Gold Rich Planners & Surveyors Ltd.

金潤規劃測量師行有限公司

Room E, 8/F., Keader Centre, 129 On Lok Rd, Yuen Long, N.T. H.K.

香港新界元朗安樂路129號基達中心8樓 E室

Tel. 電話: (852) 2714 2821, 2713 2138

Fax. 傳真: (852) 2762 1783

E-mail 電郵: goldrichplanners@gmail.com

Your Ref.: A/NE-SSH/155

Our Ref.: P23055B/TL24327

24 June 2024

By Post and E-mail

tpbpd@pland.gov.hk

The Secretary

Town Planning Board

15/F., North Point Government Offices

333 Java Road, North Point, Hong Kong

Dear Sir,

Submission of Further Information

Proposed Temporary Private Vehicle Park (Private Cars) for a Period of 3 Years in "Village Type Development" Zone, Lot Nos. 537 (Part), 538 (Part), 540 S.A (Part) and 541 S.A (Part) in D.D. 218, Ma Kwu Lam Village, Sai Kung North, New Territories

We would like to submit further information to respond to the comments from Drainage Services Department dated 31.5.2024.

Yours faithfully,

For and on behalf of

Goldrich Planners & Surveyors Ltd.

Francis Lau

Encl.

Your Ref.: A/NE-SSH/155 Our Ref.: P23055

Further Information (4) for Planning Application Nos. A/NE-SSH/155 Response-to-Comment

Comments from Drainage Services Department received on 31.5.2024

Contact person: Mr. Justin LAU (Tel.: 2300 1545)

I.	Comment	Response
(a)	Supporting calculations to demonstrate that the proposed drainage system and the existing downstream drain/channel has adequate capacity to convey the runoff to be discharged arising from the proposed development. (Checking for existing 250UC and its downstream for SSH_155)	Please refer to attached drainage calculations for details.
(b)	Please justify your proposed catchment area. (Please provide support evidence for all directions of the sites)	Ground levels of surrounding area are indicated on Plan 4.2a to justify the proposed catchment area.
(c)	The drainage flow path from the development to the public drainage system / streamcourse / sea / any recognized drainage facilities should be provided in association with supporting site photos for the captioned submission. (Please provide downstream information of existing250UC for SSH_155).	Please refer to the attached site photo showing the drainage flow path to local village drainage facilities.
(d)	The lot owners/developers are required to rectify/modify the drainage systems if they are found to be inadequate or ineffective during operation. The lot owners/developers shall also be liable for and shall indemnify Government against claims and demands arising out of damage or nuisance caused by failure of the systems.	Noted.
(e)	The lot owners/developers shall resolve any conflict/disagreement with relevant lot owner(s) and seek LandsD's permission for laying new drains/channels and /or modifying/upgrading existing ones in other private lots or on Government land (where required) outside the application site(s).	Noted.

Viewpoint 1

2 For Proposed U-Channel in catchment area A From To	1 For Catchment Area A			Ref.					
### 2.3 min ### 2.4 For Proposed U-Channel in catchment are A ### 2.50 mm	Area, Average slope, Distance on the line of natural flow,	A = H = L =	0.1 m per 100m						
From To Ground level (mPD) 18.50 19.30 19.	Time of concentraction,	t _o = =		SDM 7.5.2 (d)					
Ground level (mPD)	2 For Proposed U-Channel in ca								
Length of u-channel, L ₂ = 38.4 m Gradient of vertical part of u-channel, S ₇ = 18.65-18.44)/38.4 = 0.005		18.90	19.30						
Depth of vertical part of u-channel, d = 735 mm Gradient of u-channel, S = 18.65-18.44)/38.4 = 0.005									
Gradient of u-channel, $S_r = 18.65-18.44 / 38.4 = 0.005$ Cross-Section Area, $a = 0.5 \times \pi^2 + \text{wd} = 0.5 \times 3.14 \times 125^4 + 250 \times 735$ $= 0.208 \text{ m}^2$ Wetted Perimeter, $p = \pi r + 2d = 3.14 \times 125 + 2 \times 735$ $= 1.863 \text{ m}$ Hydralic radius, $R = a / p$ $= 0.112 \text{ m}$ 3 Use Manning Equation for estimating velocity of stormwater Take $n = 0.016$ for concrete lined channels:- Allowable velocity, $v = R^{150} \times (RS_1)^{12} / n$ = $(0.112)^4 \cdot 1/6 \times (0.112 \times 0.005)^4 \cdot 1/2 / 0.016$ $= 1.07 \text{ m/s}$ Time of flow, $t_1 = 0.6 \text{ min}$ 4 Use "Rational Method" for calculation of design flow Design intensity, $i = a / (t_1 + t_1 + b)^6$ $= 505.5 / (2.3+0.6+3.29)^4 0.355 \text{ for return period T} = 50 \text{ years}$ SDM Table 3 Type of surface Flat Glassland(heavy soil) Concrete Paving Upstream flow, $Q_u = 0.2781 \times C_1 A_1 + Q_u$ where A_1 is in km² $= 0.278 \times 264 \times 410 \cdot 4 / 10000000 + 0$ $= 0.030 \text{ m}^3 / \text{s}$ Allowable flow, $Q_u = 0.2781 \times C_1 A_1 + Q_u$ where A_2 is in km² $= 0.278 \times 264 \times 410 \cdot 4 / 10000000 + 0$ $= 0.023 \times 1.07$ $= 0.0223 \times 1.07$ $= 0.023 \times 1.07$ $= 0.033 \times 1.07$									
Wetted Perimeter, p									
Wetted Perimeter, p	Cross-Section Area,								
SDM 8.2.1	Wetted Perimeter,	p =	$\pi r + 2 d = 3.14 \times 125 + 2 \times 735$						
3 Use Manning Equation for estimating velocity of stormwater		R =	a/p	SDM 8.2.1					
Allowable velocity, $v = R^{1/6}x (RS_i)^{1/2}/n = (0.112)^{4/6}x (0.112 \times 0.005)^{4/2} / 0.016$ $= 1.07 \text{ m/s}$ $Time of flow, t_i = 0.6 \text{ min}$ 4 Use "Rational Method" for calculation of design flow Design intensity, $i = a / (t_o + t_i + b)^c = 505.5 / (2.3 + 0.6 + 3.29)^{4/2} / 0.355$ for return period $T = 50$ years $= 264$ $Type of surface Flat Glassland(heavy soil) Concrete Paving Upstream flow, Q_u = 0 om3/s Design flow, Q_d = 0.278i \Sigma C/A + Q_u \text{ where } A_i \sin in km^2 = 0.278 \times 264 \times 410.4 / 10000000 + 0 = 0.030 \text{ m}^3/s Allowable flow, Q_a = a \times v = 0.208 \times 1.07 = 0.208 \times 1.$	3 Use Manning Equation for esti								
Allowable velocity, $v = R^{1/6}x (RSt)^{1/2}/n = (0.112)^{4/1}/6 \times (0.112 \times 0.005)^{4/2}/0.016$ $= 1.07 \text{ m/s}$ $Time of flow, t_r = 0.6 \text{ min}$ 4 Use "Rational Method" for calculation of design flow Design intensity, $i = a / (t_o + t_r + b)^c$ $= 505.5 / (2.3 + 0.6 + 3.29)^{4/3.5} \text{ for return period T} = 50 \text{ years}$ $= 264$ $Type of surface Flat Glassland (heavy soil) Concrete Paving O.95 A32.0 O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.0 O$	Take	n =	0.016 for concrete lined channels:-	SDM Table 13					
4 Use "Rational Method" for calculation of design flow Design intensity, i = a / (t _o + t _i + b) ^c = 505.5 / (2.3+0.6+3.29)^o.355 for return period T = 50 years = 264 Type of surface Flat Glassland(heavy soil)			$R^{1/6}x (RS_f)^{1/2}/n = (0.112)^{1/6}x (0.112 \times 0.005)^{1/2} / 0.016$	SDM Table 12					
Design intensity, i = $a/(t_o + t_f + b)^c$ = $505.5/(2.3+0.6+3.29)^{A} = 505.5/(2.3+0.6+3.29)^{A} = $	Time of flow,	t _f =	0.6 min						
SDM Table 3	4 Use "Rational Method" for calculation of design flow								
Flat Glassland(heavy soil) 0.25 0.0 0.0 410.4 SUM = $\boxed{410.4}$ SUM = $\boxed{410.4}$ SUM = $\boxed{410.4}$ SUM = $\boxed{640.4}$ SUM = 6	Design intensity,	=	$505.5 / (2.3+0.6+3.29)^{0.355}$ for return period T = 50 years	SDM 4.3.2 SDM Table 3(a)					
Design flow, $Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km² = 0.278 x 264 x 410.4 / 10000000 + 0 = 0.030 m³/s Allowable flow, $Q_a = a \times v$ = 0.208 x 1.07 = 0.223 m³/s > Q_d (O.K.) Reference was made to Stormwater Drainage Manual (SDM) by DSD Drainage Calculation Goldrich Planners & Surveyors Ltd.	Flat Glassland(heavy soil)		0.25 0.0 0.95 432.0 410.4	SDM 7.5.2 (b)					
= 0.278 x 264 x 410.4 / 1000000 + 0 = 0.030 m³/s Allowable flow, Q _a = a x v = 0.208 x 1.07 = 0.223 m³/s > Q _d (O.K.) Reference was made to Stormwater Drainage Manual (SDM) by DSD Scale: NA Drainage Calculation Goldrich Planners & Surveyors Ltd.	Upstream flow,	Q _u =	0 m ³ /s						
= 0.208 x 1.07 = 0.223 m³/s > Q _d (O.K.) Reference was made to Stormwater Drainage Manual (SDM) by DSD Scale: NA Drainage Calculation Goldrich Planners & Surveyors Ltd.	Design flow,	=	0.278 x 264 x 410.4 / 1000000 + 0	SDM 7.5.2 (a)					
Reference was made to Stormwater Drainage Manual (SDM) by DSD Scale: NA Drainage Calculation Goldrich Planners & Surveyors Ltd.	= 0.208 x 1.07								
Scale: NA Drainage Calculation Goldrich Planners & Surveyors Ltd.	> Q _d (O.K.)								
Scale: NA Dramage Calculation Surveyors Ltd.	Reference was made to Stormwater Drainage Manual (SDM) by DSD								
	Scale: NA		трганияе Сансшанон — т						
June 2024 Lots 537(part), 538(part), 540 S.A(part) and 541 S.A(part) in D.D.218 Page 1 Ma Kwu Lam, Sai Kung North, N.T (P23055B)	Lots 537(part), 538(part), 540 S.A(part) and 541 S.A(part) in D.D.218		ge 1						

1 For Channel Section S1		Ref.						
Area, Average slope, Distance on the line of natural flow,	$A = 0 \text{ m}^2$ H = 0.1 m per 100 m L = 0 m							
Time of concentraction,	$t_o = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (0) / (0.1^0.2^0^0.1)$ = 0.0 min	SDM 7.5.2 (d)						
2 For Proposed U-Channel Section S1								
Ground level (mPD) Invert level (mPD)	From To 19.30 19.20 18.44 18.41							
Width of u-channel, Length of u-channel,	w = 250 mm L _c = 5 m							
Depth of vertical part of u-channel,	d = 662 mm							
Gradient of u-channel,	$S_f = (18.44-18.41)/5 = 0.005$							
	a = $0.5 \pi r^2 + w d$ = $0.5 \times 3.14 \times 125^2 + 250 \times 662$ = 0.190 m^2							
Wetted Perimeter,	p = π r + 2 d = 3.14 x 125 + 2 x 662 = 1.717 m							
Hydralic radius,	R = a/p = 0.111 m	SDM 8.2.1						
3 Use Manning Equation for est	mating velocity of stormwater							
	n = 0.016 for concrete lined channels:- v = $R^{1/6}x (RS_f)^{1/2}/n = (0.111)^1/6 x (0.111 x 0.005)^1/2 / 0.016$	SDM Table 13 SDM Table 12						
Time of flow,	$\begin{array}{lll} & = & 1.06 \text{ m/s} \\ t_{\rm f} & = & 0.08 \text{ min} \end{array}$							
4 Use "Rational Method" for cald	4 Use "Rational Method" for calculation of design flow							
Design intensity,	i = $a / (t_o + t_f + b)^c$ = $505.5 / (0+0.1+3.29)^0.35$ for return period T = 50 years = 328	SDM 4.3.2 SDM Table 3(a)						
<u>Type of surface</u> Flat Glassland(heavy soil) Concrete Paving	Runoff Coefficient C	SDM 7.5.2 (b)						
Upstream flow, $Q_u = 0.03 \text{ m}^3/\text{s}$								
Design flow, $Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km ² = 0.278 x 328 x 0 / 1000000 + 0.03 = 0.030 m ³ /s								
Allowable flow, $Q_a = a \times v$ = 0.19 x 1.06 = 0.201 m ³ /s								
> Q _d (O.K.)								
Reference was made to Stormwater Drainage Manual (SDM) by DSD								
Scale: NA	применения п	Goldrich Planners & Surveyors Ltd.						
June 2024	Lots 537(part), 538(part), 540 S.A(part) and 541 S.A(part) in D.D.218 Ma Kwu Lam, Sai Kung North, N.T (P2305)	e 2						
		,						