Annex I - Traffic Impact Assessment

JOINT-USER COMPLEX AND JOINT-USER GENERAL OFFICE BUILDING AT AREA 29, KWU TUNG NORTH

Quotation Contract No. ASD 101/8705/CX/06/QC6

Contract Consultancy Services for Joint-user Complex and Joint-user General Office Building at Area 29, Kwu Tung North

Traffic Impact Assessment Report April 2025

http://www.ozzotec.com

Quotation Contract No. ASD 101/8705/CX/06/QC6

Contract Consultancy Services for Joint-user Complex and Joint-user General Office Building at Area 29, Kwu Tung North

Traffic Impact A	Assessment	Report
April 2025		

Contents Amendment Record

This report has been issued and amended as follows:

Revision	Description	Prepared / Date	Checked / Date	Approved / Date
0	Final Report	CW 15/4/2025	DP 15/4/2025	OC 15/4/2025

Co	nten	nt Page	е
1	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Study Objectives	1
	1.3	Report Structure	1
2	DESC	CRIPTONS OF THE PROPOSED SCHEME2	2
	2.1	Site Location and Study Area	2
	2.2	Development Parameters for the Proposed Scheme2	2
	2.3	Parking and Loading/Unloading Facilities2	2
	2.4	Vehicular and Pedestrian Access Arrangements	3
3	EXIS	TING TRAFFIC CONDITIONS4	4
	3.1	Existing Road Network	4
	3.2	Traffic Surveys at Key Links and Junctions	4
	3.3	Existing Vehicle Traffic Conditions	4
4	TRAF	FFIC FORECASTS6	3
	4.1	Modelling Methodology6	3
	4.2	Validation Results6	3
	4.3	Design Year	7
	4.4	2034 Peak Hour Reference Flows	7
	4.5	Peak Hour Project Flows	7
	4.6	Future Year Design Peak Hour Traffic Flows	9
5	TRAF	FFIC IMPACT ASSESSMENT10)
	5.1	Future Year Junction Capacity Assessments)
	5.2	Future Year Link Capacity Assessments)
	5.3	Pedestrian Connections 12	1
6	SUMI	MARY AND CONCLUSION12	2
	6.1	Summary	2
	6.2	Conclusion13	3

List of Ta	able	Page
Table 2-1	Summary of Development Parameters	2
Table 2-2	Provision of Parking and L/UL Facilities	3
Table 3-1	Summary of Vehicular Traffic Count Surveys	4
Table 3-2	Passenger Car Unit Conversion Factors	4
Table 3-3	2024 Peak Hour Junction Capacity Assessment	5
Table 3-4	2024 Peak Hour Road Link Capacity Assessment	5
Table 4-1	Locations of Screenline for Validation	6
Table 4-2	Validation Criteria	6
Table 4-3	Validation Results	7
Table 4-4	Adopted Vehicular Trip Rates for the Project Site	8
Table 4-5	Estimated Peak Hour Vehicle Flows for the Project Site	8
Table 5-1	2034 Peak Hour Junction Capacity Assessment	10
Table 5-2	2034 Peak Hour Road Link Capacity Assessment	11

List of Figures

igure 2-1	Site Location and Study Area
igure 2-2	Proposed Vehicular and Pedestrian Accesses
Figure 3-1	Locations of Surveyed Junctions and Road Links
Figure 3-2	2024 Observed Peak Hour Traffic Flows
Figure 4-1	Future Road Network in the Study Area
igure 4-2	Locations of Key Junctions and Road Links for Assessment
igure 4-3	2034 Peak Hour Reference Flows
igure 4-4	Development Peak Hour Traffic Flows
igure 4-5	2034 Peak Hour Design Flows
Figure 5-1	Pedestrian Connections at G/F
igure 5-2	Pedestrian Connections at LG/F

Appendices

Appendix A 2024 Junction Calculation Sheets
Appendix B 2034 Junction Calculation Sheets

1 INTRODUCTION

1.1 Background

- 1.1.1 The Government proposes to develop the lands zoned as Government, Institution of Community ("GIC") in Area 29, Kwu Tung North, into a Joint-user Complex ("JUC") and Joint-user General Office Building ("JUB"). To achieving better air ventilation, enhancing the environmental sustainability and quality of the spaces particularly at pedestrian level, mitigating the heat island effect, allowing provision of more greenery on ground levels for public enjoyment and retaining of a Tree of Particular Interest (TPI) of large size near the northwest corner with the Project Site, a planning application for relaxation of the building height restriction of the Project site to 170mPD under Section 16 (S16) of the Town Planning Ordinance, Cap 131 is proposed.
- 1.1.2 Ozzo Technology (HK) Limited has been commissioned to undertake a Traffic Impact Assessment (TIA) Study in support of the above S16 planning application of the Joint-user Complex and Joint-user General Office Building at Area 29, Kwu Tung North ("the Project Site").

1.2 Study Objectives

- 1.2.1 The main objectives of this Traffic Impact Assessment ("TIA") Study are as follows:
 - To review the existing traffic condition of the surrounding road network;
 - To estimate the potential traffic generations/attractions to be induced by the Proposed Scheme;
 - To assess the future traffic situation of the surrounding road network; and
 - To appraise the potential traffic impact of the Proposed Scheme on the surrounding road network and to recommend improvement proposals, if required.

1.3 Report Structure

- 1.3.1 Following this introductory chapter, this report is arranged as follows:
 - Chapter 2 describes the location and the development parameters of the Proposed Scheme;
 - Chapter 3 summarizes the existing traffic conditions in the vicinity of the Project Site;
 - Chapter 4 describes the methodology for estimating the amount of vehicular traffic to be induced by the Proposed Scheme;
 - Chapter 5 details the traffic forecast and the results of traffic impact assessment; and
 - A summary of the findings and conclusion of this TIA study are given in Chapter 6.

2 DESCRIPTONS OF THE PROPOSED SCHEME

2.1 Site Location and Study Area

- 2.1.1 The Project Site, with a total site area of approx. 20,980m², is situated at Kwu Tong North New Development Area and is bounded by Fanling Highway and Castle Peak Road (Chau Tau) to the south, Heung Tsz Road to the north.
- 2.1.2 **Figure 2-1** shows the location of the Project Site and the proposed Study Area for this TIA Study.

2.2 Development Parameters for the Proposed Scheme

2.2.1 The Proposed Scheme consists of the Joint-user General Office Building (JUB) and Joint-user Complex (JUC) with a total GFA of approx. 163,400 m². **Table 2-1** summarizes the development parameters of the Proposed Scheme.

Table 2-1 Summary of Development Parameters

Parameters	JUB & JUC
Site Area	~20,980 m²
Plot Ratio (PR)	~7.8
Office	~120,900 m²
Office (supporting community facilities)	~4,440 m²
Kindergarten (13 classrooms)	~930 m²
Clinic	~8,070 m²
Library	~6,060 m²
Swimming Pool and Sports Centre	~21,020 m ²
Children Care Centre	~1,980 m²
Total GFA	~163,400 m²

2.3 Parking and Loading/Unloading Facilities

2.3.1 The parking and loading / unloading (L/UL) facilities comply with the agreed provisions under the Project Definition Statement (PDS) in Traffic Feasibility Study (TFS) stage in which a total of about 433 parking and L/UL spaces will be provided. **Table 2-2** summarizes the internal transport facilities to be provided by the Proposed Scheme.

Table 2-2 Provision of Parking and L/UL Facilities

Use	Vehicle Type	Proposed Provision	Size (L x W x H)	Total Nos. of Spaces
	Private Car	~337	5m x 2.5m x 2.4m	
	Coach	4	12m x 3.5m x 3.8m	
	Van	13	7m x 3.5m x 3.6m	
	Ambulance	2	8m x 3.5m x 3.6m	
	Estate cars	7	5m x 3m x 2.4m	
Parking Spaces	Medium / Heavy Goods Vehicles	3	11m x 3.5m x 4.7m	Total Nos. of Parking
r arking Spaces	Bicycle	20	2m x 0.7m x 2.4m	Spaces = ~400
	Motorcycle	7	2.5m x 1m x 2.4m	
	16-seater Van	3	7m x 3m x 3.5m	
	Large Van	1	5.3m x 2.2m x 2.4m	
	10-seater Van	1	5.7m x 3.13m x 2m	
	GOPC Accessible Parking	2	5m x 3.5m x 2.4m	
	Private Car	4	5m x 2.5m x 2.4m	
	Coach	6	12m x 3.5m x 3.8m	
	Van	6	7m x 3.5m x 3.6m	
	Ambulance	4	8m x 3.5m x 3.6m	
Las Pas (Halas Pas	Ambulance	2	9m x 3m x 3.6m	Table of the
Loading / Unloading (L/UL) Spaces	Medium/Heavy Goods Vehicles	6	11m x 3.5m x 4.7m	Total Nos. of L/UL Spaces = 33
	16-seater Van	1	7m x 3m x 3.5m	
	Light Goods Van	1	7m x 3.5m x 3m	
	GOPC Loading Platform	2	11m x 3.5m x 4.7m	
	GOPC Garbage truck	1	9m x 3m x 4.7m	
Total Nos. of Parking and L/UL spaces ~433				

2.4 Vehicular and Pedestrian Access Arrangements

2.4.1 The proposed vehicular accesses will be situated at Road L1 at the northern boundary of the Project Site, and at Castle Peak Road at the southern boundary of the Project Site. The pedestrian accesses will be situated at the northern and eastern boundary of the Project Site. A drop-off area will be provided on the G/F of the Proposed Scheme and other parking and loading/unloading facilities will be provided at the basement. The locations of the proposed vehicular and pedestrian accesses are shown in **Figure 2-2**.

3 EXISTING TRAFFIC CONDITIONS

3.1 Existing Road Network

- 3.1.1 The existing road network in the vicinity of the Project Site is shown in **Figure 2-1**.
- 3.1.2 Castle Peak Road Chau Tau section, a Local Distributor road, is a single-2 lane carriageway connecting Castle Peak Road San Tin in the west and Castle Peak Road Kwu Tung in the east.
- 3.1.3 Heung Tsz Road is a local access road with single-2 lane configuration which connects Pak Sau Road to the west, providing access to developments along the road.

3.2 Traffic Surveys at Key Links and Junctions

3.2.1 To understand the existing traffic conditions on the road network within the Study Area, vehicular traffic count surveys were conducted at key road junctions and road links on 18 Dec 2024 (Wednesday) between 06:30-09:30 and 16:00-19:00.

Table 3-1 presents a summary of the vehicular traffic count surveys being undertaken and the survey locations are shown in Figure 3-1.

Table 3-1 Summary of Vehicular Traffic Count Surveys

Survey Type	Location	Figure	Survey Date	Data Collected
Vehicular Count Surveys	J1, J2, J3, L1, L2	Figure 3-1	2024-12-18 (Wednesday)	Manual Classified count in 15 min intervals

3.3 Existing Vehicle Traffic Conditions

3.3.1 All vehicle flows recorded during the traffic surveys are converted to passenger car unit (PCU) based on the PCU factors as indicated in Table 2.3.1.1 of Volume 2 of Transport Planning and Design Manual (TPDM) as summarized in **Table 3-2**.

Table 3-2 Passenger Car Unit Conversion Factors

	PCU Conversion Factor ⁽¹⁾			
Vehicle Type	Traffic Signal	Priority junction/ Roundabout		
Car / Taxi	1.00	1.00		
Public Light Bus / Minibus	1.50	1.50		
Light Goods Vehicle	1.50	1.50		
Medium/ Heavy Goods Vehicle	1.75	2.80		
Bus / Coach	2.00	2.80		

Notes: (1) Table 2.3.1.1, Chapter 2.3, Volume 2, TPDM-2024

- 3.3.2 By applying the above PCU factors, vehicular traffic flows in PCUs are calculated and the AM and PM peak hour is identified to occur at 07:45-08:45 and 17:15-18:15 respectively. **Figure 3-2** presents the 2024 observed AM and PM peak hour traffic flows.
- 3.3.3 Based on the existing traffic flows, the peak hour performance of the key junctions in the vicinity of the Project Site is assessed. The assessment results are indicated in **Table 3-3** and detailed junction calculation sheets are given in **Appendix A**.

Table 3-3 2024 Peak Hour Junction Capacity Assessment

Jn.			Capacity	2024 Weekday		
ID.	Location ⁽¹⁾	Туре	Index ⁽²⁾	AM Peak	PM Peak	
J1	Castle Peak Road (Chau Tau) / Pak Sau Road	Priority	DFC	0.33	0.47	
J2	Castle Peak Road (Chau Tau) / Unnamed Road	Priority	DFC	0.44	0.37	
J3	Castle Peak Road (Kwu Tung) / Ho Sheung Heung Road	Priority	DFC	0.69	0.67	

Notes.

(1) Refer to Figure 3-1 for junction locations

(2)DFC = Design Flow to Capacity for priority junction

- 3.3.4 The results reveal that all the key junctions within the Study Area operate satisfactorily during the peak hours currently.
- 3.3.5 Based on the existing traffic flows, the peak hour performances of the key road links in the vicinity of the Project Site are also assessed and the results are indicated in **Table 3-4**.

Table 3-4 2024 Peak Hour Road Link Capacity Assessment

Ma	Location ⁽¹⁾ Design Capacity (pcu/hr)	Diversities		Flows	2024 Weekday	
No.		(pcu/hr)	AM Peak	PM Peak		
		EB	6,100	Flows	4,409	4,381
1.1	L1 Fanling Highway	□ ED	0,100	P/Df ⁽²⁾	0.72	0.72
LI		Faming righway WB	6,100	Flows	4,194	4,129
		VVD		P/Df ⁽²⁾	0.69	0.68
	L2 Castle Peak Road (Chau Tau)	1,250	Flows	575	355	
1.0		ED 1,230	P/Df ⁽²⁾	0.46	0.28	
LZ		WD	WD 4.050	Flows	578	677
	WB		1,250	P/Df ⁽²⁾	0.46	0.54

Notes:

(1) Refer to Figure 3-1 for road link locations

(2) P/Df = Peak Hourly Flows/Design Flow Ratios (P/Df) for road links

3.3.6 The results reveal that all the key road links in the vicinity of the Project Site operate satisfactorily during the peak hours.

4 TRAFFIC FORECASTS

4.1 Modelling Methodology

- 4.1.1 A Local Area Traffic Model (LATM) is developed for this study based on the 2019-based BDTM (NTE1) obtained from the Transport Planning Division of Transport Department, where the future year assumptions under the 2019-based BDTM (including future development, road network, toll assumptions and public transport services) are adopted.
- 4.1.2 To ensure the robustness of the future year model, validation has been conducted by comparing the 2024 surveyed traffic flows and the LATM 2024 base year modelled flows, at the proposed screenline locations as shown in **Table 4-1**.

Table 4-1 Locations of Screenline for Validation

No.	Location	Direction
1.4	Fooling Highway	EB
LI	Fanling Highway	WB
1.0	Cootle Dook Dood (Chay Tay)	EB
LZ	Castle Peak Road (Chau Tau)	WB

4.1.3 For the purpose of base year model validation, the validation process shall strictly follow the criteria as stated in **Table 4-2**.

Table 4-2 Validation Criteria

Validation Criteria	Validation Target
Total Link Flows at Screenline	100% within 10% of actual counts
Individual Link Flow at Screenline	100% within 20% of actual counts

4.2 Validation Results

4.2.1 The model validation results are shown in **Table 4-3**. The results indicated that all individual link flows are within 20% of actual counts, and the total link flows are within 10% of actual counts. The validation criteria for the base year model are well satisfied.

Table 4-3 Validation Results

No.	Location ⁽¹⁾	Directi		oserved (pcu/hr)		odelled (pcu/hr)	Difference (%)		
NO.	Location	on	AM	PM	AM	PM	AM	PM	
L1	14 5 5 15 15 1	EB	4,409	4,381	4,422	4,205	-0.3%	4.2%	
LI	Fanling Highway	WB	4,194	4,129	4,334	3,671	-3.2%	12.5%	
L2	Castle Peak Road	EB	575	355	525	327	9.5%	8.7%	
LZ	(Chau Tau)	WB	578	677	532	616	8.7%	9.9%	
	Total	9,756	9,542	9,812	8,818	-0.6%	8.2%		

4.3 Design Year

4.3.1 Based on the latest information, the Proposed Scheme is anticipated to be completed by 2031. Thus, the "Design Year" for this TIA study is 2034, i.e. 3 years after the planned full completion of the Proposed Scheme.

4.4 2034 Peak Hour Reference Flows

- 4.4.1 Model assumptions in 2031 BDTM (NTE1) such as planned road networks, railway and highway networks, new development area and planned road-based public transport services are adopted in the 2034 LATM for forecasting future traffic flows.
- Also, any adjustments in deriving the 2024 LATM from the 2019 BDTM are applied to the 2031 BDTM as appropriate. In addition, with reference to the 2021-based Territorial Population and Employment Data Matrices (TPEDM) published by Planning Department, a growth factor of 1% p.a. is applied to represent the growth from 2031 to 2034.
- 4.4.3 **Figure 4-1** shows the future road network in the Study Area that are included in the 2034 LATM. Heung Tsz Road will become Road L1 and connect with Road D1 at the western end. **Figure 4-2** also shows the links and junctions to be assessed in this Study.
- 4.4.4 The 2034 Peak Hour Reference Flows (i.e. without the Proposed Scheme) output from the LATM are presented in **Figure 4-3**.

4.5 Peak Hour Project Flows

4.5.1 The peak hour vehicular trips to be induced by the Proposed Scheme are estimated with reference to the existing trip rates observed at different uses similar to the corresponding uses by the Proposed Scheme. **Table 4-4** shows the adopted trip rates for different type of uses.

Table 4-4 Adopted Vehicular Trip Rates for the Project Site

		Adopted Peak Hour Vehicular Trips							
Development Type	Trip Rate Unit	Weeko	lay AM	Weekday PM					
		In	Out	ln	Out				
Office / Office (supporting community facilities) (1)	per 100m ² GFA	0.2452	0.1703	0.1175	0.1573				
Kindergarten (2)	per classroom	1.9231	1.4615	0.6154	1.1538				
Clinic (3)	per 100m ² GFA	0.1257	0.1029	0.0800	0.0914				
Swimming Pool and Sports Centre (4)	per 100m ² GFA	0.2856	0.2317	0.3152	0.3125				
Children Care Centre (5)	per 100m ² GFA	0.0663	0.0400	0.0554	0.0518				

Notes: (1) Adopt mean trip of Office from TPDM

- (2) Peak Hour trip rates observed at Zenith Kindergarten
- (3) Peak Hour trip rates observed at Yau Ma Tei Polyclinic
- (4) Peak Hour trip rates observed at Fung Kam Street Sports Centre
- (5) Peak Hour trip rates observed at Kwu Tung North Multi Welfare Service Complex

4.5.2 Based on the adopted trip rates, the estimated peak hour vehicular trips to be generated by the Proposed Scheme are shown in **Table 4-5**.

Table 4-5 Estimated Peak Hour Vehicle Flows for the Project Site

	Vehicular Trips for the Project Site										
Development Type	AM Peak Hou	r Trip (pcu/hr)	PM Peak Hour Trip (pcu/hr)								
	ln	Out	ln	Out							
Office / Office (supporting community facilities) (125,340 m²)	307	213	147	197							
Kindergarten (13 classrooms)	18	14	6	11							
Clinic (8,070 m ²)	10	8	6	7							
Library ⁽¹⁾ (6,060 m ²)	5	5	5	5							
Swimming Pool and Sports Centre (21,020 m²)	38	31	42	42							
Children Care Centre (1,980 m²)	1	1	1	1							
Sub-Total	379	272	207	263							
2-way Total	65	51	47	70							

Notes: (1) No vehicular trips generation or attraction is expected from library. For conservative, peak hour trips of 5 pcu/hr per direction is assumed for library.

4.5.3 It is estimated that the Proposed Scheme would generate two-way flows of 651 pcu/hr (379 in and 272 out) and 470 pcu/hr (207 in and 263 out) in the AM and PM peak hour respectively.

4.6 Future Year Design Peak Hour Traffic Flows

- 4.6.1 The additional development traffic in **Table 4-5** is then assigned onto the nearby road network. The resulting Peak Hour Project flows are shown in **Figure 4-4**.
- 4.6.2 By adding the Project Flows in **Figure 4-3** to the 2034 Peak Hour Reference Flows (i.e. without the Proposed Scheme) in **Figure 4-2**, the 2034 Peak Hour Design Flows (i.e. with the Proposed Scheme) are derived and shown in **Figure 4-5**.

5 TRAFFIC IMPACT ASSESSMENT

5.1 Future Year Junction Capacity Assessments

5.1.1 Based on the 2034 Peak Hour Reference Flows shown in **Figure 4-3** and the Design Flows shown in **Figure 4-5**, junction capacity assessment are undertaken and the results are presented in **Table 5-1** with detailed calculation sheets provided in **Appendix B**.

Table 5-1 2034 Peak Hour Junction Capacity Assessment

Jn.	Location ⁽¹⁾	Туре	Capacity		ference nario	2034 Design Scenario		
ID.	Location	Туре	Index ⁽²⁾	AM Peak	PM Peak	AM Peak	PM Peak	
J1	Castle Peak Road (Chau Tau) / Pak Sau Road	Priority	DFC	0.32	0.09	0.42	0.11	
J3	Castle Peak Road (Kwu Tung) / Ho Sheung Heung Road	Priority	DFC	0.31	0.28	0.31	0.29	
J4	Road D1 / Road L1	Signal	RC	100%+	100%+	43.7%	93.1%	
J5	Road P1 / Road D1 / Slip Road to Fanling Highway	Roundabout	DFC	0.30	0.39	0.37	0.41	
J6	Castle Peak Road (Chau Tau) / Road P1	Roundabout	DFC	0.37	0.27	0.45	0.29	

Notes: (1) Refer to Figure 3-2 for junction locations. J2 is removed in future road network.

5.1.2 It is indicated in **Table 5-1** that all the key junctions in the vicinity of the Project Site would be operating within capacity during the peak hours for both the Reference and Design scenarios.

5.2 Future Year Link Capacity Assessments

5.2.1 Based on the 2034 Peak Hour Reference Flows and Design Flows, link capacity assessments for Design Year 2034 are carried out and the results are presented in **Table 5-2**.

⁽²⁾ RC = Reserve Capacity for signal-controlled junction; DFC = Design Flow to Capacity for priority junction

Table 5-2 2034 Peak Hour Road Link Capacity Assessment

No	1 4: (1)	Direction	Design	Flows	_	eference nario	2034 Design Scenario		
No.	Location ⁽¹⁾	Direction	Capacity (pcu/hr)	(pcu/hr)	AM Peak	PM Peak	AM Peak	PM Peak	
		EB	8,200(3)	Flows	5,112	4,770	5,261	4,925	
L1	.1 Fanling Highway	EB	0,200(9)	P/Df ⁽²⁾	0.62	0.58	0.64	0.60	
L'		WB	8,200(3)	Flows	5,061	4,023	5,179	4,067	
				P/Df ⁽²⁾	0.62	0.49	0.63	0.50	
		EB	1,250	Flows	649	489	719	524	
L2	Castle Peak Road (Chau Tau)	EB	1,230	P/Df ⁽²⁾	0.52	0.39	0.58	0.42	
LZ	Castle Feak Road (Cliad Tau)	WB	1,250	Flows	634	707	714	742	
		VVD	1,230	P/Df ⁽²⁾	0.51	0.57	0.57	0.59	
		EB	1,250	Flows	74	219	339	364	
L3	Road L1	EB	1,230	P/Df ⁽²⁾	0.06	0.18	0.27	0.29	
LS	Noau Li	WB	1,250	Flows	322	86	512	270	
		VVD	1,230	P/Df ⁽²⁾	0.26	0.07	0.41	0.22	

Notes: (1) Refer to Figure 3-2 for road link locations

5.2.2 Assessment results indicate that all the key road links in the vicinity of the Project Site would be operating within capacity during the peak hours for both Reference and Design scenario.

5.3 Pedestrian Connections

- 5.3.1 The Project Site is well connected to the future Kwu Tung Station and a Public Transport Interchange (PTI) located at the North of the site, and Castle Peak Road and footbridge at the South of the site. Pedestrian of the Proposed Scheme can travel to the public transport facilities via the Urban Plaza & Greenery at the East of the Project Site.
- 5.3.2 **Figure 5-1** and **Figure 5-2** shows the pedestrian connections to the Kwu Tung Station, PTI, and other local areas, from the G/F and LG/F of the project site respectively.

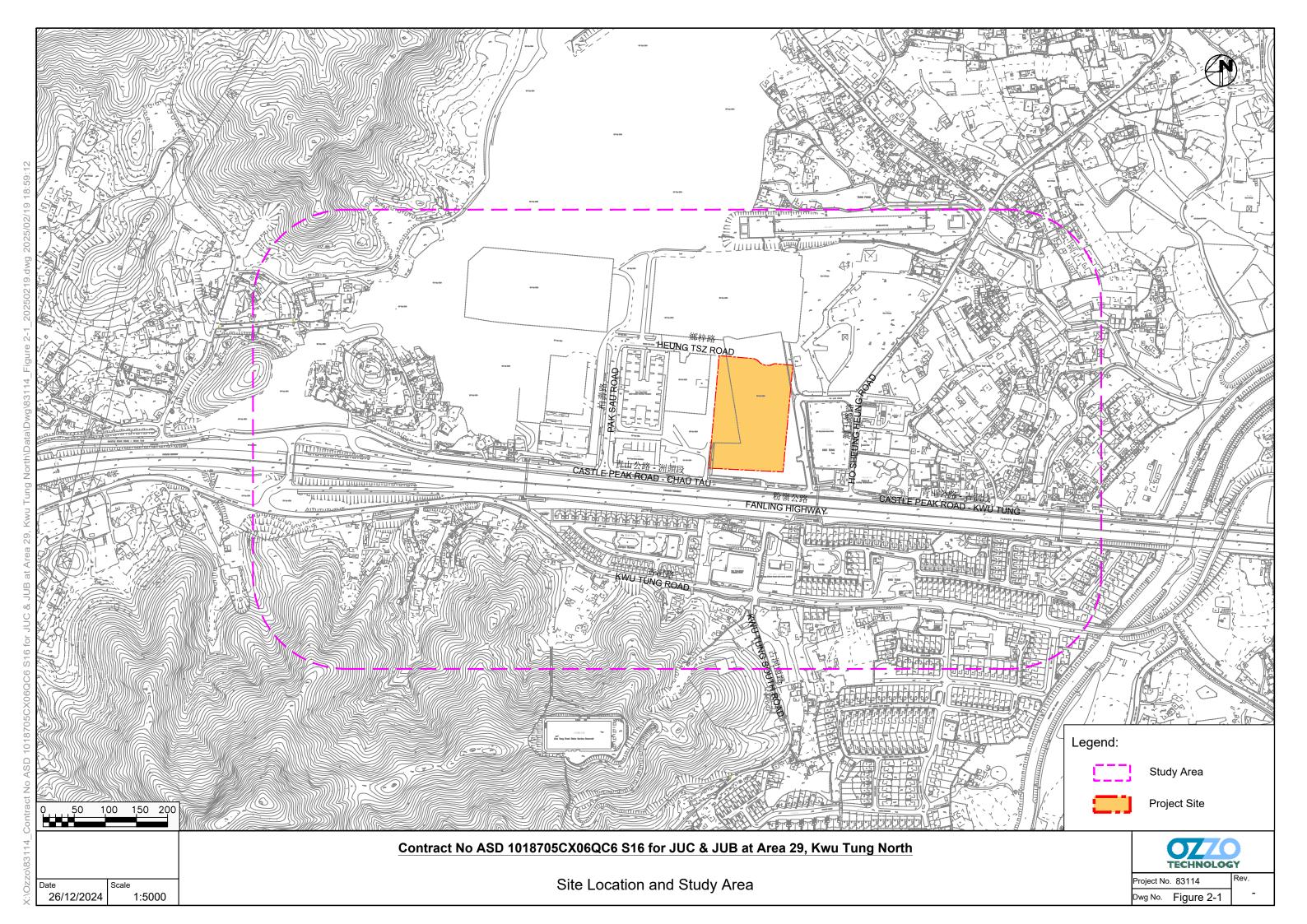
⁽²⁾ P/Df = Peak Hourly Flows/Design Flow Ratios (P/Df) for road links

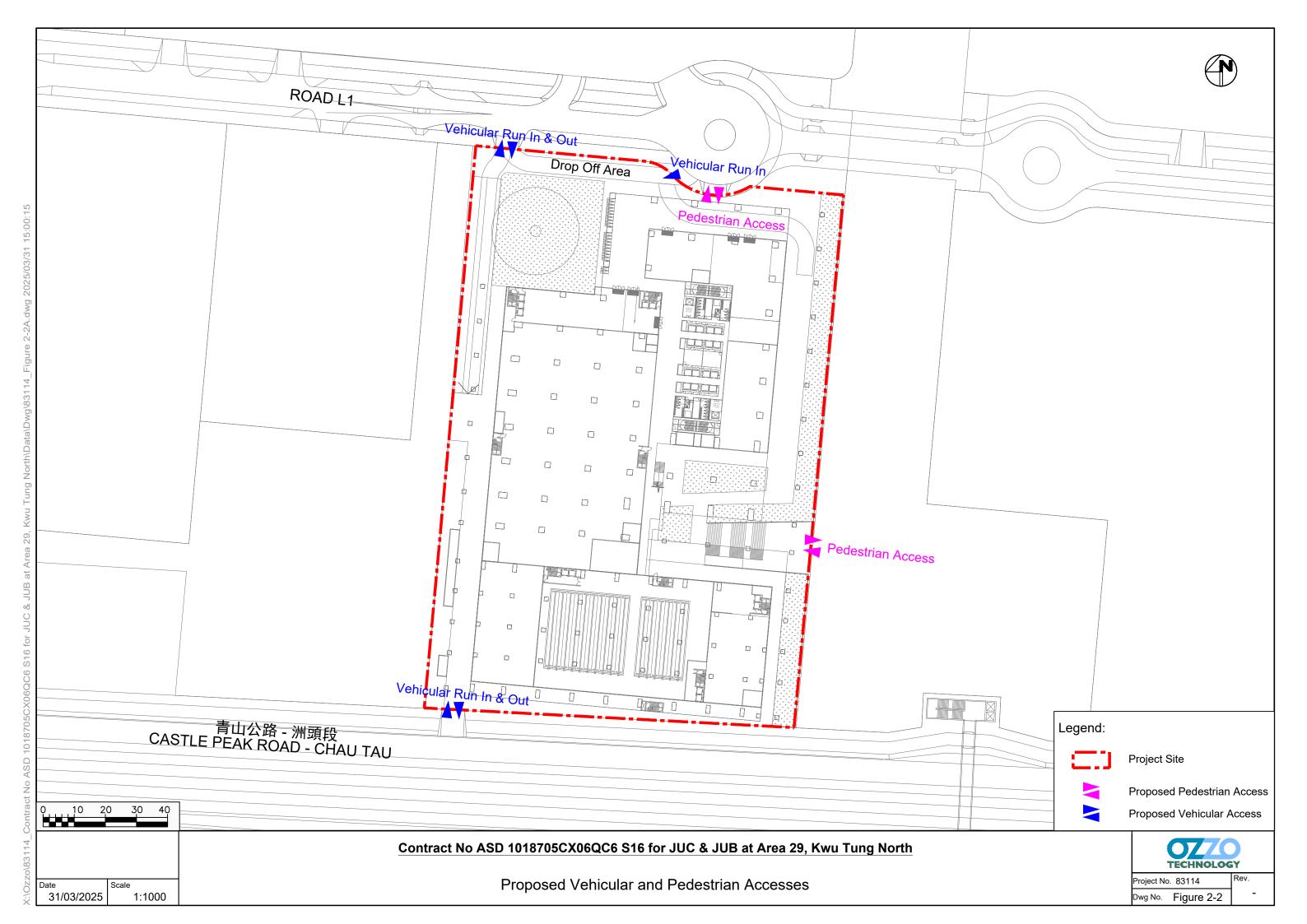
⁽³⁾ Fanling Highway to be widen to 4-lanes dual carriageway

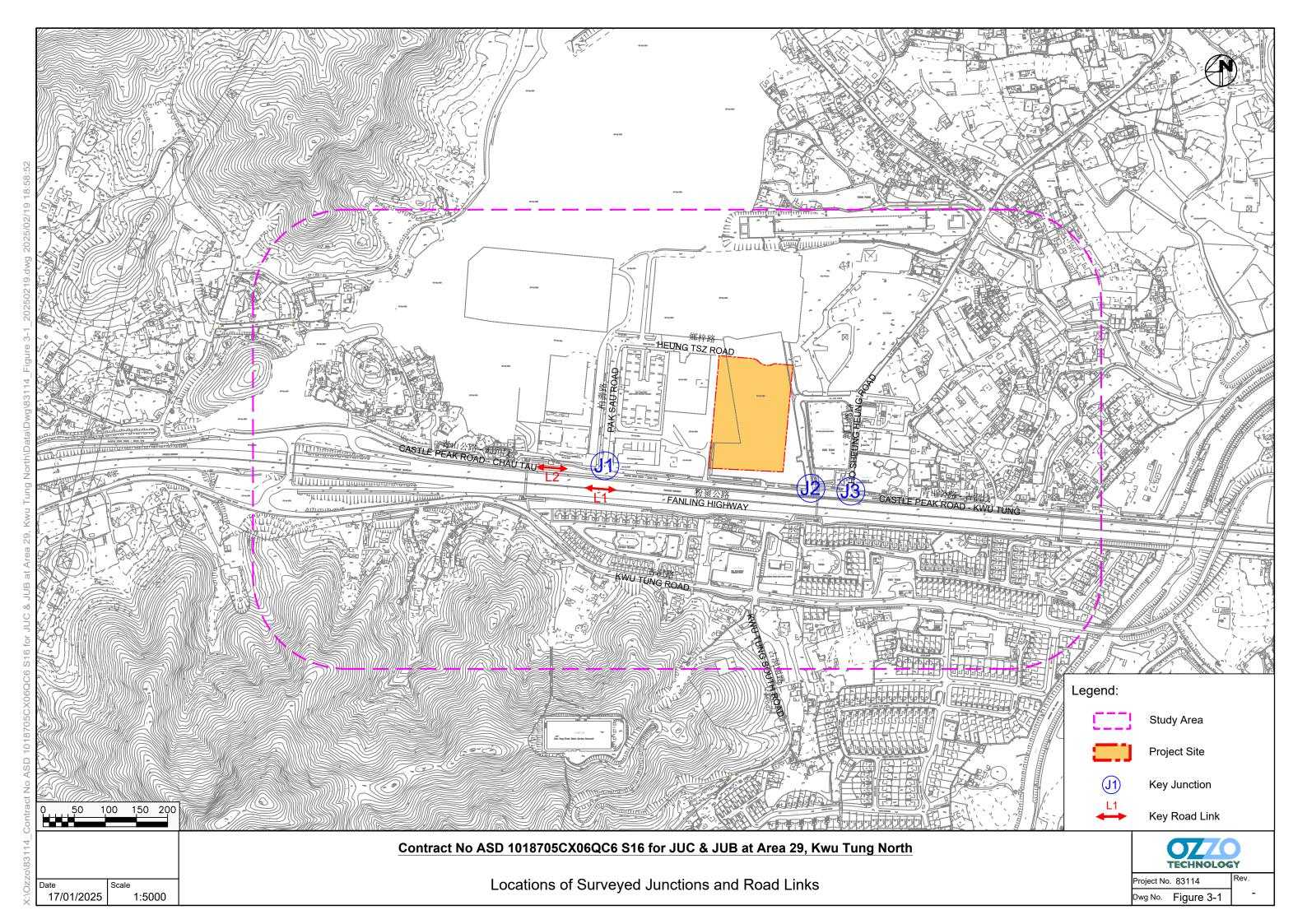
6 SUMMARY AND CONCLUSION

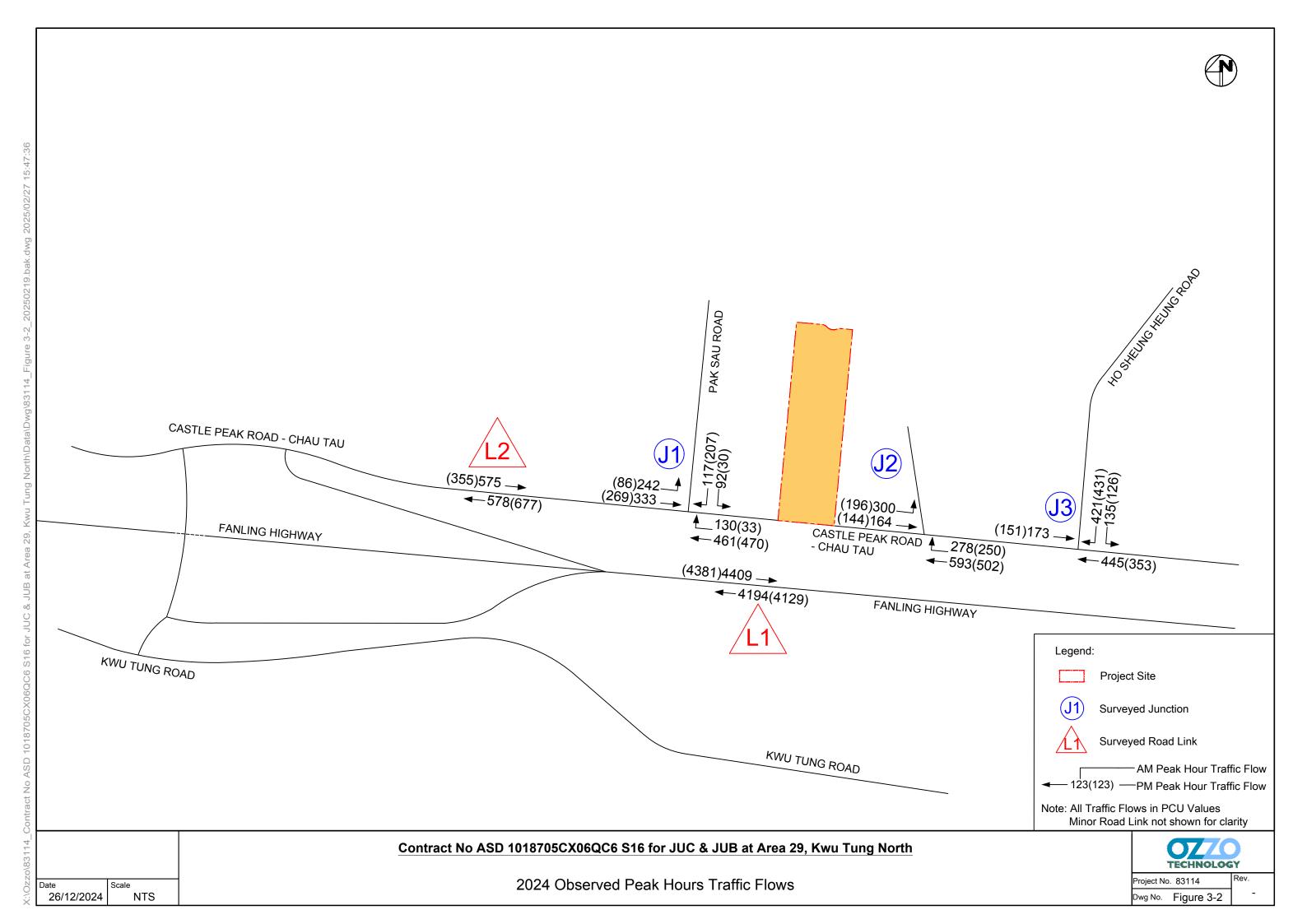
6.1 Summary

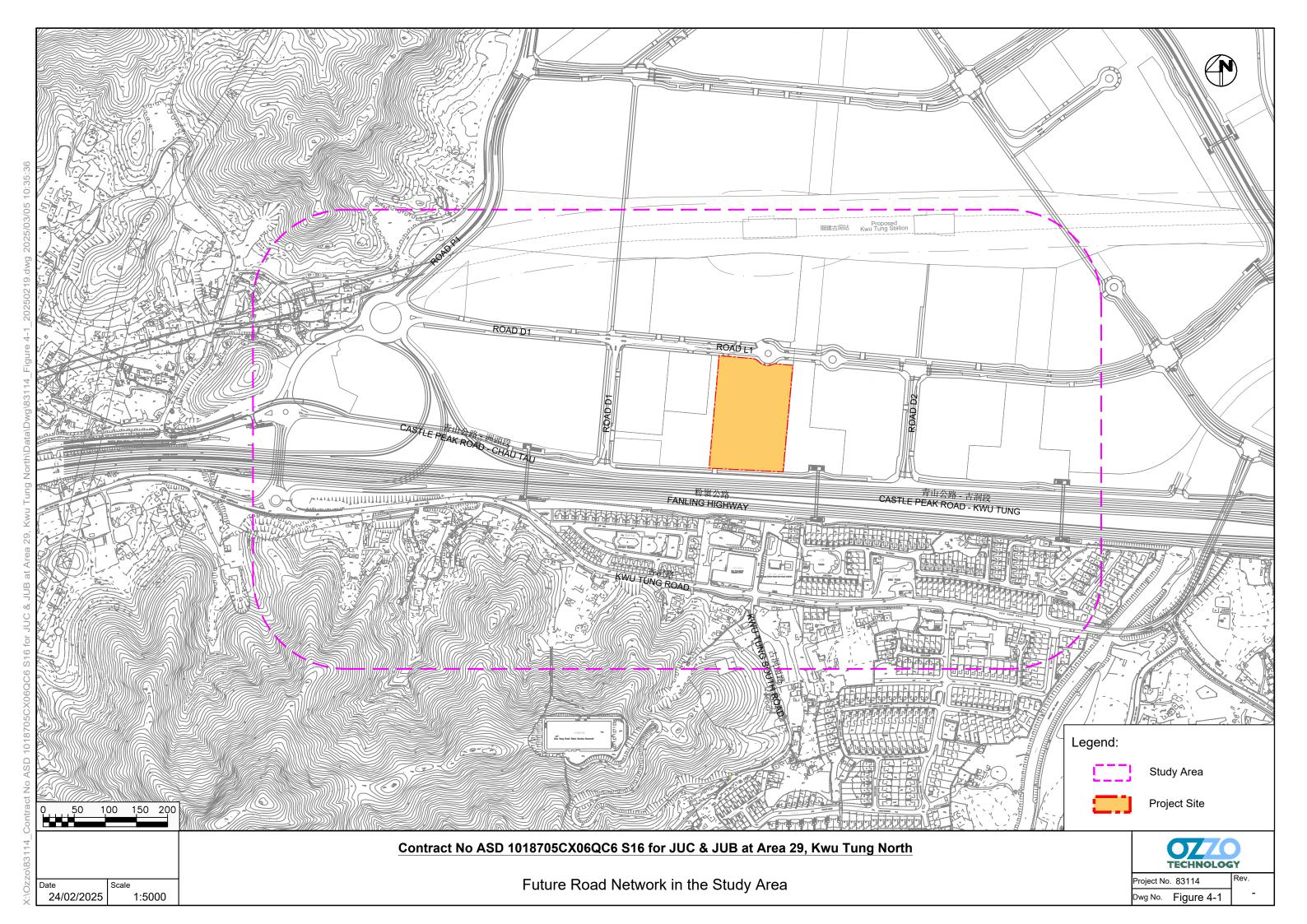
- 6.1.1 The Government proposes to develop the lands zoned as Government, Institution of Community ("GIC") in Area 29, Kwu Tung North, into a Joint-user Complex ("JUC") and Joint-user General Office Building ("JUB"). To achieving better air ventilation, enhancing the environmental sustainability and quality of the spaces particularly at pedestrian level, mitigating the heat island effect, allowing provision of more greenery on ground levels for public enjoyment and retaining of a Tree of Particular Interest (TPI) of large size near the northwest corner with the Project Site, the Applicant proposes a relaxation of the building height restriction of the Project site to 170mPD under Section 16 of the Town Planning Ordinance.
- 6.1.2 Ozzo Technology (HK) Limited is commissioned to undertake a Traffic Impact Assessment (TIA) Study to assess the traffic impact to be induced by the Proposed Scheme on the nearby road networks.
- 6.1.3 Capacity assessments are undertaken to reveal the 2024 AM and PM peak hour traffic conditions in the vicinity of the Project Site. The assessment results indicate that all the key junctions and road links perform satisfactorily during the AM and PM peak hours at present.
- 6.1.4 The anticipated completion year of the Proposed Scheme is 2031. The assessment year for the TIA study is therefore set as 2034, i.e. 3 years after the anticipated completion in 2031.
- 6.1.5 With reference to the 2019-based Base District Traffic Model (NTE-1), a Local Area Traffic Model is developed for forecasting the future traffic flows in the Study Area. Based on the forecast 2034 model flows, junction capacity assessments are undertaken to assess both the 2034 AM and PM peak hour conditions. The assessment results indicate that all the key junctions would perform within capacity during the peak hours for both Reference Scenario (i.e. without Proposed Scheme) and Design Scenario (i.e. with Proposed Scheme).
- 6.1.6 Link capacity assessments are also undertaken and the assessment results indicate that all the key road links in the Study Area would be operating within capacity during the 2034 AM and PM peak hour for both Reference and Design scenario.
- 6.1.7 A total of about 433 parking and loading / unloading (L/UL) spaces will be provided within the Project Site that comply with the agreed provisions under the Project Definition Statement (PDS) in Traffic Feasibility Study (TFS) stage.

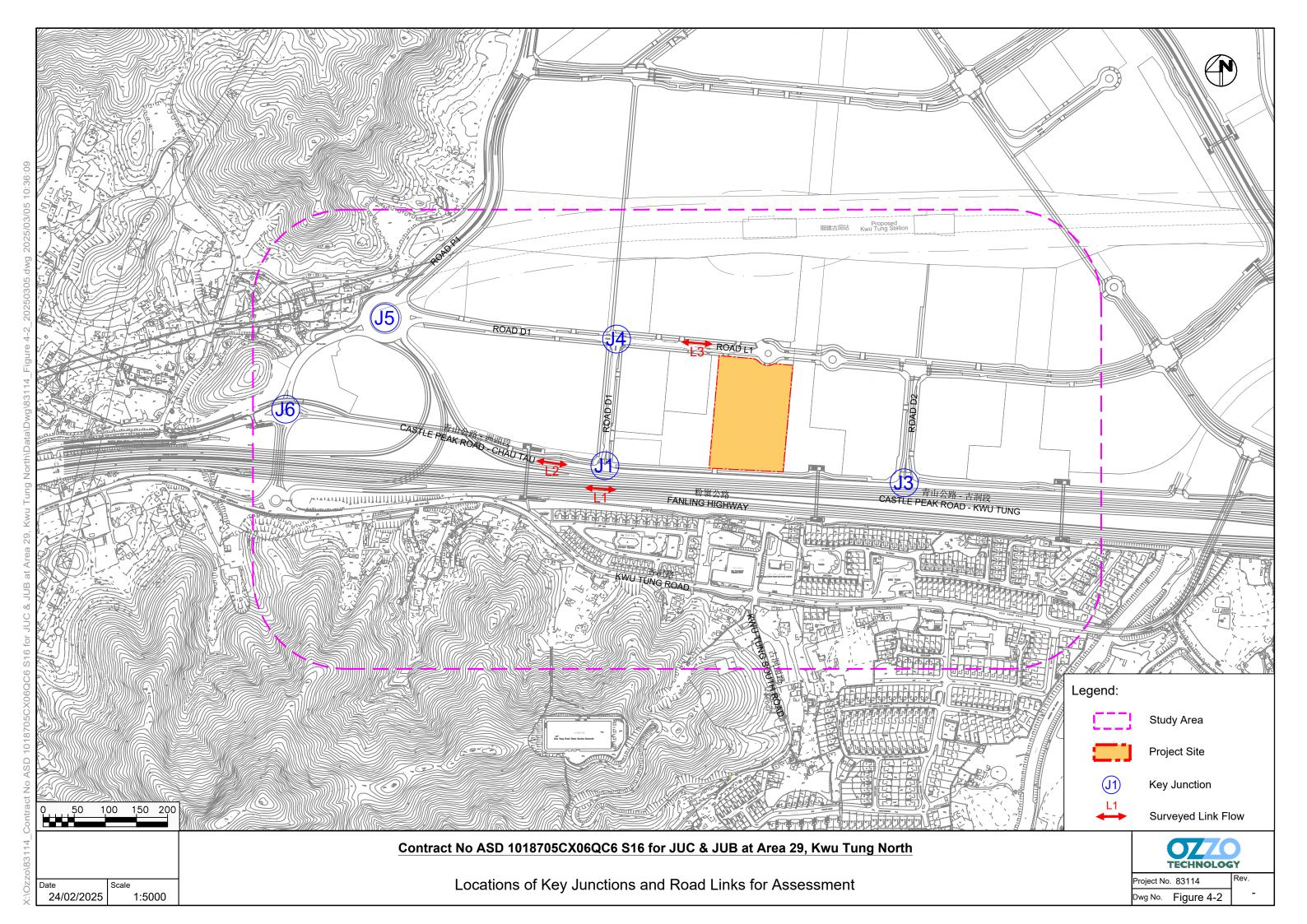


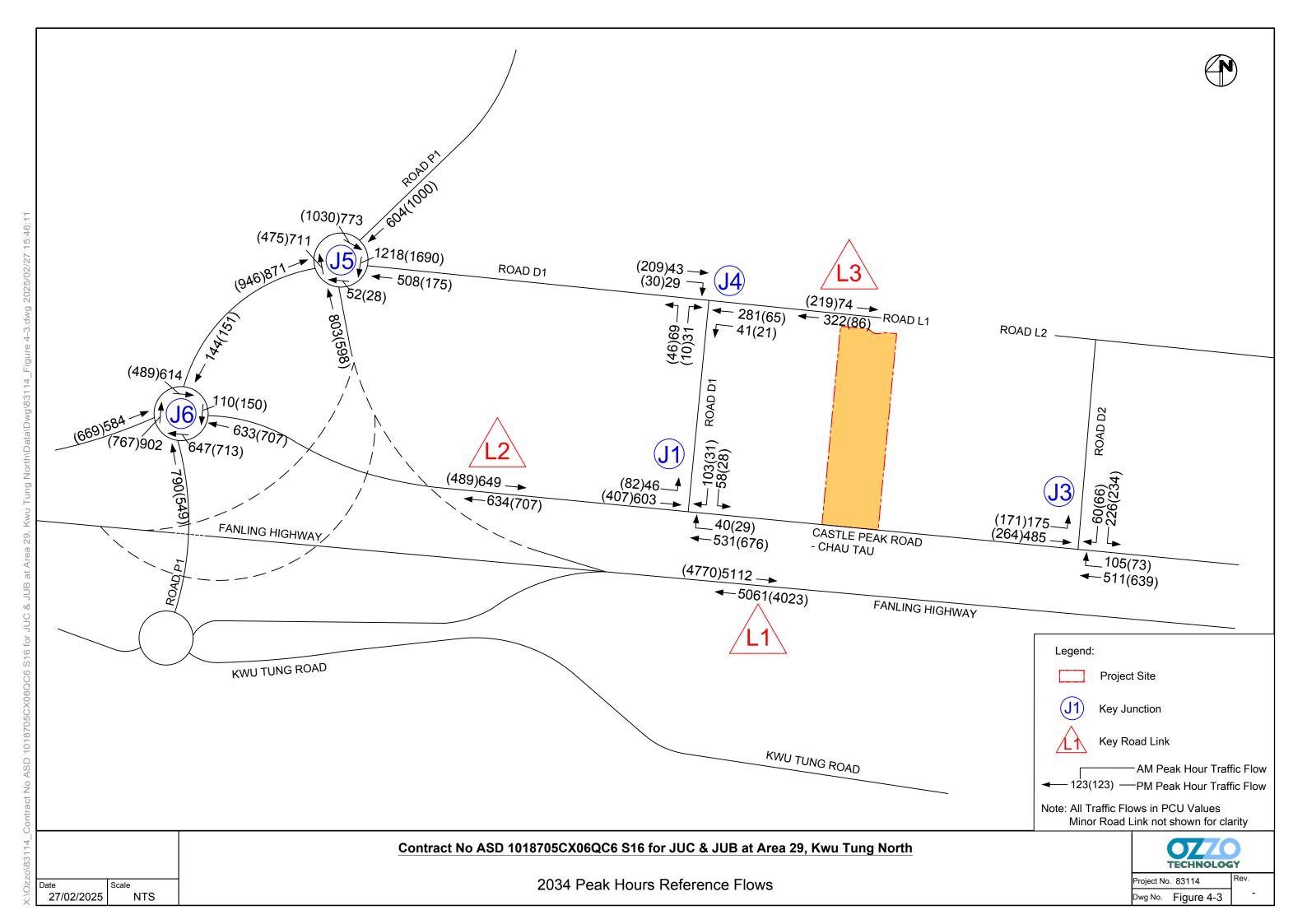

6.2 Conclusion

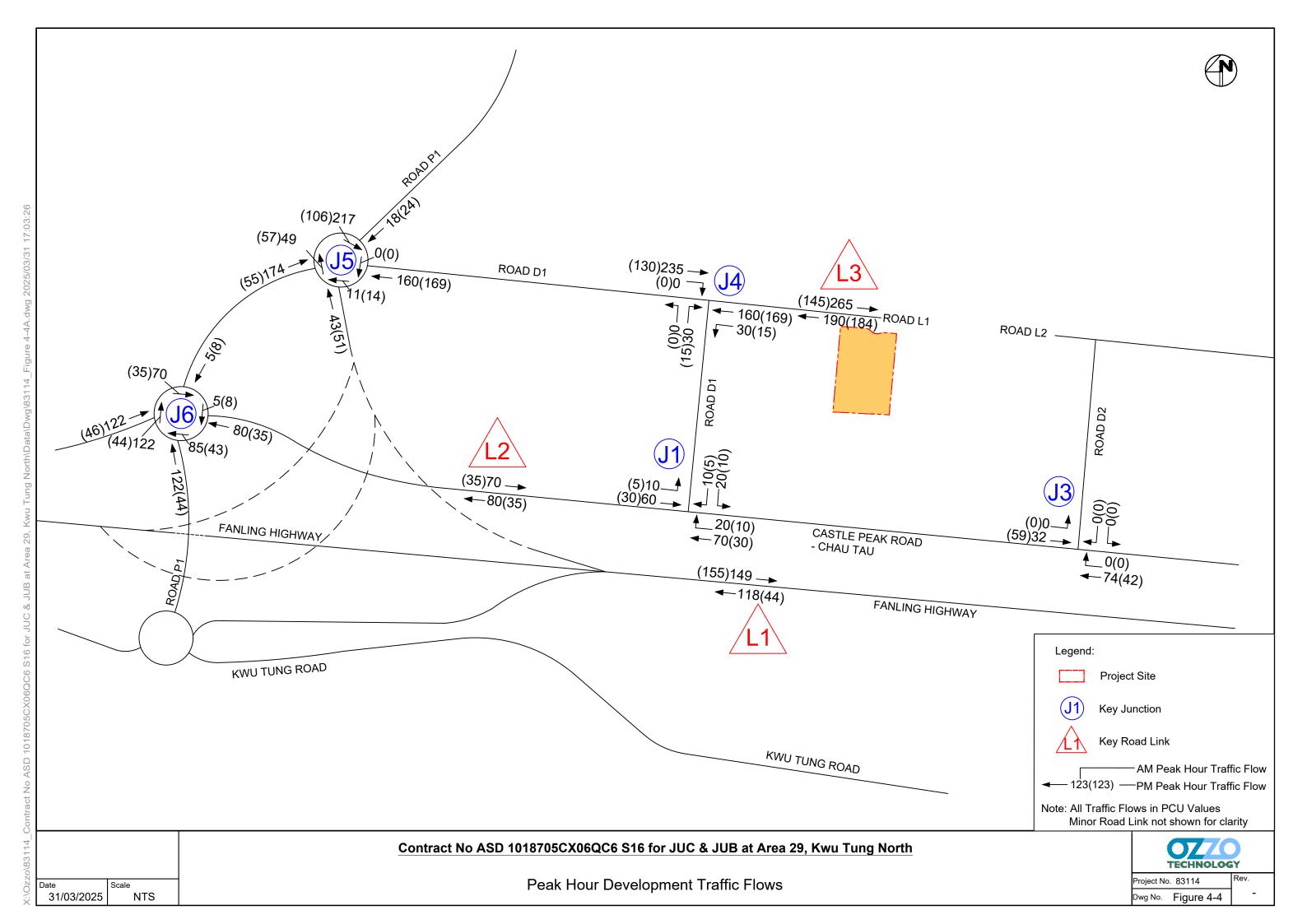

6.2.1 The traffic impact assessment results indicate that the Proposed Scheme would not create adverse impact on the future road network in the vicinity of the Project Site.

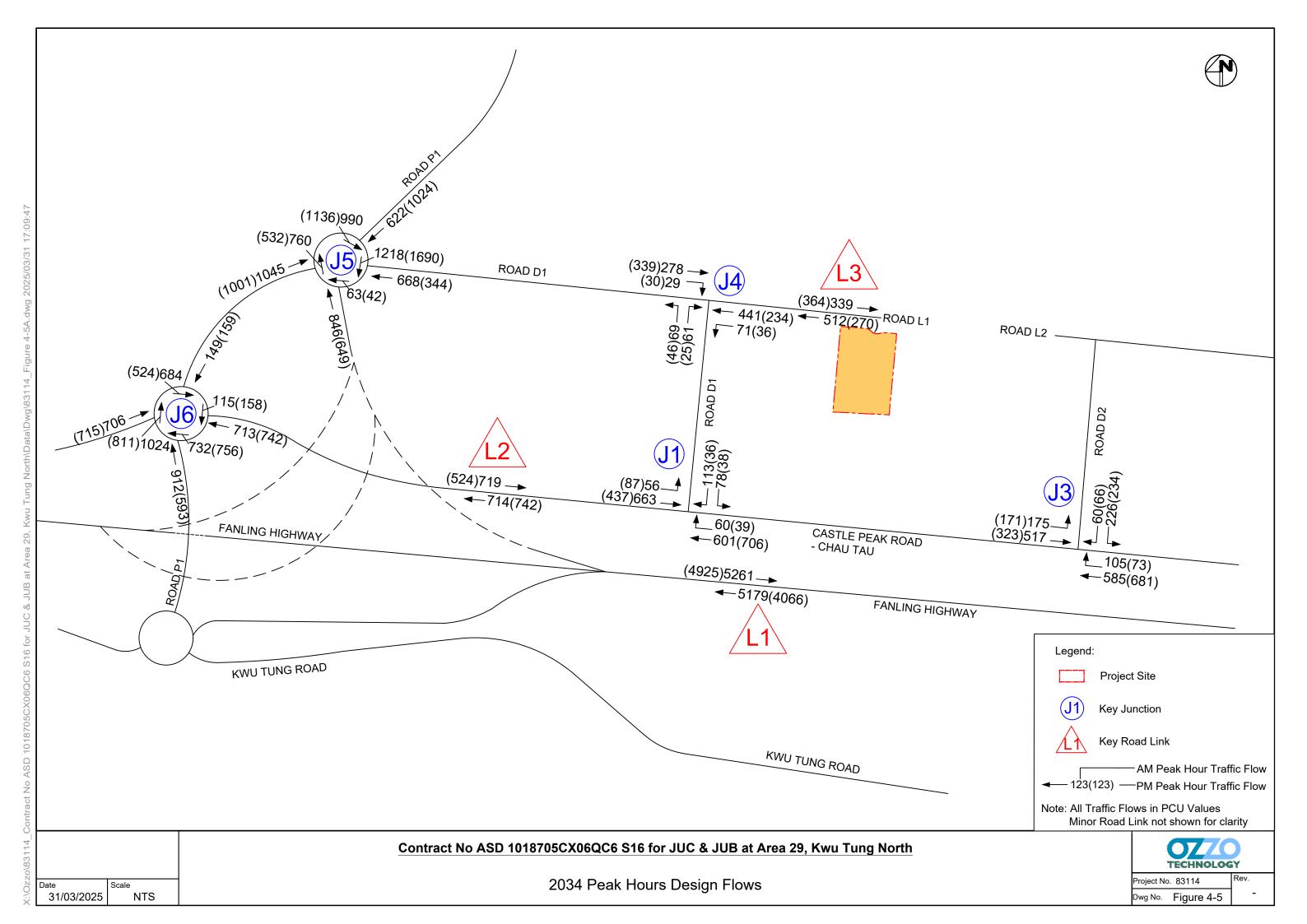


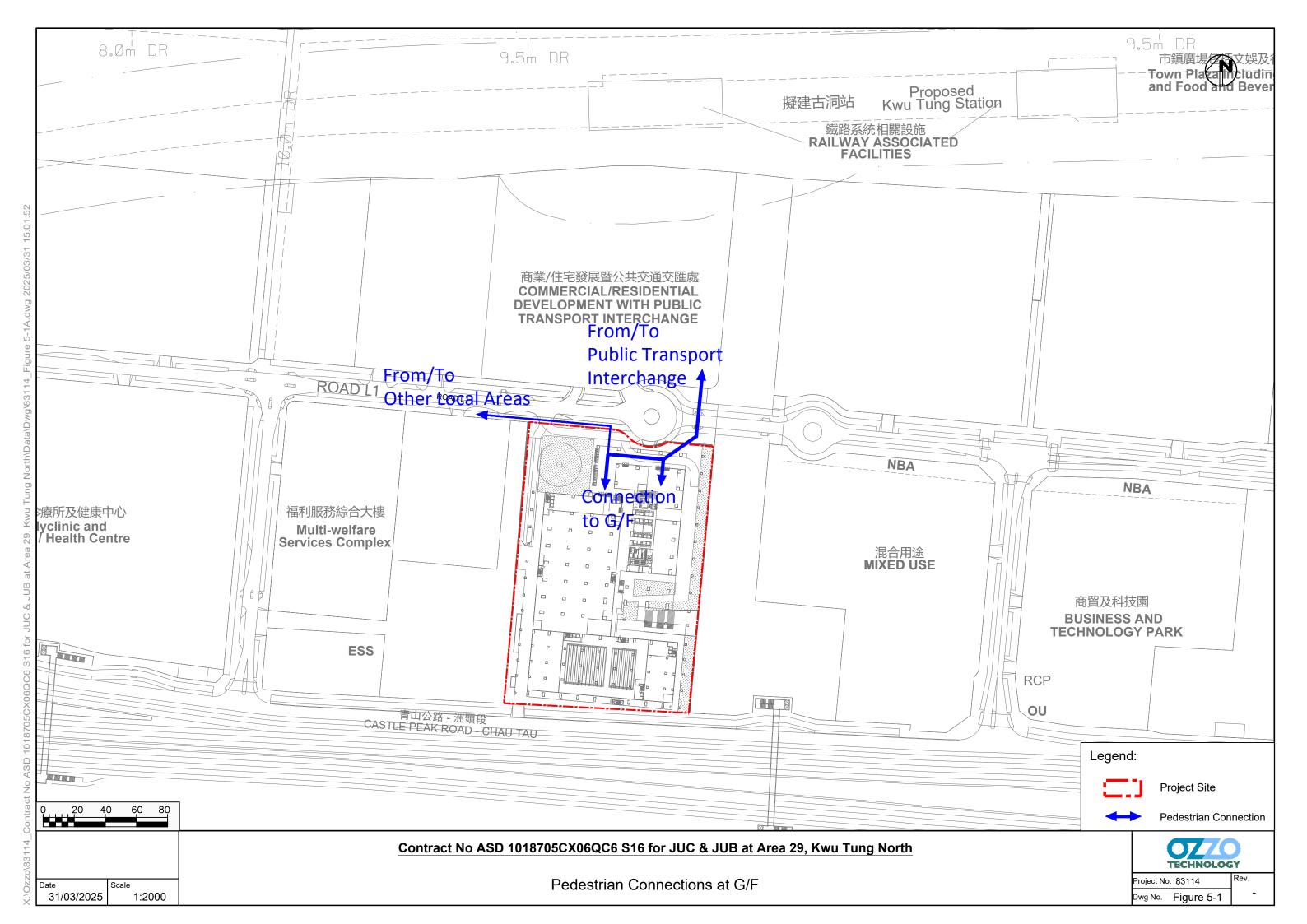

Figures

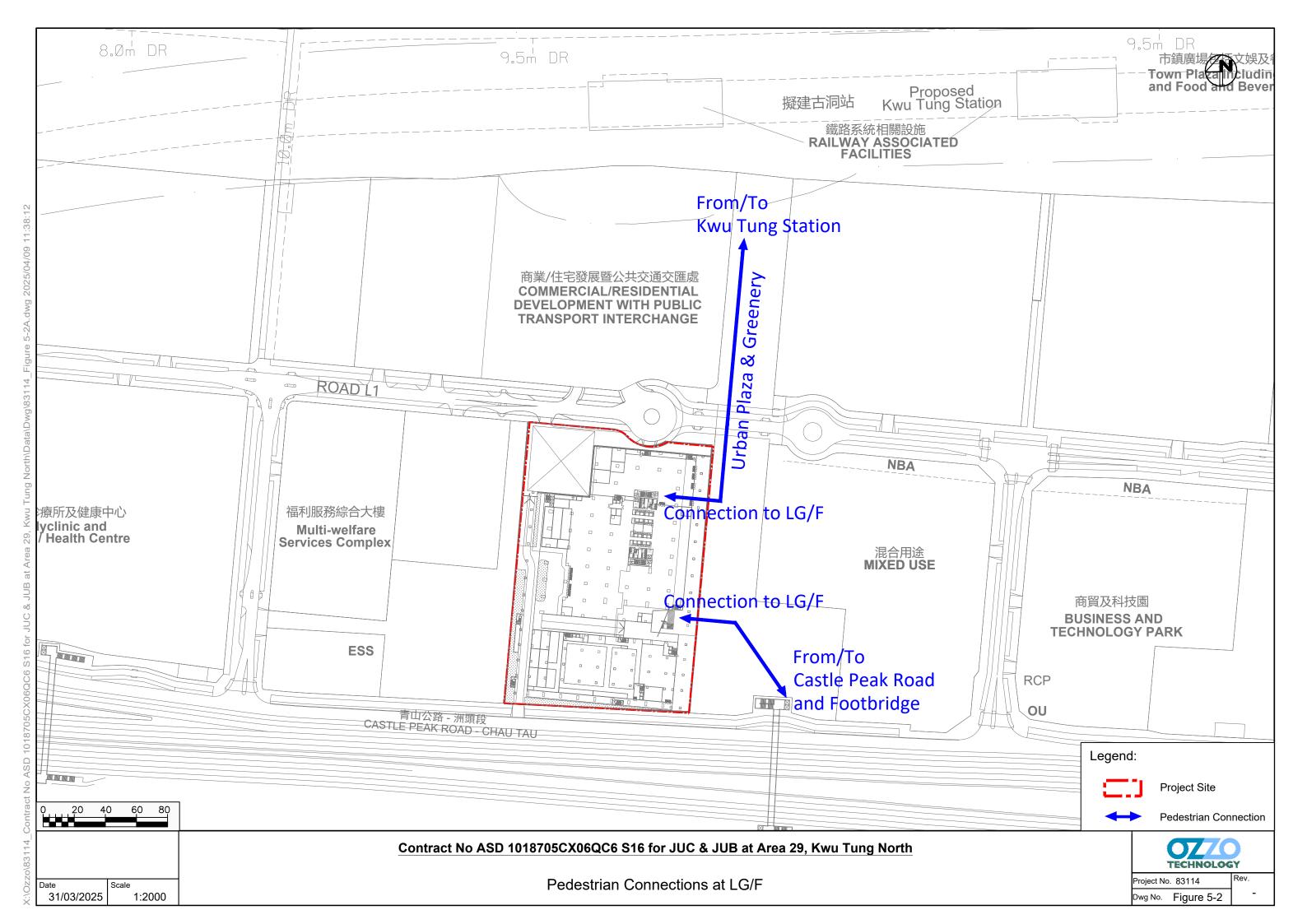


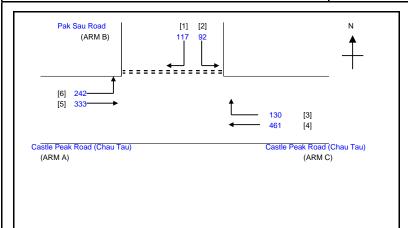




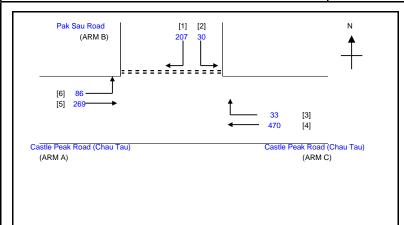






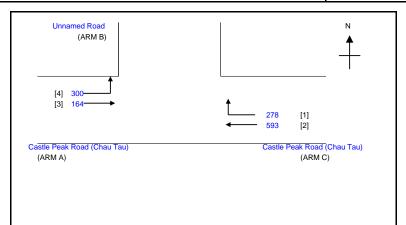


Appendix A 2024 Junction Calculation Sheets


OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCTI	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Are	ea 29, Kwu Tung North	PROJECT NO.: 83114	PREPARED BY:	CSY	Feb-25
J1: Castle Peak Road (Chau Tau) / Pak Sau Road	2024 AM	FILENAME :	CHECKED BY:	LL	Feb-25
2024 Observed AM Peak Hour Traffic Flows	2024 AIVI	Peak Road (Chau Tau)_Pak Sau Road_P.xls	REVIEWED BY:	PCN	Feb-25


```
NOTES: (GEOMETRIC INPUT DATA)
      W =
                 MAJOR ROAD WIDTH
                 CENTRAL RESERVE WIDTH
      W b-a =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
      W b-c =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
      W c-b =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
                 VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
      VIb-a =
      Vr b-a =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
      Vr b-c =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
      Vrc-b =
       D =
                 STREAM-SPECIFIC B-A
       E =
                 STREAM-SPECIFIC B-C
       F =
                 STREAM-SPECIFIC C-B
                 (1-0.0345W)
```

```
GEOMETRIC DETAILS:
                                              GEOMETRIC FACTORS:
                                                                                           THE CAPACITY OF MOVEMENT:
                                                                                                                                                    COMPARISION OF DESIGN FLOW
                                                                                                                                                    TO CAPACITY:
      MAJOR ROAD (ARM A)
      W =
                   3.50
                                                         D
                                                                      1.0484314
                                                                                                  Qb-a=
                                                                                                                 354
                                                                                                                                                                   DFC b-a
                                                                                                                                                                                              0.3305
                         (metres)
      W cr =
                                                         Е
                                                                      1.0484314
                                                                                                  Q b-c =
                                                                                                                 637
                                                                                                                                                                   DFC b-c
                                                                                                                                                                                              0.1444
                         (metres)
                                                                      1.0568848
                                                                                                  Q c-b =
                                                                                                                 593
                                                                                                                                                                   DFC c-b
                                                                                                                                                                                              0.2192
      qa-b =
                   242
                          (pcu/hr)
      q a-c =
                   333
                          (pcu/hr)
                                                         Υ
                                                                        0.87925
                                                                                                  Q b-ac =
                                                                                                                 354
                                                                                                                                                                   DFC b-c (share lane)
                                                                                                                                                                                              0.5904
     MAJOR ROAD (ARM C)
                                                    F for (Qb-ac) =
                                                                             0
                                                                                                  TOTAL FLOW = 1375
                                                                                                                                   (PCU/HR)
      W c-b =
                         (metres)
     Vr c-b =
                   200
                          (metres)
      q c-a =
                   461
                          (pcu/hr)
     q c-b =
                   130
                         (pcu/hr)
                                                                                                                                                     CRITICAL DFC
                                                                                                                                                                                       = 0.33
     MINOR ROAD (ARM B)
      W b-a =
                    3.9
                         (metres)
      W b-c =
                    3.9
                         (metres)
      VI b-a =
                   150
                         (metres)
                   150
                         (metres)
      Vr b-c =
                   150
                         (metres)
      q b-a =
                         (pcu/hr)
                    92 (pcu/hr)
      q b-c =
```

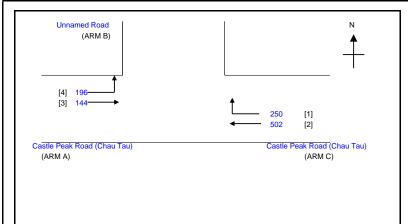

OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JU	PRIORITY JUNCTION CALCULATION						
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Are	ea 29, Kwu Tung North	PROJECT NO.: 83114	PREPARED BY:	CSY	Feb-25			
J1: Castle Peak Road (Chau Tau) / Pak Sau Road	2024 PM	FILENAME :	CHECKED BY:	LL	Feb-25			
2024 Observed PM Peak Hour Traffic Flows		J1_Castle Peak Road (Chau Tau)_Pak Sau Road_P.xls	REVIEWED BY:	PCN	Feb-25			


```
NOTES: (GEOMETRIC INPUT DATA)
      W =
                 MAJOR ROAD WIDTH
                 CENTRAL RESERVE WIDTH
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
      W b-a =
      W b-c =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
      W c-b =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
                 VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
      VI b-a =
      Vr b-a =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
      Vr b-c =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
      Vrc-b =
                 STREAM-SPECIFIC B-A
       D =
                 STREAM-SPECIFIC B-C
       E =
       F =
                 STREAM-SPECIFIC C-B
                 (1-0.0345W)
```

METRIC DETAIL	S:		GEOMETI	RIC FACT	ORS:		THE CAPACITY OF	MOVE	MENT:		COMPARISION TO CAPACITY:	OF DESIGN FLOW		
MAJOR ROA	O (ARM A))												
W =	3.50	(metres)		D	=	1.0484314	Q b-a =		441			DFC b-a	=	0.4694
W cr =	0	(metres)		E	=	1.0484314	Q b-c =		679			DFC b-c	=	0.0442
q a-b =	86	(pcu/hr)		F	=	1.0568848	Q c-b =		667			DFC c-b	=	0.0495
q a-c =	269	(pcu/hr)		Υ	=	0.87925	Q b-ac =		441			DFC b-c (share lane)	=	0.5374
MAJOR ROAL	(ARM C)		F	for (Qb-a	c) =	0	TOTAL FL	OW	= 1095	(PCU/HR)				
W c-b =	3.5	(metres)												
Vr c-b =	200	(metres)												
q c-a =	470	(pcu/hr)												
q c-b =	33	(pcu/hr)												
											CRITICAL	_ DFC	=	0.47
MINOR ROAD	(ARM B)													
W b-a =	3.9	(metres)												
W b-c =	3.9	(metres)												
VI b-a =	150	(metres)												
Vr b-a =	150	(metres)												
Vr b-c =	150	(metres)												
q b-a =	207	(pcu/hr)												
q b-c =	30	(pcu/hr)												

OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCTI	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Are	ea 29, Kwu Tung North	PROJECT NO.: 83114	PREPARED BY:	CSY	Feb-25
J2: Castle Peak Road (Chau Tau)_Unnamed Road	2024 AM	FILENAME :	CHECKED BY:	LL	Feb-25
2024 Observed AM Peak Hour Traffic Flows		eak Road (Chau Tau)_Unnamed Road_P .xls	REVIEWED BY:	PCN	Feb-25

q c-b =


278 (pcu/hr)

```
NOTES: (GEOMETRIC INPUT DATA)
     W =
                 MAJOR ROAD WIDTH
                 CENTRAL RESERVE WIDTH
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
     W b-a =
     W b-c =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
     W c-b =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
                 VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
     VI b-a =
     Vr b-a =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
     Vr b-c =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
     Vr c-b =
       D =
                 STREAM-SPECIFIC B-A
       E =
                 STREAM-SPECIFIC B-C
       F =
                 STREAM-SPECIFIC C-B
                (1-0.0345W)
```

GEOMETRIC DETAIL	S:		GEOMETRIC FACTO	RS:		THE CAPACITY OF MOVE	EMENT :		COMPARISION OF	F DESIGN FLOW			
MAJOR ROA	D (ARM A))											
W =	3.50	(metres)	D	=	0.5332189	Q b-a =	155			DFC b-a	=	0.0000	
W cr =	0	(metres)	E	=	0.5859548	Q b-c =	384			DFC b-c	=	0.0000	
q a-b =	300	(pcu/hr)	F	=	1.0568848	Q c-b =	630			DFC c-b	=	0.4413	
q a-c =	164	(pcu/hr)	Υ	=	0.87925	Q b-ac =	155			DFC b-c (share lane)	=	0.0000	
MAJOR ROAL	(ARM C)		F for (Qb-ac) =	0	TOTAL FLOW	= 1335	(PCU/HR)					
W c-b =	3.50	(metres)											
Vr c-b =	200	(metres)											
q c-a =	593	(pcu/hr)											

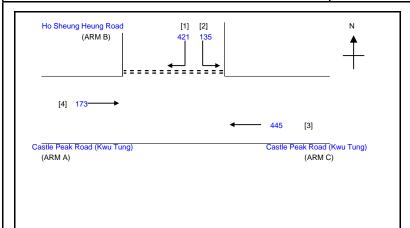
CRITICAL DFC = 0.44

OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JU	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Are	ea 29, Kwu Tung North	PROJECT NO.: 83114	PREPARED BY:	CSY	Feb-25
J2: Castle Peak Road (Chau Tau)_Unnamed Road	2024 PM	FILENAME :	CHECKED BY:	LL	Feb-25
2024 Observed PM Peak Hour Traffic Flows	_	J2_Castle Feak Road (Chau Tau)_Unnamed Road_P .xls	REVIEWED BY:	PCN	Feb-25

q c-a =

q c-b =

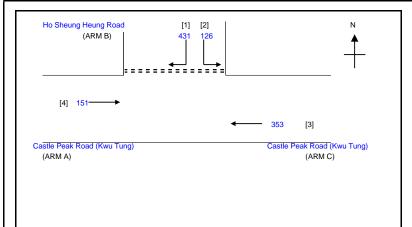
502 (pcu/hr)


250 (pcu/hr)

```
NOTES: (GEOMETRIC INPUT DATA)
     W =
                 MAJOR ROAD WIDTH
                 CENTRAL RESERVE WIDTH
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
     W b-a =
     W b-c =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
     W c-b =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
                 VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
     VIb-a =
     Vr b-a =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
     Vr b-c =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
     Vr c-b =
       D =
                 STREAM-SPECIFIC B-A
       E =
                 STREAM-SPECIFIC B-C
       F =
                 STREAM-SPECIFIC C-B
                (1-0.0345W)
```

GEOMETRIC DETAILS:	GEOMETRIC FACTORS:	THE CAPACITY OF MOVEMENT :	COMPARISION OF DESIGN FLOW TO CAPACITY:	
MAJOR ROAD (ARM A)				
W = 3.50 (metres)	D = 0.5332189	Q b-a = 182	DFC b-a	= 0.0000
W cr = 0 (metres)	E = 0.5859548	Q b-c = 395	DFC b-c	= 0.0000
q a-b = 196 (pcu/hr)	F = 1.0568848	Q c-b = 672	DFC c-b	= 0.3720
q a-c = 144 (pcu/hr)	Y = 0.87925	Q b-ac = 182	DFC b-c (share lane)	= 0.0000
MAJOR ROAD (ARM C)	F for (Qb-ac) = 0	TOTAL FLOW = 1092	(PCU/HR)	
W c-b = 3.50 (metres)				
Vr c-b = 200 (metres)				

CRITICAL DFC = 0.37

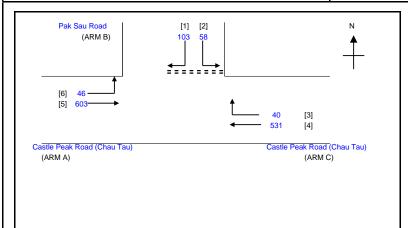

OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCTI	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Are	PROJECT NO.: 83114	PREPARED BY:	CSY	Feb-25	
J3: Castle Peak Road (Kwu Tung)_Ho Sheung Heung Road	2024 AM	FILENAME :	CHECKED BY:	LL	Feb-25
2024 Observed AM Peak Hour Traffic Flows	_	d (Kwu Tung)_Ho Sheung Heung Road_P.xls	REVIEWED BY:	PCN	Feb-25


```
NOTES: (GEOMETRIC INPUT DATA)
      W =
                  MAJOR ROAD WIDTH
                  CENTRAL RESERVE WIDTH
      W b-a =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
      W b-c =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
      W c-b =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
                  VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
      VI b-a =
      Vr b-a =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
      Vr b-c =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
      Vrc-b =
       D =
                  STREAM-SPECIFIC B-A
       E =
                  STREAM-SPECIFIC B-C
       F =
                  STREAM-SPECIFIC C-B
                 (1-0.0345W)
```

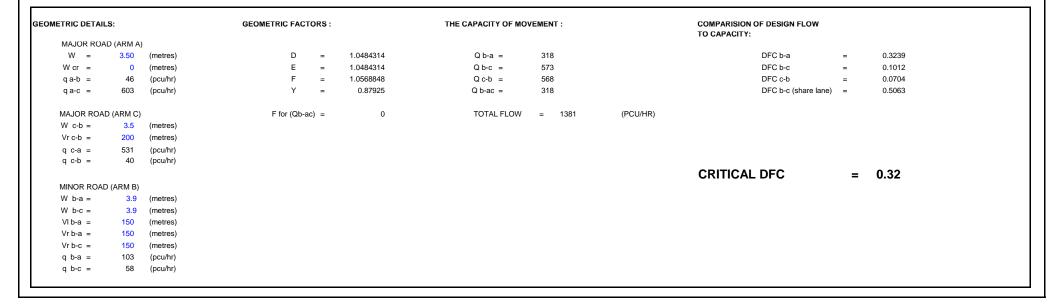
```
GEOMETRIC DETAILS:
                                              GEOMETRIC FACTORS:
                                                                                          THE CAPACITY OF MOVEMENT:
                                                                                                                                                   COMPARISION OF DESIGN FLOW
                                                                                                                                                   TO CAPACITY:
      MAJOR ROAD (ARM A)
      W =
                  3.50
                                                        D
                                                                      1.2632349
                                                                                                 Qb-a=
                                                                                                                609
                                                                                                                                                                 DFC b-a
                                                                                                                                                                                            0.6913
                         (metres)
      W cr =
                                                        Е
                                                                       1.302304
                                                                                                 Q b-c =
                                                                                                                898
                                                                                                                                                                 DFC b-c
                                                                                                                                                                                            0.1503
                         (metres)
                                                                      1.0568848
                                                                                                 Q c-b =
                                                                                                                729
                                                                                                                                                                 DFC c-b
                                                                                                                                                                                            0.0000
      qa-b =
                    0
                         (pcu/hr)
      q a-c =
                   173
                         (pcu/hr)
                                                        Υ
                                                                       0.87925
                                                                                                 Q b-ac =
                                                                                                                609
                                                                                                                                                                 DFC b-c (share lane)
                                                                                                                                                                                            0.9130
     MAJOR ROAD (ARM C)
                                                    F for (Qb-ac) =
                                                                            0
                                                                                                 TOTAL FLOW = 1174
                                                                                                                                  (PCU/HR)
      W c-b =
                         (metres)
     Vr c-b =
                   200
                         (metres)
      q c-a =
                   445
                         (pcu/hr)
     q c-b =
                    0
                        (pcu/hr)
                                                                                                                                                   CRITICAL DFC
                                                                                                                                                                                     = 0.69
     MINOR ROAD (ARM B)
      W b-a =
                    6.9
                         (metres)
      W b-c =
                    6.9
                         (metres)
      VI b-a =
                   100
                         (metres)
                   120
                         (metres)
      Vr b-c =
                   120
                         (metres)
      q b-a =
                   421
                         (pcu/hr)
                   135 (pcu/hr)
      q b-c =
```

OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCTI	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Are	PROJECT NO.: 83114	PREPARED BY:	CSY	Feb-25	
J3: Castle Peak Road (Kwu Tung)_Ho Sheung Heung Road	2024 PM	FILENAME :	CHECKED BY:	LL	Feb-25
2024 Observed PM Peak Hour Traffic Flows	_	ad (Kwu Tung)_Ho Sheung Heung Road_P.xls	REVIEWED BY:	PCN	Feb-25

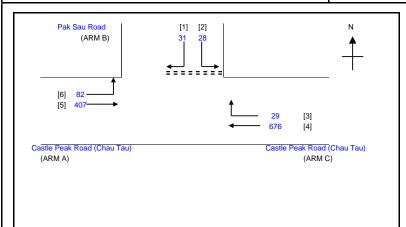

```
NOTES: (GEOMETRIC INPUT DATA)
      W =
                 MAJOR ROAD WIDTH
                 CENTRAL RESERVE WIDTH
      W b-a =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
      W b-c =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
      W c-b =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
                 VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
      VIb-a =
      Vr b-a =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
      Vr b-c =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
      Vrc-b =
       D =
                 STREAM-SPECIFIC B-A
       E =
                 STREAM-SPECIFIC B-C
       F =
                 STREAM-SPECIFIC C-B
                 (1-0.0345W)
```

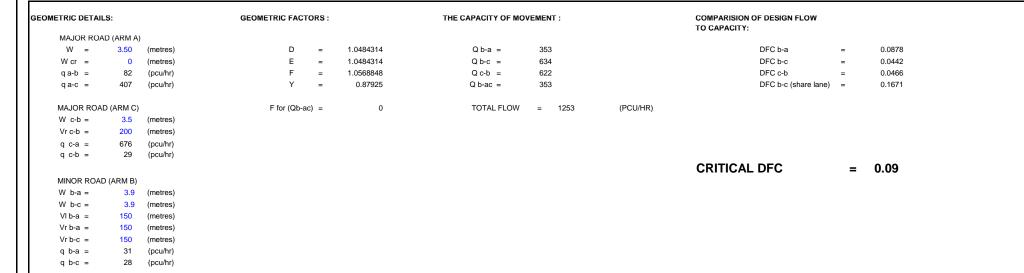

```
GEOMETRIC DETAILS:
                                              GEOMETRIC FACTORS:
                                                                                          THE CAPACITY OF MOVEMENT:
                                                                                                                                                   COMPARISION OF DESIGN FLOW
                                                                                                                                                   TO CAPACITY:
      MAJOR ROAD (ARM A)
                                                                                                                                                                 DFC b-a
      W =
                  3.50
                                                        D
                                                                      1.2632349
                                                                                                 Qb-a=
                                                                                                                641
                                                                                                                                                                                            0.6724
                         (metres)
      W cr =
                                                        Е
                                                                       1.302304
                                                                                                 Q b-c =
                                                                                                                907
                                                                                                                                                                 DFC b-c
                                                                                                                                                                                            0.1389
                         (metres)
                                                                      1.0568848
                                                                                                 Q c-b =
                                                                                                                736
                                                                                                                                                                 DFC c-b
                                                                                                                                                                                            0.0000
      qa-b =
                    0
                         (pcu/hr)
      q a-c =
                   151
                         (pcu/hr)
                                                        Υ
                                                                       0.87925
                                                                                                 Q b-ac =
                                                                                                                641
                                                                                                                                                                 DFC b-c (share lane)
                                                                                                                                                                                            0.8690
     MAJOR ROAD (ARM C)
                                                    F for (Qb-ac) =
                                                                            0
                                                                                                 TOTAL FLOW = 1061
                                                                                                                                  (PCU/HR)
      W c-b =
                         (metres)
     Vr c-b =
                   200
                         (metres)
      q c-a =
                   353
                         (pcu/hr)
     q c-b =
                    0
                        (pcu/hr)
                                                                                                                                                   CRITICAL DFC
                                                                                                                                                                                     = 0.67
     MINOR ROAD (ARM B)
      W b-a =
                    6.9
                         (metres)
     W b-c =
                    6.9
                         (metres)
      VI b-a =
                   100
                         (metres)
                   120
                         (metres)
      Vr b-c =
                   120
                         (metres)
      q b-a =
                   431
                         (pcu/hr)
                   126 (pcu/hr)
      q b-c =
```

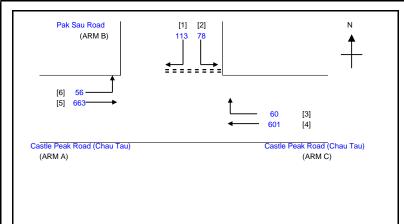
Contract Consultancy Services for Joint-user Complex and Joint-user General Office Building at Area 29, Kwu Tung North TIA Report



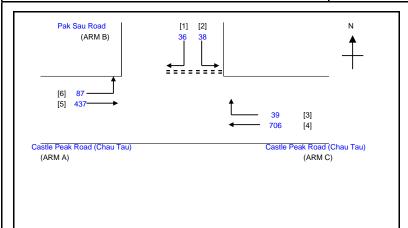
Appendix B 2034 Junction Calculation Sheets

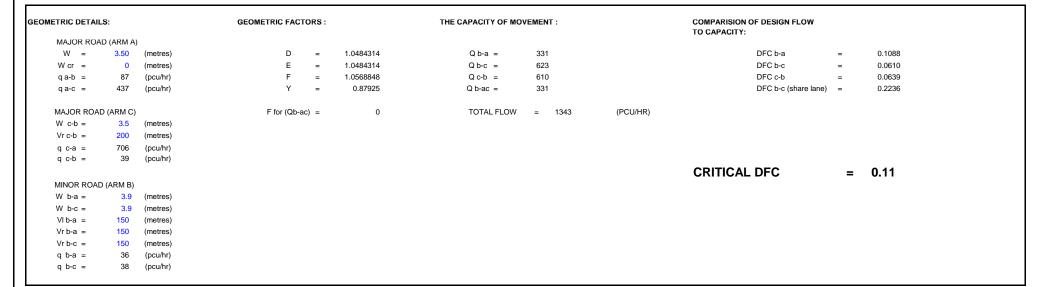

OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCT	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at A	rea 29, Kwu Tung North	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25
J1: Castle Peak Road (Chau Tau) / Road D1	2034 Ref AM	FILENAME:	CHECKED BY:	DP	Mar-25
2034 Reference AM Peak Hour Traffic Flows	2034 Rei Aivi	Peak Road (Chau Tau)_Pak Sau Road_P.xls	REVIEWED BY:	ОС	Mar-25


```
NOTES: (GEOMETRIC INPUT DATA)
      W =
                  MAJOR ROAD WIDTH
                  CENTRAL RESERVE WIDTH
      W b-a =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
      W b-c =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
      W c-b =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
      VI b-a =
                  VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
      Vr b-a =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
      Vr b-c =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
      Vrc-b =
       D =
                  STREAM-SPECIFIC B-A
       E =
                  STREAM-SPECIFIC B-C
       F =
                  STREAM-SPECIFIC C-B
                  (1-0.0345W)
```

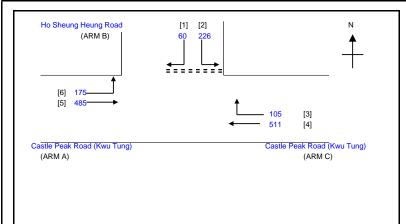


OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCTI	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Ar	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25	
J1: Castle Peak Road (Chau Tau) / Road D1	2034 Ref PM	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Reference PM Peak Hour Traffic Flows		Peak Road (Chau Tau)_Pak Sau Road_P.xls	REVIEWED BY:	ОС	Mar-25


```
NOTES: (GEOMETRIC INPUT DATA)
      W =
                  MAJOR ROAD WIDTH
                  CENTRAL RESERVE WIDTH
      W b-a =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
      W b-c =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
      W c-b =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
                  VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
      VI b-a =
      Vr b-a =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
      Vr b-c =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
      Vrc-b =
       D =
                  STREAM-SPECIFIC B-A
       E =
                  STREAM-SPECIFIC B-C
       F =
                  STREAM-SPECIFIC C-B
                  (1-0.0345W)
```

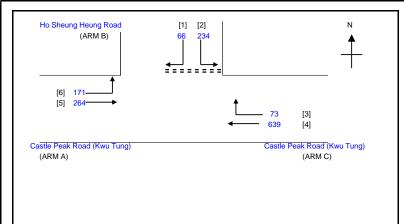


OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCTI	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Are	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25	
J1: Castle Peak Road (Chau Tau) / Road D1	2034 Des AM	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Design AM Peak Hour Traffic Flows	2034 Des AIVI	Peak Road (Chau Tau)_Pak Sau Road_P.xls	REVIEWED BY:	ОС	Mar-25

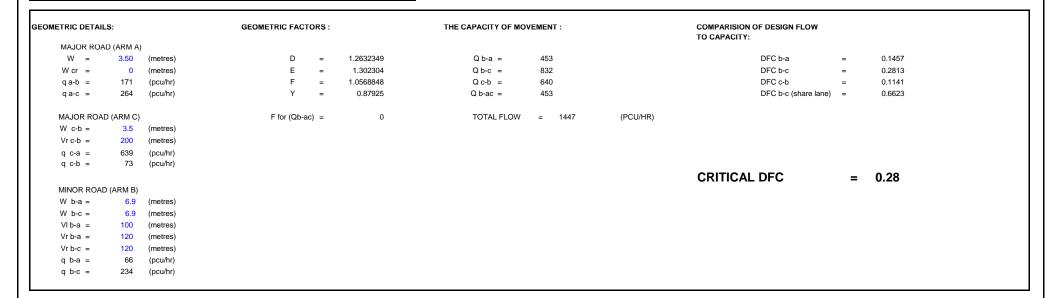

```
NOTES: (GEOMETRIC INPUT DATA)
      W =
                  MAJOR ROAD WIDTH
                  CENTRAL RESERVE WIDTH
      W b-a =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
      W b-c =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
      W c-b =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
      VI b-a =
                  VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
      Vr b-a =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
      Vr b-c =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
      Vrc-b =
       D =
                  STREAM-SPECIFIC B-A
       E =
                  STREAM-SPECIFIC B-C
       F =
                  STREAM-SPECIFIC C-B
                 (1-0.0345W)
```

```
GEOMETRIC DETAILS:
                                              GEOMETRIC FACTORS:
                                                                                           THE CAPACITY OF MOVEMENT:
                                                                                                                                                    COMPARISION OF DESIGN FLOW
                                                                                                                                                    TO CAPACITY:
      MAJOR ROAD (ARM A)
      W =
                  3.50
                                                        D
                                                                      1.0484314
                                                                                                  Qb-a=
                                                                                                                272
                                                                                                                                                                  DFC b-a
                                                                                                                                                                                             0.4154
                         (metres)
      W cr =
                                                        Е
                                                                      1.0484314
                                                                                                  Q b-c =
                                                                                                                 551
                                                                                                                                                                  DFC b-c
                                                                                                                                                                                             0.1416
                         (metres)
                                                                      1.0568848
                                                                                                 Q c-b =
                                                                                                                 544
                                                                                                                                                                  DFC c-b
                                                                                                                                                                                             0.1103
      qa-b =
                    56
                         (pcu/hr)
      q a-c =
                   663
                         (pcu/hr)
                                                        Υ
                                                                        0.87925
                                                                                                 Q b-ac =
                                                                                                                272
                                                                                                                                                                  DFC b-c (share lane)
                                                                                                                                                                                             0.7022
     MAJOR ROAD (ARM C)
                                                    F for (Qb-ac) =
                                                                             0
                                                                                                 TOTAL FLOW = 1571
                                                                                                                                   (PCU/HR)
      W c-b =
                         (metres)
      Vr c-b =
                   200
                         (metres)
      q c-a =
                   601
                         (pcu/hr)
     q c-b =
                    60
                         (pcu/hr)
                                                                                                                                                    CRITICAL DFC
                                                                                                                                                                                      = 0.42
     MINOR ROAD (ARM B)
      W b-a =
                    3.9
                         (metres)
      W b-c =
                    3.9
                         (metres)
      VI b-a =
                   150
                         (metres)
                   150
                         (metres)
      Vr b-c =
                   150
                         (metres)
      q b-a =
                         (pcu/hr)
                    78 (pcu/hr)
      q b-c =
```

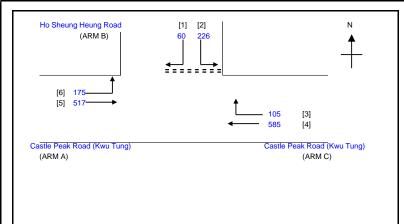

OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCTI	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Are	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25	
J1: Castle Peak Road (Chau Tau) / Road D1	2034 Des PM	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Design PM Peak Hour Traffic Flows	2034 Des Fivi	Peak Road (Chau Tau)_Pak Sau Road_P.xls	REVIEWED BY:	ос	Mar-25

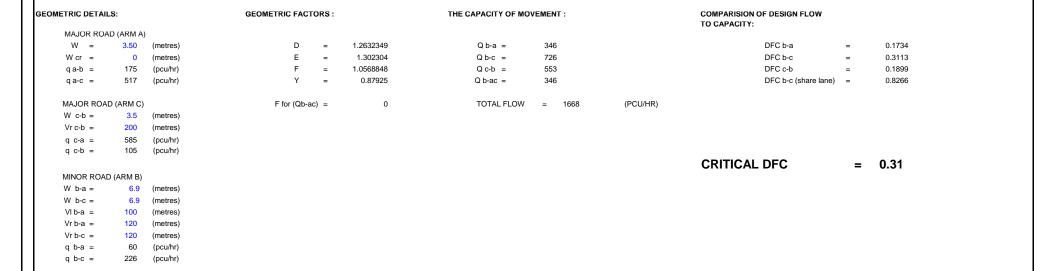

```
NOTES: (GEOMETRIC INPUT DATA)
      W =
                  MAJOR ROAD WIDTH
                  CENTRAL RESERVE WIDTH
      W b-a =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
      W b-c =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
      W c-b =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
      VI b-a =
                  VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
      Vr b-a =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
      Vr b-c =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
      Vrc-b =
       D =
                  STREAM-SPECIFIC B-A
       E =
                  STREAM-SPECIFIC B-C
       F =
                  STREAM-SPECIFIC C-B
                 (1-0.0345W)
```

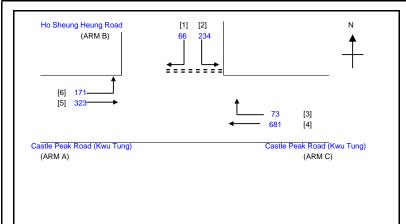


OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCTI	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Are	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25	
J3: Castle Peak Road (Kwu Tung)/ Road D2	2034 Ref AM	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Reference AM Peak Hour Traffic Flows	2034 Nei Aivi	d (Kwu Tung)_Ho Sheung Heung Road_P.xls	REVIEWED BY:	ОС	Mar-25

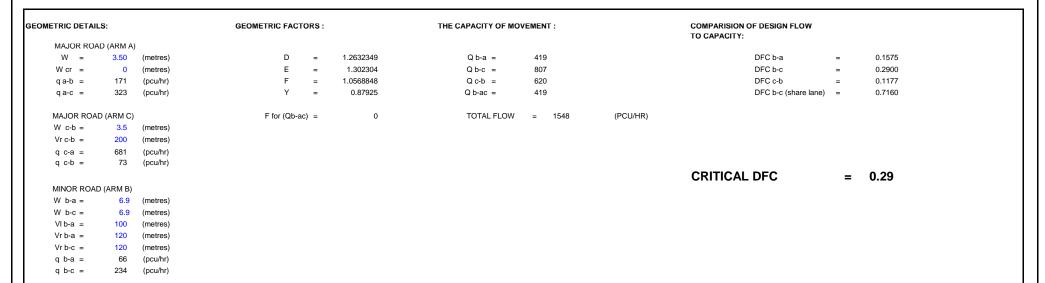

```
NOTES: (GEOMETRIC INPUT DATA)
     W =
                 MAJOR ROAD WIDTH
     W cr =
                 CENTRAL RESERVE WIDTH
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
     W b-a =
     W b-c =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
     W c-b =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
      VI b-a =
                 VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
     Vr b-a =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
     Vr b-c =
     Vrc-b =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
                 STREAM-SPECIFIC B-A
       D =
       E =
                 STREAM-SPECIFIC B-C
       F =
                 STREAM-SPECIFIC C-B
                 (1-0.0345W)
```

GEOMETRIC DETA	AILS:		GEOMETRIC FACTO	RS :		THE CAPACITY OF MOV	/EME	ENT:		COMPARISION TO CAPACITY:	OF DESIGN FLOW		
MAJOR RO	DAD (ARM A)											
W =	3.50	(metres)	D	=	1.2632349	Q b-a =	37	77			DFC b-a	=	0.1592
W cr =	0	(metres)	E	=	1.302304	Q b-c =	73	39			DFC b-c	=	0.3058
q a-b =	175	(pcu/hr)	F	=	1.0568848	Q c-b =	56	64			DFC c-b	=	0.1862
q a-c =	485	(pcu/hr)	Υ	=	0.87925	Q b-ac =	37	77			DFC b-c (share lane)	=	0.7586
MAJOR RC	OAD (ARM C)		F for (Qb-ac)	=	0	TOTAL FLOW	=	1562	(PCU/HR)				
W c-b =	3.5	(metres)											
Vr c-b =	200	(metres)											
q c-a =	511	(pcu/hr)											
q c-b =	105	(pcu/hr)											
										CRITICAL	. DFC	=	0.31
MINOR RO	AD (ARM B)												
W b-a =	6.9	(metres)											
W b-c =	6.9	(metres)											
VI b-a =	100	(metres)											
Vr b-a =	120	(metres)											
Vr b-c =	120	(metres)											
q b-a =	60	(pcu/hr)											
q b-c =	226	(pcu/hr)											


OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCTI	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Are	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25	
J3: Castle Peak Road (Kwu Tung)/ Road D2	2034 Ref PM	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Reference PM Peak Hour Traffic Flows	2034 Nei Fivi	d (Kwu Tung)_Ho Sheung Heung Road_P.xls	REVIEWED BY:	ОС	Mar-25


```
NOTES: (GEOMETRIC INPUT DATA)
      W =
                  MAJOR ROAD WIDTH
                  CENTRAL RESERVE WIDTH
      W b-a =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
      W b-c =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
      W c-b =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
                  VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
      VI b-a =
      Vr b-a =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
      Vr b-c =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
      Vrc-b =
       D =
                  STREAM-SPECIFIC B-A
       E =
                  STREAM-SPECIFIC B-C
       F =
                  STREAM-SPECIFIC C-B
                  (1-0.0345W)
```



OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCTI	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Are	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25	
J3: Castle Peak Road (Kwu Tung)/ Road D2	2034 Des AM	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Design AM Peak Hour Traffic Flows	2034 Des AIVI	d (Kwu Tung)_Ho Sheung Heung Road_P.xls	REVIEWED BY:	ОС	Mar-25


```
NOTES: (GEOMETRIC INPUT DATA)
      W =
                  MAJOR ROAD WIDTH
                  CENTRAL RESERVE WIDTH
      W b-a =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
      W b-c =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
      W c-b =
                  LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
                  VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
      VI b-a =
      Vr b-a =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
      Vr b-c =
                  VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
      Vrc-b =
       D =
                  STREAM-SPECIFIC B-A
       E =
                  STREAM-SPECIFIC B-C
       F =
                  STREAM-SPECIFIC C-B
                 (1-0.0345W)
```


OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCTI	INITIALS	DATE		
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Are	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25	
J3: Castle Peak Road (Kwu Tung)/ Road D2	2034 Des PM	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Design PM Peak Hour Traffic Flows	2034 Des Fivi	d (Kwu Tung)_Ho Sheung Heung Road_P.xls	REVIEWED BY:	ОС	Mar-25


```
NOTES: (GEOMETRIC INPUT DATA)
      W =
                 MAJOR ROAD WIDTH
                 CENTRAL RESERVE WIDTH
      W b-a =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
      W b-c =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
      W c-b =
                 LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
                 VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
      VIb-a =
      Vr b-a =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
      Vr b-c =
                 VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
      Vrc-b =
       D =
                 STREAM-SPECIFIC B-A
       E =
                 STREAM-SPECIFIC B-C
       F =
                 STREAM-SPECIFIC C-B
                 (1-0.0345W)
```


OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION		INITIALS	DATE
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Area 29, Kwu Tung North		PROJECT NO. 81838	Prepared By:	CW	Mar-25
J4: Road D1 / Road L1	2034 Ref AM	FILENAME :	Checked By:	DP	Mar-25
2034 Reference AM Peak Hour Traffic Flows	2034 Rei Aivi	J4_Road D1_Road L1_S.xls	Reviewed By:	SC	Mar-25

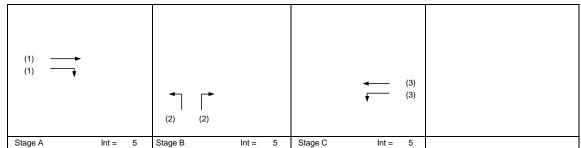
		_		
			Existing Cy	cle Time
No. of stage	es per cycle	N =	3	
Cycle time		C =	90 s	ec
Sum(y)		Y =	0.241	
Loss time		L =	24 s	ec
Total Flow		=	494 p	cu
Co	= (1.5*L+5)/(1-Y)	=	54.0 s	ec
Cm	= L/(1-Y)	=	31.6 s	ec
Yult		=	0.720	
R.C.ult	= (Yult-Y)/Y*100%	=	198.4 %	, 0
Ср	= 0.9 L/(0.9 Y)	=	32.8 s	ec
Ymax	= 1-L/C	=	0.733	
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	173.6 %	, 0

(1) ————————————————————————————————————	(2) (2)	(3)	
Stage A Int = 5	Stage B Int = 5	Stage C Int = 5	

Pedestrian	Stage	Length	Green Time Required (s)			Green Time Provided (s					
Phase		(m)	SG	FG	Delay	SG	FG				


Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Movemer	nt	Total	Proportion	Sat.	Flare lane	Share	Revised				О	a	Degree of	Queue	Average
ment	Juago	Width		lane	aaiao		'`	Ahead		Straight		FLow	of Turning	Flow	Length	Effect	Sat. Flow	٧	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow		-	-	pcu/h	Vehicles	pcu/h	m.	pcu/hr	pcu/h	,	V	sec	sec	sec	X	(m / lane)	(seconds)
SA,RT	А	5.00	1	1	20		N	2115	pouri	43	29	72	0.40	2053		росин	2053	0.035	0.035	12	10	10	0.329	6	37
LT,RT	В	5.00	2	1	15		N	2115	69		31	100	1.00	1923			1923	0.052	0.052		14	14	0.329	12	33
LT,SA	С	5.00	3	1	15		N	2115	41	281		322	0.13	2088			2088	0.154	0.154		42	42	0.329	24	14
PED	D																			12					

N - NEAR SIDE LANE

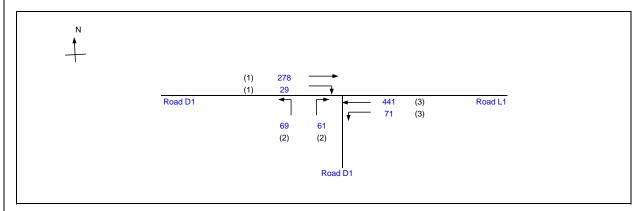

SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRIAN WALKING SPEED = 1.2m/s

OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC S	SIGNAL CALCULATION		INITIALS	DATE
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Area 29, Kwu Tung North		PROJECT NO. 81838	Prepared By:	CW	Mar-25
J4: Road D1 / Road L1	2034 Ref PM	FILENAME :	Checked By:	DP	Mar-25
2034 Reference PM Peak Hour Traffic Flows	2034 Rei Fivi	J4_Road D1_Road L1_S.xls	Reviewed By:	SC	Mar-25

			Existing C	ycle Time
No. of stage	es per cycle	N =	3	
Cycle time		C =	90	sec
Sum(y)		Y =	0.185	
Loss time		L =	24	sec
Total Flow		=	381	pcu
Co	= (1.5*L+5)/(1-Y)	=	50.3	sec
Cm	= L/(1-Y)	=	29.4	sec
Yult		=	0.720	
R.C.ult	= (Yult-Y)/Y*100%	=	289.5	%
Ср	= 0.9 L/(0.9-Y)	=	30.2	sec
Ymax	= 1-L/C	=	0.733	
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	257.1	%

Pedestrian	Stage	Length	Gree	n Time Requ	Green Time Provided (
Phase		(m)	SG	FG	Delay	SG	FG		


Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Movemer	nt .	Total	Proportion	Sat.	Flare lane	Share	Revised						Degree of	Queue	Average
ment	Stage	Width	Filase	lane	ixauius		IN.			Straight		FLow	of Turning	Flow		Effect	Sat. Flow	٧	Crooter		g (required)	g (input)	•		Delay
ment				iane				Ahead		_			-		Length			У	Greater		(required)	(input)	Saturation	Length	
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	m.	pcu/hr	pcu/h		У	sec	sec	sec	Х	(m / lane)	(seconds)
SA,RT	A	5.00	1	1	20		N	2115		209	30	239	0.13	2095			2095	0.114	0.114	12	41	41	0.252	18	14
LT,RT	В	5.00	2	1	15		N	2115	46		10	56	1.00	1923			1923	0.029	0.029		10	10	0.252	6	35
LT,SA	С	5.00	3	1	15		N	2115	21	65		86	0.24	2065			2065	0.042	0.042		15	15	0.252	6	31
PED	D																			12					

N - NEAR SIDE LANE

SG - STEADY GREEN FG - FLASHING GREEN

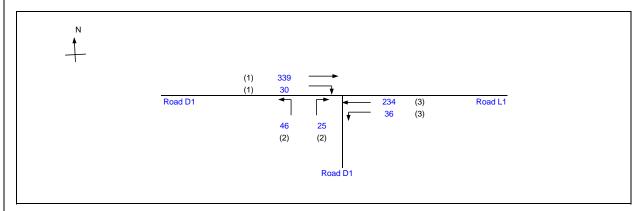
PEDESTRIAN WALKING SPEED = 1.2m/s

OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION		INITIALS	DATE
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Area 29, Kwu Tung North		PROJECT NO. 81838	Prepared By:	CW	Mar-25
J4: Road D1 / Road L1	2034 Des AM	FILENAME :	Checked By:	DP	Mar-25
2034 Design AM Peak Hour Traffic Flows	2034 Des Aivi	J4 Road D1 Road L1 S.xls	Reviewed By:	SC	Mar-25

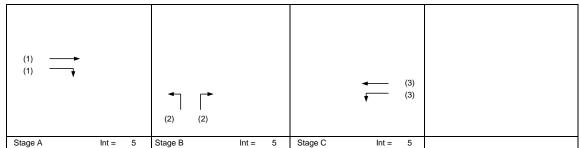
			Existing (Cycle Time
No. of stage	es per cycle	N =	3	1
Cycle time		C =	90	sec
Sum(y)		Y =	0.459	
Loss time		L =	24	sec
Total Flow		=	949	pcu
Co	= (1.5*L+5)/(1-Y)	=	75.8	sec
Cm	= L/(1-Y)	=	44.4	sec
Yult		=	0.720	
R.C.ult	= (Yult-Y)/Y*100%	=	56.8	%
Ср	= 0.9 L/(0.9-Y)	=	49.0	sec
Ymax	= 1-L/C	=	0.733	
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	43.7	%

(1) ————————————————————————————————————	(2) (2)	(3) (3)	
Stage A Int = 5	Stage B Int = 5	Stage C Int = 5	

Pedestrian	Stage	Length	Gree	n Time Requ	Green Time Provided (
Phase		(m)	SG	FG	Delay	SG	FG		


Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Movemer	n+	Total	Proportion	Sat.	Flare lane	Share	Revised		I		~	~	Degree of	Queue	Average
	Stage		Filase		Raulus	0	IN	•					•						0		g (====)	g (innext)			_
ment		Width		lane				Ahead		Straight		FLow	of Turning	Flow	Length	Effect	Sat. Flow	У	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	m.	pcu/hr	pcu/h		у	sec	sec	sec	Х	(m / lane)	(seconds)
SA,RT	А	5.00	1	1	20		N	2115		278	29	307	0.09	2100			2100	0.146	0.146	12	21	21	0.626	30	33
LT,RT	В	5.00	2	1	15		N	2115	69		61	130	1.00	1923			1923	0.068	0.068		10	10	0.626	18	48
LT,SA	С	5.00	3	1	15		N	2115	71	441		512	0.14	2086			2086	0.245	0.245		35	35	0.626	42	23
PED	D																			12					

N - NEAR SIDE LANE

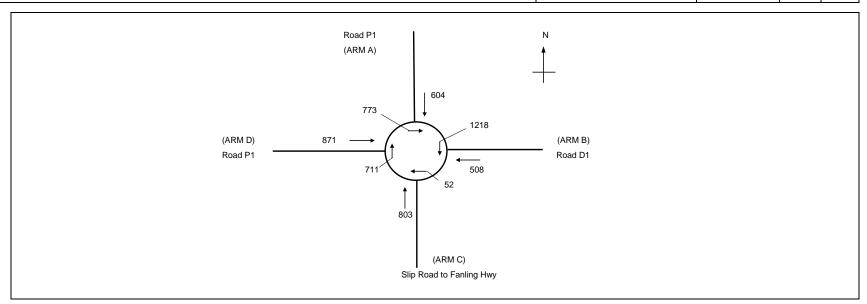

SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRIAN WALKING SPEED = 1.2m/s

OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION		INITIALS	DATE
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Area 29, Kwu Tung North		PROJECT NO. 81838	Prepared By:	CW	Mar-25
J4: Road D1 / Road L1	2034 Des PM	FILENAME :	Checked By:	DP	Mar-25
2034 Design PM Peak Hour Traffic Flows	2034 Des Pivi	J4 Road D1 Road L1 S.xls	Reviewed By:	SC	Mar-25

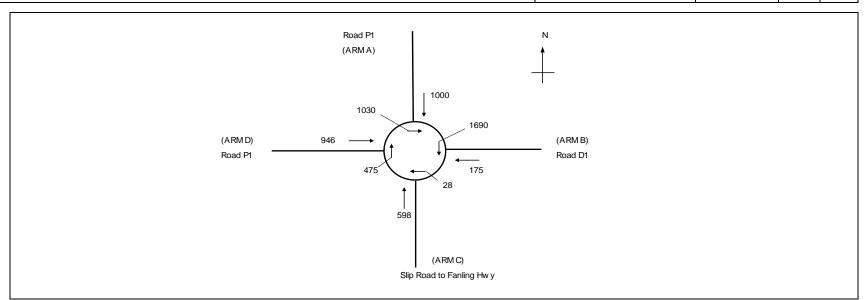
			Existing (Cycle Time
No. of stage	es per cycle	N =	3	
Cycle time		C =	90	sec
Sum(y)		Y =	0.342	
Loss time		L =	24	sec
Total Flow		=	710	pcu
Co	= (1.5*L+5)/(1-Y)	=	62.3	sec
Cm	= L/(1-Y)	=	36.5	sec
Yult		=	0.720	
R.C.ult	= (Yult-Y)/Y*100%	=	110.6	%
Ср	= 0.9 L/(0.9-Y)	=	38.7	sec
Ymax	= 1-L/C	=	0.733	
R.C.(C)	= (0.9*Ymax-Y)/Y*100%	=	93.1	%

Б. I	0:					IO T	5
Pedestrian	Stage	Length	Gree	n Time Req	uirea (s)	Green Time	Provided (s)
Phase		(m)	SG	FG	Delay	SG	FG
		1					

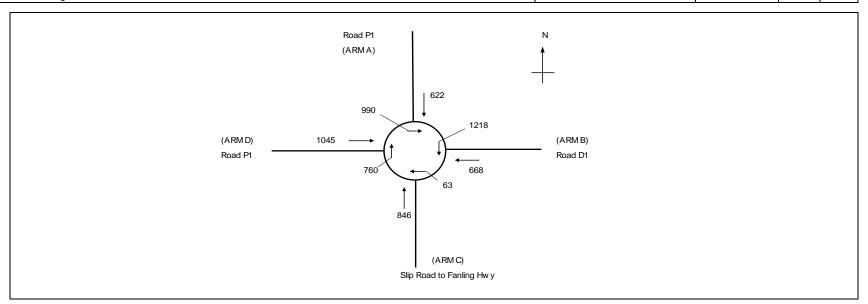

Move-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-	1	Movemer	nt	Total	Proportion	Sat.	Flare lane	Share	Revised				a	a	Degree of	Queue	Average
ment		Width		lane				Ahead		Straight		FLow	of Turning	Flow	Length	Effect	Sat. Flow	٧	Greater	L	(required)	(input)	Saturation	Length	Delay
		m.			m.			Sat. Flow		_	-	pcu/h	Vehicles	pcu/h	m.	pcu/hr	pcu/h	,	у	sec	sec	sec	Х	(m / lane)	(seconds)
SA,RT	А	5.00	1	1	20		N	2115		339	30	369	0.08	2102			2102	0.176	0.176	12	34	34	0.466	30	21
LT,RT	В	5.00	2	1	15		N	2115	46		25	71	1.00	1923			1923	0.037	0.037		7		0.466		45
LT,SA	С	5.00	3	1	15		N	2115	36	234		270	0.13	2087			2087	0.129	0.129		25	25	0.466	24	27
PED	D																			12					

N - NEAR SIDE LANE

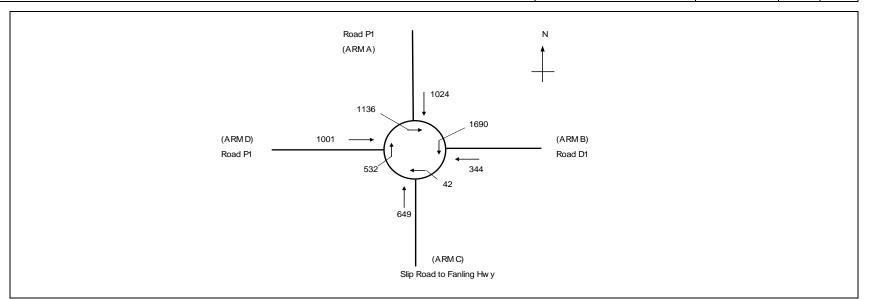
SG - STEADY GREEN FG - FLASHING GREEN


PEDESTRIAN WALKING SPEED = 1.2m/s

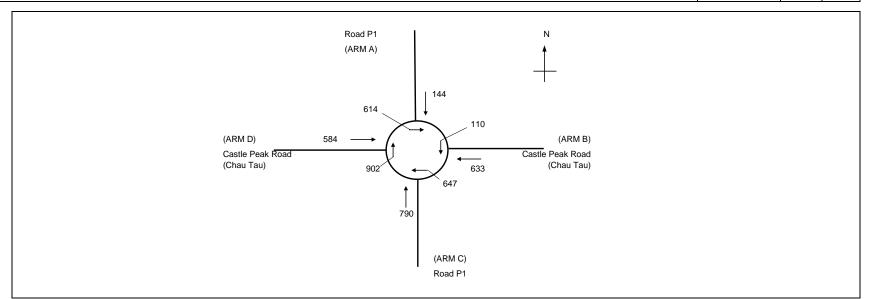
OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION	١	INITIALS	DATE
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Area 29, Kwu Tung	2034 Ref AM	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25
J5: Road P1 / Road D1 / Slip Road to Fanling Hwy	2034 Rei Alvi	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Reference AM Peak Hour Traffic Flows		J5_Road P1_Road D1_R.xls	REVIEWED BY:	OC	Mar-25


ARM			Α	В	С	D			
NPUT	PARA	AMETERS:							
V	=	Approach half width (m)	7.3	6.8	4.0	7.3			
Ξ.	=	Entry width (m)	25.0	19.0	19.0	19.0			
L	=	Effective length of flare (m)	20.0	40.0	20.0	20.0			
3	=	Entry radius (m)	20.0	30.0	100.0	40.0			
)	=	Inscribed circle diameter (m)	80.0	80.0	80.0	80.0			
Ą	=	Entry angle (degree)	60.0	40.0	20.0	40.0			
Q	=	Entry flow (pcu/h)	604	508	803	871			
Qс	=	Circulating flow across entry (pcu/h)	773	1218	52	711			
DUTP	JT PA	ARAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	1.42	0.49	1.20	0.94			
<	=	1-0.00347(A-30)-0.978(1/R-0.05)	0.90	0.98	1.07	0.99			
X2	=	V + ((E-V)/(1+2S))	11.92	12.97	8.41	11.37			
M	=	EXP((D-60)/10)	7	7	7	7			
=	=	303*X2	3611	3931	2549	3446			
Γd	=	1+(0.5/(1+M))	1.06	1.06	1.06	1.06			
=c	=	0.21*Td(1+0.2*X2)	0.75	0.80	0.60	0.73			
Qе	=	K(F-Fc*Qc)	2714	2902	2704	2898	Total In Sum =	2786	PCU
OFC	=	Design flow/Capacity = Q/Qe	0.22	0.18	0.30	0.30	DFC of Critical Approach =	0.30	

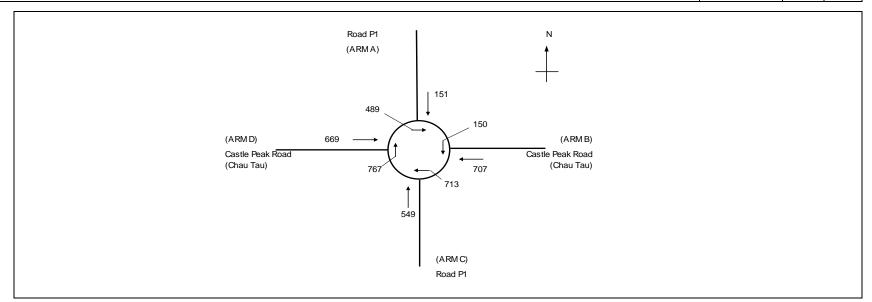
OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION	1	INITIALS	DATE	
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Area 29, Kwu Tung	2034 Ref PM	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25	
J5: Road P1 / Road D1 / Slip Road to Fanling Hwy	2034 Rei Pivi	FILENAME :	CHECKED BY:	DP	Mar-25	
2034 Reference PM Peak Hour Traffic Flows		J5_Road P1_Road D1_R.xls	REVIEWED BY:	OC	Mar-25	


ARM			Α	В	С	D			
NPUT	PARA	AMETERS:							
V	=	Approach half width (m)	7.3	6.8	4.0	7.3			
E	=	Entry width (m)	25.0	19.0	19.0	19.0			
L	=	Effective length of flare (m)	20.0	40.0	20.0	20.0			
R	=	Entry radius (m)	20.0	30.0	100.0	40.0			
D	=	Inscribed circle diameter (m)	80.0	80.0	80.0	80.0			
A	=	Entry angle (degree)	60.0	40.0	20.0	40.0			
Q	=	Entry flow (pcu/h)	1000	175	598	946			
Qc	=	Circulating flow across entry (pcu/h)	1030	1690	28	475			
OUTPI	UT PA	ARAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	1.42	0.49	1.20	0.94			
K	=	1-0.00347(A-30)-0.978(1/R-0.05)	0.90	0.98	1.07	0.99			
X2	=	V + ((E-V)/(1+2S))	11.92	12.97	8.41	11.37			
М	=	EXP((D-60)/10)	7	7	7	7			
F	=	303*X2	3611	3931	2549	3446			
Td	=	1+(0.5/(1+M))	1.06	1.06	1.06	1.06			
Fc	=	0.21*Td(1+0.2*X2)	0.75	0.80	0.60	0.73			
Qe	=	K(F-Fc*Qc)	2541	2532	2719	3068	Total In Sum =	2719	PCU
DFC	=	Design flow/Capacity = Q/Qe	0.39	0.07	0.22	0.31	DFC of Critical Approach =	0.39	

OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION	1	INITIALS	DATE
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Area 29, Kwu Tung	2034 Des AM	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25
J5: Road P1 / Road D1 / Slip Road to Fanling Hwy	2034 Des Aivi	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Design AM Peak Hour Traffic Flows		J5_Road P1_Road D1_R.xls	REVIEWED BY:	OC	Mar-25


ARM			Α	В	С	D			
NPUT	PARA	AMETERS:							
/	=	Approach half width (m)	7.3	6.8	4.0	7.3			
Ξ	=	Entry width (m)	25.0	19.0	19.0	19.0			
-	=	Effective length of flare (m)	20.0	40.0	20.0	20.0			
₹	=	Entry radius (m)	20.0	30.0	100.0	40.0			
)	=	Inscribed circle diameter (m)	80.0	80.0	80.0	80.0			
A	=	Entry angle (degree)	60.0	40.0	20.0	40.0			
Q	=	Entry flow (pcu/h)	622	668	846	1045			
Qс	=	Circulating flow across entry (pcu/h)	990	1218	63	760			
DUTP	JT PA	RAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	1.42	0.49	1.20	0.94			
<	=	1-0.00347(A-30)-0.978(1/R-0.05)	0.90	0.98	1.07	0.99			
<2	=	V + ((E-V)/(1+2S))	11.92	12.97	8.41	11.37			
M	=	EXP((D-60)/10)	7	7	7	7			
=	=	303*X2	3611	3931	2549	3446			
Γd	=	1+(0.5/(1+M))	1.06	1.06	1.06	1.06			
С	=	0.21*Td(1+0.2*X2)	0.75	0.80	0.60	0.73			
Qe	=	K(F-Fc*Qc)	2568	2902	2697	2863	Total In Sum =	3181	PCU
DFC	=	Design flow/Capacity = Q/Qe	0.24	0.23	0.31	0.37	DFC of Critical Approach =	0.37	

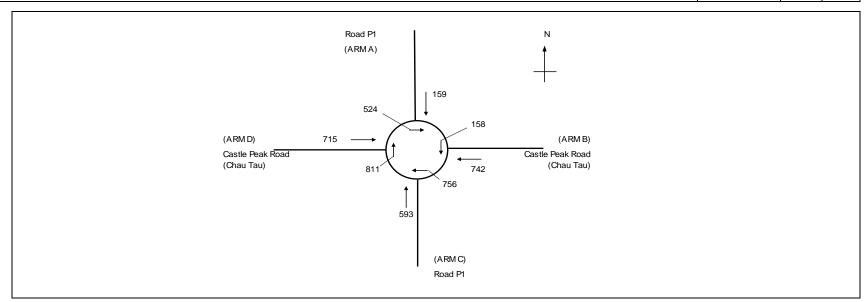
OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION	1	INITIALS	DATE
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Area 29, Kwu Tung	2034 Des PM	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25
J5: Road P1 / Road D1 / Slip Road to Fanling Hwy	2034 Des Pivi	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Design PM Peak Hour Traffic Flows		J5_Road P1_Road D1_R.xls	REVIEWED BY:	OC	Mar-25


ARM			Α	В	С	D			
NPUT	PARA	AMETERS:							
V	=	Approach half width (m)	7.3	6.8	4.0	7.3			
•	=	Entry width (m)	25.0	19.0	19.0	19.0			
-	=	Effective length of flare (m)	20.0	40.0	20.0	20.0			
₹	=	Entry radius (m)	20.0	30.0	100.0	40.0			
)	=	Inscribed circle diameter (m)	80.0	80.0	80.0	80.0			
A	=	Entry angle (degree)	60.0	40.0	20.0	40.0			
2	=	Entry flow (pcu/h)	1024	344	649	1001			
Qс	=	Circulating flow across entry (pcu/h)	1136	1690	42	532			
DUTP	UT PA	ARAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	1.42	0.49	1.20	0.94			
(=	1-0.00347(A-30)-0.978(1/R-0.05)	0.90	0.98	1.07	0.99			
(2	=	V + ((E-V)/(1+2S))	11.92	12.97	8.41	11.37			
Л	=	EXP((D-60)/10)	7	7	7	7			
=	=	303*X2	3611	3931	2549	3446			
Γd	=	1+(0.5/(1+M))	1.06	1.06	1.06	1.06			
С	=	0.21*Td(1+0.2*X2)	0.75	0.80	0.60	0.73			
Qе	=	K(F-Fc*Qc)	2469	2532	2710	3027	Total In Sum =	3018	PCU
OFC	=	Design flow/Capacity = Q/Qe	0.41	0.14	0.24	0.33	DFC of Critical Approach =	0.41	

OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION	١	INITIALS	DATE
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Area 29, Kwu Tung	2034 Ref AM	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25
J6: Castle Peak Road (Chau Tau) / Road P1	2034 Rei Alvi	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Reference AM Peak Hour Traffic Flows	J6_Cas	stle Peak Road (Chau Tau)_Road P1_R.xls	REVIEWED BY:	OC	Mar-25


ARM			А	В	С	D			
NPUT	PARA	AMETERS:							
V	=	Approach half width (m)	7.3	4.5	6.8	6.0			
Ē	=	Entry width (m)	11.5	12.0	10.0	14.0			
_	=	Effective length of flare (m)	20.0	35.0	15.0	35.0			
R	=	Entry radius (m)	30.0	50.0	20.0	100.0			
)	=	Inscribed circle diameter (m)	45.0	45.0	45.0	45.0			
A	=	Entry angle (degree)	40.0	30.0	30.0	20.0			
Q	=	Entry flow (pcu/h)	144	633	790	584			
Qc	=	Circulating flow across entry (pcu/h)	614	110	647	902			
OUTPI	UT PA	RAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	0.34	0.34	0.34	0.37			
K	=	1-0.00347(A-30)-0.978(1/R-0.05)	0.98	1.03	1.00	1.07			
X2	=	V + ((E-V)/(1+2S))	9.81	8.95	8.70	10.62			
M	=	EXP((D-60)/10)	0	0	0	0			
F	=	303*X2	2973	2712	2637	3218			
Td	=	1+(0.5/(1+M))	1.41	1.41	1.41	1.41			
Fc	=	0.21*Td(1+0.2*X2)	0.88	0.83	0.81	0.92			
Qe	=	K(F-Fc*Qc)	2390	2698	2112	2560	Total In Sum =	2151	PCU
DFC	=	Design flow/Capacity = Q/Qe	0.06	0.23	0.37	0.23	DFC of Critical Approach =	0.37	

OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION	١	INITIALS	DATE
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Area 29, Kwu Tung	2034 Ref PM	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25
J6: Castle Peak Road (Chau Tau) / Road P1	2034 Rei Pivi	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Reference PM Peak Hour Traffic Flows	J6_Cas	stle Peak Road (Chau Tau)_Road P1_R.xls	REVIEWED BY:	OC	Mar-25


ARM			Α	В	С	D			
NPUT	PARA	AMETERS:							
V	=	Approach half width (m)	7.3	4.5	6.8	6.0			
=	=	Entry width (m)	11.5	12.0	10.0	14.0			
_	=	Effective length of flare (m)	20.0	35.0	15.0	35.0			
₹	=	Entry radius (m)	30.0	50.0	20.0	100.0			
)	=	Inscribed circle diameter (m)	45.0	45.0	45.0	45.0			
A	=	Entry angle (degree)	40.0	30.0	30.0	20.0			
Q	=	Entry flow (pcu/h)	151	707	549	669			
Qс	=	Circulating flow across entry (pcu/h)	489	150	713	767			
OUTPI	JT PA	RAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	0.34	0.34	0.34	0.37			
<	=	1-0.00347(A-30)-0.978(1/R-0.05)	0.98	1.03	1.00	1.07			
X2	=	V + ((E-V)/(1+2S))	9.81	8.95	8.70	10.62			
M	=	EXP((D-60)/10)	0	0	0	0			
=	=	303*X2	2973	2712	2637	3218			
Td	=	1+(0.5/(1+M))	1.41	1.41	1.41	1.41			
Fc	=	0.21*Td(1+0.2*X2)	0.88	0.83	0.81	0.92			
Qe	=	K(F-Fc*Qc)	2498	2664	2059	2694	Total In Sum =	2076	PCU
DFC	=	Design flow/Capacity = Q/Qe	0.06	0.27	0.27	0.25	DFC of Critical Approach =	0.27	

OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION	١	INITIALS	DATE
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Area 29, Kwu Tung	2034 Des AM	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25
J6: Castle Peak Road (Chau Tau) / Road P1	2034 Des Aivi	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Design AM Peak Hour Traffic Flows	J6_Cas	stle Peak Road (Chau Tau)_Road P1_R.xls	REVIEWED BY:	OC	Mar-25

ARM			А	В	С	D			
NPUT	PARA	AMETERS:							
V	=	Approach half width (m)	7.3	4.5	6.8	6.0			
Ξ	=	Entry width (m)	11.5	12.0	10.0	14.0			
L	=	Effective length of flare (m)	20.0	35.0	15.0	35.0			
R	=	Entry radius (m)	30.0	50.0	20.0	100.0			
)	=	Inscribed circle diameter (m)	45.0	45.0	45.0	45.0			
4	=	Entry angle (degree)	40.0	30.0	30.0	20.0			
Q	=	Entry flow (pcu/h)	149	713	912	706			
Qc	=	Circulating flow across entry (pcu/h)	684	115	732	1024			
OUTPI	UT PA	RAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	0.34	0.34	0.34	0.37			
<	=	1-0.00347(A-30)-0.978(1/R-0.05)	0.98	1.03	1.00	1.07			
(2	=	V + ((E-V)/(1+2S))	9.81	8.95	8.70	10.62			
M	=	EXP((D-60)/10)	0	0	0	0			
=	=	303*X2	2973	2712	2637	3218			
Td	=	1+(0.5/(1+M))	1.41	1.41	1.41	1.41			
Fc	=	0.21*Td(1+0.2*X2)	0.88	0.83	0.81	0.92			
Qe	=	K(F-Fc*Qc)	2330	2693	2043	2439	Total In Sum =	2480	PCU
DFC	=	Design flow/Capacity = Q/Qe	0.06	0.26	0.45	0.29	DFC of Critical Approach =	0.45	

OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION	١	INITIALS	DATE
Contract No ASD 1018705CX06QC6 S16 for JUC & JUB at Area 29, Kwu Tung	2034 Des PM	PROJECT NO.: 83114	PREPARED BY:	CW	Mar-25
J6: Castle Peak Road (Chau Tau) / Road P1	2034 Des Pivi	FILENAME :	CHECKED BY:	DP	Mar-25
2034 Design PM Peak Hour Traffic Flows	J6_Cas	stle Peak Road (Chau Tau)_Road P1_R.xls	REVIEWED BY:	OC	Mar-25

ARM			Α	В	С	D			
NPUT	PARA	AMETERS:							
V	=	Approach half width (m)	7.3	4.5	6.8	6.0			
Ξ.	=	Entry width (m)	11.5	12.0	10.0	14.0			
L	=	Effective length of flare (m)	20.0	35.0	15.0	35.0			
3	=	Entry radius (m)	30.0	50.0	20.0	100.0			
)	=	Inscribed circle diameter (m)	45.0	45.0	45.0	45.0			
Ą	=	Entry angle (degree)	40.0	30.0	30.0	20.0			
Q	=	Entry flow (pcu/h)	159	742	593	715			
Qс	=	Circulating flow across entry (pcu/h)	524	158	756	811			
OUTP	JT PA	RAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	0.34	0.34	0.34	0.37			
<	=	1-0.00347(A-30)-0.978(1/R-0.05)	0.98	1.03	1.00	1.07			
X2	=	V + ((E-V)/(1+2S))	9.81	8.95	8.70	10.62			
M	=	EXP((D-60)/10)	0	0	0	0			
=	=	303*X2	2973	2712	2637	3218			
Td	=	1+(0.5/(1+M))	1.41	1.41	1.41	1.41			
Fc	=	0.21*Td(1+0.2*X2)	0.88	0.83	0.81	0.92			
Qe	=	K(F-Fc*Qc)	2468	2657	2024	2651	Total In Sum =	2209	PCU
DFC	=	Design flow/Capacity = Q/Qe	0.06	0.28	0.29	0.27	DFC of Critical Approach =	0.29	