Site Area 3359 m2 Calculation of Runoff from the Proposed Development, $= 0.278 \,\mathrm{C}\,\mathrm{i}\,\mathrm{A}$ = 0.95 (P.42 of Stormwater Drainage Manual) Α = 3359 m^2 = 0.003359 km^2 take = 250 mm/hr Therefore, = 0.278*0.95*250*0.003359 = 0.222 = 13320 m³/sec lit/min Calculation Maximum Capacity of Proposed 400 mm dia. Underground pipe. Manning Equation $= R^{2/3}*S_f^{0.5}/n$ dia 400 mm where R $= \pi r^2/2 \pi r$ $0.2 \, \text{m}$ = r/2 = 0.1 = 0.012 m s/m^{1/3} (Table 13 of Stormwater Drainage Manual) 1/ 75 $S_{\rm f}$ = 0.0133 Therefore, 0.1 2/3 * 0.0133 0.5 / 0.012 2.071 Maximum Capacity (Qmax) = V*A $= 2.071*\pi r^2$ = 0.260 m³/sec 1 nos of pipe = 0.260 = 15600 m³/sec lit/min > 13320 lit/min Provide 400 mm dia underground pipe (1:75) is OK