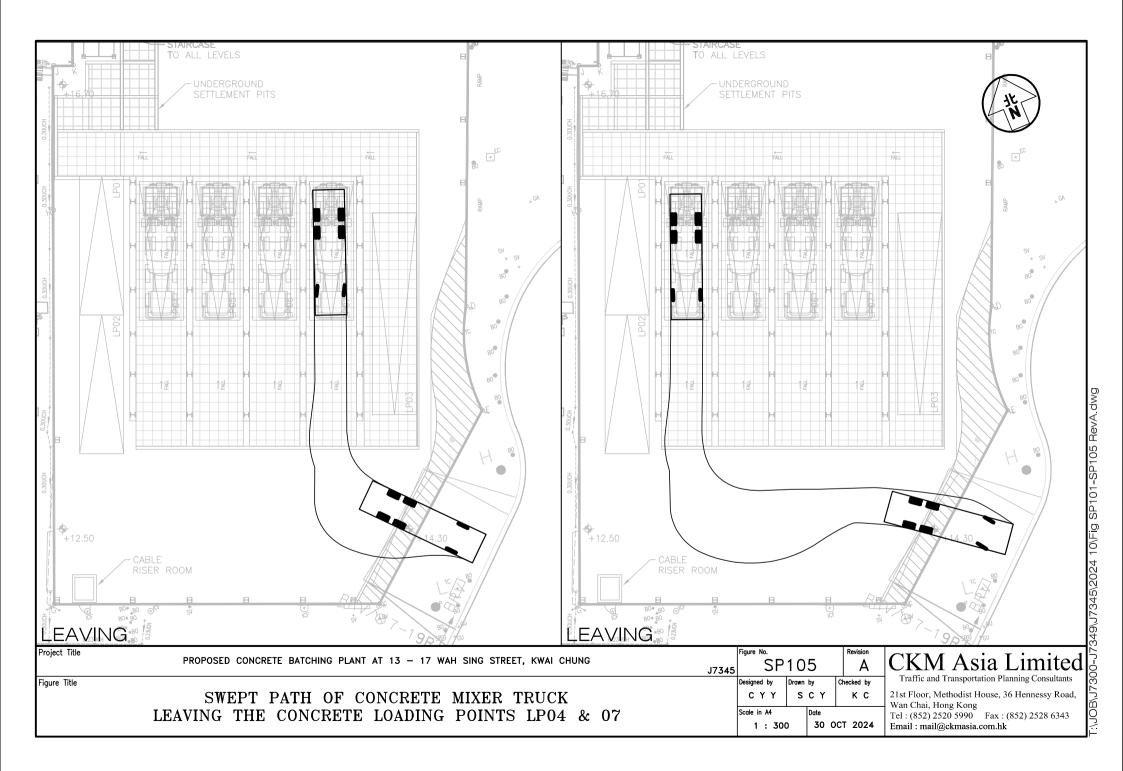
Junction:	I06 - Tai	Lin Pai Ro	had / San	Kwai Stre	ot					
Design Year:	2024		Job Num		J7345	Da	te:	30.0	October 2024	4
Scenario:	Existing			<u>-</u>		20		00 0	P. 17	
Coonano	<u></u>	ornandorn								
Tai Lin	Pai Road (/	Arm C)				-	Γai Lin∣	Pai Road	(Arm A)	
608	699		_						(********	
80	83		~.							
						•	T	485	502	
			4 -1	×		· · · · · · · · · · · · · · · · · · ·		20	6	
		North		Í						
		R	54	48			Г	AM	PM	
		\backslash	47	26			L			
				ai Street (/	Arm B)					
		Υ.	Carrie							
The predictive ec	luations of	canacity o	fmovem	ont are.						
Q-BA = D[627]					⊦0 229a-	CA + 0.52a	CB)1			
Q-BC = E[745]				i i iq /iB	0.2209	0/11 0.029	00/]			
Q-CB = F[745 - F]	· ·		• • •							
The geometric pa	•••		, -	F are [.]						
D = [1 + 0.0]		•	•		0)1[1 + 0		- 150)]			
E = [1 + 0.0]	•	, ==	•		,	0000(0-107	- 150)]			
F = [1 + 0.0]	•	, = =	•		<i>,</i> -					
-	0.0345W	5.05)][1 +	0.0009(1	/-100 - 12	0)]					
		nian flow o	fmovom	ont AD of	•					
	tc = the des	-	n movern	eni Ad, ei	G					
	jor road wi		L							
	central res									
	tc = lane w									
		•	-	-		ream BA, etc	2			
v-IBA, e	tc = visibili	ty to the le	ft for wait	ing vehicle	es in stre	am BA, etc				
						1				
Geometry :		Inp		Inp		Input	4 70	Calcu		
		W		V-rBA	30		4.70	D	0.9340	
		W-CR	0.00	V-IBA	25		4.70	E	1.0097	
				V-rBC	30	w-CB	4.40	F	1.0416	
				V-rCB	90			Y	0.6343	
Analysis :										
Traffic Flows,	pcu/hr	AM	PM		•	acity, pcu/h	r	AM	PM	
q-CA		699	608			Q-BA		359	370	
q-CB		83	80			Q-BC		637	635	
q-AB		20	6			Q-CB		655	654	
q-AC		485	502			Q-BAC		467	506	
q-BA		48	26							
q-BC		54	47							
f		0.529	0.644							
		Ratio-of-	-flow to C	apacitv	AM	PM				
			B-A		0.134	0.070				
			B-C		0.085	0.074				
			С-В		0.127	0.122				
			B-AC		0.218	0.144 (fo	r share	d lane RA	BC)	
		-	-						, - ,	

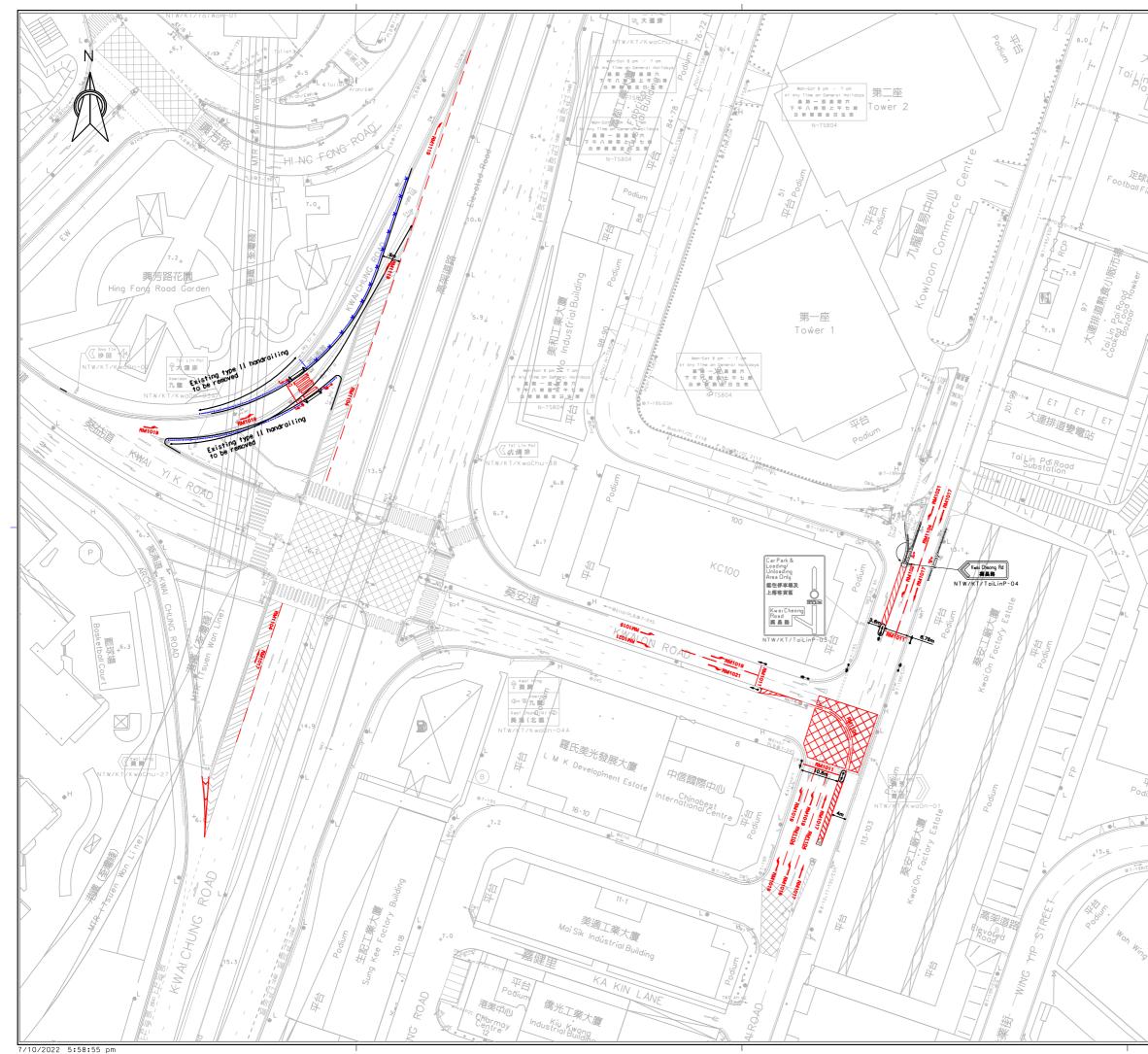





Junction:		in Pai Road												_	Job Nu	imber:	J7345
Scenario: Design Year:	2029	oposed Cond Designe						Checke	ed By:				-	Date:	30 0	Page October	20 2024
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Tai Lin Pai Roa	ad SB	SA+RT	A1	1	3.35	21.0	Gradient	23	(pcu/hr) 1918	(pcu/hr) 593	0.309	0.309	15	(pcu/hr) 1929	(pcu/hr) 525	0.272	0.272
Tai Lin Pai Roa		RT	A2	1	3.35	18.0		100	1929	596	0.309		100	1929	525	0.272	-
Tai Lin Pai Roa		LT*	B1	3	3.50	7.0		100	1618	212	0.131		100	1618	204	0.126	
<u>Tai Lin Pai Roa</u> Tai Lin Pai Roa		LT SA	B2 B3	3 3	3.50 3.50	10.0		100	1830 2105	240 374	0.131	0.178	100	1830 2105	230 295	0.126	0.140
Kwai On Road	EB	LT	C1	1, 2	3.35	13.0		100	1748	408	0.233		100	1748	223	0.128	
Kwai On Road	EB	RT	C2	2	3.35	17.0		100	1921	252	0.131	0.131	100	1921	193	0.100	0.100
pedestrian pha	ase																
																	1
AM Traffic Flow (pcu/h				DM Troffie	Flow (pcu/hr										Note:		
Aw traine now (peu/i	")		N A	r wi manie	riow (pea/iii)			N K	S = 1940	+100(W-3	.25) S =	2080+10	0(W-3.25)		r improv	ement
408	732 ←		\setminus		223	605 ◄	<u> </u>		\setminus	S _M = S / (011 3011	r improve ieme pro	poseu
408 1	4	57	١		1		↓ 445		١		AM 1+2+3	Peak 1,2, + 3	PM 1+2+3	Peak 1,2 + 3		ai On Fa elopmen	
					-					Sum y	0.618		0.513	0.128			
252	374				193	295				L (s)	18	12	18	12			
452	2←				434					C (s)	130	130	130	130			
										practical y	0.775		0.775				
		1-				1-				R.C. (%)	25%	99%	51%	540%			
1	A2 A1	2				3											
_{C1}	₊	C1	1														
	*	C2					<u>+</u>										
							B1 B2 B3										
AM G =	:	I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =		G =		
G =		I/G =	G =		I/G =	5	G =		I/G =	9	G =		I/G =		G =		
PM G =		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =	:	I/G =	G =		I/G =	5	G =		I/G =	9	G =		I/G =		G =		


Junction: Scenario:		Lin Pai Road osed Concret												-	Job Nu	mber: Page	J7345 21
Design Year:	2029	Designe					-	Checke	ed By:				-	Date:	30 0	Dctober	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Tai Lin Pai Ro	ad SB	SA+RT	A1	1	3.35	21.0		26	1914	669	0.350	0.350	20	1923	602	0.313	0.313
Tai Lin Pai Ro	ad SB	RT	A2	1	3.35	18.0		100	1929	675	0.350		100	1929	603	0.313	
Tai Lin Pai Ro	ad NB	LT*	B1	3	3.50	7.0		100	1618	212	0.131		100	1618	204	0.126	
Tai Lin Pai Ro	ad NB	LT	B2	3	3.50	10.0		100	1830	240	0.131		100	1830	230	0.126	
Tai Lin Pai Ro	ad NB	SA	B3	3	3.50				2105	374	0.178	0.178		2105	295	0.140	0.140
Kwai On Road	IEB	LT	C1	1, 2	3.35	13.0		100	1748	408	0.233		100	1748	223	0.128	
Kwai On Road	IEB	RT	C2	2	3.35	17.0		100	1921	252	0.131	0.131	100	1921	193	0.100	0.100
pedestrian pha	ase																
AM Traffic Flow (pcu/h	ır)		N M	PM Traffic	Flow (pcu/hr)			N M	S = 1940 S _M = S / (+100(W-3 1 + 1.5 f/r)	.25) S = S _M = (S	2080+10 6 - 230) / (1	0(W-3.25) 1 + 1.5 f/r)	Note: Further	· improve eme pro	ement
408	848 ←	ļ	\		223	721 •	↓ ↓		\		AM	Peak	PM	Peak	by Kwa	i On Fa	ctory
	2	496			-		484				1+2+3	1,2, + 3	1+2+3	1,2 + 3	Redeve	elopmen	t
↓ 252	374				↓ 193	295				Sum y	0.659	0.411	0.554	0.268			
452	+				434	+				L (s)	18 130	12 130	18 130	12 130			
402	-`				+54	·				C (s) practical y	0.775		0.775	0.817			
	·					I				R.C. (%)	18%	99%	40%	205%			
	A2 A1	2				3											
C1	┥┥	C1 C2					← _1 †										
			·				B1 B2 B3										
AM G =		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =	I	G =		
G = PM G =		I/G = 1/G = 6	G = G =		I/G =		G =		I/G =		G = G =		I/G =		G = G =		
G =	-	I/G =	G =		I/G =	5	G =		I/G =	9	G =		I/G =		G =		


Appendix B – Swept Path Analysis



– Appendix C Junction Improvement Scheme proposed by Kwai On Factory Redevelopment

	Legend		
籃球場 Bost			
Bosketholl Court 大連排道法		Proposed site	
大連排道遊樂提			
Sin Pai Road			
Plaip *惕	ı—ı—ı—ı—ı—ı	Proposed type handrailing	
groundd /		handrailing	
		Proposed corrupts	
= $=$ $(7 /)$	× × ×	Proposed corrugate beam barrier	9
W ^F ield Podiu			
H= 14-1/1/ 11			
// // // //			
- -			
25.4 ⁺ 7 ⁻¹⁹ 20 ⁰⁰⁰			
25.4 ⁺ 2 ¹⁰ 2 ⁰			
L 25.4 V X			
$\backslash / / / / \rightarrow \rangle$			
\times / / / Γ / \checkmark			
$k \sim 1/1/1$			
1 - 1 / /		of Revision Do	ite Ckd.
	Client		
	HONG	KONG	
7		ING AUTHORIT	Y I
管理有限公司			
Bring 年月限公果會 //			
コービー目成公司 Brilliont Cold Storoge Monogement Ltd.	Consultants		
"management Stor"一盾) /			
ent Lige		nning	
/ · · ·	(Acia) (onsultants Limit	ed
/			
/			
	Scale in A3	Date	
/	1:1000		
/	1:1000		
	1:1000 Designed Dra	uwn Checke	d
		Jwn Checke Date	d
平台 Podium	Designed Dro		d
¹¹ -10	Designed Dro		d
	Designed Dra Design Team Leader	Date	d
11-19 H	Designed Dra Design Team Leader	Date	d
11-19 H	Designed Dra Design Team Leader Approved	Date	d
11-19 H	Designed Dra Design Team Leader Approved Project	Date Date	d
9Gium 11-19 @7-19р/ЕСН н 	Designed Dra Design Team Leader Approved Project HKHA TERM ENC	Date Date	
9Gium 11-19 @7-19р/ЕСН 	Designed Dra Design Team Leader Approved Project HKHA TERM ENG CONSULTANCY	Date Date Date SINEERING SERVICES 2018-2	2020
9Gium 11-19 @7-19р/ЕСН 	Designed Dra Design Team Leader Approved Project HKHA TERM ENG CONSULTANCY FOR KOWLOON	Date Date Date Sineering Services 2018-3 Central & Wes	2020
9Gium 11-19 @7-19р/ЕСН 	Designed Dra Design Team Leader Approved Project HKHA TERM ENG CONSULTANCY	Date Date Date Sineering Services 2018-3 Central & Wes	2020
9Gium 11-19 @7-19р/ЕСН 	Designed Dra Design Team Leader Approved Project HKHA TERM ENG CONSULTANCY FOR KOWLOON	Date Date Date SINEERING SERVICES 2018-3 CENTRAL & WES	2020
9Gium 11-19 @7-19р/ЕСН 	Designed Dra Design Team Leader Approved Project HKHA TERM ENG CONSULTANCY FOR KOWLOON	Date Date Date SINEERING SERVICES 2018-3 CENTRAL & WES	2020
SG/Um 11-19 07-198//ЕСИ № Н 19//ЕСИ Арурсан Арурсан Арурсан	Designed Dra Design Team Leader Approved Project HKHA TERM ENG CONSULTANCY FOR KOWLOON	Date Date Date SINEERING SERVICES 2018-3 CENTRAL & WES	2020
Salum 11-19 ⊕7-198/2604 	Designed Dra Design Team Leader Approved Project HKHA TERM ENG CONSULTANCY FOR KOWLOON	Date Date Date SINEERING SERVICES 2018-3 CENTRAL & WES	2020
Salum 11-19 ⊕7-198/2604 	Design Team Leader Approved Project HKHA TERM ENC CONSULTANCY FOR KOWLOON (AND ISLANDS RI	Date Date Date SINEERING SERVICES 2018-3 CENTRAL & WES	2020
Salum 11-19 ⊕7-198/2604 	Designed Dro Design Teom Leader Approved Project HKHA TERM ENG CONSULTANCY FOR KOWLOON G AND ISLANDS RI Title	Date Date	2020
Salum 11-19 ⊕7-198/2604 	Designed Dro Design Teom Leader Approved Project HKHA TERM ENG CONSULTANCY FOR KOWLOON G AND ISLANDS RI Title JUNCTION IMP	Date Date Date Date Date Date Date Date	2020
Salum 11-19 ⊕7-198/2604 	Designed Dro Design Teom Leader Approved Project HKHA TERM ENG CONSULTANCY FOR KOWLOON G AND ISLANDS RI Title	Date Date Date Date Date Date Date Date	2020
Salum 11-19 ⊕7-198/2604 	Designed Dro Design Teom Leader Approved Project HKHA TERM ENG CONSULTANCY FOR KOWLOON G AND ISLANDS RI Title JUNCTION IMP	Date Date Date Date Date Date Date Date	2020
Salum 11-19 ⊕7-198/2604 	Designed Dro Design Teom Leader Approved Project HKHA TERM ENG CONSULTANCY FOR KOWLOON G AND ISLANDS RI Title JUNCTION IMP	Date Date Date Date Date Date Date Date	2020
Занит 11-19 @7-199//ЕСИ 	Designed Dro Design Teom Leader Approved Project HKHA TERM ENG CONSULTANCY FOR KOWLOON G AND ISLANDS RI Title JUNCTION IMP LAYOUT PLAN	Date Date Date SINEERING SERVICES 2018-3 CENTRAL & WES EGION	2020 T
Salum 11-19 ⊕7-198/2604 	Designed Dro Design Teom Leader Approved Project HKHA TERM ENG CONSULTANCY FOR KOWLOON G AND ISLANDS RI Title JUNCTION IMP	Date Date Date Date Date Date Date Date	2020

K:#Q1021#Ustation#T002-Kwai On TIA#FIGURE 10n(no set back).dgn