Drainage Impact Assessment

September 24

Drainage Impact Assessment

Table of Contents

1	Intro	oduction	1
	1.1	Background	1
	1.2	Application Site	1
2	Dev	elopment Proposal	2
	2.1	The Proposed Development	2
3	Ass	essment Criteria	2
4	Pro	oosed Drainage System	5
	4.1.	Proposed Channels	5
5	Con	clusion	5
L	ist o	f Table	
		· Key Development Parameters · Design Return Periods under SDM	2

List of Figure

Figure 1 – Site Location Plan

Figure 2 – Existing Drainage Plan

Figure 3 – Proposed Drainage System

Figure 4-1 – Area of Suspected Flood Storage

Figure 4-2 – Catchment Plan

List of Appendix

Appendix A1 – Design Calculation

Appendix A2 – Sizing of Storage Tank

Appendix B - Development Layout Plan

Appendix C – Reference Drawings

Drainage Impact Assessment

1 Introduction

1.1 Background

- 1.1.1 The applicant seeks planning permission from the Town Planning Board (the Board) under Section (S.) 16 of the Town Planning Ordinance (Cap. 131) (the Ordinance) to use Various Lots in D.D. 89 and Adjoining Government Land (GL), Man Kam To, New Territories (the Site) for 'Proposed Temporary Warehouse (Excluding Dangerous Goods Godown) with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land'.
- 1.1.2 This report aims to support the development in drainage aspect.

1.2 Application Site

- 1.2.1 The application site is situated beside Man Kam To Road and Law Wo Station Road. It has an area of approx. 16,256 m². The site location is shown in **Figure 1**.
- 1.2.2 The existing site is mainly cover with vegetation with level various from approx. +5.0 to + 6.5mPD. The proposed site intent to fill to +7.5mPD to match with entrance level and for formation of structures, parking, L/UL spaces and circulation.
- 1.2.3 The surrounding site levels are mainly higher along the Man Kam To Road at approx. + 5.5 to + 8.1 mPD at the east. The site levels are generally lower at the north and west at approx. +2.9 to + 4.0 mPD.
- 1.2.4 There are existing watercrouse surrounding the proposed site, collecting runoff near Man Kam To Road which has generally higher ground level. The proposed site is minimum 3m away from the existing watercourse. **Figure 2** indicate the existing drainage system of the area.
- 1.2.5 According to the topo information, there is an area with ground level of approximate +4mPD which may provide flood storage during rainfall event. The existing levels, proposed levels and area which is suspected with flood storage is shown in **Figure 4-1**.

Drainage Impact Assessment

2 Development Proposal

2.1 The Proposed Development

- 2.1.1 The total site area is approximately 16,256 m². The existing site area is mainly coved by vegetation.
- 2.1.2 After the development the site would be fully paved. The catchment plan is shown in Figure 4-2.

Proposed Development	
Total Site Area (m²)	16,256
Paved Area after Development (m ²)	16,256

Table 1 - Site Development Area

3 Assessment Criteria

3.1.1 The Recommended Design Return Period based on Flood Level from SDM (Table 10) is adopted for this report. The recommendation is summarized in **Table 2** below.

Description	Design Return Periods
Intensively Used Agricultural Land	2 – 5 Years
Village Drainage Including Internal Drainage System under a polder Scheme	10 Years
Main Rural Catchment Drainage Channels	50 Years
Urban Drainage Trunk System	200 Years
Urban Drainage Branch System	50 Years

Table 2- Design Return Periods under SDM

3.1.2 The proposed drainage system intended to collect runoff from internal site and external catchment. 1 in 10 years return period is adopted for the drainage design.

Drainage Impact Assessment

- 3.1.3 Stormwater drainage design will be carried out in accordance with the criteria set out in the Stormwater Drainage Manual published by DSD. The proposed design criteria to be adopted for design of this stormwater drainage system and factors which have been considered are summarised below.
 - 1. Intensity-Duration-Frequency Relationship The Recommended Intensity-Duration-Frequency relationship is used to estimate the intensity of rainfall. It can be expressed by the following algebraic equation.

$$i = \frac{a}{(t_d + b)^c}$$

The site is located within the North District Zone. Therefore, for 10 years return period, the following values are adopted.

a =
$$454.9$$

b = 3.44
c = 0.412

2. The peak runoff is calculated by the Rational Method i.e. $Q_p = 0.278 \text{CiA}$

where Q_p = peak runoff in m³/s C = runoff coefficient (dimensionless) i = rainfall intensity in mm/hr A = catchment area in km²

3. The run-off coefficient (C) of surface runoff are taken as follows:

Paved Area: C = 0.95
 Unpaved Area: C = 0.35

Drainage Impact Assessment

4. Manning's Equation is used for calculation of velocity of flow inside the channels:

Manning's Equation:
$$v = \frac{R^{\frac{1}{6}}}{n} R^{\frac{1}{2}} S_f^{\frac{1}{2}}$$

Where,

V = velocity of the pipe flow (m/s)

S_f = hydraulic gradient

n = manning's coefficient

R = hydraulic radius (m)

5. Colebrook-White Equation is used for calculation of velocity of flow inside the pipes:

Colebrook-White Equation: $\underline{v} = -\sqrt{32gRS} \log \log \left(\frac{k_s}{14.8R} + \frac{1.255v}{R\sqrt{32gRS_f}}\right)$

where,

V = velocity of the pipe flow (m/s)

S_f = hydraulic gradient k_f = roughness value (m)

v = kinematics viscosity of fluid

D = pipe diameter (m)
R = hydraulic radius (m)

6. Volume of Drainage Detention Tank:

Extreme Rainfall intensity (1 in 10 yr) at North District Area for rainfall duration of 120 mins, I = 63.2 mm/hr

2 hours rainfall duration is adopted

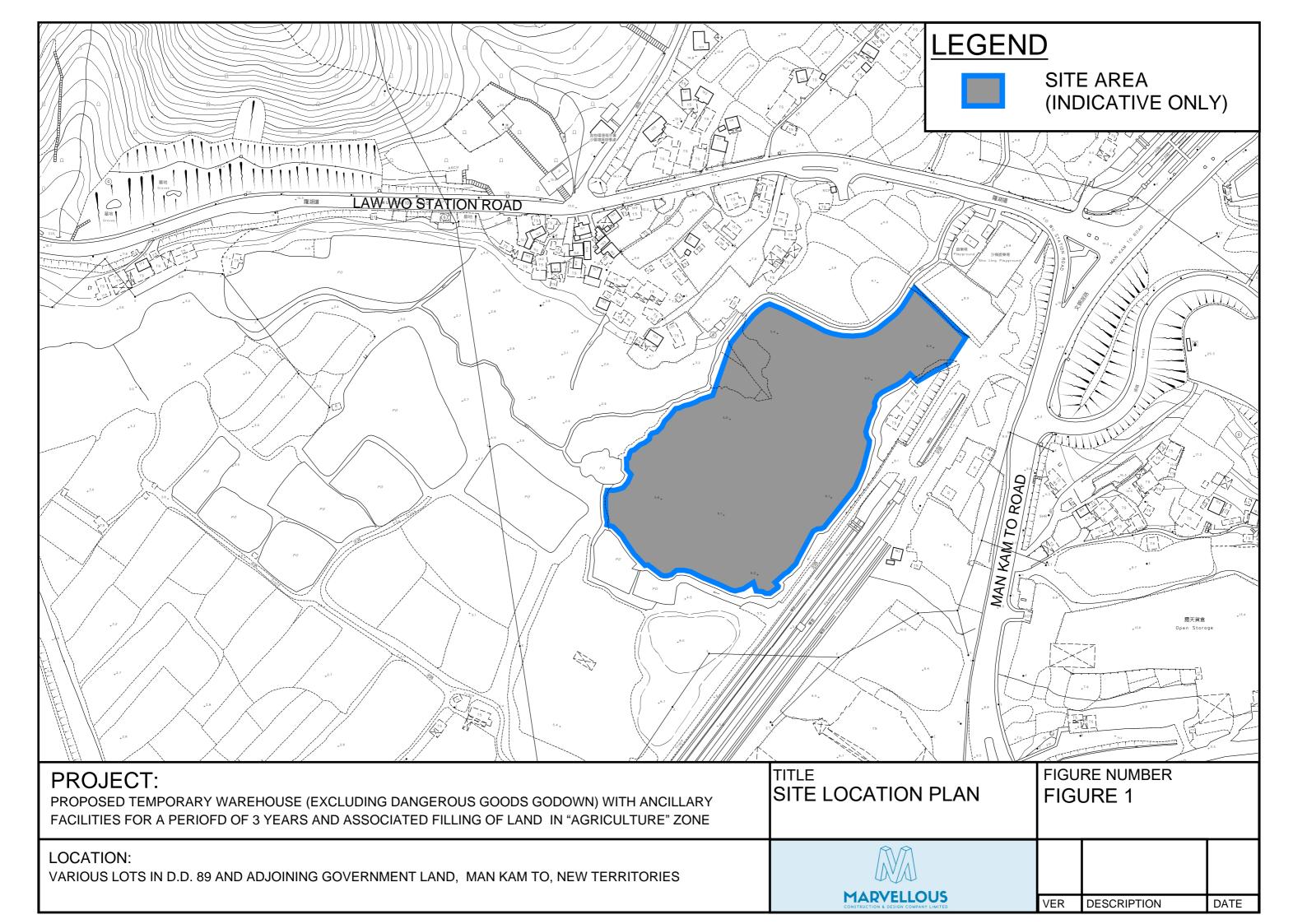
Drainage Impact Assessment

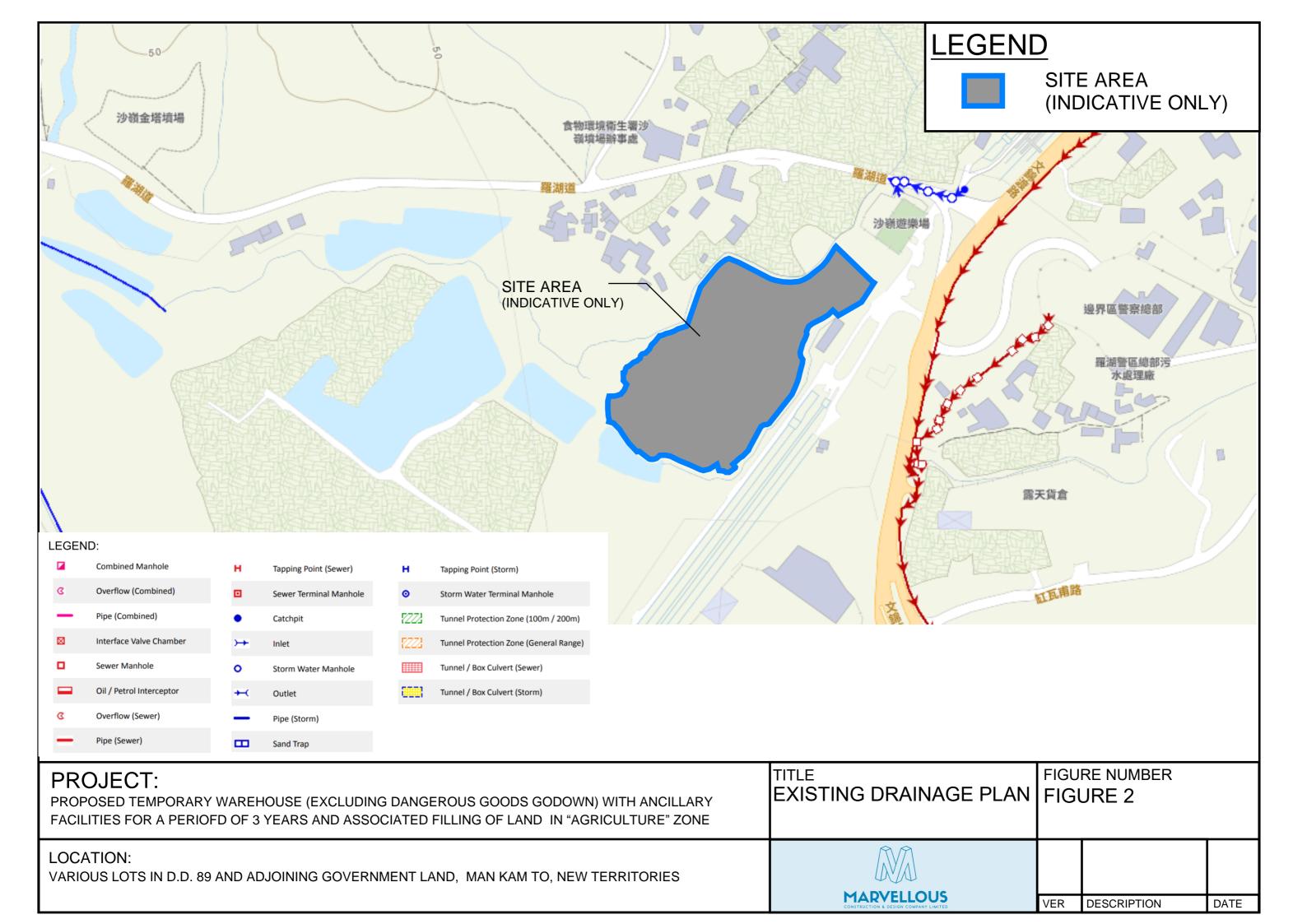
4 Proposed Drainage System

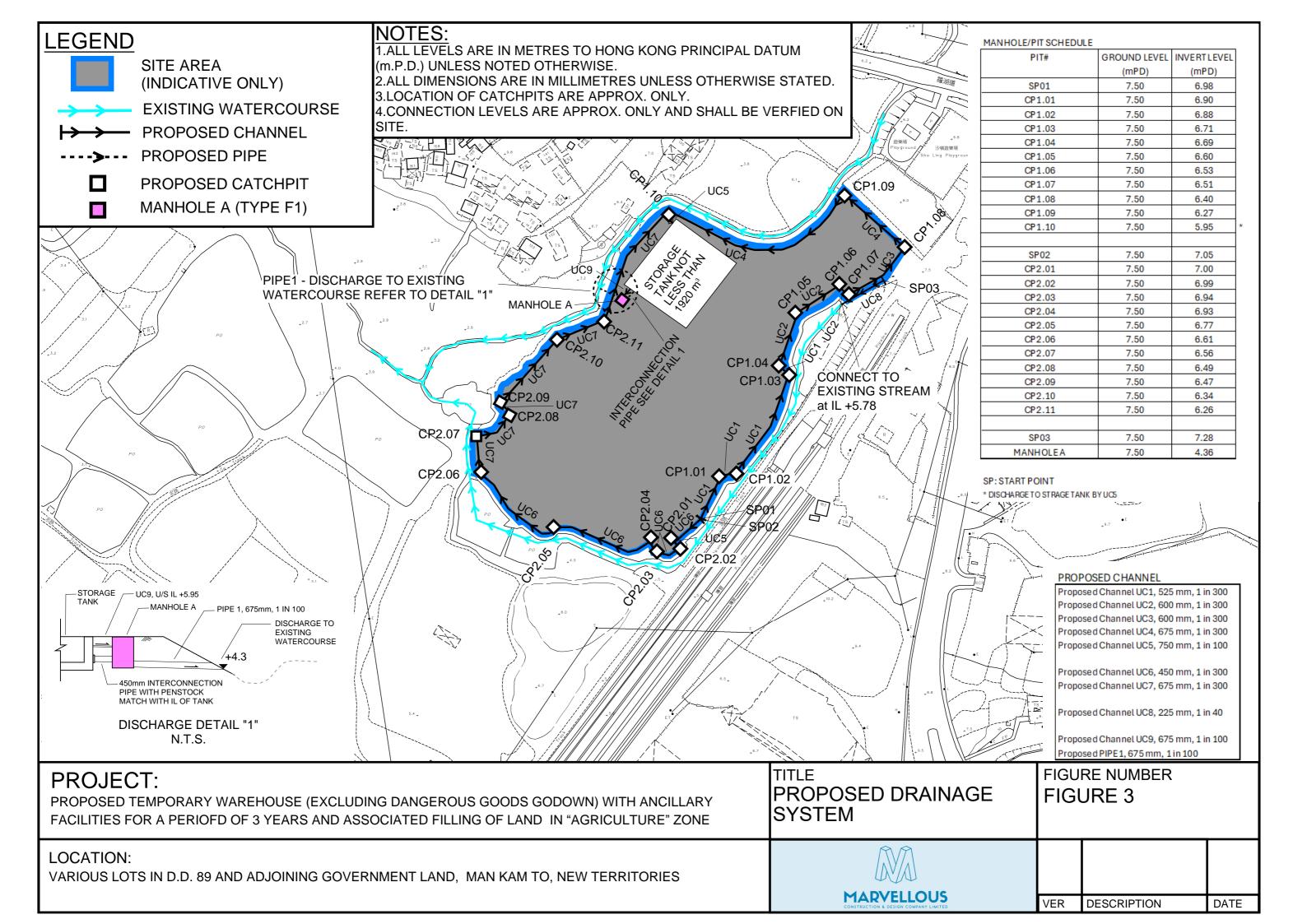
4.1. Proposed Storage Tank

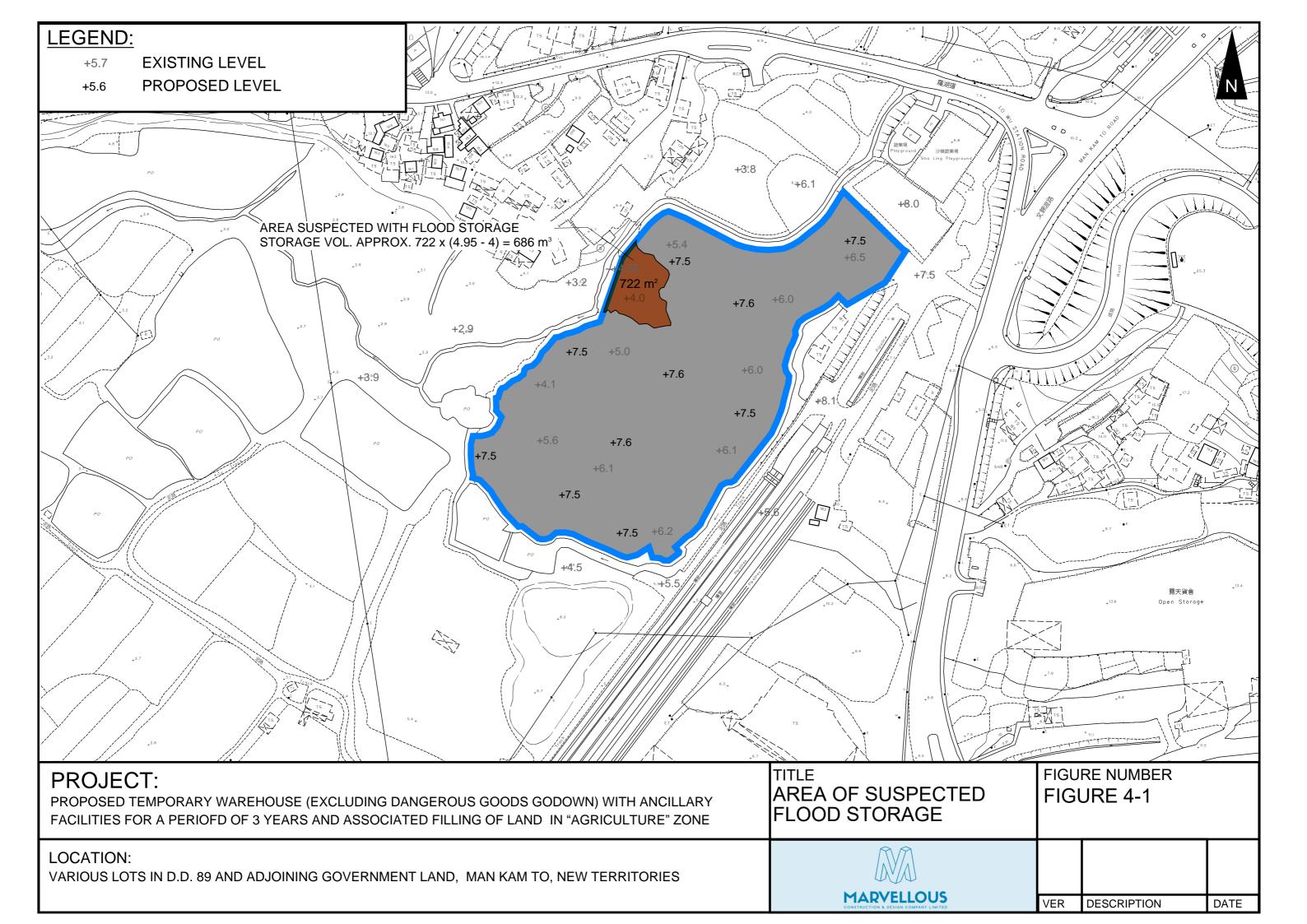
- 4.1.1 Additional runoff is generated due to the change of hard pavement ratio. Storage tank is proposed to collect the additional runoff from the site, such that there is no drainage impact to the nearby area.
- 4.1.2 The storage tank is proposed to collect the additional runoff for a 1 in 10 year rainfall event for 2 hours. The volume of existing suspected flood storage is also considered in the storage tank design (suspected flood storage area refer to Figure 4-1). As per the design for volume of storage tank shown in Appendix A2, the total storage volume of the storage tank is proposed to be not less than 1,920 m³.
- 4.1.3 During rainstorm event, runoff would be first discharged to storage tank. When the tank is full, it would overflow to manhole A and eventually discharge to existing watercourse downstream.
- 4.1.4 An interconnection pipe, at invert level of storage tank, is proposed between the storage tank and manhole A and the flow is controlled by a penstock. After the rainfall event, the stored water would be discharge to manhole A by opening the penstock and eventually discharge to existing watercourse downstream.
- 4.1.5 The detail design of storage tank and discharge arrangement would be designed in later stage of the project.

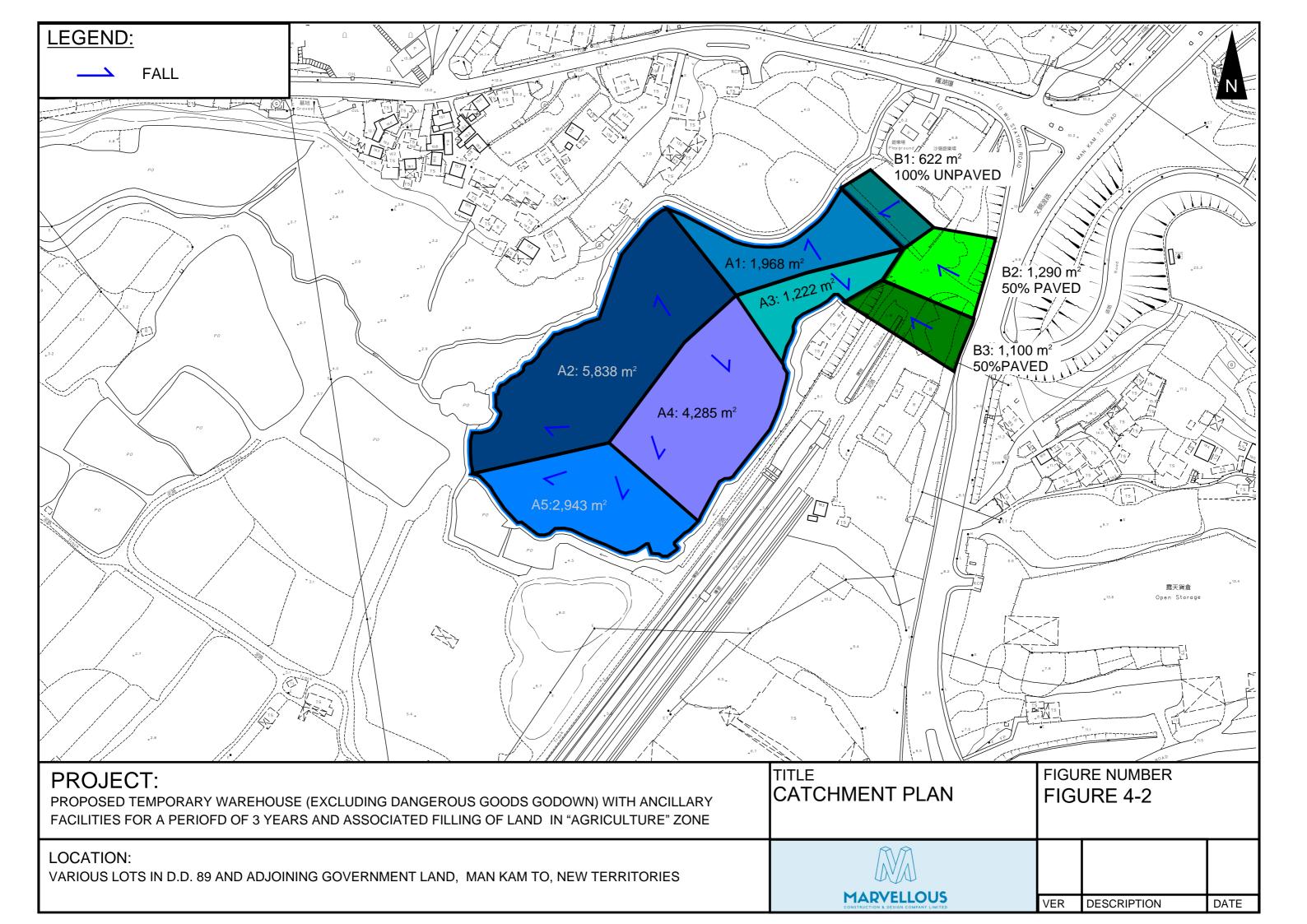
4.2. Proposed Channels


- 4.1.6 Proposed channels are designed for collection of runoff for internal and external catchment. They are proposed to connect to proposed storage tank.
- The design calculations of proposed UChannel are shown in Appendix A1. 4.1.7
- 4.1.8 The alignment, size, gradient and details of the proposed drains are shown in Figure 3. The catchment plan is shown in Figure 4-2.
- 4.1.5 Reference Drawings are shown in **Appendix C** for reference.


5 Conclusion


- Drainage review has been conducted for the Proposed Development. Storage tank and channels are proposed to mitigate the drainage impact to the nearby area.
- 5.1.2 With implementation of the above drainage system, the no unacceptable drainage impact is anticipated.


End of Text -


FIGURES

APPENDIX

Appendix A1: Design Calculation

North District

Return Period	1 in	10	years
1 01100			

n	0.014
Ks	0.15
Viscosity	0.000001

	North District a	454.9
Storm Constant	North District b	3.44
	North District c	0.412

Catchment Area Table (Area in m²)

Catchment	A1	A2	А3	A4	A5	B1	B2	В3	Total Site Area			
Total Area	1968	5838	1222	4285	2943	622	1290	1100	16256			
Hard Paved Area	1968	5838	1222	4285	2943	0	645	550	16256			
Unpaved Area	0	0	0	0	0	622	645	550	0			
Equival. Area	1869.6	5546.1	1160.9	4070.75	2795.85	217.7	838.5	715	15443.2			

Pavement Type	Hard Paved	Unpaved
Runoff Coefficient	0.95	0.35

DRAINAGE DESIGN

	Total Equivalent	ToC	Intensity	Total Discharge	Size	Gradient	V	Capacity	Liti	ilitization	Remark
Item	Area m2	min	mm/hr	m3/s	mm	1 in	m/s	m3/s	Oti	inuzuuon	Remark
	(1)		(2)	(3)			(4)	(5)		(6)	
Design of Channel UC1 for Catchment, A4	4071	3.00	211.18	0.24	525	300	1.33	0.33		73%	
Design of Channel UC2 for Catchment, A3,A4	5232	3.00	211.18	0.31	600	300	1.45	0.47		66%	
Design of Channel UC3 for Catchment, A3,A4,B2	6070	3.00	211.18	0.36	600	300	1.45	0.47		77%	
Design of Channel UC4 for Catchment, A1,A3,A4,B1,B2	8157	3.00	211.18	0.48	675	300	1.57	0.64		75%	
Design of Channel UC5 for Catchment, Total Site Area, B1, B2	16499	3.00	211.18	0.97	750	100	2.91	1.46		66%	
Design of Channel UC6 for Catchment, A5	2796	3.00	211.18	0.16	450	300	1.20	0.22		76%	
Design of Channel UC7 for Catchment, A2,A5	8342	3.00	211.18	0.49	675	300	1.57	0.64		77%	
Design of Channel UC8 for Catchment, B3	715	3.00	211.18	0.04	225	40	2.06	0.09		45%	For External Catchment B3
Design of Channel UC9 for Catchment, Total Site Area, B1, B2	16499	60.00	82.29	0.38	675	100	2.72	1.10		34%	From Storage Tank to Manhole A, ToC assumed as 60 min for conservative purpose
Design of PIPE1 for Catchment, Total Site Area. B1. B2	16499	60.02	82.28	0.38	675	100	3.02	1.08		35%	From Manhole A to Existing Stream

1) Sum of Area in Catchment Table . α

2)
$$i = \frac{a}{(t_2 + b)^c}$$

2) $i=\frac{a}{(t_d+b)^c}$ 3) 0.278 x Intensity x Equivalent Area 4) Channel: Manning Equation, Pipe Colebrook-White Equation

6) Less than 90%, for 10% allowance for siltation

Appendix A2: Sizing of Storage Tank

	Pre-Deve	elopment		Post-Development			
Hard Paved		0 m ²			16256 m²		
Green		16256 m ²	חחח		0 m ²		
Total Equivalent Area	= 0 x 0.95 + 16256 x 0.35	5689.6 m ²		=16256 x 0.95 + 0 x 0.35	15443.2 m²		
Design Flow Rate, Q	= 0.278 x 5689.6 x 63.2 / 1000000	0.100 m ³ /s		= 0.278 x 15443.2 x 63.2 / 1000000	0.271 m³/s		
Volume of Runoff in 120 min	= 0.1 x 120 x 60	720 m ³			1954 m³		

Runoff Coefficient 0.95 0.35

Storage Vol. Required = 1954 - 720 = 1234 m³
Suspected Existing Flood Stroage Vol. = 686 m^3 See Figure 4-1
Total Sorage Vol. Required. = 686 + 1234 = 1920 m³

DEVELOPMENT PARAMETERS

APPLICATION SITE AREA : 16,256 m² (ABOUT) COVERED AREA : 7.369 m² (ABOUT) UNCOVERED AREA : 8,887 m² (ABOUT)

PLOT RATIO (ABOUT) : 0.91 SITE COVERAGE : 45 % (ABOUT)

NO. OF STRUCTURE

: 2 : NOT APPLICABLE DOMESTIC GFA

NON-DOMESTIC GFA : 14,738 m² (ABOUT) TOTAL GFA : 14.738 m² (ABOUT)

BUILDING HEIGHT : 16.5 m (ABOUT)


NO. OF STOREY : 2

APPENDIX B - PROPOSED SITE LAYOUT PL

OFFICE AND WASHROOM B2 WAREHOUSE (EXCL. D.G.G), 1,419 m² (ABOUT) 2,838 m² (ABOUT) 16.5 m (ABOUT)(2-STOREY) OFFICE AND WASHROOM

> 7,369 m2 (ABOUT) 14,738 m² (ABOUT)

PROPOSED TEMPORARY WAREHOUSE (EXCLUDING DANGEROUS GOODS GODOWN) WITH ANCILLARY FACILITIES FOR A PERIOD OF 3 YEARS AND ASSOCIATED FILLING OF LAND

VARIOUS LOTS IN D.D.89 AND ADJOINING GOVERNMENT LAND, MAN KAM TO, NEW TERRITORIES

17.5.2024

LEGEND

APPLICATION SITE REVISED BY

STRUCTURE PARKING SPACE (PC) L/UL SPACE (MGV)

L/UL SPACE (CV)

INGRESS / EGRESS

DWG. TITLE LAYOUT PLAN

1:1500 @ A4

MN

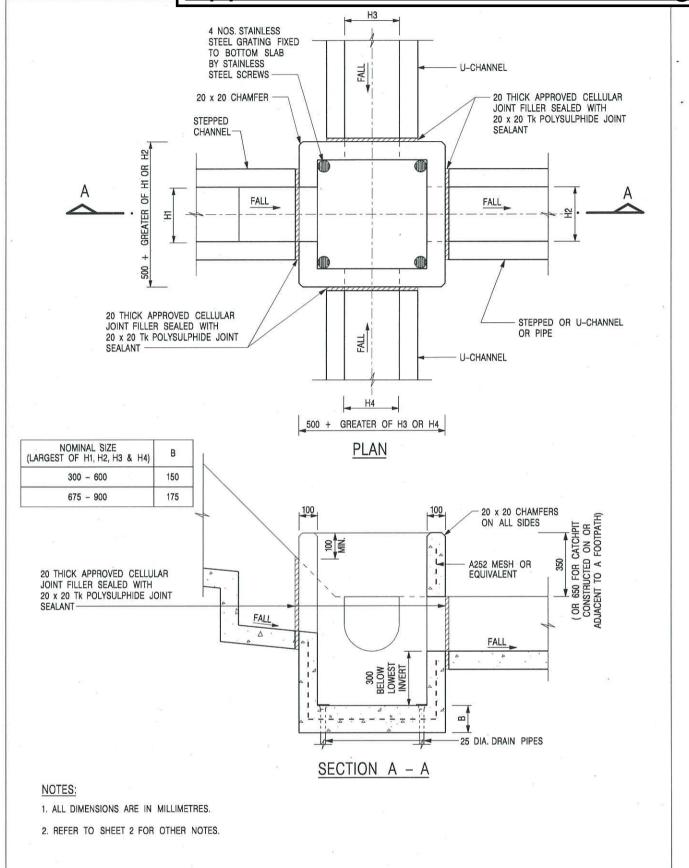
DWG NO PLAN 9 001

PARKING AND LOADING / UNLOADING (L/UL) PROVISIONS

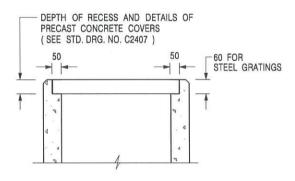
NO. OF PRIVATE CAR PARKING SPACE

DIMENSION OF PARKING SPACE : 5 m (L) x 2.5 m (W)

NO. OF L/UL SPACE FOR MEDIUM GOODS VEHICLE


: 3 DIMENSION OF L/UL SPACE : 11 m (L) x 3.5 m (W)

NO. OF L/UL SPACE FOR CONTAINER VEHICLE


DIMENSION OF L/UL SPACE

: 16 m (L) x 3.5 m (W)

Appendix C - Reference Drawings

	4	
	- FORMER DRG. NO. C	2406J. Original Signed 03.2015
	REF. REVIS	ION SIGNATURE DATE
CATCHPIT WITH TRAP		ENGINEERING AND PMENT DEPARTMENT
(SHEET 1 OF 2)	SCALE 1:20	DRAWING NO.
(OTTELT TOT 2)	DATE JAN 1991	C2406 /1
卓越工程 建設香港	We Engineer Ho	ng Kong's Development

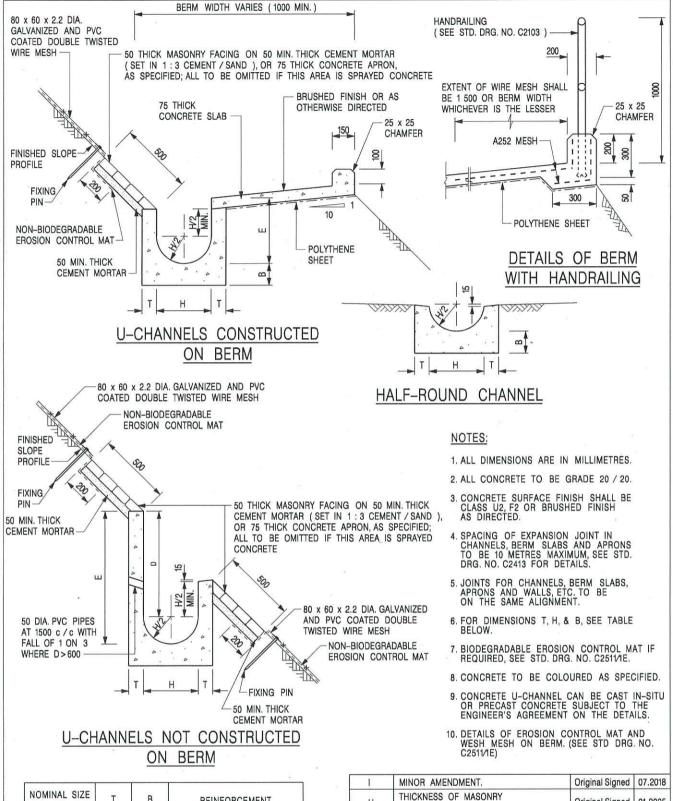
ALTERNATIVE TOP SECTION FOR PRECAST CONCRETE COVERS / GRATINGS

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE SHALL BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2 OR F2 AS APPROPRIATE.
- 4. FOR DETAILS OF JOINT, REFER TO STD. DRG. NO. C2413.
- 5. CONCRETE TO BE COLOURED AS SPECIFIED.
- UNLESS REQUESTED BY THE MAINTENANCE PARTY AND AS DIRECTED BY THE ENGINEER, CATCHPIT WITH TRAP IS NORMALLY NOT PREFERRED DUE TO PONDING PROBLEM.
- 7. UPON THE REQUEST FROM MAINTENANCE PARTY, DRAIN PIPES AT CATCHPIT BASE CAN BE USED BUT THIS IS FOR CATCHPITS LOCATED AT SLOPE TOE ONLY AND AS DIRECTED BY THE ENGINEER.
- FOR CATCHPITS CONSTRUCTED ON OR ADJACENT TO A FOOTPATH, STEEL GRATINGS (SEE DETAIL 'A' ON STD. DRG. NO. C2405 /2) OR CONCRETE COVERS (SEE STD. DRG. NO. C2407) SHALL BE PROVIDED AS DIRECTED BY THE ENGINEER.
- 9. IF INSTRUCTED BY THE ENGINEER, HANDRAILING (SEE DETAIL 'J' ON STD. DRG. NO. C2405 /5; EXCEPT ON THE UPSLOPE SIDE) IN LIEU OF STEEL GRATINGS OR CONCRETE COVERS CAN BE ACCEPTED AS AN ALTERNATIVE SAFETY MEASURE FOR CATCHPITS NOT ON A FOOTPATH NOR ADJACENT TO IT. TOP OF THE HANDRAILING SHALL BE 1 000 mm MIN. MEASURED FROM THE ADJACENT GROUND LEVEL.
- 10. MINIMUM INTERNAL CATCHPIT WIDTH SHALL BE 1 000 mm FOR CATCHPITS WITH A HEIGHT EXCEEDING 1 000 mm MEASURED FROM THE INVERT LEVEL TO THE ADJACENT GROUND LEVEL. AND, STEP IRONS (SEE DSD STD. DRG. NO. DS1043) AT 300 c/c STAGGERED SHALL BE PROVIDED. THICKNESS OF CATCHPIT WALL FOR INSTALLATION OF STEP IRONS SHALL BE INCREASED TO 150 mm.
- FOR RETROFITTING AN EXISTING CATCHPIT WITH STEEL GRATING, SEE DETAIL 'G' ON STD. DRG. NO. C2405 /4.
- SUBJECT TO THE APPROVAL OF THE ENGINEER, OTHER MATERIALS CAN ALSO BE USED AS COVERS / GRATINGS.

REF.	REVISION	SIGNATURE	DATE
-	FORMER DRG. NO. C2406J.	Original Signed	03.2015
Α	MINOR AMENDMENT.	Original Signed	04.2016

CATCHPIT WITH TRAP (SHEET 2 OF 2)



CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE 1:20 **DATE** JAN 1991

drawing no. C2406 /2A

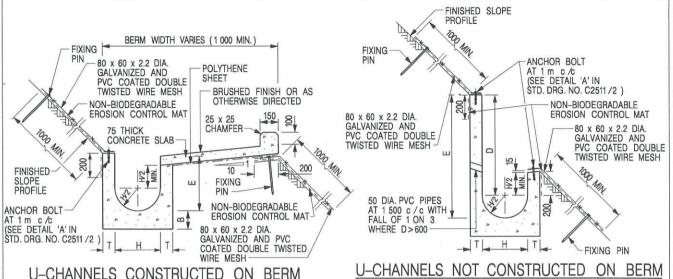
卓越工程 建設香港

NOMINAL SIZE H	T	В	REINFORCEMENT
300	80	100	A252 MESH PLACED CENTRALLY AND T=100
375 - 600	100	150	WHEN E>650
675 - 900	125	175	A252 MESH PLACED CENTRALLY

REF.	REVISION	SIGNATURE	DATE
В	MINOR AMENDMENTS.	Original Signed	3.94
С	150 x 100 UPSTAND ADDED AT BERM.	Original Signed	6.99
D	MINOR AMENDMENT.	Original Signed	08.2001
E	DRAWING TITLE AMENDED.	Original Signed	11.2001
F	GENERAL REVISION.	Original Signed	12.2002
G	MINOR AMENDMENT.	Original Signed	01.2004
Н	THICKNESS OF MASONRY FACING AMENDED.	Original Signed	01.2005
1	MINOR AMENDMENT.	Original Signed	07.2018

DETAILS OF HALF-ROUND AND U-CHANNELS (TYPE A -WITH MASONRY APRON)

卓越工程 建設香港


CEDD

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE 1:25

DATE JAN 1991

C2409l

U-CHANNELS CONSTRUCTED ON BERM WITH NON-BIODEGRADABLE EROSION CONTROL MAT U-CHANNELS NOT CONSTRUCTED ON BERM WITH NON-BIODEGRADABLE EROSION CONTROL MAT

BIODEGRADABLE

EROSION CONTROL MAT

07.2018

12.2017

01.2005

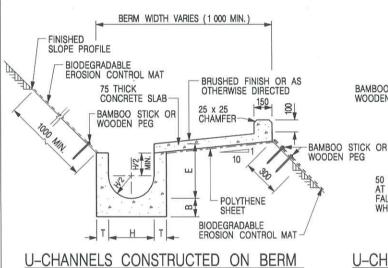
12.2002

08 2001

6.99

3.94

10.92


DATE

Original Signed

SIGNATURE

FINISHED SLOPE PROFILE

ш

WITH BIODEGRADABLE

EROSION CONTROL MAT

BAMBOO STICK OR WOODEN PEG

U-CHANNELS NOT CONSTRUCTED ON BERM

WITH BIODEGRADABLE

EROSION CONTROL MAT

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE TO BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2, F2 OR BRUSHED FINISH AS DIRECTED.
- SPACING OF EXPANSION JOINT IN CHANNELS, BERM SLABS AND APRONS TO BE 10 METRES MAXIMUM, SEE STD. DRG. NO. C2413 FOR DETAILS.
- 5. JOINTS FOR CHANNELS, BERM SLABS, APRONS AND WALLS, ETC. TO BE ON THE SAME ALIGNMENT.
- 6. FOR DIMENSIONS T, H, & B, SEE TABLE BELOW.
- 7. FOR TYPICAL FIXING PIN DETAILS, SEE STD. DRG. NO. C2511/2.
- 8. MINIMUM SIZE OF 25 x 50 x 300mm SHALL BE PROVIDED FOR WOODEN PEG.
- MINIMUM SIZE OF 10mm DIAMETER WITH 200mm LONG SHALL BE PROVIDED FOR BAMBOO STICK.
- 10. THE FIXING DETAILS OF NON-BIODEGRADABLE AND BIODEGRADABLE EROSION CONTROL MATS ON EXISTING BERM SHALL REFER TO STD. DRG. NO. C2511/1.

NOMINAL SIZE H	Ţ	В	REINFORCEMENT
300	80	100	A252 MESH PLACED
375 - 600	100	150	CENTRALLY AND T=100 WHEN E>650
675 - 900	125	175	A252 MESH PLACED CENTRALLY

	DETAILS	OF I	HALF-	ROUN	ID A	ND
	U-CHAN	NELS	(TYP	ЕВ.	– WI	TH
I	FROSION	CON	ITROL	MAT	APF	(NO)

6
CEDD
CEDU
nac

Н

G

F

E

D

C

В

A

REF.

BAMBOO STICK OR WOODEN PEG

50 DIA. PVC PIPES AT 1 500 c/c WITH FALL OF 1 ON 3

WHERE D>600

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE DIAGRAMMATIC
DATE JAN 1991

MINOR AMENDMENT.

MINOR AMENDMENT

GENERAL REVISION.

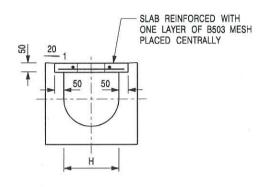
MINOR AMENDMENT.

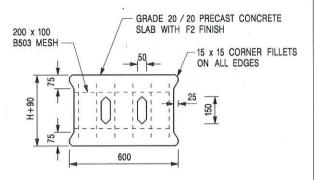
MINOR AMENDMENT.

MINOR AMENDMENT

FIXING DETAILS OF BIODEGRADABLE

150 x 100 UPSTAND ADDED AT BERM

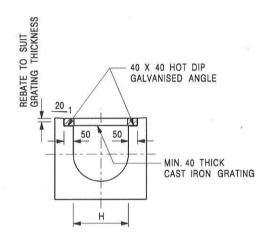

REVISION

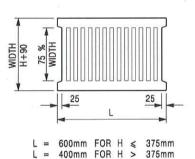

EROSION CONTROL MAT ADDED.

DIMENSION TABLE AMENDED

C2410

卓越工程 建設香港




<u>PLAN OF SLAB</u>

TYPICAL SECTION

U-CHANNELS WITH PRECAST CONCRETE SLABS

(UP TO H OF 525)

TYPICAL SECTION

CAST IRON GRATING

(DIMENSIONS ARE FOR GUIDANCE ONLY, CONTRACTOR MAY SUBMIT EQUIVALENT TYPE)

U-CHANNEL WITH CAST IRON GRATING

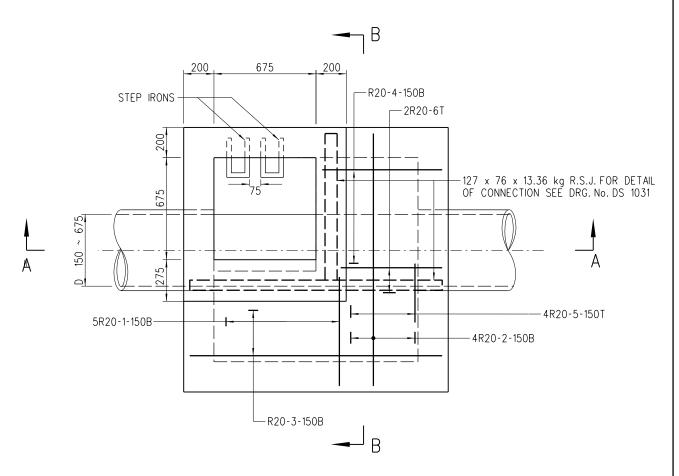
(UP TO H OF 525)

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. H=NOMINAL CHANNEL SIZE.
- ALL CAST IRON FOR GRATINGS SHALL BE GRADE EN-GJL-150 COMPLYING WITH BS EN 1561.
- 4. FOR COVERED CHANNELS TO BE HANDED OVER TO HIGHWAYS DEPARTMENT FOR MAINTENANCE, THE GRATING DETAILS SHALL FOLLOW THOSE AS SHOWN ON HyD STD. DRG. NO. H3156.

	REF.	REVISION	SIGNATURE	DATE
	Α	CAST IRON GRATING AMENDED.	Original Signed	
	В	NAME OF DEPARTMENT AMENDED.	Original Signed	01.2005
	С	MINOR AMENDMENT. NOTE 3 ADDED.	Original Signed	12.2005
	D	NOTE 4 ADDED.	Original Signed	06.2008
	E	NOTES 3 & 4 AMENDED.	Original Signed	

COVER SLAB AND CAST IRON GRATING FOR CHANNELS



CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

 SCALE
 1:20
 DRAWING NO.

 DATE
 JAN 1991
 C2412E

卓越工程 建設香港

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES.

PLAN

2. NOTATION OF REINFORCEMENT :THE SEQUENCE OF DESCRIPTION OF IDENTIFICATION MARKS ON DRAWINGS FOR STEEL REINFORCING BARS FOR CONCRETE WORK IS AS FOLLOWS (NUMBER, TYPE, SIZE, MARK, SPACING, LOCATION OR COMMENT)

- 3. B DENOTES GRADE 500B RIBBED REINFORCEMENT.
- 4. R DENOTES GRADE 250 PLAIN REINFORCEMENT.

5. PIPE DIAMETER

: 150 TO 675 mm

6. NORMAL RANGE

:2 500 TO 3700 mm (MEASURED FROM ROAD LEVEL TO LOWEST INVERT)

OF DEPTH 7. USED IN

:STORMWATER DRAIN AND SEWER

8. JUNCTION

: POSITION OF JUNCTION TO BE DETERMINED IN EACH INDIVIDUAL CASE. CHANNELS IMMEDIATELY UNDER

ACCESS TO MANHOLE SHOULD BE AVOIDED.

9. TOP TREATMENT

: SEE DRG. No. DS 1032

10. FOUNDATION

: FOUNDATION OF MANHOLE VARIES WITH SITE CONDITION. THEREFORE, IT SHOULD BE DETERMINED ON

SITE BY THE ENGINEER.

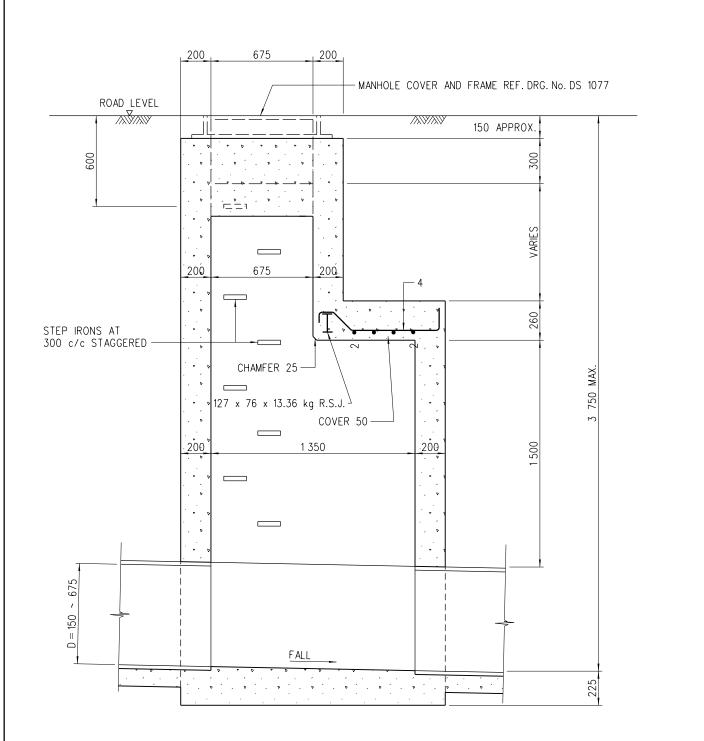
11. CONCRETE

: GRADE 30/20

12. ALL BAR MARKS APPEARED HEREON ARE USED FOR REFERENCE IN THIS DRAWING ONLY.

13. MINIMUM COVER AT END OF BARS 40 mm

14. COVER AND FRAME NOT SHOWN ON PLAN FOR CLARITY.


15. RECESS WITH SQUARE STEEL ROD SHALL BE PROVIDED AT TOP OF MANHOLE CHAMBER FOR INSTALLING MONITORING DEVICE(S). DETAILS REFER TO DSD STANDARD DRAWING NO. DS 1099.

	REV.	DESCRIPTION	SIGNATURE	DATE
,		NEW ISSUE	ORIGINAL SIGNED	15.8.2007
	А	NOTE 11 REVISED	ORIGINAL SIGNED	24.11.2014
	В	NOTE 11 DELETED NOTES 2, 3 & 4 ADDED	ORIGINAL SIGNED	29.4.2015
	С	NOTE 15 ADDED	ORIGINAL SIGNED	2.8.2022

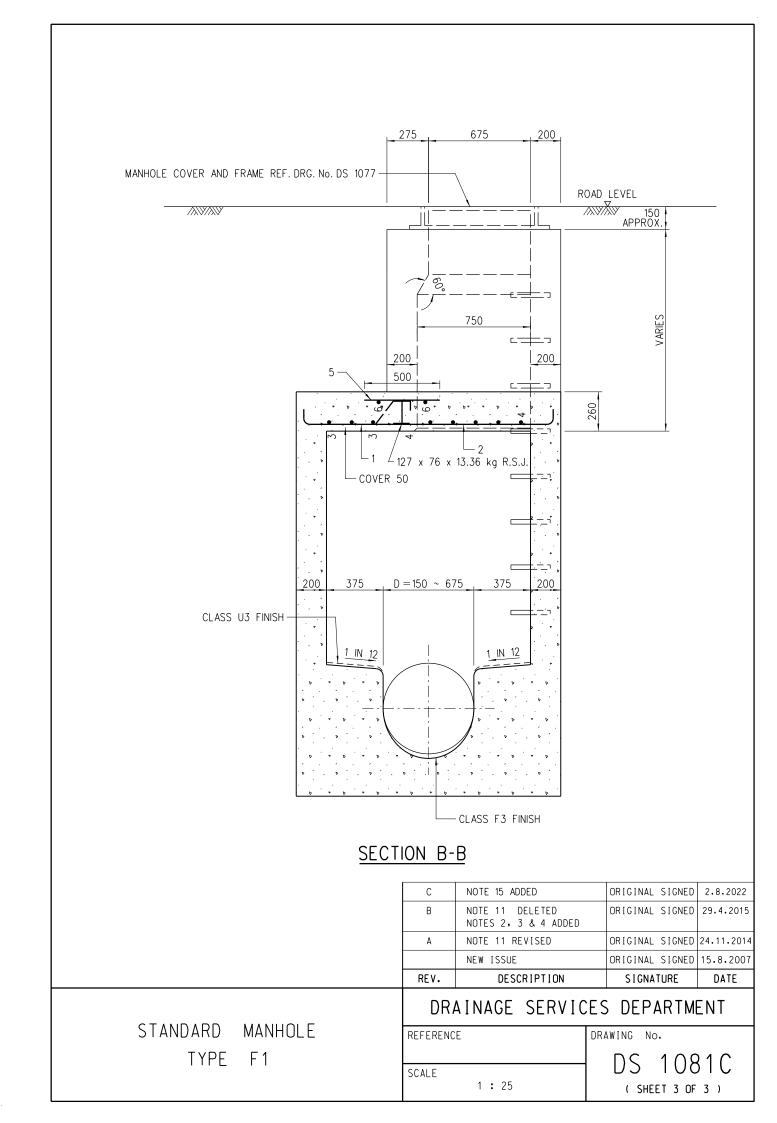
STANDARD MANHOLE TYPF F 1

DRAINAGE SERVICES DEPARTMENT DRAWING No. REFERENCE

DS 1081C SCALE 1:25 (SHEET 1 OF 3)

SECTION A-A

BAR MARKS	SHAPE CODE O
5 & 6	20
2 & 3	(35)
1 & 4	99


REV.	DESCRIPTION	SIGNATURE	DATE
	NEW ISSUE	ORIGINAL SIGNED	15.8.2007
А	NOTE 11 REVISED	ORIGINAL SIGNED	24.11.2014
В	NOTE 11 DELETED NOTES 2, 3 & 4 ADDED	ORIGINAL SIGNED	29.4.2015
С	NOTE 15 ADDED	ORIGINAL SIGNED	2.8.2022

STANDARD MANHOLE
TYPE F1

DRAINAGE SERVICES DEPARTMENT

REFERENCE DRAWING No.

SCALE DS 1081C (SHEET 2 OF 3)

