Appendix 10

Traffic Impact Assessment

> Traffic Impact Assessment Final Report 9th August 2024

Prepared by: CKM Asia Limited Prepared for: K. Wah Asphalt Limited

CONTENTS

CHA	APTER	PAGE
1.	INTRODUCTION	1
	Background	
	Scope of Study	
	Contents of the Report	
2.	EXISTING SITUATION	2
	The Application Site	
	Traffic Generation of the Existing Temporary Asphalt Plant	
	The Local Road Network	
	Pedestrian Facilities	
	Public Transport Facilities	
	Existing Performance of the Surveyed Junctions	
	Existing Performance of the Surveyed Road Links	
3	ΤΗΕ ΡΡΩΡΩΣΕΊΩ ΤΕΛΛΡΩΡΑΡΥ ΑΣΡΗΔΙ Τ.ΡΙ ΔΝΙΤ	6
5.	Development Parameters	0
	Provision of Internal Transport Facilities	
1		7
4.	Design Vear	1
	Traffic Forecast	
	Traffic Growth	
	2029 Junction Capacity Analysis	
	2029 Road Link Capacity Analysis	
5	SUMMARY	10
5.		.0
	Appendix A – Junction Capacity Analysis	

TABLES

NUMBER

- 2.1 Peak Hour Traffic Generation
- 2.2 Public Transport Services Operating Close to the Application Site
- 2.3 Observed Pedestrian Patterns at J05 and J07
- 2.4 Existing Junction Performance
- 2.5 Existing Road Link Performance
- 3.1 Summaries of Development Parameters
- 3.2 Provision of Internal Transport Facilities
- 4.1 Population Projections in Tertiary Planning Unit
- 4.2 Details of Other Known Major Planned / Committed Developments Identified
- 4.3 2029 Junction Performance

FIGURES

NUMBER

- 1.1 Location of the Application Site
- 2.1 Location of the Surveyed Junctions
- 2.2 Junction of Man Kam To Road / Lo Wu Station Road
- 2.3 Junction of Man Kam To Road / Kong Nga Po Road
- 2.4 Junction of Man Kam To Road / Access Road to Open Storage Site No.7
- 2.5 Junction of Man Kam To Road / Access Road to Application Site
- 2.6 Junction of Man Kam To Road / Fu Tei Au Road
- 2.7 Junction of Man Kam To Road / Access Road to Hung Kiu San Tsuen
- 2.8 Junction of Jockey Club Road / Po Wan Road
- 2.9 Existing Peak Hour Traffic Flows with the Existing Temporary Asphalt Plant
- 4.1 2029 Traffic Flows with the Proposed Temporary Asphalt Plant

1.0 INTRODUCTION

Background

- 1.1 The Application Site is located to the east of Man Kam To Road in Sheung Shui, and is shown in **Figure 1.1.** It is currently occupied by an asphalt plant operated by the Applicant (the "Existing Temporary Asphalt Plant").
- 1.2 The Existing Temporary Asphalt Plant was first approved by the Town Planning Board on 12th December 2014 for a period of 5 years until the end of 2019 (A/NE-FTA/148) with a Class B amendment approved on 23rd October 2015 (A/NE-FTA/148-2). Subsequently, the Town Planning Board approved a renewal of the planning permission on 18th October, 2019 (A/NE-FTA/192) for a period of 5 years until the end of 2024.
- 1.3 This is the 2nd renewal application for 5 years (the "Proposed Temporary Asphalt Plant. The Proposed Temporary Asphalt Plant has <u>in-principle the same</u> development parameters as the Existing Temporary Asphalt Plant, i.e. there is no change in the key development parameters including the site area, building bulk, production capacity etc..
- 1.4 CKM Asia Limited was commissioned by the Applicant to conduct a Traffic Impact Assessment ("TIA") in support of the Proposed Temporary Asphalt Plant.

Scope of Study

- 1.5 The main objectives of this Study are as follows:
 - To assess the existing traffic issues in the vicinity of the Application Site;
 - To quantify the amount of traffic generated by the Existing Temporary Asphalt Plant and Proposed Temporary Asphalt Plant;
 - To examine the traffic impact on the local road network;
 - To identify any deficiencies in the road network in accommodating the traffic generated by the Proposed Temporary Asphalt Plant; and
 - To ensure adequate provision of transport facilities.

Contents of the Report

- 1.6 After this introduction, the remaining chapters contain the following:
 - Chapter Two Describes the existing condition;
 - Chapter Three Outlines the Proposed Temporary Asphalt Plant;
 - Chapter Four Describes the traffic impact analysis; and
 - Chapter Five Gives the overall conclusion.

2.0 EXISTING SITUATION

The Application Site

2.1 The Application Site has an area of around 9,056.43 m² located to the east of Man Kam To Road between Kong Nga Po Road and Fu Tei Au Road. Existing vehicular access to the Application Site is provided at Man Kam To Road.

Traffic Generation of the Existing Temporary Asphalt Plant

- 2.2 Traffic generation of the Existing Temporary Asphalt Plant is obtained based on the record provided by the Applicant for the typical operational months of February, March and April 2024.
- 2.3 Based on the record, the peak hour traffic generation of the Existing Temporary Asphalt Plant for these 3 months are presented in Table 2.1.

Month Peak Hour Traffic Generation (vehicles / hour)			cles / hour)
	Attraction	Generation	2-Way
February 2024	14	14	28
March 2024	14	14	28
April 2024	15	15	30
Maximum	15	15	30

TABLE 2.1 PEAK HOUR TRAFFIC GENERATION

2.4 Table 2.1 shows the maximum peak hour traffic generation of the existing temporary asphalt plant is 30 vehicles (2-way), which is equivalent to 75 passenger car unit ("pcu").

The Local Road Network

- 2.5 Man Kam To Road is a rural road linking the Man Kam To Boundary Control Point ("BCP") and continues south as Jockey Club Road towards Sheung Shui and Fanling. The section of Man Kam To Road between Po Wan Road and Kong Nga Po Road is mostly of single carriageway standard with 2 northbound traffic lanes towards the Man Kam To BCP and 1 southbound traffic lane towards Sheung Shui.
- 2.6 Lo Wu Station Road is a single carriageway 2-lane local road connecting Man Kam To Road and Lo Wu MTR Station.
- 2.7 Kong Nga Po Road is local road connecting Man Kam To Road and Kong Nga Po, where upgrading work is being carried out by the Civil Engineering and Development Department to form a 7.3m wide single carriageway 2-lane standard.
- 2.8 Fu Tei Au Road is a single carriageway 2-lane local road. It connects Man Kam To Road and Sheung Shui Treatment Works and Fresh Water Pumping Station.
- 2.9 Po Wan Road is a single carriageway 2-lane district distributor. It provides an alternative route between Man Kam To Road / Jockey Club Road, and Po Shek Wu Road bypassing the roundabout of Jockey Club Road / Po Shek Wu Road.

Pedestrian Facilities

2.10 Footpaths are provided along both sides of Man Kam To Road in vicinity of the Application Site. It was observed that few pedestrians use these footpaths.

Public Transport Facilities

2.11 One franchised bus and one GMB route operate close to the Application Site, and the bus stops are located on both sides of Man Kam To Road which are some 180m to the south of the Junction of Man Kam To Road / Application Site Access Road. Details of the public transport services are presented in Table 2.2.

TABLE 2.2PUBLIC TRANSPORT SERVICES OPERATING CLOSE TO THE
APPLICATION SITE

Route	Routing	Frequency (min)
KMB 73K	Sheung Shui – Man Kam To	10 - 30
GMB 59K	Sheung Shui Station - Lin Ma Hang	15 - 30
GMB 59S	Heung Yuen Wai Boundary Control Point -Sheung Shui Station	3 - 8

Note: KMB - Kowloon Motor Bus GMB - Green Minibus

Traffic Survey

- 2.12 To quantify the existing traffic flows in the vicinity of the Application Site, manual classified counts were conducted on Monday, 6th May 2024 during the AM and PM peak periods at the following junctions:
 - J01 Junction of Man Kam To Road / Lo Wu Station Road;
 - J02 Junction of Man Kam To Road / Kong Nga Po Road;
 - J03 Junction of Man Kam To Road / Access Road to Open Storage Site No.7;
 - J04 Junction of Man Kam To Road / Access Road to Application Site;
 - J05 Junction of Man Kam To Road / Fu Tei Au Road;
 - J06 Junction of Man Kam To Road / Access Road to Hung Kiu San Tsuen; and
 - J07 Junction of Jockey Club Road / Po Wan Road.
- 2.13 Locations of the surveyed junctions are shown in **Figure 2.1**, and the layouts of these junctions are shown in **Figures 2.2 2.8**.
- 2.14 The traffic counts are classified by vehicle type to enable traffic flows in passenger car unit ("pcu") to be calculated. The AM and PM peak hours identified from the surveys are found to be between 0800 and 0900 hours, and 1700 and 1800 hours respectively.
- 2.15 **Figure 2.9** presents the existing AM and PM peak hour traffic flows, which includes the traffic generated by the Existing Temporary Asphalt Plant.

Existing Pedestrian Activities at J05 and J07

2.16 The signalised Junction of Man Kam To Road / Fu Tei Au Road (J05) and the Junction of Jockey Club Road / Po Wan Road (J07) operate with a pedestrian demand-dependant phase; hence, the pedestrian phase is only called if the pedestrian push button is activated by pedestrians. Observations were made at the pedestrian crossings and the results are summarized in Table 2.3.

	J/O Man Kam To Road / Fu Tei Au Road (J05)		J/O Jockey Club Road / Po Wan Road (J07)		
	AM Peak Hour	AM Peak Hour PM Peak Hour A		PM Peak Hour	
Number of Cycles <u>with</u> pedestrian stage	3 (9%)	3 (9%)	2 (5%)	3 (8%)	
Number of Cycles <u>without</u> pedestrian stage	32 (91%)	31 (91%)	37 (95%)	37 (92%)	
Total	34 (100%)	34 (100%)	40 (100%)	40 (100%)	

TABLE 2.3OBSERVED PEDESTRIAN PATTERNS AT J05 AND J07

2.17 Table 2.3 shows that the pedestrian demand-dependant phase is activated only 2 to 3 times during the AM and PM peak hour respectively, i.e. less than 10% of time.

Existing Performance of the Surveyed Junctions

- 2.18 The existing performance of the surveyed junctions are calculated based on the observed traffic counts, and the analysis was undertaken using the methods outlined in Volume 2 of Transport Planning and Design Manual ("TPDM"), and the signal information obtained from the Traffic Control Division ("TCD") of Transport Department ("TD").
- 2.19 Similar to the previous renewal application, due to the presence of the demand dependant pedestrian phase, and to better determine the performance of the Junction of Man Kam To Road / Fu Tei Au Road (J05) and the Junction of Jockey Club Road / Po Wan Road (J07), the capacity analysis is conducted for 3 cases:
 - Case 1 Worst case operation with pedestrian phase activated every cycle, which is <u>unrealistic</u> because there are few pedestrians at these locations;
 - Case 2 Optimal case operation without pedestrian phase activated; and
 - Case 3 Sensitivity test assuming the pedestrian phase is activated 20% of time.
- 2.20 The junction capacity analysis results are summarised in Table 2.4 and the detailed calculations are found in Appendix A.

	Junction		Type of Control	Para- meter	AM Peak Hour	PM Peak Hour	
J01	J/O Man Kam To Road / Lo Wu Station Road		Priority	RFC	0.102	0.098	
J02	J/O Man Kam To Road / Kong Nga Po Road		Priority	RFC	0.427	0.320	
J03	103 J/O Man Kam To Road / Access Road to Open Storage Site No.7			RC	85%	94%	
J04	J/O Man Kam To Road / Access Road to Applicati	on Site	Priority	RFC	0.047	0.080	
J05	J/O Man Kam To Road / Fu Tei Au Road	Case 1	Signal	RC	40%	45%	
		Case 2	Signal	RC	90%	96%	
		Case 3	Signal	RC	80%	86%	
J06	J06 J/O Man Kam To Road / Access Road to Hung Kiu San Tsuen		Priority	RFC	0.080	0.104	
J07	J/O Jockey Club Road / Po Wan Road	Case 1	Signal	RC	90%	114%	
		Case 2	Signal	RC	>100%	>100%	
		Case 3	Signal	RC	>100%	>100%	
Note:	lote: RC – Reserve Capacity RFC – Ratio of Flow to Capacity						

TABLE 2.4 EXISTING JUNCTION PERFORMANCE

2.21 The above results indicate the surveyed junctions currently operate with capacities.

Existing Performance of the Surveyed Road Link

2.22 The existing performance, in terms of Peak Hourly Flows / Design Flow Ratio ("P/Df") of the surveyed road links is calculated based on the observed traffic flows, and the analysis results are summarized in Table 2.5.

Road Link		Road Type	Direction	Config- uration	Design Flow	Peak Hou Design Flow	ur Flows / 7 Ratio (P/Df)
					(pcu/hr)	AM Peak Hour	PM Peak Hour
L01	Man Kam To	Rural Road	Northbound	Single-2	2,500	0.418	0.347
	Road		Southbound	Single-1	1,500	0.635	0.623
L02	Po Wan	District	Eastbound	Single-1	1,350	0.229	0.152
	Road	Distributor	Westbound	Single-1	1,350	0.222	0.123
L03	Fu Tei Au	Rural Road	Eastbound	Single-1	1,040	0.039	0.040
	Road		Westbound	Single-1	1,040	0.027	0.043
L04	Lo Wu	Rural Road	Eastbound	Single-1	1,040	0.038	0.041
	Station Road		Westbound	Single-1	1,040	0.028	0.014

TABLE 2.5EXISTING ROAD LINK PERFORMANCE

2.23 The above results indicate the surveyed road links also currently operate with capacities.

3.0 THE PROPOSED TEMPORARY ASPHALT PLANT

Development Parameters

- 3.1 Development parameters of the Proposed Temporary Asphalt Plant are inprinciple the same as the Existing Temporary Asphalt Plant, of which the maximum production capacity remains at 160 tonnes / hour.
- 3.2 The following are found at the Application Site:
 - (i) an Administrative Block with ancillary offices, laboratory and storage,
 - (ii) an <u>Operation Block</u> with ancillary equipment / machines including mixing towers, emergency generator, a bituminous emulsion plant, various bitumen tanks, aggregate storage bins and stock piles etc. for asphalt production; and
 - (iii) Existing Ancillary Structures (i.e. staircases and platforms for maintenance and emergency access)
- 3.3 Table 3.1 compares the development parameters between the Existing Temporary Asphalt Plant, and the Proposed Temporary Asphalt Plant.

Major Parameters	Existing Temporary Asphalt Plant (A/NE-FTA/192)	Proposed Temporary Asphalt Plant	Difference
Administrative Block (Ancillary Office and Storage)	279.60 m ²	279.60 m ²	No Change
Operation Block (Asphalt Plant, Ancillary Equipment / Machines)	2,093.72 m ²	2,093.72 m ²	No Change
Existing Ancillary Structures (i.e. staircases and platforms for maintenance and emergency access) ^(Note 1)	n/a	430.87 m ²	+430.87 m ²
TOTAL GFA	2,373.32 m ²	2,804.19 m ²	$+430.87 \text{ m}^2$

TABLE 3.1SUMMARIES OF DEVELOPMENT PARAMETERS

Note 1: Existing GFA accountable in building plan submission.

Provision of Internal Transport Facilities

3.4 The existing internal transport facilities are sufficient to serve the Existing Temporary Asphalt Plant, and also the Proposed Temporary Asphalt Plant in view there is no change in the development parameters as well as the maximum production capacity. Table 3.2 summarises the internal transport facilities provided.

TABLE 3.2	PROVISION OF INTERNAL TRANSPORT FACILITIES
-----------	--

Facility	Approved / Proposed Provision
Car Parking Spaces	6 nos. @ 5.0m (L) x 2.5m (W) x
	Min. 2.4m (H)
Goods Vehicle Loading / Unloading Bay	1 no. @ 11.0m (L) x 3.5m (W) x
	Min. 4.7m (H)
Pick-up / Drop-off Lay-by for Taxis and Private Cars	1 no. @ 5.0m (L) x 2.5m (W) x
	Min. 2.4m (H)
Asphalt Plant loading / unloading bay	9 nos. @ 9.5m (L) x 3.5m (W)

4.0 TRAFFIC IMPACT

Design Year

4.1 If the Proposed Temporary Asphalt Plant is approved by the TPB by, says late-2024, with permission to operate and cease in 5 years, i.e. by late-2029. Hence, the design year adopted for capacity analysis is 2029.

Traffic Forecast

- 4.2 The design year traffic flows are estimated with reference to:
 - (i) Expected traffic growth from 2024 to 2029;
 - (ii) Traffic generated by other known planned / committed developments located in the vicinity; and
 - (iii) Traffic generation of the Proposed Temporary Asphalt Plant.
- 4.3 Details of the above are presented in below paragraphs.

(i) <u>Traffic Growth Rate</u>

4.4 To produce the 2029 traffic flows, a growth factor is used to project from the 2024 traffic flow. This factor is obtained with reference to the "*Projections of Population Distribution 2023-2031*" published by Planning Department ("PlanD") for Tertiary Planning Unit ("TPU") covering the study area, which is presented in Table 4.1.

TABLE 4.1	POPULATION PROJECTIONS IN TERTIARY PLANNING UNIT
-----------	--

Tertiary Planning Unit	Projected Population (in Thousands)				
	2024	2027 (Note 1)	Change		
620, 622 & 641	5,700	5,600	-100		
624 & 629	52,200	53,200	+1,000		
TOTAL	57,900	58,800	+ 900		
Average Annual Growth (2024 – 2027)			+0.5%		

Note 1: Annual population projections by TPU are available up to 2027.

4.5 Table 4.1 shows the projected population change from 2024 to 2027 is +0.5% per annum. In view that the annual population projection by TPU is only available up to 2027, the same growth rate between 2024 to 2027, is assumed for the growth between 2027 and 2029. To be conservative, an annual growth rate of 1% is adopted to produce the future traffic flow from 2024 to 2029.

(ii) <u>Other Known Planned / Committed Developments</u>

4.6 Information on other known major planned / committed developments are obtained from the available public domains including the Town Planning Board's Statutory Planning Portal 3 by Planning Department, website of District Council, Legislative Council, EPD, Civil Engineering and Development Department etc. are summarised in Table 4.2.

 TABLE 4.2
 DETAILS OF OTHER KNOWN MAJOR PLANNED / COMMITTED

 DEVELOPMENTS IDENTIFIED

Ref.	Location	Location	Expected Completion
А.	Organic Resources Recovery Centre Phase 2 (O.PARK2)	Kong Nga Po Road	Within 2024
Β.	Kong Nga Po Police Training Facilities	Kong Nga Po Road	2026 - 2027

4.7 Traffic generated by the above other known major planned / committed developments is included in the design year.

(iii) <u>Traffic Generation of the Proposed Temporary Asphalt Plant</u>

4.8 The Temporary Asphalt Plant has been in operation since 2017, and since there is no change in the maximum production capacity, the traffic generation remains unchanged as shown in Table 2.1. The existing traffic flows obtained from the traffic survey has already included the traffic generated by the Existing Temporary Asphalt Plant, which is the same as the Proposed Temporary Asphalt Plant, hence, additional traffic generation need not be added to the 2029 traffic flow.

Traffic Growth

4.9 The future traffic flows are derived as follow:

2029 Traffic Flow = 2024 Existing Traffic Flows + Total Traffic Growth from 2024 to 2029 + Traffic Generated by Other Developments "A" & "B"

4.10 **Figure 4.1** shows Year 2029 peak hour traffic flows with the Proposed Temporary Asphalt Plant.

2029 Junction Capacity Analysis

4.11 Year 2029 capacity analysis for the case with the Proposed Temporary Asphalt Plant are summarised in Table 4.3, and detailed calculations are presented in Appendix A.

	Junction		Type of Control	Para -meter	AM Peak Hour	PM Peak Hour
J01	J/O Man Kam To Road / Lo Wu Station Road		Priority	RFC	0.103	0.098
J02	J/O Man Kam To Road / Kong Nga Po Road		Priority	RFC	0.788	0.659
J03	J/O Man Kam To Road / Access Road to Open S Site No.7	Signal	RC	45%	56%	
J04	J/O Man Kam To Road / Access Road to Applica	tion Site	Priority	RFC	0.054	0.093
J05	J/O Man Kam To Road / Fu Tei Au Road	Signal	RC	18%	23%	
		Case 2	Signal	RC	59%	66%
		Case 3	Signal	RC	51%	57%
J06	J/O Man Kam To Road / Access Road to Hung K Tsuen	iu San	Priority	RFC	0.093	0.119
J07	J/O Jockey Club Road / Po Wan Road	Case 1	Signal	RC	58%	77%
		Case 2	Signal	RC	100%	>100%
		Case 3	Signal	RC	92%	>100%

TABLE 4.32029 JUNCTION PERFORMANCE

Note: RC – Reserve Capacity RFC – Ratio of Flow to Capacity

Case 1 - Worst case operation with pedestrian phase activated every cycle;

Case 2 - Optimal case operation without pedestrian phase activated; and

Case 3 - Sensitivity operation performance assuming the pedestrian phase activated 20% of time.

4.12 Table 4.3 shows that the junctions analyzed have capacity to accommodate the expected traffic growth to 2029 including the traffic generated by the Proposed Temporary Asphalt Plant, which has no adverse impact to the surrounding road junctions.

2029 Road Link Capacity Analysis

4.13 Year 2029 road link analysis for the case with the Proposed Temporary Asphalt Plant are summarised in Table 4.4.

Road Link		Road Type	Direction	Config- uration	Design Flow	Peak Hou Design Flow	ur Flows / y Ratio (P/Df)
					(pcu/hr)	AM Peak Hour	PM Peak Hour
L01	Man Kam To	Rural Road	Northbound	Single-2	2,500	0.517	0.437
	Road		Southbound	Single-1	1,500	0.779	0.777
L02	Po Wan	District	Eastbound	Single-1	1,350	0.241	0.160
	Road	Distributor	Westbound	Single-1	1,350	0.233	0.130
L03	Fu Tei Au	Rural Road	Eastbound	Single-1	1,040	0.043	0.065
	Road		Westbound	Single-1	1,040	0.063	0.044
L04	Lo Wu	Rural Road	Eastbound	Single-1	1,040	0.040	0.043
	Station Road		Westbound	Single-1	1,040	0.029	0.015

TABLE 4.42029 ROAD LINK PERFORMANCE

4.14 Table 4.4 shows that the road links analyzed have capacity to accommodate the expected traffic growth to 2029 including the traffic generated by the Proposed Temporary Asphalt Plant, which has no adverse impact.

5.0 SUMMARY

- 5.1 The Application Site is located to the east of Man Kam To Road in Sheung Shui, and is currently occupied by the Existing Temporary Asphalt Plant, which was first approved for a period of 5 years (A/NE-FTA/148) by the Town Planning Board on 12th December 2014, with a Class B amendment approved on 23rd October 2015 (A/NE-FTA/148-2). A renewal for another period of 5 years was approved on 18th October, 2019 (A/NE-FTA/192) until the end of 2024.
- 5.2 This is the 2nd renewal application for 5 years, i.e. up to 2029. The Proposed Temporary Asphalt Plant has <u>in-principle the same</u> development parameters and same maximum production rate as the Existing Temporary Asphalt Plant.
- 5.3 The internal transport facilities of the Proposed Temporary Asphalt Plant, which could serve its operation needs, are maintained. The existing vehicular access at Man Kam To Road is also maintained.
- 5.4 Manual classified counts were conducted at the selected key junctions and road links located in the vicinity of the Application Site to establish the existing traffic flows during the AM and PM peak hours. The future year traffic data for the junction analysis is estimated with reference to the population projection, and traffic generation of other known planned / committed developments.
- 5.5 The maximum traffic generation of the Proposed Temporary Asphalt Plant is 30 vehicles / hour (2-way), or equivalent to 75 pcu/hour, which is the same as the Existing Temporary Asphalt Plant.
- 5.6 All junctions and road links analysed have sufficient capacity to accommodate the expected traffic growth to 2029 including the traffic generated by the Proposed Temporary Asphalt Plant. Hence, it can be concluded that the Proposed Temporary Asphalt Plant would not have adverse traffic impact to the surrounding road network.

Figures

TIA/Fig 343\(2024 06) J7343 77300-17349/17

Appendix A – Junction Capacity Analyses

Signal Junction Analysis

Junction: Scenario:	Man Kam Existing Co	orage Sit	te No.7		Job Nu	J7343 1											
Design Year:	2024	Design	ed By:		TTO		-	Checked By: WCH						Date:	14 June 2024		
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Man Kam To F	Road SB	SA	A1	1,2	3.50				1965	828	0.421	0.421		1965	765	0.389	0.389
		RT	A2	2	3.50	25.0		100	1986	0	0.000		100	1986	5	0.002	
Access Road	to Open	LT+RT	B1	3	4.50	20.0		100	1921	42	0.022	0.022	100	1921	64	0.033	0.033
Storage Site I	No.7 EB																
Man Kam To F	Road NB	LT	C1	1	3.40	15.0		100	1777	63	0.035		100	1777	39	0.022	
		SA	C2	1	3.40				2095	452	0.216			2095	356	0.170	
		SA	C3	1	3.40				2095	452	0.216			2095	356	0.170	
pedesthan pha	ase																
																	<u> </u>
AM Traffic Flow (pcu/h	r)		N	PM Traffic I	Flow (pcu/hr)				N	S=1940+	100(W–3.:	25) S=	2080+100	(W-3.25)	Note:		
			\uparrow						1	S _M =S÷(1·	+1.5f/r)	SM	=(S–230)÷	+(1+1.5f/r)			
	0 ←	-	1			5	•		1		AM Pe	ak Hour	PM Pe	ak Hour			
1	8	★ 328			~		765				12+3		12+3				
l ↑					Ť						0.442		0.400				
					\neg		740			Sum y	0.443		0.423				
41	ç	904 ▲			61		/12			L (s)	9		9				
	63-	_				39	•			C (s)	101		101				
										practical y	0.820		0.820				
I										R.C. (%)	85%		94%				
1 2					3				4				5				
↓ ↓		*															
A1			A2 A1														
					В1												
C1 C2 C3					↓												
AM C		VG = 6	G =		I/G =	5	G =		I/G =	·	G =		I/G =		G =		I/G =
		/G =	G-		1/G -	-	G-		1/G -		G-		1/G -		G-		
PM C		VG = 6	G=		1/G =	5	6-		1/G -		G=				G=		/G =
G:	=	/G =	G =		I/G =		G =		<u>I/</u> G =		G =		//G =		G =		I/G =

Signal Junction Analysis

Oxford Logs Design Vest: 202 0.03 + r. 2 Auswall Name	Junction:	tion: Man Kam To Road / Access Road to Open							orage Site No.7											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Design Year:	2029	Design	ed By:		TTO		Checked By: WCH Da							Date:	e: 14 June 2024				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											AM Deak			-		DM Deak				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Man Kam To F	Road SB	SA	A1	1,2	3.50				1965	1063	0.541	0.541		1965	986	0.502	0.502		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			RT	A2	2	3.50	25.0		100	1986	0	0.000		100	1986	5	0.002			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Access Road	to Open	LT+RT	B1	3	4.50	20.0		100	1921	44	0.023	0.023	100	1921	68	0.035	0.035		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Storage Site N	No.7 EB															<u> </u>			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Man Kam To F	Road NB	LT	C1	1	3.40	15.0		100	1777	66	0.037		100	1777	41	0.023			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			SA	C2	1	3.40				2095	572	0.273			2095	465	0.222			
$M^{1} for fram (pach) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$			SA	03	1	3.40				2095	572	0 273			2095	465	0 222			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			54	00	1	3.40				2033	572	0.275			2033	403	0.222			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	<u> </u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	<u> </u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
pedestrian phase pedestrian phase 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +																	<u> </u>			
pedestrian phase $\begin{array}{c c c c c c c c c c c c c c c c c c c $																	<u> </u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pedestrian phase																			
$\begin{array}{c c c c c c c c} \hline \\ \hline $																				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
$\begin{array}{c c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $																	<u> </u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	<u> </u>			
AM Traffic Flow (pcuhr) AM Traffic Flow (pcuhr) 0 + 1063 1063 1 + 1143 43 66 + 1 1143 1144 114 + 1 1141																		<u> </u>		
AM Traffic Flow (poultr) $0 \rightarrow 1$ 1063 1063 1143 43 $66 \rightarrow 1$ 1143 1141 1																				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AM Traffic Flow (pcu/hr	r)		N	PM Traffic	Flow (pcu/hr)				N	S=1940+	100(W–3.	25) S=	=2080+100	D(W-3.25)	Note:				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1						1	S _M =S÷(1	+1.5f/r)	S _№	₁=(S–230)·	÷(1+1.5f/r)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0	<u>``</u>	1			5			1		AM Pe	ak Hour	PM Pe	ak Hour					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		100	5			³ ∱		900				1,2 + 3		1,2 + 3						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		114	13			\neg		931			Sum y	9		9						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43	+				64		€€. •			C (a)	100		130						
$1 \\ \downarrow \\ A1 \\ \downarrow \\ A1 \\ \downarrow \\ A1 \\ \downarrow \\ A1 \\ \downarrow \\ A2 \\ A1 \\ \downarrow \\ A1 \\ \downarrow \\ A2 \\ A1 \\ \downarrow \\ A1 \\ \downarrow \\ A2 \\ A1 \\ \downarrow \\ A1 \\ \downarrow \\ A2 \\ A1 \\ \downarrow \\ B1 \\ I \\ $		664					41	⊷			C (S)	0.040		0.020						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											R.C. (%)	45%		56%						
$ \begin{array}{c c} \downarrow \\ A1 \\ A1 \\ A2 \\ A1 \\ A2 \\ A1 \\ A2 \\ A1 \\ A1$	1 2					3				4				5						
			•																	
	↓ A1			A2 A1																
						Н ^{в1}														
						+														
AM G= VG=6 G= VG=5 G= VG= G= VG= G= VG=	AM G =	: V	G= 6	G =		I/G =	5	G =		I/G =	1	G =		I/G =	1	G =		I/G =		
G= VG= G= VG= G= VG= G= VG=	G =	- V	G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =		
PM G= VG= 6 G= VG= 5 G= VG= G= VG= G= VG= G= VG= G= VG= G= VG= G= VG= G= VG=	PM G =	: V	G = 6 G =	G = G =		I/G =	5	G = G =		I/G =		G = G =		I/G =		G = G =		I/G = I/G =		

Signal Junction Analysis

Junction:	Man Kam To	o Road / Fu	Tei Au	Tei Au Road Job Number: J													J7343
Scenario:	Existing Cor	ndition														J5 - P.	1
Design Year:	2024	Designe	ed By:		TTO		Checked By: WCH							Date:14 June 2)24
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Man Kam To F	Road SB	SA+RT	A1	1,2	5.70	20.0		1	2183	888	0.407	0.407	1	2183	858	0.393	0.393
Fu Tei Au Roa	d EB	LT+RT	B1	3	4.50	10.0		100	1796	41	0.023	0.023	100	1796	42	0.023	0.023
Man Kam Ta F	Pood NP	1 7+64	C1	1	3.00	12.0		0	1904	542	0.296		0	1904	259	0 190	
		SA	C2	1	3.00	12.0		9	2055	462	0.200		9	2055	447	0.109	
			02		0.00				2000	102	0.220			2000		0.211	
pedestrian pha	ise		D _(P)	4		min c	rossing	time =	6	sec	GM +	11	sec F	GM =	17	sec	
	ao 1 is donm	and donone	lont wo	have 2		luring th	o poak k	ouro:				I				I	
		voles have	4 stare	nave o s (i e lo	st time =	: 33e)	e peak i	iours.									
Case 2	ALL of the c	voles have	only 3 s	tages (i	e lost t	me = 9s	:)										
Case 3	3 20% of the c	cycles have	4 stage	s, and t	he rest	of them	have 3 s	stages. (i.e. lost	time = [2	20% x 3	4 cyc x 3	33s + 80	% x 34	cyc x 9s]/34 =	14s)
AM Traffic Flow (pcu/hr)		0	PM Traffic I	Flow (pcu/hr)			<u> </u>				,					Í
			N						N A	S=1940+	100(VV-3.	25) 5= SM	-(6.220)	(VV-3.25)			
	10 ←		T			15	-		T	5IVI=5÷(1	+1.51/1)	SIVI	-(3-230)	-(1+1.51/1)	DM Deak Ho	ır	
	87	8			_		844										
4					f ⁸						Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	
	00	c					775			Sum y	0.430	10	15	0.410	10	15	
37	98	0			34		//5 +			L (s)	106	106	106	106	106	106	
	18-					30-	←			C (s)	0.603	0.815	0 773	0.603	0.815	0 773	
										RC (%)	40%	90%	80%	45%	96%	86%	
1	2				3				4				5				
ľ	-		I		Ū								0				
			-+		†						.						
A1				A		В1						D(p)					
C1 C2						•											
AM G = VG =			G =		I/G =	7	G =		I/G =	6	G =	21	I/G =	4	G =		I/G =
G =	V	G =	G =		I/G =	7	G =		I/G =	6	G =	21	I/G =	4	G =		I/G =
РМ G = G =	v v	G =	G = G =		I/G =	1	G = G =		I/G =	0	G = G =	21	I/G =	4	G = G =		vG = I/G =

Signal Junction Analysis

Junction: Scenario:	Man Kam To Design Case	o Road / Fu e	Tei Au	Road											Job Nu	mber: J5 - P.	J7343 2
Design Year:	2029	Designe	ed By:		TTO		Checked By: WCH						Date:14 June)24
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Man Kam To F	Road SB	SA+RT	A1	1,2	5.70	20.0		1	2183	1063	0.487	0.487	1	2183	991	0.454	0.454
Fu Tei Au Roa	d EB	LT+RT	B1	3	4.50	10.0		100	1796	44	0.025	0.025	100	1796	68	0.038	0.038
Man Kam To F	Road NB	LT+SA	C1	1	3.00	12.0		9	1894	656	0.346		9	1894	456	0.241	
		SA	C2	1	3.00				2055	553	0.269			2055	515	0.251	
pedestrian pha	ase		D _(P)	4		min c	crossing time =		6	sec	GM +	11	sec F	GM =	17	sec	
·																	
NOTE: As Sta	ige 4 is depma	and depend	lent, we	have 3	cases o	luring the	e peak ł	nours:									
Case	1 ALL of the c	ycles have	4 stage	s (I.e. lo	st time =	= 33s)	、 、										
Case	2 ALL OF the c	cycles have	oniy 3 s	tages (I	.e. IOSI I	me = 9s	i) have 3 i	stanes (i a lost	timo - ['	20% v 3		83c + 80	1% x 31		1/3/-	14e)
	5 20 % OI the t	Sycles have	4 stage	s, anu i			nave 5 :	stayes. (1.6. 1051		20 /0 X 3	+ CyC X C	555 + 60	/0 X 34	CyC X 95]/ 34 -	145)
AM I raffic How (pcu/h	n I		Ν	PMITATIC	riow (pcu/nr)		I.		Ν	S=1940+	100(W–3.2	25) S=	2080+100)(W–3.25)			
	_ ←		Î			r	•		Î	SM=S÷(1	+1.5f/r)	SM	=(S-230)+	+(1+1.5f/r)			
	0	20	'			5			'		· · ·	AM Peak Hou	ır		PM Peak Hou	ır	
1 	100	03			3 ♠		980				Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	
					\neg					Sum y	0.512	0.512	0.512	0.491	0.491	0.491	
♦ 43	114	43			★ 64		931			L (s)	35	10	15	35	10	15	
	664				04	41-				C (s)	106	106	106	106	106	106	
	001									practical y	0.603	0.815	0.773	0.603	0.815	0.773	
									R.C. (%)	18%	59%	51%	23%	66%	57%		
1	2				3				4				5				
	-↓											.					
	A1			A1		В1						D(p)					
						+											
C1 C2 ★ ★																	
← │ 						_											
AM G = VG =			G =		I/G =	7	G =		I/G =	6	G =	21	I/G =	4	G =		I/G =
PM G =	: b	/G =	G =		I/G =	7	G =		I/G =	6	G =	21	I/G =	4	G =		I/G =
G	: b	/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =

Signal Junction Analysis

Junction:	Jockey Club I	Road / Po	Wan Ro	bad		Job Number:												
Scenario:	Existing Cond	dition													J7 - P. 1		1	
Design Year:	2024	Designe	ed By:		тто		Checked By: WCH							Date:14 June 2				
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y	
					,		Gradient		(pcu/hr)	(pcu/hr)	,	,		(pcu/hr)	(pcu/hr)			
Jockey Club R	oad SB	SA	A1	1,2	3.40				1955	492	0.252	0.252		1955	480	0.246	0.246	
		SA+RT	A2	1,2	3.40	18.0		23	1830	460	0.251		10	1850	455	0.246		
Po Wan Road	EB	LT+RT	B1	3	3.20	12.0		100	1720	148	0.086	0.086	100	1720	93	0.054		
		RT	B2	3	3.20	15.0		100	1886	161	0.085		100	2075	112	0.054	0.054	
Jockey Club R	oad NB	LT+SA	C1	1	3.20	12.0		36	1852	535	0.289		28	1870	430	0.230		
		SA	C2	1	3.20				2075	599	0.289			2075	476	0.229		
pedestrian pha	ise		Dm	4		min c	rossing time =		5	sec	GM +	7	sec FGM =		12	sec		
poucoularipric			D (P)				oconig							0				
NOTE: As Sta	ao 1 io donmo	l nd donond	ant wa	have 2		uring th	o nook k											
NUTE: AS SIA	ige 4 is deprinal	na aepena	ent, we	nave 3	cases o		е реак г	iours:										
Case	ALL of the cy	cles have	4 stage	s (I.e. 10	st time =	26S)	`											
Case 2	2 ALL of the cy	cles have	only 3 s	tages (I.	.e. lost ti	me = 9s	;) have 2 a		:	4: F	200/ 14 4			000/ 14	10	01	40 - 14	
Case	3 20% of the cy	cies nave	4 stage	s, and t	ne rest o	Ditnem	nave 3 s	stages. (i.e. iosi	ume = [4	20% X 4	Ј СУС Х 2	26 Sec +	80% X 4	40 Cyc x	9 sec] /	40 = 14	
AM Traffic Flow (pcu/hr			Ν	PM Traffic F	low (pcu/hr)				Ν	S=1940+	100(W–3.2	25) S=	2080+100	(W–3.25)				
			1						1	S _M =S÷(1∙	+1.5f/r)	S _M	=(S–230)÷	(1+1.5f/r)				
	108		1			44	┫		1			AM Peak Hou	ır	1	PM Peak Hou	ır		
104	845				83		891				Case 1	Case 2	Case 3	Case 1	Case 2	Case 3		
										Sum v	0.338	0.338	0.338	0.300	0.300	0.300		
↓	942				Ļ		784			, (s)	26	9	12	26	9	12		
206	• · <u>-</u>				122					C (e)	90	90	90	90	90	90		
	192					122-	-			0 (3)	0.640	0.810	0 780	0.640	0.810	0 776		
	192									practical y	0.040	1/0%	131%	11/1%	170%	150%		
	' 2					-				R.C. (%)	5070	14070	10170	11470	17070	10070		
1		2				3				4				5				
	$\downarrow\downarrow$			┥↓↓								.						
	A1			A2 A1		В1						D(p)						
											D(p)							
	C1 C2					Ļ												
	† †																	
AM G =			G =		I/G =	5	G =		I/G =	9	G =	12	I/G =	3	G =		I/G =	
6-		=	6.			-	G =			-	G =		1/G =	-	Gr		I/G =	
PM 0-	G = 1/G =		G-		I/G =		G =			= G= = 9 c = 12			3	G-		/G =		
	//G	-	6=		"G =	2	G =		"G =		G=		"G =	2	G =		/G =	
G =	· //G	-	G =		ı/G =		G =		#G =		G =		⊮G =		G =		<i>u</i> G =	

Signal Junction Analysis

Junction:	Jockey Club	Road / Po	Wan Ro	bad											Job Nu	mber:	J7343
Scenario:	Design Case															J7 - P.	2
Design Year:	2029	Designe	ed By:		TTO			Checked By: WCH					Date:	14	June 20)24	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turnina %	Sat. Flow	AM Peak Flow	v value	Critical v	Turning %	Sat. Flow	PM Peak Flow	v value	Critical v
				,	,	,	Gradient		(pcu/hr)	(pcu/hr)	· ·	. ,		(pcu/hr)	(pcu/hr)	ļ .	
Jockey Club R	oad SB	SA	A1	1,2	3.40				1955	616	0.315	0.315		1955	598	0.306	0.306
		SA+RT	A2	1,2	3.40	18.0		20	1834	578	0.315		8	1853	567	0.306	
Po Wan Road	EB	LT+RT	B1	3	3.20	12.0		100	1720	155	0.090	0.090	100	1720	91	0.053	
		RT	B2	3	3 20	15.0		100	1886	170	0.090		100	2075	114	0.055	0.055
			02		0.20	10.0		100	1000	170	0.000		100	2010	114	0.000	0.000
Jockey Club R	oad NB	LT+SA	C1	1	3.20	12.0		31	1863	655	0.352		24	1879	539	0.287	
		SA	C2	1	3.20				2075	730	0.352			2075	595	0.287	
																<u> </u>	
pedestrian pha	ise		D _(P)	4		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
			(1)						-		-			-			
NOTE: As Sta	ge 4 is depma	nd depend	lent, we	have 3	cases d	uring th	e peak ł	nours:									
Case 1	ALL of the cy	cles have	4 stage	s (i.e. lo	st time =	: 26s)											
Case 2	2 ALL of the cy	cles have	only 3 s	tages (i	.e. lost ti	me = 9s	;)										
s) Case 3	3 20% of the c	ycles have	4 stage	s, and t	he rest o	of them	have 3 s	stages. (i.e. lost	time = [2	20% x 4	0 cyc x 2	26 sec +	80% x	40 cyc x	: 9 sec] /	40 = 14
AM Traffic Flow (pcu/hr)			PM Traffic	Flow (pcu/hr)					0.4040.	400/04/ 07	25) 0	0000.400				
	1		N				1		N	5=1940+	100(00-3.	20) 3-	2060+100	J(VV-3.25)			
			Î			47	•		Î	SM=S÷(1	+1.5f/r)	SM	=(S–230)+	+(1+1.5f/r)			
	113		1			47	Ļ		1			AM Peak Hou	ır	1	PM Peak Ho	ıı	
109	108	1			87		1118				Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	
					_1					Sum y	0.405	0.405	0.405	0.361	0.361	0.361	
↓	118'	3			ţ		1006			, (s)	26	9	12	26	9	12	
216	. i.c. ♠				128					2(0)	00	00	00	00	00	00	
	202					128-	-			C (S)	30	0.040	0 700	0.040	0.040	0 770	
										practical y	0.640	0.810	0.780	0.640	0.810	0.776	
										R.C. (%)	58%	100%	92%	11%	124%	115%	
1		2				3				4				5			
				⊷													
	★ ★ A1			♦ ♦ A2 A1		↑ в1				1		<> D(n)					
A1						- P2					Du	D(P)					
~~~~											D(p)						
	C1 C2 ↑↑					+											
	▲																
AM G =	I/G	3 =	G =		I/G =	5	G =		I/G =	9	G =	12	I/G =	3	G =		I/G =
G =		G =	G =		I/G =		<u>G</u> =		I/G =		G =		I/G =		G =		I/G =
PM G =	1/0	G =	G =		I/G =	5	G =		I/G =	9	G =	12	I/G =	3	G =		I/G =
G =	1/6	3 =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
Í			-				-				-				-		