

Technical Feasibility Study for the Proposed Development of Hong Kong Sheng Kung Hui St. Christopher's Complex at the Remaining Portion of Taxlord No. T77 in D.D.34. Tai Po

Traffic Impact Assessment Study

March 2024

CONTENTS	
----------	--

1.	INTRODUCTION
1.1 1.2 1.3	Background Objectives of the Report Report Structure
2.	THE PROPOSED DEVELOPMENT
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Site Location Proposed Development Schedule Permanent Vehicular Access Temporary Vehicular Access during Construction Stage Internal Transport Facilities Swept Path Analysis Sightline assessment
3.	EXISTING TRAFFIC CONDITIONS
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Existing Road Network Public Transport Facilities Baseline Traffic Surveys Junction Capacity Performance in Year 2021 and 2024 Base Year Road Link Performance Existing Public Transport Utilization Bus Layby Assessment Existing Footpath Performance Existing Queue Length Survey
4.	FUTURE TRAFFIC CONDITION
4.1 4.2 4.3 4.4	Design Year Traffic Forecast Approach Planned and Committed Developments in the Vicinity Reference Year Traffic Forecasts
5.	TRAFFIC IMPACT ASSESSMENT
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Proposed Development Traffic Generation 2033 Design Traffic Flows Junction Capacity Performance for 2033 Reference and Design Year Road Link Performance for 2033 Reference and Design Year Public Transport Utilization Assessment 2033 Design Bus Layby Assessment 2033 Reference and Design Year Footpath Performance Assessment

CONTENTS - Cont'd

- 6. CONSTRUCTION TRAFFIC IMPACT ASSESSMENT
- 6.1 Traffic Review for Construction Vehicles
- 7. SUMMARY AND CONCLUSION
- 7.1 Summary
- 7.2 Conclusion

TABLES

Table 2.1 Table 2.2 Table 3.1 Table 3.2 Table 3.3 Table 3.4 Table 3.5 Table 3.6 Table 3.7 Table 3.8 Table 4.1 Table 4.2	Proposed Development Schedule Car Parking and Loading/ Unloading Provisions of the Subject Site Public Transport Services along Tai Po Road - Tai Po Kau Adopted Traffic Surge Factor for J1 Base Year Junction Operational Performance Base Year Road Link Capacity Performance Existing Public Transport Service Utilization Average Arrival Rate and Servicing Time on Deerhill Bay Bus Layby Existing Bus Layby Assessment Base Year Footpath (LOS) Performance AADT at Counting Stations Extracted from Annual Traffic Census - 2017 to 2021 2019-Based TPEDM Tai Po District
Table 4.3	Hong Kong Population Projection Forecast
Table 4.4	Projections of Population Distribution 2019-2029
Table 4.5	Summary of Annual Growth Rates Obtained from Various Sources from 2018 to 2036
Table 4.6	Summary of Planned / Committed Developments in the Vicinity
Table 5.1	Estimated Trip Generations of the Proposed Development based on HKSKH information
Table 5.2	Adopted Modal Split
Table 5.3	Pedestrian Trip Generations of Po Leung Kuk Wong Chuk Hang Elderly Home
Table 5.4	Pedestrian Trip Generations of Proposed Development (CoC Home)
Table 5.5	Vehicular Traffic Generations of Po Leung Kuk Wong Chuk Hang Elderly Home
Table 5.6	Vehicular Traffic Generations of Proposed Development (CoC Home)
Table 5.7	Pedestrian Trip Generations of Proposed Development (SCCC)
Table 5.8	Pedestrian Trip Generations breakdown of Proposed Development (SCCC)
Table 5.9	Vehicular Trip Generations of Proposed Development (SCCC)
Table 5.10	Pedestrian Trip Generations of Proposed Development (CCC)
Table 5.11	Pedestrian Trip Generations breakdown of Proposed Development (CCC)
Table 5.12	Vehicular Trip Generations of Proposed Development (CCC)
Table 5.13	Pedestrian Trip Generations of Proposed Development (Staff)
Table 5.14	Pedestrian Trip Generations breakdown of Proposed Development (Staff)
Table 5.15	Vehicular Trip Generations of Proposed Development (Staff)
Table 5.16	Vehicular Trip Generations Summary
Table 5.17	2033 Junction Performance (Reference and Design Scenarios)
Table 5.18	2033 Reference and Design Road Link Capacity Performance
Table 5.19	Pedestrian Trip Generations by Public Transport (Bus)
Table 5.20	Pedestrian Trip Generations by Public Transport (GMB)
Table 5.21	2033 Design Public Transport Utilization
Table 5.22	Additional GMB Services Required
Table 5.23	Arrival Rate and Servicing Time on Deerhill Bay Bus Layby in Year 2033
Table 5.24	2033 Design Bus Layby Assessment
Table 5.25	2033 Critical Footpath Sections Performance

FIGURES

Figure 2.1	Location of the Subject Site
Figure 2.2	Proposed Permanent Vehicular Access at Tai Po Road-Tai Po Kau
Figure 2.3	G/F Layout Plan
Figure 2.4	B1/F Layout Plan
Figure 2.5	Sightline Assessment
Figure 3.1	Public Transport Facilities in the Vicinity
Figure 3.2	Locations of Concerned Road Junctions and Road Links
Figure 3.3	2021 Observed Traffic Flows
Figure 3.4	2022 Observed Pedestrian Flows
Figure 4.1	Distribution of Adjacent Planned/ Committed Development Traffic Flows
Figure 4.2	2033 Reference Traffic Flows
Figure 5.1	Distribution of Development Traffic Flows
Figure 5.2	2033 Design Traffic Flows
Figure 5.3	2033 Reference and Design Pedestrian Flows

APPENDICES

Appendix A	Swept Path Analysis
Appendix B	Traffic Assessment for the junction of Tai Po Road - Tai Po Kau and Access Road to Deerhill Bay (J1) during 2022 Observed School Peak Period
Appendix C	Junction Performance Calculation Sheets
Appendix D	Definitions of Level of Service
Appendix E	Site Survey Photo Records

ANNEX

Annex A Response to Transport Department's Comment

1. INTRODUCTION

1.1 Background

- 1.1.1 Hong Kong Sheng Kung Hui Welfare Council Limited (HKSKHWCL) plans to develop a new Social Service complex building at the Remaining Portion of Taxlord Lot No. T77 in D.D.34. Tai Po.
- 1.1.2 Ho Wang SPB Limited (HWSPB) is commissioned as the traffic consultant to undertake a Traffic Impact Assessment (TIA) study for this development study for the Planning Application.
- 1.1.3 The TIA report has been submitted to TD in March 2023 and comments were received from TD in August 2023. This revised TIA report has incorporated with TD's comments and the Response to Comment are enclosed in **Annex A**.

1.2 Objectives of the Report

- 1.2.1 The objectives of this traffic study are listed as follows:
 - (a) Conduct vehicle traffic and pedestrian count surveys and bus layby utilization survey to record existing traffic conditions during the critical AM and PM peak periods within the study area;
 - (b) Review and recommend on the car park and loading/unloading provisions for this Social Services Complex based on HKPSG's requirement/end-user operational need;
 - (c) Review the existing traffic and transport facilities in the vicinity of the development site;
 - (d) Estimated the development traffic generations and attractions;
 - (e) Prepare the traffic forecast for the reference and design years (i.e. 3 years after the operation of the development);
 - (f) Assess the traffic impacts of the proposed development traffic on the adjacent road network in the design year;
 - (g) Recommend improvement measures, if necessary, to mitigate the traffic impact on the local road junction/network.

1.3 Report Structure

- 1.3.1 After this introductory chapter describes the background and study objective, this Traffic Review Report focus on the presentation and elaboration of the following key areas:
 - Chapter 2 describes the proposed site location, proposed development schedule, vehicular and pedestrian access arrangements; and the proposed internal transport facilities provisions;
 - Chapter 3 describes the baseline traffic surveys and the existing traffic conditions based on the latest traffic surveys;
 - Chapter 4 presents the traffic forecast methodology and future traffic conditions;
 - Chapter 5 estimates the development traffic generations and evaluates the traffic impacts within the study area in the Reference and Design scenarios;
 - Chapter 6 estimates and review the number of construction traffic generations and the traffic impacts within the study area in design year 2033; and
 - Chapter 7 summarizes and concludes the study findings of this TIA study.

2. THE PROPOSED DEVELOPMENT

2.1 Site Location

- 2.1.1 The existing site is a vacant site in at Tai Po Kau which is bounded by Po Leung Kuk Tin Ka Ping Millennium Primary School to the north, Japanese International School to the west, Tai Po Road-Tai Po Kau to the south and a vacant site to the east.
- 2.1.2 The subject site location is shown in **Figure 2.1**.

2.2 Proposed Development Schedule

2.2.1 According to latest Schedule of Accommodation (SoA), this complex (with 12,534m² GFA approx.) will comprise of a variety of social services and facilities as summarized in Table 2.1.

Table 2.1 Proposed Development Schedule

Facilities	Places/ GFA
Special Child Care Centre (SCCC)	100 Places
Care and Attention Home providing Continuum of Care (CoC Home)	289 Places
Foster Care Services (FCS) and Agency-based Enhancement of Professional Staff Support Service (ABPSS)	95.4m ² GFA
Staff Training Unit (STU)	85 Places
Child Care Centre (CCC)	65 Places

2.3 Permanent Vehicular Access

- 2.3.1 A 7.3m wide vehicular access is proposed at Tai Po Road-Tai Po Kau as shown in Figure 2.2.
- 2.3.2 The section of the central divider close to the proposed vehicular access will be demolished for the provision of a designated northbound right-turn lane for the ingress development traffic.
- 2.3.3 All development ingress/egress vehicles can operate in all traffic movements.
- 2.3.4 Currently there is a lamp post (ID: EB4724) outside the proposed run-in/out. This lamp post will need to be relocated to a suitable location by Works Agent. The Works Agent for undertaking the works will need to be agreed with relevant Government Departments at later stage.

2.4 Temporary Vehicular Access during Construction Stage

2.4.1 The temporary construction vehicular access is proposed at Tai Po Road-Tai Po Kau. (i.e. similar to permanent vehicular access). All construction vehicles will be operated via a left-in and left-out traffic arrangement.

2.5 Internal Transport Facilities

- 2.5.1 There are no specific car parking and loading/unloading requirements for this type of development based on the latest Hong Kong Planning Standards and Guidelines (HKPSG). With regards to Item 1(b) in Statement of Intent of Table 11 "Parking Standard" of HKPSG Chapter 8, "The provision of parking for community facilities should generally be limited to operation requirements. Users of community facilities will generally be expected to use public transport or public car parks."
- 2.5.2 The car parking and loading/unloading provisions advised by Social Welfare Department have been confirmed by End-users to fulfil their operational need.
- 2.5.3 The parking and loading/unloading provisions are summarized in **Table 2.2**.

Table 2.2 Car Parking and Loading/ Unloading Provisions of the Subject Site

Туре	Vehicle Type	Floor	Dimension	Number	
SCCC	Coach (48-seater)	G/F	12m x 3.5m	2	
CoC	Light Bus		8m x 3m	2	
Coc	Private Car	B1/F	5m x 2.5m	6 ⁽¹⁾	
	Private Car (Accessible)	B1/F	5m x 3.5m	1	
	Motorcycle	B1/F	2.4m x 1m	2	
	LGV	B1/F	7m x 3.5m	1	
Share-used	HGV L/UL bay	G/F	12m x 3.5m	1	
	Ambulance Bay		9m x 3m	1	
	Private car/ Taxi Drop-off/ pick-up bay	G/F	5m x 2.5m	1	

Note: (1) As advised by SWD, ratio of 1 parking spaces for every 50 residential service places is adopted. (i.e. 289 CoC places / 50 = 6 parking spaces)

- 2.5.4 Based on the existing SKH reference sites, the parking demand for visitors/ users is minimal. 1 accessible parking space will be provided for visitor parking and share-used among the whole development in accordance with BFA codes.
- 2.5.5 All visitors are advised to commute by public transport and the users will be travelled by the NEATS (Non-Emergency Ambulance Transfer Service) provided by operator.
- 2.5.6 The proposed parking and loading/ unloading provisions can satisfy the operation need for the subject site.
- 2.5.7 The parking layouts for G/F and B1/F are presented in **Figure 2.3** and **Figure 2.4** respectively.

2.6 Swept Path Analysis

2.6.1 Computerized swept path simulation analysis demonstrated there is adequate manoeuvring space for the design vehicle (i.e. 12m coach) and is shown in **Appendix A**.

2.7 Sightline assessment

2.7.1 The sightline assessment (presented in **Figure 2.5**) shows that a minimum 60m clear sightline can be provided without obstruction (over 1.05m height) placed within visibility splay.

3. EXISTING TRAFFIC CONDITIONS

3.1 Existing Road Network

- 3.1.1 Tai Po Road Tai Po Kau is a rural road running in a north-south direction connecting Shatin and Tai Po districts. This road also connects with between Tai Po Road Ma Liu Shui and Tai Po Road Yuen Chai Tsai.
- 3.1.2 The details of the road network are also shown in Figure 2.1.

3.2 Public Transport Facilities

3.2.1 There are numerous franchised buses and green minibus services along Tai Po Road. The details of the nearby public transport services are summarised in **Table 3.1**.

Table 3.1 Public Transport Services along Tai Po Road - Tai Po Kau

Public Transport Services	Tai Po Road - Tai Po Kau
Franchised Buses	72, 72A, 73A, 74A
GMB	28K, 28S

3.2.2 The locations of the nearby public transport facilities are shown in Figure 3.1.

3.3 Baseline Traffic Surveys

- 3.3.1 In order to review the existing traffic conditions, vehicular traffic count survey and public transport utilization survey were carried out on a typical school weekday (under normal school traffic condition without zoom classes and without work from home arrangement) on 22 November 2021 and 20 February 2024 during the AM (07:30-09:30) and PM (17:00-19:00) peak periods.
- 3.3.2 The locations of the concerned road junctions are shown in **Figure 3.2**.
- 3.3.3 The weekday AM and PM Peak hours of the existing local road network are identified as 08:15-09:15 and 17:45-18:45 hours respectively.
- 3.3.4 The 2021 observed traffic flows for these concerned junctions and road links are presented in **Figure 3.3**.
- 3.3.5 It is observed that the peak hour traffic flows at the junction of Tai Po Road Tai Po Kau and Access Road to Deerhill Bay (J1) is different from local road network due to traffic generated by nearby schools.
- 3.3.6 Surge factors are adopted for J1 to reflect traffic survey during school peak periods (AM and PM peak). The adopted surge factors are presented in **Table 3.2** and its derivation is enclosed in **Appendix B**.

Table 3.2 Adopted Traffic Surge Factor for J1

Period	Traffic Surge Factor
AM	1.14
PM	1.19

3.4 Junction Capacity Performance in Year 2021 and 2024

3.4.1 Based on the 2021 and 2024 surveyed traffic flows, the junction capacity analysis for the 4 concerned junctions during the worst AM and PM peak periods have been assessed and the results of the junction capacity analysis are summarised in **Table 3.3**.

Table 3.3 Base Year Junction Operational Performance

No.	Junction	Junction Type ⁽¹⁾	Weekday		
140.	Sufficient	Type(1)	AM Peak	PM Peak	
J1 ⁽²⁾	Tai Po Road - Tai Po Kau / Access Road to Deerhill Bay	Priority (DFC)	0.26	0.08	
J2	Tai Po Road - Ma Liu Shui / Kau To Shan Road	Roundabout (DFC)	0.53	0.56	
J3	Tai Po Road - Sha Tin / Tsun King Road	Roundabout (DFC)	0.47	0.52	
J4	Tai Po Road - Tai Po Kau / Lookout Link	Priority (DFC)	0.24	0.12	
J5 ⁽³⁾	Tai Po Road - Ma Liu Shui/ Lai Ping Road	Roundabout (DFC)	0.55	0.51	

Note:

- (1) DFC Design flow/ Capacity ratio for priority junction and roundabout.
- (2) Surge factor (i.e. 1.14 and 1.19 for AM and PM peak) is adopted for J1.
- (3) Junction surveyed in 2024.
- 3.4.2 The results of the junction performance enclosed in **Appendix C** show that all 5 concerned junctions are currently operating with ample junction capacity.

3.5 Base Year Road Link Performance

3.5.1 The road link performance for the 4 concerned road links during the AM and PM peak periods have been assessed and the results of the road link analysis are presented in Table 3.4.

Table 3.4 Base Year Road Link Capacity Performance

	Road Link			AM F	Peak	PM Peak	
No.		Direction	Capacity ⁽¹⁾ (veh/hr)	Flows (veh/ hr)	V/C	Flows (veh/ hr)	V/C
L1	Tai Po Road - Ma Liu Shui	SB	2600	806	0.31	237	0.09
"	(near University Avenue)	NB	2600	269	0.10	437	0.17
L2	Tai Po Road - Sha Tin (Slip Road from Tai Po Road - Ma Liu Shui Southbound to Shatin Racecourse)	SB	1300	496	0.38	499	0.38
L3	Tai Po Road - Sha Tin (Slip Road from Tai Po Road - Sha Tin Northbound to Tsun King Road Roundabout)	NB	2600	316	0.12	299	0.12
L4	Tai Po Road - Ma Liu Shui	SB	1400	685	0.49	466	0.33
L4	(near Lai Ping Road) ⁽²⁾		1400	446	0.32	390	0.28

Note (1): Design flow is reference to Table 2.4.11, Chapter 2.4, Volume 2, TPDM.

(2): Road Link surveyed in 2024.

3.5.2 The road link assessment presented in Table 3.3 shows that all 4 concerned road links can operate with adequate capacity during the AM and PM peak hours.

3.6 **Existing Public Transport Utilization**

3.6.1 The public transport utilization assessment at Tai Po Road - Tai Po Kau bus layby is also conducted and the results are presented in **Table 3.5**.

Existing Public Transport Service Utilization Table 3.5

		AM Peak			PM Peak		
Public Transport	Total Passenger Capacity (pax/hr)	Total Passenger Demand (pax/hr)	Occupancy (Demand /Capacity)	Total Passenger Capacity (pax/hr)	Total Passenger Demand (pax/hr)	Occupancy (Demand /Capacity)	
Franchised Buses							
(72, 72A, 73A, 74A)	1237	209	0.17	1008	503	0.50	
(To Shatin Direction)							
Franchised Buses							
(72, 72A, 73A, 74A)	870	128	0.15	886	284	0.32	
(To Tai Po Direction)							
GMB (28K, 28S)	182	147	0.81	150	133	0.89	
(To Shatin Direction)	102	147	0.81	130	133	0.09	
GMB (28K, 28S)	163	117	0.72	150	85	0.57	
(To Tai Po Direction)	103	117	0.72	130	63	0.37	

3.6.2 The results shows that there is adequate public transport capacity.

3.7 **Bus Layby Assessment**

3.7.1 In order to assess the adequacy existing bus layby (Deerhill Bay Bus Stop) at Tai Po Road - Tai Po Kau near subject site, multi-servers queuing (M/M/N) model was applied as follows:

$\rho =$ Average Arrival Rate Per Hour (λ) Average Service Rate (µ)

with the probability of having no vehicles in the system is:

$$P_0 = \frac{1}{\sum_{i=0}^{N-1} \frac{\rho^i}{i!} + \frac{\rho^N}{N! \; (1 - \frac{\rho}{N})}}$$

and the probability of having n vehicles in the system is:
$$\begin{array}{ll} P_n = \frac{\rho^n p_0}{n!} & P_n = \frac{\rho^n p_0}{n!} & (\text{for } n \leq N) \\ P_n = \frac{\rho^n p_0}{N^{n-N}N!} & P_n = \frac{\rho^n p_0}{N^{n-N}N!} & (\text{for} > N) \end{array}$$

3.7.2 The average arrival rate and average servicing time for the existing bus layby (Deerhill Bay Bus Stop) are summarized in **Table 3.6**.

Table 3.6 Average Arrival Rate and Servicing Time on Deerhill Bay Bus Layby

Location	Arrival Rate(veh/hr)		Average Servicing Time (min/veh) ⁽¹⁾		
	AM Peak	PM Peak	AM Peak	PM Peak	
Deerhill Bay Bus Stop (NB)	16	14	0.32	0.36	
Deerhill Bay Bus Stop (SB)	11	11	0.41	0.34	

Note (1): Estimated based on boarding time of 4 second/passenger, alighting time of 3 second/passenger and 10 second/vehicle for manoeuvring of buses/GMBs.

3.7.3 Bus layby assessment is summarized in **Table 3.7**.

Table 3.7 Existing Bus Layby Assessment

Location		АМ	Peak	PM Peak	
	Location		P(0)+P(1)	P_n	P(0)+P(1)
Deerhill Bay Bus	n=0 (no vehicle at layby)	0.9144	0.9926	0.9169	0.9931
Stop (NB)	n=1 (1 vehicle at layby)	0.0782	0.7720	0.0762	0.7731
Deerhill Bay Bus	n=0 (no vehicle at layby)	0.9256	0.9945	0.9375	0.9961
Bay Bus Stop (SB)	n=1 (1 vehicle at layby)	0.0689	0.7943	0.0586	0.7901

3.7.4 The assessment in above table concluded that the chances for more than 2 vehicles simultaneously using the bus layby is less than 1% and there is no capacity problem at the existing bus layby.

3.8 Existing Footpath Performance

- 3.8.1 Pedestrian count survey was carried out at the concerned footpath on a typical school weekday (<u>under normal school traffic condition without zoom classes and without work from home arrangement</u>) on 11 May 2022 during the AM (07:30-09:30), and PM (17:00-19:00) peak periods.
- 3.8.2 The footpath assessment (Level of Service (LOS)) is based on the guidelines stipulated in Chapter 10.5.2, Volume 6, TPDM. The definitions of Level of Service (LOS) for pedestrian footpath are enclosed in **Appendix D**.
- 3.8.3 Based on the 2022 surveyed pedestrian flows, the performance for the critical footpath sections leading to the subject site and bus stop is tabulated in **Table 3.8**.

Flow Rate Level of Actual Effective **Pedestrian Flows** Width Peak No. Location Width (Ped/min/ Service (ped/15 mins) (LOS) (m) (m) m) Tai Po Road - Tai 26 1.93 AM Α Р1 1.9 0.9 Po Kau (outside PΜ 14 1.04 Α Subject Site) Tai Po Road - Tai 48 3.56 ΑM Α Po Kau (outside P2 Japanese 1.9 0.9 International PΜ 24 1.78 Α School) Pedestrian Crossing AM 12 0.23 Α across Tai Po Road -Р3 4.5 3.5 PΜ 13 0.25 Α Tai Po Kau Tai Po Road - Tai AM 12 0.8 Α Po Kau (near Tai Po P4 Kau Gas Station 2 1 northbound bus РΜ 13 0.87 Α stop)

Table 3.8 Base Year Footpath (LOS) Performance

Note (1): Effective Width = Actual width - 1m.

- 3.8.4 The results of the above assessment demonstrated that the concerned footpaths can operate with Level of Service "A" and with adequate capacity.
- 3.8.5 The 2022 observed pedestrian flows for concerned footpath are presented in **Figure** 3.4.

3.9 Existing Queue Length Survey

- 3.9.1 Queue length survey was carried out at the junction of Tai Po Road- Tai Po Kau and access road to Deerhill Bay on a typical school weekday (<u>under normal school traffic condition without zoom classes and without work from home arrangement</u>) on 22 November 2021 during the AM (07:30-09:30) and PM (17:00-19:00) peak periods.
- 3.9.2 During the survey period, no traffic queue was observed as shown in the photo records enclosed in **Appendix E**.

4. FUTURE TRAFFIC CONDITION

4.1 Design Year

4.1.1 Based on the latest programme, the proposed development is scheduled to be completed and in operation by 2030. Hence a design year 2033 [i.e. 3 years after the operation year] is adopted for the traffic assessment purpose.

4.2 Traffic Forecast Approach

- 4.2.1 Since there are no major changes in the local road network, traffic forecast by growth factor method is adopted to estimate the future traffic flows (i.e. from base year 2021 to design year 2033) based on the following data:
 - Historical trend data from the Annual Traffic Census (ATC) by Transport Department
 - 2019-based Territorial Population and Employment Data Matrix (TPEDM) planning data by Planning Department's website
 - Hong Kong Population Distribution 2020-2069 by Census and Statistics Department
 - Projections of Population Distribution 2019-2029 by Planning Department
- 4.2.2 The historical traffic data of the surrounding road links based on the Annual Average Daily Traffic (AADT) are extracted from the "Annual Traffic Census" report issued by Transport Department. The relevant AADT data from 2016 to 2020 are summarized in Table 4.1.

Table 4.1 AADT at Counting Stations Extracted from Annual Traffic Census - 2017 to 2021

Stn No.	Road	From	То	2017	2018	2019	2020	2021
6652	Yau King Lane	Lookout Link	End	1,320	1,160	1,350	1,330	1,430
6210	Tai Po Road - Ma Liu Shui	Entrance to Chung Chi College, CUHK	Yuen Chau Tsai	7,650	7,640	7,970	8,260	7,650
5820	Tai Po Road - Shatin	Tolo Highway	Entrance to Chung Chi College, CUHK	13,840	13,830	13,040	14,450	15,230
	All Stations Total			22,810	22,630	22,360	24,040	24,310
	Average Growth Rate (% p. a.)			_	-0.79%	-1.19%	7.51%	1.12%
Ove	Overall Growth Rate (% p. a.) from 2016 to 2020			_		+1.66%		

4.2.3 The population and employment data of the Planning Data District are extracted from the 2019-based TPEDM issued by Planning Department's website. The estimated growth rate from 2021 to 2026 in Tai Po District is summarized in **Table 4.2**.

Table 4.2 2019-Based TPEDM Tai Po District

Annual Growth from		Tai Po				
2021 to 2026 (%)	2019	2021	2026			
Total Population	250,050	285,850	263 800			
Total Employment	86,750	83,700	78 550			
Total Population & Employment	336,800	369,550	342 350			
Average Annual Growt	h Rate of Total	2019-2021	2021-2026			
Population & Emp	oloyment	4.75%	-1.52%			

4.2.4 The relevant growth rates from year 2022 to 2046 are extracted from the Hong Kong Population Projection by Census and Statistics Department and are presented in **Table 4.3**.

Table 4.3 Hong Kong Population Projection Forecast

Hong Kong Population Projections 2022-2046 by	Year						
Census and Statistics Department	2021	2026	2031		2036		
Population (Thousands)	7413.1	7596.8	7820.2		8022.4		
Average Annual Growth	2021-2026	2026	-2031		2031-2036		
Rate of Total Population	0.5%	0.	6%		0.5%		

4.2.5 The Projections of Population Distribution 2019-2029 by Planning Department and the relevant growth rate are summarised in **Table 4.4**.

 Table 4.4
 Projections of Population Distribution 2019-2029

Projections of Population Distribution 2019-2029 by Planning Department						
	(Tai Po District)					
Year 2021 2026 2029						
Projections of Population	323,200	353,800	348,000			
Average Annual		2021-2026	2026-2029			
Population Growth (%)		+1.83%	-0.55%			

4.2.6 The annual growth rates obtained from various sources from 2016 to 2033 are summarised in **Table 4.5**.

Table 4.5 Summary of Annual Growth Rates Obtained from Various Sources from 2018 to 2036

Information	Planning Horizon District		Annual Growth Rates			
IIIIOIIIIatioii			2018-2022	2021-2026	2026-2031	2031-2036
Annual Traffic Census		Tai Po	+1.66 %			
2019-based Territorial Population and Employment Data Matrix by Planning Department	2026	Tai Po		-1.52%		
Projections of Population Distribution 2019-2029 by Planning Department	2029	Tai Po		+1.83%	-0.55% ⁽¹⁾	
Hong Kong Population Projections 2022-2046 by Census and Statistics Department	2046	Territorial- wide		+0.5%	+0.6%	+0.5%

Note: (1) Annual growth rates from 2026 to 2029.

4.2.7 For conservative analysis, the background traffic from 2021 to 2026, 2026 to 2031, and 2031 to 2033 will adopt various growth rates of +1.83%, +0.6% and +0.5% p.a. respectively for the traffic forecast.

4.3 Planned and Committed Developments in the Vicinity

- 4.3.1 The development traffic generated by the adjacent planned developments in the vicinity have also been taken into consideration in the reference case scenario for this TIA study.
- 4.3.2 The planned/committed developments approved by the Town Planning Board in the Vicinity are summarised in **Table 4.6**.

Table 4.6 Summary of Planned / Committed Developments in the Vicinity

Application	Planned Development	Completion Year	Development			eneration	ons Peak
No.	,	P - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Scale	Gen.	Att.	Gen.	Att.
S/TP/28 ⁽¹⁾	Proposed Public and Private Housing Development [at Tsiu Hang]	Unknown	2,198 Flats	158	94	63	82
A/TP/656 ⁽¹⁾ (TPTL 244)	Proposed Housing Development with Proposed Social Welfare Facility (Residential Care Home for the Elderly) [at Yau King Lane]	Phase 1: 2023 Phase 2A: 2024 Phase 2B: 2024	Phase 1: 576 Phase 2A: 607 Phase 2B: 688	136	81	55	71
S/TP/28 ⁽¹⁾	Proposed Amendments to the Approved Tai Po Outline Zoning Plan No. S/TP/28 (Item A) [at To Yuen Tung]	2032-2033	GFA: 24,128m ²	150	102	71	96
Tai Po Town Lot 230 ⁽²⁾	Proposed Residential Development at Tai Po Town Lot No.230, Tai Po Kau, Tai Po	N.A.	GFA: 24,128m ² (approx.102 house)	34	27	29	42
Tai Po Town Lot 231	Proposed Residential Development at Tai Po Town Lot No.231, Tai Po Kau, Tai Po	N.A.	GFA: 5,450m ² 23 House	8	7	7	10
Tai Po Town Lot 234 ⁽²⁾	Proposed Residential Development at Tai Po Town Lot No. 234	N.A.	GFA: 21,003m ² (approx.89 house)	29	24	26	37
Tai Po Town Lot 241 ⁽²⁾	Proposed Residential Development	N.A.	GFA: 9357m ² (approx.40 house)	14	11	12	17
N (4)	Total						355

Note: (1) Traffic Generations are estimated based on trip rate of Private Housing: High Density (Average Flat Size 60m²) in TPDM Vol 1 Chap 3 Appendix, the trip rate is presented as below

Development	Average Flat Size	AM I	Peak	PM F	Peak
Development	Average Flat Size	Gen.	Att.	Gen.	Att.
Private Housing	60m ²	0.0718	0.0425	0.0256	0.0370

(2) Traffic Generations are estimated based on trip rate of Private Housing: Low-Density (Average Flat Size $300m^2$) in TDPM Vol 1 Chap 3 Appendix, the flat number are based on GFA/house ratio in TPTL Lot 231. The trip rate is presented as below

Development	velopment Average Flat Size AM Peak		PM I	Peak	
Development	Average Flat 312e	Gen.	Att.	Gen.	Att.
Private Housing	300m ²	0.3252	0.2609	0.2835	0.4074

4.3.3 The distribution of the adjacent planned/ committed developments traffic is presented in **Figure 4.1**.

4.4 Reference Year Traffic Forecasts

- 4.4.1 The 2033 Reference traffic flows are derived as follows:
 - = 2021 Observed Traffic Flows x $(1+1.83\%)^{(2026-2021)}$ x $(1+0.4\%)^{(2029-2026)}$ x $(1+0.3\%)^{(2033-2029)}$
 - + Adjacent Planned/Committed Developments Traffic
- 4.4.2 The 2033 reference traffic flows (i.e. without proposed development traffic) are shown in **Figure 4.2**.

Ho Wang SPB Limited (J1652) (Report 1 - Issue 3) Page 13

Page 14

5. TRAFFIC IMPACT ASSESSMENT

5.1 Proposed Development Traffic Generations

- 5.1.1 The trip generations of this proposed development are estimated based different types of services.
- 5.1.2 For Continuum of Care Home, in-house trip rates from similar sites are adopted.
- 5.1.3 As there are no suitable reference sites for the other services (SCCC, CCC, SGH, FCS, ABPSS and STU) with similar site characteristics, the trip generations are estimated based on information provided by HKSKH (e.g. users, visitors and future staff number) and are summarised in **Table 5.1**.

Table 5.1 Estimated Trip Generations of the Proposed Development based on HKSKH information

Proposed GIC Facilities	CoC Home	SCCC ⁽¹⁾	CCC ⁽¹⁾	STU	SGH	FCS and ABPSS
Places	289	100	65	85 places	30 places	
Estimated Pedestrian Trip Generations for User/ Visitor	In-house Trip Rate	AM: 46 (IN); 26 (OUT) PM: 26 (IN); 46 (OUT)	AM: 150 (IN); 85 (OUT) PM: 85 (IN); 150 (OUT)	AM: 85 (IN); 0 (OUT) PM: 0 (IN); 85 (OUT)		1
Future Staff Number & Shifting Hour	80 (07:00-15:00) 80 (13:30-21:30) 40 (21:30-07:00)	25	16		20 (10:00-20:00)	10

Note: (1) the number of pedestrian trip generations for user/visitor is advised by HKSKH.

Adopted Modal Split

5.1.4 The modal split provided by Sheng Kung Hui from similar reference sites (i.e. SKH Nursing Home and HKSKH Li Ka Shing Care & Attention Home for the Elderly) are adopted for the assessment for the vehicular trip generations and are presented in Table 5.9.

Table 5.2 Adopted Modal Split

Transport Mode	Modal Split (%)				
Transport Mode	User/Visitors ⁽¹⁾	Staff			
Private Car	4%	0%			
Taxi	5%	8%			
Bus	82%	64%			
GMB	9%	28%			
Total	100%	100%			

Note: (1) Percentage excluding users commuting by NEATS.

Pedestrian Trip Generations of CoC Home

- 5.1.5 The in-house trip rate survey at similar site (Po Leung Kuk Wong Chuk Hang Elderly Home) are adopted for this Continuum of Care Home.
- 5.1.6 The pedestrian count survey result and the pedestrian trip rates of this reference site are presented in **Table 5.3**.

Table 5.3 Pedestrian Trip Generations of Po Leung Kuk Wong Chuk Hang Elderly Home

Po Leung Kuk Wong Chuk	AM I	Peak	PM Peak		
Hang Elderly Home (Total: 165 places)	Generation	Attraction	Generation	Attraction	
Pedestrian Trips (ped/hr)	4	13	39	3	
Pedestrian Trip Rate (ped/hr/place)	0.0242	0.0788	0.2364	0.0182	

5.1.7 By applying the trip rates shown in Table 5.4, the estimated pedestrian trip generations for proposed development (CoC Home) are presented in **Table 5.4**.

Table 5.4 Pedestrian Trip Generations of Proposed Development (CoC Home)

Proposed Development -	AM I	Peak	PM Peak		
CoC Home (289 places)	Generation	Attraction	Generation	Attraction	
Estimated Pedestrian Trips (ped/hr)	8	23	69	6	

Vehicular Trip Generations of Continuum of Care Home (CoC Home)

5.1.8 Vehicular count survey was also conducted at the reference site and the result and the vehicular trip rates are summarized in **Table 5.5**.

Table 5.5 Vehicular Traffic Generations of Po Leung Kuk Wong Chuk Hang Elderly Home

Po Leung Kuk Wong Chuk Hang Elderly Home	AM P	eak	PM Peak		
(Total: 165 places)	Generation	Attraction	Generation	Attraction	
Vehicular Trips (pcu/hr)	9	7	3	5	
Vehicle Trip Rate (pcu/hr/place)	0.0545	0.0424	0.0182	0.0303	

5.1.9 By adopting the trip rate in Table 5.5, the estimated vehicular traffic generations for proposed development (CoC Home) are presented in **Table 5.6**.

Table 5.6 Vehicular Traffic Generations of Proposed Development (CoC Home)

Proposed Development - CoC Home	AM F	Peak	PM Peak	
(289 places)	Generation	Attraction	Generation	Attraction
Estimated Vehicular Trips (pcu/hr)	16	13	6	9

Pedestrian Trip Generations of Special Child Care Centre (SCCC)

- 5.1.10 The pedestrian trip generations of SCCC are estimated based on information provided by the users and SWD operation requirement (i.e. minimum 80% of users is required to commute by NEATS).
- 5.1.11 The pedestrian trip generations are summarised in **Table 5.7** and trip generations breakdown by different transport modes are summarised in **Table 5.8**.

Table 5.7 Pedestrian Trip Generations of Proposed Development (SCCC)

Proposed Development -	AM I	Peak	PM Peak	
SCCC (100 places)	Generation	Attraction	Generation	Attraction
Estimated Pedestrian Trips (ped/hr) ⁽¹⁾	26	46	46	26

Note: (1) Pedestrian trip generations are advised by users.

(2) 80 users will travel by NEATS.

Table 5.8 Pedestrian Trip Generations breakdown of Proposed Development (SCCC)

Proposed Development - SCCC (100 places)	Model Calit	AM Peak	(ped/hr)	PM Peak(ped/hr)	
	Modal Split	Generation	Attraction	Generation	Attraction
Private Car	4%	1	2	2	1
Taxi	5%	1	2	2	1
Bus	82%	21	37	37	21
GMB	9%	3	5	5	3
Sub-Total ⁽¹⁾	100%	26	46	46	26

Note: (1) Number of users <u>not</u> commuting by NEATS.

5.1.12 The proposed development of SCCC service will generate and attract a total of 72 pedestrian trips (26+46) in AM peak hour and 72 pedestrian trips (46+26) in PM peak hour.

Vehicular Trip Generations of Special Child Care Centre (SCCC)

5.1.13 Based on the pedestrian trip generations by different transport modes, the vehicular generations are summarised in **Table 5.9**.

Table 5.9 Vehicular Trip Generations of Proposed Development (SCCC)

Proposed Development SCCC (100 places) ⁽¹⁾	Occupancy	· - P(II		AM Peak (pcu/hr)(3)		pcu/hr) (3)
	Rate (ped/veh)	factor	Gen.	Att.	Gen.	Att.
Private Car	1	1	2 ⁽²⁾	2	2	2 ⁽²⁾
Taxi	1	1	2 ⁽²⁾	2	2	2 ⁽²⁾
NEATS	48	2	0	4	4	0
Total			4	8	8	4

Note:

- (1) The vehicular trip generations for Bus and GMB will be discussed in section 5.5.
- (2) Maximum of vehicle trips (gen./att.) [Table 5.8] for private car and taxi is taken for conservative.
- (3) Vehicular trip generation/Attraction = pedestrian trip generation/attraction [Table 5.8] / occupancy rate x PCU factor.
- 5.1.14 The proposed development of SCCC service will generate and attract a total of 12 pcu (4+8) in AM peak hour and 12 pcu (8+4) in PM peak hour.

Pedestrian Trip Generations of Child Care Centre (CCC)

5.1.15 The future pedestrian trip generations of CCC (65 places) advised by user are summarised in **Table 5.10**.

Table 5.10 Pedestrian Trip Generations of Proposed Development (CCC)

Proposed Development -	AM F	Peak	PM Peak	
CCC (65 places)	Generation	Attraction	Generation	Attraction
Estimated Pedestrian Trips (ped/hr)	85	150	150	85

5.1.16 By adopting the modal split in Table 5.2, the pedestrian trip generations breakdown by different transport modes are tabulated in **Table 5.11**.

Table 5.11 Pedestrian Trip Generations breakdown of Proposed Development (CCC)

Proposed Development -	Modal	AM Peak	(ped/hr)	PM Peak (ped/hr)	
CCC (65 places)	Split	Generation	Attraction	Generation	Attraction
Private Car	4%	3	6	6	3
Taxi	5%	4	7	7	4
Bus	82%	70	123	123	70
GMB	9 %	8	14	14	8
Total	100%	85	150	150	85

Vehicular Trip Generations of Child Care Centre (CCC)

5.1.17 Based on the pedestrian trip generations presented in Table 5.11, the vehicular generations of CCC are summarised in **Table 5.12**.

Table 5.12 Vehicular Trip Generations of Proposed Development (CCC)

Proposed Development -	Occupancy Rate	PCU	AM Peak ((pcu/hr) ⁽³⁾	PM Peak (pcu/hr) ⁽³⁾
CCC (65 places) ⁽¹⁾	(ped/veh)	factor	Generation	Attraction	Generation	Attraction
Private Car	1	1	6 ⁽²⁾	6	6	6 ⁽²⁾
Taxi	1	1	7 ⁽²⁾	7	7	7 ⁽²⁾
Total			13	13	13	13

Note:

- (1) The vehicular trip generations for Bus and GMB will be discussed in section 5.5.
- (2) Maximum of vehicle trips (gen./att.) for private car and taxi is taken for conservative.
- (3) Vehicular trip generation/ \overline{A} ttraction = pedestrian trip generation/attraction [Table 5.11] / occupancy rate x PCU factor.
- 5.1.18 The proposed development of CCC service will generate and attract a total of 26 pcu (13+13) in AM peak hour and 26 pcu (13+13) in PM peak hour.

<u>Pedestrian Trip Generations of Staff Training Units (STU) and Small Group Home</u> (SGH)

- 5.1.19 As advised by user, the users/staff of Staff Training Units (STU) and Small Group Home (SGH) will not commute during concern AM and PM peak hours.
- 5.1.20 Hence, there is no vehicular and pedestrian trip generations during AM and PM peak hours for STU and SGH services.

Pedestrian Trip Generations of Staff (all services)

5.1.21 The staff trip generations for all services are based on the information advised by users (Table 5.1) and summarised in **Table 5.13**.

Table 5.13 Pedestrian Trip Generations of Proposed Development (Staff)

	Pedestrian Trip Generations (ped/hr)					
Services	AM F	Peak	PM Peak			
	Generation	Attraction	Generation	Attraction		
CoC Home	40	80	0	0		
SCCC	0	25	25	0		
CCC	0	16	16	0		
STU	0	0	0	0		
SGH	0	0	0	0		
FCS & ABPSS	0	10	10	0		
Total	40	131	51	0		

Page 19

5.1.22 The proposed development will generate and attract a total of 171 pedestrian trips (40+131) in the AM peak hour and 51 pedestrian trips (51+0) in the PM peak hour.

Vehicular Trip Generations of Staff (all services)

5.1.23 By adopting the modal split presented in Table 5.2, the pedestrian trip generations by different transport modes is presented in **Table 5.14**.

Table 5.14 Pedestrian Trip Generations breakdown of Proposed Development (Staff)

Proposed		Pede	strian Trip Ge	nerations (pe	d/hr)
Development -	Modal Split	AM F	Peak	PM Peak	
Staff	Spire	Generation	Attraction	Generation	Attraction
Private Car	0%	0	0	0	0
Taxi	8%	3	10	4	0
Bus	64%	26	84	33	0
GMB	28%	11	37	14	0
Total		40	131	51	0

5.1.24 Based on the pedestrian generations shown Table 5.14, the vehicular trip generations by different transport modes are tabulated in **Table 5.15**.

Table 5.15 Vehicular Trip Generations of Proposed Development (Staff)

Proposed Development -			AM Peak (pcu/hr) ⁽³⁾		PM Peak (pcu/hr) (3)	
Staff ⁽¹⁾	Rate (ped/veh)	factor	Generation	Attraction	Generation	Attraction
Private Car	1	1	0	0	0	0
Taxi	1	1	10 ⁽²⁾	10	4	4 ⁽²⁾
Total			10	10	4	4

Note:

- (1) The vehicular trip generations for Bus and GMB will be discussed in section 5.5
- (2) Maximum of vehicle trips (in/out) for private car and taxi is taken for conservative.
- (3) Vehicular trip generation/Attraction = pedestrian trip generation/attraction [Table 5.14] / occupancy rate x PCU factor.
- 5.1.25 The proposed development (staff) will generate and attract a total of 20 pcu (10+10) in the AM peak hour and 8 pcu (4+4) in the PM peak hour.

Trip Generations Summary

5.1.26 The summary of pedestrian and vehicular trip generations of the development site are tabulated in **Table 5.16**.

Table 5.16 Vehicular Trip Generations Summary

Development	AM Peak	(pcu/hr)	PM Peak (pcu/hr)		
Development	Generation	Attraction	Generation	Attraction	
CoC Home (289 places)	Table 5.6	16	13	6	9
SCCC (100 places)	Table 5.9	4	8	8	4
CCC (65 places)	Table 5.12	13	13	13	13
STU (85 places)		0	0	0	0
SGH (30 places)		0	0	0	0
Staff (All Service) Table 5.15		10	10	4	4
Total	43	44	31	30	

- 5.1.27 The proposed development will generate and attract a total of 87 pcu (43+44) in the AM peak hour and 61 pcu (31+30) in the PM peak hour.
- 5.1.28 The distribution of the development traffic based on survey pattern is presented in **Figure 5.1**.

5.2 2033 Design Traffic Flows

- 5.2.1 The 2033 Design traffic flows are calculated as follows:
 - 2033 Design Flows = 2033 Reference Flows + Development Traffic Flows
- 5.2.2 The 2033 design traffic flows (i.e. with proposed development traffic) are shown in Figures 5.2.

5.3 Junction Capacity Performance for 2033 Reference and Design Year

5.3.1 The junction capacity for the 6 concerned junctions in the vicinity of the site has been assessed for both reference and design scenarios in year 2033 and the results of the junction performance are shown in **Table 5.17**.

Table 5.17 2033 Junction Performance (Reference and Design Scenarios)

No.	Junction	Junction Type	2033 Reference (Without Proposed Development)		2033 Design (With Proposed Development)	
		- 77-	AM Peak	PM Peak	AM Peak	PM Peak
J1 ⁽¹⁾	Tai Po Road - Tai Po Kau / Access Road to Deerhill Bay	Priority (DFC)	0.34	0.10	0.34	0.10
J2	Tai Po Road - Ma Liu Shui/ Kau To Shan Road	Roundabout (DFC)	0.66	0.67	0.67	0.68
J3	Tai Po Road - Sha Tin / Tsun King Road	Roundabout (DFC)	0.57	0.63	0.57	0.63
J4	Tai Po Road - Tai Po Kau / Lookout Link	Priority (DFC)	0.45	0.19	0.46	0.19
J5	Tai Po Road - Ma Liu Shui/ Lai Ping Road	Roundabout (DFC)	0.69	0.64	0.70	0.65
J6	Tai Po Road - Tai Po Kau / Access Road to Development Site	Priority (DFC)	1		0.14	0.07

Note: DFC - Design flow/ Capacity ratio for priority junction and roundabout.

5.3.2 The junction capacity analysis enclosed in **Appendix C** show that all the 6 concerned junctions will operate with adequate junction capacity under 2033 reference and design scenarios.

5.4 Road Link Performance for 2033 Reference and Design Year

5.4.1 The road link performance for the 4 concerned road links during the AM and PM peak periods in 2033 Reference and Design scenario have been assessed and the results are presented in **Table 5.18**.

⁽¹⁾ Surge factor adopted for J1 for AM and PM period, details please refer to Appendix B.

2033 Reference 2033 Design **AM Peak** PM Peak AM Peak PM Peak Road Link Direction No. Flows Flows Flows Flows (veh/ V/C (veh/ V/C (veh/ V/C (veh/ V/C hr) hr) hr) hr) SB 981 0.38 322 0.12 999 0.38 0.13 335 Tai Po Road - Ma Liu Shui L1 (near University Avenue) NB 359 0.14 553 0.21 376 0.14 564 0.22 Tai Po Road - Sha Tin (Slip Road from Tai Po Road -L2 0.47 SB 0.49 0.50 633 613 650 626 0.48 Ma Liu Shui Southbound to Shatin Racecourse) Tai Po Road - Sha Tin (Slip Road from Tai Po Road -L3 Sha Tin Northbound to NB 0.14 340 0.13 365 0.14 360 344 0.13 Tsun King Road Roundabout) 849 0.61 570 0.41 0.62 SB 866 583 0.42 Tai Po Road - Ma Liu Shui L4

Table 5.18 2033 Reference and Design Road Link Capacity Performance

Note (1): Design flow is reference to Table 2.4.11, Chapter 2.4, Volume 2, TPDM.

NB

5.4.2 The results of the road link assessment shows that all 4 concern road links will operate with adequate capacity during the AM and PM peak hours in both 2033 Reference and Design Year scenarios.

557

0.40

496

0.35

574

0.41

507

0.36

5.5 Public Transport Utilization Assessment

(near Lai Ping Road)

5.5.1 The public transport demand generated (Bus and GMB) by the proposed development are summarized in **Table 5.19** and **Table 5.20** respectively.

Table 5.19 Pedestrian Trip Generations by Public Transport (Bus)

Development		AM Peak	(ped/hr)	PM Peak (ped/hr)		
		Generation	Attraction	Generation	Attraction	
CoC Home		7	21	62	5	
SCCC	Table 5.8	21	37	37	21	
CCC	Table 5.11	70	123	123	70	
STU		0	0	0	0	
SGH		0	0	0	0	
Staff	Table 5.14	26	84	33	0	
Total		124	265	255	96	

Development		AM Peak	(ped/hr)	PM Peak (ped/hr)		
		Generation Attracti		Generation	Attraction	
CoC Home		1	2	7	1	
SCCC	Table 5.8	3	5	5	3	
CCC	Table 5.11	8	14	14	8	
STU		0	0	0	0	
SGH		0	0	0	0	
Staff	Table 5.14	11	37	14	0	
Total		23	58	40	12	

Table 5.20 Pedestrian Trip Generations by Public Transport (GMB)

5.5.2 The public transport utilization for 2033 Design scenarios is presented in **Table 5.21**.

Table 5.21 2033 Design Public Transport Utilization

		AM Peak		PM Peak			
Public Transport	Total Passenger Capacity (pax/hr)	Passenger Capacity Passenger Demand (Capacity)		Total Total Passenger Capacity Demand (pax/hr) (pax/hr) ⁽¹⁾		Occupancy (Demand /Capacity)	
Franchised Buses							
(72, 72A, 73A, 74A)	1237	393	0.32	1008	666	0.66	
(To Shatin Direction)							
Franchised Buses							
(72, 72A, 73A, 74A)	870	250	0.29	870	471	0.54	
(To Tai Po Direction)							
GMB (28K, 28S)	182	200	1.10	150	165	1.10	
(To Shatin Direction)	102	200	1.10	130	105	1.10	
GMB (28K, 28S)	163	154	0.95	163	119	0.73	
(To Tai Po Direction)	105		0.73	103	117	0.73	

Note: (1) 2033 Design Public Transport Demand = 2021 Demand x Growth Factor + Development demand.

- 5.5.3 The assessment shows that there is ample capacity for the franchised buses service to accommodate the additional passenger demands generated by proposed development site except GMB service (Shatin bound) during AM and PM Peak period.
- 5.5.4 Additional GMB services (Shatin bound) are recommended to accommodate the additional passenger demands generated by the proposed development. The required additional GMB services are presented in **Table 5.22**.

Table 5.22 Additional GMB Services Required

	AM Peak				PM Peak			
Additional GMB Services Required	Total Passenger Capacity (pax/hr)	Total Passenger Demand (pax/hr)	Deficiency (pax/hr)	Additional GMB required^	Total Passenger Capacity (pax/hr)	Total Passenger Demand (pax/hr)	Deficiency (pax/hr)	Additional GMB required^
	[A]	[B]	[C] =[B]-[A]	[D] =[C]/19	[A]	[B]	[C]= [B]-[A]	[D]= [C]/19
GMB (28K, 28S) (To Shatin Direction)	182	200	18	1	150	165	15	1

Note: ^It is assumed that the GMB capacity is 19 passengers.

5.5.5 An additional 1 GMB service (to Shatin direction) [i.e. 1.5 pcu] is required for AM and PM Peak period respectively according to the above analysis results.

5.6 2033 Design Bus Layby Assessment

5.6.1 The arrival rate for the bus layby (Deerhill Bay Bus Stop) incorporated the public transport utilization assessment result (Table 5.21 and Table 5.22) is estimated and presented in **Table 5.23**.

Table 5.23 Arrival Rate and Servicing Time on Deerhill Bay Bus Layby in Year 2033

Location	Arrival Ra	te(veh/hr)	Average Servicing Time (min/veh)		
Location	AM Peak PM Peak		AM Peak	PM Peak	
Deerhill Bay Bus Stop (NB)	16	14	0.78	1.22	
Deerhill Bay Bus Stop (SB) ⁽¹⁾	12	12	1.23	1.00	

Noted: (1) Arrival rate for SB bus stop: 11 veh/hr (table 3.6) + 1 veh (table 5.22) = 12 veh/hr

5.6.2 The 2033 bus layby assessment is reviewed and the results are summarized in **Table** 5.24.

Table 5.24 2033 Design Bus Layby Assessment

	Location		Design Peak	2033 Design PM Peak	
Location		Pn	Sum of P(n)	Pn	Sum of P(n)
Deerhill	n=0 (no vehicle at layby)	0.7920		0.7153	
Bay Bus	n=1 (1 vehicle at layby)	e at layby) 0.1647 0.9910		0.2036	0.9769
Stop (NB)	n=2 (2 vehicles at layby)	0.0343		0.0580	
Deerhill	n=0 (no vehicle at layby)	0.7540		0.8000	
Bay Bus Stop (SB)	n=1 (1 vehicle at layby)	0.1855	0.9851	0.1600	0.9920
	n=2 (2 vehicles at layby)	0.0456		0.0320	

5.6.3 The assessment shown in above table concluded that the chances for more than 2 vehicles simultaneously using the bus layby is less than 3%. The result showed that there will be no capacity problem at the bus layby under 2033 design scenario.

5.7 2033 Reference and Design Year Footpath Performance Assessment

5.7.1 Based on the additional pedestrian flows the performance for the critical footpath sections under 2033 reference and design scenarios are reviewed and the results are tabulated in **Table 5.25**.

Table 5.25 2033 Critical Footpath Sections Performance

			2	.033 Referenc	e	2033 Design			
No.	Location	Peak	Pedestrian Flows (Ped/ 15 mins)	Flow Rate (Ped/min/ m)	Level of Service (LOS)	Pedestrian Flows (Ped/ 15 mins)	Flow Rate (Ped/min/ m)	Level of Service (LOS)	
P1	Tai Po Road - Tai	AM	29	2.15	Α	147	10.89	Α	
"	Po Kau (outside Subject Site)	PM	16	1.19	Α	117	8.67	Α	
D2	Tai Po Road - Tai Po Kau (outside P2 Japanese International School)	AM	53	3.93	А	171	12.67	А	
FZ		РМ	27	2.00	А	128	9.48	Α	
Р3	Pedestrian Crossing across Tai Po Road -	AM	14	0.27	Α	132	2.51	Α	
P3	Tai Po Kau	PM	15	0.29	Α	116	2.21	Α	
D4	Tai Po Road - Tai Po Kau (near Tai Po P4 Kau Gas Station northbound bus stop)	AM	14	0.93	А	132	8.80	А	
F4		РМ	15	1.00	А	116	7.73	А	

^{5.7.2} The results of the above assessment demonstrated that the concerned footpaths will operate with adequate capacity under 2033 reference and design scenarios.

5.7.3 The 2033 reference and design pedestrian flows are presented in Figures 5.3.

6. CONSTRUCTION TRAFFIC IMPACT ASSESSMENT

6.1 Traffic Review for Construction Vehicles

- 6.1.1 According to the preliminary information provided by AP, it is estimated that there will be approximately 5 heavy good vehicles enter and leave the subject site hourly (equivalent to 12.5 pcu/hr) on each working day.
- 6.1.2 As the demand of the construction vehicles is relatively low, the traffic impact generated is considered negligible to the local road network.
- 6.1.3 The following traffic management measures are recommended to minimize the construction vehicles traffic impact to the general public:
 - (1) A maximum of 5 construction vehicles are limited within one hour period;
 - (2) The construction vehicles are restricted during local peak period and school peak period to avoid construction vehicle impact to the local road network and the school activities in the vicinity.
 - (3) Traffic wardens will be deployed at Access Road to Deerhill Bay to closely monitor the traffic situation and manage the ingress/egress of delivery vehicles. The traffic warden will also ensure smooth operation of the delivery vehicles and pedestrian safety.

7. SUMMARY AND CONCLUSION

7.1 Summary

Background

- 7.1.1 The subject site is located at Tai Po Kau area which is bounded by Po Leung Kuk Tin Ka Ping Millennium Primary School to the north, Japanese International School to the west, Tai Po Road-Tai Po Kau to the south and a vacant site to the east.
- 7.1.2 The development site will provide 1 block of Social Services Complex and is anticipated to be completed by 2030 for Special Child Care Centre (SCCC), Care and Attention Home providing Continuum of Care (CoC Home), Small Group Home (SGH), Foster Care Services (FCS) and Agency-based Enhancement of Professional Staff Support Service (ABPSS), Staff Training Unit (STU) and Child Care Centre (CCC) facilities.

Proposed Parking Provisions and Vehicular Access Points

- 7.1.3 A total of 7 private car parking spaces, 2 Light Bus parking spaces, 1 LGV parking spaces and 2 coach spaces and 1 private car bay, 1 ambulance bays, 1 HGV L/UL bay are provided to meet the end-users' operational need.
- 7.1.4 The permanent vehicular access is located at Tai Po Road Tai Po Kau.

Existing Traffic Conditions

- 7.1.5 In order to review the existing traffic conditions, vehicular count surveys and pedestrian count surveys were carried out on a typical school weekday in November 2021, May 2022 and February 2024 during the AM (07:30 to 09:30) and PM (17:00 to 19:00) peak periods respectively.
- 7.1.6 The junction capacity and road link assessment show that the 5 concerned junctions and 4 concerned road links can operate with adequate capacity during the AM and PM peak hours under existing traffic condition.
- 7.1.7 The concerned footpath sections along the subject site and bus layby in the vicinity can operate with no capacity problem during the AM and PM peak periods.

Future Traffic Conditions

- 7.1.8 The proposed development is scheduled to be operated by 2030. Hence a design year 2033 (i.e. 3 years after the completion) is adopted for the TIA study for the traffic impact assessment purpose.
- 7.1.9 A growth factor method is applied to forecast the traffic flows in design year 2033. For conservative analysis, the background traffic annual growth rate from 2021 to 2026, 2026 to 2031 and 2031 to 2033 has adopted a growth rate of +1.83%, +0.6% and +0.5% p.a. respectively.

Traffic Impact Assessment

- 7.1.10 Upon the completion of the development building, this Social Services Complex will generate and attract 87 (two-way) pcu/hr in the AM peak hour and 61 (two-way) pcu/hr in the PM peak hour.
- 7.1.11 The traffic impact assessment demonstrated that all 5 concerned junctions and 4 concerned road links will operate with adequate capacity in the AM and PM Peak periods in year 2033.
- 7.1.12 The assessment shows that the franchised buses service is adequate to accommodate the additional passenger demand generated by proposed development site. However, additional 1 GMB services (To Shatin direction) is required to accommodate the future passenger demands generated by the proposed development in AM and PM peak period respectively.
- 7.1.13 The performance of concerned footpath sections and bus layby will operate with no capacity problem during the peak periods in design year 2033.

Traffic Review for the Construction Vehicles

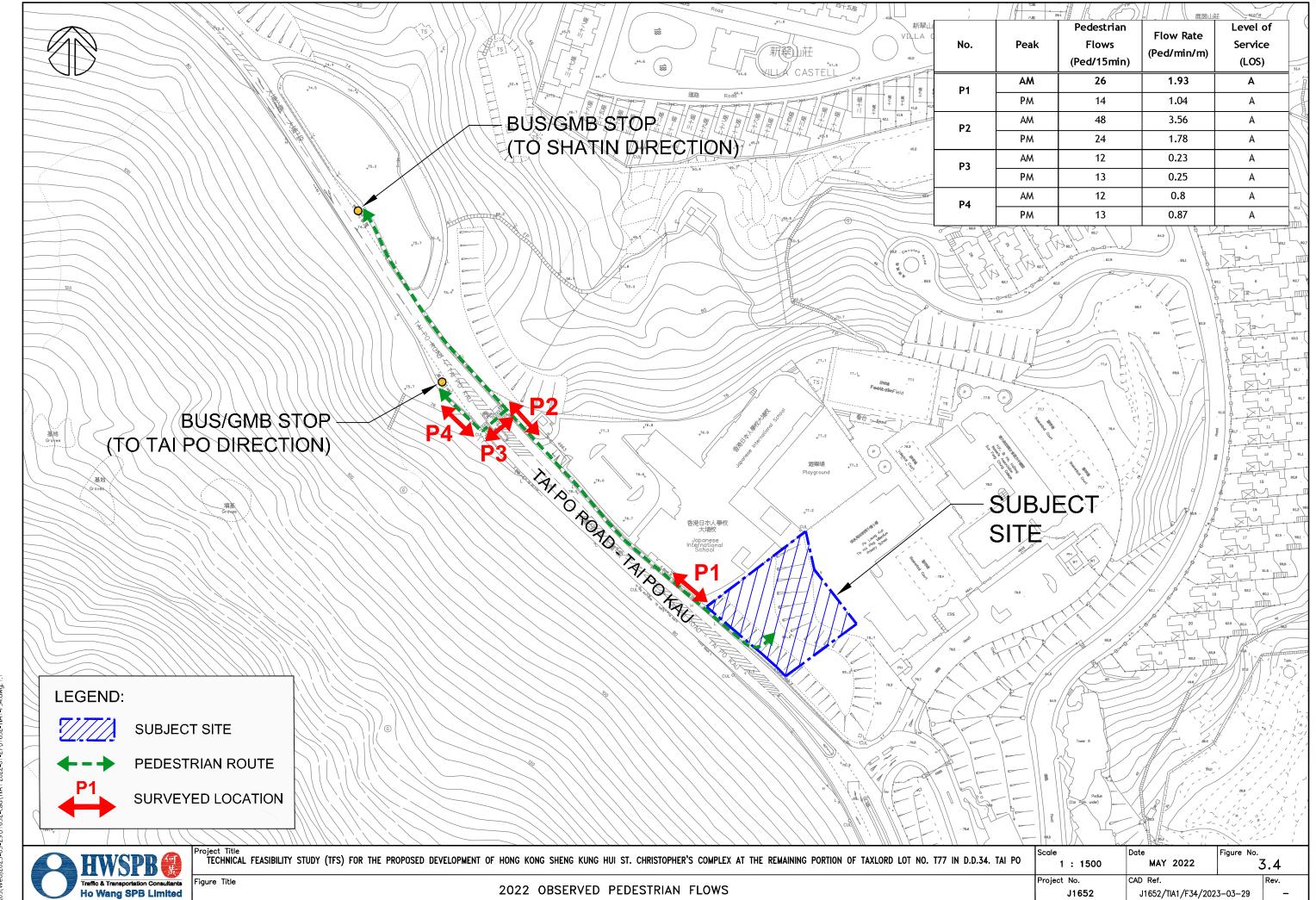
- 7.1.14 According to the AP's preliminary programme, a maximum of 5 construction vehicles will access to the subject site per hour during non-peak in year 2030 (i.e. max 12.5 pcu/hr).
- 7.1.15 These construction traffic are considered negligible and will not affect the local road network.

7.2 Conclusion

- 7.2.1 The findings of this TIA concluded that the proposed Social Services Complex development will not generate with adverse traffic impacts in Design year 2033.
- 7.2.2 The proposed Social Services Complex Development is therefore supported from the traffic engineering point of view.

FIGURES

LOOK OUT LANE


HWSPB Treffic & Transportation Consultants
Ho Wang SPB Limited

Project Title
TECHNICAL FEASIBILITY STUDY (TFS) FOR THE PROPOSED DEVELOPMENT OF HONG KONG SHENG KUNG HUI ST. CHRISTOPHER'S COMPLEX AT THE REMAINING PORTION OF TAXLORD LOT NO. 177 IN D.D.34. TAI PO
N. T. S.

Project No.

CAD Ref.

J1652/TIA1/F33B/2024-02-27
B

LOOK OUT LANE

Ho Wang SPB Limited

Troject Title
TECHNICAL FEASIBILITY STUDY (TFS) FOR THE PROPOSED DEVELOPMENT OF HONG KONG SHENG KUNG HUI ST. CHRISTOPHER'S COMPLEX AT THE REMAINING PORTION OF TAXLORD LOT NO. T77 IN D.D.34. TAI PO

N. T. S.

FEB 2024 4.1

DISTRIBUTION OF ADJACENT PLANNED/COMMITTED DEVELOPMENT TRAFFIC FLOWS

Project No. CAD Ref. J1652 J1652/TIA1/F41B/2024-02-27

TO SECULAR TITLE

TECHNICAL FEASIBILITY STUDY (TFS) FOR THE PROPOSED DEVELOPMENT OF HONG KONG SHENG KUNG HUI ST. CHRISTOPHER'S COMPLEX AT THE REMAINING PORTION OF TAXLORD LOT NO. 177 IN D.D.34. TAI PO

SCALE

N. T. S.

Project No.

J1652

J1652/TIA1/F42B/2024-02-27

B

Project No.

J1652/TIA1/F42B/2024-02-27

B

Project No.

J1652/TIA1/F42B/2024-02-27

B

LOOK OUT LANE

Ho Wang SPB Limited

Troject Title
TECHNICAL FEASIBILITY STUDY (TFS) FOR THE PROPOSED DEVELOPMENT OF HONG KONG SHENG KUNG HUI ST. CHRISTOPHER'S COMPLEX AT THE REMAINING PORTION OF TAXLORD LOT NO. T77 IN D.D.34. TAI PO

N. T. S. Project No.

5.1 FEB 2024

CAD Ref. J1652 J1652/TIA1/F51B/2024-02-27

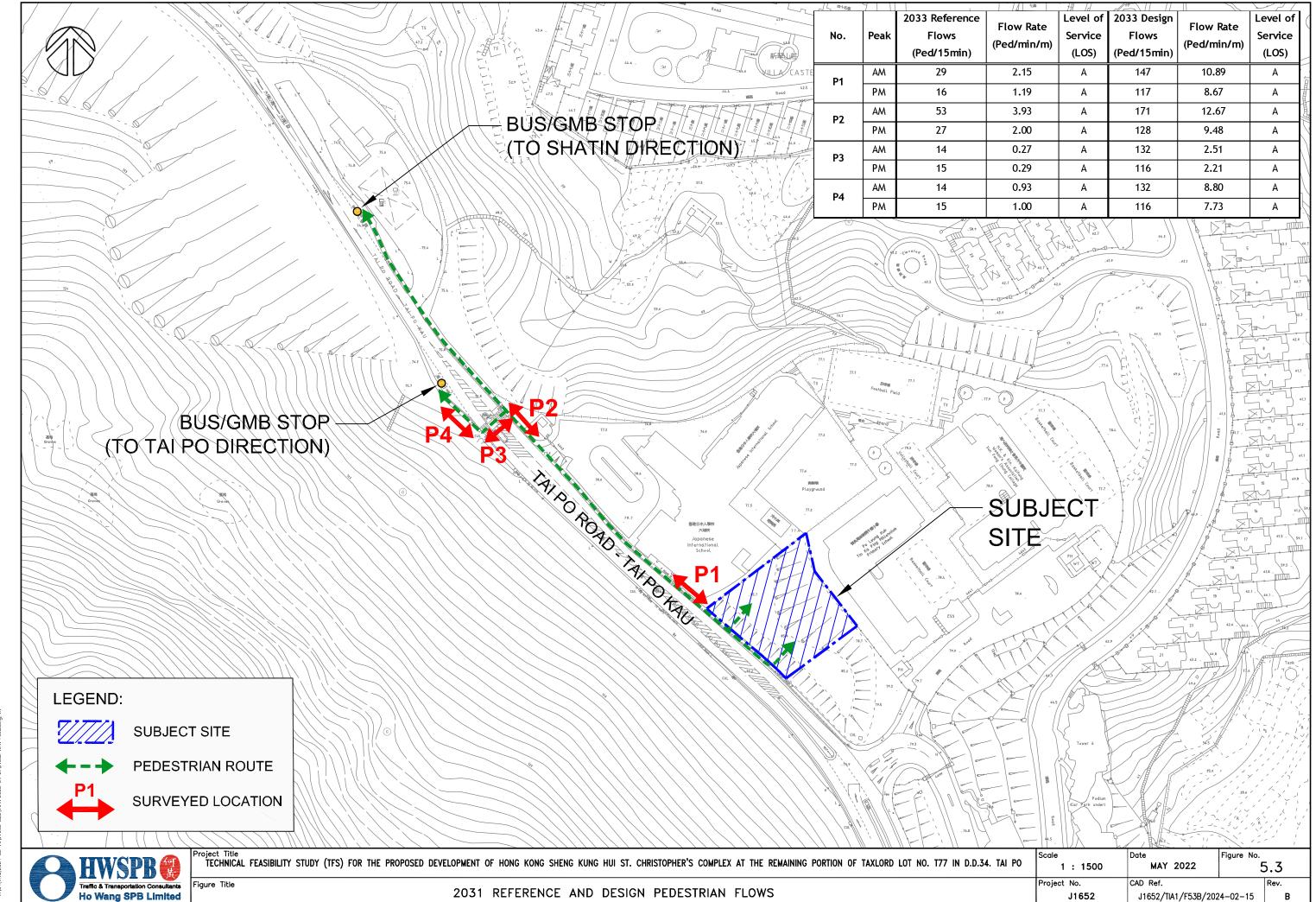
DISTRIBUTION OF DEVELOPMENT TRAFFIC FLOWS

HWSPB Treffic & Transportation Consultants Ho Wang SPB Limited

Project Title
TECHNICAL FEASIBILITY STUDY (TFS) FOR THE PROPOSED DEVELOPMENT OF HONG KONG SHENG KUNG HUI ST. CHRISTOPHER'S COMPLEX AT THE REMAINING PORTION OF TAXLORD LOT NO. 177 IN D.D.34. TAI PO
N. T. S.

Project No.

2033 DESIGN TRAFFIC FLOWS


Project Title

2033 DESIGN TRAFFIC FLOWS

Scale
N. T. S.

Project No.

J1652 J1652/TIA1/F52B/2024-02-27

APPENDIX A

Swept Path Analysis

I:\02(Tue)2024-07-30\J1652-cad\TIA1 2022-01-27\J1652-TIA1-SP2.dwg, 1:1

3(Wed)2024-08-14\J1652-cad\TIA1 2022-01-27\J1652-TIA1-SP5.dwg, User, Adobe PDF - A3

APPENDIX B

Traffic Assessment for The Junction of Tai Po Road – Tai Po Kau And Access Road to Deerhill Bay (J1)
During 2022 Observed School Peak Period

1. APPENDIX B

1.1 Background

- 1.1.1 It is observed that the peak hour traffic flow of the junction of Tai Po Road Tai Po Kau and Access Road to Deerhill Bay (J1) is different from local road network due to traffic generated by nearby schools. An additional traffic review for J1 during school time peak period (AM) is conducted
- 1.2 Additional Traffic Survey
- 1.2.1 In order to review the existing traffic conditions, an additional vehicular traffic count survey was carried out on typical school weekday (under normal school traffic condition without zoom classes and without work from home arrangement) in 14 September 2022 (Wed) during the AM (07:30-09:30) and PM (17:00-19:00) peak periods.
- 1.2.2 The observed peak periods and traffic flows are presented in **Table 1.1** and **Table 1.2** respectively.

Table 1.1 2022 Observed Peak Hour at J1

Period	Local Peak Peak Hour	J1 Peak Hour
AM	08:15 - 09:15	07:45 - 08:45
PM	17:45 - 18:45	17:30 - 18:30

Table 1.2 2022 Observed Vehicular Flow at J1

Period (15 minutes)	Observed Vehicular Flow
0730-0745	262
0745-0800	279
0800-0815	377
0815-0830	364
0830-0845	300
0845-0900	191
0900-0915	202
0915-0930	140
1700-1715	146
1715-1730	155
1730-1745	212
1745-1800	128
1800-1815	184
1815-1830	187
1830-1845	163
1845-1900	139

1.2.3 The survey result shows that the AM peak period at the junction of Tai Po Road - Tai Po Kau and Access Road to Deerhill Bay (J1) is different from the local AM peak period (08:15 - 09:15). It is noted that there is a local traffic surge occurred at around 08:00 - 08:15 and 17:30 - 17:45 hours. A traffic surge factor is derived for conservative assessment as summarized in **Table 1.3**.

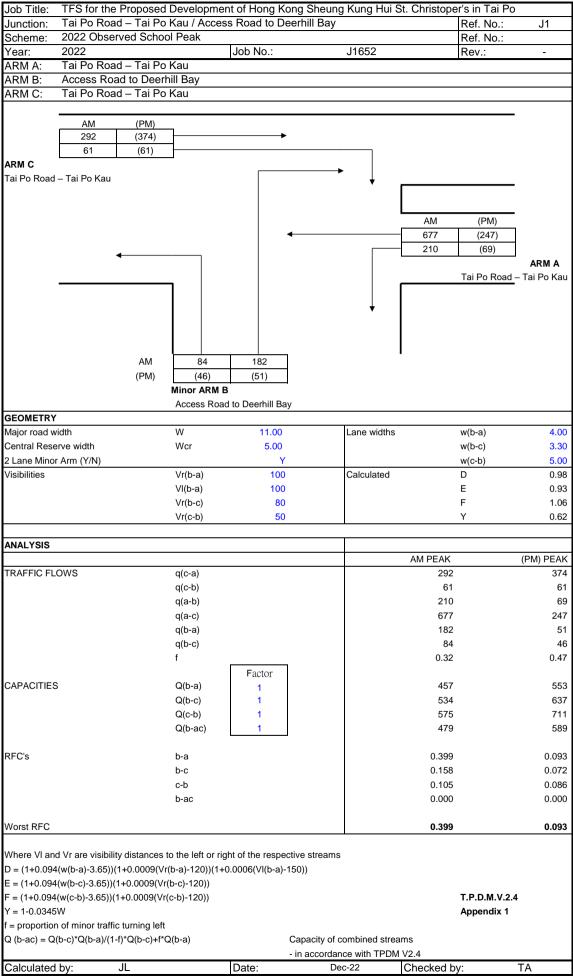
Ho Wang SPB Limited (J1652) Page 1

Table 1.3 Tr	affic Surge	Factor
--------------	-------------	---------------

Period	Observed Peak Hour Flow at J1 [A]	Observed Peak 15-minutes Flow at J1 during J1 Traffic Surge [B]	Surge Factor = ([B]x4)/[A]
AM	1320 (07:45-08:45)	377 (08:00-08:15)	1.14
PM	711 (17:30-18:30)	212 (17:30-18:30)	1.19

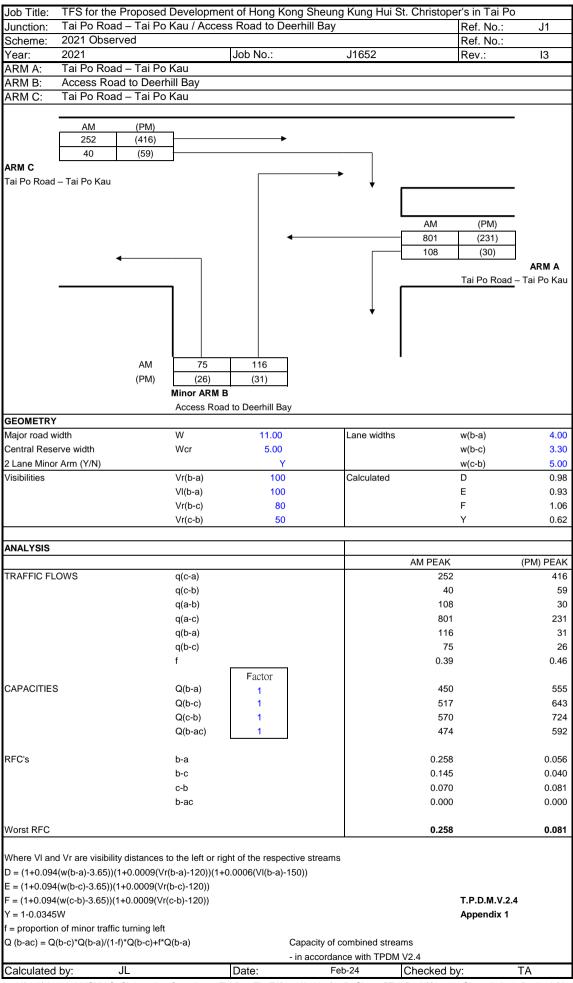
- 1.2.4 Based on the survey result, a surge factor of 1.14 and 1.19 for AM and PM peak is adopted for conversative analysis.
- 1.3 Junction Capacity Performance at AM School Peak Hour
- 1.3.1 Based on the 2022 adjusted peak hour traffic flows, the junction capacity analysis for J1 during the observed school peak period is assessed and the results is presented in **Table 1.3**.

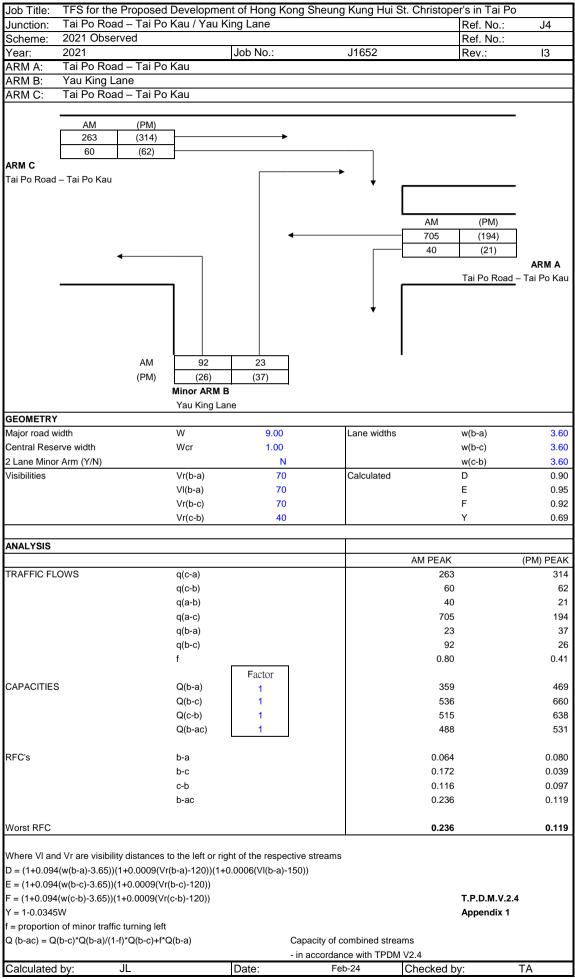
Table 1.4 2022 Junction Operational Performance


No.	Junction	Junction	2022 W	eekday
110.	Suffection	Type	AM Peak	PM Peak
J1	Tai Po Road - Tai Po Kau / Access Road to Deerhill Bay	Priority (DFC)	0.399	0.093

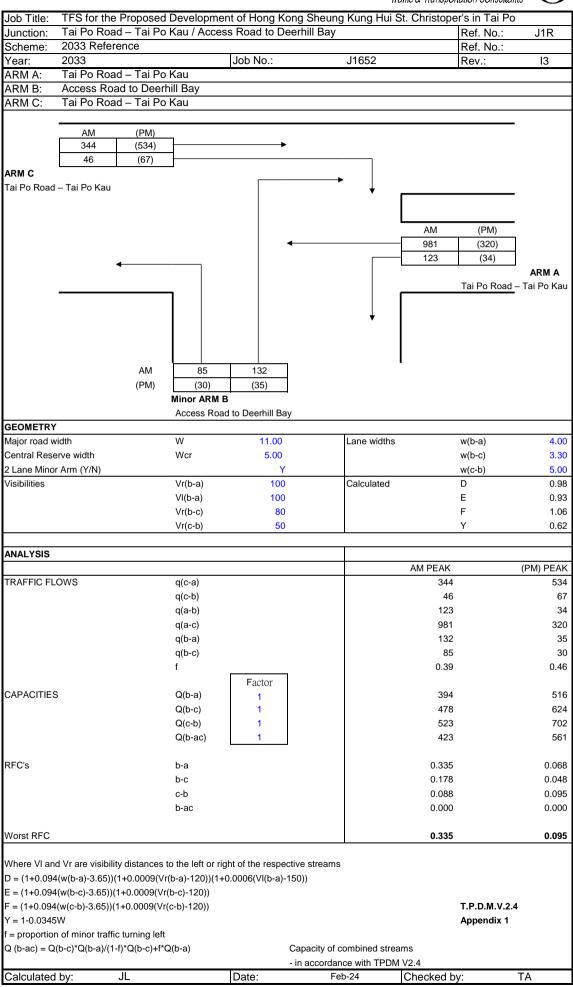
Note: DFC - Design flow/ Capacity ratio for priority junction and roundabout.

1.3.2 The results of the junction performance enclosed show that junction of Tai Po Road - Tai Po Kau/ Access Road to Deerhill Bay (J1) are currently operating with ample junction capacity during school peak period with traffic surge.


Ho Wang SPB Limited (J1652) Page 2

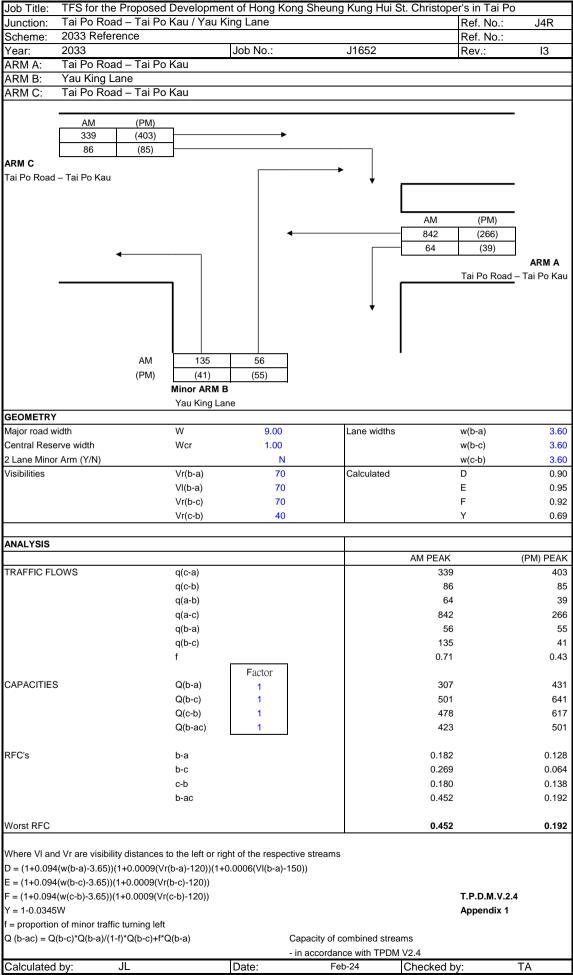

APPENDIX C

JUNCTION PERFORMANCE CALCULATION SHEETS

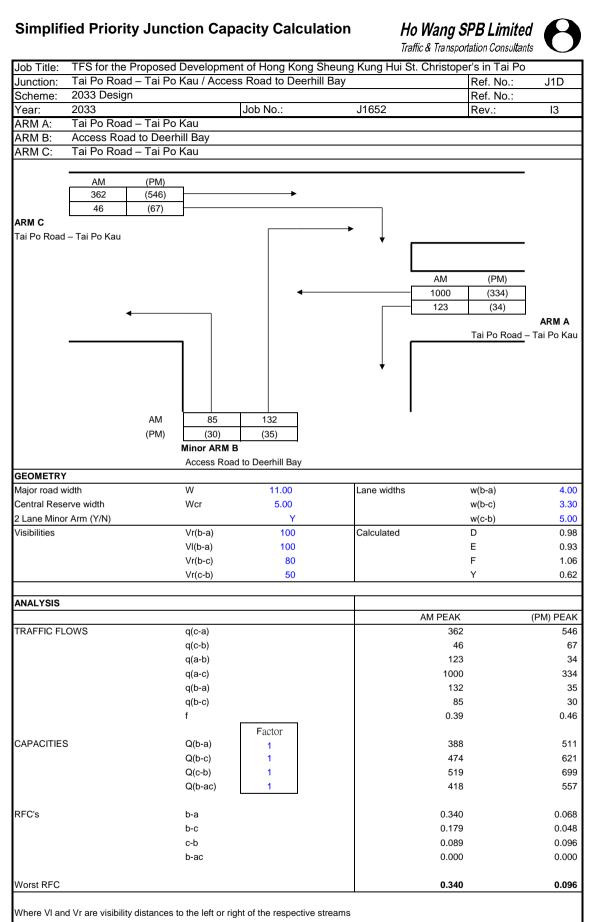


т				opment of H			Kung Hun	St. Christo	pers m	i ai Po
Junction:	Tai Po R	load – Ta	ii Po Kau	ı / Kau To S	Shan R	load		Ref. No.:	•	J2
Scheme:	2021 Ob	served						Ref. No.:		
Year:	2021			Job No.:		J1652		Rev.:		=
AM	PM						_	_		
ARM A:	Tai Po Ro	oad – Tai	Po Kau							
ARM B:	Kau To S	han Road				•		١,		
	Tai Po Ro	oad – Tai	Po Kau			C —	\neg)—	١.	
							Ĭ			
							_			
							E	3		
GEOMETR	RY									
ARM	v	e	L	r	D	Phi	S			
A	6.50	7.80	16	9	36	50	0.13	•		
В	4.80	8.20	18	75	36	46	0.30			
С	5.20	8.00	8	53	36	50	0.56			
		-					-			
AM FLOW	'S							_		
from \setminus to	A	В	C					Circ	Entry	_
A	0	0	0					9	944	
В	0	0	0					873	125	
С	0	0	0					280	912	
PM FLOW	\mathbf{S}									
from \setminus to	A	В	С					Circ	Entry	_
A	0	0	0					11	1106	
В	0	0	0					943	107	
C	0	0	0					213	768	
Q 4 T ====	m* 0								P-0~	
CALCULA		v	3.7	F	<u>.</u>	r	1	$Q_{\rm E}$	RFC	D3.4
ARM	K	X ₂	M	F 2282	t _D	f _c	AM	PM	AM	PM
A	0.87	7.53	0.09	2282	1.46	0.77	1981	1980	0.48	0.56
B C	0.98 0.96	6.92 6.52	0.09 0.09	2096	1.46	0.73 0.71	1430 1709	1380	0.09 0.53	0.08
	0.90	0.32	0.09	1976	1.46	0.71	1/09	1755	0.55	0.44
l							l Cr	itical Arm:	\mathbf{C}	A
							CI	RFC:	0.53	0.56
	ınce with Ti	PDM V2 4						Mr.C.	AM	PM
- In accorda		~111 Y 4.T			Feb-24				LATAT	T TAT

Job Title:	: TFS for t	he Proposed	d Develo	pment of H	long Ko	ng Sheung	Kung Hui	St. Christo	per's in	Гаі Ро
		Road – Sha	a Tin / T	sun King l	Road			Ref. No.:		J3
Scheme:	2021 Ob	served						Ref. No.:		
Year:	2021			Job No.:		J1652		Rev.:		-
AM	PM									
ARM A:	Tai Po Roa	d – Sha Tin						\		
ARM B:		d – Sha Tin				C—		— A		
ARM C:	Tsun King	Road				•	(<i>)</i> ^		
							В			
CEOMET	'DX 7									
GEOMET ARM	Ī		т		D	DL:	C			
	3.30	7.60	L 13.5	40	D 38	Phi 40	S 0.51	•		
A B	7.60	9.40	9.6	12	38	40 60	0.31			
С	7.80	8.20	9.0 1	100	38	30	0.50			
	7.00	0.20	•	100	30	30	0.04			
					•					
AM FLOV	VS									
$from \setminus to$	A	В	C					Circ	Entry	_
A	0	0	0					3	364	_
В	0	0	0					352	944	
С	0	0	0					587	343	
D1 / E1 011										
PM FLOV		D	C					l o	Е.	
from \ to		0	C					Circ 2	Entry	-
A B	0	0	0					231	215 1095	
C	0	0	0					786	324	
	U	U	U					700	324	
CALCUL	ATIONS						($Q_{ m E}$	RFC	
ARM	K	X_2	M	F	$t_{\rm D}$	f_c	AM	PM	AM	PM
A	0.99	5.43	0.11	1645	1.45	0.64	1626	1627	0.22	0.13
В	0.86	8.73	0.11	2644	1.45	0.84	2028	2116	0.47	0.52
С	1.04	7.98	0.11	2417	1.45	0.79	2029	1866	0.17	0.17
								:	_	_
							Cr	ritical Arm:	В	В
								RFC:	0.47	0.52
	lance with T			In (E-1-04		Ch. 1 12		AM	PM
Calculated	_	JL	w of To! I	Date:	Feb-24	101D C:~ -	Checked by		TA	D 1 10 1 110



Job Title:	: Consultanc	y Services fo	or New Tea	ching Researc	ch Comple	x in Tai Po A	Area 39 - The	Chinese Uni	iversity of I	Hong Kong
				ıi / Lai Ping				Ref. No.:		J5
	2024 Ob			•				Ref. No.:		
Year:	2024			Job No.:		J1652		Rev.:		I3
AM	PM									
ARM A:	Tai Po R	oad - Ma L	₋iu Shui							
ARM B:	Lai Ping	Road				C.			- A	
ARM C:	Tai Po R	oad - Ma L	₋iu Shui			U.		Γ		
								I		
GEOMET	RY							В		
ARM	v	e	L	r	D	Phi	S			
A	3.30	4.20	8	30	30	40	0.18	•		
В	4.00	4.20	2	20	30	40	0.16			
С	4.50	4.60	2	100	30	25	0.08			
					•					
AM FLOV	1	В	С					Circ	Entry	
A	A 2	182	455					45	639	_
В	223	0	18					465	241	
C	682	37	8					225	727	
PM FLOV			G						.	
from \ to		В	C 27.1					Circ	Entry	=
A	6	226	354					43	586	
В	201	0	33					383	234	
С	445	20	23					207	488	
CALCUL								Q _E	RFC	
ARM	K	X ₂	M	F	t _D	f _c	AM	PM	AM	PM
A	0.98	3.96	0.05	1200	1.48	0.56	1154	1155	0.55	0.51
В	0.97	4.15	0.05	1258	1.48	0.57	960	1004	0.25	0.23
С	1.06	4.59	0.05	1390	1.48	0.59	1327	1338	0.55	0.36
							Cr	ritical Arm:	A	A
	l	יי בעו אוממי						RFC:	0.55	0.51
	lance with T			ID-4-	Esh 24		Chagl 11		AM TA	PM
Calculated	υy:	JL		Date:	Feb-24		Checked by	y:	TA	


Job Title	: TFS for t	he Propos	ed Develo	pment of H	Iong Ko	ng Sheung	Kung Hui	St. Christo	per's in T	`ai Po
Junction:	: Tai Po F	Road – Ta	ii Po Kau	ı / Kau To	Shan R	oad		Ref. No.:	J2	2R
Scheme:	2033 Re	ference						Ref. No.:		
Year:	2033			Job No.:		J1652		Rev.:		=
AM	PM									
ARM A:	Tai Po R	oad – Tai	Po Kau							
ARM B:	Kau To S	Shan Road				_	- (١.		
ARM C:		oad – Tai				C-	\neg) ——A	1	
THUI C.	1411 011	oud rui	i o itaa							
							<u> </u>			
							_	_		
							ŀ	3		
GEOMET	RY									
ARM	v	e	L	r	D	Phi	S			
A	6.50	7.80	16	9	36	50	0.13			
В	4.80	8.20	18	75	36	46	0.30			
C	5.20	8.00	8	53	36	50	0.56			
-		2.20	- -							
AM FLOV	WS									
$from \setminus to$	A	В	C					Circ	Entry	
A	0	0	0					10	1128	
В	0	0	0					1048	143	
C	0	0	0					319	1112	
PM FLOV	VS							I		
from \ to	A	В	C					Circ	Entry	
A	0	0	0					13	1328	•
В	0	0	0					1143	122	
C	0	0	0					242	924	
CALCUL	ATIONS						($Q_{\rm E}$	RFC	
ARM	K	X_2	M	F	$t_{\rm D}$	f_c	AM	PM	AM	PM
A	0.87	7.53	0.09	2282	1.46	0.77	1981	1979	0.57	0.67
В	0.98	6.92	0.09	2096	1.46	0.73	1305	1237	0.11	0.10
C	0.96	6.52	0.09	1976	1.46	0.71	1682	1735	0.66	0.53
							Cı	ritical Arm:	\mathbf{C}	\mathbf{A}
								RFC:	0.66	0.67
	lance with T	PDM V2.4							AM	PM
Calculated	by:	JL		Date:	Feb-24		Checked by	y:	ГА	

Job Title	: TFS for t	he Propose	d Develo	opment of I	Hong Ko	ng Sheung	Kung Hui	St. Christo	per's in [Гаі Ро
		Road – Sha	a Tin / T	sun King	Road			Ref. No.:	J	3R
Scheme:	2033 Re	ference						Ref. No.:		
Year:	2033			Job No.:		J1652		Rev.:		-
AM	PM									
ARM A:	Tai Po Roa	d – Sha Tin								
ARM B:	Tai Po Roa	d – Sha Tin				C				
ARM C:	Tsun King	Road				С -) —A		
							T			
							В			
							В			
GEOMET	RY									
ARM	v	e	L	r	D	Phi	S			
A	3.30	7.60	13.5	40	38	40	0.51			
В	7.60	9.40	9.6	12	38	60	0.30			
C	7.80	8.20	1	100	38	30	0.64			
AM FLOV	WS									
from \ to	A	В	С					Circ	Entry	_
A	0	0	0					3	415	
В	0	0	0					401	1128	
C	0	0	0					721	391	
PM FLOV	1							i		
from \ to	Α	В	С					Circ	Entry	_
Α	0	0	0					2	245	
В	0	0	0					263	1316	
C	0	0	0					963	369	
CALCIT	ATIONS								DEC	
CALCUL. ARM	ATIONS K	X_2	M	F	f_	f_c	AM	Q _E PM	RFC AM	PM
ARWI	0.99	5.43	0.11	1645	t _D	0.64	1626	1627	0.26	0.15
В	0.99	8.73	0.11	2644	1.45	0.84	1993	2092	0.20	0.13
С	1.04	6.73 7.98	0.11	2417	1.45	0.84	1919	1720	0.37	0.03
	1.04	1.70	0.11	∠ + 1/	1.43	0.17	1717	1720	0.20	0.21
	I						Cr	itical Arm:	В	В
								RFC:	0.57	0.63
- In accord	lance with T	PDM V2.4							AM	PM
Calculated		JL		Date:	Feb-24		Checked by	y: ,	ТА	
	_		. T D.	TI TA\04		0.415 (0) 1				

Job Title:	Consultanc	y Services fo	or New Tea	ching Researc	ch Comple	x in Tai Po A	rea 39 - The	Chinese Uni	iversity of H	long Kong
				ii / Lai Ping				Ref. No.:		SR
Scheme:				•				Ref. No.:		
Year:	2033			Job No.:		J1652		Rev.:	I	3
AM	PM									
ARM A:	Tai Po R	oad - Ma L	iu Shui							
ARM B:	Lai Ping	Road				•		1	٨	
ARM C:	Tai Po R	oad - Ma L	iu Shui			C.		Γ	- A	
								ı		
GEOMET	RY							В		
ARM	v	e	L	r	D	Phi	S			
A	3.30	4.20	8	30	30	40	0.18	=		
В	4.00	4.20	2	20	30	40	0.16			
С	4.50	4.60	2	100	30	25	0.08			
AM FLOV			G					I a	.	
from \ to	A	В	С					Circ	Entry	1
A	2	207	571					51	780	
В	254	0	21					582	275	
С	850	42	9					256	901	
PM FLOW	i		G					 	P.	
from \ to		В	C					Circ	Entry	ī
A	7	258	471					49	736	
В	229	0	38					504	267	
С	556	23	26					236	605	
CALCULA	ATIONS						(Q_{E}	RFC	
ARM	K	\mathbf{X}_2	M	F	$t_{\rm D}$	f_c	AM	PM	AM	PM
A	0.98	3.96	0.05	1200	1.48	0.56	1151	1152	0.68	0.64
В	0.97	4.15	0.05	1258	1.48	0.57	895	938	0.31	0.28
С	1.06	4.59	0.05	1390	1.48	0.59	1307	1320	0.69	0.46
	•						Cı	ritical Arm:	C	A
								RFC:	0.69	0.64
- In accord	ance with T	PDM V2.4							AM	PM
	by:	JL		Date:	Feb-24		Checked by	v.	TA	

D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(VI(b-a)-150))

E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))

F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))

Y = 1-0.0345W

Calculated by:

f = proportion of minor traffic turning left

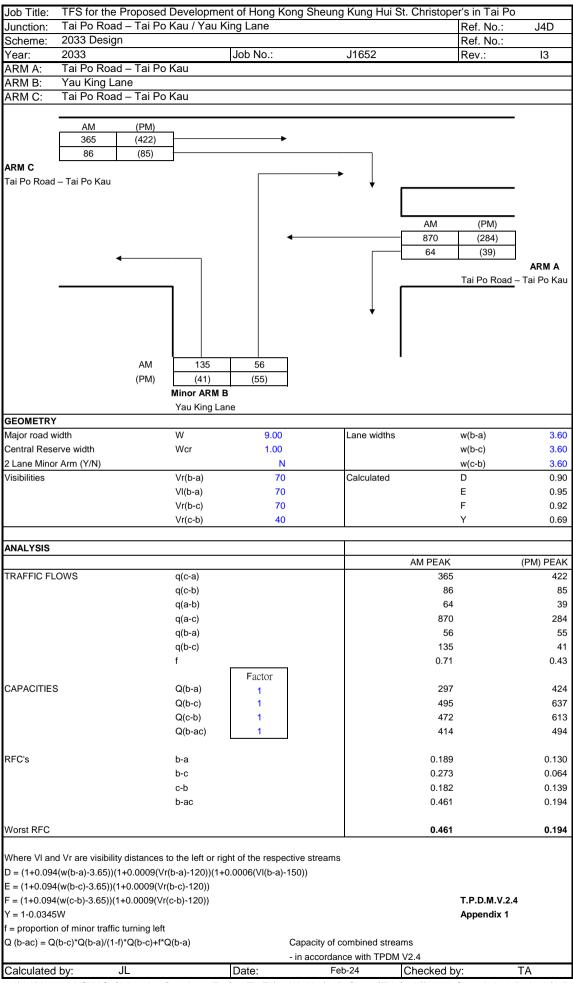
Q (b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)

T.P.D.M.V.2.4 Appendix 1

Checked by:

Capacity of combined streams

- in accordance with TPDM V2.4 Feb-24 Chec

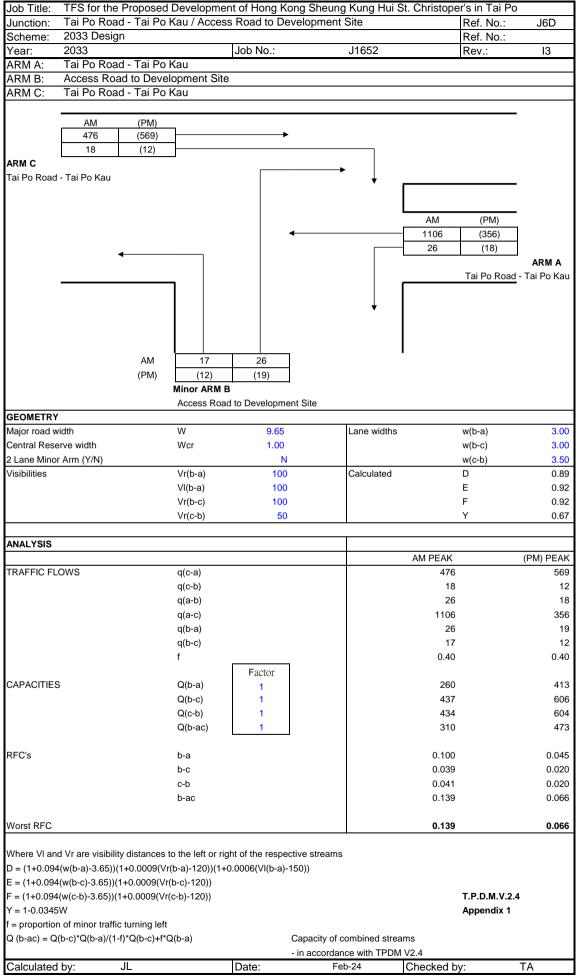

Date:

				opment of H			Kung Hui	St. Christo	per's in T	Гаі Ро
			i Po Kau	ı / Kau To	Shan R	oad		Ref. No.:	J:	2D
Scheme:	2033 De	sign						Ref. No.:		
Year:	2033			Job No.:		J1652		Rev.:		-
AM	PM						_			
ARM A:	Tai Po Ro	oad – Tai	Po Kau							
ARM B:	Kau To S	Shan Road				•		١,		
ARM C:	Tai Po Ro	oad – Tai	Po Kau			C-)— <i>f</i>	١.	
							T			
							_	_		
							E	3		
GEOMET	RY									
ARM	v	e	L	r	D	Phi	S			
A	6.50	7.80	16	9	36	50	0.13	-		
В	4.80	8.20	18	75	36	46	0.30			
С	5.20	8.00	8	53	36	50	0.56			
AM FLOV	VS									
from \ to	A	В	C					Circ	Entry	_
A	0	0	0					10	1146	_
В	0	0	0					1066	143	
С	0	0	0					319	1131	
PM FLOW	VS							1		
from \ to	A	В	C					Circ	Entry	
A	0	0	0					13	1340	
В	0	0	0					1155	122	
С	0	0	0					242	938	
CALCULA	ATIONS						($Q_{\rm E}$	RFC	
ARM	K	X_2	M	F	$t_{\rm D}$	f_c	AM	PM	AM	PM
A	0.87	7.53	0.09	2282	1.46	0.77	1981	1979	0.58	0.68
В	0.98	6.92	0.09	2096	1.46	0.73	1292	1229	0.11	0.10
C	0.96	6.52	0.09	1976	1.46	0.71	1682	1735	0.67	0.54
							Cr	ritical Arm:	\mathbf{C}	A
								RFC:	0.67	0.68
- In accord	lance with T	PDM V2.4							AM	PM
Calculated	by:	JL		Date:	Feb-24		Checked by	y:	TA	

Simplified Roundabout Capacity Calculation

Job Title:	:TFS for t	he Propose	d Develo	opment of I	Hong Ko	ng Sheung	Kung Hui	St. Christo	per's in [Гаі Ро
Junction:	Tai Po R	Road – Sha	a Tin / T	sun King	Road			Ref. No.:	J	3D
Scheme:	2033 De	sign						Ref. No.:		
Year:	2033			Job No.:		J1652		Rev.:		-
AM	PM									
ARM A:	Tai Po Roa	d – Sha Tin								
ARM B:	Tai Po Roa	d – Sha Tin				C —		— A		
ARM C:	Tsun King	Road				C_				
							l			
							В			
GEOMET					_		_			
ARM	V	e	L	r	D	Phi	S	-		
A	3.30	7.60	13.5	40	38	40	0.51			
В	7.60	9.40	9.6	12	38	60	0.30			
С	7.80	8.20	1	100	38	30	0.64			
					•					
AM FLOV	l WS									
from \ to	A A	В	С					Circ	Entry	
A	0	0	0					3	415	_
В	0	0	0					401	1141	
C	0	0	0					734	396	
C	U	U	U					734	390	
PM FLOV	I VS							I		
from \ to	A	В	C					Circ	Entry	
A	0	0	0					2	245	-
В	0	0	0					263	1324	
C	0	0	0					971	373	
		_						,,,,		
CALCUL	ATIONS						. ($Q_{\rm E}$	RFC	
ARM	K	X_2	M	F	$t_{\rm D}$	f_c	AM	PM	AM	PM
A	0.99	5.43	0.11	1645	1.45	0.64	1626	1627	0.26	0.15
В	0.86	8.73	0.11	2644	1.45	0.84	1993	2092	0.57	0.63
С	1.04	7.98	0.11	2417	1.45	0.79	1908	1714	0.21	0.22
									•	_
							Cr	ritical Arm:	B	В
] , .								RFC:	0.57	0.63
- In accordance with TPDM V2.4 AM PM										
Calculated		JL C 1	· / T · D	Date:	Feb-24	0.4D G: 1	Checked by		TA	

Simplified Priority Junction Capacity Calculation


Simplified Roundabout Capacity Calculation

Job Title	: Consultanc	y Services fo	or New Tea	ching Resea	rch Comple	x in Tai Po	Area 39 - The	e Chinese Uni	versity of	Hong Kong
Junction:	Tai Po R	Road - Ma	Liu Shu	ıi / Lai Pir	g Road			Ref. No.:	J	5D
Scheme:	2033 De	sign						Ref. No.:		
Year:	2033			Job No.	:	J1652		Rev.:		I3
AM	PM							_		
ARM A:	Tai Po Ro	oad - Ma L	iu Shui							
ARM B:	Lai Ping	Road				C			- A	
ARM C:	Tai Po Ro	oad - Ma L	iu Shui			J)	, ·	
GEOMET	'RY							В		
ARM	v	e	L	r	D	Phi	S	_		
A	3.30	4.20	8	30	30	40	0.18			
В	4.00	4.20	2	20	30	40	0.16			
С	4.50	4.60	2	100	30	25	0.08			
AM FLOV	1	D	C					l c	F /	
from \ to	A	B	C					Circ	Entry	_
A	2 254	207 0	589					51	798 275	
B C	868.5	42	21 9					600 256	919.5	
PM FLOV	vs vs									
$from \setminus to$		В	С					Circ	Entry	
A	7	258	483					49	748	
В	229	0	38					516	267	
С	569.9	23	26					236	618.9	
CALCUL	 ATIONS						($oldsymbol{Q}_{\mathrm{E}}$	RFC	
ARM	K	X_2	M	F	$t_{\rm D}$	f_c	AM	PM	AM	PM
A	0.98	3.96	0.05	1200	1.48	0.56	1151	1152	0.69	0.65
В	0.97	4.15	0.05	1258	1.48	0.57	886	932	0.31	0.29
С	1.06	4.59	0.05	1390	1.48	0.59	1307	1320	0.70	0.47
	l						- C	 ritical Arm:	C	A
							CI	RFC:	0.70	0.65
						PM				
Calculated		JL		Date:	Feb-24		Checked b	y:	TA	A 11A
	-			1				~		

Simplified Priority Junction Capacity Calculation

APPENDIX D

DEFINITIONS OF LEVEL OF SERVICE

Description of Level-of-Service (LOS) (Reference: HCM 2000)

LOS	Flow Rate (ped/min/m)	Description
А	≤ 16	Pedestrians basically move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely selected, and conflicts between pedestrians are unlikely.
В	16 - 23	Sufficient space is provided for pedestrians to freely select their walking speeds, to bypass other pedestrians and to avoid crossing conflicts with others. At this level, pedestrians begin to be aware of other pedestrians and to respond to their presence in the selection of walking paths.
С	23 - 33	Sufficient space is available to select normal walking speeds and to bypass other pedestrians primarily in unidirectional stream. Where reverse direction or crossing movement exist, minor conflicts will occur, and speed and volume will be somewhat lower.
D	33 - 49	Freedom to select individual walking speeds and bypass other pedestrians is restricted. Where crossing or reverse-flow movements exist, the probability of conflicts is high and its avoidance requires changes of speeds and position. The LOS provides reasonable fluid flow; however considerable friction and interactions between pedestrians are likely to occur.
E	49 - 75	Virtually, all pedestrians would have their normal walking speeds restricted. At the lower range of this LOS, forward movement is possible only by shuffling. Space is insufficient to pass over slower pedestrians. Cross- and reverse-movement are possible only with extreme difficulties. Design volumes approach the limit of walking capacity with resulting stoppages and interruptions to flow.
F	> 75	Walking speeds are severely restricted. Forward progress is made only by shuffling. There are frequent and unavoidable conflicts with other pedestrians. Cross- and reverse-movements are virtually impossible. Flow is sporadic and unstable. Space is more characteristics of queued pedestrians than of moving pedestrian streams.

APPENDIX E SITE SURVEY PHOTO RECORDS

2021.11.22 SURVEY PERIOD – AM

07:30 07:45

08:00 08:15

2021.11.22 SURVEY PERIOD – AM

08:30 08:45

09:00 09:15

2021.11.22 SURVEY PERIOD – AM

09:30

2021.11.22 SURVEY PERIOD – PM

17:00 17:15

17:30 17:45

2021.11.22 SURVEY PERIOD – PM

18:00 18:15

18:30 18:45

2021.11.22 SURVEY PERIOD – PM

19:00

ANNEX A

RESPONSE TO TRANSPORT DEPARTMENT'S COMMENT

Proposed Hong Kong Sheng Kung Hui St. Christopher's Complex at the Remaining Portion of Taxlord Lot no. T77 in D.D. 34, Tai Po <u>Technical Feasibility Study and TIA - Response to Comments</u>

Transport Department's Comment via email dated 19/7/2024	Responses to Comments					
Please find our comments to the TIA below:						
R-to-C						
R-to-C 25: The swept path for vehicles turning from Tai Po Road - Tai Po Kau right turn into the developments is missing.	Noted. The swept path analysis of a 12m coach right turn into the development from Tai Po Road - Tai Po Kau northbound is presented in Figure SP2 . The analysis demonstrated that there is no manoeuvring problem for the ingress of large vehicle from Tai Po Road -Tai Po Kau northbound.					
2. From fig. 2.3 and 2.4, columns are present in the driveway which may render vehicles unable to maneuver into / out of the parking spaces / layby. The applicant shall ensure their schemes are technically feasible for vehicles to smoothly and safely maneuvering into / out of the parking spaces / layby / driveway. The applicant is also reminded to observe the relevant BD's requirements on the design of driveways and parking facilities.	Noted. Please refer to updated LG1/F layout plan (Figure 2.4 rev. A) and Figure SP3, SP4 and SP5 showing that all design vehicles (i.e. 11m HGV, 12m coach and 7.8m light bus) can turn into/out of the parking spaces and loading/unloading bays without any manoeuvring problem.					
Other Comments						
3. Table 5.22: Please advise the GMB services assessment for Tai Po bound.	Noted. Based on the public transport utilization result presented in Table 5.21 , there is ample capacity for GMB services for Tai Po bound to accommodate the additional passenger demands generated by proposed development site during AM and PM peak period. Thus, no additional GMB service is required.					
4. Please also seek comments from our TONT division.	Noted.					

Ref: J1652-R1-I4-RtC-0824.docx Page 1

By Fax and by Post 2866 4332

Our Ref.

: (NRQT0) in TD NR146/194-T20

Your Ref. : J1652/10

話

: 2399 2731

: 2381 3799

Fax Email

Tel.

: hiufungpang@td.gov.hk

19 October 2024

Ho Wang SPB Limited 5/F, So Hong Commercial Building 41-47 Jervois Street, Sheung Wan Hong Kong

(Attn.: Mr. Tommy LAM, Principal Traffic Engineer)

Dear Mr LAM,

Technical Feasibility Study for the Proposed Hong Kong Sheng Kung Hui St. Christopher's Complex at the remaining portion of Taxlord Lot No. T77 in D.D. 34, Tai Po Traffic Impact Assessment

I refer to your above referenced letter dated 14 August 2024 regarding the subject submission. Please be advised that I have no further comment to the report. Please be reminded to seek comments from our TONT Division.

Yours faithfully,

(PANG Hiu-fung) for Commissioner for Transport

新界分區辦事處 NT Regional Office

九龍聯運街三十號旺角政府合署七樓

7th Floor, Mong Kok Government Offices, 30 Lucn Wan Street, Kowloon. 圖文傳真 Fax No.: 2381 3799 (新界區) (NTRO)

網址 Web Site: http://www.td.gov.hk