Mansfield Engineering Consultant Company

Civil / Geotechnical / Structural Engineering consultant

GEOTECHNICAL INVESTIGATION REPORT

For S16-II Application of NTEH Development

on Lot No. 83 RP,

in D.D. 21,

San Uk Ka,

Tai Po,

New Territories.

DLO Ref. no.: DLO/TP 70/TLT/92

August, 2024 (1st Edition)

> Contact Person: M.K. So Contact Mobile: 9220-8939 Office: 3996-8542

Table of Contents

- 1. Introduction
- 2. Site Description
- 3. Approved Site Formation Proposal
- 4. Slope Stability Analysis
- 5. Summary and Conclusion

Appendices

Appendix A	Part Plan of SIS Feature 7NW-D/C 427
Appendix B	Reduced Site Formation Approval Plans
Appendix C	Part Plan and Section of Lot No. 83 RP
Appendix D	Slope Stability Analysis – Slope/W
Appendix E	Plates

1. Introduction

1.1 Background

Town planning application S16-II for a single detached 3-storey N.T. Exempted Village House (NTEH) on Lot No. 83 RP, in D.D. 21, San Uk Ka, Tai Po, New Territories is proposed. According to the planning decision made by the members of Town Planning Board (TPB) under TPB case no. A/TP/571-2 stated, a geotechnical investigation report should be prepared and submitted to the TPB and to the satisfaction of the board or the GEO/CEDD. Although this application is an individual fresh submission, previous planning conditions should be applicable in view of all the subjective materials with respect to the S16-II application are remain unchanged.

1.2 Scope

The aim of this report is first to review the current site environment. Subsequently, a study of the proposed site formation works as approved by the Buildings Department is performed. Afterward, an assessment of existing slope stability along the critical ground profile in the vicinity of the application site is then carried out. Furthermore, the necessary geotechnical remedial works (if any) identified is recommended at the final part of this report.

2 Site Description

The proposed site area comprises one block of 3-storey NTEH with site area of approximate 122m². The subject site is located on an undeveloped leveled ground where located nearly 138m away from the junction of San Uk Ka rural access and Wu Yiu Road, Tai Po.

During site observation, the proposed NTEH will be founded over a leveled ground (Plate 1) with ground level of +56.5mPD. An existing natural slope of about 9.7m is observed at immediate south to west side of the site (Plate 2). Two blocks of detached single NTEH are revealed to the north end of the site where founded on platform levels of +56.5 and +55.1 respectively (Plate 3). During the site observation, there is no trace of filling works encountered near the toe of the existing slope and within the application site (Plate 4). An existing registered slope feature 7NW-D/C 427 was recorded to the existing slope at nearest 16.8m apart from the southern-east direction of the application site (see part plan in Appendix A). Meanwhile, no any building/structure/formation work is discovered neither within the boundary of this registered slope feature (Plate 5) nor at the toe of the slope (Plate 6).

3 Approved Site Formation Proposal

3.1 The Site Formation

Site formation works for the total five blocks of new NTEH were submitted and approved by the Buildings Department on 28 March 2022 under BD reference number BD 6/9062/16. A copy of reduced approval plans is attached in Appendix B for easy reference. From the plan, a series of new R.C./Mass concrete retaining walls are proposed to be erected along the north to east boundaries of the site in order to form an elevated platform for the accommodation of the five blocks of NTEH. On the other hand, several periphery stormwater drains are also proposed to intercept the surface runoff from surrounding of the application site. There is no slope remedial/upgrade work required to the proposed NTEH development in particular to the existing slope where situated to the south and south-east of the application site.

By referring to the Section 7 -7 of the approval plan, the gradient of the existing slope to the south-east bound of the application site is measured about 28° to 30° horizontally. Moreover, according to the part plan of Lot 83 RP and the Section 7' – 7' in Appendix C, a platform within inaccessible premises is situated at the crest of the existing slope and at about 18m away from the south to south-west of the application site.

3.2 Recommendation on Design Parameters

According to approval plan of drawing number SF-02, a set of soil shear strength parameters was accepted and approved by the Buildings Department. The adopted soil parameters were tabulated as following and a part-print of the approval plan is attached in Appendix B for reference.

Soil Type	c'(kPa)	$\phi'(deg)$	γ (kN/m ³)
Colluvium	3	35	19
CDT	3	35	19

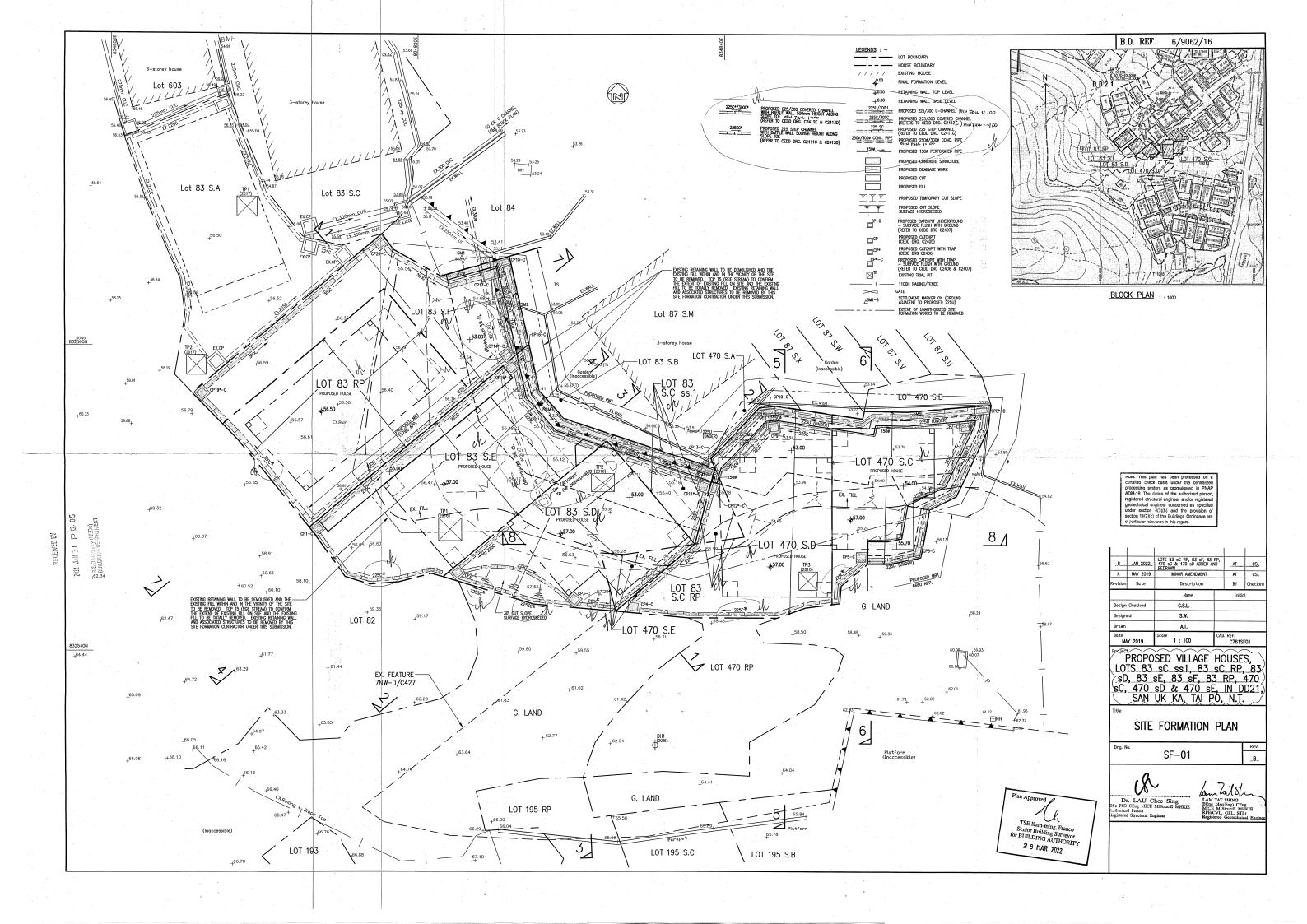
4. Slope Stability Analysis

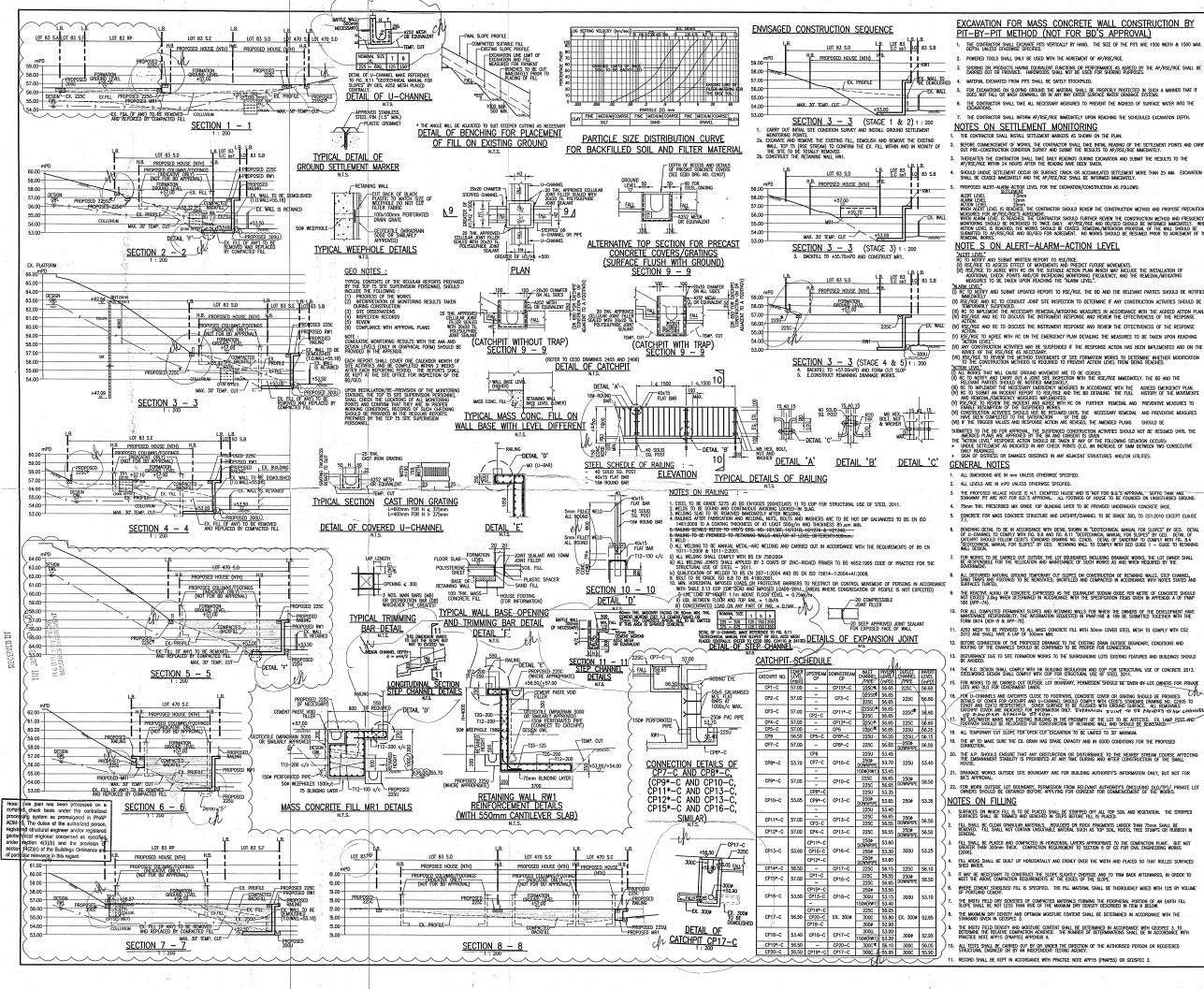
In order to investigate the overall stability of the existing slope to the south-east of the application site, stability analysis by means of BD pre-approved program "SLOPE/W" and the Morgenstern-Price method was adopted to check whether any slope remedial/upgrade works should be made. As from the analysis attached in Appendix D indicates, Grid and Radius method was used and surcharge load of 5kPa was imposed at the platform of existing inaccessible premises at the crest of the study slope. Design ground water table was assumed at two-third of the overall slope height and at one-third of retaining height of the new retaining wall. After the computation, the analyzed lowest FoS value of 1.508 is generated which is far greater than the prescribed safety value of 1.4. Thus, the overall stability of the existing slope is confirmed.

5. Summary and Conclusion

Site observation to the current site environment was carried out and there is no filling works encountered along the toe of the existing slope as well as within the boundary of the application site. The surface and subsurface condition of the proposed site have been investigated and studied through the BD approved site formation plans (BD 6/9062/16) of which a set of design soil strength parameters is adopted. Slope stability analysis for the existing slope along the critical ground profile to the south-west of the application site is carried out by SLOPE/W in associated with Morgenstern-Price method. According to the generated lowest safety factor value indicated, it can be seen that the status of the existing slope is within the safety margin and no remedial/upgrade work is necessary.

APPENDIX A


Part Plan of SIS Feature 7NW-D/C 427



Part Plan of SIS Feature - 7NW-D/C 427

APPENDIX B

Reduced Site Formation Approval Plans

SHORING OR PRODUCTS HAVING EQUIVALENT FUNCTIONS OR PERFORMANCE AS AGREED BY THE AP/RSE/RGE SHALL BE CARRIED OUT OR PROVIDED. HARDWOODS SHALL NOT BE USED FOR SHORING PURPOSES.

FOR EXCAVATIONS ON SLOPING GROUND THE MATERIAL SHALL BE PROPERLY PROTECTED IN SUCH A MANNER THAT I DOES NOT FALL OR WASH DOWNHILL OR IN ANY WAY ENTER SURFACE WATER DRAINAGE SYSTEMS.

7. THE CONTRACTOR SHALL INFORM AP/RSE/RGE IMMEDIATELY UPON REACHING THE SCHEDULED EXCAVATION DEPTH

BEFORE COMMENCEMENT OF WORKS, THE CONTRACTOR SHALL TAKE INITIAL READING OF THE SETTLEMENT POINTS AND CARR OUT PRE-CONSTRUCTION CONDITION SURVEY AND SUBMIT THE RESULTS TO AP/RSE/RGE IMMEDIATELY.

THEY ALEY LAYEL IS MANORE, THE CONTRACTOR SHOULD REVENT THE CONSTRUCTION METHOD AND PROPOSE PRECAUTIONARY MEXARRES TOR A PRES/RECS ADAREMENT. WHEN ANAM LEVEL IS FRACHED, THE CONTRACTOR SHOULD FURTHER REVENT THE CONSTRUCTION METHOD AND PREQUENCY OF MONTONING SHOULD BE INCRESSED TO WICE DAVLY. ANY PRES/REC AND BEADSTRUCTION METHOD AND PREQUENCY OF MONTONING SHOULD BE INCRESSED TO WICE DAVLY. ANY PRES/REC AND BEADSTRUCTION METHOD AND PREQUENCY OF MONTONING SHOULD BE INCRESSED TO WICE DAVLY. ANY PRES/REC AND BEADSTRUCTION METHOD AND PREQUENCY OF ACTION LEVEL IS FRACHED. THE WORKS SHOULD BE CASENDAL ANTIGATION PROPOSEL OF THE WALL SHOULD BE REMEDIAL MONST. THE YORKS SHOULD BE CONTRACT. NO WORKS SHOULD BE RESIDENT OF THE REMEDIAL MONST.

ALARM LEVEL" (), RC TO NOTIFY AND SUBMIT UPDATED REPORT TO RSE/RGE. THE BD AND THE RELEVANT PARTIES SHOULD BE NOTIFIED In American The Relevant Parties and the Relevant Parties and the Relevant Parties and the Relevant Parties and II) RSE/RGE AND RC TO CONDUCT JOINT SITE INSPECTION TO DETERMINE IF ANY CONSTRUCTION ACTIVITIES SHOULD BE TEMPORARULY SUSPENDED.

ACTION. (V) RSE/RGE AND RC TO DISCUSS THE INSTRUMENT RESPONSE AND REVIEW THE EFFECTIVENESS OF THE RESPONSE ACTION. (V) RSE/RGE TO AGREE WITH RC ON THE EMERGENCY PLAN DETAILING THE MEASURES TO BE TAKEN UPON REACHING "ACTION LEVEL". AUTOR LEVEL OF A REAL AND A CONTRESS MAY BE SUSPENDED IF THE RESPONSE ACTION HAS BEEN IMPLEMENTED AND ON THE ADVICE OF THE RESERVICE AS NECESSARY.

ENGLE RESUMPTION OF THE SUSPENDED WORKS. (I) CONSTRUCTION ACTIVITIES SHOULD NOT BE RESUMED UNTIL THE NECESSARY REMEDIAL AND PREVENTIVE MEASURES HAVE BEEN CONTRA ACTIVITIES SHOULD NOT BE RESUMED CHIEF AND RESPONSE CHIEF AND

FOR WORKS TO BE CARRIED OUT OUTSIDE THE LOT BOUNDARIES INCLUDING DRAIMAGE WORKS, THE LOT OWNER SHALL BE RESPONSIBLE FOR THE RELOCATION AND MAINTENANCE OF SUCH WORKS AS AND WHEN REQUIRED BY THE

FOR WORKS TO BE CARRIED-OUT OUTSIDE LOT BOUNDARY, PERMISSION SHOULD BE GIVEN-BY-LOT OWNERS FOR PRIVAL

FOR WORK OUTSIDE LOT BOUNDARY, PERMISSION FROM RELEVANT AUTHORITY'S (INCLUDING DLO/TP)/ PRIVATE LOT OWNERS SHOULD BE OBTAINED BEFORE APPLYING FOR CONSENT FOR COMMENCEMENT OF THE WORKS.

surfaces on which fill is to be placed shall be stripped off all top soil and vegetation. The stripped surfaces shall be trimmed and benched in steps before fill is placed.

FILL SHALL BE PLACED AND COMPACTED IN HORIZONTAL LAYERS APPROPRIATE TO THE COMPACTION PLANT. BUT NOT GREATER THAN 300mm THICK. COMPACTION REQUIREMENT TO SECTION 6 OF GS FOR CIVIL ENGINEERING WORKS

WHERE CEMENT STABILISED FILL IS SPECIFIED. THE FILL MATERIAL SHALL BE THOROUGHLY MIXED WITH 12% BY VOLUME OF PORTLAND CEMENT.

THE MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT SHALL BE DETERMINED IN ACCORDANCE WITH THE STANDARD GIVEN IN GEOSPEC 3.

ALL TESTS SHALL BE CARRIED OUT BY OR UNDER THE DIRECTION OF THE AUTHORISED PERSON OR REGISTERED STRUCTURAL ENGINEER OR BY AN INDEPENDENT TESTING AGENCY.

B.D. REF. 6/9062/16

NOTES ON RETAINING WALL AND REINFORCED CONCRETE STRUCTURE

- THE MAXIMUM SPACING OF CONSTRUCTION JOINT AND EXPANSION JOINT TO 7.5m AND 22.5m RESPECTIVELY. THE CONTRACTOR SHOULD SUBMIT THEIR PROPOSAL TO THE FOUNFER FOR APPROVAL
- ALL HORIZONTAL REINFORCEMENT SHALL BE CARRIED JOINTS BUT DISCONTINUED AT EXPANSION JOINTS. 3. CONCRETE COVER TO ALL BARS TO BE 50mm.
- 75mm THK, PRESCRIBED MIX GRADE 10P BLINDING LAYER TO BE PROVIDED UNDERNEATH CONCRETE BASE.
- CONCRETE TO BE DESIGNED MIX GRADE C30 (THE SPECIFIED GRADE STRENGTI OF CONCRETE, UW TO BE 30 MPa At 28 DAYS) AND COMPLY WITH CS1, 201 EXCEPT C1AUSE 7.1.
- MAX. SURCHARGE LOAD ON TOP OF MR1=5kPa, RW1 =5kPa

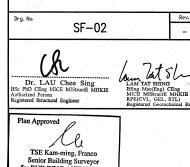
 MAX. BEARING PRESSURE (KPa)
 83
 117

 MAX. BEARING PRESSURE (KPa)
 93
 212
- DESIGN GROUNDWATER LEVEL FOR RETAINING WALL=1/3 OF RETAINING HEIG THE BASE OF WALL SHALL BE FOUND ON INSUT SOILS AND SHOLD BI INSPECTED AND COMEINAD BY THE ENGINEER BEFORE FLACING OF THE BINDING LAVE. ANY EXISTING FLIL INTERPRIATH WALL BASE SHALL BI REMOVED AND REPLACED BY MASS CONCRETE OR COMPACTED GENERAL ENDINES OF THE STATE O
- STEEL REINFORCEMENT SHALL COMPLY WITH CONSTRUCTION STANDARD CS2:2012 OF HONE KONG. TYPE SYMBOL T HIGH YIELD DEFORMED BAR OF GRADE 500B
- ALL REINFORCEMENT SHALL BE CUT OR BENT TO COMPLY WITH BS866 NOTATION OF BAR REINFORCEMENT IS AS FOLLOW:
- LAYERS OF BARS_____ TYPE OF BAR_____ BAR DIAMETER IN mm______ BAR SPACING IN mm
- PREFIX T = HOT ROLLED HIGH YIELD TYPE 2 DEFORMED BAR GRADE 500B
- I. MINIMUM LAP LENGTH 'L' SHALL BE 52xBAR DIAMETER FOR HIGH YIELD TYPE 2 DEFORMED BARS UNLESS OTHERWISE SPECIFIED. ALL LAP SHALL BE STAGGERED.
- 12. LAPS OTHER THAN THOSE INDICATED ON THE DRAWINGS SHALL BE MADI ONLY WITH THE APPROVAL FROM THE RSE.
- STEEL SPACERS OF SAME DIAMETER TO BARS BUT NOT LESS THAN 25m DIAMETER SHALL BE PROVIDED BETWEEN ADJACENT LAYERS OF PARALLEL REINFORCEMENT AND SPACED AT NOT MORE THAN 60X SMALLER BAR
- ALL SPACER BARS SHALL BE THE SAME SIZE AS THE MAIN BAR AND SPACED AT 1000mm c/c UNLESS OTHERWISE STATED.
- 15. THE ANCHORAGE LENGTH OF THE STARTER BARS SHALL COMPLY WITH O STRUCTURAL USE OF CONCRETE 2013.
- 16. RECORDS OF HOUSE FOOTING CONSTRUCTION (UNDERNEATH WALL BASE) TO BE SUBMITTED TO BD/GEO PRIOR TO SUBMISSION OF BA14.
- 17. DESIGN AND STABILITY CHECK OF RETAINING WALL SHOULD MAKE REFERENCE TO GEOGUDE 1. MIN. FACTOR OF SAFETY OF RETAINING WALL AGAINST SLIDING=1.5, OVERTURNING=2.0 AND BEARING CAPACITY=3.0.
- SOIL
 CHESION C
 NTERNAL, FRICTION P
 BULK DENSITY

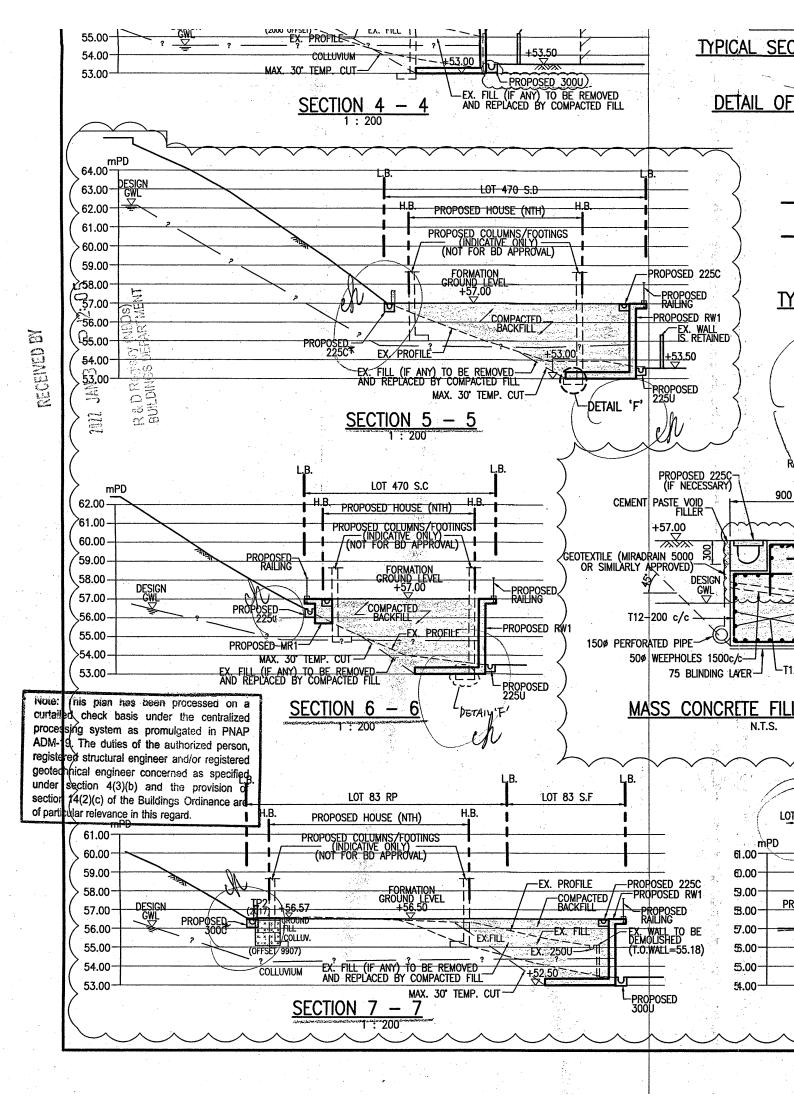
 COLLJUNUM
 3 KPa
 35"
 19KN/m*

 COLT
 3 KPa
 35"
 19KN/m*

HEAVY RAINFALL PRECAUTIONS


SURFACE WATER FLOWING INTO THE SITE FROM UPHILL SHALL BE INTERCEPTED AND DISCHARGED FROM THE SITE TO AN INDICATED SAFE DISCHARGE POINT. AT EACH INTERSECTION AND ABRUPT CHANGE IN DIRECTION OF SURFACE DRAINAGE WORKS SHALL BE KETED FLORE OF DEDIS

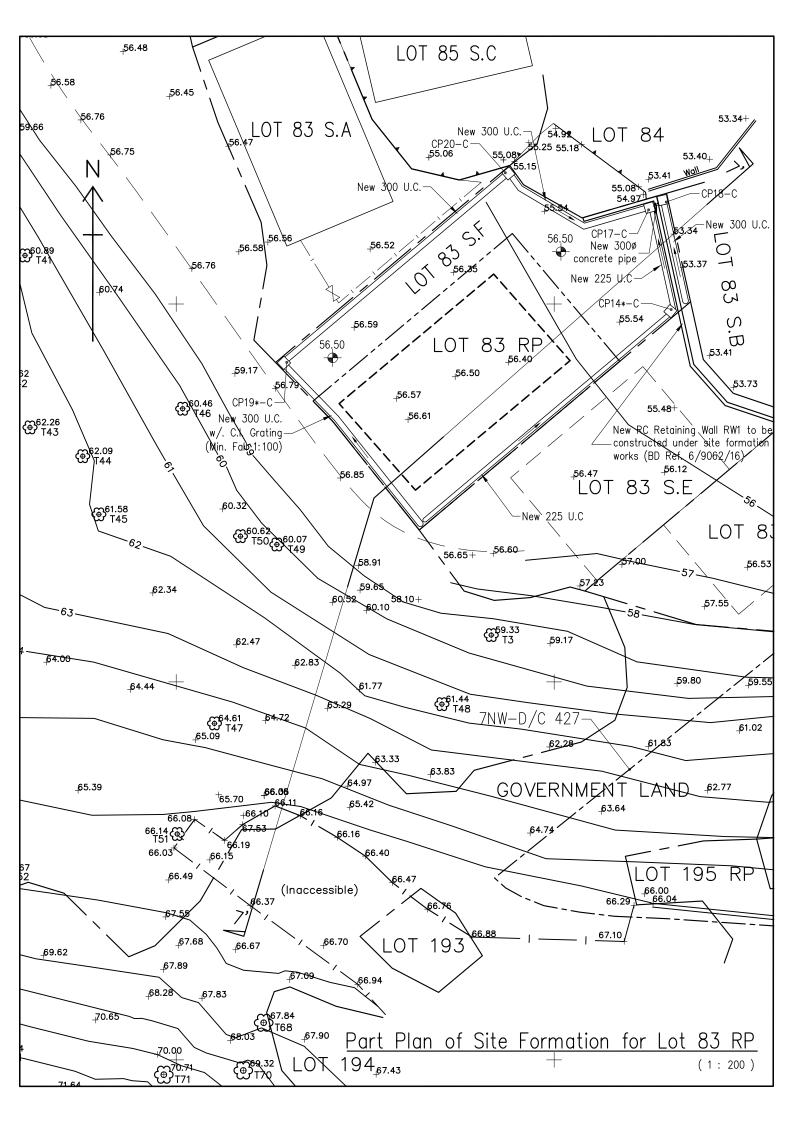
- ALL EARTHWORKS PLATFORMS SHALL BE GRADED (FOR FILL, THE SURFACE SHALL ALSO BE SEALED BY ROLLING OR OTHERWISE) TO ENSURE RUN-OFF AND AVOID
- DURING EXCAVATION, A METHOD OF WORKING SHALL BE ADOPTED IN WHICH TH MINIMUM OF BARE SOLL IS EXPOSED AT ANY TIME EXCAVATION TO FORM THE FINL SHALL BE FOLLOWED DU INMEDIATELY WHIT SUFFACE PROTECTION AND DRAINOR WORKS AND THE FACE PANEL SIZE SHALL BE SMALL ENOUGH TO PRIVIT THIS.
- WHERE TEMPORARY BARE EARTH SLOPE FACES ARE UNAVOIDABLE THEY SHALL BE PROTECTED WITH HEARY DUTY SHEETING ADEQUATELY SECURED AT THE EDGES, SEALED AT CREST, AND LAPPED AT JOINTS, WHERE SLOPE FACES ARE TO BE TEMPORARILY EXPOSED FOR MORE THAN TWO WEEKS TEMPORARY DRAINS SHALL BE INSTALLED IN ADDITION TO SUFFACING.
- TRENCHES ON OR ADJACENT TO SLOPES SHALL BE EXCAVATED WITH EXTREME CARE IN SHORT SECTIONS AT A TIME. PRECAUTIONS SHALL BE TAKEN TO PREVENT WATER ENTERING AND COLLECTING IN THE TRENCH.
- WATER TABLE INSIDE EXCAVATED TRENCH SHALL NOT BE PUMPED AWAY AND AL WORKS WITHIN THE EXCAVATED AREA SHOULD BE CEASED UNTIL THE WATER TABLE IS UNWEREN NATURALLY


Revision	Date	Description	- 14	BY	Checked	
		Name	Initial			
Design	Checked	C.S.L.				
Designe	d	S.W.				
Drawn		A.T.		1		
Date DEC	C. 2021	Scale 1 : 100	CAD	. Ref. C761S	F02	

	ROPO							
	S 83							
sD,	83	sE,	83	sF,	83	RP,	470	0)
sC,	470	sD	& 4	70	sE,	INI	DD2	1,)
	SAN	ŲΚ	KA,	TĂI	P0	, N.]	ſ	Ĵ

SITE FORMATION PLAN

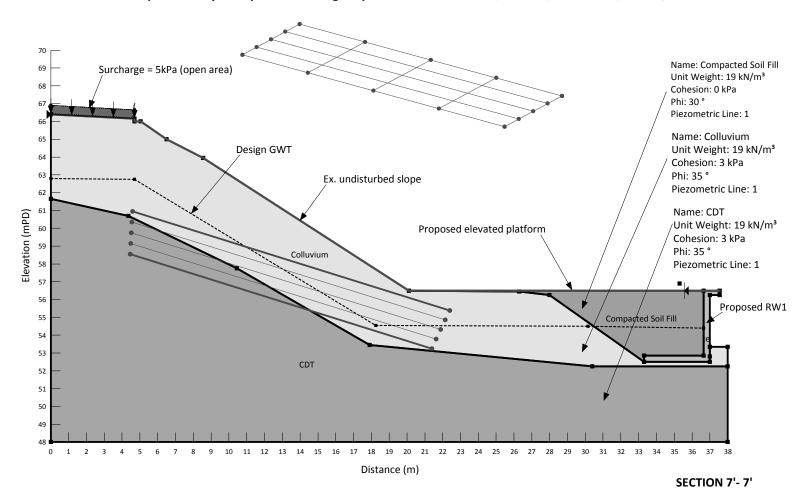
or BUILDING AUTHO 2 8 MAR 2022

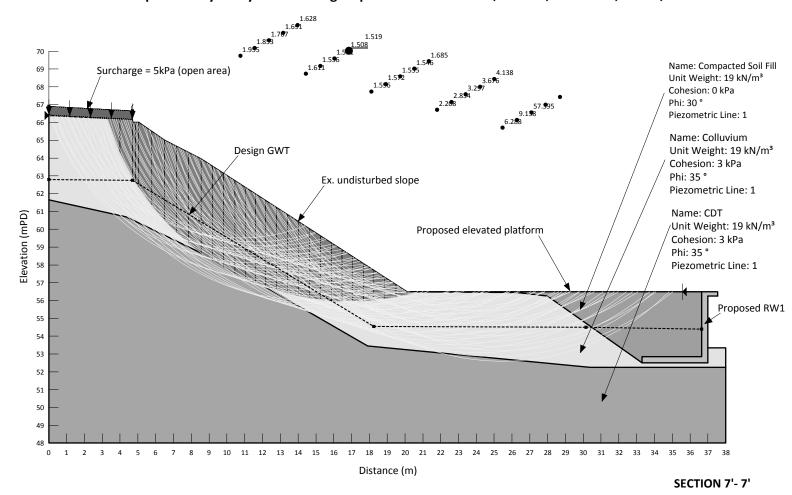

	(Ⅳ) RSE/RGE AND RC TO DISCUSS THE INSTRUMENT RESPONSE AND REVIEW THE EFFECTIVENESS OF THE RESPONSE ACTION.	Ē	EINFORCEMENT	AND SPACED AT NOT M	ORE THAN 60)x SMALLER	BAR
11) RSE/RGE AND RC TO DISCUSS THE INSTRUMENT RESPONSE AND REVIEW THE EFFECTIVENESS OF THE RESPONSE ACTION.	14. <i>A</i>	LL SPACER BA	ARS SHALL BE THE SAME			AND
_) RSE/RGE TO AGREE WITH RC ON THE EMERGENCY PLAN DETAILING THE MEASURES TO BE TAKEN UPON REACHING "ACTION LEVEL".) ANY CONSTRUCTION ACTIVITIES MAY BE SUSPENDED IF THE RESPONSE ACTION HAS BEEN IMPLEMENTED AND ON THE	15. 1	HE ANCHORAG	00mm c/c UNLESS OTHEI E LENGTH OF THE STARTE			WITH COP
<u>.</u>	(V)	ADVICE OF THE RSE/RGE AS NECESSARY.	S	STRUCTURAL US	SE OF CONCRETE 2013. OUSE FOOTING CONSTRUC			
	<u>*AC</u> (I)	<u>TION LEVEL"</u> ALL WORKS THAT WILL CAUSE GROUND MOVEMENT ARE TO BE CEASED.	1	o be submitt	ED TO BD/GEO PRIOR TO	submission	I OF BA14.	
	(ii) /**	RC TO NOTIFY AND CARRY OUT A JOINT SITE INSPECTION WITH THE RSE/RGE IMMEDIATELY. THE BD AND THE RELEVANT PARTIES SHOULD BE NOTIFIED IMMEDIATELY.		REFERENCE TO	ABILITY CHECK OF RETAIN GEOGUIDE 1. MIN. FACT SUDING=1.5 OVERTURNING	OR OF SAFE	Y OF RETA	INING
	(⊪) (Ⅳ)	AND REMEDIAL /EMERGENCY MEASURES IMPLEMENTED		CAPACITY=0.0. DESIGN SOIL PA		YY	YY)
	(V)	RSE/RGE TO REVIEW THE INCIDENT AND AGREE WITH RC ON FURTHER REMEDIAL AND PREVENTIVE MEASURES TO ENABLE RESUMPTION OF THE SUSPENDED WORKS.	[SOIL CO	HESION c' INTERNAL FRICT 3 kPa 35°		DENSITY (N/m ³	2
	(V) (VI) CONSTRUCTION ACTIVITIES SHOULD NOT BE RESUMED LUTIL THE NECESSARY REMEDIAL AND PREVENTIVE MEASURES HAVE BEEN COMPLETED TO THE SATISFACTION OF THE BD) IF THE TRIGGER VALUES AND RESPONSE ACTION ARE REVISED, THE AMENDED PLANS SHOULD BE	ł		3 kPa 35*		N/mª N/m³	2
	SU Th	BITTED TO THE BD FOR APPROVAL. THE SUSPENDED CONSTRUCTION ACTIVITIES SHOULD NOT BE RESUMED UNTIL THE AMENDED PLANS ARE APPROVED BY THE BA AND CONSENT IS GIVEN E "ACTION LEVEL" RESPONSE ACTION SHOULD BE TAKEN IF ANY OF THE FOLLOWING SITUATION OCCURS: UNDUE SETTLEMENT AS INDICATED IN ANY CHECK POINTS (E.G. AN INCREASE OF 5MM BETWEEN TWO CONSECUTIVE					x	J
	•	DAILY READINGS). SIGN OF DISTRESS OR DAMAGES OBSERVED IN ANY ADJACENT STRUCTURES AND/OR UTILITIES.	HEAV	RAINFA	LL PRECAUTIO	<u>NS</u>		
			1. SURF AND	ACE WATER FLO	WING INTO THE SITE FROM ROM THE SITE TO AN INDIC, AND ABRUPT CHANGE IN D EPT CLEAR OF DEBRIS.	UPHILL SHAL ATED SAFE DI	L BE INTER	CEPTED NNT. AT
	1. 2.	ALL DIMENSIONS ARE IN mm UNLESS OTHERWISE SPECIFIED. ALL LEVELS ARE IN mPD UNLESS OTHERWISE SPECIFIED.						
	3.	THE PROPOSED VILLAGE HOUSE IS N.T. EXEMPTED HOUSE AND IS NOT FOR B.D.'S APPROVAL SEPTIC TANK AND SOAKAWAY PIT ARE NOT FOR B.D.'S APPROVAL ALL FOOTINGS OF HOUSE TO BE FOUNDED ON UNDISTURBED GROUND.	TEMP	CLEAR OF DEI	ompleted drainage works Shall-be provided. Al Bris.	S DISCHARGE L DRAINAGE-1	Within the Vorks shal	Site a L-BE
	4.	75mm THK. PRESCRIBED MIX GRADE 10P BLINDING LAYER TO BE PROVIDED UNDERNEATH CONCRETE BASE.	ALSO	BE SEALED BY	LATFORMS SHALL BE GRADE (ROLLING OR OTHERWISE)	D (FOR FILL, TO ENSURE I	THE SURFA	ce shall Id avoid
	5.	CONCRETE FOR MASS CONCRETE STRUCTURE AND CATCHPIT/CHANNEL TO BE GRADE 30D, TO CS1:2010 EXCEPT CLAUSE 7.1.	POND	NNG.				
	6.	BENCHING DETAIL TO BE IN ACCORDANCE WITH DETAIL SHOWN IN "GEOTECHNICAL MANUAL FOR SLOPES" BY GEO. DETAIL OF U-CHANNEL TO COMPLY WITH FIG. 8.8 AND FIG. 8.11 "GEOTECHNICAL MANUAL FOR SLOPES" BY GEO. DETAIL OF CATCHPIT SHOULD FOLLOW CEDD'S STANDARD DRAWING NO. C2405. DETAIL OF SANDTRAP TO COMPLY WITH FIG. 8.4 "GEOTECHNICAL MANUAL FOR SLOPES" BY GEO. RETAINING WALL TO COMPLY WITH GEO GUIDE 1 - GUIDE TO RETAINING WALL DESIGN.	PEKN	III THIS.	A METHOD OF WORKING S SOIL IS EXPOSED AT ANY TI LOWED UP IMMEDIATELY WI ID THE FACE PANEL SIZE S BADE FARTH SLOPE FACES			
	7.	FOR WORKS TO BE CARRIED OUT OUTSIDE THE LOT BOUNDARIES INCLUDING DRAINAGE WORKS, THE LOT OWNER SHALL BE RESPONSIBLE FOR THE RELOCATION AND MAINTENANCE OF SUCH WORKS AS AND WHEN REQUIRED BY THE GOVERNMENT.	J. WHEN PROT SEAL TEMF BE II	ECTED WITH HE ED AT CREST, / ORARILY EXPOS VSTALLED IN AD	BARE EARTH SLOPE FACES AVY DUTY SHEETING ADEQU AND LAPPED AT JOINTS. W ED FOR MORE THAN TWO DITION TO SURFACING.	ARE UNAVOIL JATELY SECUR HERE SLOPI WEEKS TEMPO	ED AT THE I ED AT THE I FACES ARE RARY DRAIN	EDGES, TO BE S SHALL
ICE		ALL DISTURBED NATURAL GROUND TEMPORARY CUT SLOPES ON CONSTRUCTION OF RETAINING WALLS, STEP CHANNEL, SAND TRAPS AND FOOTINGS TO BE REINSTATED, BACKFILLED AND COMPACTED IN ACCORDANCE WITH NOTES STATED AND SURFACES TURFED.		1	DJACENT TO SLOPES SHALL TIONS AT A TIME. PRECAU ERING AND COLLECTING IN	l be excavat Jtions shall The trench	ed with ex be taken	treme To
	9.	THE REACTIVE ALKALI OF CONCRETE EXPRESSED AS THE EQUIVALENT SODIUM OXIDE PER METRE OF CONCRETE SHOULD NOT EXCEED 3.0kg when determined in accordance with the specification items given in appendix a of pnap 180 (APP-74).	7. WATE WOR	r table inside	EXCAVATED TRENCH SHALL EXCAVATED AREA SHOULD	l not be pu	MPED AWAY	AND ALL
	10.	FOR ALL COMPLETED PERMANENT SLOPES AND RETAINING WALLS FOR WHICH THE OWNERS OF THE DEVELOPMENT HAVE MAINTENANCE RESPONSIBILITY. THE INFORMATION REQUESTED IN PNAP:168 & 189 BE SUBMITTED TOGETHER WITH THE FORM BA14 (ADV-8 & APP-79).						
	11.	2012 AND SHALL HAVE A LAP OF 300mm MIN.	Revision	Date	Descriptic	on [·] ·	BY	Checked
	12.	BEFORE CONNECTION OF THE PROPOSED DRAINAGE TO THE EXISTING DRAIN OUTSIDE BOUNDARY, CONDITIONS AND ROUTING OF THE CHANNELS SHOULD BE CONFIRMED TO BE PROPER FOR CONNECTION.			Name		Initio	L
	13.	DISTURBANCE DUE TO SITE FORMATION WORKS TO THE SURROUNDING LOTS EXISTING FEATURES AND BUILDINGS SHOULD BE AVOIDED.	Design	Checked	C.S.L.			
<	14.	THE R.C. DESIGN SHALL COMPLY WITH HK BUILDING REGULATION AND COP FOR STRUCTURAL USE OF CONCRETE 2013. STEELWORKS DESIGN SHALL COMPLY WITH COP FOR STRUCTURAL USE OF STEEL 2011.	Designe		S.W.			
\langle	15.	FOR WORKS TO BE CARRIED-OUT OUTSIDE LOT BOUNDARY, PERMISSION SHOULD BE GIVEN-BY LOT OWNERS FOR PRIVATE LOTS AND DLO. FOR GOVERNMENT LANDS.	Drawn		A.T.			
K	16.	FOR U-CHANNELS AND CATCHPITS CLOSE TO FOOTPATHS, CONCRETE COVER OR GRATING SHOULD BE PROVIDED. DETAILS OF COVER FOR CATCHPIT AND U-CHANNEL SHOULD COMPLY WITH CEDD'S STANDARD DRAWING NO. C2405 TO C2407 AND C2412 RESPECTIVELY. COVER SURFACE TO BE FLUSHED WITH GROUND SURFACE. ALL REMOVABLE CATCHPIT COVER ARE INDICATED, FOR INFORMATION ONLY. EXPANSION & OLAR TO BE PROVIDED TO ALL CHANNERS	Date DE	C. 2021	Scale 1:100	CAI	D. Ref. C761SI	-02
5	17.	FOOTPATH SHOULD BE RELOCATED FOR CONSTURCTION OF RETAINING WALL AND SHOULD BE REINSTATED.	Projec	PROPO	SED VILLA	GE H	ÓUSE	S,
5	18. 19.	ALL TEMPORARY CUT SLOPE FOR OPEN CUT EXCAVATION TO BE LIMITED TO 30' MAXIMUM. THE AP TO MAKE SURE THE EX. DRAIN HAS SPARE CAPACITY AND IN GOOD CONDITIONS FOR THE PROPOSED	LO		sC ss1, 8	ງຊີ SC	ΞKΡ,	83
4	20.	CONNECTION.	SD SC.	, 83	sE, 83 sF,	రు	אר, י ואו ה	<u>4/U</u>
<	•	THE A.P. SHOULD ENSURE THAT ANY OBSTURCTION OR DISTURBANCE TO THE NEARBY STREAM COURSE AFFECTING THE EMBANKMENT STABILITY IS PROHIBITED AT ANY TIME DURING AND AFTER CONSTRUCTION OF THE SMALL HOUSE.	(⁵ ,	SAN	SD & 470	SE, I PO		עבו,)
Ż	21.	DRAINAGE WORKS OUTSIDE SITE BOUNDARY ARE FOR BUILDING AUTHORITY'S INFORMATION ONLY, BUT NOT FOR BA'S APPROVAL.	Title			<u> </u>		
	22. NO	FOR WORK OUTSIDE LOT BOUNDARY, PERMISSION FROM RELEVANT AUTHORITY'S (INCLUDING DLO/TP)/ PRIVATE LOT OWNERS SHOULD BE OBTAINED BEFORE APPLYING FOR CONSENT FOR COMMENCEMENT OF THE WORKS. ITES ON FILLING		SITE	FORMATIC	N PI	AN	
<	1.	SUFFACES ON WHICH FILL IS TO BE PLACED SHALL BE STRIPPED OFF ALL TOP SOIL AND VEGETATION. THE STRIPPED SUFFACES SHALL BE TRIMMED AND BENCHED IN STEPS BEFORE FILL IS PLACED.					•	
<	2.	SURFACES SHALL BE TRIMMED AND BENCHED IN SIEPS BEFORE FILL IS FLACED. FILL SHALL BE CLEAN GRANULAR MATERIALS. BOULDERS OR ROCK FRAGMENTS LARGER THAN 75mm SHALL BE REMOVED. FILL SHALL NOT CONTAIN UNSUITABLE MATERIAL SUCH AS TOP SOIL, ROOTS, TREE STUMPS OR RUBBISH IN GENERAL.	Drg. N	0,	SF-02			Rev.
4	3.	FILL SHALL BE PLACED AND COMPACTED IN HORIZONTAL LAYERS APPROPRIATE TO THE COMPACTION PLANT. BUT NOT GREATER THAN 300mm THICK. COMPACTION REQUIREMENT TO SECTION 6 OF GS FOR CIVIL ENGINEERING WORKS (2006).						
5	4.	FILL AREAS SHALL BE BUILT UP HORIZONTALLY AND EVENLY OVER THE WIDTH AND PLACED SO THAT ROLLED SURFACES SHED WATER.		(h		1 -	74-	.]
5	5.	IT MAY BE NECESSARY TO CONSTRUCT THE SLOPE SLIGHTLY OVERSIZE AND TO TRIM BACK AFTERWARDS, IN ORDER TO MEET THE ABOVE COMPACTION REQUIREMENTS AT THE EDGES OF THE SLOPE.		r. LAII	Chee Sing	Bun	LAL J	m
<	6.	WHERE CEMENT STABILISED FILL IS SPECIFIED. THE FILL MATERIAL SHALL BE THOROUGHLY MIXED WITH 12% BY VOLUME OF PORTLAND CEMENT.	BSc PhI Authoriz	O CEng MICE ed Person	E MIStructE MHKIE	BEng M MICE M	sc(Eng) C fIStructE 1	MHKIB
- <	7.	THE INSITU FIELD DRY DENSITIES OF COMPACTED MATERIALS FORMING THE PERIPHERAL PORTION OF AN EARTH FILL SLOPE SHALL BE NOT LESS THAN 95% OF THE MAXIMUM DRY DENSITY DESCRIBED IN ITEM 9 BELOW.		ed Structural I	Bngineer		L, GEL, S ed Geotech	TL) nical Engin
~	8.	The maximum dry density and optimum moisture content shall be determined in accordance with the standard given in geospec 3.	Plan	Approved	0] .		
X	9.	THE INSTITU FIELD DENSITY AND MOISTURE CONTENT SHALL BE DETERMINED IN ACCORDANCE WITH GEOSPEC 3, TO DETERMINE THE RELATIVE COMPACTION ACHIEVED. THE NUMBER OF DETERMINATIONS SHALL BE IN ACCORDANCE WITH PRACTICE NOTE APP15 (PNAP55) APPENDIX A.			Ce.			
)	10.	ALL TESTS SHALL BE CARRIED OUT BY OR UNDER THE DIRECTION OF THE AUTHORISED PERSON OR REGISTERED STRUCTURAL ENGINEER OR BY AN INDEPENDENT TESTING AGENCY.		TSE Kam-1	ming, Franco	1		
ノ.		RECORD SHALL BE KEPT IN ACCORDANCE WITH PRACTICE NOTE APP15 (PNAP55) OR GEOSPEC 3.		Senior Build	ling Surveyor			÷ 1
					AR 2022	L		2

.

23

APPENDIX C


Part Plan and Section of Lot No. 83 RP



APPENDIX D

Slope Stability Analysis – Slope/W

Slope Stability Analysis of Existing Slope near Lot No. 83 RP, D.D. 21, San Uk Ka, Tai Po, N.T.

Slope Stability Analysis of Existing Slope near Lot No. 83 RP, D.D. 21, San Uk Ka, Tai Po, N.T.

Slope Stability Analysis near Lot No. 83 RP, D.D. 21, San Uk Ka, Tai Po, N.T. DATESTAMP 10/8/2024 TIMESTAMP 20:36:22 3=METHOD 125=NO. OF SLIP SURFACES 5=NO. OF RADII 2=SIDE FUNCTION TYPE 19.7253=X-COOR. 68.5854=Y-COOR. COMPUTED AXIS SLIP Х-Υ-ITERATION FACTOR OF SAFETY COORD. COORD. NO. RADIUS NO. LAMBDA (MOMENT) (FORCE) 25.481 65.706 10.763 0.0000 114.0348749 134.2116459 1 1 25.481 10.763 0.0000 119.8300450 102.1831718 1 65.706 6 25.481 65.706 10.763 3 1 0.0232 119.8179459 119.8166221 2 25.481 65.706 11.350 0.0000 14.2476853 17.6281323 1 2 25.481 65.706 11.350 0.0000 15.6288804 12.7480719 6 2 11.350 25.481 65.706 3 0.1309 15.6089021 15.5998547 3 25.481 65.706 11.937 1 0.0000 8.2585168 10.5100782 3 11.937 25.481 65.706 6 0.0000 9.4527010 7.5284284 3 25.481 65.706 11.937 3 0.1731 9.4307143 9.4299755 25.481 65.706 12.525 6.1703430 8.0242035 4 1 0.0000 4 25.481 65.706 12.525 6 0.0000 7.3424888 5.7440049 25.481 12.525 4 65.706 3 0.1926 7.3207926 7.3192745 5 25.481 65.706 13.112 1 0.0000 5.1184679 6.7808821 5 25.481 13.112 7 6.3091830 65.706 0.0000 4.8647466 5 25.481 65.706 13.112 3 0.2032 6.2884793 6.2861225 26.285 11.412 0.0000 999.0000000 999.0000000 6 66.136 1 26.285 11.412 0.0000 999.0000000 999.0000000 6 66.136 100 26.285 11.412 100 0.0000 999.0000000 999.0000000 6 66.136 7 26.285 66.136 12.000 1 0.0000 25.0642000 31.1258665 7 26.285 66.136 12.000 6 0.0000 27.3144457 22.1607009 7 26.285 12.000 0.0807 27.2901851 66.136 3 27.2897151 26.285 12.588 11.3754816 8 66.136 1 0.0000 14.5653236 26.285 12.588 8 66.136 6 0.0000 12.9255796 10.2280306 8 26.285 66.136 12.588 3 0.1352 12.8988292 12.8982746 0.0000 9 26.285 13.175 66.136 7.7574486 10.1618438 1 9 26.285 13.175 0.0000 9.1645762 66.136 6 7.1207564 9 26.285 13.175 3 0.1634 9.1376121 9.1362635 66.136 26.285 13.763 0.0000 998.0000000 998.0000000 10 66.136 0 26.285 13.763 0 0.0000 998.0000000 998.0000000 10 66.136 10 26.285 66.136 13.763 0 0.0000 998.0000000 998.0000000 11 27.089 66.565 12.062 0.0000 999.0000000 999.0000000 1 27.089 66.565 12.062 0.0000 999.0000000 999.0000000 11 100 11 27.089 66.565 12.062 100 0.0000 999.0000000 999.0000000 27.089 12 66.565 12.650 1 0.0000 52.8566120 65.5851384 12 27.089 66.565 12.650 0.0000 57.4237510 46.5132935 6 27.089 12.650 12 66.565 3 0.0393 57.3948709 57.4000967 27.089 13 66.565 13.238 0 0.0000 998.0000000 998.0000000 27.089 0.0000 998.0000000 998.0000000 13 66.565 13.238 0 27.089 13.238 13 66.565 0 0.0000 998.0000000 998.0000000 14 27.089 66.565 13.826 0 0.0000 998.0000000 998.0000000

14

14

15

27.089

27.089

27.089

66.565

66.565

66.565

13.826

13.826

14.413

0

0

0

0.0000 998.0000000 998.0000000

0.0000 998.0000000 998.0000000

0.0000 998.0000000 998.0000000

15	27.089	66.565	14.413	0	0.0000	998.0000000	998.0000000
15	27.089	66.565	14.413	0	0.0000	998.0000000	998.0000000
16	27.893	66.995	12.712	1	0.0000	999.0000000	999.0000000
16	27.893	66.995	12.712	100	0.0000	999.0000000	999.0000000
16	27.893	66.995	12.712	100	0.0000	999.0000000	999.0000000
17	27.893	66.995	13.300	0	0.0000	998.0000000	998.0000000
17	27.893	66.995	13.300	0		998.0000000	
17	27.893	66.995	13.300	0		998.0000000	
18	27.893	66.995	13.888	0		998.0000000	
18	27.893	66.995	13.888	0		998.0000000	
18	27.893	66.995	13.888	0		998.0000000	
19	27.893	66.995	14.476	0		998.0000000	
19	27.893	66.995	14.476	0		998.0000000	
19	27.893	66.995	14.476	0		998.0000000	
20	27.893	66.995	15.064	0		998.0000000	
20 20	27.893	66.995	15.064	0		998.0000000	
20	27.893	66.995	15.064	0		998.0000000	
21	28.697	67.425	13.362	0		998.0000000	
21	28.697	67.425	13.362	0		998.0000000	
21	28.697	67.425	13.362	0		998.0000000	
22	28.697	67.425	13.950	0		998.0000000	
22	28.697	67.425	13.950	0		998.0000000	
22	28.697	67.425	13.950	0		998.0000000	
23	28.697	67.425	14.538	0		998.0000000	
23	28.697	67.425	14.538	0		998.0000000	
23	28.697	67.425	14.538	0	0.0000	998.0000000	998.0000000
24	28.697	67.425	15.126	0	0.0000	998.0000000	998.0000000
24	28.697	67.425	15.126	0	0.0000	998.0000000	998.0000000
24	28.697	67.425	15.126	0	0.0000	998.0000000	998.0000000
25	28.697	67.425	15.714	0	0.0000	998.0000000	998.0000000
25	28.697	67.425	15.714	0	0.0000	998.0000000	998.0000000
25	28.697	67.425	15.714	0	0.0000	998.0000000	998.0000000
26	21.799	66.716	10.630	1	0.0000	2.0412957	2.2262439
26	21.799	66.716	10.630	5	0.0000	2.2098698	2.0324306
26	21.799	66.716	10.630	3	0.4567	2.2076903	2.2155872
27	21.799	66.716	11.216	1	0.0000	2.1437810	2.4361710
27	21.799	66.716	11.216	5	0.0000	2.4170121	2.1388505
27	21.799	66.716	11.216	3	0.4024	2.4152290	2.4148563
28	21.799	66.716	11.803	1	0.0000	2.2369171	2.6263729
28	21.799	66.716	11.803	5	0.0000	2.6005946	2.2328786
28	21.799	66.716	11.803	3	0.3820	2.5986900	2.5978695
29	21.799	66.716	12.389	1	0.0000	2.2939034	2.7657183
29	21.799	66.716	12.389	6	0.0000	2.7392580	2.2921664
29	21.799	66.716	12.389	3	0.3632	2.7376526	2.7317342
30	21.799	66.716	12.976	1	0.0000	2.1847368	2.6891155
30	21.799	66.716	12.976	6	0.0000	2.7027511	2.2218564
30 30	21.799	66.716	12.976	3	0.3426	2.7027311	2.2218304
30 31	21.799				0.3420	2.7047423	2.8861987
		67.146	11.279	1			
31	22.603	67.146	11.279	5	0.0000	2.8378612	2.5702594
31	22.603	67.146	11.279	3	0.3757	2.8338607	2.8316173
32	22.603	67.146	11.866	1	0.0000	2.5605819	2.9437768
32	22.603	67.146	11.866	5	0.0000	2.8934374	2.5355972

32	22.603	67.146	11.866	3	0.3605	2.8897054	2.8890907
33	22.603	67.146	12.453	1	0.0000	2.5826264	3.0595306
33	22.603	67.146	12.453	5	0.0000	3.0011002	2.5579757
33	22.603	67.146	12.453	3	0.3498	2.9971093	2.9959205
34	22.603	67.146	13.040	1	0.0000	2.5628777	3.1074276
34	22.603	67.146	13.040	6	0.0000	3.0547220	2.5449962
34	22.603	67.146	13.040	3	0.3372	3.0511507	3.0446570
35	22.603	67.146	13.627	1	0.0000	2.4144701	2.9844085
35	22.603	67.146	13.627	6	0.0000	2.9758998	2.4376732
35	22.603	67.146	13.627	3	0.3220	2.9751082	2.9666128
36	22.003	67.575	11.929	1	0.0000	3.5350074	3.9921333
36	23.407	67.575		5	0.0000	3.8539693	3.4359728
			11.929				
36	23.407	67.575	11.929	3	0.3303	3.8467900	3.8464220
37	23.407	67.575	12.516	1	0.0000	3.1573466	3.6743980
37	23.407	67.575	12.516	5	0.0000	3.5590916	3.0852780
37	23.407	67.575	12.516	3	0.3250	3.5525499	3.5515133
38	23.407	67.575	13.103	1	0.0000	3.0339198	3.6284031
38	23.407	67.575	13.103	5	0.0000	3.5129886	2.9698522
38	23.407	67.575	13.103	3	0.3211	3.5059318	3.5040693
39	23.407	67.575	13.690	1	0.0000	2.8821707	3.5170169
39	23.407	67.575	13.690	6	0.0000	3.4280081	2.8413608
39	23.407	67.575	13.690	3	0.3120	3.4217167	3.4146882
40	23.407	67.575	14.277	1	0.0000	2.6905130	3.3430653
40	23.407	67.575	14.277	6	0.0000	3.3017458	2.6926002
40	23.407	67.575	14.277	3	0.3022	3.2974295	3.2880140
41	24.211	68.005	12.579	1	0.0000	5.1584527	5.9145635
41	24.211	68.005	12.579	5	0.0000	5.5801591	4.9020269
41	24.211	68.005	12.579	3	0.2819	5.5695184	5.5684234
42	24.211	68.005	13.166	1	0.0000	4.0098438	4.7205883
42	24.211	68.005	13.166	5	0.0000	4.4918438	3.8525065
42	24.211	68.005	13.166	3	0.2901	4.4814396	4.4795501
43	24.211	68.005	13.753	1	0.0000	3.5947576	4.3346230
43	24.211	68.005	13.753	6	0.0000	4.1430791	3.4749117
43	24.211	68.005	13.753	3	0.2906	4.1324029	4.1268103
44	24.211	68.005	14.340	1	0.0000	3.2784599	4.0275735
44	24.211	68.005	14.340	6	0.0000	3.8869029	3.2044314
44	24.211	68.005	14.340	3	0.2871	3.8770599	3.8691697
45	24.211	68.005	14.927	1	0.0000	3.0163166	3.7674261
45	24.211	68.005	14.927	6	0.0000	3.6841647	2.9922102
45	24.211	68.005	14.927	4	0.2817	3.6758883	3.6693448
46	25.016	68.435	13.229	1	0.2017	8.1917351	9.5006138
46	25.010	68.435	13.229	5	0.0000	8.7634369	7.6041264
40 46	25.010	68.435	13.229	3	0.2237	8.7486224	8.7458768
47	25.016	68.435	13.816	1	0.0000	5.2789005	6.2781449
47	25.016	68.435	13.816	5	0.0000	5.8637020	4.9785947
47	25.016	68.435	13.816	3	0.2526	5.8484573	5.8451209
48	25.016	68.435	14.404	1	0.0000	4.3275248	5.2581540
48	25.016	68.435	14.404	6	0.0000	4.9602189	4.1303558
48	25.016	68.435	14.404	3	0.2608	4.9451347	4.9383469
49	25.016	68.435	14.991	1	0.0000	3.7774309	4.6704324
49	25.016	68.435	14.991	6	0.0000	4.4605224	3.6564586
49	25.016	68.435	14.991	3	0.2624	4.4464347	4.4374768

50	25.016	68.435	15.578	1	0.0000	3.4146455	4.2899201
50	25.016	68.435	15.578	6	0.0000	4.1505635	3.3536909
50	25.016	68.435	15.578	4	0.2614	4.1377534	4.1301842
51	18.117	67.726	10.497	1	0.0000	1.4745206	1.6212200
51	18.117	67.726	10.497	4	0.0000	1.6026082	1.4587337
51	18.117	67.726	10.497	3	0.6586	1.5962996	1.5987657
52	18.117	67.726	11.082	1	0.0000	1.4693969	1.6479309
		67.726	11.082	4			
52 52	18.117				0.0000	1.6265320	1.4521972
52	18.117	67.726	11.082	4	0.6598	1.6200080	1.6219743
53	18.117	67.726	11.668	1	0.0000	1.4451537	1.6511709
53	18.117	67.726	11.668	5	0.0000	1.6357398	1.4369788
53	18.117	67.726	11.668	3	0.6055	1.6326593	1.6330089
54	18.117	67.726	12.254	1	0.0000	1.4217288	1.6607068
54	18.117	67.726	12.254	5	0.0000	1.6644367	1.4343536
54	18.117	67.726	12.254	3	0.5368	1.6668436	1.6660493
55	18.117	67.726	12.840	1	0.0000	1.4063756	1.6814260
55	18.117	67.726	12.840	5	0.0000	1.7096640	1.4447618
55	18.117	67.726	12.840	3	0.4863	1.7173322	1.7158139
56	18.921	68.156	11.146	1	0.0000	1.4668692	1.5937691
56	18.921	68.156	11.146	4	0.0000	1.5779048	1.4530183
56	18.921	68.156	11.146	3	0.6574	1.5720668	1.5727745
57	18.921	68.156	11.732	1	0.0000	1.4525225	1.6113348
57	18.921	68.156	11.732	4	0.0000	1.5926970	1.4371789
57	18.921	68.156	11.732	4	0.6633	1.5867410	1.5879632
58	18.921	68.156	12.318	1	0.0000	1.4900384	1.6936846
58	18.921	68.156	12.318	5	0.0000	1.6816266	1.4844032
58	18.921	68.156	12.318	3	0.5759	1.6800740	1.6798988
59	18.921	68.156	12.910	1	0.0000	1.4886407	1.7335824
59	18.921	68.156	12.904	5	0.0000	1.7417767	1.5050625
59	18.921	68.156	12.904	3	0.5054	1.7449904	1.7439711
60	18.921	68.156	12.904	1	0.0000	1.4860516	1.7716674
						1.8048600	
60	18.921	68.156	13.490	5	0.0000		1.5285595
60	18.921	68.156	13.490	3	0.4579	1.8124708	1.8107984
61	19.725	68.585	11.796	1	0.0000	1.4644803	1.5743560
61	19.725	68.585	11.796	4	0.0000	1.5607441	1.4521802
61	19.725	68.585	11.796	3	0.6553	1.5553176	1.5547333
62	19.725	68.585	12.382	1	0.0000	1.4895443	1.6449896
62	19.725	68.585	12.382	4	0.0000	1.6308927	1.4781550
62	19.725	68.585	12.382	3	0.6291	1.6273736	1.6344658
63	19.725	68.585	12.969	1	0.0000	1.5687627	1.7814873
63	19.725	68.585	12.969	5	0.0000	1.7736489	1.5672586
63	19.725	68.585	12.969	3	0.5331	1.7733138	1.7727826
64	19.725	68.585	13.555	1	0.0000	1.5840465	1.8443726
64	19.725	68.585	13.555	5	0.0000	1.8561752	1.6045273
64	19.725	68.585	13.555	3	0.4712	1.8596959	1.8586392
65	19.725	68.585	14.141	1	0.0000	1.5810005	1.8838029
65	19.725	68.585	14.141	5	0.0000	1.9200282	1.6286231
65	19.725	68.585	14.141	3	0.4291	1.9272907	1.9258385
66	20.530	69.015	12.446	1	0.0000	1.4677620	1.5627404
66	20.530	69.015	12.446	4	0.0000	1.5510072	1.4567395
66	20.530	69.015	12.446	3	0.6513	1.5459283	1.5443699
67	20.530	69.015	13.033	1	0.0000	1.5748354	1.7398507
51	20.000	07.015	10.000	1	0.0000	1.2710331	1

67	20.530	69.015	13.033	4	0.0000	1.7315651	1.5691766
67	20.530	69.015	13.033	3	0.5703	1.7300082	1.7392041
68	20.530	69.015	13.619	1	0.0000	1.6831869	1.9160919
68	20.530	69.015	13.619	5	0.0000	1.9114058	1.6853109
68	20.530	69.015	13.619	3	0.4884	1.9116766	1.9110016
69	20.530	69.015	14.205	1	0.0000	1.7105468	1.9968753
69	20.530	69.015	14.205	5	0.0000	2.0084399	1.7322950
69	20.530	69.015	14.205	3	0.4404	2.0114607	2.0103473
70	20.530	69.015	14.791	1	0.0000	1.6919366	2.0174754
70	20.530	69.015	14.791	5	0.0000	2.0552532	1.7428478
70	20.530	69.015	14.791	3	0.4038	2.0618671	2.0606228
71	21.334	69.445	13.096	1	0.0000	1.5867863	1.6960542
71	21.334	69.445	13.096	4	0.0000	1.6877914	1.5795278
71	21.334	69.445	13.096	3	0.5791	1.6851519	1.6879532
72	21.334	69.445	13.683	1	0.0000	1.7147122	1.9034406
72	21.334	69.445	13.683	5	0.0000	1.8989471	1.7156921
72	21.334	69.445	13.683	3	0.4793	1.8987067	1.8963470
73	21.334	69.445	14.269	1	0.0000	1.8259892	2.0882636
73	21.334	69.445	14.269	5	0.0000	2.0841102	1.8314156
73	21.334	69.445	14.269	3	0.4452	2.0844510	2.0837894
74	21.334	69.445	14.855	1	0.0000	1.8683704	2.1903961
74	21.334	69.445	14.855	5	0.0000	2.1964586	1.8883656
74	21.334	69.445	14.855	3	0.4120	2.1984285	2.1973396
75	21.334	69.445	15.442	1	0.0000	1.8181567	2.1729354
75	21.334	69.445	15.442	5	0.0000	2.2071116	1.8679205
75	21.334	69.445	15.442	3	0.3832	2.2124966	2.2110330
76	14.435	68.736	10.364	1	0.0000	1.5255154	1.7498549
76 76	14.435	68.736	10.364	5	0.0000	1.7235079	1.5063049
76 76	14.435	68.736	10.364	4	0.6529	1.7166925	1.7257383
70	14.435	68.736	10.949		0.0029	1.4542488	1.6978024
77	14.435	68.736	10.949	1 5	0.0000	1.6826897	1.4480647
	14.435		10.949	3			
77 78	14.435	68.736 68.736	10.949	1	0.5989 0.0000	1.6790375 1.3881623	1.6797361 1.6426127
78 78	14.435	68.736	11.533	_	0.0000	1.6428757	1.3993234
			11.533	5	0.0000		1.6428750
78 70	14.435	68.736		3		1.6430833	
79 70	14.435	68.736	12.118	1	0.0000	1.3400963	1.6031694
79 70	14.435	68.736	12.118	5 3	0.0000 0.5369	1.6189181	1.3672389
79 80	14.435	68.736	12.118			1.6225907	1.6217374
80	14.435	68.736	12.703	1	0.0000	1.3050241	1.5732038
80	14.435	68.736	12.703	5	0.0000	1.6041358 1.6110474	1.3481708
80	14.435	68.736	12.703	3	0.5108		1.6097132
81	15.239	69.166	11.013	1	0.0000	1.5142843	1.7102226
81	15.239	69.166	11.013	5	0.0000	1.6867192	1.4969638
81	15.239	69.166	11.013	4	0.6507	1.6803704	1.6866135
82	15.239	69.166	11.599	1	0.0000	1.4422137	1.6627943
82	15.239	69.166	11.599	5	0.0000	1.6468214	1.4330637
82	15.239	69.166	11.599	3	0.6181	1.6426550	1.6433790
83	15.239	69.166	12.184	1	0.0000	1.3706906	1.6030385
83	15.239	69.166	12.184	4	0.0000	1.6005854	1.3762892
83	15.239	69.166	12.184	3	0.5833	1.6002381	1.6003347
84	15.239	69.166	12.769	1	0.0000	1.3140703	1.5553905
84	15.239	69.166	12.769	4	0.0000	1.5673483	1.3357172

84	15.239	69.166	12.769	3	0.5539	1.5707349	1.5701207
85	15.239	69.166	13.354	1	0.0000	1.2749823	1.5231466
85	15.239	69.166	13.354	4	0.0000	1.5491532	1.3111330
85	15.239	69.166	13.354	3	0.5293	1.5558046	1.5546927
86	16.044	69.595	11.663	1	0.0000	1.4928691	1.6658927
86	16.044	69.595	11.663	4	0.0000	1.6457544	1.4762466
86	16.044	69.595	11.663	4	0.6468	1.6396378	1.6416939
87	16.044	69.595	12.249	1	0.0000	1.4345413	1.6331174
87	16.044	69.595	12.249	4	0.0000	1.6171953	1.4231992
87	16.044	69.595	12.249	4	0.6503	1.6125697	1.6192086
88	16.044	69.595	12.834	1	0.0000	1.3597489	1.5728371
88	16.044	69.595	12.834	4	0.0000	1.5682815	1.3617901
88	16.044	69.595	12.834	3	0.6008	1.5671469	1.5673316
89	16.044	69.595	12.854	1	0.0000	1.2967989	1.5196104
89	16.044	69.595	13.419	4	0.0000	1.5284214	1.3140668
89 89	16.044	69.595	13.419	3	0.5712	1.5310308	1.5305205
89 90	16.044	69.595			0.0000	1.2578672	1.3303203
			14.004	1			
90	16.044	69.595	14.004	4	0.0000	1.5138917	1.2902413
90	16.044	69.595	14.004	3	0.5362	1.5210591	1.5197544
91	16.848	70.025	12.313	1	0.0000	1.4745127	1.6264436
91	16.848	70.025	12.313	4	0.0000	1.6095138	1.4605699
91	16.848	70.025	12.313	3	0.6461	1.6039066	1.6076906
92	16.848	70.025	12.899	1	0.0000	1.4335097	1.6117321
92	16.848	70.025	12.899	4	0.0000	1.5962565	1.4219622
92	16.848	70.025	12.899	4	0.6513	1.5913957	1.5958438
93	16.848	70.025	13.484	1	0.0000	1.3544503	1.5504407
93	16.848	70.025	13.484	4	0.0000	1.5441460	1.3531976
93	16.848	70.025	13.484	4	0.6486	1.5422130	1.5520993
94	16.848	70.025	14.069	1	0.0000	1.2908999	1.4987475
94	16.848	70.025	14.069	4	0.0000	1.5051528	1.3042395
94	16.848	70.025	14.069	3	0.5803	1.5076607	1.5071033
95	16.848	70.025	14.655	1	0.0000	1.2644259	1.4894032
95	16.848	70.025	14.655	4	0.0000	1.5134978	1.2969523
95	16.848	70.025	14.655	3	0.5282	1.5215935	1.5200700
96	17.652	70.455	12.963	1	0.0000	1.4586726	1.5931435
96	17.652	70.455	12.963	4	0.0000	1.5786540	1.4465641
96	17.652	70.455	12.963	3	0.6481	1.5734871	1.5757456
97	17.652	70.455	13.549	1	0.0000	1.4332044	1.5939045
97	17.652	70.455	13.549	4	0.0000	1.5788636	1.4214551
97	17.652	70.455	13.549	3	0.6543	1.5738441	1.5796280
98	17.652	70.455	14.134	1	0.0000	1.3523266	1.5314949
98	17.652	70.455	14.134	4	0.0000	1.5241373	1.3494516
98	17.652	70.455	14.134	4	0.6542	1.5216468	1.5293480
99	17.652	70.455	14.720	1	0.0000	1.3082170	1.5082837
99	17.652	70.455	14.720	4	0.0000	1.5155036	1.3215630
99	17.652	70.455	14.720	3	0.5675	1.5189734	1.5181466
100	17.652	70.455	15.305	1	0.0000	1.2920874	1.5160867
100	17.652	70.455	15.305	4	0.0000	1.5433554	1.3269901
100	17.652	70.455	15.305	3	0.5116	1.5521168	1.5505087
100	10.753	69.746	10.231	1	0.0000	1.7042643	1.9599717
101	10.753	69.746	10.231	5	0.0000	1.9556965	1.7096203
101	10.753	69.740 69.746	10.231	3	0.4725	1.9550252	1.9546549
101	10.133	07.740	10.201	5	0.7723	1.7550252	1.7540542

102	10.753	69.746	10.815	1	0.0000	1.6766975	1.9438590
102	10.753	69.746	10.815	5	0.0000	1.9536171	1.6960273
102	10.753	69.746	10.815	3	0.4488	1.9550098	1.9544443
103	10.753	69.746	11.399	0	0.0000	998.0000000	998.0000000
103	10.753	69.746	11.399	0	0.0000	998.0000000	998.0000000
103	10.753	69.746	11.399	0	0.0000	998.0000000	998.0000000
104	10.753	69.746	11.983	0	0.0000	998.0000000	998.0000000
104	10.753	69.746	11.983	0	0.0000	998.0000000	998.0000000
104	10.753	69.746	11.983	0		998.0000000	
105	10.753	69.746	12.567	0		998.0000000	
105	10.753	69.746	12.567	0		998.0000000	
105	10.753	69.746	12.567	0		998.0000000	
105	11.557	70.176	10.880	1	0.0000	1.6366296	1.8664630
106	11.557	70.176	10.880	4	0.0000	1.8610524	1.6385566
			10.880	4	0.4915	1.86010324	1.8570827
106	11.557	70.176					
107	11.557	70.176	11.465	1	0.0000	1.6054245	1.8458704
107	11.557	70.176	11.465	4	0.0000	1.8535694	1.6205553
107	11.557	70.176	11.465	3	0.4659	1.8548312	1.8516208
108	11.557	70.176	12.049	1	0.0000	1.5785701	1.8284550
108	11.557	70.176	12.049	4	0.0000	1.8492395	1.6068371
108	11.557	70.176	12.049	3	0.4449	1.8525410	1.8491840
109	11.557	70.176	12.633	0		998.000000	
109	11.557	70.176	12.633	0	0.0000	998.0000000	998.0000000
109	11.557	70.176	12.633	0	0.0000	998.0000000	998.0000000
110	11.557	70.176	13.217	0	0.0000	998.0000000	998.0000000
110	11.557	70.176	13.217	0	0.0000	998.000000	998.0000000
110	11.557	70.176	13.217	0	0.0000	998.0000000	998.0000000
111	12.362	70.605	11.530	1	0.0000	1.5838318	1.7925889
111	12.362	70.605	11.530	4	0.0000	1.7857524	1.5837190
111	12.362	70.605	11.530	3	0.5156	1.7844449	1.7818716
112	12.362	70.605	12.115	1	0.0000	1.5479899	1.7668135
112	12.362	70.605	12.115	4	0.0000	1.7723488	1.5605099
112	12.362	70.605	12.115	3	0.4876	1.7733312	1.7706028
113	12.362	70.605	12.699	1	0.0000	1.5182116	1.7457902
113	12.362	70.605	12.699	4	0.0000	1.7637758	1.5433735
113	12.362	70.605	12.699	3	0.4645	1.7669006	1.7640368
114	12.362	70.605	13.284	0		998.0000000	
114	12.362	70.605	13.284	0		998.0000000	
114	12.362	70.605	13.284	0		998.0000000	
114	12.362	70.605	13.868	0		998.0000000	
115	12.362	70.605	13.868	0		998.0000000	
115	12.362	70.605	13.868			998.0000000	
				0			1.7343533
116	13.166	71.035	12.180	1	0.0000	1.5431804	
116	13.166	71.035	12.180	4	0.0000	1.7260803	1.5408665
116	13.166	71.035	12.180	3	0.5390	1.7243282	1.7221160
117	13.166	71.035	12.765	1	0.0000	1.5018819	1.7028248
117	13.166	71.035	12.765	4	0.0000	1.7062345	1.5117328
117	13.166	71.035	12.765	3	0.5087	1.7068591	1.7045110
118	13.166	71.035	13.349	1	0.0000	1.4685527	1.6776715
118	13.166	71.035	13.349	4	0.0000	1.6928829	1.4905695
118	13.166	71.035	13.349	3	0.4839	1.6957296	1.6932571
119	13.166	71.035	13.934	1	0.0000	1.4421428	1.6592102

119	13.166	71.035	13.934	4	0.0000	1.6859450	1.4755026	
119	13.166	71.035	13.934	3	0.4644	1.6908124	1.6881796	
120	13.166	71.035	14.518	0	0.0000	998.0000000	998.0000000	
120	13.166	71.035	14.518	0	0.0000	998.0000000	998.0000000	
120	13.166	71.035	14.518	0	0.0000	998.0000000	998.0000000	
121	13.970	71.465	12.830	1	0.0000	1.5131597	1.6891595	
121	13.970	71.465	12.830	4	0.0000	1.6794419	1.5085896	
121	13.970	71.465	12.830	3	0.5898	1.6770924	1.6858147	
122	13.970	71.465	13.415	1	0.0000	1.4655277	1.6513319	
122	13.970	71.465	13.415	4	0.0000	1.6525834	1.4727433	
122	13.970	71.465	13.415	3	0.5294	1.6527607	1.6507231	
123	13.970	71.465	14.000	1	0.0000	1.4277818	1.6213915	
123	13.970	71.465	14.000	4	0.0000	1.6340067	1.4467255	
123	13.970	71.465	14.000	3	0.5027	1.6365117	1.6343547	
124	13.970	71.465	14.584	1	0.0000	1.3984081	1.5994774	
124	13.970	71.465	14.584	4	0.0000	1.6231143	1.4284089	
124	13.970	71.465	14.584	3	0.4816	1.6277295	1.6254243	
125	13.970	71.465	15.169	0	0.0000	998.0000000	998.0000000	
125	13.970	71.465	15.169	0	0.0000	998.0000000	998.0000000	
125	13.970	71.465	15.169	0	0.0000	998.0000000	998.0000000	

I SUMMARY OF MINIMUM FACTORS OF SAFETY |

I SUMMARY OF MINIMUM FACIORS OF SAFELY I

MOMENT EQUILIBRIUM: FELLENIUS OR ORDINARY METHOD

16.0435=X-COOR. 69.5955=Y-COOR. 14.0043=RADIUS 1.2578672=F.S. 90=SLIP# MOMENT EQUILIBRIUM: BISHOP SIMPLIFIED METHOD 16.8477=X-COOR. 70.0253=Y-COOR. 14.0694=RADIUS 1.5051528=F.S. 94=SLIP# FORCE FOULLIBRIUM: LANBU SIMPLIFIED METHOD (NO fo FACTOR)

FORCE EQUILIBRIUM: JANB	U SIMPLIFIED METHOD	(NO TO FACIOR)		
16.0435=X-COOR.	69.5955=Y-COOR.	14.0043=RADIUS	1.2902413=F.S.	90=SLIP#
MOMENT AND FORCE EQUILI	BRIUM: MORGENSTERN-F	RICE METHOD		
16.8477=X-COOR.	70.0253=Y-COOR.	14.0694=RADIUS	1.5076607=F.S.	94=SLIP#

NORMAL TERMINATION OF SLOPE

MOST_CRITICAL #	SLIP_SURFACE #
1	94
SLIP_SURFACE #	AUTOTENSIONELEV

Slope Stability Analysis near Lot No. 83 RP, D.D. 21, San Uk Ka, Tai Po, N.T.

DATESTAMP 10/8/2024 TIMESTAMP 20:36:22

	Center_X	Center_Y	Radius	Slip_Surface	Method	
	1.684800e+001	7.002500e+001	1.406942e+001	94	3	
	X_Left Height Base	Y_L_Top e_Length	Y_L_Bottom	X_Right	Y_R_Top	Y_R_Bottom
1	3.301453e+000	6.622439e+001	6.622439e+001	4.000726e+000	6.618720e+001	6.428917e+001
		57685e+000	(100017 001	1 700000 000	((15000 001	(202721 001
	4.000726e+000		6.428917e+001	4.700000e+000	6.615000e+001	6.292731e+001
2.56	0359e+000 1.53 4.700000e+000	30897e+000 6.600000e+001	6.292731e+001	4.866985e+000	6.600000e+001	6.264895e+001
		16072e-001	0.2927510+001	4.8009836+000	0.0000000000000000000000000000000000000	0.2048936+001
	4.866985e+000		6.264895e+001	5.050000e+000	6.600000e+001	6.235963e+001
		23393e-001	0.2040/001	5.05000001000	0.0000000000000000000000000000000000000	0.23570501001
5	5.050000e+000	6.600000e+001	6.235963e+001	5.775000e+000	6.550000e+001	6.134523e+001
		16852e+000	0.2000000000	21112000010000	0.00000000000	0110102001001
6		6.550000e+001	6.134523e+001	6.500000e+000	6.500000e+001	6.049254e+001
4.33	1116e+000 1.11	9244e+000				
7	6.500000e+000	6.500000e+001	6.049254e+001	7.175767e+000	6.465388e+001	5.980756e+001
4.67	6889e+000 9.62	22156e-001				
8	7.175767e+000	6.465388e+001	5.980756e+001	7.851533e+000	6.430775e+001	5.920783e+001
	3118e+000 9.03					
	7.851533e+000		5.920783e+001	8.550000e+000	6.395000e+001	5.866322e+001
5.19		56976e-001				
10	8.550000e+000	6.395000e+001	5.866322e+001	9.183333e+000	6.354149e+001	5.822673e+001
		91779e-001				
11		6.354149e+001	5.822673e+001	9.816667e+000	6.313297e+001	5.783869e+001
		27549e-001	5 500000 001	1 0 4 5 0 0 0 0 1	6 070446 001	5 540460 001
12	9.816667e+000	6.313297e+001	5.783869e+001	1.045000e+001	6.272446e+001	5.749460e+001
	2071e+000 7.20 1.045000e+001)7691e-001 6.272446e+001	5.749460e+001	1.102485e+001	6.235367e+001	5.721735e+001
13	3086e+000 6.38		5.7494000+001	1.1024636+001	0.2333078+001	5.7217556+001
	1.102485e+001		5.721735e+001	1.159970e+001	6.198288e+001	5.697127e+001
	3960e+000 6.25		5.72175501001	1.15777001001	0.17020001001	5.0712701001
	1.159970e+001		5.697127e+001	1.217455e+001	6.161209e+001	5.675462e+001
	4535e+000 6.14		5105712701001	1.217 12201001	0110120901001	5101510201001
	1.217455e+001		5.675462e+001	1.279059e+001	6.121473e+001	5.655351e+001
	9341e+000 6.48			1.2// 00/ 01/001		
	1.279059e+001		5.655351e+001	1.340664e+001	6.081736e+001	5.638314e+001
4.54	7718e+000 6.39	91686e-001				
18	1.340664e+001	6.081736e+001	5.638314e+001	1.402268e+001	6.042000e+001	5.624239e+001
4.30	5917e+000 6.31	9213e-001				
		6.042000e+001	5.624239e+001	1.463873e+001	6.002264e+001	5.613034e+001
4.03	4956e+000 6.26	51523e-001				

20 1.463873e+001 6.002264e+(3.735631e+000 6.217498e-001	001 5.613034e	e+001 1.5254	77e+001	5.962528e+001	5.604631e+001
3.733631e+000 0.217498e-001 21 1.525477e+001 5.962528e+(3.408539e+000 6.186322e-001	001 5.604631e	e+001 1.5870)82e+001 5	5.922791e+001	5.598980e+001
22 1.587082e+001 5.922791e+(3.060670e+000 5.954904e-001	001 5.598980e	2+001 1.6465	561e+001 5	5.884426e+001	5.596103e+001
23 1.646561e+001 5.884426e+0	001 5.596103e	e+001 1.7060)41e+001 5	5.846060e+001	5.595745e+001
2.693189e+000 5.948059e-001 24 1.706041e+001 5.846060e+(001 5.595745e	e+001 1.7655	520e+001 5	5.807695e+001	5.597903e+001
2.300534e+000 5.951865e-001 25 1.765520e+001 5.807695e+(001 5.597903e	e+001 1.8250)00e+001 5	5.769329e+001	5.602590e+001
1.882655e+000 5.966384e-001 26 1.825000e+001 5.769329e+(001 5.602590e	e+001 1.8866	667e+001	5.729553e+001	5.610145e+001
1.430736e+000 6.212779e-001 27 1.886667e+001 5.729553e+(001 5.610145e	e+001 1.9483	333e+001 5	5.689776e+001	5.620491e+001
9.434676e-001 6.252846e-001 28 1.948333e+001 5.689776e+(001 5.620491e	e+001 2.0100	000e+001 5	5.650000e+001	5.633689e+001
4.279822e-001 6.306336e-001 29 2.010000e+001 5.650000e+(001 5.633689e	e+001 2.0705	569e+001 5	5.650000e+001	5.649512e+001
8.399541e-002 6.260123e-001 30 2.070569e+001 5.650000e+(001 5.649512e	e+001 2.0722	278e+001	5.650000e+001	5.650000e+001
2.442288e-003 1.777405e-002					
SL# L_Load_X L_Load_Y AS_Load_X AS_Load_Y Comb		A_Load_Y	P_Load_X	P_Load_Y	A_Modifier
1 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	-2.1408e-0)16 -3 4964e+0	00 1.0000e+000
				510 5.1501010	00 1.00000+000
2 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	-2.1408e-0)16 -3.4964e+0	
0.0000e+000 0.0000e+000 0 3 0.0000e+000 0.0000e+000		0.0000e+000 0.0000e+000	-2.1408e-0	016 -3.4964e+0	00 1.0000e+000
0.0000e+000 0.0000e+000 0 3 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0 4 0.0000e+000 0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+0	016 -3.4964e+0 000 0.0000e+0	00 1.0000e+000 00 1.0000e+000
0.0000e+000 0.0000e+000 0 3 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0 4 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0 5 0.0000e+000 0.0000e+000	0.0000e+000 0.0000e+000	0.0000e+000	0.0000e+0	016 -3.4964e+0 000 0.0000e+0 000 0.0000e+0	00 1.0000e+000 00 1.0000e+000 00 1.0000e+000
0.0000e+000 0.0000e+000 0 3 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0 4 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0 5 0.0000e+000 0.0000e+000 0 6 0.0000e+000 0.0000e+000	0.0000e+000 0.0000e+000 0.0000e+000	0.0000e+000 0.0000e+000	0.0000e+0 0.0000e+0	016 -3.4964e+0 000 0.0000e+0 000 0.0000e+0 000 0.0000e+0	 00 1.0000e+000 00 1.0000e+000 00 1.0000e+000 00 1.0000e+000
0.0000e+000 0.0000e+000 0 3 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0 4 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0 5 0.0000e+000 0.0000e+000 0 6 0.0000e+000 0.0000e+000 0 7 0.0000e+000 0.0000e+000	0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000	0.0000e+000 0.0000e+000 0.0000e+000	0.0000e+(0.0000e+(0.0000e+(016 -3.4964e+0 000 0.0000e+0 000 0.0000e+0 000 0.0000e+0 000 0.0000e+0 000 0.0000e+0	 00 1.0000e+000 00 1.0000e+000 00 1.0000e+000 00 1.0000e+000 00 1.0000e+000
0.0000e+000 0.0000e+000 0 3 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0 4 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0 5 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0 6 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0 7 0.0000e+000 0.0000e+000 0 8 0.0000e+000 0.0000e+000	0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000	0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000	0.0000e+(0.0000e+(0.0000e+(0.0000e+(016 -3.4964e+0 000 0.0000e+0	 00 1.0000e+000 00 1.0000e+000 00 1.0000e+000 00 1.0000e+000 00 1.0000e+000 00 1.0000e+000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000	0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000	0.0000e+(0.0000e+(0.0000e+(0.0000e+(0.0000e+(016 -3.4964e+0 000 0.0000e+0	 00 1.0000e+000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000	0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000	0.0000e+(0.0000e+(0.0000e+(0.0000e+(0.0000e+(0.0000e+(016 -3.4964e+0 000 0.0000e+0 000 0.0000e+0	 00 1.0000e+000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000	0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000	0.0000e+(0.0000e+(0.0000e+(0.0000e+(0.0000e+(0.0000e+(0.0000e+(016 -3.4964e+0 000 0.0000e+0 000 0.0000e+0	 00 1.0000e+000

13 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
14 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
15 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
16 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
17 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
18 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
19 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
20 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
21 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
22 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
23 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
24 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
25 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
26 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
27 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
28 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
29 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
30 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.0000e+000
SL# Weight Pore_Water Phi_B Liquified	Alpha	Force Fn.	Seismic_F	Seismic_Y	Pore_Air
1 1.2609e+001 -5.0361e+001 0.0000e+000 0	7.0133e+001	1.2577e-001	0.0000e+000	0.0000e+000	0.0000e+000
2 3.4017e+001 -1.2829e+001 0.0000e+000 0	6.2821e+001	2.4954e-001	0.0000e+000	0.0000e+000	0.0000e+000
3 1.0190e+001 -2.8222e-001 0.0000e+000 0	5.9041e+001	2.7858e-001	0.0000e+000	0.0000e+000	0.0000e+000
4 1.2156e+001 2.9974e-001 0.0000e+000 0	5.7683e+001	3.1012e-001	0.0000e+000	0.0000e+000	0.0000e+000
5 5.3689e+001 5.7029e+000 0.0000e+000 0	5.4446e+001	4.3141e-001	0.0000e+000	0.0000e+000	0.0000e+000

6 5.9661e+001	1.0550e+001	4.9627e+001	5.4534e-001	0.0000e+000	0.0000e+000	0.0000e+000
0.0000e+000 0 7 6.0049e+001 0.0000e+000 0	1.2326e+001	4.5388e+001	6.4319e-001	0.0000e+000	0.0000e+000	0.0000e+000
8 6.3853e+001 0.0000e+000 0	1.3642e+001	4.1588e+001	7.3150e-001	0.0000e+000	0.0000e+000	0.0000e+000
9 6.8920e+001 0.0000e+000 0	1.4731e+001	3.7945e+001	8.1136e-001	0.0000e+000	0.0000e+000	0.0000e+000
10 6.3786e+001 0.0000e+000 0	1.3454e+001	3.4574e+001	8.7269e-001	0.0000e+000	0.0000e+000	0.0000e+000
11 6.3831e+001 0.0000e+000 0	1.3203e+001	3.1495e+001	9.2265e-001	0.0000e+000	0.0000e+000	0.0000e+000
12 6.3320e+001 0.0000e+000 0	1.2690e+001	2.8515e+001	9.6059e-001	0.0000e+000	0.0000e+000	0.0000e+000
13 5.6610e+001 0.0000e+000 0	1.0893e+001	2.5748e+001	9.8419e-001	0.0000e+000	0.0000e+000	0.0000e+000
14 5.5418e+001 0.0000e+000 0	1.0144e+001	2.3175e+001	9.9724e-001	0.0000e+000	0.0000e+000	0.0000e+000
15 5.3896e+001 0.0000e+000 0	9.2638e+000	2.0650e+001	9.9957e-001	0.0000e+000	0.0000e+000	0.0000e+000
16 5.5707e+001 0.0000e+000 0	8.8097e+000	1.8080e+001	9.9016e-001	0.0000e+000	0.0000e+000	0.0000e+000
17 5.3230e+001 0.0000e+000 0	7.5165e+000	1.5459e+001	9.6855e-001	0.0000e+000	0.0000e+000	0.0000e+000
18 5.0400e+001 0.0000e+000 0	6.0849e+000	1.2870e+001	9.3499e-001	0.0000e+000	0.0000e+000	0.0000e+000
19 4.7229e+001 0.0000e+000 0	4.5162e+000	1.0308e+001	8.8991e-001	0.0000e+000	0.0000e+000	0.0000e+000
20 4.3725e+001 0.0000e+000 0 21 3.9896e+001	2.8090e+000	7.7672e+000 5.2413e+000	8.3385e-001	0.0000e+000	0.0000e+000	0.0000e+000 0.0000e+000
0.0000e+000 0	9.5948e-001 -9.6705e-001	2.7690e+000	7.6751e-001 6.9448e-001	0.0000e+000 0.0000e+000	0.0000e+000 0.0000e+000	0.0000e+000
0.0000e+000 0	-2.9713e+000		6.1346e-001	0.0000e+000	0.0000e+000	0.0000e+000
0.0000e+000 0 24 2.5999e+001			5.2539e-001	0.0000e+000	0.0000e+000	0.0000e+000
0.0000e+000 0 25 2.1276e+001			4.3129e-001	0.0000e+000	0.0000e+000	0.0000e+000
0.0000e+000 0 26 1.6763e+001			3.2850e-001	0.0000e+000	0.0000e+000	0.0000e+000
0.0000e+000 0 27 1.1054e+001			2.2165e-001	0.0000e+000	0.0000e+000	0.0000e+000
0.0000e+000 0 28 5.0145e+000			1.1207e-001	0.0000e+000	0.0000e+000	0.0000e+000
0.0000e+000 0	-1.1511e+001		3.0818e-003	0.0000e+000	0.0000e+000	0.0000e+000
0.0000e+000 0 30 7.9302e-004	-3.4128e-001	-1.5951e+001	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000
0.0000e+000 0						

Ordinary_Method_Fm= 1.2908999 Applied_Lambda= 0.0000

SL#	Normal_M	ShearMob	Phi_Angle	Cohesion			
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \end{array}$	5.4731e+000 1.7135e+001 5.2421e+000 6.4984e+000 3.1218e+001 4.2173e+001 4.2173e+001 4.7758e+001 5.4351e+001 5.2521e+001 5.639e+001 5.0947e+001 5.0947e+001 5.0947e+001 5.0947e+001 5.0957e+001 4.9134e+001 4.6466e+001 4.3324e+001 3.9730e+001 3.0435e+001 3.0435e+001 3.0435e+001 2.5981e+001 1.0902e+001 4.9035e+000	-7.7507e+000 -1.2852e+001 -3.5978e+000 -4.1578e+000 -1.6738e+001 -1.7841e+001 -1.8426e+001 -2.0605e+001 -2.3549e+001 -2.4087e+001 -2.4087e+001 -2.3758e+001 -2.3758e+001 -2.3758e+001 -2.5452e+001 -2.5452e+001 -2.4210e+001 -2.4210e+001 -2.3421e+001 -2.3421e+001 -1.7891e+001 -1.5476e+001 -1.2891e+001 -1.0469e+001 -7.3665e+000 -4.1253e+000	3.5000e+001 3.5000e+001	3.0000e+000 3.0000e+000			
29 30		-1.9621e+000 -3.4102e-004	3.5000e+001 3.0000e+001	3.0000e+000 0.0000e+000			
SL#	op_Method_Fm= Normal_M rRight =============	= 1.5051528 ShearMob	Applied Phi_Angle	_Lambda= 0.0 Cohesion	000 SideLeft	ShearLeft	SideRight
 1 0.00	====== 1.5750e+001 00e+000	-1.1428e+001	3.5000e+001	3.0000e+000	0.0000e+000	0.0000e+000	-8.5378e+000
	3.9962e+001 00e+000	-2.1642e+001	3.5000e+001	3.0000e+000	8.5378e+000	0.0000e+000	-3.0227e+001
3		-5.5537e+000	3.5000e+001	3.0000e+000	3.0227e+001	0.0000e+000	-3.5454e+001
4		-6.4069e+000	3.5000e+001	3.0000e+000	3.5454e+001	0.0000e+000	-4.1594e+001
5	5.6062e+001 00e+000	-2.5913e+001	3.5000e+001	3.0000e+000	4.1594e+001	0.0000e+000	-6.7932e+001
6 0.00	6.1559e+001 00e+000	-2.5960e+001	3.5000e+001	3.0000e+000	6.7932e+001		-9.4045e+001
	6.0726e+001 00e+000	-2.4434e+001	3.5000e+001	3.0000e+000	9.4045e+001	0.0000e+000	-1.1654e+002

Janbu_Method_Ff= SL# Normal_F ShearRight	1.3042395 ShearMob	Applied Phi_Angle	L_Lambda= 0.0 Cohesion	000 SideLeft	ShearLeft	SideRight
	-3.5535e-004	3.0000e+001	0.0000e+000	6.6263e-004	0.0000e+000	0.0000e+000
	-1.9495e+000	3.5000e+001	3.0000e+000	2.6361e+000	0.0000e+000	-6.6263e-004
	-4.0456e+000	3.5000e+001	3.0000e+000	8.5720e+000	0.0000e+000	-2.6361e+000
27 1.2385e+001 0.0000e+000	-7.0079e+000	3.5000e+001	3.0000e+000	1.8731e+001	0.0000e+000	-8.5720e+000
26 1.8071e+001 0.0000e+000	-9.6451e+000	3.5000e+001	3.0000e+000	3.2082e+001	0.0000e+000	-1.8731e+001
25 2.2252e+001 0.0000e+000	-1.1541e+001	3.5000e+001	3.0000e+000	4.7155e+001	0.0000e+000	-3.2082e+001
24 2.6506e+001 0.0000e+000	-1.3517e+001	3.5000e+001	3.0000e+000	6.3686e+001	0.0000e+000	-4.7155e+001
23 3.0344e+001 0.0000e+000	-1.5302e+001	3.5000e+001	3.0000e+000	8.1068e+001	0.0000e+000	-6.3686e+001
22 3.3811e+001 0.0000e+000	-1.6916e+001	3.5000e+001	3.0000e+000	9.8767e+001	0.0000e+000	-8.1068e+001
21 3.8354e+001 0.0000e+000	-1.8629e+001	3.5000e+001	3.0000e+000	1.1643e+002	0.0000e+000	-9.8767e+001
0.0000e+000	-1.9241e+001	3.5000e+001	3.0000e+000	1.3253e+002		-1.1643e+002
0.0000e+000	-1.9802e+001	3.5000e+001	3.0000e+000	1.4675e+002		-1.3253e+002
0.0000e+000						
0.0000e+000 18 4.7055e+001		3.5000e+001	3.0000e+000	1.5878e+002		-1.4675e+002
0.0000e+000 17 4.9476e+001	-2.0794e+001	3.5000e+001	3.0000e+000	1.6838e+002	0 0000e+000	-1.5878e+002
0.0000e+000 16 5.1667e+001	-2.1229e+001	3.5000e+001	3.0000e+000	1.7530e+002	0.0000e+000	-1.6838e+002
0.0000e+000 15 4.9991e+001	-2.0171e+001	3.5000e+001	3.0000e+000	1.7917e+002	0.0000e+000	-1.7530e+002
0.0000e+000 14 5.1508e+001	-2.0489e+001	3.5000e+001	3.0000e+000	1.8040e+002	0.0000e+000	-1.7917e+002
13 5.2825e+001	-2.0779e+001	3.5000e+001	3.0000e+000	1.7888e+002	0.0000e+000	-1.8040e+002
	-2.3193e+001	3.5000e+001	3.0000e+000	1.7391e+002	0.0000e+000	-1.7888e+002
	-2.3471e+001	3.5000e+001	3.0000e+000	1.6544e+002	0.0000e+000	-1.7391e+002
10 6.1121e+001 0.0000e+000	-2.3708e+001	3.5000e+001	3.0000e+000	1.5347e+002	0.0000e+000	-1.6544e+002
9 6.7037e+001 0.0000e+000	-2.6098e+001	3.5000e+001	3.0000e+000	1.3641e+002	0.0000e+000	-1.5347e+002
8 6.3274e+001 0.0000e+000	-2.4890e+001	3.5000e+001	3.0000e+000	1.1654e+002	0.0000e+000	-1.3641e+002

1 1.3860e+001	-1.2174e+001	3.5000e+001	3.0000e+000	0.0000e+000	0.0000e+000 -8.5378e+000
0.0000e+000 2 3.6903e+001 0.0000e+000	-2.3333e+001	3.5000e+001	3.0000e+000	8.5378e+000	0.0000e+000 -3.0227e+001
3 9.8222e+000 0.0000e+000	-6.0199e+000	3.5000e+001	3.0000e+000	3.0227e+001	0.0000e+000 -3.5454e+001
4 1.1792e+001 0.0000e+000	-6.9573e+000	3.5000e+001	3.0000e+000	3.5454e+001	0.0000e+000 -4.1594e+001
5 5.2990e+001 0.0000e+000	-2.8255e+001	3.5000e+001	3.0000e+000	4.1594e+001	0.0000e+000 -6.7932e+001
6 5.8782e+001 0.0000e+000	-2.8468e+001	3.5000e+001	3.0000e+000	6.7932e+001	0.0000e+000 -9.4045e+001
7 5.8346e+001 0.0000e+000	-2.6920e+001	3.5000e+001	3.0000e+000	9.4045e+001	0.0000e+000 -1.1654e+002
8 6.1054e+001 0.0000e+000		3.5000e+001	3.0000e+000	1.1654e+002	0.0000e+000 -1.3641e+002
9 6.4909e+001 0.0000e+000		3.5000e+001	3.0000e+000	1.3641e+002	0.0000e+000 -1.5347e+002
10 5.9352e+001 0.0000e+000		3.5000e+001	3.0000e+000	1.5347e+002	0.0000e+000 -1.6544e+002
11 5.8868e+001 0.0000e+000 12 5.8010e+001		3.5000e+001 3.5000e+001	3.0000e+000 3.0000e+000	1.6544e+002 1.7391e+002	0.0000e+000 -1.7391e+002 0.0000e+000 -1.7888e+002
0.0000e+000 13 5.1644e+001		3.5000e+001	3.0000e+000	1.7888e+002	0.0000e+000 -1.8040e+002
0.0000e+000 14 5.0451e+001		3.5000e+001	3.0000e+000	1.8040e+002	0.0000e+000 -1.7917e+002
0.0000e+000 15 4.9054e+001		3.5000e+001	3.0000e+000	1.7917e+002	0.0000e+000 -1.7530e+002
0.0000e+000 16 5.0793e+001	-2.4030e+001	3.5000e+001	3.0000e+000	1.7530e+002	0.0000e+000 -1.6838e+002
0.0000e+000 17 4.8734e+001	-2.3598e+001	3.5000e+001	3.0000e+000	1.6838e+002	0.0000e+000 -1.5878e+002
0.0000e+000 18 4.6442e+001	-2.3120e+001	3.5000e+001	3.0000e+000	1.5878e+002	0.0000e+000 -1.4675e+002
0.0000e+000 19 4.3914e+001	-2.2592e+001	3.5000e+001	3.0000e+000	1.4675e+002	0.0000e+000 -1.3253e+002
0.0000e+000 20 4.1142e+001 0.0000e+000	-2.2010e+001	3.5000e+001	3.0000e+000	1.3253e+002	0.0000e+000 -1.1643e+002
21 3.8113e+001 0.0000e+000	-2.1370e+001	3.5000e+001	3.0000e+000	1.1643e+002	0.0000e+000 -9.8767e+001
22 3.3693e+001 0.0000e+000	-1.9458e+001	3.5000e+001	3.0000e+000	9.8767e+001	0.0000e+000 -8.1068e+001
23 3.0331e+001 0.0000e+000	-1.7652e+001	3.5000e+001	3.0000e+000	8.1068e+001	0.0000e+000 -6.3686e+001
24 2.6580e+001 0.0000e+000	-1.5639e+001	3.5000e+001	3.0000e+000	6.3686e+001	0.0000e+000 -4.7155e+001
25 2.2392e+001 0.0000e+000		3.5000e+001	3.0000e+000	4.7155e+001	0.0000e+000 -3.2082e+001
26 1.8258e+001 0.0000e+000	-1.1231e+001	3.5000e+001	3.0000e+000	3.2082e+001	0.0000e+000 -1.8731e+001

	-8.1901e+000	3.5000e+001	3.0000e+000	1.8731e+001	0.0000e+000	-8.5720e+000
0.0000e+000 28 6.1392e+000	-4.7465e+000	3.5000e+001	3.0000e+000	8.5720e+000	0.0000e+000	-2.6361e+000
	-2.2969e+000	3.5000e+001	3.0000e+000	2.6361e+000	0.0000e+000	-6.6263e-004
0.0000e+000 30 9.4359e-004 0.0000e+000	-4.1770e-004	3.0000e+001	0.0000e+000	6.6263e-004	0.0000e+000	0.0000e+000
M-P_Method_Fm= SL# Normal_M ShearRight	1.5076607 ShearMob		_Lambda= 0.5 Cohesion	803 SideLeft	ShearLeft	SideRight
1 1.4821e+001 7.4364e-001	-1.0978e+001	3.5000e+001	3.0000e+000	0.0000e+000	0.0000e+000	-1.0189e+001
2 3.5411e+001 4.7426e+000	-1.9492e+001	3.5000e+001	3.0000e+000	1.0189e+001	-7.4364e-001	-3.2750e+001
3 9.0250e+000 6.1421e+000	-4.8374e+000	3.5000e+001	3.0000e+000	3.2750e+001	-4.7426e+000	-3.7992e+001
4 1.0687e+001 7.9314e+000	-5.5055e+000	3.5000e+001	3.0000e+000	3.7992e+001	-6.1421e+000	-4.4071e+001
5 4.6292e+001 1.7348e+001	-2.1332e+001	3.5000e+001	3.0000e+000	4.4071e+001	-7.9314e+000	-6.9292e+001
6 4.9306e+001 2.9661e+001	-2.0227e+001	3.5000e+001	3.0000e+000	6.9292e+001	-1.7348e+001	-9.3722e+001
	-1.8466e+001	3.5000e+001	3.0000e+000	9.3722e+001	-2.9661e+001	-1.1488e+002
4.2879e+001 8 5.0013e+001 5.6919e+001	-1.8690e+001	3.5000e+001	3.0000e+000	1.1488e+002	-4.2879e+001	-1.3408e+002
	-1.9851e+001	3.5000e+001	3.0000e+000	1.3408e+002	-5.6919e+001	-1.5143e+002
10 5.0061e+001 8.3350e+001	-1.8532e+001	3.5000e+001	3.0000e+000	1.5143e+002	-7.1300e+001	-1.6458e+002
	-1.9052e+001	3.5000e+001	3.0000e+000	1.6458e+002	-8.3350e+001	-1.7500e+002
	-1.9763e+001	3.5000e+001	3.0000e+000	1.7500e+002	-9.3704e+001	-1.8255e+002
	-1.8688e+001	3.5000e+001	3.0000e+000	1.8255e+002	-1.0176e+002	-1.8675e+002
	-1.9490e+001	3.5000e+001	3.0000e+000	1.8675e+002	-1.0666e+002	-1.8829e+002
	-2.0340e+001	3.5000e+001	3.0000e+000	1.8829e+002	-1.0897e+002	-1.8705e+002
16 5.4996e+001	-2.2740e+001	3.5000e+001	3.0000e+000	1.8705e+002	-1.0850e+002	-1.8251e+002
	-2.3647e+001	3.5000e+001	3.0000e+000	1.8251e+002	-1.0487e+002	-1.7457e+002
	-2.4400e+001	3.5000e+001	3.0000e+000	1.7457e+002	-9.8120e+001	-1.6324e+002
8.8575e+001 19 5.5466e+001 7.6775e+001	-2.4909e+001	3.5000e+001	3.0000e+000	1.6324e+002	-8.8575e+001	-1.4866e+002

20 5.4153e+001 6.3454e+001	-2.5083e+001	3.5000e+001	3.0000e+000	1.4866e+002	-7.6775e+001	-1.3113e+002
21 5.1805e+001	-2.4845e+001	3.5000e+001	3.0000e+000	1.3113e+002	-6.3454e+001	-1.1112e+002
4.9493e+001 22 4.6523e+001	-2.2792e+001	3.5000e+001	3.0000e+000	1.1112e+002	-4.9493e+001	-9.0595e+001
3.6512e+001 23 4.1820e+001	-2.0606e+001	3.5000e+001	3.0000e+000	9.0595e+001	-3.6512e+001	-7.0236e+001
2.5004e+001 24 3.6139e+001	-1.7969e+001	3.5000e+001	3.0000e+000	7.0236e+001	-2.5004e+001	-5.0965e+001
1.5539e+001 25 2.9639e+001	-1.4953e+001	3.5000e+001	3.0000e+000	5.0965e+001	-1.5539e+001	-3.3729e+001
8.4418e+000 26 2.3223e+001	-1.2022e+001	3.5000e+001	3.0000e+000	3.3729e+001	-8.4418e+000	-1.8973e+001
3.6170e+000 27 1.5189e+001	-8.2984e+000	3.5000e+001	3.0000e+000	1.8973e+001	-3.6170e+000	-8.2782e+000
1.0648e+000 28 7.0248e+000	-4.5174e+000	3.5000e+001	3.0000e+000	8.2782e+000	-1.0648e+000	-2.3921e+000
1.5557e-001 29 1.6903e+000	-2.0307e+000	3.5000e+001	3.0000e+000	2.3921e+000	-1.5557e-001	-5.9625e-004
1.0664e-006 30 9.2739e-004 0.0000e+000	-3.5514e-004	3.0000e+001	0.0000e+000	5.9625e-004	-1.0664e-006	0.0000e+000
Slip_Surface_Summ	larv					
Analysis FOS	Volume	Weight	Res_Moment	Act_Moment	Res_Force	Act_Force
Ordinary Method 1.2908999	6.1489e+001	1.1683e+003	9.1508e+003	7.0887e+003		
Bishop Method 1.5051528	6.1489e+001	1.1683e+003	1.0670e+004	7.0887e+003		
1.3031328 Janbu Method 1.3042395	6.1489e+001	1.1683e+003			6.1943e+002	4.7493e+002
1.3042393 M-P Method 1.5076607	6.1489e+001	1.1683e+003	1.0687e+004	7.0887e+003	6.5416e+002	4.3405e+002

APPENDIX E

Plates

Plate 1: Overview of the Application Site

Plate 2: Overview of the Existing Natural Slope

Plate 3: Two Blocks of NTEH to the North End of Application Site

Plate 4: Viewing the toe of the Existing Slope and Application Site

Plate 5: Overview of the Feature Slope 7NW-D/C 427

Plate 6: Overview of the Feature Slope 7NW-D/C 426