Site Area 3359 m2

Calculation of Runoff from the Proposed Development,

 $= 0.278 \,\mathrm{C}\,\mathrm{i}\,\mathrm{A}$

= 0.95

(P.42 of Stormwater Drainage Manual)

Α = 3359 m^2

= 0.003359

 km^2

take = 250 mm/hr

Therefore,

= 0.278*0.95*250*0.003359

= 0.222 = 13320

m³/sec

lit/min

Calculation Maximum Capacity of Proposed 400 mm dia. Underground pipe.

Manning Equation

 $= R^{2/3}*S_f^{0.5}/n$

dia

400 mm

where

R $= \pi r^2/2 \pi r$

 $0.2 \, \text{m}$

= r/2

= 0.1

= 0.012

m

s/m^{1/3}

(Table 13 of Stormwater Drainage Manual)

1/ 75

 $S_{\rm f}$ = 0.0133

Therefore,

0.1 2/3 * 0.0133 0.5 / 0.012

2.071

Maximum Capacity (Qmax)

= V*A

 $= 2.071*\pi r^2$

= 0.260

m³/sec

1 nos of pipe

= 0.260

= 15600

m³/sec

lit/min

> 13320

lit/min

Provide 400 mm dia underground pipe (1:75) is OK