Proposed Temporary Warehouse for Storage of Construction Materials and Construction Machinery, Parking of SPV and Rural Workshop with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land, Filling of Pond and Excavation of Land in "GB" Zone and Area shown as 'Road', Various Lots in D.D. 125 and Adjoining GL, Ha Tsuen, Yuen Long, N.T.

Appendix IV

Traffic Impact Assessment

Appendices 20241216 Ver1.0

Section 16 Planning Application for

Proposed Temporary Warehouse for Storage of Construction Materials and Machinery, Parking of Special Purpose Vehicles and Rural Workshop with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land, Filling of Pond and Excavation of Land in "Green Belt" Zone and Area Shown as "Road" at Various Lots in D.D.125 and Adjoining Government Land, Ha Tsuen, Yuen Long, New Territories

TIA Report December 2024

Ozzo Technology (HK) Ltd 15/F, Heng Shan Centre 145 Queen's Road East Wanchai, Hong Kong Tel: 3488 5449 Fax: 3020 0370 http:// www.ozzotec.com

Section 16 Planning Application for

Proposed Temporary Warehouse for Storage of Construction Materials and Machinery, Parking of Special Purpose Vehicles and Rural Workshop with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land, Filling of Pond and Excavation of Land in "Green Belt" Zone and Area Shown as "Road" at Various Lots in D.D.125 and Adjoining Government Land, Ha Tsuen, Yuen Long, New Territories

TIA Report December 2024

Contents Amendment Record

This report has been issued and amended as follows:

Revision	Description	Prepared / Date	Checked / Date	Approved / Date
0	Draft Report	28/11/2024 SYC, NL	10/12/2024 DP	10/12/2024 SC
0a	Final Report	12/12/2024 SYC, NL	17/12/2024 DP	17/12/2024 SC

Content

Page

1	INTR	ODUCTION 1	I
	1.1	General1	I
	1.2	Study Objectives 1	I
	1.3	Report Structure	2
2	DESC	CRIPTONS OF THE PROJECT SITE	3
	2.1	Site Location	3
	2.2	Development Parameters for the Project Site	3
	2.3	Parking and Loading/Unloading Facilities	3
	2.4	Vehicular Access Arrangement and Proposed Access Road 4	1
3	EXIS	TING TRAFFIC AND TRANSPORT CONDITIONS 5	5
	3.1	Existing Road Network5	5
	3.2	Traffic Surveys5	5
	3.3	Existing Vehicle Traffic Conditions5	5
4	ESTI	MATION OF DEVELOPMENT FLOWS 8	3
	4.1	Peak Hour Vehicular Flows 8	3
5	TRAF	FIC IMPACT ASSESSMENT)
	5.1	Design Year)
	5.2	Methodology)
	5.3	Future Year Reference Traffic Flows 10)
	5.4	Future Year Design Peak Hour Traffic Flows 12	2
	5.5	Future Year Junction Capacity Assessments 12	2
	5.6	Future Year Link Capacity Assessments 13	3
6	CONS	STRUCTION TRAFFIC IMPACT ASSESSMENT 14	1
	6.1	Design Year and Peak Hour Construction Traffic 14	1
	6.2	Construction Traffic Impact Assessment 14	1
7	SUM	MARY AND CONCLUSION	3
	7.1	Summary 16	3
	7.2	Conclusion	3

List of Table

Page

Table 2-1	Ancillary Transport Facilities Based on User's Requirement	3
Table 3-1	Summary of Comprehensive Surveys	5
Table 3-2	Passenger Car Unit Conversion Factors	6
Table 3-3	2023 Peak Hour Junction Capacity Assessment	6
Table 3-4	2023 Peak Hour Road Link Capacity Assessment	7
Table 4-1	2023 Peak Hour Road Link Capacity Assessment	8
Table 5-1	Average Annual Daily Traffic from Annual Traffic Census	10
Table 5-2	2019-Based TPEDM for Northwest New Territories	11
Table 5-3	2028 Peak Hour Junction Capacity Assessment	12
Table 5-4	2028 Peak Hour Road Link Capacity Assessment	13
Table 6-1	2025 Peak Hour Junction Capacity Assessment	14
Table 6-2	2025 Peak Hour Road Link Capacity Assessment	15

List of Figures

- Figure 2-1 Site Location
- Figure 2-2 Proposed Access Road
- Figure 3-1 Locations of Types Traffic Surveys
- Figure 3-2 2023 Observed Peak Hour Traffic Flows
- Figure 5-1 2028 Reference Peak Hour Traffic Flows
- Figure 5-2 Peak Hour Development Traffic Flows
- Figure 5-3 2028 Design Peak Hour Traffic Flows
- Figure 6-1 2025 Reference Peak Hour Traffic Flows
- Figure 6-2 2025 Design Peak Hour Traffic Flows

Appendices

- Appendix A Proposed Layout Plan and Swept Path Analysis
- Appendix B 2023 Junction Calculation Sheets
- Appendix C 2028 Junction Calculation Sheets
- Appendix D 2025 Junction Calculation Sheets

1 INTRODUCTION

1.1 General

- 1.1.1 The applicant intends to apply for 'Proposed Temporary Warehouse for Construction Materials and Construction Machineries, Parking of SPVs and Rural Workshop with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land and Pond and Excavation of Land'.
- 1.1.2 The proposed site area is about 41,569m², including about 5,568m² of Government Land. Majority of the Site falls within an area zoned as "Green Belt" (GB) on the Approved Ha Tsuen Fringe Outline Zoning Plan (OZP) No. S/YL-HTF/12, while a minor portion of the Site falls within area shown as "Road" on the Approved Hung Shui Kiu and Ha Tsuen OZP No. S/HKS/2.
- 1.1.3 According to the Notes of the OZP, the applied uses are not a column 1 nor 2 use within the "GB" zone, which requires planning permission from the Board. Furthermore, filling of land, filling of pond and excavation of land within "GB" zone also required planning permission from the Board.
- 1.1.4 Ozzo Technology (HK) Limited was commissioned to undertake a Traffic Impact Assessment (TIA) Study in support of Section 16 (S16) of the Town Planning Ordinance (Cap. 131) (the Ordinance) to use Various Lots in D.D. 125 and Adjoining Government Land (GL), Ha Tsuen, Yuen Long, New Territories (the Site) for 'Proposed Temporary Warehouse for Storage of Construction Materials and Construction Machinery, Parking of Special Purpose Vehicles (SPV) and Rural Workshop with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land and Pond and Excavation of Land' ("the Project Site").

1.2 Study Objectives

- 1.2.1 The main objectives of this Traffic Impact Assessment ("TIA") Study are to:
 - evaluate the existing vehicular traffic and transport conditions of the project site and to assess the traffic and transport implications of the development to the adjacent road network and pedestrian facilities for the operation of the Project Site;
 - (ii) identify any existing and potential traffic and transport problems and to recommend possible mitigation measures and advise any necessary traffic arrangement;
 - (iii) recommend traffic improvement measures for the Project Site, as necessary.

1.3 Report Structure

- 1.3.1 Following this introductory chapter, this report is arranged as follow:
 - Chapter 2 describes the Project Site;
 - Chapter 3 summarizes the existing traffic conditions in the vicinity of the Project Site;
 - Chapter 4 describes the methodology for estimating the amount of vehicular traffic to be induced by the development;
 - Chapter 5 details the traffic forecast and the results of traffic impact assessment;
 - Chapter 6 undertakes the construction traffic impact assessment;
 - A summary of the findings and conclusion of this TIA study are given in Chapter 7.

2 DESCRIPTONS OF THE PROJECT SITE

2.1 Site Location

2.1.1 **Figure 2-1** shows the location of the Project Site, located at the west of Kong Sham Western Highway and adjacent to Ling To Tsz. The Project Site is accessible from Kong Sham Western Highway and via a local access road. To enhance the connectivity, an access road is also proposed parallel to the local access road.

2.2 Development Parameters for the Project Site

- 2.2.1 Based on the latest information, the Project Site involves 7 temporary single-storey structures for warehouse uses for storage of construction materials and construction machinery, Special Purpose Vehicles (SPVs) repair workshop, construction machinery repair workshop and offices, with a Project Site area of around 41,569m², and a total of GFA is about 11,299 m². The remaining area are designated for parking of SPVs, vehicle parking and loading/unloading (L/UL) spaces and circulation area.
- 2.2.2 The operation hours of the Site are Monday to Saturday from 09:00 to 19:00. No operation on Sunday and public holiday. It is estimated that the Site would be able to accommodate 15 staff. As no shopfront is proposed at the Site, no visitor is anticipated.

2.3 Parking and Loading/Unloading Facilities

2.3.1 **Table 2-1** summarizes the internal transport facilities to be provided in the Project Site. As there are no specific parking and loading/unloading requirements for temporary warehouse development in accordance to HKPSG, ancillary transport facilities are provided based on users' requirements to meet operational needs.

Type of Ancillary Transport Facilities	Size	Provision based on User's Requirement
Private Car Parking Space	2.5m (W) x 5m (L)	18
Special Purpose Vehicle Parking Space	3.5m (W) x 11m (L)	32
Total Parking Facilities	-	50
L/UL Spaces for LGV	3.5m (W) x 7m (L)	3
L/UL Spaces for MGV	3.5m (W) x 11m (L)	6
Total L/UL Facilities	-	9

Table 2-1 Ancillary Transport Facilities Based on User's Requirement

2.3.2 The proposed layout plan of the Project Site is included in **Appendix A** for easy reference.

2.4 Vehicular Access Arrangement and Proposed Access Road

- 2.4.1 The Project Site consists of 2 portions, with the larger portion (hereinafter named as "Portion A") located at the north of the existing access road and the smaller portion (hereinafter named as "Portion B") located at the south of the existing access road. Individual site accesses are proposed for Portion A and Portion B, with access locations are proposed at the eastern side of each portion. **Figure 2-2** also presents the locations for each portion.
- 2.4.2 To minimize the traffic impact to the existing single track access road, an access road with a single-2 configuration connecting Portion A is proposed. Layout of the proposed access road is also presented in **Figure 2-2**.
- 2.4.3 While Portion B only serves around 13.3% of the total development traffic and the operation traffic covers private cars and light goods vehicles only, development traffic to/from Portion B will travel via the existing access road.
- 2.4.4 Swept path analysis is also conducted for the vehicular accesses and the proposed access road, indicating sufficient turning spaces for goods vehicles. Appendix A also presents the swept path analysis for the access points and the access road.

3 EXISTING TRAFFIC AND TRANSPORT CONDITIONS

3.1 Existing Road Network

- 3.1.1 As shown in **Figure 2-1**, the Project Site is currently connecting to a local access road, with further connection to Kong Sham Western Highway. Current condition of the connecting carriageways are summarized as follows:
- 3.1.2 The connecting access road (Unnamed Road A) is a single track rural road connecting Ling To Tsz and in the west and access road underneath Kong Sham Western Highway in the east. Acting as single carriageway with 1-lane-2 way operation, passing bays are generally identified along the carriageway, while serving a low volume of traffic.
- 3.1.3 The access road underneath Kong Sham Western Highway (KSWH) is a current connecting road between local storage area / concrete plant and KSWH. The northern section of the access road is a single-2 carriageway (with no loading activities, standing vehicles and pedestrian crossings identified along the northern section) while the southern section of the access road is a single carriageway with 1-lane-2-way operation. Passing bays are generally identified the single carriageway section, while serving a low volume of traffic.

3.2 Traffic Surveys

3.2.1 To assess the existing traffic condition, vehicular traffic count surveys were conducted on 4 October 2023 (Wednesday) between 07:00 and 20:00. A summary of the types of surveys being undertaken and the survey locations are shown in **Figure 3-1** and **Table 3-1**.

Survey Type	Location	Figure	Survey Date	Data Collected
Vehicular Count Surveys	J1 to J5	Figure 3-1	2023-10-04 (Wednesday)	Manual Classified count in 15 min intervals
	L1 to L3	Figure 3-1	2023-10-04 (Wednesday)	Manual Classified count in 15 min intervals

Table 3-1 Summary of Comprehensive Surveys

3.3 Existing Vehicle Traffic Conditions

3.3.1 All vehicle flows recorded during the traffic surveys have been converted to passenger car unit (PCU) based on the PCU factors as indicated in Table 2.3.1.1 of Volume 2 of Transport Planning and Design Manual (TPDM) and shown in Table 3-2.

Mahista Tana	PCU Conversion Factor ⁽¹⁾					
Vehicle Type	Priority junction/ Roundabout					
Car / Taxi	1.00					
Public Light Bus / Minibus	1.50					
Light Goods Vehicle	1.50					
Medium/ Heavy Goods Vehicle	2.8					
Bus / Coach	2.8					

 Table 3-2
 Passenger Car Unit Conversion Factors

Notes: (1) Table 2.3.1.1, Chapter 2.3, Volume 2, TPDM-2024

- 3.3.2 By applying the above PCU factors, vehicular traffic flows in PCUs are calculated and the AM and PM peak hour is identified to occur at 10:45-11:45 and 15:15-16:15 for AM peak and PM peak respectively. **Figure 3-2** presents the 2023 observed Weekday AM and PM peak hour traffic flows on the road network in the vicinity of the Project Site.
- 3.3.3 Based on the existing traffic flows, the peak hour performance of the key junctions in the vicinity of the Project Site is assessed. The assessment results are indicated in **Table 3-3** and detailed junction calculation sheets are given in **Appendix B**.

Jn.			Capacity	2023 Weekday		
ID.	Location ⁽¹⁾	Туре	Index ⁽²⁾	AM Peak	PM Peak	
J1	Unnamed Road A / Access to Portion A	Priority	DFC	<0.01	<0.01	
J2	Unnamed Road A / Access to Existing Fish Farm	Priority	DFC	0.02	0.01	
J3	Unnamed Road A / Access Road underneath KSWH	Priority	DFC	0.02	0.02	
J4	Access Road underneath KSWH / Ha Tsuen Road	Priority	DFC	0.17	0.18	
J5	KSWH Roundabout	Roundabout	DFC	0.53	0.43	

Table 3-32023 Peak Hour Junction Capacity Assessment

Notes:

(1) Refer to Figure 3-1 for junction locations

(2) DFC = Design Flow to Capacity for priority junction and roundabout

- 3.3.4 The results reveal that all the assessed key junctions are operated satisfactorily during the peak hours.
- 3.3.5 Based on the existing traffic flows, the peak hour performances of the key road links in the vicinity of the Project Site are also assessed and the results are indicated in **Table 3-4**.

			Design ⁽²⁾	Weekday	AM Peak	Weekday PM Peak	
No.	Location ⁽¹⁾	Direction Capacity (veh/hr)		Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾
L1	Unnamed Road A	2-way	100	11	0.11	12	0.12
L2	Access Road underneath KSWH (Section south of Ha Tsuen Road)	2-way	100	67	0.67	73	0.73
L3	Access Road underneath KSWH	NB	850	377	0.44	302	0.36
L3 (Se	(Section north of Ha Tsuen Road)	SB	850	375	0.44	325	0.38

Table 3-4 2023 Peak Hour Road Link Capacity Assessment

Notes: (1) Refer to Figure 3-1 for road link locations (2) TPDM Vol 2 Chapter 2.4.1.1 and TPDM Vol 3 Chapter 3.11.3.1

(3) P/Df = Peak Hourly Flows/Design Flow Ratios (P/Df) for road links

3.3.6 The results reveal that all the key road links in the vicinity of the Project Site operate within capacity during the peak hours.

4 ESTIMATION OF DEVELOPMENT FLOWS

4.1 Peak Hour Vehicular Flows

4.1.1 Development trips during the identified peak hours are summarized in **Table 4-1**.

Table 4-12023 Peak Hour Road Link Capacity Assessment

	Trip Generation and Attraction (veh/hr)								
Time Period	PC		LGV		MGV		2-Way		
	In	Out	In	Out	In	Out	Total		
Trips at AM Peak (10:45-11:45)	4	4	1	1	5	5	20		
Trips at PM Peak (15:15-16:15)	2	3	1	1	3	3	13		

4.1.2 For the purpose of this TIA, the captioned peak hour development trips will be adopted in the traffic impact assessment.

5 TRAFFIC IMPACT ASSESSMENT

5.1 Design Year

5.1.1 With the planning application for the Proposed Warehouse development involves a period of 3 years, the expected end year for the Project Site would be year 2028. For conservative, 2028 is adopted as the design year for this Study.

5.2 Methodology

- 5.2.1 In forecasting the future traffic flows on the road network in the Study Area, due considerations are given to the following information and factors:
 - Historical traffic data from Annual Traffic Census (ATC) published by Transport Department;
 - The forecast population and employment from the 2019-based Territorial Population and Employment Data Matrix (TPEDM) planning data published by Planning Department;
 - Committed and planned developments in the Study Area.
- 5.2.2 The following steps are undertaken to derive the 2028 Peak Hour Reference Flows (i.e. without the Project Site) and Design Flows (i.e. with the Project Site).

2028 Background Flows =	2023 Flows x annual growth factors
2028 Reference Flows =	2028 Background Flows + additional traffic by
	planned and committed developments
2028 Design Flows =	2028 Reference Flows + development traffic

5.2.3 The traffic impact to be induced by the Development is assessed by comparing the Peak Hour Reference Traffic Flows against the Design Traffic Flows for both Design Years.

5.3 Future Year Reference Traffic Flows

Historical Traffic Growth

5.3.1 To gain an understanding of the historical trends of traffic growth on the nearby road network, relevant traffic data over the 5-year period of 2013 to 2018 are extracted from the Annual Traffic Census (ATC) Reports for the ATC stations within the Study Area. The traffic data in 2019 and 2021 are excluded from the analysis due to social activities and outbreak of COVID-19 respectively. **Table 5-1** describes the location of the nearby available ATC station and provides the corresponding traffic data.

Station	Road	Between		2013	2014	2015	2016	2017	2018	Average Annual Growth		
5907	KSWH	KSWH nr Yick Yuen	Shenzhen	18,410	18,290	19,140	19,470	19,080	19,690	1.35%		
5907	NOWIT	Nown	Road			-	-0.65%	4.65%	1.72%	-2.0%	3.2%	1.55%
	TOTAL		18,410	18,290	19,140	19,470	19,080	19,690	1.35%			
			-	-0.65%	4.65%	1.72%	-2.0%	3.2%	1.55 /0			

Table 5-1 Average Annual Daily Traffic from Annual Traffic Census

Source: 2013-2018 Annual Traffic Census (ATC) Reports published by Transport Department

5.3.2 The historical traffic data of ATC station 5907 between year 2017-2022 have also been reviewed, with a negative annual growth rate identified. Thus, the annual traffic growth rate on the road network within the Study Area of year 2013 to 2018 of 1.35%, as indicated in **Table 5-1**, will be more conservative.

2019-Based Territorial Population and Employment Data Matrix (TPEDM)

5.3.3 **Table 5-2** presents the population and employment data in Northwest New Territories for 2019, 2026 and 2031 from the 2019-based Territorial Population and Employment Data Matrix (TPEDM) planning data provided by Planning Department.

Category	2019	2023 ⁽¹⁾	2026	2028 ⁽²⁾	2031	2023-2028 Average Growth (% p.a.)
Population	1,154,400	1,199,714	1,233,700	1,298,880	1,396,650	1.60%
Employment	292,350	308,636	320,850	349,750	393,100	2.53%
Total	1,446,750	1,508,350	1,554,550	1,648,630	1,789,750	1.79%

Table 5-2 2019-Based TPEDM for Northwest New Territories

Source: 2019-based TPEDM published by Planning Department

Note (1): 2023 population and employment places are calculated by interpolation between 2019 and 2026.

(2): 2028 population and employment places are calculated by interpolation between 2026 and 2031.

- 5.3.4 It is anticipated that the population and employment places in Northwest New Territories would be increased by 1.60% and 2.53% p.a. respectively, i.e. an overall increase of 1.79% per annum.
- 5.3.5 For conservative, annual growth rate derived from 2019-Based TPEDM of 1.79% will be adopted in the Study.

Planned and Committed Developments

5.3.6 Based on the published information from Town Planning Board, no planned/committed developments in the site vicinity are identified in design year 2028 in the site vicinity.

2028 Reference Flows

5.3.7 Taking into account of the above factors, to summarize, the following steps are undertaken to derive the 2028 Reference Traffic Flows (i.e. without Project Site):

2028 Background Flows =2023 Flows x annual growth factors (+1.79% p.a.)2028 Reference Flows =2028 Background Flows + Planned / Committed
Development Traffic (refer to Section 5.3.6)

5.3.8 The 2028 Reference Traffic Flows (i.e. without Project Site) are presented in **Figure 5-1**.

5.4 Future Year Design Peak Hour Traffic Flows

- 5.4.1 The additional development traffic in **Table 4-1** is then assigned onto the nearby road network with reference to the existing traffic distribution pattern in the Study Area. The resulting peak hour development flows are shown in **Figure 5-2**.
- 5.4.2 By adding the development flows in **Figure 5-2** to the 2028 Reference Peak Hour Flows (i.e. without Project Site) in Figure 5-1, the 2028 Design Peak Hour Flows (i.e. with Project Site) are derived and shown in **Figure 5-3**.

5.5 Future Year Junction Capacity Assessments

5.5.1 Based on the Reference Flows (i.e. without Project Site) and Design Flows (i.e. with Project Site) for the Design Year, junction capacity assessment is undertaken and the results shown in **Table 5-3** with detailed calculation sheets provided in **Appendix C**.

Jn.	L = = = 4 ¹ = = = (4)	-	Capacity Index ⁽²⁾	2028 Refere	nce Scenario	2028 Design Scenario	
ID.	Location ⁽¹⁾	Туре		AM Peak	PM Peak	AM Peak	PM Peak
J1	Unnamed Road A / Access to Portion A	Priority	DFC	<0.01	<0.01	<0.01	<0.01
J2	Unnamed Road A / Proposed Access Road ⁽³⁾	Priority	DFC	0.02	0.02	0.02	0.02
J3	Unnamed Road A / Access Road underneath KSWH	Priority	DFC	0.03	0.02	0.05	0.04
J4	Access Road underneath KSWH / Ha Tsuen Road	Priority	DFC	0.19	0.20	0.23	0.23
J5	KSWH Roundabout	Roundabout	DFC	0.58	0.47	0.59	0.48

 Table 5-3
 2028 Peak Hour Junction Capacity Assessment

Notes:

(1) Refer to Figure 3-1 for junction locations

(2) DFC = Design Flow to Capacity for priority junction and roundabout

- (3) With the Proposed Access Road in place, geometry of J2 has also been modified.
- 5.5.2 It is indicated in **Table 5-3** that all the key junctions in the vicinity of the Project Site will operate within capacity during peak hours for both the Reference (without Project Site) and Design (with Project Site) scenarios.

5.6 Future Year Link Capacity Assessments

5.6.1 Based on the Reference Flows (i.e. without Project Site) and Design Flows (i.e. with Project Site), link capacity assessments for Design Year 2028 are carried out and the results are presented in **Table 5-4**.

No.	Location ⁽¹⁾	Dir.	Design ⁽²⁾ Capacity (veh/hr)	2028 Reference Scenario (AM Peak)		2028 Reference Scenario (PM Peak)		2028 Design Scenario (AM Peak)		2028 Design Scenario (PM Peak)	
				Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾
L1	Unnamed Road A	2-way	100	13	0.13	14	0.14	15	0.15	16	0.16
L2	Access Road underneath KSWH (Section south of Ha Tsuen Road)	2-way	100	75	0.75	82	0.82	95	0.95	95	0.95
	Access Road underneath KSWH (Section north of Ha Tsuen Road)	NB	850	413	0.49	331	0.39	423	0.50	338	0.40
L3		SB	850	411	0.48	356	0.42	421	0.50	362	0.43
L4	Proposed Access Road	EB	400	0	0.00	0	0.00	9	0.02	6	0.02
		WB	400	0	0.00	0	0.00	9	0.02	5	0.01

Table 5-4 2028 Peak Hour Road Link Capacity Assessment

Notes: (1) Refer to Figure 3-1 for road link locations

(2) TPDM Vol 2 Chapter 2.4.1.1 and TPDM Vol 3 Chapter 3.11.3.1 (3) P/Df = Peak Hourly Flows/Design Flow Ratios (P/Df) for road links

5.6.2 The results in the table indicate that all the key road links in the Study Area will operate within capacity during the peak hours for both Reference scenario (i.e. without Project Site) and Design scenario (i.e. with Project Site).

6 CONSTRUCTION TRAFFIC IMPACT ASSESSMENT

6.1 Design Year and Peak Hour Construction Traffic

- 6.1.1 Under current programme, the construction works will be completed in year 2025. Thus 2025 will be adopted as the design year for construction traffic impact assessment.
- 6.1.2 The construction traffic mainly consists of concrete delivery and dump trucks. To limit the construction traffic onto nearby road network (particularly for the Access Road underneath HSWH), construction traffic for the Project Site during peak hour is limited to 8 veh/hr, which is equivalent to 16 pcu/hr.
- 6.1.3 The same approach in forecasting the 2028 Design Peak Hour Traffic (refers to Chapter 5) is adopted to forecast the 2025 Design Peak Hour Traffic as summarized below:

2025 Background Flows = 2023 Flows x annual growth factors

2025 Reference Flows =	2025 Background Flows + additional traffic by
	planned and committed developments
2025 Design Flows =	2025 Reference Flows + construction traffic

6.2 Construction Traffic Impact Assessment

6.2.1 The 2025 Peak Hour Traffic Flows during construction period are shown in Figure 6-1 and Figure 6-2 respectively. Based on the traffic forecasts, results of the junction and link capacity assessments during the construction year are presented in Table 6-1 and Table 6-2 respectively. Detailed calculation sheets of the junction assessment are provided in Appendix D.

Table 6-1	2025 Peak Hour Junction Capacity Assessment
-----------	---

Jn.			Capacity Index ⁽²⁾	2025 Referer	nce Scenario	2025 Design Scenario		
ID.	Location ⁽¹⁾	Туре		AM Peak	PM Peak	AM Peak	PM Peak	
J1	Unnamed Road A / Access to Portion A	Priority	DFC	<0.01	<0.01	<0.01	<0.01	
J2	Unnamed Road A / Proposed Access Road ⁽³⁾	Priority	DFC	0.02	0.02	0.02	0.02	
J3	Unnamed Road A / Access Road underneath KSWH	Priority	DFC	0.03	0.02	0.05	0.05	
J4	Access Road underneath KSWH / Ha Tsuen Road	Priority	DFC	0.18	0.19	0.22	0.23	
J5	KSWH Roundabout	Roundabout	DFC	0.55	0.45	0.56	0.46	

Notes:

(1) Refer to Figure 3-1 for junction locations (2) DFC = Design Flow to Capacity for priority junction and roundabout (3) With the Proposed Access Road in place, geometry of J2 has also been modified.

	Table	6-2	2025 P	5 Peak Hour Road Link Capacity Assessment							
No.	Location ⁽¹⁾	Dir.	Design ⁽²⁾ Capacity (veh/hr)	2025 Reference Scenario (AM Peak)		2025 Reference Scenario (PM Peak)		2025 Design Scenario (AM Peak)		2025 Design Scenario (PM Peak)	
				Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾
L1	Unnamed Road A	2-way	100	13	0.13	14	0.14	15	0.15	16	0.16
L2	Access Road underneath KSWH (Section south of Ha Tsuen Road)	2-way	100	72	0.72	79	0.79	88	0.88	95	0.95
	Access Road underneath KSWH (Section north of Ha Tsuen Road)	NB	850	392	0.46	314	0.37	400	0.47	322	0.38
L3		SB	850	390	0.46	338	0.40	398	0.47	346	0.41
L4	Proposed Access Road	EB	400	0	0.00	0	0.00	7	0.02	7	0.02
		WB	400	0	0.00	0	0.00	7	0.02	7	0.02

Notes: (1) Refer to Figure 3-1 for road link locations

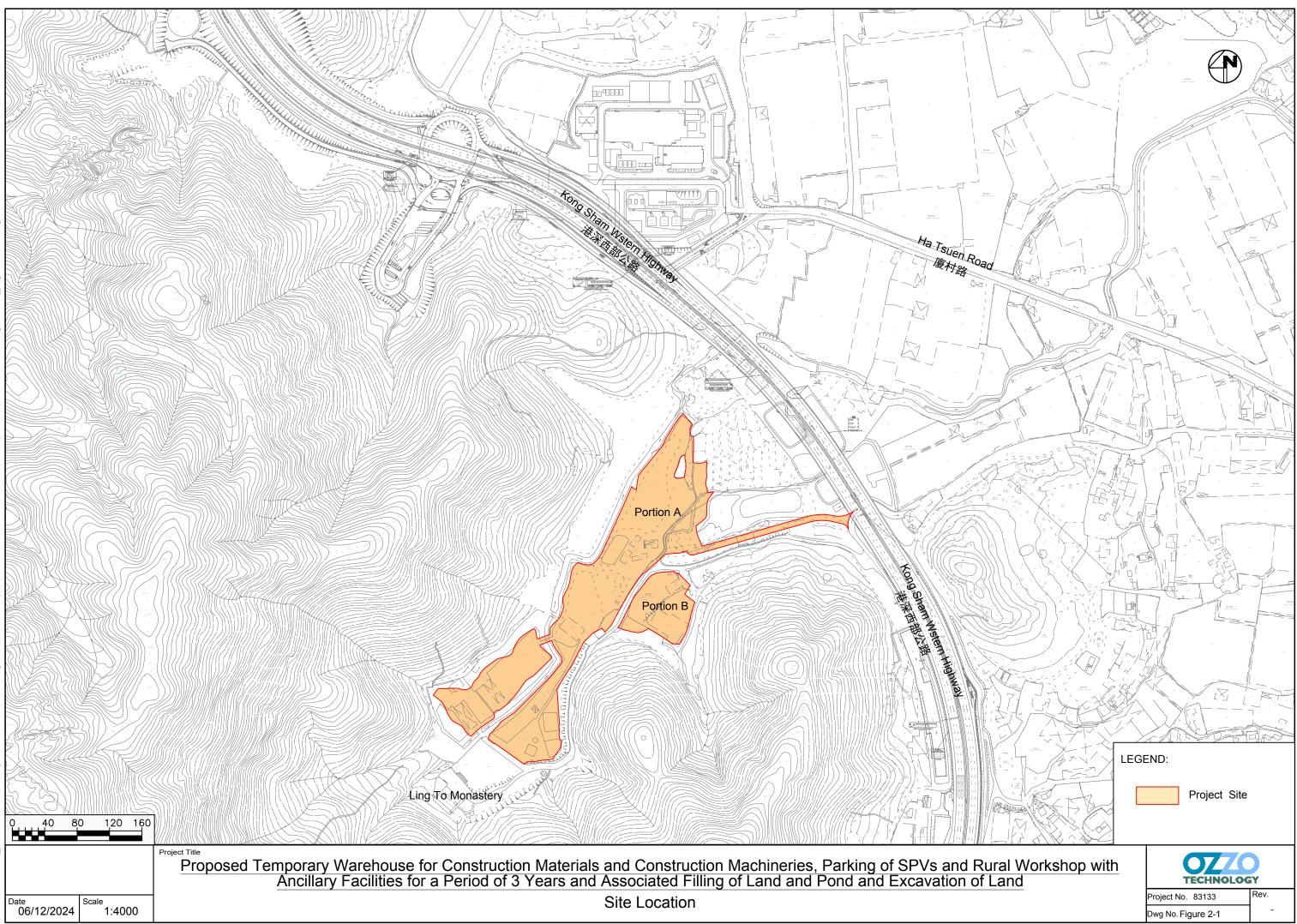
(2) TPDM Vol 2 Chapter 2.4.1.1 and TPDM Vol 3 Chapter 3.11.3.1

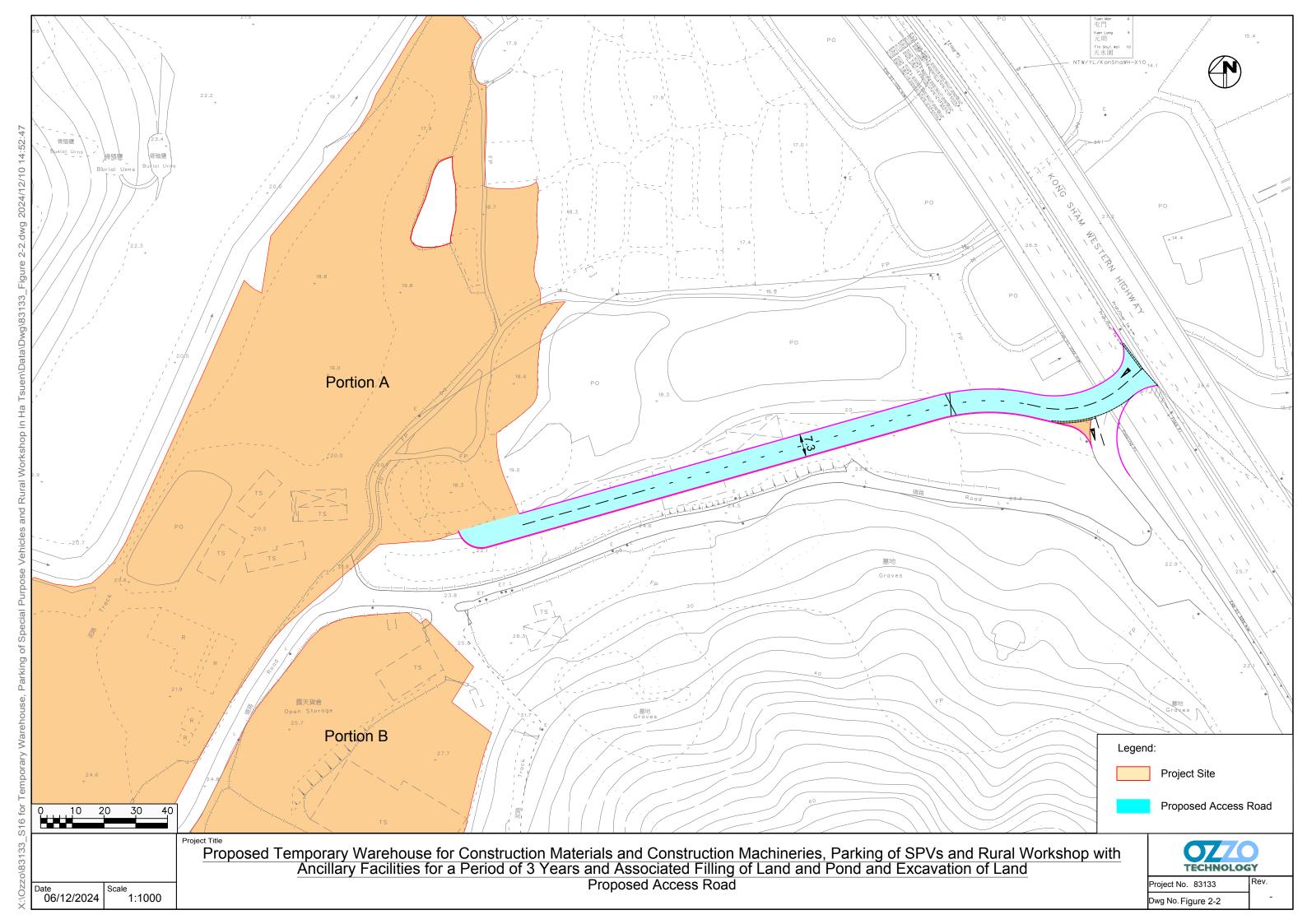
(3) P/Df = Peak Hourly Flows/Design Flow Ratios (P/Df) for road links

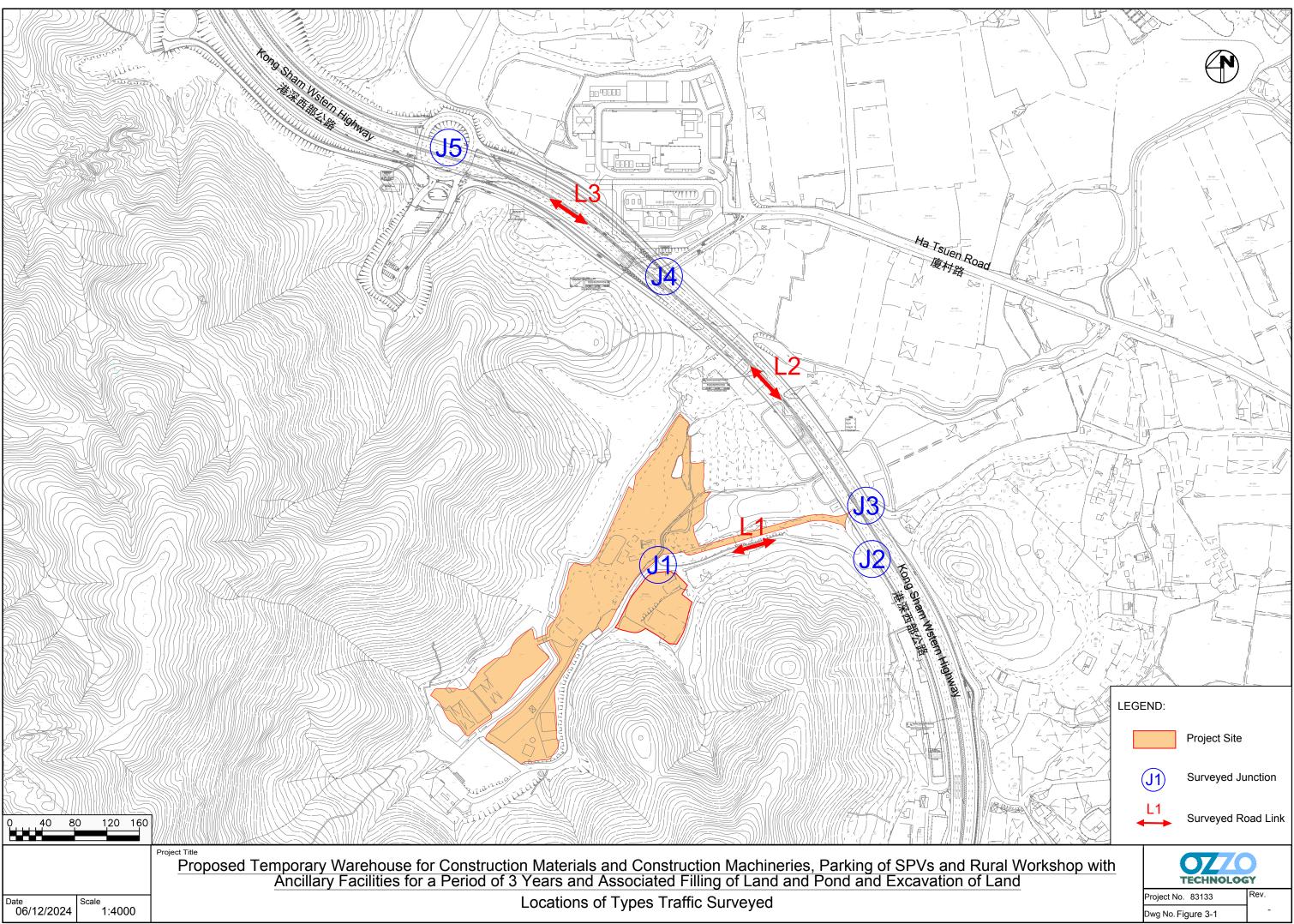
6.2.2 The results indicate that the key junctions and road links in the vicinity of the project site would operate at an acceptable level during the weekday AM and PM peak hours even with the construction traffic to be generated during the construction period.

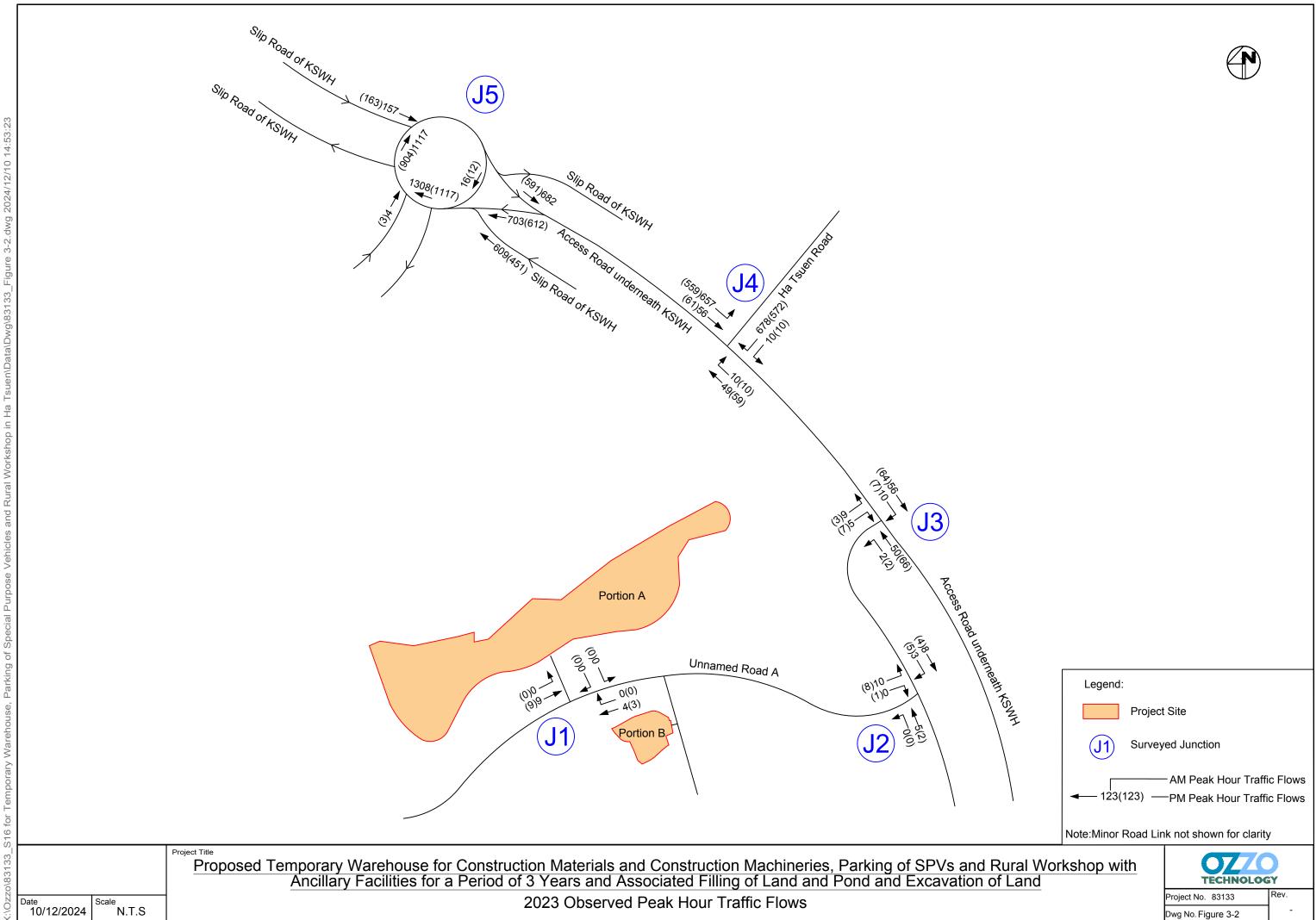
7 SUMMARY AND CONCLUSION

7.1 Summary

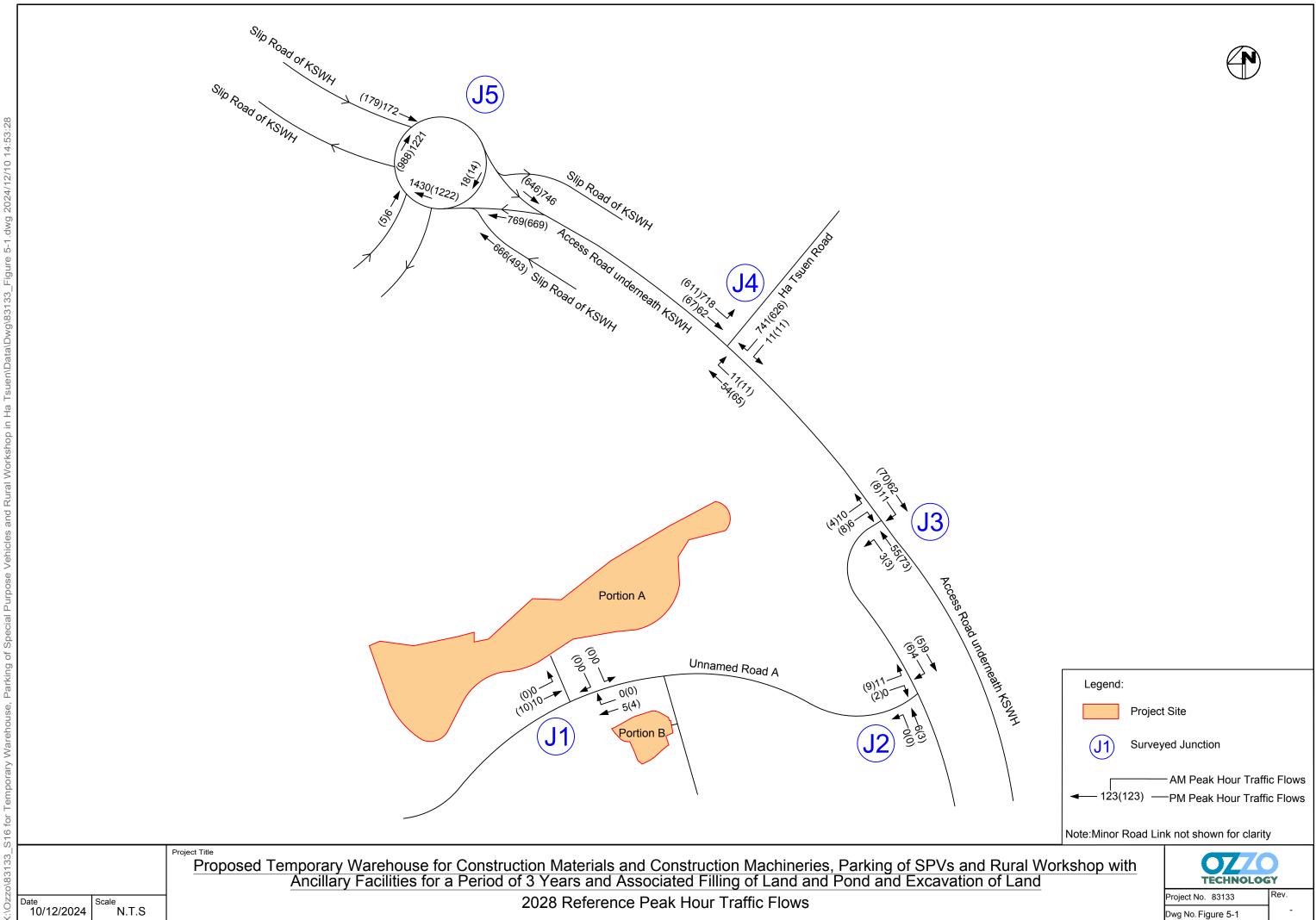

- 7.1.1 Ozzo Technology (HK) Limited is commissioned to undertake this Traffic Impact Assessment (TIA) Study to assess the traffic impact to be induced by the Project Site on the nearby road network.
- 7.1.2 Capacity assessments are undertaken to reveal the 2023 AM and PM peak hour traffic conditions in the vicinity of the Project Site. The assessment results indicate that all the key junctions and road links perform satisfactorily during the AM and PM peak hours on a normal weekday.
- 7.1.3 To minimize the traffic impact to the existing single track access road, an access road with a single-2 configuration connecting Portion A is proposed.
- 7.1.4 With the planning application for the Temporary Warehouse development involves a period of 3 years, while the expected end year for the Project Site would be year 2028, year 2028 is adopted as the design year for this Study.
- 7.1.5 For traffic impact assessments, junction and link capacity assessments are undertaken for the 2028 AM and PM peak hours on a normal weekday. With the trivial development traffic generated from the Project Site, assessment results indicate that all the key junctions and road links would perform satisfactorily in the Design Year even with the Project Site in place.
- 7.1.6 Construction traffic impact assessment also indicate that the key junctions and road links in the vicinity of the project site would operate at an acceptable level during the weekday AM and PM peak hours even with the construction traffic to be generated during the construction period.

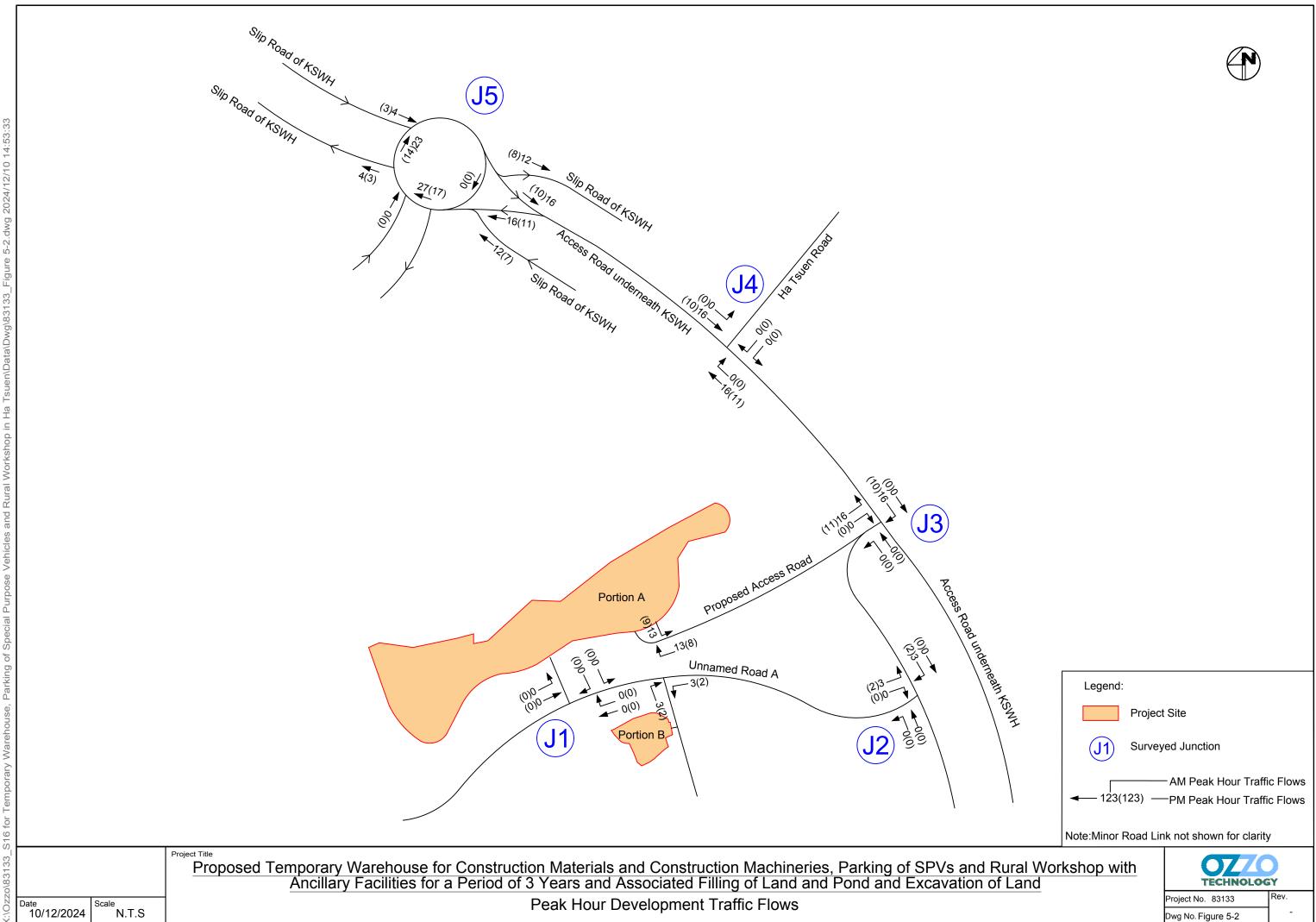

7.2 Conclusion

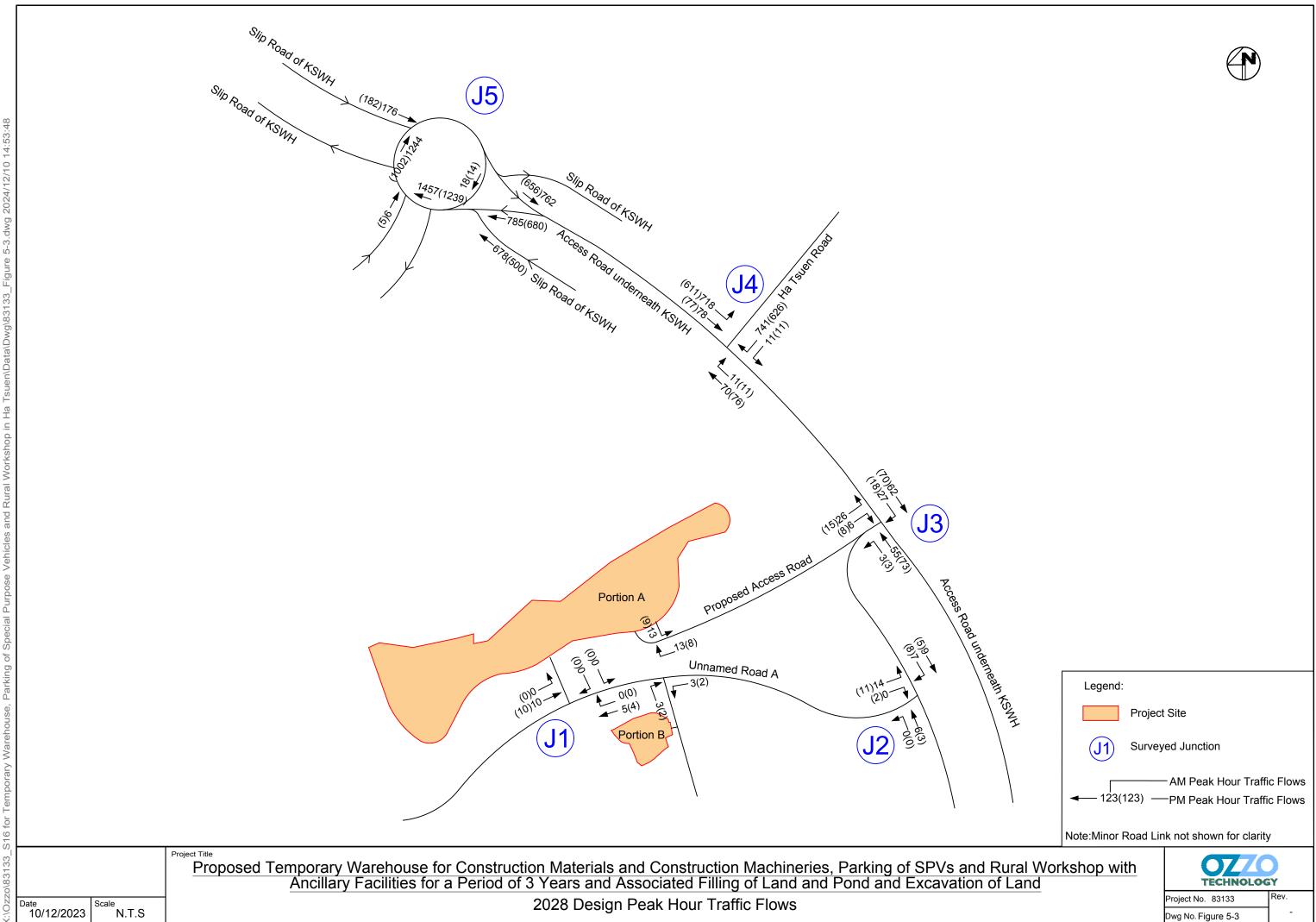

7.2.1 The impact assessment results indicate that the Project Site would not create adverse impact on the surrounding road network.

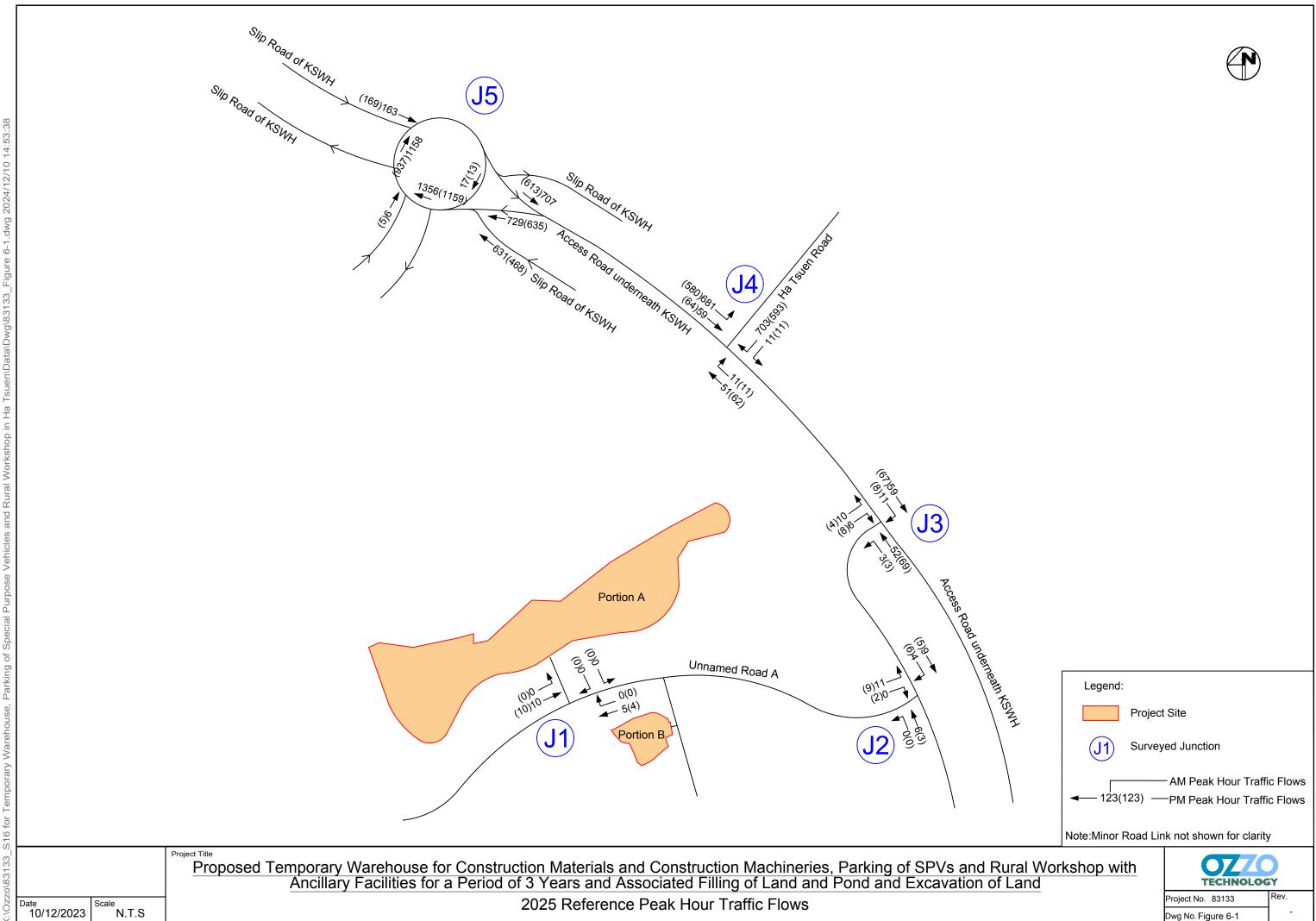


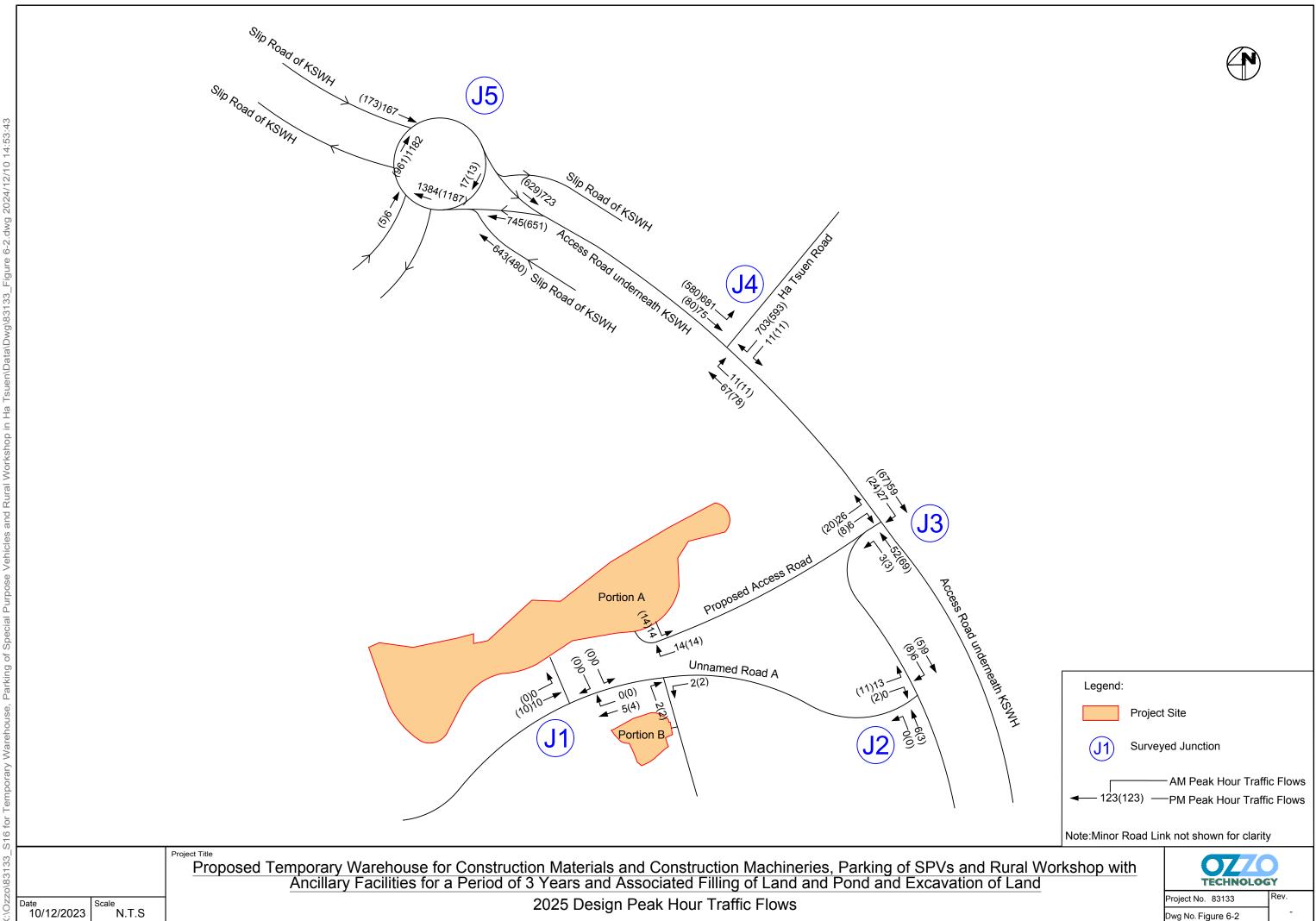
Figures

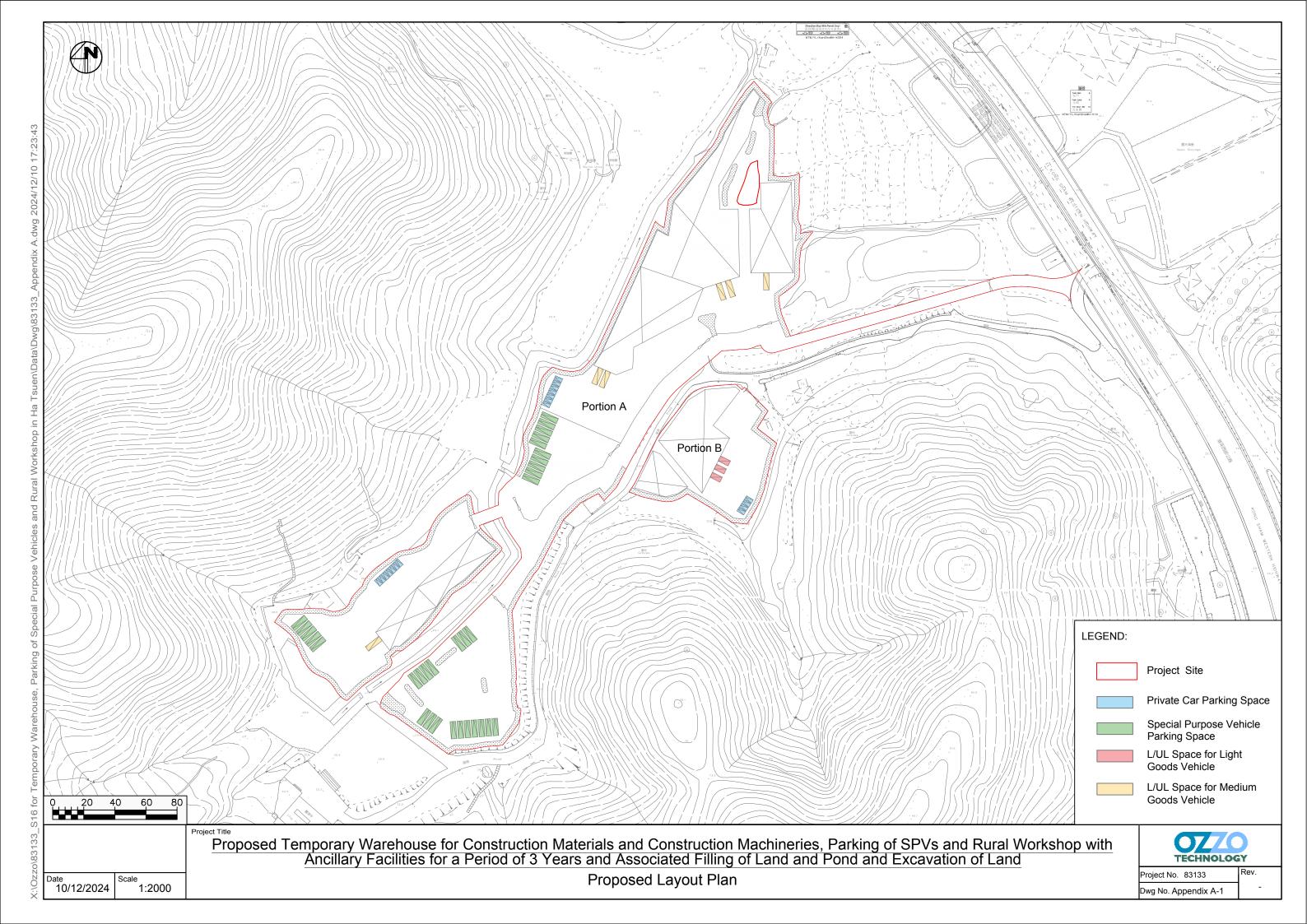


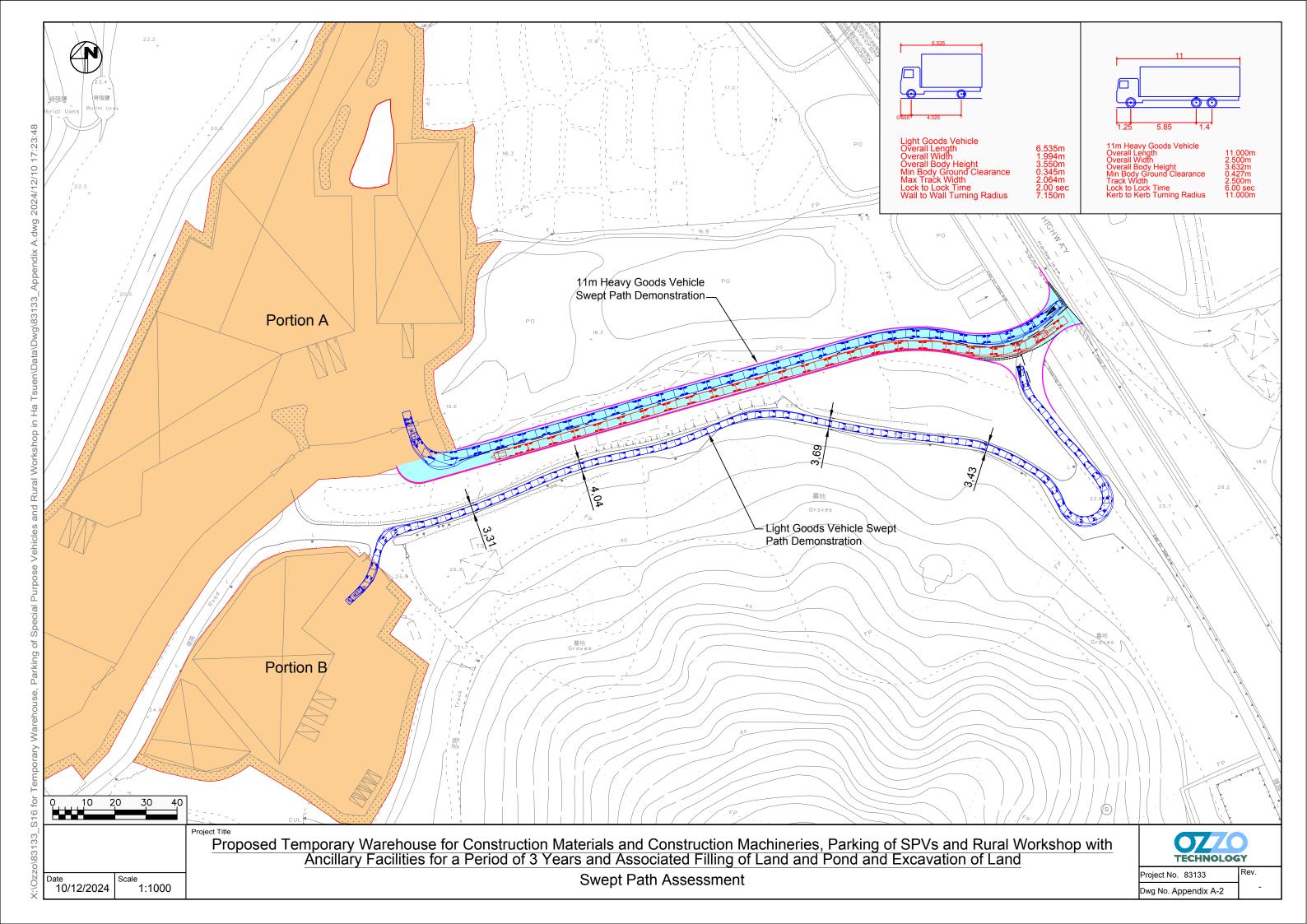












Appendix A

Proposed Layout Plan and Swept Path Analysis

Appendix B

2023 Junction Calculations

OZZO TECHNOLOGY (HK)	LIMITED		TION CALCULATION		INITIALS	DATE
roposed Temporary Warehouse for Construction acilities for a Period of 3 Years and Associated Fil	Materials and Construction Machineries, Parking o lling of Land and Pond and Excavation of Land	f SPVs and Rural Workshop with Ancillary	PROJECT NO.: 83133	PREPARED BY:	CSY	Dec-24
1: Unnamed Road A / Access to Portion A		2023 AM	FILENAME :	CHECKED BY:	LL	Dec-24
023 Observed AM Peak Hour Traffic Flows		2023 AIVI	J1 Unnamed Road A Access to Portion A P.xls	REVIEWED BY:	PCN	Dec-24
Access to Portion A (ARM B) (6) 0 (5) 9 Unnamed Road A (ARM A)	[2] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	W cr = CEN W b-a = LANI W b-c = LANI W c-b = LANI W b-a = VISIE Vrb-a = VISIE Vrb-a = VISIE Vrb-c = VISIE Vrc-b = VISIE F = STRI F = STRI	ATA) OR ROAD WIDTH TRAL RESERVE WIDTH E WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a E WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a BUILTY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY CO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY CO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY CO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY CO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY CO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY CO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY CO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY CO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY CO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY CO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D BUILTY CO THE RIGHT FOR VEHICLES WAI			
EOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.20 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 9 (pcu/hr)	GEOMETRIC FACTORS : D = 0.687446 E = 0.7313264 F = 0.803411 Y = 0.85	15 Q b-c = 44 Q c-b =	TO CAPACITY: 429 543 596	Sign FLOW DFC b-a = 0.0000 DFC b-c = 0.0000 DFC c-b = 0.0000 DFC b-c (share lane) = 0.0000		
MAJOR ROAD (ARM C) W c-b = 2.5 (metres) Vrc-b = 14 (metres) q c-a = 4 (pcu'hr) q c-b = 0 (pcu'hr)	F for (Qb-ac) =		= 13 (PCU/HR)			
MINOR ROAD (ARM B) W b-a = 1.5 (metres) W b-c = 1.5 (metres) VIb-a = 50 (metres) Vr b-a = 30 (metres) Vr b-c = 30 (metres) q b-a = 0 (pcu/hr) q b-c = 0 (pcu/hr)						

OZZO TECHNOLOGY (HK) LI	MITED		CTION CALCULATION		INITIALS	DATE
roposed Temporary Warehouse for Construction Mate acilities for a Period of 3 Years and Associated Filling		SPVs and Rural Workshop with Ancillary	PROJECT NO.: 83133	PREPARED BY:	CSY	Dec-24
1: Unnamed Road A / Access to Portion A		2022 DM	FILENAME :	CHECKED BY:	LL	Dec-24
023 Observed PM Peak Hour Traffic Flows		2023 PM	J1 Unnamed Road A Access to Portion A P.xls	REVIEWED BY:	PCN	Dec-24
Access to Portion A (ARM B) (ARM B) (6) 0 (5) 9 Unnamed Road A (ARM A)	↑	$\begin{array}{rcrcrc} W \ cr & = & CEN \\ W \ b-a & = & LAN \\ W \ b-c & = & LAN \\ W \ b-c & = & LAN \\ V \ b-a & = & VISI \\ V \ b-a & = & VISI \\ V \ r \ b-a & = & VISI \\ V \ r \ c-b & = & VISI \\ D & = & STR \\ E & = & STR \\ F & = & STR \end{array}$	ATA) JOR ROAD WIDTH JIRRAL RESERVE WIDTH 4E WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a 4E WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a 8E WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY C THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY C THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY C THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY C THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY C THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY C THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY C THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY C THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY C THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY C THE RIGHT FOR VEHICLES WAITING IN STREAM C-D 18ILITY C			
COMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.20 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 9 (pcu/hr)	GEOMETRIC FACTORS : D = 0.6874468 E = 0.73132641 F = 0.80341144 Y = 0.855	5 Q b-c = 4 Q c-b =	TO CAPACITY: 429 543 596	SIGN FLOW DFC b-a = 0.0000 DFC b-c = 0.0000 DFC c-b = 0.0000 DFC b-clare lane) = 0.0000		
$\begin{array}{rcl} MAJOR ROAD (ARM C) \\ W c-b &=& 2.5 & (metres) \\ Vrc-b &=& 14 & (metres) \\ q c-a &=& 3 & (pcu/hr) \\ q c-b &=& 0 & (pcu/hr) \end{array}$		0 TOTAL FLOW	= 12 (PCU/HR)			
MINOR ROAD (ARM B) W b-a = 1.5 (metres) W b-c = 1.5 (metres) V b-a = 50 (metres) Vr b-a = 30 (metres) Vr b-c = 30 (metres) q b-a = 0 (pcu/hr) q b-c = 0 (pcu/hr)						

ZZO TECH	HNOLOGY (HK) LII	MITED				ALCULATION			INITIALS	DATE
	Warehouse for Construction Mate of 3 Years and Associated Filling of			f SPVs and Rural Workshop with Anci	llary PROJEC	CT NO.: 83133		PREPARED BY	CSY	Dec-24
Unnamed Road	ad A / Access to Existing Fish I	Farm		2023 AM	FILENA	ME:		CHECKED BY	: LL	Dec-24
23 Observed AM	Peak Hour Traffic Flows			2023 AIVI	J2_Unna	med Road A_Access to Existing Fis	sh Farm_P.xls	REVIEWED BY	: PCN	Dec-24
[6] 0 — [5] 5 — (ARM A)	RM B)	↓ 3 ◆ 8	[3] [4] ss to Existing Fish Farm (ARM C)	NOTES : (GEOMETRIC W = W cr = W b-a = W b-c = W c-b = V rb-a = V rb-c = V rb-c = V rc-b = B = F = Y =	MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILAB LANE WIDTH AVAILAB USIBILITY TO THE LEF VISIBILITY TO THE RIG VISIBILITY TO THE RIG	LE TO VEHICLE WAITING IN STREAM b-a LE TO VEHICLE WAITING IN STREAM b-c LE TO VEHICLE WAITING IN STREAM b-c TFOR VEHICLES WAITING IN STREAM b-a HT FOR VEHICLES WAITING IN STREAM b-c HT FOR VEHICLES WAITING IN STREAM b-c HT FOR VEHICLES WAITING IN STREAM b-c	a c			
METRIC DETAILS:		GEOMETRIC FACTORS		THE CAPACITY OF MO	VEMENT :		IPARISION OF DESIGN FLOW 24PACITY:			
MAJOR ROAD (AF							CAPACITY:			
MAJOR ROAD (AF W =	4.23 (metres)	D	= 0.7933051	08 Q b-a =	494		DFC b-a	= 0.000		
MAJOR ROAD (AF W = W cr =	4.23 (metres) 0 (metres)	D	= 0.7933051 = 0.8626632	08 Q b-a = 32 Q b-c =	494 641		DFC b-a DFC b-c	= 0.015	6	
MAJOR ROAD (AF W = W cr = q a-b =	4.23 (metres) 0 (metres) 0 (pcu/hr)	D E F	= 0.7933051 = 0.8626632 = 0.794599	08 Q b-a = 32 Q b-c = 42 Q c-b =	494 641 591		DFC b-a DFC b-c DFC c-b	= 0.015 = 0.005	6 1	
MAJOR ROAD (AF W = W cr =	4.23 (metres) 0 (metres)	D	= 0.7933051 = 0.8626632	08 Q b-a = 32 Q b-c = 42 Q c-b =	494 641		DFC b-a DFC b-c	= 0.015	6 1	
MAJOR ROAD (AF W = W cr = q a-b = q a-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C	DFC b-a DFC b-c DFC c-b	= 0.015 = 0.005	6 1	
MAJOR ROAD (AF W = W cr = q a-b = q a-c = MAJOR ROAD (AR	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr) RM C)	D E F	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641		DFC b-a DFC b-c DFC c-b	= 0.015 = 0.005	6 1	
MAJOR ROAD (AF W = W cr = q a-b = q a-c = MAJOR ROAD (AR W c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr) RM C) 2.4 (metres)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C	DFC b-a DFC b-c DFC c-b	= 0.015 = 0.005	6 1	
MAJOR ROAD (AF W = W cr = q.a-b = q.a-c = MAJOR ROAD (AR W c-b = Vr c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr) RM C) 2.4 (metres) 12 (metres)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C	DFC b-a DFC b-c DFC c-b	= 0.015 = 0.005	6 1	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr) RM C) 2.4 (metres) 12 (metres) 8 (pcu/hr)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C	DFC b-a DFC b-c DFC c-b	= 0.015 = 0.005	6 1	
MAJOR ROAD (AF W = W cr = q.a-b = q.a-c = MAJOR ROAD (AR W c-b = Vr c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr) RM C) 2.4 (metres) 12 (metres)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.015 = 0.005 = 0.015	6 1 6	
MAJOR ROAD (AF W = W cr = q a-b = q a-c = MAJOR ROAD (AR W c-b = Vr c-b = q c-a = q c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr) RM C) 2.4 (metres) 12 (metres) 8 (pcu/hr) 3 (pcu/hr)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C (PCU/HR)	DFC b-a DFC b-c DFC c-b	= 0.015 = 0.005	6 1 6	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr) RM C) 2.4 (metres) 12 (metres) 8 (pcu/hr) 3 (pcu/hr) RM B)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.015 = 0.005 = 0.015	6 1 6	
$\begin{array}{rcl} \text{MAJOR ROAD (AF}\\ W & = \\ W \ cr & = \\ q \ a \ c & = \\ q \ a \ c & = \\ \text{MAJOR ROAD (AR}\\ W \ c \ b & = \\ q \ c \ a & = \\ q \ c \ b & = \\ q \ c \ b & = \\ \text{MINOR ROAD (AR}\\ W \ b \ a & = \\ \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr) RM C) 2.4 (metres) 12 (metres) 8 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) RM B) 2.9 (metres)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.015 = 0.005 = 0.015	6 1 6	
$\begin{array}{rcl} \text{MAJOR ROAD (AF}\\ W & =\\ W \ cr & =\\ q \ ab & =\\ q \ ab & =\\ q \ ab & =\\ \hline\\ \text{MAJOR ROAD (AR}\\ W \ cb & =\\ Vr \ cb & =\\ q \ cb & =\\ \hline\\ \text{MINOR ROAD (AR}\\ W \ ba & =\\ W \ bc & =\\ \hline\end{array}$	4.23 (metres) 0 (metres) 0 (pcuhr) 5 (pcuhr) RM C) 2.4 (metres) 12 (metres) 8 (pcuhr) 3 (pcuhr) 3 (pcuhr) 3 (pcuhr) 3 2.9 (metres)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.015 = 0.005 = 0.015	6 1 6	
MAJOR ROAD (AF W = Q a-b = Q a-c = MAJOR ROAD (AR W c-b = Vr c-b = Q c-a = Q c-b = MINOR ROAD (AR W b-a = W b-a = Vi b-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr) RM C) 2.4 (metres) 12 (metres) 8 (pcu/hr) 3 (pcu/hr) RM B) 2.9 (metres) 2.9 (metres) 16 (metres)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.015 = 0.005 = 0.015	6 1 6	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr) 12 (metres) 8 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) RM C) 2.9 (metres) 2.9 (metres) 16 (metres) 40 (metres)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.015 = 0.005 = 0.015	6 1 6	
$\begin{array}{rcrc} \text{MAJOR ROAD (AF}\\ W & = \\ W \ cr & = \\ q \ ac & = \\ q \ ac & = \\ \end{array}$ $\begin{array}{rcrc} \text{MAJOR ROAD (AR}\\ W \ cb & = \\ Vrcb & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcrc} \text{MINOR ROAD (AR}\\ W \ bc & = \\ W \ bc & = \\ W \ bc & = \\ Vrbc & = \\ Vrbc & = \\ Vrbc & = \\ \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr) RM C) 2.4 (metres) 12 (metres) 8 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) RM B) 2.9 (metres) 16 (metres) 40 (metres) 40 (metres)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.015 = 0.005 = 0.015	6 1 6	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.23 (metres) 0 (metres) 0 (pcu/hr) 5 (pcu/hr) 12 (metres) 8 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) RM C) 2.9 (metres) 2.9 (metres) 16 (metres) 40 (metres)	D E F Y	= 0.7933051 = 0.8626632 = 0.794599 = 0.8540	08 Q b-a = 32 Q b-c = 42 Q c-b = 55 Q b-ac =	494 641 591 641	TO C (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.015 = 0.005 = 0.015	6 1 6	

ZZO TECH	INOLOGY (HK) LI	MITED		PRIO	RITY JU	NCTION C	ALCULATION	١			INITIA	S	DATE
	Varehouse for Construction Mate f 3 Years and Associated Filling				op with Ancillary	PROJEC	T NO.: 83	133		PREPARE	D BY: CSY		Dec-24
Unnamed Road	d A / Access to Existing Fish	Farm		2023 PI	л	FILENAN	ИЕ :			CHECKE	D BY: LL	1	Dec-24
3 Observed PM F	Peak Hour Traffic Flows			2023 FI	VI	J2_Unnar	med Road A_Access to	Existing Fish Farm_P.>	ls	REVIEWE	D BY: PCN		Dec-24
Innamed Roa (ARM [6] 0 — [5] 2 — Access to Existing F (ARM A)	M B)		[3] [4] (ARM C)	•	W cr = W b-a = W b-c = V b-c = V b-a = V r b-a = V r b-c = V r c-b = D = E = F =	MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABI LANE WIDTH AVAILABI LANE WIDTH AVAILABI VISIBILITY TO THE LEF VISIBILITY TO THE RIGI VISIBILITY TO THE RIGI	LE TO VEHICLE WAITING IN LE TO VEHICLE WAITING IN: LE TO VEHICLE WAITING IN: T FOR VEHICLES WAITING II HT FOR VEHICLES WAITING HT FOR VEHICLES WAITING HT FOR VEHICLES WAITING HT FOR VEHICLES WAITING	STREAM b-c STREAM c-b N STREAM b-a IN STREAM b-a IN STREAM b-c					
METRIC DETAILS:		GEOMETRIC FACTORS		THE CAP	PACITY OF MOVEM	ENT :		COMPARISION OF TO CAPACITY:	DESIGN FLOW				
MAJOR ROAD (ARI													
MAJOR ROAD (ARI W =	4.23 (metres)	D	= 0.7933	05108	Qb-a =	495			DFC b-a		0.0000		
MAJOR ROAD (ARI W = W cr =	4.23 (metres) 0 (metres)	D	= 0.7933 = 0.8626	05108	Q b-a = Q b-c =	495 642			DFC b-a DFC b-c	=	0.0125		
MAJOR ROAD (ARI W = W cr = q a-b =	4.23 (metres) 0 (metres) 0 (pcu/hr)	D E F	= 0.7933 = 0.8626 = 0.794	05108 63232 59942	Q b-a = Q b-c = Q c-b =	495 642 591			DFC b-a DFC b-c DFC c-b	= =	0.0125 0.0085		
MAJOR ROAD (ARI W = W cr =	4.23 (metres) 0 (metres)	D	= 0.7933 = 0.8626 = 0.794	05108 63232 59942	Q b-a = Q b-c =	495 642			DFC b-a DFC b-c	= =	0.0125		
MAJOR ROAD (ARI W = W cr = q a-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 2 (pcu/hr)	D E F	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942	Q b-a = Q b-c = Q c-b =	495 642 591	(PCU/HR)		DFC b-a DFC b-c DFC c-b	= =	0.0125 0.0085		
MAJOR ROAD (ARI W = W cr = q a-b = q a-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 2 (pcu/hr)	D E F Y	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942 54065	Q b-a = Q b-c = Q c-b = Q b-ac =	495 642 591 642	(PCU/HR)		DFC b-a DFC b-c DFC c-b	= =	0.0125 0.0085		
MAJOR ROAD (ARI W = W cr = q a-b = q a-c = MAJOR ROAD (ARI W c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 2 (pcu/hr) M C)	D E F Y	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942 54065	Q b-a = Q b-c = Q c-b = Q b-ac =	495 642 591 642	(PCU/HR)		DFC b-a DFC b-c DFC c-b	= =	0.0125 0.0085		
MAJOR ROAD (ARI W = W cr = qab = qab = qac = MAJOR ROAD (ARM W cb = Vrcb =	4.23 (metres) 0 (metres) 0 (pcu/hr) 2 (pcu/hr) M C) 2.4 (metres) 12 (metres)	D E F Y	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942 54065	Q b-a = Q b-c = Q c-b = Q b-ac =	495 642 591 642	(PCU/HR)		DFC b-a DFC b-c DFC c-b	= =	0.0125 0.0085		
MAJOR ROAD (ARI W = W cr = q a-b = q a-c = MAJOR ROAD (ARI W c-b =	4.23 (metres) 0 (metres) 0 (pcwhr) 2 (pcwhr) M C) 2.4 (metres)	D E F Y	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942 54065	Q b-a = Q b-c = Q c-b = Q b-ac =	495 642 591 642	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0125 0.0085 0.0125		
MAJOR ROAD (ARI W = W cr = q a-b = q a-c = MAJOR ROAD (ARI W c-b = V r c-b = q c-a = q c-b =	4.23 (metres) 0 (metres) 0 (pcwhr) 2 (pcwhr) M C) 2.4 (metres) 12 (metres) 4 (pcwhr) 5 (pcwhr)	D E F Y	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942 54065	Q b-a = Q b-c = Q c-b = Q b-ac =	495 642 591 642	(PCU/HR)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0125 0.0085		
MAJOR ROAD (ARI W = W or = q a-b = q a-c = MAJOR ROAD (ARM W c-b = V r-b = q c-a = q c-b = MINOR ROAD (ARM	4.23 (metres) 0 (metres) 0 (pcu/hr) 2 (pcu/hr) M C) 2.4 (metres) 12 (metres) 4 (pcu/hr) 5 (pcu/hr) M B)	D E F Y	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942 54065	Q b-a = Q b-c = Q c-b = Q b-ac =	495 642 591 642	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0125 0.0085 0.0125		
MAJOR ROAD (ARI W = W cr = qa-b = qa-c = MAJOR ROAD (ARI W c-b = Vrc-b = q c-a = q c-b = MINOR ROAD (ARIM W b-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 2 (pcu/hr) M C) 2.4 (metres) 12 (metres) 4 (pcu/hr) 5 (pcu/hr) W B) 2.9 (metres)	D E F Y	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942 54065	Q b-a = Q b-c = Q c-b = Q b-ac =	495 642 591 642	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0125 0.0085 0.0125		
MAJOR ROAD (ARI W = W cr = q.a-b = q.a-c = MAJOR ROAD (ARIM W c-b = V c-b = q.c-a = q.c-b = MINOR ROAD (ARIM W b-a = W b-c =	4.23 (metres) 0 (metres) 0 (pcwhr) 2 (pcwhr) M C) 2.4 (metres) 12 (metres) 4 (pcwhr) 5 (pcwhr) 4 (pcwhr) 5 (pcwhr) 2.9 (metres) 2.9 (metres)	D E F Y	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942 54065	Q b-a = Q b-c = Q c-b = Q b-ac =	495 642 591 642	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0125 0.0085 0.0125		
MAJOR ROAD (ARI W = W cr = q a-b = q a-c = MAJOR ROAD (ARM W c-b = Q c-a = q c-b = MINOR ROAD (ARM W b-a = W b-c = Viba =	4.23 (metres) 0 (metres) 0 (pcu/hr) 2 (pcu/hr) M C) 2.4 (metres) 12 (metres) 4 (pcu/hr) 5 (pcu/hr) W B) 2.9 (metres) 2.9 (metres) 16 (metres)	D E F Y	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942 54065	Q b-a = Q b-c = Q c-b = Q b-ac =	495 642 591 642	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0125 0.0085 0.0125		
MAJOR ROAD (ARI W = W cr = q a-b = q a-c = MAJOR ROAD (ARI W c-b = q c-a = q c-b = MINOR ROAD (ARI W b-a = W b-c = V t-b = V t-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 2.2 (pcu/hr) M C) 2.4 (metres) 12 (metres) 4 (pcu/hr) 5 (pcu/hr) M B) 2.9 (metres) 2.9 (metres) 16 (metres) 40 (metres)	D E F Y	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942 54065	Q b-a = Q b-c = Q c-b = Q b-ac =	495 642 591 642	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0125 0.0085 0.0125		
MAJOR ROAD (ARI W = W cr = q a-b = q a-c = MAJOR ROAD (ARI W c-b = Vrc-b = q c-a = q c-b = MINOR ROAD (ARIM W b-a = W b-c = Vrb-a = Vrb-a = Vrb-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 2 (pcu/hr) 4 (metres) 12 (metres) 4 (pcu/hr) 5 (pcu/hr) 4 (pcu/hr) 5 (pcu/hr) 4 (metres) 16 (metres) 10 (metres) 40 (metres) 40 (metres)	D E F Y	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942 54065	Q b-a = Q b-c = Q c-b = Q b-ac =	495 642 591 642	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0125 0.0085 0.0125		
MAJOR ROAD (ARI W = W cr = q a-b = q a-c = MAJOR ROAD (ARI W c-b = q c-a = q c-b = MINOR ROAD (ARI W b-a = W b-c = V t-b = V t-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 2.2 (pcu/hr) M C) 2.4 (metres) 12 (metres) 4 (pcu/hr) 5 (pcu/hr) M B) 2.9 (metres) 2.9 (metres) 16 (metres) 40 (metres)	D E F Y	= 0.7933 = 0.8626 = 0.794 = 0.8	05108 63232 59942 54065	Q b-a = Q b-c = Q c-b = Q b-ac =	495 642 591 642	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0125 0.0085 0.0125		

ZZO TECI	HNOLOGY (HK) LI	MITED		PRIORITY JU		LCULATION			INITIALS	DATE
	Warehouse for Construction Mate of 3 Years and Associated Filling			SPVs and Rural Workshop with Ancilla	PROJECT I	NO.: 83133		PREPARED B	r: CSY	Dec-24
Unnamed Roa	ad A / Access Road underneath	n KSWH		2023 AM	FILENAME	1		CHECKED B	r: LL	Dec-24
3 Observed AM	M Peak Hour Traffic Flows			2023 AIVI	Jnnamed Ro	oad A_Access Road underneath KSWH_P.>	ds	REVIEWED B	Y: PCN	Dec-24
[6] 2 - [5] 50 - Access Road under (ARM A)	ARM B)	↓ 10 ↓ 56	[3] [4] 0ad underneath KSWH (ARM C)	NOTES : (GEOMETRIC IN W = W cr = W bca = W bcc = W bcb = V tbca = V tbca = V tbca = V tbcb = D = E = F = Y =	MAJOR ROAD WIDTH CENTRAL RESERVE WIDT LANE WIDTH AVAILABLE T LANE WIDTH AVAILABLE T LANE WIDTH AVAILABLE T VISIBILITY TO THE LEFT FI VISIBILITY TO THE RIGHT VISIBILITY TO THE RIGHT	TH TO VEHICLE WAITING IN STREAM b-a TO VEHICLE WAITING IN STREAM b-c TO VEHICLE WAITING IN STREAM b-a OR VEHICLES WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM b-c FOR VEHICLES WAITING IN STREAM b-c FOR VEHICLES WAITING IN STREAM c-b				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEM	MENT :	COMPARISION OF TO CAPACITY:	DESIGN FLOW			
MAJOR ROAD (A										
MAJOR ROAD (A W =	4.75 (metres)	D	= 0.819750132	Q b-a =	489		DFC b-a	= 0.01		
MAJOR ROAD (A W = W cr =	4.75 (metres) 0 (metres)	D	= 0.86654348	Qb-a = Qb-c =	489 632		DFC b-a DFC b-c	= 0.01	42	
MAJOR ROAD (A W =	4.75 (metres) 0 (metres) 2 (pcu/hr)	D E F	= 0.86654348 = 0.91047865	Qb-a = Qb-c = Qc-b =	489 632 664		DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	42 51	
MAJOR ROAD (A W = W cr =	4.75 (metres) 0 (metres)	D	= 0.86654348	Qb-a = Qb-c = Qc-b =	489 632		DFC b-a DFC b-c	= 0.01	42 51	
MAJOR ROAD (A W = W cr = q a-b = q a-c =	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	42 51	
MAJOR ROAD (Å W = W cr = q a-b = q a-c = MAJOR ROAD (A	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) ARM C)	D E F	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qb-ac =	489 632 664 572		DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	42 51	
MAJOR ROAD (Å W = W cr = q a-b = q a-c = MAJOR ROAD (Å W c-b =	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) ARM C) 3.5 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	42 51	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) ARM C) 3.5 (metres) 35 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	42 51	
MAJOR ROAD (<i>k</i> W = W cr = q ab = q ac = MAJOR ROAD (A W c-b = Vr c-b = q c-a =	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) ARM C) 3.5 (metres) 36 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	42 51	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) ARM C) 3.5 (metres) 35 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	42 51 45	
MAJOR ROAD (<i>k</i> W = W cr = q ab = q ac = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b =	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) 35 (metres) 35 (metres) 56 (pcu/hr) 10 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01	42 51 45	
$\begin{array}{rcl} \text{MAJOR ROAD}(\textit{\textit{K}}) & \textit{\textit{K}} & \textit{\textit{K}} \\ & \textit{\textit{W}} & \textit{\textit{c}} & \textit{\textit{c}} \\ & q a b & = \\ & q a b & = \\ & q a c & = \\ & q a c & = \\ & q c c a & = \\ & q c c b & = \\ & q c c b & = \\ & \text{MINOR ROAD}(\textit{AI}) \end{array}$	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 56 (pcu/hr) 10 (pcu/hr) ARM B)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	42 51 45	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (AI W b-a =	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) ARM C) 3.5 (metres) 56 (pcu/hr) 10 (pcu/hr) ARM B) 2.7 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	42 51 45	
MAJOR ROAD (<i>k</i> W = Q ab = Q ab = Q ac = MAJOR ROAD (<i>A</i> W c-b = Vr c-b = Q c-a = Q c-b = MINOR ROAD (<i>A</i> W b-a = W b-c =	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 56 (pcu/hr) 10 (pcu/hr) 10 (pcu/hr) ARM B) 2.7 (metres) 2.7 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	42 51 45	
MAJOR ROAD (/ W = Q ab = Q ac = MAJOR ROAD (A W c-b = Vr c-b = Q c-a = Q c-b = MINOR ROAD (AI W b-a = W b-c = VI b-a =	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) 3.5 (metres) 35 (metres) 56 (pcu/hr) 10 (pcu/hr) 10 (pcu/hr) 10 (pcu/hr) 10 (pcu/hr) 10 (metres) 2.7 (metres) 60 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	42 51 45	
MAJOR ROAD (A W = Q ab = Q ab = Q ac = MAJOR ROAD (A W cb = Q c-a = Q c-a = Q c-b = MINOR ROAD (AI W b-a = W b-c = VI b-a = VI b-a =	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) 3.5 (metres) 35 (metres) 56 (pcu/hr) 10 (pcu/hr) 4RM B) 2.7 (metres) 60 (metres) 67 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	42 51 45	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (AI W b-a = W b-c = Vr b-a = Vr b-a = Vr b-a = Vr b-a = Vr b-c =	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) ARM C) 3.5 (metres) 56 (pcu/hr) 10 (pcu/hr) ARM B) 2.7 (metres) 60 (metres) 67 (metres) 67 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	42 51 45	
MAJOR ROAD (A W = Q ab = Q ab = Q ac = MAJOR ROAD (A W cb = Q c-a = Q c-a = Q c-b = MINOR ROAD (AI W b-a = W b-c = VI b-a = VI b-a =	4.75 (metres) 0 (metres) 2 (pcu/hr) 50 (pcu/hr) 3.5 (metres) 35 (metres) 56 (pcu/hr) 10 (pcu/hr) 4RM B) 2.7 (metres) 60 (metres) 67 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	489 632 664 572	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	42 51 45	

ZZO TECH	HNOLOGY (HK) LI	MITED		PRIORITY JUN	CTION CALCU	LATION			INITIALS	DATE
	Warehouse for Construction Mat of 3 Years and Associated Filling			and Rural Workshop with Ancillary	PROJECT NO.:	83133		PREPARED B	CSY	Dec-24
Unnamed Road	ad A / Access Road underneat	h KSWH		2023 PM	FILENAME :			CHECKED B	/: LL	Dec-24
23 Observed PM	I Peak Hour Traffic Flows			2023 PM	Jnnamed Road A_A	Access Road underneath KSWH_P.xl	6	REVIEWED B	C PCN	Dec-24
Unnamed R((Al [6] 2 - [5] 66 - Access Road unden (ARM A)				$\begin{array}{cccc} W \ cr & = & CEI \\ W \ b-a & = & LAN \\ W \ b-c & = & LAN \\ W \ c-b & = & LAN \\ VI \ b-a & = & VIS \\ Vr \ b-a & = & VIS \\ Vr \ b-a & = & VIS \\ Vr \ c-b & = & VIS \\ D & = & STF \\ E & = & STF \\ F & = & STF \end{array}$	DATA) JOR ROAD WIDTH NTRAL RESERVE WIDTH WE WIDTH AVAILABLE TO VEHICI WIDTH AVAILABLE TO VEHICI WIDTH AVAILABLE TO VEHICI IBILITY TO THE RIGHT FOR VEHI IBILITY TO THE RIGHT FOR VEHI REAM-SPECIFIC B-A REAM-SPECIFIC B-C REAM-SPECIFIC B-C REAM-SPECIFIC C-B 0.0345W)	LE WAITING IN STREAM b-c LE WAITING IN STREAM c-b ELES WAITING IN STREAM b-a CLES WAITING IN STREAM b-a CLES WAITING IN STREAM b-c				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT	:	COMPARISION OF D	ESIGN FLOW			
MAJOR ROAD (A	,					COMPARISION OF D TO CAPACITY:				
MAJOR ROAD (A W =	4.75 (metres)	D =	0.819750132	Qb-a =	485		DFC b-a	= 0.01		
MAJOR ROAD (A W = W cr =	4.75 (metres) 0 (metres)	D = E =	0.86654348	Q b-a = Q b-c =	485 628		DFC b-a DFC b-c	= 0.00	18	
MAJOR ROAD (A W =	4.75 (metres) 0 (metres) 2 (pcu/hr)	D = E = F =	0.86654348 0.91047865	Q b-a = Q b-c = Q c-b =	485 628 659		DFC b-a DFC b-c DFC c-b	= 0.00 = 0.01	48 06	
MAJOR ROAD (A W = W cr =	4.75 (metres) 0 (metres)	D = E =	0.86654348	Q b-a = Q b-c =	485 628		DFC b-a DFC b-c	= 0.00	48 06	
MAJOR ROAD (A W = W cr = q a-b = q a-c =	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	485 628 659 521	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.00 = 0.01	48 06	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AF	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr) NRM C)	D = E = F =	0.86654348 0.91047865	Q b-a = Q b-c = Q c-b =	485 628 659 521		DFC b-a DFC b-c DFC c-b	= 0.00 = 0.01	48 06	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (Af W c-b =	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr) ARM C) 3.5 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	485 628 659 521	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.00 = 0.01	48 06	
MAJOR ROAD (A W = W cr = q a·b = q a·c = MAJOR ROAD (Ai W c·b = Vr c·b =	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr) ARM C) 3.5 (metres) 35 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	485 628 659 521	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.00 = 0.01	48 06	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (Af W c-b =	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr) ARM C) 3.5 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	485 628 659 521	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.00 = 0.01	48 06	
$\begin{array}{rcl} \text{MAJOR ROAD} (A\\ W &=\\ W \text{cr} &=\\ q a \cdot b &=\\ q a \cdot c &=\\ \text{MAJOR ROAD} (AI\\ W c \cdot b &=\\ V r c \cdot b &=\\ q c \cdot a &=\\ q c \cdot b &=\\ \end{array}$	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr) 35 (metres) 35 (metres) 64 (pcu/hr) 7 (pcu/hr)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	485 628 659 521	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.00 = 0.01	18 16 12	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr) 3.5 (metres) 35 (metres) 64 (pcu/hr) 7 (pcu/hr) RM B)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	485 628 659 521	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.00 = 0.01 = 0.01	18 16 12	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (Ai W c-b = V c-b = q c-a = q c-b = MINOR ROAD (Ai W b-a =	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr) ARM C) 3.5 (metres) 64 (pcu/hr) 7 (pcu/hr) RM B) 2.7 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	485 628 659 521	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.00 = 0.01 = 0.01	18 16 12	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (Af W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (AF W b-a = W b-c =	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr) ARM C) 3.5 (metres) 64 (pcu/hr) 7 (pcu/hr) RM B) 2.7 (metres) 2.7 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	485 628 659 521	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.00 = 0.01 = 0.01	18 16 12	
$\begin{array}{rcl} \mbox{MAJOR ROAD} (A\\ W & = \\ W \mbox{cr} & = \\ q \mbox{abs} & = \\ q \mbox{abs} & = \\ \mbox{MAJOR ROAD} (AI\\ W \mbox{cb} & = \\ Vr \mbox{cb} & = \\ Vr \mbox{cb} & = \\ q \mbox{cb} & = \\ \mbox{MINOR ROAD} (AF\\ W \mbox{ba} & = \\ W \mbox{bb} \mbox{cc} & = \\ W \mbox{bb} \mbox{cc} & = \\ Vl \mbox{bb} & = \\ \mbox{W} \mbox{bb} \mbox{cc} & = \\ \mbox{Vl} \mbox{bb} & = \\ \mbox{W} \mbox{bb} \mbox{cc} & = \\ \mbox{W} \mbox{bb} \mbox{bb} \mbox{cc} & = \\ \mbox{W} \mbox{bb} \mbox{cc} & = \\ \mbox{W} \mbox{bb} bb$	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr) 3.5 (metres) 35 (metres) 64 (pcu/hr) 7 (pcu/hr) RM B) 2.7 (metres) 2.7 (metres) 60 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	485 628 659 521	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.00 = 0.01 = 0.01	18 16 12	
$\begin{array}{rcl} \text{MAJOR ROAD (A}\\ W & = \\ W \text{cr} & = \\ q a \text{c} & = \\ q a \text{c} & = \\ q a \text{c} & = \\ \text{MAJOR ROAD (AI}\\ W c \text{b} & = \\ V \text{fc} \text{c} & = \\ q c \text{c} & = \\ q c \text{c} & = \\ q c \text{c} & = \\ \text{MINOR ROAD (AF}\\ W b \text{c} & = \\ \text{VI b a} & = \\ \text{VI b a} & = \\ \text{VI b a} & = \\ \end{array}$	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr) 3.5 (metres) 35 (metres) 64 (pcu/hr) 7 (pcu/hr) RM B) 2.7 (metres) 60 (metres) 60 (metres) 67 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	485 628 659 521	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.00 = 0.01 = 0.01	18 16 12	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AF W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (AF W b-a = W b-c = Vr b-a = Vr b-a = Vr b-c =	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr) 3.5 (metres) 35 (metres) 64 (pcu/hr) 7 (pcu/hr) RM B) 2.7 (metres) 60 (metres) 67 (metres) 67 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	485 628 659 521	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.00 = 0.01 = 0.01	18 16 12	
$\begin{array}{rcl} \text{MAJOR ROAD (A}\\ W & = \\ W \text{cr} & = \\ q a \text{c} & = \\ q a \text{c} & = \\ q a \text{c} & = \\ \text{MAJOR ROAD (AI}\\ W c \text{b} & = \\ V \text{fc} \text{c} & = \\ q c \text{c} & = \\ q c \text{c} & = \\ q c \text{c} & = \\ \text{MINOR ROAD (AF}\\ W b \text{c} & = \\ \text{VI b a} & = \\ \text{VI b a} & = \\ \text{VI b a} & = \\ \end{array}$	4.75 (metres) 0 (metres) 2 (pcu/hr) 66 (pcu/hr) 3.5 (metres) 35 (metres) 64 (pcu/hr) 7 (pcu/hr) RM B) 2.7 (metres) 60 (metres) 60 (metres) 67 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	485 628 659 521	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.00 = 0.01 = 0.01	18 16 12	

ZZO TEC	HNOLOGY (HK) L	.IMITED				ICTION CA	LCULATION					INITIALS	DATE
	y Warehouse for Construction Ma d of 3 Years and Associated Fillir				Workshop with Ancillary	PROJECT	Г NO.: 83133			PREPA	RED BY:	CSY	Dec-24
Access Road	underneath KSWH / Ha Tsu	en Road		20	23 AM	FILENAM	E :			CHEC	KED BY:	LL	Dec-24
3 Observed AN	M Peak Hour Traffic Flows			20		Access F	Road underneath KSWH_	Ha Tsuen Road_P.xl	5	REVIEW	WED BY:	PCN	Dec-24
Access Road unde (A [6] 10 - [5] 678 - Ha Tsuen (ARM A)	ARM B)	49 • • • • • • • • • •	[3] [4] Cad underneath KS (ARM C)	N WH	W cr = 0 W b-a = 1 W b-c = 1 V b-a = 2 V r b-a = 2 V r b-c = 2 D = 2 F = 2	MAJOR ROAD WIDTH CENTRAL RESERVE WID ANE WIDTH AVAILABLE ANE WIDTH AVAILABLE ANE WIDTH AVAILABLE ISIBILITY TO THE LEFT ISIBILITY TO THE RIGH'	DTH E TO VEHICLE WAITING IN STRE TO VEHICLE WAITING IN STRE TO VEHICLE WAITING IN STR FOR VEHICLES WAITING IN S T FOR VEHICLES WAITING IN S T FOR VEHICLES WAITING IN S	EAM b-c EAM c-b TREAM b-a STREAM b-a STREAM b-c					
IETRIC DETAILS:		GEOMETRIC FACTORS :			THE CAPACITY OF MOVEME	NT :		COMPARISION OF D TO CAPACITY:	ESIGN FLOW				
MAJOR ROAD (/													
MAJOR ROAD (A W =	7.41 (metres)	D		1636816	Q b-a =	220			DFC b-a	=	0.0455		
MAJOR ROAD (/ W = W cr =	7.41 (metres) 0 (metres)	D	= 0.72	2335517	Qb-a = Qb-c =	220 405			DFC b-a DFC b-c	=	0.1210		
MAJOR ROAD (/ W = W cr = q a-b =	7.41 (metres) 0 (metres) 10 (pcu/hr)	D E F	= 0.72 =	2335517 0.9325	Q b-a = Q b-c = Q c-b =	220 405 521			DFC b-a DFC b-c DFC c-b	= = =	0.1210 0.1075		
MAJOR ROAD (/ W = W cr =	7.41 (metres) 0 (metres)	D	= 0.72 =	2335517	Qb-a = Qb-c =	220 405			DFC b-a DFC b-c		0.1210		
MAJOR ROAD (/ W = W cr = q a-b =	7.41 (metres) 0 (metres) 10 (pcu/hr) 678 (pcu/hr)	D E F	= 0.72 = = 0.7	2335517 0.9325	Q b-a = Q b-c = Q c-b =	220 405 521	(PCU/HR)		DFC b-a DFC b-c DFC c-b		0.1210 0.1075		
MAJOR ROAD (/ W = W cr = q a-b = q a-c =	7.41 (metres) 0 (metres) 10 (pcu/hr) 678 (pcu/hr)	D E F Y	= 0.72 = = 0.7	2335517 0.9325 7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	220 405 521 354	(PCU/HR)		DFC b-a DFC b-c DFC c-b		0.1210 0.1075		
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A	7.41 (metres) 0 (metres) 10 (pcu/hr) 678 (pcu/hr)	D E F Y	= 0.72 = = 0.7	2335517 0.9325 7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	220 405 521 354	(PCU/HR)		DFC b-a DFC b-c DFC c-b		0.1210 0.1075		
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b =	7.41 (metres) 0 (metres) 10 (pcu/hr) 678 (pcu/hr) ARM C) 3.7 (metres)	D E F Y	= 0.72 = = 0.7	2335517 0.9325 7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	220 405 521 354	(PCU/HR)		DFC b-a DFC b-c DFC c-b		0.1210 0.1075		
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	7.41 (metres) 0 (metres) 10 (pcu/hr) 678 (pcu/hr) ARM C) 3.7 (metres) 45 (metres)	D E F Y	= 0.72 = = 0.7	2335517 0.9325 7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	220 405 521 354	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1210 0.1075 0.1664		
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b =	7.41 (metres) 0 (metres) 10 (pcuhr) 678 (pcuhr) ARM C) 3.7 (metres) 45 (metres) 657 657 (pcuhr) 56 (pcuhr)	D E F Y	= 0.72 = = 0.7	2335517 0.9325 7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	220 405 521 354	(PCU/HR)		DFC b-a DFC b-c DFC c-b DFC b-c (share lane)		0.1210 0.1075		
$\begin{array}{rcl} \text{MAJOR ROAD}(\textit{k})\\ W & = & \\ W \ cr & = & \\ q \ a \ c & = & \\ q \ a \ c & = & \\ \\ \text{MAJOR ROAD}(\textit{k})\\ W \ c \ b & = & \\ Vr \ c \ b & = & \\ q \ c \ a & = & \\ q \ c \ b & = & \\ \\ \text{MINOR ROAD}(\textit{k}) \end{array}$	7.41 (metres) 0 (metres) 10 (pcu/hr) 678 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 657 (pcu/hr) 56 (pcu/hr) ARM B)	D E F Y	= 0.72 = = 0.7	2335517 0.9325 7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	220 405 521 354	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1210 0.1075 0.1664		
$\begin{array}{rcl} \text{MAJOR ROAD}(i)\\ W & = \\ W \ cr & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD}(A \\ W \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD}(A \\ W \ bb & = \\ \end{array}$	7.41 (metres) 0 (metres) 10 (pcu/hr) 678 (pcu/hr) ARM C) 3.7 3.7 (metres) 657 (pcu/hr) 56 (pcu/hr) ARM B) 1.3	D E F Y	= 0.72 = = 0.7	2335517 0.9325 7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	220 405 521 354	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1210 0.1075 0.1664		
$\begin{array}{rcl} \text{MAJOR ROAD}(i)\\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ab & = \\ q \ ab & = \\ \hline \text{MAJOR ROAD}(A \\ W \ cb & = \\ Vr \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \hline \text{MINOR ROAD}(A \\ W \ bb & = \\ W \ bb & = \\ W \ bb & = \\ \hline \end{array}$	7.41 (metres) 0 (metres) 10 (pcu/hr) 678 (pcu/hr) ARM C) 3.7 3.7 (metres) 657 (pcu/hr) 56 (pcu/hr) 56 (pcu/hr) 45 (metres) 657 1.3 1.3 (metres)	D E F Y	= 0.72 = = 0.7	2335517 0.9325 7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	220 405 521 354	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1210 0.1075 0.1664		
$\begin{array}{rcl} \text{MAJOR ROAD}(k)\\ W & = \\ W \ cr & = \\ q \ a \ b & = \\ q \ a \ c & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD}(k)\\ W \ c \ b & = \\ Vr \ c \ b & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD}(k)\\ W \ b \ a & = \\ W \ b \ c & = \\ W \ b \ c & = \\ Vl \ b \ a & = \\ \end{array}$	7.41 (metres) 0 (metres) 10 (pcu/hr) 678 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 657 (pcu/hr) 56 (pcu/hr) 56 (pcu/hr) 1.3 (metres) 1.3 (metres) 1.3 (metres)	D E F Y	= 0.72 = = 0.7	2335517 0.9325 7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	220 405 521 354	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1210 0.1075 0.1664		
$\begin{array}{rcl} \text{MAJOR ROAD} (\prime \\ W & = \\ W \ cr & = \\ q \ a \ c & = \\ q \ a \ c & = \\ \text{MAJOR ROAD} (\land \\ W \ c \ b & = \\ q \ c \ c & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \text{MINOR ROAD} (\land \\ W \ b \ c & = \\ W \ b \ c & = \\ W \ b \ c & = \\ V \ b \ c & = \\ \end{array}$	7.41 (metres) 0 (metres) 10 (pcu/hr) 678 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 657 (pcu/hr) 56 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72 = = 0.7	2335517 0.9325 7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	220 405 521 354	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1210 0.1075 0.1664		
$\begin{array}{rcl} \text{MAJOR ROAD}(i)\\ W & = \\ W \ cr & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD}(A \\ W \ cb & = \\ V \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD}(A \\ W \ bb & = \\ W \ b$	7.41 (metres) 0 (metres) 10 (pcu/hr) 678 (pcu/hr) ARM C) 3.7 3.7 (metres) 45 (metres) 657 (pcu/hr) 56 (pcu/hr) ARM B) 1.3 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72 = = 0.7	2335517 0.9325 7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	220 405 521 354	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1210 0.1075 0.1664		
$\begin{array}{rcl} \text{MAJOR ROAD} (\prime \\ W & = \\ W \ cr & = \\ q \ a \ c & = \\ q \ a \ c & = \\ \text{MAJOR ROAD} (\land \\ W \ c \ b & = \\ q \ c \ c & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \text{MINOR ROAD} (\land \\ W \ b \ c & = \\ W \ b \ c & = \\ W \ b \ c & = \\ V \ b \ c & = \\ \end{array}$	7.41 (metres) 0 (metres) 10 (pcu/hr) 678 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 657 (pcu/hr) 56 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72 = = 0.7	2335517 0.9325 7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	220 405 521 354	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1210 0.1075 0.1664		

ZZO TEC	HNOLOGY (HK) I	_IMITED		PRIORITY JUNC	CTION CALCULAT	FION			INITIALS	DATE
	y Warehouse for Construction M d of 3 Years and Associated Fillir			and Rural Workshop with Ancillary	PROJECT NO.:	83133		PREPARED	BY: CSY	Dec-24
	underneath KSWH / Ha Tsu			2022 DM	FILENAME :			CHECKED	BY: LL	Dec-24
3 Observed PN	M Peak Hour Traffic Flows			2023 PM	_Access Road underneat	th KSWH_Ha Tsuen Road_P.x	is	REVIEWED	BY: PCN	Dec-24
Access Road unde (/ [6] 10 - [5] 572 - Ha Tsuen (ARM A)	ARM B)	59 ↓ 61 559 Access Ro	[3] [4] ad underneath KSWH (ARM C)	$\begin{array}{rcl} W \ cr & = & CEN \\ W \ b-a & = & LANI \\ W \ b-c & = & LANI \\ W \ c-b & = & LANI \\ V \ b-a & = & VISIE \\ V \ r \ b-a & = & VISIE \\ V \ r \ c-b & = & VISIE \\ D & = & STRI \\ E & = & STRI \\ F & = & STRI \end{array}$	ATA) IOR ROAD WIDTH ITRAL RESERVE WIDTH IE WIDTH AVALABLE TO VEHICLE WAIT IE WIDTH AVALABLE TO VEHICLE WAIT IE WIDTH AVALABLE TO VEHICLE WAIT BILITY TO THE LEFT FOR VEHICLES W BILITY TO THE RIGHT FOR VEHICLES W BILITY TO THE RIGHT FOR VEHICLES V IEAM-SPECIFIC B-A IEAM-SPECIFIC B-C IEAM-SPECIFIC C-B .0345W)	TING IN STREAM b-c TING IN STREAM c-b AITING IN STREAM b-a VAITING IN STREAM b-a VAITING IN STREAM b-c				
NETRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT :	:	COMPARISION OF I TO CAPACITY:	DESIGN FLOW			
MAJOR ROAD (
MAJOR ROAD (A W =	7.41 (metres)	D	= 0.711636816	Qb-a =	250		DFC b-a		1400	
MAJOR ROAD (W = W cr =	7.41 (metres) 0 (metres)	D E	= 0.72335517	Q b-a = Q b-c =	250 426		DFC b-a DFC b-c	= 0	385	
MAJOR ROAD (W = W cr = q a-b =	7.41 (metres) 0 (metres) 10 (pcu/hr)	D E F	= 0.72335517 = 0.9325	Qb-a = Qb-c = Qc-b =	250 426 548		DFC b-a DFC b-c DFC c-b	= 0 = 0	1385 113	
MAJOR ROAD (W = W cr =	7.41 (metres) 0 (metres)	D E F	= 0.72335517	Q b-a = Q b-c =	250 426		DFC b-a DFC b-c	= 0 = 0	385	
MAJOR ROAD (W = W cr = q a-b =	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr)	D E F	= 0.72335517 = 0.9325	0.b-a = 0.b-c = 0.c-b = 0.b-ac =	250 426 548	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0 = 0	1385 113	
MAJOR ROAD () W = W cr = q a-b = q a-c =	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qb-ac = Qb-ac =	250 426 548 387	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0 = 0	1385 113	
MAJOR ROAD () W = W cr = q a-b = q a-c = MAJOR ROAD (A	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr) ARM C)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qb-ac = Qb-ac =	250 426 548 387	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0 = 0	1385 113	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (/ W c-b =	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr) ARM C) 3.7 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qb-ac = Qb-ac =	250 426 548 387	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0 = 0	1385 113	
MAJOR ROAD (,	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr) ARM C) 3.7 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qb-ac = Qb-ac =	250 426 548 387	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	1385 1113 785	
MAJOR ROAD (, W = W cr = q ab = q ac = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b =	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr) 3.7 (metres) 45 (metres) 559 (pcu/hr) 61 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qb-ac = Qb-ac =	250 426 548 387	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0	1385 1113 785	
$\begin{array}{rcl} \text{MAJOR ROAD}(,\\ W & = \\ W \ cr & = \\ q \ a \ b & = \\ q \ a \ c & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD}(A \\ W \ c \ b & = \\ Vr \ c \ b & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD}(A \\ A \\ M \\ Road \ c \ b & = \\ \end{array}$	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 559 (pcu/hr) 61 (pcu/hr) ARM B)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qb-ac = Qb-ac =	250 426 548 387	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	1385 1113 785	
MAJOR ROAD (, W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-a = q c-b = MINOR ROAD (A W b-a =	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr) ARM C) 3.7 3.7 (metres) 559 (pcu/hr) 61 (pcu/hr) ARM B) 1.3	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qb-ac = Qb-ac =	250 426 548 387	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	1385 1113 785	
$\begin{array}{rcl} \text{MAJOR ROAD}(,\\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ac & = \\ q \ ac & = \\ \text{MAJOR ROAD}(A \\ W \ cb & = \\ Vr \ cb & = \\ q \ cc & = \\ q \ cc & = \\ q \ cc & = \\ \text{MINOR ROAD}(A \\ W \ bc & = \\ W \ bc & = \\ W \ bc & = \\ \end{array}$	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 559 (pcu/hr) 61 (pcu/hr) ARM B) 1.3 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qb-ac = Qb-ac =	250 426 548 387	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	1385 1113 785	
$\begin{array}{rcl} \text{MAJOR ROAD}(,\\ & W & = \\ & W \ cr & = \\ & q \ ab & = \\ & q \ ab & = \\ & q \ ab & = \\ & q \ cb & = \\ & Vr \ cb & = \\ & Q \ cb & = \\ & \text{MINOR ROAD}(A \\ & W \ bba & = \\ & Vr \ bba & = \\ &$	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 559 (pcu/hr) 61 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 1.3 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qb-ac = Qb-ac =	250 426 548 387	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	1385 1113 785	
$\begin{array}{rcl} \text{MAJOR ROAD}(,\\ W & = \\ W \ cr & = \\ q \ a \ c & = \\ q \ a \ c & = \\ \text{MAJOR ROAD}(A \\ W \ c \ b & = \\ V \ c \ c & = \\ q \ c \ a & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \hline \begin{array}{rcl} \text{MINOR ROAD}(A \\ W \ b \ a & = \\ W \ b \ c & = \\ W \ b \ c & = \\ V \ b \ c & = \\ \end{array}$	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 559 (pcu/hr) 61 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qb-ac = Qb-ac =	250 426 548 387	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	1385 1113 785	
MAJOR ROAD (, W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = Vr b-a = Vr b-a = Vr b-a = Vr b-a = Vr b-a =	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr) ARM C) 3.7 3.7 (metres) 45 (metres) 559 (pcu/hr) 61 (pcu/hr) ARM B) 1.3 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qb-ac = Qb-ac =	250 426 548 387	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	1385 1113 785	
$\begin{array}{rcl} \text{MAJOR ROAD}(,\\ W & = \\ W \ cr & = \\ q \ a \ c & = \\ q \ a \ c & = \\ \text{MAJOR ROAD}(A \\ W \ c \ b & = \\ V \ c \ c & = \\ q \ c \ a & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \hline \begin{array}{rcl} \text{MINOR ROAD}(A \\ W \ b \ a & = \\ W \ b \ c & = \\ W \ b \ c & = \\ V \ b \ c & = \\ \end{array}$	7.41 (metres) 0 (metres) 10 (pcu/hr) 572 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 559 (pcu/hr) 61 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qb-ac = Qb-ac =	250 426 548 387	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	1385 1113 785	

) TECHNOLOGY (H				FIC SIGNAL CALCULATION		INITIALS	DATE
		Femporary Warehouse for Construction I ry Facilities for a Period of 3 Years and I				PROJECT NO.: 83133	PREPARED BY:	CSY	Dec-24
		Roundabout	ASSociated I ming of Land and			FILENAME :	CHECKED BY:	LL	Dec-24
		erved AM Peak Hour Traffic Flows			2023 AM	J5_KSWH Roundabout_R.xls	REVIEWED BY:	PCN	Dec-24
2020	0.000						NETIENED DI	1 0.1	50021
			Slip Road of K	ong Sham We (ARM A)	estern Highway	N			
			(ARM D) 4	1117 4 → 1308	157 157 16 1312 (ARM C)				
				Slir	Road of Kong Sham Western High	Nav			
				Slip	Road of Kong Sham Western Highv	way			
ARM			A	Slip	p Road of Kong Sham Western Highv	way			
	PAR	AMETERS:	A			way			
INPUT	PAR/	AMETERS: Approach half width (m)	A .0			way			
INPUT V				C	D	way			
INPUT V E L	=	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	8.2 9.3 1.8	way			
INPUT V E L R	= =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	8.2 9.3 1.8 10.0	way			
INPUT V E L R D	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	7.9 7.9 1.0 100.0 71.0	8.2 9.3 1.8 10.0 71.0	way			
INPUT V E L R D	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	8.2 9.3 1.8 10.0	way			
INPUT V E L R D A	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 157	C 7.9 7.9 1.0 100.0 71.0 31.0 1312	8.2 9.3 1.8 10.0 71.0 21.0 4	мау			
INPUT E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	8.2 9.3 1.8 10.0 71.0 21.0	way			
INPUT E L R D Q Qc	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 157	C 7.9 7.9 1.0 100.0 71.0 31.0 1312	8.2 9.3 1.8 10.0 71.0 21.0 4	way			
INPUT E L R D A Q Qc	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 157 1117	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16	B.2 9.3 1.8 10.0 71.0 21.0 4 1308	way			
INPUT E L R D A Q Q C OUTP S	= = = = = = UT PA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16	B.2 9.3 1.8 10.0 71.0 21.0 4 1308	way			
INPUT V E L R D A Q Q Q C OUTP S K	= = = = = = UT PA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04	B.2 9.3 1.8 10.0 71.0 21.0 4 1308	way			
INPUT V E L R D A Q Q C OUTP S K X2	= = = = = = UT PA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90	B.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57	way			
INPUT V E L R D A Q Q C OUTP S K X2 M	= = = = = = UT PA = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90 3	B.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57 3	way			
INPUT V E L R D A Q Q c OUTP S K X2 M F	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90 3 2394	8.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57 3 2597	мау			
INPUT V E L R D A Q Q C OUTP S K X2 M F Td	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90 3 2394 1.12	8.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57 3 2597 1.12	мау			
INPUT V E L R D A Q Q Q Q Q Q C S K X2 M F T d F c	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90 3 2394 1.12 0.61	B.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57 3 2597 1.12 0.64				
V E L D A Q Qc	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90 3 2394 1.12	8.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1473	PCU	
INPUT V E L R D A Q Q Q Q Q C S K X2 M F T d F c	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90 3 2394 1.12 0.61	B.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57 3 2597 1.12 0.64		1473	PCU	

			HK) LIMITED			FIC SIGNAL CALCULATION		INITIALS	DATE
		Femporary Warehouse for Construction ry Facilities for a Period of 3 Years and <i>J</i>				PROJECT NO.: 83133	PREPARED BY:	CSY	Dec-24
		Roundabout	Associated I lilling of Land and			FILENAME :	CHECKED BY:	LL	Dec-24
		erved PM Peak Hour Traffic Flows			2023 PM	J5_KSWH Roundabout_R.xls	REVIEWED BY:		Dec-24
2023	005	erved Fivir eak flour franc flows				35_KSWITKoulidabout_K.AS	REVIEWED BT.	FUN	Dec-24
			(ARM D) 3 Access Road	(ARMA) 904	estern Highw ay	N			
					•				
ARM			A	Slip	Road of Kong Sham Western Highw	/ ay			
	PAR	AMETERS:	A			v ay			
	PAR/	AMETERS: Approach half width (m)	4.0	C 7.9	D 8.2	v ay			
ARM INPUT V E		Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	B.2 9.3	v ay			
INPUT V E L	=	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	B.2 9.3 1.8	v ay			
INPUT V E L R	= =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	B.2 9.3 1.8 10.0	<i>י</i> ay			
INPUT V E L R D	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	B.2 9.3 1.8 10.0 71.0	/ ay			
INPUT V E L R D	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	B.2 9.3 1.8 10.0 71.0 21.0	/ ay			
INPUT E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 163	C 7.9 7.9 1.0 100.0 71.0 31.0 1063	B.2 9.3 1.8 10.0 71.0 21.0 3	/ ay			
INPUT E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	B.2 9.3 1.8 10.0 71.0 21.0	/ ay			
INPUT E L R D A Q Qc		Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 163	C 7.9 7.9 1.0 100.0 71.0 31.0 1063	B.2 9.3 1.8 10.0 71.0 21.0 3	/ ay			
INPUT E L R D A Q Q C	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 163 904	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12	D 8.2 9.3 1.8 10.0 71.0 21.0 3 1117	/ ay			
INPUT E L R D A Q Q C OUTP S	= = = = = UT PA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00	B.2 9.3 1.8 10.0 71.0 21.0 3 1117	/ ay			
INPUT E L R D A Q Q Q C OUTP S K	= = = = = UT PA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04	B.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98	/ ay			
INPUT V E L R D A Q Q C OUTP S K X2	= = = = = UT PA = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90	B.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57	/ ay			
INPUT V E L R D A Q Q C OUTP S K X2 M	= = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90 3	B.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57 3	/ ay			
INPUT V E L R D A Q Q C OUTP S K X2 M F	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90 3 2394	D 8.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57 3 2597	/ ay			
INPUT V E L R D A Q Q Q Q C OUTP S K X2 M F Td	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90 3 2394 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57 3 2597 1.12	/ ay			
INPUT V E L R D A Q Q Q Q Q Q C S K X2 M F T d F c	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90 3 2394 1.12 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57 3 2597 1.12 0.64		1000	PCI	
INPUT E L R D A Q Q C OUTP S K	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90 3 2394 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1229	PCU	
INPUT V E L R D A Q Q Q Q Q C S K X2 M F T d F c	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90 3 2394 1.12 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57 3 2597 1.12 0.64		1229 0.43	PCU	

Proposed Temporary Warehouse for Storage of Construction Materials and Machinery, Parking of Special Purpose Vehicles and Rural Workshop with Ancillary Facilities for a Period of 3 Years at Various Lots in D.D.125 and Adjoining Government Land, Ha Tsuen, Yuen Long, New Territories TIA Report

Appendix C

2028 Junction Calculations

ZZO TECH	INOLOGY (HK) LI	MITED			PRIORITY JUI		LCULATION					INITIALS	DATE
	Varehouse for Construction Mate f 3 Years and Associated Filling				s and Rural Workshop with Ancillary	PROJECT	F NO.: 83133			PREPAR	RED BY:	CSY	Dec-24
Unnamed Road	d A / Access to Portion A				0000D-6 AM	FILENAM	E :			CHECK	KED BY:	LL	Dec-24
28 Reference AM	Peak Hour Traffic Flows				2028Ref_AM	J	1_Unnamed Road A_Acce	ss to Portion A_P.xls	6	REVIEW	VED BY:	PCN	Dec-24
Access to Portic (ARM [6] 0 [5] 10 Unnamed Road A (ARM A)			[3] [4] Unnamed Roa (ARM C)		W cr = W b-a = W b-c = V tb-a = V tb-c = V tb-c = V tc-b = D = E = F =	MAJOR ROAD WIDTH CENTRAL RESERVE WIE LANE WIDTH AVAILABLE LANE WIDTH AVAILABLE LANE WIDTH AVAILABLE VISIBILITY TO THE LEFT VISIBILITY TO THE RIGH	DTH TO VEHICLE WAITING IN STREE TO VEHICLE WAITING IN STREE TO VEHICLE WAITING IN STR TO VEHICLES WAITING IN ST TFOR VEHICLES WAITING IN ST TFOR VEHICLES WAITING IN ST FOR VEHICLES WAITING IN ST	AM b-c AM c-b EAM b-a REAM b-a REAM b-c					
METRIC DETAILS:		GEOMETRIC FACTORS			THE CAPACITY OF MOVEME	NT :		COMPARISION OF D	ESIGN FLOW				
METRIC DETAILS: MAJOR ROAD (ARI	1M A)	GEOMETRIC FACTORS	:		THE CAPACITY OF MOVEME	NT :		COMPARISION OF DI TO CAPACITY:	ESIGN FLOW				
	:M A) 4.20 (metres)	D	:	0.68744683	Qb-a =	428			DFC b-a		0.0000		
MAJOR ROAD (ARM				0.731326415	Qb-a = Qb-c =	428 543			DFC b-a DFC b-c	-	0.0000		
MAJOR ROAD (ARM W =	4.20 (metres)	D	-		Qb-a =	428			DFC b-a				
MAJOR ROAD (ARM W = W cr =	4.20 (metres) 0 (metres)	D	=	0.731326415	Qb-a = Qb-c =	428 543			DFC b-a DFC b-c	=	0.0000		
MAJOR ROAD (ARM W = W cr = q a-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr)	D E F	= = =	0.731326415 0.803411444	Qb-a = Qb-c = Qc-b =	428 543 596	(PCU/HR)		DFC b-a DFC b-c DFC c-b	=	0.0000		
MAJOR ROAD (ARM W = W cr = q a-b = q a-c =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b = Q b-ac =	428 543 596 428	(PCU/HR)		DFC b-a DFC b-c DFC c-b	=	0.0000		
MAJOR ROAD (ARN W = W cr = q a-b = q a-c = MAJOR ROAD (ARN	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) M C)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b = Q b-ac =	428 543 596 428	(PCU/HR)		DFC b-a DFC b-c DFC c-b	=	0.0000		
MAJOR ROAD (ARM W = Qa-b = Qa-c = MAJOR ROAD (ARM W c-b = Vr c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) M C) 2.5 (metres) 14 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b = Q b-ac =	428 543 596 428	(PCU/HR)		DFC b-a DFC b-c DFC c-b	=	0.0000		
MAJOR ROAD (ARM W = W cr = q a-b = q a-c = MAJOR ROAD (ARM W c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) MC) 2.5 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b = Q b-ac =	428 543 596 428	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
MAJOR ROAD (ARM W = W cr = q ab = q ac = MAJOR ROAD (ARM W cb = Vr cb = q cca = q cb =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) M C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b = Q b-ac =	428 543 596 428	(PCU/HR)		DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	=	0.0000		
MAJOR ROAD (ARI) W = W cr = q ab = q ab = q ac = MAJOR ROAD (ARI) W c-b = Q c-b = MINOR ROAD (ARI)	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) M C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) W B)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b = Q b-ac =	428 543 596 428	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
MAJOR ROAD (ARM W = W cr = q.a-b = q.a-c = MAJOR ROAD (ARM W c-b = Vr.c-b = q.c-a = q.c-b = MINOR ROAD (ARM W b-a =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) M C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) 4 B) 1.5 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b = Q b-ac =	428 543 596 428	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
MAJOR ROAD (ARM W = W cr = q a-b = q a-c = MAJOR ROAD (ARM W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (ARM W b-a = W b-c =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) M C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) W B) 1.5 (metres) 1.5 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b = Q b-ac =	428 543 596 428	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) M C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) M B) 1.5 (metres) 50 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b = Q b-ac =	428 543 596 428	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
$\begin{array}{rcl} \text{MAJOR ROAD (ARM}\\ W & = \\ W \text{cr} & = \\ q a \text{c} & = \\ q a \text{c} & = \\ q a \text{c} & = \\ \text{MAJOR ROAD (ARM}\\ W \text{c} \text{b} & = \\ q \text{c} \text{c} \text{a} & = \\ \text{MINOR ROAD (ARM}\\ W \text{b} \text{c} & = \\ W \text{b} \text{c} \text{c} & = \\ W \text{b} \text{c} \text{c} & = \\ \text{W} \text{b} \text{c} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{b} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} $	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) M C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) M B) 1.5 (metres) 1.5 (metres) 50 (metres) 30 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b = Q b-ac =	428 543 596 428	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
$\begin{array}{rcl} \text{MAJOR ROAD (ARM)} \\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ab & = \\ q \ ab & = \\ \end{array} \\ \begin{array}{rcl} \text{MAJOR ROAD (ARM)} \\ W \ cb & = \\ V \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \end{array} \\ \begin{array}{rcl} \text{MINOR ROAD (ARM)} \\ W \ bb & = \\ W \ $	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) M C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) M B) 1.5 (metres) 1.5 (metres) 30 (metres) 30 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b = Q b-ac =	428 543 596 428	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
$\begin{array}{rcl} \text{MAJOR ROAD (ARM}\\ W & = \\ W \text{cr} & = \\ q a \text{c} & = \\ q a \text{c} & = \\ q a \text{c} & = \\ \text{MAJOR ROAD (ARM}\\ W \text{c} \text{b} & = \\ q \text{c} \text{c} \text{a} & = \\ \text{MINOR ROAD (ARM}\\ W \text{b} \text{c} & = \\ W \text{b} \text{c} \text{c} & = \\ W \text{b} \text{c} \text{c} & = \\ \text{W} \text{b} \text{c} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{b} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \\ \text{W} \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} \text{c} \text{c} \\ \text{c} $	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) M C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) M B) 1.5 (metres) 1.5 (metres) 50 (metres) 30 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b = Q b-ac =	428 543 596 428	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		

ZZO TECHNOLOGY (HK) LIMITED		TY JUNCTION CA	LCULATION			INITIALS	DATE
	ruction Materials and Construction Machineries, iated Filling of Land and Pond and Excavation of		vith Ancillary PROJECT	NO.: 83133		PREPARED BY:	CSY	Dec-24
Unnamed Road A / Access to Po	rtion A		FILENAME	E :		CHECKED BY:	LL	Dec-24
28 Reference AM Peak Hour Traffic	Flows	2028Ref_PN		1_Unnamed Road A_Access to Portion A_P.xls	s	REVIEWED BY:	PCN	Dec-24
Access to Portion A (ARM B) (6] 0 (5] 10 Unnamed Road A (ARM A)	[1] [2]	- W W W W W W W V V V V V V V	b-c = LANE WIDTH AVAILABLE c-b = LANE WIDTH AVAILABLE b-a = VISIBILITY TO THE LEFT F b-a = VISIBILITY TO THE RIGHT b-c = VISIBILITY TO THE RIGHT	DTH TO VEHICLE WAITING IN STREAM b-a TO VEHICLE WAITING IN STREAM b-c TO VEHICLE WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM b-a TFOR VEHICLES WAITING IN STREAM b-c TFOR VEHICLES WAITING IN STREAM b-c FOR VEHICLES WAITING IN STREAM c-b				
METRIC DETAILS:	GEOMETRIC FACTORS :	ТНЕ САРАСП	TY OF MOVEMENT :	COMPARISION OF D	ESIGN FLOW			
METRIC DETAILS: MAJOR ROAD (ARM A)				COMPARISION OF DI TO CAPACITY:				
METRIC DETAILS: MAJOR ROAD (ARM A) W = 4.20 (metres)	D =	0.68744683 Q	b-a = 428		DFC b-a	= 0.0000		
METRIC DETAILS: MAJOR ROAD (ARM A)		0.68744683 Q 0.731326415 Q1	b-a = 428 b-c = 543		DFC b-a DFC b-c	= 0.0000		
METRIC DETAILS: MAJOR ROAD (ARM A) W = 4.20 (metres)	D =	0.68744683 Q 0.731326415 Q1	b-a = 428		DFC b-a			
METRIC DETAILS: MAJOR ROAD (ARM A) W = 4.20 (metres) W or = 0 (metres)	D = E =	0.68744683 Q 0.731326415 Q 0.803411444 Q	b-a = 428 b-c = 543		DFC b-a DFC b-c	= 0.0000		
METRIC DETAILS: MAJOR ROAD (ARM A) W = 4.20 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 10 (pcu/hr)	D = E = F = Y =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.0000 = 0.0000		
METRIC DETAILS: MAJOR ROAD (ARM A) W = 4.20 (metres) W or = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 10 (pcu/hr) MAJOR ROAD (ARM C) X X X	D = E = F =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428		DFC b-a DFC b-c DFC c-b	= 0.0000 = 0.0000		
METRIC DETAILS: MAJOR ROAD (ARM A) W = 4.20 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 10 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.5 (metres)	D = E = F = Y =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.0000 = 0.0000		
METRIC DETAILS: MAJOR ROAD (ARM A) W = 4.20 (metres) W or = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 10 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.5 (metres) Vr c-b = 14 (metres)	D = E = F = Y =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.0000 = 0.0000		
METRIC DETAILS: MAJOR ROAD (ARM A) W = 4.20 (metres) Q a-b = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 10 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.5 (metres) Vr c-b = 14 (metres) q c-a = 4 (pcu/hr)	D = E = F = Y =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.0000 = 0.0000		
METRIC DETAILS: MAJOR ROAD (ARM A) W = 4.20 (metres) Q a-b = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 10 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.5 (metres) Vr c-b = 14 (metres) q c-a = 4 (pcu/hr)	D = E = F = Y =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000		
METRIC DETAILS: MAJOR ROAD (ARM A) W = 4.20 (metres) Q a-b = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 10 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.5 (metres) Vr c-b = 14 (metres) q c-a = 4 (pcu/hr)	D = E = F = Y =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		
$\begin{array}{rcl} \mbox{METRIC DETAILS:} & & & \\ \mbox{MAJOR ROAD (ARM A)} & & & \\ \mbox{W} & \mbox{w} & \mbox{e} & & 4.20 & (metres) \\ \mbox{W} & \mbox{w} & \mbox{e} & \mbox{e} & 0 & (pcu/hr) \\ \mbox{q} & \mbox{a-b} & \mbox{e} & \mbox{e} & 0 & (pcu/hr) \\ \mbox{MAJOR ROAD (ARM C)} & & \\ \mbox{W} & \mbox{c-b} & \mbox{e} & \mbox{e} & \mbox{2.5} & (metres) \\ \mbox{W} & \mbox{c-b} & \mbox{e} & \mbox{2.5} & (metres) \\ \mbox{W} & \mbox{c-b} & \mbox{e} & \mbox{2.5} & (metres) \\ \mbox{W} & \mbox{c-b} & \mbox{e} & \mbox{2.6} & \mbox{matrix} \\ \mbox{q} & \mbox{c-b} & \mbox{e} & \mbox{2.6} & \mbox{matrix} \\ \mbox{q} & \mbox{c-b} & \mbox{e} & \mbox{2.6} & \mbox{matrix} \\ \mbox{q} & \mbox{c-b} & \mbox{e} & \mbox{matrix} & \mbox{matrix} \\ \mbox{q} & \mbox{c-b} & \mbox{e} & \mbox{matrix} & \mbox{matrix} \\ \mbox{q} & \mbox{c-b} & \mbox{matrix} & \mbox{matrix} & \mbox{matrix} \\ \mbox{matrix} & \mbox{matrix} & \mbox{matrix} & \mbox{matrix} \\ \mbox{matrix} & \mbox{matrix}$	D = E = F = Y =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		
$\begin{array}{rcl} \mbox{METRIC DETAILS:} & & \\ \mbox{MAJOR ROAD (ARM A)} & & \\ \mbox{W} & = & 4.20 & (metres) \\ \mbox{W} & e & = & 0 & (metres) \\ \mbox{q} & ab & = & 0 & (pcu/hr) \\ \mbox{q} & ab & = & 10 & (pcu/hr) \\ \mbox{MAJOR ROAD (ARM C)} & & \\ \mbox{W} & cb & = & 2.5 & (metres) \\ \mbox{W} & cb & = & 2.5 & (metres) \\ \mbox{W} & cb & = & 14 & (metres) \\ \mbox{Q} & ca & = & 4 & (pcu/hr) \\ \mbox{Q} & cb & = & 0 & (pcu/hr) \\ \mbox{MINOR ROAD (ARM B)} & \\ \end{array}$	D = E = F = Y =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		
METRIC DETAILS: MAJOR ROAD (ARM A) (metres) W = 4.20 (metres) $q.ab$ = 0 (pcu/hr) $q.ab$ = 0 (pcu/hr) $q.ac$ = 10 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.5 (metres) Vr c-b = 14 (metres) $q.c-a =$ 4 (pcu/hr) $q.c-b =$ 0 (pcu/hr) MINOR ROAD (ARM B) W b-a =	D = E = F = Y =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		
METRIC DETAILS: MAJOR ROAD (ARM A) (metres) W $=$ 4.20 (metres) q a -b = 0 (metres) q a -b = 0 (pcu/hr) q a -c = 10 (pcu/hr) MAJOR ROAD (ARM C) W c -b = 14 W c-b = 14 (metres) q -c a 4 (pcu/hr) Q c-a = 4 (pcu/hr) q -b = 0 (pcu/hr) MINOR ROAD (ARM B) W b-a = 1.5 (metres) W b-c = 1.5 (metres) w -c 1.5 (metres)	D = E = F = Y =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		
METRIC DETAILS: MAJOR ROAD (ARM A) (metres) W = 4.20 (metres) q a-b = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 10 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.5 (metres) Q c-a = 14 (metres) Q c-b = 0 (pcu/hr) q c-b = 0 (pcu/hr) Q c-b = 0 (metres) W b-a = 0 (pcu/hr) Q c-b = 0 (pcu/hr) MINOR ROAD (ARM B) W b-c = 1.5 (metres) W b-c = 1.5 (metres) Vi b-a = 50 (metres)	D = E = F = Y =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		
METRIC DETALLS: MAJOR ROAD (ARM A) W = 4.20 (metres) $q.ab$ = 0 (metres) $q.ab$ = 0 (pcu/hr) $q.ac$ = 10 (pcu/hr) MAJOR ROAD (ARM C) W b^{-2} = 14 (metres) Vr.cb = 14 (metres) $q.c-a$ = 4 (pcu/hr) $q.c-a$ = 4 (pcu/hr) $q.c-b$ = 0 (pcu/hr) w $b-a$ = 1.5 (metres) w $b-a$ = 1.5 (metres) W $b-a$ = 1.5 (metres) w $b-a$ = 50 (metres) Vr.b-a = 30 (metres) 1.5 (metres)	D = E = F = Y =	0.68744683 Q 0.731326415 Q 0.803411444 Q 0.8551 Q b	b-a = 428 b-c = 543 c-b = 596 ac = 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		

ZZO TECH	INOLOGY (HK) LI	MITED			PRIORITY JUN	ICTION CA	LCULATION					INITIALS	DATE
	Warehouse for Construction Mate of 3 Years and Associated Filling				and Rural Workshop with Ancillary	PROJECT	NO.: 83133			PREPARI	ED BY:	CSY	Dec-24
Unnamed Road	d A / Access to Portion A					FILENAME	Ξ:			CHECKI	ED BY:	LL	Dec-24
28 Reference AM	I Peak Hour Traffic Flows				2028Des_AM	J1	I_Unnamed Road A_Access to	Portion A_P.xls		REVIEWI	ED BY:	PCN	Dec-24
Access to Porti (ARI [6] 0 [5] 10 Unnamed Road A (ARM A)	tion A [1] [2] RM B)		[3] [4] Unnamed Roz (ARM C)	id A	W cr = 0 W b-a = 1 W b-c = 1 W c-b = 1 V b-a = 1 E = 5 F = 5	IAJOR ROAD WIDTH ENTRAL RESERVE WID ANE WIDTH AVAILABLE ANE WIDTH AVAILABLE ISIBILITY TO THE LEFT F ISIBILITY TO THE RIGHT ISIBILITY TO THE RIGHT	TH TO VEHICLE WAITING IN STREAM b- TO VEHICLE WAITING IN STREAM b- TO VEHICLE WAITING IN STREAM c- FOR VEHICLES WAITING IN STREAM FOR VEHICLES WAITING IN STREAM FOR VEHICLES WAITING IN STREAM	c b-a 1b-a Nb-c					
METRIC DETAILS:		GEOMETRIC FACTORS	:		THE CAPACITY OF MOVEMEN	г т:		OMPARISION OF DESI O CAPACITY:	IGN FLOW				
MAJOR ROAD (AR	,		 					O CAPACITY:					
MAJOR ROAD (AR W =	4.20 (metres)	D	::	0.68744683	Qb-a =	428		O CAPACITY:	DFC b-a		0.0000		
MAJOR ROAD (AR	4.20 (metres) 0 (metres)	D		0.731326415	Q b-a = Q b-c =	428 543		O CAPACITY:	DFC b-a DFC b-c	=	0.0000		
MAJOR ROAD (AR W =	4.20 (metres) 0 (metres) 0 (pcu/hr)	D E F	=	0.731326415 0.803411444	Qb-a =	428 543 596		O CAPACITY:	DFC b-a				
MAJOR ROAD (AR W = W cr =	4.20 (metres) 0 (metres)	D	=	0.731326415	Q b-a = Q b-c =	428 543		O CAPACITY:	DFC b-a DFC b-c	=	0.0000		
MAJOR ROAD (AR W = W cr = q a-b = q a-c =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr)	D E F Y	= = =	0.731326415 0.803411444	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596	т	O CAPACITY:	DFC b-a DFC b-c DFC c-b	= =	0.0000		
MAJOR ROAD (AR W = W cr = q a·b = q a·c = MAJOR ROAD (ARI	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) RM C)	D E F	= = =	0.731326415 0.803411444 0.8551	Q b-a = Q b-c = Q c-b =	428 543 596 428		O CAPACITY:	DFC b-a DFC b-c DFC c-b	= =	0.0000		
MAJOR ROAD (AR W = Q a·b = Q a·c = MAJOR ROAD (ARI W c·b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) RM C) 2.5 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	т	O CAPACITY:	DFC b-a DFC b-c DFC c-b	= =	0.0000		
MAJOR ROAD (AR W = Q a-b = Q a-c = MAJOR ROAD (ARI W c-b = Vr c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 2.5 (metres) 14 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	т	O CAPACITY:	DFC b-a DFC b-c DFC c-b	= =	0.0000		
MAJOR ROAD (AR W = Q a·b = Q a·c = MAJOR ROAD (ARI W c·b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) RM C) 2.5 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	т	O CAPACITY:	DFC b-a DFC b-c DFC c-b	= =	0.0000		
MAJOR ROAD (AR W = W cr = q a-b = q a-c = MAJOR ROAD (ARI W c-b = Vr c-b = q c-a = q c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TI (PCU/HR)	O CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0000		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) M B)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TI (PCU/HR)	O CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
MAJOR ROAD (AR W = W cr = q.a-b = q.a-c = MAJOR ROAD (ARI W c-b = q.c-a = q.c-b = MINOR ROAD (ARI W b-a =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) M B) 1.5 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TI (PCU/HR)	O CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
MAJOR ROAD (AR W = W cr = q.a-b = q.a-c = MAJOR ROAD (ARI W c-b = Vr c-b = q.c-a = q.c-b = MINOR ROAD (ARI W b-a = W b-c =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) M B) 1.5 (metres) 1.5 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TI (PCU/HR)	O CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
MAJOR ROAD (AR W = Q q+b = Q q+b = Q q+b = MAJOR ROAD (ARI W c-b = Vr c-b = Q c-a = Q c-b = MINOR ROAD (ARI W b-a = W b-c = Vl b-a =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) M B) 1.5 (metres) 50 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TI (PCU/HR)	O CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) M B) 1.5 (metres) 50 (metres) 30 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TI (PCU/HR)	O CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
MAJOR ROAD (AR W = W cr = q.a-b = q.a-c = MAJOR ROAD (ARI W c-b = Vr c-b = q.c-a = q.c-b = MINOR ROAD (ARI W b-a = W b-c = Vr b-a = Vr b-a = Vr b-a =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) M B) 1.5 (metres) 50 (metres) 30 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TI (PCU/HR)	O CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) M B) 1.5 (metres) 50 (metres) 30 (metres)	D E F Y	= = =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TI (PCU/HR)	O CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	-	0.0000 0.0000 0.0000		

OZZO TECHNOLOGY	(HK) LIMITED		PRIORITY JUN	CTION CALCI	JLATION			INITIALS	DATE
	nstruction Materials and Construction Machinerie sociated Filling of Land and Pond and Excavation		Rural Workshop with Ancillary	PROJECT NO.:	83133		PREPARED BY	CSY	Dec-24
1: Unnamed Road A / Access to	Portion A			FILENAME :			CHECKED BY	: LL	Dec-24
028 Reference AM Peak Hour Tra	ffic Flows		2028Des_PM	J1_Unna	amed Road A_Access to Portion A_P.xls	3	REVIEWED BY	PCN	Dec-24
Access to Portion A (ARM B) ===== [6] 0 [5] 10 Unnamed Road A (ARM A)	[1] [2] ↓ 0 [3] ↓ 4 [4] Unnamed I (ARM 0		$ \begin{array}{rcl} W \ cr & = & Cl \\ W \ ba & = & LA \\ W \ ba & = & VI \\ VI \ ba & $	AJOR ROAD WIDTH ENTRAL RESERVE WIDTH INE WIDTH AVAILABLE TO VEH NNE WIDTH AVAILABLE TO VEH SIBILITY TO THE LET FOR VEI SIBILITY TO THE LET FOR VEI SIBILITY TO THE RIGHT FOR VI	HCLE WAITING IN STREAM b-c				
OMETRIC DETAILS:	GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMEN	т:	COMPARISION OF D	ESIGN FLOW			
MAJOR ROAD (ARM A)					COMPARISION OF D TO CAPACITY:				
MAJOR ROAD (ARM A) W = 4.20 (metres	s) D =	0.68744683	Qb-a =	428		DFC b-a	= 0.000		
MAJOR ROAD (ARM A)	s) D =	0.731326415	Q b-a = Q b-c =	428 543		DFC b-a DFC b-c	= 0.000)	
MAJOR ROAD (ARM A)	s) D =) E =) F =	0.731326415 0.803411444	Qb-a =	428 543 596		DFC b-a)	
MAJOR ROAD (ARM A)	s) D =)) E =) F =	0.731326415	Q b-a = Q b-c =	428 543		DFC b-a DFC b-c	= 0.000)	
MAJOR ROAD (ARM A) (metree W = 4.20 (metree W cr = 0 (metree q ab = 0 (pcu/hi q ac = 10 (pcu/hi	a) D = b) E =) F =) Y =	0.731326415 0.803411444	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596	το ςαραςιτγ:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000)	
MAJOR ROAD (ARM A) W = 4.20 (metree W cr = 0 (metree q ab = 0 (pcu/hi q ac = 10 (pcu/hi MAJOR ROAD (ARM C)	a) D = b) E = f F = y Y = F for (Qb-ac) =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b =	428 543 596 428		DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000)	
MAJOR ROAD (ARM A) W = 4.20 W cr = 0 q a-b = 0 q a-c = 10 MAJOR ROAD (ARM C) W c-b = 2.5	s) D = b) E = y F = y Y = F for (Qb-ac) =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	το ςαραςιτγ:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000)	
$\begin{array}{rcl} \mbox{MAJOR ROAD (ARM A)} \\ W & = & 4.20 & (metree \\ W \mbox{or} & = & 0 & (pcu/h) \\ q \mbox{a-c} & = & 10 & (pcu/h) \\ \mbox{MAJOR ROAD (ARM C)} \\ W \mbox{c-b} & = & 2.5 & (metree \\ V \mbox{rc-b} & = & 14 & (metree \\ \mbox{or} & (a \mbox{c-c}) & (a \mbox{c-c}) & (a \mbox{c-c}) \\ \mbox{W} \mbox{c-b} & = & 14 & (metree \\ \mbox{Vr} \mbox{c-b} & = & 14 & (metree \\ \mbox{Vr} \mbox{c-b} & = & 14 & (metree \\ \mbox{Vr} \mbox{c-c}) & (a \mbox{C}) & (a \mbox{C}) \\ \mbox{W} \mbox{C-c} & = & 14 & (metree \\ \mbox{Vr} \mbox{C-c}) & (a \mbox{C}) & (a \mbox{C-c}) & (a$	s) D = b) E =) F =) Y = F for (Qb-ac) = s)	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	το ςαραςιτγ:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000)	
MAJOR ROAD (ARM A) W = 4.20 (metree W cr = 0 (metree q a-b = 0 (pcu/hi q a-c = 10 (pcu/hi MAJOR ROAD (ARM C) W c-b = 2.5 (metree	a) D = E =) F =) Y = F for (Qb-ac) = a)	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	το ςαραςιτγ:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000)	
	a) D = E =) F =) Y = F for (Qb-ac) = a)	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	το ςαραςιτγ:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000)	
	b) D = E = F = Y = F for (Qb-ac) = b)	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000)	
$\begin{array}{rcl} \mbox{MAJOR ROAD (ARM A)} \\ W &= 4.20 & (metres) \\ W \mbox{ cr} &= 0 & (pcu/h) \\ q \mbox{ a-c} &= 10 & (pcu/h) \\ \mbox{MAJOR ROAD (ARM C)} \\ W \mbox{ c-b} &= 2.5 & (metres) \\ V \mbox{ c-b} &= 14 & (metres) \\ q \mbox{ c-a} &= 4 & (pcu/h) \\ q \mbox{ c-b} &= 0 & (pcu/h) \\ \mbox{MINOR ROAD (ARM B)} \\ W \mbox{ b-a} &= 1.5 & (metres) \\ \end{array}$	a) D = E =) F =) Y = F for (Qb-ac) = a)))	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000)	
MAJOR ROAD (ARM A) W = 4.20 (metrest W cr = 0 (pcu/hi q ab = 0 (pcu/hi q ac = 10 (pcu/hi MAJOR ROAD (ARM C) W cb = 2.5 (metrest V rc-b = 14 (metrest q c-a = 4 (pcu/hi q c-b = 0 (pcu/hi MINOR ROAD (ARM B) W b-a = 1.5 (metrest W b-a = 0 (pcu/hi metrest metrest metrest W b-a = 1.5 (metrest metrest metrest metrest	a) D = b) E = F = y Y = F for (Qb-ac) = b) b)	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000)	
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.20 & (\text{metres}) \\ W \text{or} &= & 0 & (\text{pcuh}) \\ q a \cdot b &= & 0 & (\text{pcuh}) \\ q a \cdot c &= & 10 & (\text{pcuh}) \\ \text{MAJOR ROAD (ARM C)} \\ W \text{o} \cdot b &= & 2.5 & (\text{metres}) \\ V \text{c} \cdot b &= & 14 & (\text{metres}) \\ V \text{c} \cdot b &= & 14 & (\text{metres}) \\ q c \cdot a &= & 4 & (\text{pcuh}) \\ q c \cdot b &= & 0 & (\text{pcuh}) \\ \hline \text{MINOR ROAD (ARM B)} \\ W b \cdot a &= & 1.5 & (\text{metres}) \\ W b \cdot a &= & 1.5 & (\text{metres}) \\ V b \cdot a &= & 50 & (\text{metres}) \\ \end{array}$	a) D = E = F =) F =) Y = F for (Qb-ac) =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000)	
$\begin{array}{rcl} \mbox{MAJOR ROAD} (\mbox{ARM A}) & & & & & & & & & & & & & & & & & & &$	a) D = E =) F =) Y = F for (Qb-ac) = a)))	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000)	
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.20 & (\text{metres}) \\ W \text{cr} &= & 0 & (\text{pcuh}) \\ q ab &= & 0 & (\text{pcuh}) \\ q ac &= & 10 & (\text{pcuh}) \\ \text{MAJOR ROAD (ARM C)} \\ W cb &= & 2.5 & (\text{metres}) \\ V cb &= & 14 & (\text{metres}) \\ V cb &= & 14 & (\text{metres}) \\ q cb &= & 0 & (\text{pcuh}) \\ \text{MINOR ROAD (ARM B)} \\ \text{W } bb &= & 1.5 & (\text{metres}) \\ W bb &= & 1.5 & (\text{metres}) \\ W bb &= & 50 & (\text{metres}) \\ \end{array}$	a) D = E = F = Y = F for (Qb-ac) =	0.731326415 0.803411444 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000)	

ZZO TECHI	NOLOGY (HK) LI	MITED		PRIORITY JUN	NCTION CAL	_CULATION			INITIALS	DATE
posed Temporary Wa cilities for a Period of :	arehouse for Construction Mate <u>3 Years and Associated Filling</u>	rials and Construction Mac of Land and Pond and Exc	hineries, Parking of SPV avation of Land	/s and Rural Workshop with Ancillary	PROJECT N	NO.: 83133		PREPARED BY	CSY	Dec-24
:: Unnamed Road /	A / Access to Existing Fish I	Farm		2028Ref_AM	FILENAME :	:		CHECKED BY	: LL	Dec-24
28 Reference AM P	Peak Hour Traffic Flows			2020Rel_AW	J2_Unnamed	d Road A_Access to Existing Fish Farm_P.x	ls	REVIEWED BY	: PCN	Dec-24
[6] 0 (ARM I [5] 6 Access to Existing Fis (ARM A)		↓ 4	[3] [4] to Existing Fish Farm (ARM C)	W cr = W b-a = W b-c = V b-a = V t-b-a = V t-b-a = V t-b-c = D = E = F =	MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH LANE WIDTH AVAILABLE TO LANE WIDTH AVAILABLE TO VISIBILITY TO THE LEFT FO VISIBILITY TO THE RIGHT F VISIBILITY TO THE RIGHT F	H TO VEHICLE WAITING IN STREAM b-a TO VEHICLE WAITING IN STREAM c-b OVEHICLE WAITING IN STREAM c-b DR VEHICLES WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM c-b				
OMETRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEME	ENT :	COMPARISION OF I	DESIGN FLOW			
MAJOR ROAD (ARM						COMPARISION OF E TO CAPACITY:				
MAJOR ROAD (ARM W =	4.23 (metres)	D	= 0.793305108	Qb-a =	493		DFC b-a	= 0.000		
MAJOR ROAD (ARM	4.23 (metres) 0 (metres)	D E	= 0.862663232	Qb-a = Qb-c =	493 641		DFC b-a DFC b-c	= 0.017	2	
MAJOR ROAD (ARM W = W cr = q a-b =	4.23 (metres) 0 (metres) 0 (pcu/hr)	D E F	= 0.862663232 = 0.79459942	Qb-a = Qb-c = Qc-b =	493 641 590		DFC b-a DFC b-c DFC c-b	= 0.017 = 0.006	2 3	
MAJOR ROAD (ARM W = W cr =	4.23 (metres) 0 (metres)	D E	= 0.862663232	Qb-a = Qb-c =	493 641		DFC b-a DFC b-c	= 0.017	2 3	
MAJOR ROAD (ARM W = W cr = q a-b = q a-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.017 = 0.006	2 3	
MAJOR ROAD (ARM W = W cr = q a·b = q a·c = MAJOR ROAD (ARM 0	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 1 C)	D E F	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b =	493 641 590 641		DFC b-a DFC b-c DFC c-b	= 0.017 = 0.006	2 3	
MAJOR ROAD (ARM W = W cr = q a-b = q a-c = MAJOR ROAD (ARM (W c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 1C) 2.4 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.017 = 0.006	2 3	
MAJOR ROAD (ARM W = Qab = qa-c = MAJOR ROAD (ARM (W c-b = Vrc-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 1 C) 2.4 (metres) 12 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.017 = 0.006	2 3	
MAJOR ROAD (ARM W = W cr = q ab = q ac = MAJOR ROAD (ARM (W c-b = Vr c-b = q c-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 1C) 2.4 (metres) 12 (metres) 9 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.017 = 0.006	2 3	
MAJOR ROAD (ARM W = W cr = q a-b = q a-c = MAJOR ROAD (ARM (W c-b = Vrc-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 1 C) 2.4 (metres) 12 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.017 = 0.006 = 0.017	2 3 2	
MAJOR ROAD (ARM W = W cr = q a-b = q a-c = MAJOR ROAD (ARM (W c-b = Vrc-b = Vrc-b = q c-a = q c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 1 C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.017 = 0.006	2 3 2	
MAJOR ROAD (ARM W = W cr = q ab = q ac = MAJOR ROAD (ARM (W c-b = V cr b = q c-a = q c-b = MINOR ROAD (ARM E	4.23 (metres) 0 (metres) 0 (pcw/hr) 6 (pcw/hr) 1C) 2.4 (metres) 12 (metres) 9 (pcw/hr) 4 (pcw/hr) B)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.017 = 0.006 = 0.017	2 3 2	
MAJOR ROAD (ARM W = W cr = q a-b = q a-c = MAJOR ROAD (ARM (W c-b = V c-b = q c-a = q c-b = MINOR ROAD (ARM E W b-a =	4.23 (metres) 0 (pcu/hr) 6 (pcu/hr) 1C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr) B) 2.9 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.017 = 0.006 = 0.017	2 3 2	
MAJOR ROAD (ARM W = W cr = q a-b = q a-c = MAJOR ROAD (ARM C W c-b = Vrc-b = q c-a = q c-b = MINOR ROAD (ARM E W b-a = W b-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 1C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr) B) 2.9 (metres) 2.9 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.017 = 0.006 = 0.017	2 3 2	
$\begin{array}{rcl} \text{MAJOR ROAD (ARM} \\ W & = \\ W \text{ or } & = \\ q a b & = \\ q a c & = \\ \\ \text{MAJOR ROAD (ARM (C))} \\ W \text{ or } b & = \\ V \text{ r } c b & = \\ q \text{ c } c a & = \\ q \text{ c } b & = \\ \\ \text{MINOR ROAD (ARM E)} \\ W \text{ b } b a & = \\ W \text{ b } b c & = \\ W \text{ b } b c & = \\ W \text{ b } b a & = \\ \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 1C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr) B) 2.9 (metres) 2.9 (metres) 16 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.017 = 0.006 = 0.017	2 3 2	
MAJOR ROAD (ARM W = W cr = q a-b = q a-c = MAJOR ROAD (ARM (W c-b = q c-b = q c-b = MINOR ROAD (ARM E W b-a = W b-c = V (b-a = V (b-a = V (b-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 1C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr) B) 2.9 (metres) 2.9 (metres) 16 (metres) 16 (metres) 16 (metres) 16 (metres) 17 (metres) 18 (metres) 19 (metres) 10 (metres) 11 (metres) 11 (metres) 12 (metres) 13 (metres) 14 (metres) 15 (metres) 16 (metres) 17 (metres) 17 (metres) 18 (metres) 18 (metres) 19 (metres) 19 (metres) 10 (metres) 11 (metres) 11 (metres) 11 (metres) 12 (metres) 13 (metres) 14 (metres) 15 (metres) 16 (metres) 17 (metres) 17 (metres) 17 (metres) 18 (metres) 19 (metres) 10 (metr	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.017 = 0.006 = 0.017	2 3 2	
$\begin{array}{rcl} MAJOR ROAD (ARM \\ W & = \\ W or & = \\ q a b & = \\ q a c & = \\ \\ MAJOR ROAD (ARM (Q C b c b c c b c c b c c$	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 1 C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr) B) 2.9 (metres) 2.9 (metres) 16 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.017 = 0.006 = 0.017	2 3 2	

ZZO TEC	HNOLOGY (HK) L	IMITED		PRIORITY JU	NCTION CA	ALCULATION			INITIALS	DATE
	y Warehouse for Construction Ma d of 3 Years and Associated Filling			SPVs and Rural Workshop with Ancillar	PROJECT	T NO.: 83133		PREPARED B	Y: CSY	Dec-24
Unnamed Roa	oad A / Access to Existing Fish	Farm		2028Ref_PM	FILENAM	IE :		CHECKED B	Y: LL	Dec-24
8 Reference A	M Peak Hour Traffic Flows			2020Ret_PW	J2_Unnam	ned Road A_Access to Existing F	sh Farm_P.xls	REVIEWED B	Y: PCN	Dec-24
[6] 0 - [5] 3 - Access to Existin (ARM A)	(ARM B)		[3] [4] TO Existing Fish Farm (ARM C)	NOTES : (GEOMETRIC INP W = W cr = W b-a = W b-c = V b-b = V t-b-a = V t-b-a = V t-b-a = V t-b-c = D = E = F = Y =	MAJOR ROAD WIDTH CENTRAL RESERVE WID LANE WIDTH AVAILABLE LANE WIDTH AVAILABLE LANE WIDTH AVAILABLE VISIBILITY TO THE LEFT VISIBILITY TO THE RIGH	E TO VEHICLE WAITING IN STREAM b-a E TO VEHICLE WAITING IN STREAM b-c E TO VEHICLE WAITING IN STREAM b-b FOR VEHICLES WAITING IN STREAM b- IT FOR VEHICLES WAITING IN STREAM b- IT FOR VEHICLES WAITING IN STREAM b IT FOR VEHICLES WAITING IN STREAM b	-a -c			
IETRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEM	ENT :		IPARISION OF DESIGN FLOW CAPACITY:			
MAJOR ROAD (CAPACITY:			
MAJOR ROAD (A W =	4.23 (metres)	D	= 0.793305108	Qb-a =	494		DFC b-a	= 0.00		
MAJOR ROAD (A W = W cr =	4.23 (metres) 0 (metres)	DE	= 0.862663232	Q b-a = Q b-c =	494 642		DFC b-a DFC b-c	= 0.0	40	
MAJOR ROAD (W = W cr = q a-b =	4.23 (metres) 0 (metres) 0 (pcu/hr)	D E F	= 0.862663232 = 0.79459942	Qb-a = Qb-c = Qc-b =	494 642 591		DFC b-a DFC b-c DFC c-b	= 0.0° = 0.0°	40 02	
MAJOR ROAD (A W = W cr =	4.23 (metres) 0 (metres)	DE	= 0.862663232	Q b-a = Q b-c =	494 642		DFC b-a DFC b-c	= 0.0	40 02	
MAJOR ROAD (/ W = W cr = q a-b = q a-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	то	DFC b-a DFC b-c DFC c-b	= 0.0° = 0.0°	40 02	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C)	D E F	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b =	494 642 591 609		DFC b-a DFC b-c DFC c-b	= 0.0° = 0.0°	40 02	
MAJOR ROAD (, W = W cr = q a-b = q a-c = MAJOR ROAD (<i>A</i> W c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	то	DFC b-a DFC b-c DFC c-b	= 0.0° = 0.0°	40 02	
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	то	DFC b-a DFC b-c DFC c-b	= 0.0° = 0.0°	40 02	
MAJOR ROAD (, W = W cr = q a-b = q a-c = MAJOR ROAD (<i>A</i> W c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	то	DFC b-a DFC b-c DFC c-b	= 0.0° = 0.0°	40 02	
MAJOR ROAD (/ W = Q a-b = Q a-c = MAJOR ROAD (/ W c-b = Vr c-b = Q c-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO (PCU/HR)	DFC b-a DFC b-c DFC c-b	= 0.0° = 0.0°	40 02 81	
$\begin{array}{rcl} \text{MAJOR ROAD} (, & & \\ & W & = & \\ & W \text{ cr} & = & \\ & & & \\$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr) ARM B)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	40 02 81	
MAJOR ROAD (, W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-a = q c-b = MINOR ROAD (A W b-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr) ARM B) 2.9 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	40 02 81	
MAJOR ROAD (, W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 5 (pcu/hr) 6 (pcu/hr) ARM B) 2.9 (metres) 2.9 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	40 02 81	
$\begin{array}{rcl} \text{MAJOR ROAD}(,\\ W & = \\ W \ cr & = \\ q \ a \ c & = \\ q \ a \ c & = \\ \\ \text{MAJOR ROAD}(A \\ W \ c \ b & = \\ Vr \ c \ b & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \\ \hline \\ \text{MINOR ROAD}(A \\ W \ b \ a & = \\ W \ b \ c & = \\ \\ Vr \ b \ a & = \\ \\ Vr \ b \ a & = \\ \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr) ARM B) 2.9 (metres) 2.9 (metres) 16 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	40 02 81	
$\begin{array}{rcl} \text{MAJOR ROAD}(, \\ W & = \\ W \ cr & = \\ q \ a-c & = \\ q \ a-c & = \\ \text{MAJOR ROAD}(A \\ W \ c-b & = \\ V \ c-c & = \\ q \ c-a & = \\ q \ c-a & = \\ q \ c-b & = \\ \hline \text{MINOR ROAD}(A \\ W \ b-a & = \\ W \ b-c & = \\ V \ b-a & = \\ \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr) ARM B) 2.9 (metres) 16 (metres) 40 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	40 02 81	
MAJOR ROAD (, W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = Vr b-a = Vr b-a = Vr b-a = Vr b-a = Vr b-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr) ARM B) 2.9 (metres) 16 (metres) 40 (metres) 40 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	40 02 81	
$\begin{array}{rcl} \text{MAJOR ROAD}(,\\ W & = \\ W \ cr & = \\ q \ a-c & = \\ q \ a-c & = \\ \text{MAJOR ROAD}(A \\ W \ c-b & = \\ V \ c-c & = \\ q \ c-a & = \\ q \ c-a & = \\ q \ c-b & = \\ \hline \text{MINOR ROAD}(A \\ W \ b-a & = \\ W \ b-c & = \\ V \ b-a & = \\ \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr) ARM B) 2.9 (metres) 16 (metres) 40 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	40 02 81	

ZZO TEC	HNOLOGY (HK)	LIMITED		PRIORITY JL	JNCTION C	ALCULATION			INITIALS	DATE
	y Warehouse for Construction I d of 3 Years and Associated Fil			PVs and Rural Workshop with Ancilla	ry PROJEC	CT NO.: 83133		PREPARED B	Y: CSY	Dec-24
	oad A / Access to Existing Fi			0000D AM	FILENAN	ME :		CHECKED B	Y: LL	Dec-24
8 Reference A	M Peak Hour Traffic Flows			2028Des_AM	J2_Unnar	med Road A_Access to Existing Fish	Farm_P.xls	REVIEWED B	Y: PCN	Dec-24
[6] 0 [5] 6 Access to Existin (ARM A)	(ARM B)		[3] [4] Ito Existing Fish Farm (ARM C)	NOTES: (GEOMETRIC IN W = W cr = W b-a = W b-c = W c-b = Vrb-a = Vrb-a = Vrb-c = Vrc-b = D = E = F = Y =	MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABI LANE WIDTH AVAILABI LANE WIDTH AVAILABI VISIBILITY TO THE LEF VISIBILITY TO THE RIGI VISIBILITY TO THE RIGI	LE TO VEHICLE WAITING IN STREAM b-a LE TO VEHICLE WAITING IN STREAM b-c LE TO VEHICLE WAITING IN STREAM c-b T FOR VEHICLES WAITING IN STREAM b-a HT FOR VEHICLES WAITING IN STREAM b-c HT FOR VEHICLES WAITING IN STREAM b-c HT FOR VEHICLES WAITING IN STREAM c-b				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVE	MENT :	COMPA TO CAF	RISION OF DESIGN FLOW			
IETRIC DETAILS: MAJOR ROAD (GEOMETRIC FACTORS :					ACITY:			
MAJOR ROAD (W =	4.23 (metres)	D	= 0.793305108	Qb-a =	492		ACITY: DFC b-a	= 0.00		
MAJOR ROAD (4.23 (metres) 0 (metres)	D E	= 0.862663232	Q b-a = Q b-c =	492 641		DFC b-a DFC b-c	= 0.02	18	
MAJOR ROAD (W =	4.23 (metres) 0 (metres) 0 (pcu/hr)	D E F	= 0.862663232 = 0.79459942	Qb-a = Qb-c = Qc-b =	492 641 590		DFC b-a DFC b-c DFC c-b	= 0.02 = 0.01	18 19	
MAJOR ROAD (W = W cr =	4.23 (metres) 0 (metres)	D E	= 0.862663232	Q b-a = Q b-c =	492 641		DFC b-a DFC b-c	= 0.02	18 19	
MAJOR ROAD (W = W cr = q a-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr)	D E F	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b =	492 641 590 641		DFC b-a DFC b-c DFC c-b	= 0.02 = 0.01	18 19	
MAJOR ROAD (W = W cr = q a-b = q a-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	492 641 590 641	TO CAF	DFC b-a DFC b-c DFC c-b	= 0.02 = 0.01	18 19	
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (/	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) (ARM C)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	492 641 590 641	TO CAF	DFC b-a DFC b-c DFC c-b	= 0.02 = 0.01	18 19	
MAJOR ROAD (4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) (ARM C) 2.4 (metres) 12 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	492 641 590 641	TO CAF	DFC b-a DFC b-c DFC c-b	= 0.02 = 0.01	18 19	
MAJOR ROAD (4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) (ARM C) 2.4 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	492 641 590 641	TO CAF (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.02 = 0.01 = 0.02	18 19 18	
MAJOR ROAD (W = W cr = q ab = q ac = MAJOR ROAD (W c-b = Vrc-b = q c-a = q c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) (ARM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 7 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	492 641 590 641	TO CAF (PCU/HR)	DFC b-a DFC b-c DFC c-b	= 0.02 = 0.01	18 19 18	
MAJOR ROAD (W = W cr = q ab = q ac = MAJOR ROAD (W c-b = V c-b = q c-a = q c-b = MINOR ROAD (/	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) (ARM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 7 (pcu/hr) ARM B)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	492 641 590 641	TO CAF (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.02 = 0.01 = 0.02	18 19 18	
MAJOR ROAD (W = W cr = q ab = q ac = MAJOR ROAD (W cb = Vrcb = q ca = q cb = MINOR ROAD (/ W b-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) (ARM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 7 (pcu/hr) ARM B) 2.9 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	492 641 590 641	TO CAF (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.02 = 0.01 = 0.02	18 19 18	
MAJOR ROAD (W = W cr = q ab = q ac = MAJOR ROAD (W c·b = Vr·c b = q c·a = q c·b = MINOR ROAD (W b·a = W b·c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 4.ARM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 7 (pcu/hr) ARM B) 2.9 (metres) 2.9 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	492 641 590 641	TO CAF (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.02 = 0.01 = 0.02	18 19 18	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) (ARM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 7 (pcu/hr) ARM B) 2.9 (metres) 2.9 (metres) 16 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	492 641 590 641	TO CAF (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.02 = 0.01 = 0.02	18 19 18	
MAJOR ROAD (W = W cr = q ab = q ac = MAJOR ROAD (W cb = Vrcb = q cb = MINOR ROAD (W ba = W bc = Vlba = Vrba =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 2.4 (metres) 12 (metres) 9 (pcu/hr) 7 (pcu/hr) ARM B) 2.9 (metres) 2.9 (metres) 40 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	492 641 590 641	TO CAF (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.02 = 0.01 = 0.02	18 19 18	
$\begin{array}{l} \mbox{MAJOR ROAD (} & \ & \ & \ & \ & \ & \ & \ & \ & \ & $	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 4.RM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 7 (pcu/hr) ARM B) 2.9 (metres) 16 (metres) 40 (metres) 40 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	492 641 590 641	TO CAF (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.02 = 0.01 = 0.02	18 19 18	
MAJOR ROAD (W = W cr = q ab = q ac = MAJOR ROAD (W cb = Vrcb = q cb = MINOR ROAD (W ba = W bc = Vlba = Vrba =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) 2.4 (metres) 12 (metres) 9 (pcu/hr) 7 (pcu/hr) ARM B) 2.9 (metres) 2.9 (metres) 40 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	492 641 590 641	TO CAF (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.02 = 0.01 = 0.02	18 19 18	

ZO TEC	HNOLOGY (HK) L	IMITED		PRIORITY JUN	ICTION CAI	LCULATION			INITIALS	DATE
	y Warehouse for Construction Ma d of 3 Years and Associated Fillin			Vs and Rural Workshop with Ancillary	PROJECT	NO.: 83133		PREPARED B	CSY	Dec-24
	oad A / Access to Existing Fish			0000D DM	FILENAME	:		CHECKED B	(: LL	Dec-24
3 Reference Al	M Peak Hour Traffic Flows			2028Des_PM	J2_Unname	ed Road A_Access to Existing Fish	Farm_P.xls	REVIEWED B		Dec-24
[6] 0 - [5] 3 - [5] Access to Existin (ARM A)	(ARM B)		[3] [4] to Existing Fish Farm (ARM C)	W cr = C W ba = L W bc = L W bc = L VIba = V Vrba = V Vrba = V Vrba = V D = S E = S F = S	IAJOR ROAD WIDTH ENTRAL RESERVE WIDT ANE WIDTH AVAILABLE 1 ANE WIDTH AVAILABLE 1 ANE WIDTH AVAILABLE 1 ISIBILITY TO THE LEFT Fr ISIBILITY TO THE RIGHT I ISIBILITY TO THE RIGHT I	TH TO VEHICLE WAITING IN STREAM b-a TO VEHICLE WAITING IN STREAM b-c TO VEHICLE WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM b-b				
IETRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMEN	IT :	Сомра то сар	RISION OF DESIGN FLOW ACITY:			
MAJOR ROAD (/							ACITY:			
MAJOR ROAD (A W =	4.23 (metres)	D	= 0.793305108	Qb-a =	493		ACITY: DFC b-a	= 0.00		
MAJOR ROAD (/ W = W cr =	4.23 (metres) 0 (metres)	D	= 0.862663232	Q b-a = Q b-c =	493 642		ACITY: DFC b-a DFC b-c	= 0.01	71	
MAJOR ROAD (/ W = W cr = q a-b =	4.23 (metres) 0 (metres) 0 (pcu/hr)	D E F	= 0.862663232 = 0.79459942	Qb-a = Qb-c = Qc-b =	493 642 591		ACITY: DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	71 35	
MAJOR ROAD (/ W = W cr =	4.23 (metres) 0 (metres)	D	= 0.862663232	Q b-a = Q b-c =	493 642		ACITY: DFC b-a DFC b-c	= 0.01	71 35	
MAJOR ROAD (/ W = W cr = q a-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr)	D E F	= 0.862663232 = 0.79459942	Qb-a = Qb-c = Qc-b =	493 642 591		ACITY: DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	71 35	
MAJOR ROAD (/ W = W cr = q a-b = q a-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 642 591 613	TO CAP	ACITY: DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	71 35	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) (ARM C)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 642 591 613	TO CAP	ACITY: DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	71 35	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) (ARM C) 2.4 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 642 591 613	TO CAP	ACITY: DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	71 35	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) (ARM C) 2.4 (metres) 12 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 642 591 613	TO CAP (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	r1 35 12	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) (ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 8 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 642 591 613	TO CAP (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	r1 35 12	
$\begin{array}{rcl} \text{MAJOR ROAD}(\prime & W & = & \\ W & \text{cr} & = & \\ q & a \text{-}b & = & \\ q & a \text{-}c & = & \\ \text{MAJOR ROAD}(A & \\ W & \text{c-}b & = & \\ Vr & \text{c-}b & = & \\ q & \text{c-}a & = & \\ q & \text{c-}b & = & \\ \text{MINOR ROAD}(A & \\ \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) (ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 8 (pcu/hr) ARM B)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 642 591 613	TO CAP (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	r1 35 12	
$\begin{array}{rcl} \text{MAJOR ROAD}(\textit{V})\\ W & = & \\ W \ cr & = & \\ q \ a \text{-}b & = & \\ q \ a \text{-}c & = & \\ \\ \text{MAJOR ROAD}(\textit{A})\\ W \ c \text{-}b & = & \\ V \ c \text{-}b & = & \\ q \ c \text{-}a & = & \\ q \ c \text{-}b & = & \\ \\ \text{MINOR ROAD}(\textit{A})\\ W \ b \text{-}a & = & \\ \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) 4ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 8 (pcu/hr) ARM B) 2.9 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 642 591 613	TO CAP (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	r1 35 12	
$\begin{array}{rcl} \text{MAJOR ROAD}(i)\\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ab & = \\ q \ ab & = \\ \hline \\ \text{MAJOR ROAD}(A \\ W \ cb & = \\ Vr \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \hline \\ \text{MINOR ROAD}(A \\ W \ bb & = \\ W \ bb & = \\ W \ bb & = \\ \hline \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) 4ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 8 (pcu/hr) 4RM B) 2.9 (metres) 2.9 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 642 591 613	TO CAP (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	r1 35 12	
$\begin{array}{rcl} \text{MAJOR ROAD}(\prime \\ W & = \\ W \ \text{cr} & = \\ q \ \text{a-b} & = \\ q \ \text{a-b} & = \\ q \ \text{a-c} & = \\ W \ \text{c-b} & = \\ V \ \text{rc-b} & = \\ q \ \text{c-a} & = \\ q \ \text{c-b} & = \\ \end{array}$ $\begin{array}{rc} \text{MINOR ROAD}(A \\ W \ \text{b-a} & = \\ W \ \text{b-c} & = \\ \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) 4ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 8 (pcu/hr) ARM B) 2.9 (metres) 2.9 (metres) 16 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 642 591 613	TO CAP (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	r1 35 12	
$\begin{array}{rcl} \text{MAJOR ROAD} (\prime \\ W & = \\ W \ cr & = \\ q \ a \ b & = \\ q \ a \ c & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD} (\land \\ W \ c \ b & = \\ q \ c \ a & = \\ q \ c \ b & = \\ q \ c \ b & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD} (\land \\ W \ b \ a & = \\ W \ b \ c & = \\ \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) 4ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 8 (pcu/hr) 4RM B) 2.9 (metres) 16 (metres) 40 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 642 591 613	TO CAP (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	r1 35 12	
$\begin{array}{rcl} \text{MAJOR ROAD}(i)\\ W & = \\ W \ cr & = \\ q \ a \ b & = \\ q \ a \ c & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD}(A \\ W \ c \ b & = \\ V \ c \ c & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD}(A \\ W \ b \ a & = \\ W \ b \ c & = \\ W \ b \ c & = \\ W \ b \ c & = \\ V \ b \ a & = \\ W \ b \ c & = \\ V \ b \ a & = \\ V \ b \ a & = \\ V \ b \ c & = \\ V \ c \ b \ c & = \\ V \ c \ b \ c & = \\ V \ c \ b \ c & = \\ V \ c \ b \ c & = \\ V \ c \ b \ c & = \\ \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) 4ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 8 (pcu/hr) 40 (metres) 40 (metres) 40 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 642 591 613	TO CAP (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	r1 35 12	
$\begin{array}{rcl} \text{MAJOR ROAD} (\prime \\ W & = \\ W \ cr & = \\ q \ a \ b & = \\ q \ a \ c & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD} (\land \\ W \ c \ b & = \\ q \ c \ a & = \\ q \ c \ b & = \\ q \ c \ b & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD} (\land \\ W \ b \ a & = \\ W \ b \ c & = \\ \end{array}$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) 4ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 8 (pcu/hr) 4RM B) 2.9 (metres) 16 (metres) 40 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Qb-a = Qb-c = Qc-b = Qb-ac =	493 642 591 613	TO CAP (PCU/HR)	ACITY: DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	r1 35 12	

ZZO TECH	HNOLOGY (HK) LI	MITED		PRIORITY JU		LCULATION			INITIALS	DATE
	Warehouse for Construction Mate of 3 Years and Associated Filling			Vs and Rural Workshop with Ancillary	PROJECT	NO.: 83133		PREPARED B	CSY	Dec-24
	ad A / Access Road underneat				FILENAME	= :		CHECKED B	(: LL	Dec-24
	M Peak Hour Traffic Flows			2028Ref_AM						
8 Reference AI	IN PEAK HOUR I RATTIC FIOWS				Jnnamed R	Road A_Access Road underneath KSWH_P.	ds	REVIEWED B	C PCN	Dec-24
[6] 3 - [5] 55 - Access Road under (ARM A)			[3] [4] ad underneath KSWH (ARM C)	W cr = W b-a = W b-c = VI b-a = VI b-a = VI b-a = VI c-b = D = E = F =	MAJOR ROAD WIDTH CENTRAL RESERVE WID LANE WIDTH AVAILABLE LANE WIDTH AVAILABLE LANE WIDTH AVAILABLE VISIBILITY TO THE LEFT F VISIBILITY TO THE RIGHT VISIBILITY TO THE RIGHT	DTH TO VEHICLE WAITING IN STREAM b-a TO VEHICLE WAITING IN STREAM b-c TO VEHICLE WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM b-c FOR VEHICLES WAITING IN STREAM c-b				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEM	ENT :	COMPARISION OF TO CAPACITY:	DESIGN FLOW			
MAJOR ROAD (A										
MAJOR ROAD (A W =	4.75 (metres)	D	= 0.819750132	Q b-a =	486		DFC b-a	= 0.01		
MAJOR ROAD (A W = W cr =	4.75 (metres) 0 (metres)	D E	= 0.86654348	Q b-a = Q b-c =	486 631		DFC b-a DFC b-c	= 0.01	i8	
MAJOR ROAD (A W = W cr = q a-b =	4.75 (metres) 0 (metres) 3 (pcu/hr)	D E F	= 0.86654348 = 0.91047865	Q b-a = Q b-c = Q c-b =	486 631 662		DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	58 56	
MAJOR ROAD (A W = W cr =	4.75 (metres) 0 (metres)	D E	= 0.86654348	Q b-a = Q b-c =	486 631		DFC b-a DFC b-c	= 0.01	58 56	
MAJOR ROAD (A W = W cr = q a-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr)	D E F	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b =	486 631 662		DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	58 56	
MAJOR ROAD (A W = W cr = q a-b = q a-c =	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	486 631 662 568	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	58 56	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (Af	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) NRM C)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	486 631 662 568	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	58 56	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AI W c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	486 631 662 568	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.01 = 0.01	58 56	
MAJOR ROAD (A W = W cr = q.a-b = q.a-c = MAJOR ROAD (Ai W c-b = Vr c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 35 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	486 631 662 568	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	58 56 52	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AI W c-b = Vr c-b = q c-a = q c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 62 (pcu/hr) 11 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	486 631 662 568	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01	58 56 52	
$\begin{array}{rcl} \text{MAJOR ROAD (A} \\ W & = \\ W \ \text{cr} & = \\ q \ \text{a-b} & = \\ q \ \text{a-c} & = \\ \\ \text{MAJOR ROAD (AI \\ W \ \text{c-b} & = \\ q \ \text{c-a} & = \\ q \ \text{c-b} & = \\ \\ \\ \text{MINOR ROAD (AF \\ \text{MINOR ROAD (AF \\ \text{max}) \\ \text{MINOR ROAD (AF \\ \text{max}) \\ \text{MINOR ROAD (AF \\ \text{max}) \\ \text{max} \\ max$	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 62 (pcu/hr) 11 (pcu/hr) RM B)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	486 631 662 568	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	58 56 52	
$\begin{array}{rcl} \text{MAJOR ROAD (A} \\ W & = \\ W \ cr & = \\ q \ a \ b & = \\ q \ a \ c & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (AI)} \\ W \ c \ b & = \\ V \ c \ b & = \\ q \ c \ a & = \\ q \ c \ b & = \\ q \ c \ b & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (AI)} \\ W \ b \ a & = \\ \end{array}$	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 62 (pcu/hr) 11 (pcu/hr) RM B) 2.7 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	486 631 662 568	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	58 56 52	
$\begin{array}{rcl} \text{MAJOR ROAD (A}\\ W & =\\ W \ \text{cr} & =\\ q \ \text{a-b} & =\\ q \ \text{a-c} & =\\ q \ \text{a-c} & =\\ W \ \text{c-b} & =\\ q \ \text{c-b} & =\\ \\ \text{MINOR ROAD (AF)}\\ W \ \text{b-a} & =\\ W \ \text{b-c} & =\\ \end{array}$	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 62 (pcu/hr) 11 (pcu/hr) RM B) 2.7 (metres) 2.7 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	486 631 662 568	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	58 56 52	
$\begin{array}{rcl} \text{MAJOR ROAD (A} \\ W & = \\ W \ cr & = \\ q \ a-b & = \\ q \ a-b & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (AI \\ W \ c-b & = \\ V \ rc-b & = \\ q \ c-b & = \\ q \ c-b & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (AF \\ W \ b-a & = \\ W \ b-c & = \\ W \ b-c & = \\ \end{array}$	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) 3.5 (metres) 35 (metres) 62 (pcu/hr) 11 (pcu/hr) RM B) 2.7 (metres) 60 (metres) 60 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	486 631 662 568	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	58 56 52	
$\begin{array}{rcrr} \text{MAJOR ROAD (A} \\ W & = \\ W \ \text{cr} & = \\ q \ \text{a-b} & = \\ q \ \text{a-c} & = \\ \\ \text{MJOR ROAD (AF)} \\ W \ \text{c-b} & = \\ q \ \text{c-a} & = \\ q \ \text{c-b} & = \\ \\ \text{MINOR ROAD (AF)} \\ W \ \text{b-a} & = \\ W \ \text{b-c} & = \\ \\ \\ \\ W \ \text{b-c} & = \\ \\ \\ \\ W \ \text{b-c} & = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) 3.5 (metres) 35 (metres) 62 (pcu/hr) 11 (pcu/hr) RM B) 2.7 (metres) 60 (metres) 67 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	486 631 662 568	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	58 56 52	
$\begin{array}{rcrr} \text{MAJOR ROAD (A}\\ W & = \\ W \ cr & = \\ q \ a \ c & = \\ q \ a \ c & = \\ \end{array}$ $\begin{array}{rcrr} \text{MAJOR ROAD (AI \\ W \ c \ b & = \\ V \ c \ c & a & = \\ q \ c \ c & a & = \\ q \ c \ b & = \\ \end{array}$ $\begin{array}{rcrr} \text{MINOR ROAD (AI \\ W \ b \ a & = \\ W \ b \ c & = \\ \end{array}$	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 62 (pcu/hr) 11 (pcu/hr) ARM B) 2.7 (metres) 60 (metres) 67 (metres) 67 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	486 631 662 568	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	58 56 52	
$\begin{array}{rcrr} \text{MAJOR ROAD (A} \\ W & = \\ W \ \text{cr} & = \\ q \ \text{a-b} & = \\ q \ \text{a-c} & = \\ \\ \text{MJOR ROAD (AF)} \\ W \ \text{c-b} & = \\ q \ \text{c-a} & = \\ q \ \text{c-b} & = \\ \\ \text{MINOR ROAD (AF)} \\ W \ \text{b-a} & = \\ W \ \text{b-c} & = \\ \\ \\ \\ W \ \text{b-c} & = \\ \\ \\ \\ W \ \text{b-c} & = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) 3.5 (metres) 35 (metres) 62 (pcu/hr) 11 (pcu/hr) RM B) 2.7 (metres) 60 (metres) 67 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	486 631 662 568	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.01 = 0.01 = 0.02	58 56 52	

ZZO TEC	HNOLOGY (HK) L	MITED		PRIORITY JUN	CTION CALC	CULATION		INI	TIALS	DATE
	y Warehouse for Construction Mat d of 3 Years and Associated Filling			Vs and Rural Workshop with Ancillary	PROJECT NO.	.: 83133	PREPAR	RED BY: 0	CSY	Dec-24
Unnamed Roa	ad A / Access Road underneat	h KSWH		2028Ref_PM	FILENAME :		CHECH	ED BY:	LL	Dec-24
8 Reference A	M Peak Hour Traffic Flows			2020Rel_FIM	Jnnamed Road	A_Access Road underneath KSWH_P.xl	REVIEW	/ED BY: F	PCN	Dec-24
[6] 3 ([5] 73 (Access Road unde (ARM A)	(ARM B)		[3] [4] (ARM C)	W cr = CE W b-a = LA W b-c = LA W c-b = LA W c-b = LA V b-a = VIS Vrb-a = VIS Vrb-c = VIS Vrc-b = VIS D = ST E = ST F = ST	AJOR ROAD WIDTH ENTRAL RESERVE WIDTH NNE WIDTH AVAILABLE TO VI ANE WIDTH AVAILABLE TO VI SIBILITY TO THE LEFT FOR V SIBILITY TO THE RIGHT FOR SIBILITY TO THE RIGHT FOR	VEHICLE WAITING IN STREAM b-a VEHICLE WAITING IN STREAM b-c VEHICLE WAITING IN STREAM b-a VEHICLES WAITING IN STREAM b-a VEHICLES WAITING IN STREAM b-c VEHICLES WAITING IN STREAM b-c				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT	τ.	COMPARISION OF D TO CAPACITY:	ESIGN FLOW			
METRIC DETAILS: MAJOR ROAD (COMPARISION OF D TO CAPACITY:				
MAJOR ROAD (W =	4.75 (metres)	D	= 0.819750132	Q b-a =	482		DFC b-a =	0.0166		
MAJOR ROAD (W = W cr =	4.75 (metres) 0 (metres)	D	= 0.86654348	Qb-a = Qb-c =	482 626		DFC b-a = DFC b-c =	0.0064		
MAJOR ROAD (W = W cr = q a-b =	4.75 (metres) 0 (metres) 3 (pcu/hr)	D E F	= 0.86654348 = 0.91047865	Q.b-a = Q.b-c = Q.c-b =	482 626 657		DFC b-a = DFC b-c = DFC c-b =	0.0064 0.0122		
MAJOR ROAD (W = W cr =	4.75 (metres) 0 (metres)	D	= 0.86654348	Qb-a = Qb-c =	482 626		DFC b-a = DFC b-c =	0.0064		
MAJOR ROAD (W = W cr = q a-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr)	D E F	= 0.86654348 = 0.91047865	Q.b-a = Q.b-c = Q.c-b =	482 626 657		DFC b-a = DFC b-c = DFC c-b =	0.0064 0.0122		
MAJOR ROAD (W = W cr = q a-b = q a-c =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	το ςαραςιτγ:	DFC b-a = DFC b-c = DFC c-b =	0.0064 0.0122		
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (/	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) (ARM C)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	το ςαραςιτγ:	DFC b-a = DFC b-c = DFC c-b =	0.0064 0.0122		
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (/ W c-b = Vrc-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) (ARM C) 3.5 (metres) 35 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	το ςαραςιτγ:	DFC b-a = DFC b-c = DFC c-b =	0.0064 0.0122		
MAJOR ROAD (4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) (ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	το ςαραςιτγ:	DFC b-a = DFC b-c = DFC c-b =	0.0064 0.0122		
MAJOR ROAD (W = qab = qa-c = MAJOR ROAD (/ W c-b = Vrc-b = q c-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) (ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	TO CAPACITY:	DFC b-a = DFC b-c = DFC c-b = DFC b-c (share lane) =	0.0064 0.0122 0.0230		
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (W c-b = Vrc-b = q c-a = q c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) (ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 8 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	το ςαραςιτγ:	DFC b-a = DFC b-c = DFC c-b = DFC b-c (share lane) =	0.0064 0.0122		
MAJOR ROAD (W = Q ab = Q ab = Q ab = Q ab = Q ab = Vr cb = Q cb = MINOR ROAD (A	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) (ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 8 (pcu/hr) ARM B)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	TO CAPACITY:	DFC b-a = DFC b-c = DFC c-b = DFC b-c (share lane) =	0.0064 0.0122 0.0230		
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (/ W c-b = q c-a = q c-b = MINOR ROAD (/ W b-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) (ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 8 (pcu/hr) ARM B) 2.7 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	TO CAPACITY:	DFC b-a = DFC b-c = DFC c-b = DFC b-c (share lane) =	0.0064 0.0122 0.0230		
MAJOR ROAD (W = Q ab = Q ac = MAJOR ROAD (/ W c-b = Vr c-b = Q c-a = Q c-b = MINOR ROAD (/ W b-a = W b-c =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) (ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 8 (pcu/hr) ARM B) 2.7 (metres) 2.7 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	TO CAPACITY:	DFC b-a = DFC b-c = DFC c-b = DFC b-c (share lane) =	0.0064 0.0122 0.0230		
MAJOR ROAD (W = Q ab = Q ab = Q ab = Q ab = Vr c-b = Vr c-b = Q c-b = Q c-b = MINOR ROAD (A W b-a = W b-c = VI b-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) (ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 8 (pcu/hr) ARM B) 2.7 (metres) 60 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	TO CAPACITY:	DFC b-a = DFC b-c = DFC c-b = DFC b-c (share lane) =	0.0064 0.0122 0.0230		
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (/ W c-b = Vr c-b = Q c-a = q c-b = MINOR ROAD (/ W b-a = W b-c = Vr b-a = Vr b-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) (ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 8 (pcu/hr) ARM B) 2.7 (metres) 60 (metres) 67 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	TO CAPACITY:	DFC b-a = DFC b-c = DFC c-b = DFC b-c (share lane) =	0.0064 0.0122 0.0230		
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (/ W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (/ W b-a = W b-c = VI b-a = Vr b-a = Vr b-a = Vr b-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) (ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 8 (pcu/hr) ARM B) 2.7 (metres) 60 (metres) 67 (metres) 67 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	TO CAPACITY:	DFC b-a = DFC b-c = DFC c-b = DFC b-c (share lane) =	0.0064 0.0122 0.0230		
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (/ W c-b = Vr c-b = Q c-a = q c-b = MINOR ROAD (/ W b-a = W b-c = Vr b-a = Vr b-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) (ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 8 (pcu/hr) ARM B) 2.7 (metres) 60 (metres) 67 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 626 657 522	TO CAPACITY:	DFC b-a = DFC b-c = DFC c-b = DFC b-c (share lane) =	0.0064 0.0122 0.0230		

	HNOLOGY (HK) LI	MITED		PRIORITY JUN	ICTION CAL	LCULATION			INITIALS	DATE
	Warehouse for Construction Mat of 3 Years and Associated Filling			s and Rural Workshop with Ancillary	PROJECT I	NO.: 83133		PREPARED	BY: CSY	Dec-24
: Unnamed Roa	ad A / Access Road underneat	h KSWH		2028Des_AM	FILENAME	:		CHECKED	BY: LL	Dec-24
28 Reference Al	M Peak Hour Traffic Flows			2020Des_Aivi	Jnnamed Ro	oad A_Access Road underneath KS	VH_P.xls	REVIEWED	BY: PCN	Dec-24
Unnamed R (A [6] 3 - [5] 55 - Access Road under (ARM A)	ARM B)	5 		W cr = 0 W b-a = L W b-c = L V b-c = L V b-a = V V rb-a = V V rb-c = V V rb-c = V D = S E = S F = S	IAJOR ROAD WIDTH ENTRAL RESERVE WIDT ANE WIDTH AVAILABLE T ANE WIDTH AVAILABLE T ANE WIDTH AVAILABLE T ISIBILITY TO THE LEFT F(ISIBILITY TO THE RIGHT I ISIBILITY TO THE RIGHT I	TH TO VEHICLE WAITING IN STREAM b-a TO VEHICLE WAITING IN STREAM b-c TO VEHICLE WAITING IN STREAM c-b OR VEHICLES WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM b-c FOR VEHICLES WAITING IN STREAM b-c FOR VEHICLES WAITING IN STREAM c-b				
DMETRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMEN	π:	COMPAR TO CAPA	SION OF DESIGN FLOW ITY:			
MAJOR ROAD (A							ITY:			
MAJOR ROAD (A W =	4.75 (metres)	D =	0.819750132	Q b-a =	481		ITY: DFC b-a)125	
MAJOR ROAD (A W = W cr =	4.75 (metres) 0 (metres)	D = E =	0.86654348	Qb-a = Qb-c =	481 631		ITY: DFC b-a DFC b-c	= 0	0412	
MAJOR ROAD (A W = W cr = q a-b =	4.75 (metres) 0 (metres) 3 (pcu/hr)	D = E = F =	0.86654348 0.91047865	Q b-a = Q b-c = Q c-b =	481 631 662		ITY: DFC b-a DFC b-c DFC c-b	= 0 = 0	0412 0408	
MAJOR ROAD (A W = W cr =	4.75 (metres) 0 (metres)	D = E =	0.86654348	Qb-a = Qb-c =	481 631		ITY: DFC b-a DFC b-c	= 0 = 0	0412	
MAJOR ROAD (A W = W cr = q a-b = q a-c =	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	481 631 662 596	το ςάρα	ITY: DFC b-a DFC b-c DFC c-b	= 0 = 0	0412 0408	
MAJOR ROAD (# W = W cr = q a-b = q a-c = MAJOR ROAD (A	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr)	D = E = F =	0.86654348 0.91047865	Q b-a = Q b-c = Q c-b =	481 631 662 596		ITY: DFC b-a DFC b-c DFC c-b	= 0 = 0	0412 0408	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	481 631 662 596	το ςάρα	ITY: DFC b-a DFC b-c DFC c-b	= 0 = 0	0412 0408	
MAJOR ROAD (<i>k</i>	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 35 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	481 631 662 596	το ςάρα	ITY: DFC b-a DFC b-c DFC c-b	= 0 = 0	0412 0408	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	481 631 662 596	TO CAPA (PCU/HR)	TTY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0 = 0 = 0)412)408)537	
MAJOR ROAD (<i>k</i> W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 62 27 (pcu/hr) 27	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	481 631 662 596	TO CAPA (PCU/HR)	ITY: DFC b-a DFC b-c DFC c-b	= 0 = 0)412)408)537	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 62 (pcu/hr) 27 (pcu/hr) ARM B)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	481 631 662 596	TO CAPA (PCU/HR)	TTY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0 = 0 = 0)412)408)537	
MAJOR ROAD (A W = W cr = q ab = q a-c = MAJOR ROAD (A W c-b = V c-b = q c-a = q c-b = MINOR ROAD (AI W b-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 62 (pcu/hr) 27 (pcu/hr) ARM B) 2.7 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	481 631 662 596	TO CAPA (PCU/HR)	TTY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0 = 0 = 0)412)408)537	
MAJOR ROAD (<i>A</i> W = Q ab = Q ac = MAJOR ROAD (A W c-b = Vrc-b = Q c-a = Q c-b = MINOR ROAD (A W b-a = W b-c =	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 62 (pcu/hr) 27 (pcu/hr) ARM B) 2.7 (metres) 2.7 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	481 631 662 596	TO CAPA (PCU/HR)	TTY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0 = 0 = 0)412)408)537	
$\begin{array}{rcl} \mbox{MAJOR ROAD}(k\\ W & = & \\ \mbox{W cr} & = & \\ \mbox{q a-c} & = & \\ \mbox{q a-c} & = & \\ \mbox{MAJOR ROAD}(k\\ W c-b & = & \\ \mbox{V c-b} & = & \\ \mbox{V c-b} & = & \\ \mbox{q c-b} & = & \\ \mbox{q c-b} & = & \\ \mbox{MINOR ROAD}(k\\ W b-a & = & \\ \mbox{W b-a} & = & \\ \mbox{W b-a} & = & \\ \mbox{W b-a} & = & \\ \mbox{V b-a} & = & \\ \mbox$	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 62 (pcu/hr) 27 (pcu/hr) ARM B) 2.7 (metres) 6.0 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	481 631 662 596	TO CAPA (PCU/HR)	TTY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0 = 0 = 0)412)408)537	
$\begin{array}{rcl} \text{MAJOR ROAD}(\textit{\textit{K}})\\ W & = & \\ W \ cr & = & \\ q \ ab & = & \\ q \ ab & = & \\ q \ ab & = & \\ \text{MAJOR ROAD}(\textit{\textit{A}})\\ W \ cb & = & \\ V \ cb & = & \\ Q \ cb & = & \\ q \ cb & = & \\ q \ cb & = & \\ \text{MINOR ROAD}(\textit{\textit{AI}})\\ W \ bc & = & \\ W \ bc & = & \\ W \ bc & = & \\ V \ cb & = & \\ V \ bb & = & \\ V \ bb & = & \\ V \ bb & = & \\ \end{array}$	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) 3.5 (metres) 35 (metres) 62 (pcu/hr) 27 (pcu/hr) ARM B) 2.7 (metres) 60 (metres) 67 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	481 631 662 596	TO CAPA (PCU/HR)	TTY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0 = 0 = 0)412)408)537	
$\begin{array}{rcl} \mbox{MAJOR ROAD}(k\\ W & = & \\ \mbox{W cr} & = & \\ \mbox{q a-c} & = & \\ \mbox{q a-c} & = & \\ \mbox{MAJOR ROAD}(k\\ W c-b & = & \\ \mbox{V c-b} & = & \\ \mbox{V c-b} & = & \\ \mbox{q c-b} & = & \\ \mbox{q c-b} & = & \\ \mbox{MINOR ROAD}(k\\ W b-a & = & \\ \mbox{W b-a} & = & \\ \mbox{W b-a} & = & \\ \mbox{W b-a} & = & \\ \mbox{V b-a} & = & \\ \mbox$	4.75 (metres) 0 (metres) 3 (pcu/hr) 55 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 62 (pcu/hr) 27 (pcu/hr) ARM B) 2.7 (metres) 6.0 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	481 631 662 596	TO CAPA (PCU/HR)	TTY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0 = 0 = 0)412)408)537	

ZZO TECI	HNOLOGY (HK) LI	MITED		PRIORITY JUN	CTION CALC	ULATION			INITIALS	DATE
	Warehouse for Construction Mat of 3 Years and Associated Filling			Vs and Rural Workshop with Ancillary	PROJECT NO .:	83133		PREPARE	BY: CSY	Dec-24
Unnamed Roa	ad A / Access Road underneat	h KSWH		2028Des_PM	FILENAME :			CHECKE	BY: LL	Dec-24
28 Reference Al	M Peak Hour Traffic Flows			2020De5_FW	Jnnamed Road A	A_Access Road underneath KSWH_P.xk	s	REVIEWE	BY: PCN	Dec-24
[6] 3 - [5] 73 - [Access Road under (ARM A)	ARM B)	5 18 70 Access Ro	[3] [4] ad underneath KSWH (ARM C)	W cr = CE W b-a = LA W b-c = LA W c-b = LA V b-a = VK V rb-a = VK V rb-a = VK V rb-c = VK D = ST E = ST F = ST	AJOR ROAD WIDTH INTRAL RESERVE WIDTH INE WIDTH AVAILABLE TO VEI INE WIDTH AVAILABLE TO VEI INE WIDTH AVAILABLE TO VEI SIBILITY TO THE LEFT FOR VE SIBILITY TO THE RIGHT FOR V SIBILITY TO THE RIGHT FOR V	HICLE WAITING IN STREAM b-a HICLE WAITING IN STREAM b-c HICLE WAITING IN STREAM c-b HICLES WAITING IN STREAM b-a TEHICLES WAITING IN STREAM b-c EHICLES WAITING IN STREAM b-c EHICLES WAITING IN STREAM c-b				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT	т:	COMPARISION OF D TO CAPACITY:	ESIGN FLOW			
MAJOR ROAD (A										
MAJOR ROAD (A W =	4.75 (metres)	D	= 0.819750132	Q b-a =	478		DFC b-a		0.0167	
MAJOR ROAD (A W = W cr =	4.75 (metres) 0 (metres)	D	= 0.86654348	Qb-a = Qb-c =	478 626		DFC b-a DFC b-c	=	0.0240	
MAJOR ROAD (A W =	4.75 (metres) 0 (metres) 3 (pcu/hr)	D E F	= 0.86654348 = 0.91047865	Q.b-a = Q.b-c = Q.c-b =	478 626 657		DFC b-a DFC b-c DFC c-b	=	0.0240 0.0274	
MAJOR ROAD (A W = W cr =	4.75 (metres) 0 (metres)	D E F	= 0.86654348	Qb-a = Qb-c =	478 626		DFC b-a DFC b-c	=	0.0240	
MAJOR ROAD (A W = W cr = q a-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865	Q.b-a = Q.b-c = Q.c-b =	478 626 657		DFC b-a DFC b-c DFC c-b	=	0.0240 0.0274	
MAJOR ROAD (A W = W cr = q a-b = q a-c =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	478 626 657 565	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	=	0.0240 0.0274	
MAJOR ROAD (Å W = W cr = q a-b = q a-c = MAJOR ROAD (Å	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) ARM C)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	478 626 657 565	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	=	0.0240 0.0274	
MAJOR ROAD (# W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) ARM C) 3.5 (metres) 35 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	478 626 657 565	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	=	0.0240 0.0274	
MAJOR ROAD (Å W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) ARM C) 3.5 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	478 626 657 565	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	=	0.0240 0.0274	
MAJOR ROAD (A W = W cr = q ab = q a-c = MAJOR ROAD (A W c-b = V r c-b = q c-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) ARM C) 3.5 (metres) 36 (metres) 70 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	478 626 657 565	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0240 0.0274	
MAJOR ROAD (A W = W cr = q ab = q a-c = MAJOR ROAD (A W c-b = V r c-b = q c-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 18 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	478 626 657 565	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0240 0.0274 0.0407	
MAJOR ROAD (<i>i</i> W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 18 (pcu/hr)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	478 626 657 565	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0240 0.0274 0.0407	
MAJOR ROAD (<i>A</i> W = Q ab = Q ab = Q ab = Q ab = Q ab = MAJOR ROAD (A W cb = V cb = Q cb = Q cb = MINOR ROAD (A)	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 18 (pcu/hr) ARM B)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	478 626 657 565	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0240 0.0274 0.0407	
MAJOR ROAD (A W = Q ab = Q a-C = MAJOR ROAD (A W c-b = V (c-b = Q c-a = Q c-b = MINOR ROAD (AI W b-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 18 (pcu/hr) 4RM B) 2.7 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	478 626 657 565	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0240 0.0274 0.0407	
MAJOR ROAD (<i>k</i> W = Q ab = Q ac = MAJOR ROAD (<i>A</i> W c-b = Vrc-b = Q c-a = Q c-b = MINOR ROAD (<i>A</i> W b-a = W b-c =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 18 (pcu/hr) 18 (pcu/hr) 4RM B) 2.7 (metres) 2.7 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	478 626 657 565	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0240 0.0274 0.0407	
$\begin{array}{rcl} \text{MAJOR ROAD}(\textit{\textit{K}}) & \textit{\textit{K}} & \textit{\textit{K}} & \textit{\textit{K}} \\ & & & & & & & & \\ & & & & & & \\ & & & & & $	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) ARM C) 3.5 (metres) 35 (metres) 70 (pcu/hr) 18 (pcu/hr) NRM B) 2.7 (metres) 2.7 (metres) 60 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	478 626 657 565	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0240 0.0274 0.0407	
MAJOR ROAD (A W = Q ab = Q ac = MAJOR ROAD (A W c-b = Vr c-b = Q c-a = Q c-a = Q c-b = MINOR ROAD (AI W b-a = W b-c = Vr b-a = Vr b-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 73 (pcu/hr) 3.5 (metres) 35 (metres) 70 (pcu/hr) 18 (pcu/hr) 18 (pcu/hr) 4.7 (metres) 6.0 (metres) 6.7 (metres) 6.7 (metres)	D E F Y	= 0.86654348 = 0.91047865 = 0.836125	Q b-a = Q b-c = Q c-b = Q b-ac =	478 626 657 565	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.0240 0.0274 0.0407	

ZZO TEC	HNOLOGY (HK) I	_IMITED		PRIORITY JUNC	CTION CAL	CULATION			INITIALS	DATE
	y Warehouse for Construction M d of 3 Years and Associated Fillir			and Rural Workshop with Ancillary	PROJECT N	O.: 83133		PREPARED	BY: CSY	Dec-24
	underneath KSWH / Ha Tsu			0000D-(AN	FILENAME :			CHECKED	BY: LL	Dec-24
28 Reference A	AM Peak Hour Traffic Flows			2028Ref_AM	_Access Roa	ad underneath KSWH_Ha Tsuen Road_P.	kls	REVIEWED	BY: PCN	Dec-24
Access Road unde (/ [6] 11 - [5] 741 Ha Tsuen (ARM A)	(ARM B)	54 ↓ 62 [↓ 718 [Access Roa	3] 4] Wundermeath KSWH ARM C)	$\begin{array}{cccc} W \ cr & = & CEN \\ W \ b-a & = & LAN \\ W \ b-c & = & LAN \\ W \ c-b & = & LAN \\ V \ b-a & = & VISI \\ V \ rb-a & = & VISI \\ V \ rb-c & = & VISI \\ V \ rc-b & = & VISI \\ D & = & STF \\ E & = & STF \\ F & = & STF \end{array}$	JOR ROAD WIDTH NTRAL RESERVE WIDTH NE WIDTH AVAILABLE TO NE WIDTH AVAILABLE TO NE WIDTH AVAILABLE TO JIBILITY TO THE LEFT FOF SIBILITY TO THE RIGHT FC	0 VEHICLE WAITING IN STREAM b-a 0 VEHICLE WAITING IN STREAM b-c 0 VEHICLE WAITING IN STREAM b-b R VEHICLES WAITING IN STREAM b-a 0R VEHICLES WAITING IN STREAM b-c 0R VEHICLES WAITING IN STREAM b-c 0R VEHICLES WAITING IN STREAM c-b				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT	:	COMPARISION OF TO CAPACITY:	DESIGN FLOW			
MAJOR ROAD (
MAJOR ROAD (. W =	7.41 (metres)	D =	= 0.711636816	Q b-a =	198		DFC b-a		.0556	
MAJOR ROAD (W = W cr =	7.41 (metres) 0 (metres)	D = E =	0.72335517	Qb-a = Qb-c =	198 393		DFC b-a DFC b-c	= (.1374	
MAJOR ROAD (W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr)	D = E = F =	0.72335517 0.9325	Qb-a = Qb-c = Qc-b =	198 393 505		DFC b-a DFC b-c DFC c-b	= (1374 1228	
MAJOR ROAD (W = W cr =	7.41 (metres) 0 (metres)	D = E =	0.72335517 0.9325	Qb-a = Qb-c =	198 393		DFC b-a DFC b-c	= (.1374	
MAJOR ROAD (W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr)	D = E = F =	0.72335517 0.9325	Qb-a = Qb-c = Qc-b =	198 393 505		DFC b-a DFC b-c DFC c-b	= (1374 1228	
MAJOR ROAD (W = W cr = q a-b = q a-c =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr)	D = E = F = Y =	a 0.72335517 a 0.9325 a 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	198 393 505 337	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= (1374 1228	
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (<i>I</i>	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) (ARM C) (Armonia)	D = E = F = Y =	a 0.72335517 a 0.9325 a 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	198 393 505 337	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= (1374 1228	
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (/ W c-b = Vrc-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) (ARM C) 3.7 (metres) 45 (metres)	D = E = F = Y =	a 0.72335517 a 0.9325 a 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	198 393 505 337	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= (1374 1228	
MAJOR ROAD (7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) (ARM C) 3.7 (metres)	D = E = F = Y =	a 0.72335517 a 0.9325 a 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	198 393 505 337	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= (1374 1228	
MAJOR ROAD (W = Q ab = Q a-c = MAJOR ROAD (/ W c-b = Vrc-b = Q c-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) (ARM C) 3.7 (metres) 45 (metres) 718 (pcu/hr)	D = E = F = Y =	a 0.72335517 a 0.9325 a 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	198 393 505 337	TO CAPACITY:	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= () = () = ()	1374 1228	
MAJOR ROAD (W = qab = qa-c = MAJOR ROAD (/ W c-b = Vrc-b = q c-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) 3.7 (metres) 45 (metres) 718 (pcu/hr) 62 (pcu/hr)	D = E = F = Y =	a 0.72335517 a 0.9325 a 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	198 393 505 337	TO CAPACITY:	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= () = () = ()	1374 1228 1930	
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (/ W c-b = Vrc-b = q c-a = q c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) 3.7 (metres) 45 (metres) 718 (pcu/hr) 62 (pcu/hr)	D = E = F = Y =	a 0.72335517 a 0.9325 a 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	198 393 505 337	TO CAPACITY:	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= () = () = ()	1374 1228 1930	
MAJOR ROAD (W = Q ab = Q ab = Q ac = MAJOR ROAD (A W c-b = Q c-b = Q c-b = MINOR ROAD (A W b-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) (ARM C) 3.7 (metres) 45 (metres) 718 (pcu/hr) 62 (pcu/hr) ARM B)	D = E = F = Y =	a 0.72335517 a 0.9325 a 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	198 393 505 337	TO CAPACITY:	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= () = () = ()	1374 1228 1930	
MAJOR ROAD (W = Q ab = Q ac = MAJOR ROAD (/ W c-b = Vr c-b = Q c-a = Q c-b = MINOR ROAD (A W b-a = W b-c =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) (ARM C) 3.7 (metres) 45 (metres) 718 (pcu/hr) 62 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres)	D = E = F = Y =	a 0.72335517 a 0.9325 a 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	198 393 505 337	TO CAPACITY:	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= () = () = ()	1374 1228 1930	
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = V b-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) 741 (pcu/hr) 45 (metres) 718 (pcu/hr) 62 (pcu/hr) ARM B) 1.3 (metres) 123 (metres)	D = E = F = Y =	a 0.72335517 a 0.9325 a 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	198 393 505 337	TO CAPACITY:	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= () = () = ()	1374 1228 1930	
MAJOR ROAD (W = Q ab = Q ac = MAJOR ROAD (W c-b = Vr c-b = Q c-a = Q c-a = Q c-b = MINOR ROAD (A W b-a = W b-c = Vr b-a = Vr b-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) 741 (pcu/hr) 45 (metres) 718 (pcu/hr) 62 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres)	D = E = F = Y =	a 0.72335517 a 0.9325 a 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	198 393 505 337	TO CAPACITY:	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= () = () = ()	1374 1228 1930	
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = V b-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) 741 (pcu/hr) 45 (metres) 718 (pcu/hr) 62 (pcu/hr) ARM B) 1.3 (metres) 123 (metres)	D = E = F = Y =	a 0.72335517 a 0.9325 a 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	198 393 505 337	TO CAPACITY:	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= () = () = ()	1374 1228 1930	

ZZO TEC	HNOLOGY (HK)	LIMITED		PRIORITY JUNC	CTION CALCI	ULATION			INITIALS	DATE
		Materials and Construction Mac lling of Land and Pond and Exca		and Rural Workshop with Ancillary	PROJECT NO.:	83133		PREPARED B	Y: CSY	Dec-24
	underneath KSWH / Ha Ts			0000D-(DM	FILENAME :			CHECKED B	Y: LL	Dec-24
8 Reference A	M Peak Hour Traffic Flows			2028Ref_PM	_Access Road u	underneath KSWH_Ha Tsuen Road_P.x	s	REVIEWED B	Y: PCN	Dec-24
Access Road unde (/ [6] 11 - [5] 626* Ha Tsuen (ARM A)	ARM B)	€7 €11	[3] [4] ad undemeath KSWH (ARM C)	$\begin{array}{rcl} W \ cr & = & CEN \\ W \ b-a & = & LAN \\ W \ b-c & = & LAN \\ W \ c-b & = & LAN \\ Vi \ b-a & = & VISI \\ Vr \ b-c & = & VISI \\ Vr \ b-c & = & VISI \\ Vr \ b-c & = & VISI \\ D & = & STR \\ E & = & STR \\ F & = & STR \end{array}$	JOR ROAD WIDTH NTRAL RESERVE WIDTH NE WIDTH AVAILABLE TO VEH NE WIDTH AVAILABLE TO VEH NE WIDTH AVAILABLE TO VEH SIBILITY TO THE LEFT FOR VE SIBILITY TO THE RIGHT FOR VI	HICLE WAITING IN STREAM b-a HICLE WAITING IN STREAM b-c HICLE WAITING IN STREAM c-b EHICLES WAITING IN STREAM b-a ZEHICLES WAITING IN STREAM b-c ZEHICLES WAITING IN STREAM b-c ZEHICLES WAITING IN STREAM b-c				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT		COMPARISION OF I TO CAPACITY:	ESIGN FLOW			
MAJOR ROAD (
MAJOR ROAD (A W =	7.41 (metres)	D	= 0.711636816	Qb-a =	232		DFC b-a	= 0.0		
MAJOR ROAD (W = W cr =	7.41 (metres) 0 (metres)	D	= 0.72335517	Q b-a = Q b-c =	232 415		DFC b-a DFC b-c	= 0.1	66	
MAJOR ROAD (W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr)	D E F	= 0.72335517 = 0.9325	Q.b-a = Q.b-c = Q.c-b =	232 415 534		DFC b-a DFC b-c DFC c-b	= 0.15 = 0.12	66 55	
MAJOR ROAD (W = W cr =	7.41 (metres) 0 (metres)	D	= 0.72335517	Q b-a = Q b-c =	232 415		DFC b-a DFC b-c	= 0.1	66 55	
MAJOR ROAD (W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr)	D E F	= 0.72335517 = 0.9325	Q.b-a = Q.b-c = Q.c-b =	232 415 534		DFC b-a DFC b-c DFC c-b	= 0.15 = 0.12	66 55	
MAJOR ROAD () W = W cr = q a-b = q a-c =	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	232 415 534 372	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.15 = 0.12	66 55	
MAJOR ROAD () W = W cr = q a-b = q a-c = MAJOR ROAD (A	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) (Content of the second of the	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	232 415 534 372	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.15 = 0.12	66 55	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (/ W c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	232 415 534 372	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.15 = 0.12	66 55	
MAJOR ROAD (, W = W cr = q a-b = q a-c = MAJOR ROAD (, W c-b = Vr c-b =	7.41 (metres) 0 (metres) 11 (pcu/h) 626 (pcu/h) ARM C) 3.7 3.7 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	232 415 534 372	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.11 = 0.12 = 0.20	66 55 40	
MAJOR ROAD (, W = W cr = q ab = q ac = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 611 (pcu/hr) 67 (pcu/hr) 67 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	232 415 534 372	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.15 = 0.12	66 55 40	
$\begin{array}{rcl} \text{MAJOR ROAD}(,\\ W & = \\ W \ cr & = \\ q \ a \ b & = \\ q \ a \ c & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD}(A \\ W \ c \ b & = \\ Vr \ c \ b & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD}(A \\ A \\ M \\ Road \ c & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 611 (pcu/hr) 67 (pcu/hr) ARM B)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	232 415 534 372	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.11 = 0.12 = 0.20	66 55 40	
MAJOR ROAD (, W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-a = q c-b = MINOR ROAD (A W b-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 611 (pcu/hr) 67 (pcu/hr) ARM B) 1.3 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	232 415 534 372	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.11 = 0.12 = 0.20	66 55 40	
$\begin{array}{rcl} \text{MAJOR ROAD}(,\\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ac & = \\ q \ ac & = \\ \text{MAJOR ROAD}(A \\ W \ cb & = \\ Vr \ cb & = \\ q \ cc & = \\ q \ cc & = \\ q \ cc & = \\ \text{MINOR ROAD}(A \\ W \ bc & = \\ W \ bc & = \\ W \ bc & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 45 (metres) 611 (pcu/hr) 67 (pcu/hr) ARM B) 1.3 1.3 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	232 415 534 372	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.11 = 0.12 = 0.20	66 55 40	
$\begin{array}{rcl} \text{MAJOR ROAD}(,\\ & W & = \\ & W \ cr & = \\ & q \ ab & = \\ & q \ ab & = \\ & q \ ab & = \\ & q \ cb & = \\ & Vr \ cb & = \\ & Q \ cb & = \\ & \text{MINOR ROAD}(A \\ & W \ bca & = \\ & W \ bcc & = \\ & Vl \ bca & = \\ & Vl \ bca & = \\ & Vl \ bca & = \\ & \\ & Vl \ bca & = \\ & \\ & Vl \ bca & = \\ & \\ & Vl \ bca & = \\ & \\ & \\ & Vl \ bca & = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 611 (pcu/hr) 67 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 123 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	232 415 534 372	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.11 = 0.12 = 0.20	66 55 40	
$\begin{array}{rcl} \text{MAJOR ROAD}(,\\ W & = \\ W \ cr & = \\ q \ a \ c & = \\ q \ a \ c & = \\ \text{MAJOR ROAD}(A \\ W \ c \ b & = \\ V \ c \ c & = \\ q \ c \ a & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \hline \begin{array}{rcl} \text{MINOR ROAD}(A \\ W \ b \ a & = \\ W \ b \ c & = \\ W \ b \ c & = \\ V \ b \ a & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 611 (pcu/hr) 67 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	232 415 534 372	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.11 = 0.12 = 0.20	66 55 40	
MAJOR ROAD (, W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = Vr b-a = Vr b-a = Vr b-a = Vr b-a = Vr b-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 3.7 (metres) 45 (metres) 611 (pcu/hr) 67 (pcu/hr) ARM B) 1.3 1.3 (metres) 123 (metres) 45 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	232 415 534 372	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.11 = 0.12 = 0.20	66 55 40	
$\begin{array}{rcl} \text{MAJOR ROAD}(,\\ W & = \\ W \ cr & = \\ q \ a \ c & = \\ q \ a \ c & = \\ \text{MAJOR ROAD}(A \\ W \ c \ b & = \\ V \ c \ c & = \\ q \ c \ a & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \hline \begin{array}{rcl} \text{MINOR ROAD}(A \\ W \ b \ a & = \\ W \ b \ c & = \\ W \ b \ c & = \\ V \ b \ a & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 611 (pcu/hr) 67 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	232 415 534 372	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.11 = 0.12 = 0.20	66 55 40	

Access Road underneath KSWH / Ha Tsuen Road 2028Des_AM FILENAME : CHECKED BY: LL Dec-24	ZZO TEC	HNOLOGY (HK) I	.IMITED		PRIORITY JUN	CTION CALC	CULATION			INITIALS	DATE
Access Road undernaach KSWH // Ha Tsuen Road Q228Des_AM InterNME: OHECKE D8/ LL Dec24 28 Reference AM Paak Hour Taffie Flows III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					s and Rural Workshop with Ancillary	PROJECT NO).: 83133		PREPARED	BY: CSY	Dec-24
28 Reference AM Peak Hour Teffic Flows Access Road underweet KSWH_Ha Tauen Road P. via REVEWED BY: P.O. Doc 24 Access Road underweet KSWH_Ha Tauen Road P. via IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Access Road	underneath KSWH / Ha Tsu	en Road		2029Dec. AM	FILENAME :			CHECKED	BY: LL	Dec-24
$\frac{(484 B)}{(41 + 1)} + \frac{1}{(41 + 1)} $	8 Reference Al	M Peak Hour Traffic Flows			2028Des_AM	_Access Road	d underneath KSWH_Ha Tsuen Road_P.x	ls	REVIEWED	BY: PCN	Dec-24
MAUR Constraint Constraint Decisient Decisitient Decisient <th< td=""><td>(A [6] 11 - [5] 741 ■ Ha Tsuen</td><td>ARM B)</td><td>70 78 718 718 Access Ro</td><td>[3] [4] ad underneath KSWH</td><td>$\begin{array}{cccc} W & = & MA \\ W Cr & = & CEI \\ W ba & = & LAI \\ W bc & = & LAI \\ W cb & = & LAI \\ V tba & = & VIS \\ E & = & STI \\ E & = & STI \\ F & = & STI \\ \end{array}$</td><td>JOR ROAD WIDTH INTRAL RESERVE WIDTH INTRAL RESERVE WIDTH INE WIDTH AVAILABLE TO V INE WIDTH AVAILABLE TO V INE WIDTH AVAILABLE TO V ISIBILITY TO THE RIGHT FOR ISIBILITY TO THE RIGHT FOR IREAM-SPECIFIC B-C REAM-SPECIFIC B-C REAM-SPECIFIC C-B</td><td>VEHICLE WAITING IN STREAM b-c VEHICLE WAITING IN STREAM b-a VEHICLES WAITING IN STREAM b-a 9 VEHICLES WAITING IN STREAM b-a R VEHICLES WAITING IN STREAM b-c</td><td></td><td></td><td></td><td></td></th<>	(A [6] 11 - [5] 741 ■ Ha Tsuen	ARM B)	70 78 718 718 Access Ro	[3] [4] ad underneath KSWH	$ \begin{array}{cccc} W & = & MA \\ W Cr & = & CEI \\ W ba & = & LAI \\ W bc & = & LAI \\ W cb & = & LAI \\ V tba & = & VIS \\ E & = & STI \\ E & = & STI \\ F & = & STI \\ \end{array} $	JOR ROAD WIDTH INTRAL RESERVE WIDTH INTRAL RESERVE WIDTH INE WIDTH AVAILABLE TO V INE WIDTH AVAILABLE TO V INE WIDTH AVAILABLE TO V ISIBILITY TO THE RIGHT FOR ISIBILITY TO THE RIGHT FOR IREAM-SPECIFIC B-C REAM-SPECIFIC B-C REAM-SPECIFIC C-B	VEHICLE WAITING IN STREAM b-c VEHICLE WAITING IN STREAM b-a VEHICLES WAITING IN STREAM b-a 9 VEHICLES WAITING IN STREAM b-a R VEHICLES WAITING IN STREAM b-c				
W $=$ 7.41 (metres) D $=$ 0.71636816 $0 ba =$ 194 DFC ba $=$ 0.0567 W or = 0 (metres) E $=$ 0.7235817 Qbc = 333 DFC bc $=$ 0.1745 g ab = 11 (pouhr) Y $=$ 0.93257 Qbc = 333 DFC bc $=$ 0.1545 g ac = 741 (pouhr) Y $=$ 0.864197531 TOTAL FLOW $=$ 1629 (PCUHR) W ob = 3.7 (metres) $=$ 0.864197531 TOTAL FLOW $=$ 1629 (PCUHR) W ob = 3.7 (metres) $=$ 0.864197531 TOTAL FLOW $=$ 1629 (PCUHR) W ob = 3.7 (metres) $=$ 0.864197531 TOTAL FLOW $=$ 1629 (PCUHR) W ob = 1.3 (pcuhr) $=$ 0.864197531 TOTAL FLOW $=$ 1629 (PCUHR) W ba = 1.3 (pcuhr) $=$ 0.864197531 $=$ $=$ $=$ <											
W cr 0 (metres) E = 0.72335517 Q b c = 333 DFC b c = 0.1781 q ab 11 (pouh) F = 0.325 Q c b = 505 DFC b c = 0.1781 q ab 74 0 0.325 Q c b = 505 DFC b c = 0.1781 W c b = 74 0 0.325 Q b c = 365 DFC b c = 0.1781 W c b = 3.7 (metres) F for (Q b c) F = 0.36419751 TOTAL FLOW = 1629 (PCU/HR) W c b = 3.7 (metres) E 0.86419751 E F F 0.86419751 F F 0.36419751 F F 0.36419751 F F 0.36419751 F F 0.86419751 F F 0.864	IETRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT	r:		DESIGN FLOW			
q a b = 11 (pou/r) F = 0.325 $Q c b =$ 505 $D F C c b$ = 0.1545 MAJOR ROAD (ARM C) F for ($D c a c$) = 0.864197531 TOTAL FLOW = 1629 (PCU/HR) W c b = 3.7 (meres) = 0.864197531 TOTAL FLOW = 1629 (PCU/HR) W c b = 3.7 (meres) = 0.864197531 TOTAL FLOW = 1629 (PCU/HR) Q c a = 718 (pou/r) = 0.864197531 TOTAL FLOW = 1629 (PCU/HR) Q c a = 718 (pou/r) = 0.864197531 TOTAL FLOW = 1629 (PCU/HR) Q c a = 718 (pou/r) = 0.864197531 TOTAL FLOW = 1629 (PCU/HR) Q c a = 718 (pou/r) = 0.864197531 TOTAL FLOW = 1629 (PCU/HR) Q c a = 718 (pou/r) (pou/r) (pou/r) = 0.864197531 (pou/r) = 0.864197531 (pou/r) (pou/r)	MAJOR ROAD (/										
q = c 71 $(p cuh)$ Y 0.7445275 $Q b = c$ 35 $DF C b = (share kane)$ $=$ 0.2348 MAJOR ROAD (ARM C) F for (Q b = c) 0.864197531 TOTAL FLOW $=$ 1629 (PCU/HR) $W = b$ 3.7 (metres)	MAJOR ROAD (A W =	7.41 (metres)	D		Q b-a =	194		DFC b-a			
AUOR ROAD (ARM C) F for (Qb-ac) = 0.864197531 TOTAL FLOW = 1629 (PCU/HR) W c-b = 3.7 (metres) q c-a = 718 (pcu/hr) q c-b = 78 (pcu/hr) W b-a = 1.3 (metres) W b-a = 1.1 (pcu/hr)	MAJOR ROAD (/ W = W cr =	7.41 (metres) 0 (metres)	D E	= 0.72335517	Q b-a = Q b-c =	194 393		DFC b-a DFC b-c	= 0	.1781	
W c-b = 3.7 (metres) V c-b = 45 (metres) q c-a = 718 (pcu/h) q c-b = 78 (pcu/h) q c-b = 78 (pcu/h) MINOR ROAD (ARM B) (metres) (metres) W b-a = 1.3 (metres) V b-a = 123 (metres) V b-a = 123 (metres) V b-a = 45 (metres) V b-a = 45 (metres) V b-a = 11 (pcu/h)	MAJOR ROAD (/ W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr)	D E F	= 0.72335517 = 0.9325	Qb-a = Qb-c = Qc-b =	194 393 505		DFC b-a DFC b-c DFC c-b	= (.1781 .1545	
W c-b = 3.7 (metres) V c-b = 45 (metres) q c-a = 718 (pcu/hr) q c-b = 78 (pcu/hr) q c-b = 78 (pcu/hr) MINOR ROAD (ARMB) (metres) (metres) W b-a = 1.3 (metres) V b-a = 1.3 (metres) V b-a = 123 (metres) V b-a = 45 (metres) V b-a = 45 (metres) V b-a = 11 (pcu/hr)	MAJOR ROAD (/ W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr)	D E F	= 0.72335517 = 0.9325	Qb-a = Qb-c = Qc-b =	194 393 505		DFC b-a DFC b-c DFC c-b	= (.1781 .1545	
Vr cb = 45 (metres) q cb = 718 (pou/h) q cb = 78 (pou/h) q cb = 78 (pou/h) MINOR ROAD (ARM #	MAJOR ROAD (/ W = W cr = q a-b = q a-c =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	194 393 505 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= (.1781 .1545	
q c-b = 78 (pcu/n) q b-a = 78 (pcu/n) KINOR ROAD (ARMB) CRITICAL DFC = 0.23 Minor Road (arms) (metres) (metres) (metres) V b-a = 1.3 (metres) (metres) V b-a = 45 (metres) (metres) V b-a = 11 (pcu/n) (pcu/n)	MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) ARM C) (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	194 393 505 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= (.1781 .1545	
q c-b = 78 (pcu/n) q b-a = 78 (pcu/n) KINOR ROAD (ARMB) CRITICAL DFC = 0.23 Minor Road (arms) (metres) (metres) (metres) V b-a = 1.3 (metres) (metres) V b-a = 45 (metres) (metres) V b-a = 11 (pcu/n) (pcu/n)	MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) ARM C) 3.7 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	194 393 505 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= (.1781 .1545	
MINOR ROAD (ARM B)W b-a =1.3(metres)W b-c =1.3(metres)V1b-a =123(metres)V1b-a =45(metres)V1b-a =45(metres)Q b-a =11(pcu/hr)	MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) ARM C) 3.7 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	194 393 505 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= (.1781 .1545	
W b-a =1.3(metres)W b-c =1.3(metres)V b-a =123(metres)V b-a =45(metres)V b-a =45(metres)q b-a =11(pcu/hr)	MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) ARM C) 3.7 45 (metres) 718 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	194 393 505 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = ()	.1781 .1545 .2348	
W b-c =1.3(metres)V b-a =123(metres)V b-a =45(metres)V b-a =45(metres)q b-a =11(pcu/hr)	MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 718 (pcu/hr) 78 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	194 393 505 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = ()	.1781 .1545 .2348	
VIb-a =123(metres)Vf b-a =45(metres)Vf b-c =45(metres)q b-a =11(pouhr)	$\begin{array}{rcl} \text{MAJOR ROAD}(\textit{k})\\ W & = & \\ W \ cr & = & \\ q \ a \ c & = & \\ q \ a \ c & = & \\ \\ \text{MAJOR ROAD}(\textit{k})\\ W \ c \ b & = & \\ Vr \ c \ b & = & \\ q \ c \ a & = & \\ q \ c \ b & = & \\ \\ \text{MINOR ROAD}(\textit{k}) \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) ARM C)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	194 393 505 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = ()	.1781 .1545 .2348	
Vrb-a =45(metres)Vrb-c =45(metres)q b-a =11(pcwhr)	$\begin{array}{rcl} \text{MAJOR ROAD}(i)\\ W & = \\ W \ cr & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD}(A \\ W \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD}(A \\ W \ bb & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) ARM C) 3.7 3.7 (metres) 45 (metres) 718 (pcu/hr) 78 (pcu/hr) 78 (pcu/hr) 78 (pcu/hr) 3.7 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	194 393 505 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = ()	.1781 .1545 .2348	
Vr b-c = 45 (metres) q b-a = 11 (pcu/hr)	$\begin{array}{rcl} \text{MAJOR ROAD}(i)\\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ab & = \\ q \ ab & = \\ \hline \text{MAJOR ROAD}(A \\ W \ cb & = \\ Vr \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \hline \text{MINOR ROAD}(A \\ W \ bb & = \\ W \ bb & = \\ W \ bb & = \\ \hline \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) ARM C) 3.7 45 (metres) 718 (pcu/hr) 78 (pcu/hr) 78 (pcu/hr) 78 (metres) 1.3 (metres) 1.3 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	194 393 505 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = ()	.1781 .1545 .2348	
q b-a = 11 (pcu/hr)	$\begin{array}{rcl} \text{MAJOR ROAD}(k)\\ W & = \\ W \ cr & = \\ q \ a \ b & = \\ q \ a \ c & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD}(k)\\ W \ c \ b & = \\ Vr \ c \ b & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD}(k)\\ W \ b \ a & = \\ W \ b \ c & = \\ W \ b \ c & = \\ Vl \ b \ a & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcwhr) 741 (pcwhr) 741 (pcwhr) 45 (metres) 718 (pcwhr) 78 (pcwhr) 78 (pcwhr) 78 (pcwhr) 1.3 (metres) 1.3 (metres) 123 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	194 393 505 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = ()	.1781 .1545 .2348	
	$\begin{array}{rcl} \text{MAJOR ROAD} (\prime \\ W & = \\ W \ cr & = \\ q \ a \ c & = \\ q \ a \ c & = \\ \text{MAJOR ROAD} (\land \\ W \ c \ b & = \\ q \ c \ a & = \\ q \ c \ a & = \\ q \ c \ b & = \\ \text{MINOR ROAD} (\land \\ W \ b \ a & = \\ W \ b \ c & = \\ V \ b \ c & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) 3.7 (metres) 45 (metres) 718 (pcu/hr) 78 (pcu/hr) 78 (pcu/hr) 78 (metres) 1.3 (metres) 12.3 (metres) 45 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	194 393 505 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = ()	.1781 .1545 .2348	
	$\begin{array}{rcl} \text{MAJOR ROAD}(i)\\ W & = \\ W \ cr & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD}(A \\ W \ cb & = \\ V \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD}(A \\ W \ bb & = \\ W \ b$	7.41 (metres) 0 (metres) 11 (pcu/hr) 741 (pcu/hr) ARM C) 3.7 3.7 (metres) 45 (metres) 718 (pcu/hr) 78 (pcu/hr) 78 (pcu/hr) 3.3 (metres) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	194 393 505 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = ()	.1781 .1545 .2348	

ZO TECI	HNOLOGY (HK)	LIMITED		PRIORITY JUN	CTION CALC	CULATION			INITIALS	DATE
		Naterials and Construction Machinerie ing of Land and Pond and Excavatior		I Rural Workshop with Ancillary	PROJECT NO	0.: 83133		PREPARED B	CSY	Dec-24
	underneath KSWH / Ha Tsi				FILENAME :			CHECKED B		Dec-24
			- 2	2028Des_PM				ONE ONE D		
3 Reference Al	M Peak Hour Traffic Flows				_Access Road	I underneath KSWH_Ha Tsuen Road_P.x	ls	REVIEWED B	: PCN	Dec-24
Access Road unde (A [6] 11 - [5] 626 ⁻ Ha Tsuen (ARM A)	ARM B)	76		$\begin{array}{rcrcrc} W \ cr & = & CE \\ W \ b-a & = & LA \\ W \ b-c & = & LA \\ W \ c-b & = & LA \\ V \ b-a & = & VIS \\ V \ b-a & = & VIS \\ V \ rb-a & = & VIS \\ F & = & ST \\ E & = & ST \\ F & = & ST \end{array}$	AJOR ROAD WIDTH INTRAL RESERVE WIDTH INE WIDTH AVAILABLE TO V INE WIDTH AVAILABLE TO V INE WIDTH AVAILABLE TO V SIBILITY TO THE LEFT FOR SIBILITY TO THE RIGHT FOR SIBILITY TO THE RIGHT FOR	VEHICLE WAITING IN STREAM b-a VEHICLE WAITING IN STREAM b-c VEHICLE WAITING IN STREAM c-b VEHICLES WAITING IN STREAM b-a R VEHICLES WAITING IN STREAM b-c R VEHICLES WAITING IN STREAM c-b				
ETRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT	T:	COMPARISION OF TO CAPACITY:	DESIGN FLOW			
MAJOR ROAD (A	. ,		0.744625946							
MAJOR ROAD (A W =	7.41 (metres)	D =	0.711636816	Q b-a =	229		DFC b-a	= 0.04		
MAJOR ROAD (# W = W cr =	7.41 (metres) 0 (metres)	D = E =	0.72335517	Qb-a = Qb-c =	229 415		DFC b-a DFC b-c	= 0.18	1	
MAJOR ROAD (A W =	7.41 (metres)	D =		Q b-a =	229		DFC b-a		1 2	
MAJOR ROAD (/ W = W cr = q a-b = q a-c =	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.18 = 0.14	1 2	
MAJOR ROAD (# W = W cr = q a-b = q a-c = MAJOR ROAD (A	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C)	D = E = F =	0.72335517 0.9325	Qb-a = Qb-c = Qc-b =	229 415 534		DFC b-a DFC b-c DFC c-b	= 0.18 = 0.14	1 2	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.18 = 0.14	1 2	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.18 = 0.14	1 2	
MAJOR ROAD (/ W = Q a-b = Q a-c = MAJOR ROAD (A W c-b = Vr c-b = Q c-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 611 (pcu/hr)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.18 = 0.14	1 2	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= 0.18 = 0.14 = 0.23	1 2 2	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 45 (metres) 611 (pcu/hr) 77 (pcu/hr)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY:	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= 0.18 = 0.14	1 2 2	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 611 (pcu/hr) 77 (pcu/hr) ARM B)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= 0.18 = 0.14 = 0.23	1 2 2	
$\begin{array}{rcl} \text{MAJOR ROAD}(\textit{\textit{i}}) & \textit{\textit{i}} & \textit{i} & \textit{i} \\ & \textit{\textit{W}} & \textit{\textit{r}} & = \\ & \textit{q} \ a \text{-} b & = \\ & \textit{q} \ a \text{-} c & = \\ & \textit{q} \ a \text{-} c & a & = \\ & \textit{q} \ c \text{-} b & = \\ & \textit{q} \ c \text{-} b & = \\ & \textit{minor ROAD}(\textit{A}) \\ & \textit{W} \ b \text{-} a & = \\ & \textit{minor ROAD}(\textit{A}) \\ & \textit{W} \ b \text{-} a & = \\ & \textit{minor ROAD}(\textit{A}) \\ & \textit{W} \ b \text{-} a & = \\ & \textit{minor ROAD}(\textit{A}) \\ & \textit{W} \ b \text{-} a & = \\ & \textit{minor ROAD}(\textit{A}) \\ & \textit{W} \ b \text{-} a & = \\ & \textit{minor ROAD}(\textit{A}) \\ & \textit{W} \ b \text{-} a & = \\ & \textit{minor ROAD}(\textit{A}) \\ & \textit{W} \ b \text{-} a & = \\ & \textit{minor ROAD}(\textit{A}) \\ & \textit{W} \ b \text{-} a & = \\ & \textit{minor ROAD}(\textit{A}) \\ & \textit{W} \ b \text{-} a & = \\ & \textit{minor ROAD}(\textit{A}) \\ & \textit{W} \ b \text{-} a & = \\ & \textit{minor ROAD}(\textit{A}) \\ & \textit{W} \ b \text{-} a & = \\ & \textit{W} \ b -$	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 611 (pcu/hr) 77 (pcu/hr) ARM B) 1.3 (metres)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= 0.18 = 0.14 = 0.23	1 2 2	
$\begin{array}{rcl} \text{MAJOR ROAD (} \textit{/} \\ & \textit{W} & = \\ & \textit{W cr} & = \\ & \textit{q a-b} & = \\ & \textit{q a-b} & = \\ & \textit{q a-c} & = \\ & \textit{q a-c} & = \\ & \textit{Vr c-b} & = \\ & \textit{Vr c-b} & = \\ & \textit{q c-a} & = \\ & \textit{q c-b} & = \\ & \textit{MINOR ROAD (A} \\ & \textit{W b-a} & = \\ & \textit{W b-c} & = \\ & \textit{W b-c} & = \\ & \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 611 (pcu/hr) 77 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= 0.18 = 0.14 = 0.23	1 2 2	
$\begin{array}{rcl} \text{MAJOR ROAD}(\prime)\\ W & = \\ W \ cr & = \\ q \ a-b & = \\ q \ a-c & = \\ \text{MAJOR ROAD}(A \\ W \ c-b & = \\ Vr \ c-b & = \\ q \ c-a & = \\ q \ c-b & = \\ \hline \text{MINOR ROAD}(A \\ W \ b-a & = \\ W \ b-c & = \\ W \ b-c & = \\ Vl \ b-a & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 611 (pcu/hr) 77 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 123 (metres)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= 0.18 = 0.14 = 0.23	1 2 2	
$\begin{array}{rcrr} \text{MAJOR ROAD}(\textit{\textit{i}}) \\ W & = \\ W \ cr & = \\ q \ a \ b & = \\ q \ a \ c & = \\ \end{array} \\ \begin{array}{r} \text{MAJOR ROAD}(\textit{\textit{A}}) \\ W \ c \ b & = \\ q \ c \ b & = \\ q \ c \ b & = \\ \end{array} \\ \begin{array}{r} \text{MINOR ROAD}(\textit{\textit{A}}) \\ W \ b \ a & = \\ W \ b \ c & = \\ W \ b \ c & = \\ \end{array} \\ \begin{array}{r} \text{MINOR ROAD}(\textit{\textit{A}}) \\ W \ b \ a & = \\ W \ b \ c & = \\ \end{array} \\ \begin{array}{r} \text{MINOR ROAD}(\textit{\textit{A}}) \\ W \ b \ a & = \\ W \ b \ c & = \\ \end{array} \\ \end{array} $	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) 3.7 (metres) 611 (pcu/hr) 77 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 1.3 (metres) 45 (metres)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= 0.18 = 0.14 = 0.23	1 2 2	
$\begin{array}{rcl} \text{MAJOR ROAD}(\textit{\textit{i}}) & \textit{\textit{i}} & \textit{mage} \\ & \textit{\textit{W}} & \textit{cr} & = \\ & q a \cdot \textit{b} & = \\ & q a \cdot \textit{c} & = \\ & q a \cdot \textit{c} & = \\ & \text{Vr} \cdot \textit{c} \cdot \textit{b} & = \\ & q \cdot \textit{c} \cdot \textit{a} & = \\ & q \cdot \textit{c} \cdot \textit{b} & = \\ & \text{MINOR ROAD}(\textit{A}) \\ & \textit{W} \textit{b} \cdot \textit{a} & = \\ & \textit{W} \textit{b} \cdot \textit{c} & = \\ & \textit{Vi} \textit{b} \cdot \textit{a} & = \\ & \text{Vi} \textit{b} \cdot \textit{c} & = \\ & \text{Vi} \textit{c} \in \\ & \text{Vi} \textit{c} & \text{Vi} \textit{c} & \text{Vi} \textit{c} & \\ & \text{Vi} \textit{c} & \text{Vi} & \\ & \text{Vi} \textit{c} & \text{Vi} & \text{Vi} & \\ & \text{Vi} \textit{c} & \text{Vi} & \text{Vi} & \\ & \text{Vi} \textit{c} & \text{Vi} & \\ & \text{Vi}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 611 (pcu/hr) 77 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= 0.18 = 0.14 = 0.23	1 2 2	
$\begin{array}{rcrr} \text{MAJOR ROAD}(\textit{\textit{i}}) \\ W & = \\ W \ cr & = \\ q \ a \ b & = \\ q \ a \ c & = \\ \end{array} \\ \begin{array}{rcrr} \text{MAJOR ROAD}(\textit{\textit{A}}) \\ W \ c \ b & = \\ q \ c \ c & = \\ q \ c \ b & = \\ \end{array} \\ \begin{array}{rcrr} \text{MINOR ROAD}(\textit{\textit{A}}) \\ W \ b \ a & = \\ W \ b \ c & = \\ \end{array} $	7.41 (metres) 0 (metres) 11 (pcu/hr) 626 (pcu/hr) 3.7 (metres) 611 (pcu/hr) 77 (pcu/hr) ARM B) 1.3 (metres) 1.3 (metres) 1.3 (metres) 45 (metres)	D = E = F = Y =	0.72335517 0.9325 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	229 415 534 376	TO CAPACITY: (PCU/HR)	DFC b-a DFC b-≎ DFC c-b DFC b-≎ (share lane)	= 0.18 = 0.14 = 0.23	1 2 2	

			IK) LIMITED			IC SIGNAL CALCULATION		INITIALS	DATE
		Temporary Warehouse for Construction N				PROJECT NO.: 83133	PREPARED BY:	CSY	Dec-24
		ry Facilities for a Period of 3 Years and A I Roundabout	Associated Filling of Land and	a Pona ana E		FILENAME :	CHECKED BY:	LL	Dec-24
		erence AM Peak Hour Traffic Flows			2028Ref_AM	J5 KSWH Roundabout R.xls	REVIEWED BY:	PCN	-
2020	Rele	elence AM Feak Hour Trailic Flows					REVIEWED BT.	PCN	Dec-24
			Slip Road of H	Kong Sham W (ARM A)	estern Highway	N			
				1001	172				
				1221					
			(ARM D) Access Road	6	(t)				
				1430					
					Ť				
					1435				
					(ARM C)				
				Sli	D Road of Kong Sham Western Highway	/			
				Slij	o Road of Kong Sham Western Highway	1			
				Slij	o Road of Kong Sham Western Highway	/			
ARM			A			/			
	PAR	AMETERS:	A	Slip C	D Road of Kong Sham Western Highway	/			
NPUT	PAR			С	D	/			
NPUT V	=	Approach half width (m)	4.0	C 7.9	D	/			
NPUT V	= =	Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	D 8.2 9.3	/ 			
NPUT V E	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	D 8.2 9.3 1.8	/			
NPUT V E L R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	D 8.2 9.3 1.8 10.0	/			
NPUT V E L R D	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	D 8.2 9.3 1.8 10.0 71.0	/ 			
NPUT - - - - - - - - - - - - - - - - - - -	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	D 8.2 9.3 1.8 10.0 71.0 21.0	/			
INPUT V E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 172	C 7.9 7.9 1.0 100.0 71.0 31.0 1435	D 8.2 9.3 1.8 10.0 71.0 21.0 6	/ 			
INPUT E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	D 8.2 9.3 1.8 10.0 71.0 21.0	/ 			
NPUT E L R D A Q Q C		Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 172	C 7.9 7.9 1.0 100.0 71.0 31.0 1435	D 8.2 9.3 1.8 10.0 71.0 21.0 6	/ 			
INPUT E L R D A Q Q C	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 172 1221	C 7.9 7.9 1.0 100.0 71.0 31.0 1435 18	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1430	/ 			
NPUT E L R D A Q Q C OUTP S	= = = = = = UT PA	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) NRAMETERS: Sharpness of flare = 1.6(E-V)/L	4.0 6.7 4.8 30.0 71.0 12.0 172 1221	C 7.9 7.9 1.0 100.0 71.0 31.0 1435 18 0.00	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1430	/ 			
INPUT V E L R D A Q Q Q C OUTP S K	= = = = = UT PA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) KRAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 172 1221 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1435 18 0.00 1.04	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1430 0.98 0.98	/ 			
INPUT V E L R D A Q Q Q C OUTP S K X2	= = = = = UT PA = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 172 1221 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1435 18 0.00 1.04 7.90	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1430 0.98 0.98 8.57	/			
INPUT V E L R D A Q Q C OUTP S K X2 M	= = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 172 1221 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1435 18 0.00 1.04 7.90 3	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1430 0.98 0.98 8.57 3	/			
INPUT V E L R D A Q Q C Q C OUTP S K X2 M F	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 172 1221 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1435 18 0.00 1.04 7.90 3 2394	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1430 0.98 8.57 3 2597	/			
V E L R D A Q Q C OUTP S K X2 M F Td	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 172 1221 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1435 18 0.00 1.04 7.90 3 2394 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1430 0.98 0.98 8.57 3 2597 1.12	/			
NPUT V E L R D A Q Q Q C OUTP S K X2 M F Td Td Fc	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 172 1221 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1435 18 0.00 1.04 7.90 3 2394 1.12 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1430 0.98 0.98 8.57 3 2597 1.12 0.64				
INPUT V E L R D A Q Q C Q C OUTP S K X2 M F	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 172 1221 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1435 18 0.00 1.04 7.90 3 2394 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1430 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1613	PCU	

-			HK) LIMITED			IC SIGNAL CALCULATION		INITIALS	DATE
		emporary Warehouse for Construction N ry Facilities for a Period of 3 Years and A				PROJECT NO.: 83133	PREPARED BY:	CSY	Dec-24
		Roundabout	ASSociated I lilling of Land and			FILENAME :	CHECKED BY:	LL	Dec-24
		erence AM Peak Hour Traffic Flows			2028Ref_PM	J5_KSWH Roundabout_R.xls	REVIEWED BY:	PCN	Dec-24
2020	Reic	stence Awr eak nour traine nows					REVIEWED DT.	1 ON	D60-24
				(ARM A) 988 5 → 1222	estern Highw ay	\checkmark			
					(ARM C)				
ARM			A	Slip	Road of Kong Sham Western Highw	ay			
	PAR/	AMETERS:	A	-	Road of Kong Sham Western Highw	ay			
	PAR/	AMETERS: Approach half width (m)	A 4.0	-	Road of Kong Sham Western Highw	ay			
INPUT V	PAR/ = =			C	Road of Kong Sham Western Highw	ay			
INPUT V	=	Approach half width (m)	4.0	C 7.9	Road of Kong Sham Western Highw	ay			
INPUT V E L	= =	Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	Road of Kong Sham Western Highw D 8.2 9.3	ay			
INPUT V E L R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	Road of Kong Sham Western Highw D 8.2 9.3 1.8	ay			
INPUT V E L R D	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0	ay			
NPUT V E L R D	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0	ay			
INPUT V E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0	ay			
INPUT E L R D A Q Q C		Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 179	C 7.9 7.9 1.0 100.0 71.0 31.0 1162	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5	ay			
INPUT E L R D A Q Q C	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 179 988	C 7.9 7.9 1.0 100.0 71.0 31.0 1162 14	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1222	ay			
INPUT V E L R D A Q Q C OUTPI S	= = = = = = UT PA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) WRAMETERS: Sharpness of flare = 1.6(E-V)/L	4.0 6.7 4.8 30.0 71.0 12.0 179 988	C 7.9 7.9 1.0 100.0 71.0 31.0 1162 14	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1222 0.98	ay			
INPUT E L R D A Q Q Q C S K	= = = = = = UT PA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) KRAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 179 988 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1162 14 0.00 1.04	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1222 0.98 0.98	ay			
INPUT V E L R D A Q Q Q C OUTP ^I S K X2	= = = = = UT PA = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 179 988 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1162 14 0.00 1.04 7.90	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1222 0.98 0.98 8.57	ay			
INPUT V E L R D A Q Q Q C OUTPI S K X2 M	= = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) XRAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 179 988 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1162 14 0.00 1.04 7.90 3	Road of Kong Sham Western Highw	ay			
INPUT V E L R D A Q Q C Q C OUTP ^I S K X2 M F	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) NRAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 179 988 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1162 14 0.00 1.04 7.90 3 2394	Road of Kong Sham Western Highw	ay			
INPUT V E L R D A Q Q Q Q C OUTPI S K X2 M F Td	= = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 179 988 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1162 14 0.00 1.04 7.90 3 2394 1.12	Road of Kong Sham Western Highw	ay			
INPUT V E L R D A Q Q Q Q Q Q C S K X2 M F T d F c	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 179 988 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1162 14 0.00 1.04 7.90 3 2394 1.12 0.61	Road of Kong Sham Western Highw				
V E R D A Q Qc	= = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 179 988 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1162 14 0.00 1.04 7.90 3 2394 1.12	Road of Kong Sham Western Highw	ay	1346	PCU	
INPUT V E L R D A Q Q Q Q Q Q C S K X2 M F T d F c	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 179 988 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1162 14 0.00 1.04 7.90 3 2394 1.12 0.61	Road of Kong Sham Western Highw		1346	PCU	

			HK) LIMITED			IC SIGNAL CALCULATION	1	INITIALS	DATE
		Femporary Warehouse for Construction I ry Facilities for a Period of 3 Years and <i>I</i>				PROJECT NO.: 83133	PREPARED BY:	CSY	Dec-24
		Roundabout	ASSociated I ming of Land and			FILENAME :	CHECKED BY:	LL	Dec-24
		erence AM Peak Hour Traffic Flows			2028Des_AM	J5_KSWH Roundabout_R.xls		PCN	Dec-24
2020	Reic							1.014	00024
			(ARM D) 6 Access Road	(ARMA) 1244	estern Highway	N X			
				Slip	Road of Kong Sham Western Highw	ay			
			A	Slip	Road of Kong Sham Western Highw	ay			
	PARA	AMETERS:	A			ay			
INPUT	PAR#	AMETERS: Approach half width (m)	A			ay			
INPUT V				C	D	ay			
INPUT V	=	Approach half width (m)	4.0	C 7.9	D	ay			
INPUT V E L R	= =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	B.2 9.3 1.8 10.0	ay			
INPUT V E L R D	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	B.2 9.3 1.8 10.0 71.0	ay			
INPUT V E L R D A	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	B.2 9.3 1.8 10.0 71.0 21.0	ay			
INPUT V E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 176	C 7.9 7.9 1.0 100.0 71.0 31.0 1463	8.2 9.3 1.8 10.0 71.0 21.0 6	ay			
INPUT V E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	B.2 9.3 1.8 10.0 71.0 21.0	ay			
INPUT E L D A Q Qc	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 176	C 7.9 7.9 1.0 100.0 71.0 31.0 1463	8.2 9.3 1.8 10.0 71.0 21.0 6	ay			
INPUT V E L D A Q Q C OUTPL	= = = = = JT PA	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 176 1244	C 7.9 7.9 1.0 100.0 71.0 31.0 1463 18	B.2 9.3 1.8 10.0 71.0 21.0 6 1457	ay			
INPUT V E L D A Q Q C OUTPL S	= = = = = JT PA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 176 1244 0.90	C 7.9 7.9 1.0 100.0 71.0 31.0 1463 18	B.2 9.3 1.8 10.0 71.0 21.0 6 1457 0.98	ay			
INPUT E L R D A Q Q C OUTPL S K	= = = = = JJT PA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 176 1244 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1463 18 0.00 1.04	B.2 9.3 1.8 10.0 71.0 21.0 6 1457 0.98 0.98	ay			
INPUT E L R D A Q Q Q C OUTPL S K X2	= = = = = JT PA = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 176 1244 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1463 18 0.00 1.04 7.90	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1457 0.98 0.98 8.57	ay			
V E L D A Q Q C OUTPL S K X2 M	= = = = = JT PA = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 176 1244 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1463 18 0.00 1.04 7.90 3	B.2 9.3 1.8 10.0 71.0 21.0 6 1457 0.98 0.98 8.57 3	ay			
INPUT V E L R D A Q Q Q Q C OUTPU S K X2 M F	= = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 176 1244 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1463 18 0.00 1.04 7.90 3 2394	B.2 9.3 1.8 10.0 71.0 21.0 6 1457 0.98 0.98 8.57 3 2597	ay			
INPUT V E L R D A A Q Q C OUTPL S K X2 M F Td	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 176 1244 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1463 18 0.00 1.04 7.90 3 2394 1.12	B.2 9.3 1.8 10.0 71.0 21.0 6 1457 0.98 0.98 8.57 3 2597 1.12	ay			
INPUT V E L R D A Q Q C OUTPL OUTPL S K X2 M F Td Fc	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 176 1244 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1463 18 0.00 1.04 7.90 3 2394 1.12 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1457 0.98 0.98 8.57 3 2597 1.12 0.64		16/5	PCI	
INPUT V E L R D A Q Q Q C OUTPL S K X2 M	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 176 1244 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1463 18 0.00 1.04 7.90 3 2394 1.12	B.2 9.3 1.8 10.0 71.0 21.0 6 1457 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1645	PCU	
INPUT V E L R D A Q Q Q C OUTPL S K X2 M F T d Fc	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 176 1244 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1463 18 0.00 1.04 7.90 3 2394 1.12 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1457 0.98 0.98 8.57 3 2597 1.12 0.64		1645	PCU	

) TECHNOLOGY (H	TK) LIWITED				CALCULATION		INITIALS	DATE
		emporary Warehouse for Construction N ry Facilities for a Period of 3 Years and A				PROJECT NO .:	83133	PREPARED BY:	CSY	Dec-24
		Roundabout	ASSociated I ming of Land and Fit			FILENAME :		CHECKED BY:	LL	Dec-24
		erence AM Peak Hour Traffic Flows			2028Des_PM		J5_KSWH Roundabout_R.xls	REVIEWED BY:	PCN	Dec-24
2020	Reie	stence Awr eak nour traine nows						KEVIEWED DI.	TON	060-24
			Slip Road of Kong (ARM D) 5 Access Road	(ARM A)	182 182 182 14 1180 (ARM C)	N				
				Slip	Road of Kong Sham Western Hig	ghw ay				
			A	Slip	Road of Kong Sham Western Hig	ghw ay				
	PARA	AMETERS:	A			ghw ay				
INPUT	PARA =	AMETERS: Approach half width (m)	A			ghw ay				
INPUT V				C	D	ghw ay				
INPUT V	=	Approach half width (m)	4.0	C 7.9	D	ghw ay				
INPUT V E L	=	Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	D 8.2 9.3	ghw ay				
INPUT V E L R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	D 8.2 9.3 1.8	ghw ay				
INPUT V E L R D	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	D 8.2 9.3 1.8 10.0	ghw ay				
INPUT E L R D A	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	D 8.2 9.3 1.8 10.0 71.0	ghw ay				
INPUT E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	D 8.2 9.3 1.8 10.0 71.0 21.0	ghw ay				
INPUT E L R D A Q Qc	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 182	C 7.9 7.9 1.0 100.0 71.0 31.0 1180	D 8.2 9.3 1.8 10.0 71.0 21.0 5	ghw ay				
INPUT E L R D A Q Q C	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 182 1002	C 7.9 7.9 1.0 100.0 71.0 31.0 1180 14	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1239	ghw ay				
INPUT E L R D A Q Q C OUTP S	= = = = = = UT PA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) WRAMETERS: Sharpness of flare = 1.6(E-V)/L	4.0 6.7 4.8 30.0 71.0 12.0 182 1002 0.90	C 7.9 7.9 1.0 100.0 71.0 31.0 1180 14	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1239 0.98	ghw ay				
INPUT E L R D A Q Q Q C OUTP S K	= = = = = = UT PA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) KRAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 182 1002 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1180 14 0.00 1.04	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1239 0.98 0.98	ghw ay				
INPUT V E L R D A Q Q C OUTP S K X2	= = = = = = UT PA = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 182 1002 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1180 14 0.00 1.04 7.90	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1239 0.98 0.98 8.57	ghw ay				
V E L D A Q Q C OUTP S K X2 M	= = = = = = UT PA = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) XRAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 182 1002 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1180 14 0.00 1.04 7.90 3	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1239 0.98 0.98 8.57 3	ghw ay				
INPUT V E L R D A Q Q C OUTP S K X2 M F	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) NRAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 182 1002 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1180 14 0.00 1.04 7.90 3 2394	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1239 0.98 0.98 8.57 3 2597	ghw ay				
INPUT V E L R D A Q Q Q C OUTP S K X2 M F Td	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) NRAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 182 1002 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1180 14 0.00 1.04 7.90 3 2394 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1239 0.98 0.98 8.57 3 2597 1.12	ghw ay				
INPUT V E L R D A Q Q Q Q Q Q C S K X2 M F T d F c	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 182 1002 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1180 14 0.00 1.04 7.90 3 2394 1.12 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1239 0.98 0.98 8.57 3 2597 1.12 0.64					
INPUT E L R D A Q Qc	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) NRAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 182 1002 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1180 14 0.00 1.04 7.90 3 2394 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1239 0.98 0.98 8.57 3 2597 1.12	ghw ay		1367	PCU	
INPUT V E L R D A Q Q Q Q Q C S K X2 M F T d F c	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 182 1002 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1180 14 0.00 1.04 7.90 3 2394 1.12 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1239 0.98 0.98 8.57 3 2597 1.12 0.64	Total In Sum =	tical Approach =	1367	PCU	

Proposed Temporary Warehouse for Storage of Construction Materials and Machinery, Parking of Special Purpose Vehicles and Rural Workshop with Ancillary Facilities for a Period of 3 Years at Various Lots in D.D.125 and Adjoining Government Land, Ha Tsuen, Yuen Long, New Territories TIA Report

Appendix D

2025 Junction Calculations

ZZO TEC	CHNOLOGY (HK)	LIMITED		PRIORITY JUN	ICTION CALCULAT	ION			INITIALS	DATE
posed Temporary cilities for a Period	ry Warehouse for Construction N od of 3 Years and Associated Fill	laterials and Construction Macl ng of Land and Pond and Exca	hineries, Parking of SP\ avation of Land	Vs and Rural Workshop with Ancillary	PROJECT NO.:	83133		PREPARED BY:	CSY	Dec-24
: Unnamed Rc	oad A / Access to Portion A			2025Ref_AM	FILENAME :			CHECKED BY:	LL	Dec-24
25 Reference A	AM Peak Hour Traffic Flows	Construction Stage)			J1_Unnamed Roa	ad A_Access to Portion A_P.xls		REVIEWED BY:	PCN	Dec-24
Access to F ((ARM B)		[3] [4] named Road A (ARM C)	W cr = C W ba = L W b-c = L W b-c = L V b-a = V V rb-a = V V rb-c = V V rb-c = V D = S E = S F = S	DATA) LAJOR ROAD WIDTH ENTRAL RESERVE WIDTH ANE WIDTH AVAILABLE TO VEHICLE WAIT ANE WIDTH AVAILABLE TO VEHICLE WAIT ANE WIDTH AVAILABLE TO VEHICLE WAIT ISIBILITY TO THE LEFT FOR VEHICLES WA ISIBILITY TO THE RIGHT FOR VEHICLES W ISIBILITY TO THE RIGHT FOR VEHICLES W TREAM-SPECIFIC B-A TREAM-SPECIFIC B-C TREAM-SPECIFIC C-B I-0.0345W)	'ING IN STREAM b-c 'ING IN STREAM c-b NTING IN STREAM b-a (AITING IN STREAM b-a (AITING IN STREAM b-c				
DMETRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMEN	π.	COMPARISION OF DE	SIGN FLOW			
METRIC DETAILS:) (ARM A)	GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMEN	π.	COMPARISION OF DE TO CAPACITY:	SIGN FLOW			
) (ARM A) 4.20 (metres)	GEOMETRIC FACTORS :	= 0.68744683	Qb-a =	428		DFC b-a	= 0.0000		
MAJOR ROAD	· · ·		= 0.68744683 = 0.731326415		428 543		DFC b-a DFC b-c	= 0.0000 = 0.0000		
MAJOR ROAD W =	4.20 (metres)	D		Qb-a =	428		DFC b-a			
MAJOR ROAD W = W cr =	4.20 (metres) 0 (metres)	DE	= 0.731326415	Qb-a = Qb-c =	428 543		DFC b-a DFC b-c	= 0.0000		
MAJOR ROAD W = W cr = q a-b = q a-c =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428		DFC b-a DFC b-c DFC c-b	= 0.0000 = 0.0000		
MAJOR ROAD W = W cr = q a-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr)	D E F	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b =	428 543 596 428		DFC b-a DFC b-c DFC c-b	= 0.0000 = 0.0000		
MAJOR ROAD W = W cr = q a-b = q a-c = MAJOR ROAD (4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) (ARM C)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428		DFC b-a DFC b-c DFC c-b	= 0.0000 = 0.0000		
MAJOR ROAD W = Q ab = Q ab = Q ac = MAJOR ROAD (W cb = Vr cb =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) (ARM C) 2.5 (metres) 14 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428		DFC b-a DFC b-c DFC c-b	= 0.0000 = 0.0000		
MAJOR ROAD (4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) (ARM C) 2.5 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		
MAJOR ROAD W = W cr = q a-b = q a-c = MAJOR ROAD (W c-b = Vrc-b = q c-a = q c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) (ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000		
MAJOR ROAD (W = Q ab = Q ab = Q ab = Q ab = Q ab = Vr cb = Vr cb = Q cb = Q cb = MINOR ROAD (4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) (ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) (ARM B)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		
MAJOR ROAD W = Qab = Qab = Qac = MAJOR ROAD (W c·b = Vrc·b = Q c·a = Q c·b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) (ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) (ARM B) 1.5 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		
MAJOR ROAD (4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) (ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) (ARM B) 1.5 (metres) 1.5 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		
MAJOR ROAD (W = Qab = Qac = MAJOR ROAD (W cb = Vrcb = Q ca = Q cb = MINOR ROAD (W b-a = W b-c = Vlba =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) (ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcw/hr) (ARM B) 1.5 (metres) 50 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		
MAJOR ROAD (W = Q cr = Q a-c = MAJOR ROAD (W c-b = Q c-a = Q c-b = MINOR ROAD (W b-a = W b-c = V b-a = V b-a =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) (ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) (ARM B) 1.5 (metres) 1.5 (metres) 30 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		
$\begin{array}{rcl} \text{MAJOR ROAD} (\\ W & = \\ W \text{ or } & = \\ q \text{ a-c} & = \\ q \text{ a-c} & = \\ q \text{ a-c} & = \\ v \text{ c-b} & = \\ v \text{ c-b} & = \\ q \text{ c-b} & = \\ q \text{ c-b} & = \\ q \text{ c-b} & = \\ \text{MINOR ROAD} (\\ W \text{ b-a} & = \\ W \text{ b-c} & = \\ w \text{ b-c} & = \\ v \text{ l-b} & = \\ \end{array}$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) (ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcw/hr) (ARM B) 1.5 (metres) 50 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.0000 = 0.0000 = 0.0000		

ZZO TECI	HNOLOGY (HK) L	IMITED		PRIORITY JUN	ICTION CALC	ULATION			INITIALS	DATE
	/ Warehouse for Construction Mail I of 3 Years and Associated Filling			Vs and Rural Workshop with Ancillary	PROJECT NO.	: 83133		PREPARED BY	CSY	Dec-24
Unnamed Roa	ad A / Access to Portion A			2025Ref_PM	FILENAME :			CHECKED BY	: LL	Dec-24
5 Reference AM	M Peak Hour Traffic Flows (C	onstruction Stage)		2025Ret_PW	J1_Un	named Road A_Access to Portion A_P.x	ls	REVIEWED BY	: PCN	Dec-24
Access to Po (A [6] 0 - [5] 10 - Unnamed Road A (ARM A)	ARM B)		[3] [4] named Road A (ARM C)	W cr = C W ba = L W bc = L W bc = L VIba = V Vrba = V Vrba = V Vrbc = V Vrcb = V D = S E = S F = S	IAJOR ROAD WIDTH ENTRAL RESERVE WIDTH ANE WIDTH AVAILABLE TO VI ANE WIDTH AVAILABLE TO VI ANE WIDTH AVAILABLE TO VI ISIBILITY TO THE LEFT FOR VI ISIBILITY TO THE RIGHT FOR	EHICLE WAITING IN STREAM b-a EHICLE WAITING IN STREAM b-c EHICLE WAITING IN STREAM c-b /EHICLES WAITING IN STREAM b-a VEHICLES WAITING IN STREAM b-c VEHICLES WAITING IN STREAM c-b				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMEN	IT :	COMPARISION OF I TO CAPACITY:	DESIGN FLOW			
METRIC DETAILS: MAJOR ROAD (A										
MAJOR ROAD (A W =	4.20 (metres)	D	= 0.68744683	Qb-a =	428		DFC b-a	= 0.000		
MAJOR ROAD (A W = W cr =	4.20 (metres) 0 (metres)	D E	= 0.731326415	Qb-a = Qb-c =	428 543		DFC b-a DFC b-c	= 0.000)	
MAJOR ROAD (A W =	4.20 (metres) 0 (metres) 0 (pcu/hr)	D E F	= 0.731326415 = 0.803411444	Qb-a = Qb-c = Qc-b =	428 543 596		DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000))	
MAJOR ROAD (A W = W cr =	4.20 (metres) 0 (metres)	D E	= 0.731326415	Qb-a = Qb-c =	428 543		DFC b-a DFC b-c	= 0.000))	
MAJOR ROAD (A W = W cr = q a-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b =	428 543 596		DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000))	
MAJOR ROAD (A W = W cr = q a-b = q a-c =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr)	D E F	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000))	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000))	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000))	
MAJOR ROAD (Å W = W cr = q a-b = q a-c = MAJOR ROAD (Å W c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	(PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 4RM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	(PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
$\begin{array}{rcl} \text{MAJOR ROAD} (A\\ W & = \\ W \text{cr} & = \\ q a \text{-} b & = \\ q a \text{-} c & = \\ q a \text{-} c & = \\ V c \text{-} b & = \\ v c \text{-} b & = \\ q c \text{-} a & = \\ q c \text{-} b & = \\ \hline \text{MINOR ROAD} (AI\\ W b \text{-} a & = \\ \end{array}$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr) ARM B) 1.5 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	(PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
$\begin{array}{rcl} \text{MAJOR ROAD} (A\\ W & = \\ W \text{cr} & = \\ q a \text{-} & c & = \\ q a \text{-} & c & = \\ q a \text{-} & c & = \\ V c \text{-} & b & = \\ V c \text{-} & b & = \\ q c \text{-} & a & = \\ q c \text{-} & b & = \\ \hline \text{MINOR ROAD} (AI\\ W b \text{-} & a & = \\ W b \text{-} & c & = \\ W b \text{-} & c & = \\ \end{array}$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr) 4 (pcu/hr) 1.5 (metres) 1.5 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	(PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
$\begin{array}{rcl} \text{MAJOR ROAD} (A\\ W & = \\ W \text{cr} & = \\ q a \text{-} c & = \\ q a \text{-} c & = \\ q a \text{-} c & = \\ \text{MAJOR ROAD} (A\\ W c \text{-} b & = \\ V c \text{-} b & = \\ q c \text{-} b & = \\ q c \text{-} b & = \\ \text{MINOR ROAD} (AF W b \text{-} a & = \\ W b \text{-} c & = \\ W b \text{-} c & = \\ W b \text{-} c & = \\ \text{VI b -} a & = \\ \text{W } b \text{-} c & = \\ \end{array}$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 4RM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr) 4.5 (metres) 1.5 (metres) 50 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	(PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
$\begin{array}{rcl} \text{MAJOR ROAD} (A\\ W & = \\ W \text{cr} & = \\ q a \text{-c} & = \\ q a \text{-c} & = \\ q a \text{-c} & = \\ V \text{rc-b} & = \\ V \text{rc-b} & = \\ q \text{c-a} & = \\ q \text{c-b} & = \\ \text{MINOR ROAD} (Af \\ W b \text{-a} & = \\ W b \text{-c} & = \\ W b \text{-c} & = \\ V \text{rb-a} & = \\ V \text{rb-a} & = \\ V \text{rb-a} & = \\ \end{array}$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 4. (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr) NRM B) 1.5 (metres) 1.5 (metres) 30 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	(PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b = MINOR ROAD (AI W b-a = W b-c = Vrb-a = Vrb-a = Vrb-c =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 4.RM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr) 4.RM B) 1.5 (metres) 1.5 (metres) 3.0 (metres) 30 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	(PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
$\begin{array}{rcl} \text{MAJOR ROAD} (A\\ W & = \\ W \text{cr} & = \\ q a \text{-c} & = \\ q a \text{-c} & = \\ q a \text{-c} & = \\ V \text{rc-b} & = \\ V \text{rc-b} & = \\ q \text{c-a} & = \\ q \text{c-b} & = \\ \text{MINOR ROAD} (Af \\ W b \text{-a} & = \\ W b \text{-c} & = \\ W b \text{-c} & = \\ V \text{rb-a} & = \\ V \text{rb-a} & = \\ V \text{rb-a} & = \\ \end{array}$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 4. (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr) NRM B) 1.5 (metres) 1.5 (metres) 30 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	(PCU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		

ZZO TECI	HNOLOGY (HK) L	IMITED		PRIORITY JU	NCTION CAI	LCULATION			INITIALS	DATE
	Warehouse for Construction Ma of 3 Years and Associated Filling			SPVs and Rural Workshop with Ancillary	PROJECT	NO.: 83133		PREPARED BY	CSY	Dec-24
Unnamed Roa	ad A / Access to Portion A			2025Des_AM	FILENAME	1		CHECKED BY	: LL	Dec-24
5 Reference Al	M Peak Hour Traffic Flows (C	onstruction Stage)		2025Des_AM	J1_	_Unnamed Road A_Access to Portion A_P.x	ls	REVIEWED BY	: PCN	Dec-24
Access to Pc (A [6] 0 - [5] 10 - Unnamed Road A (ARM A)	ARM B)		[3] [4] mnamed Road A (ARM C)	W cr = W b-a = W b-c = V tb-a = V tb-a = V tb-a = V tb-c = D = E = F =	MAJOR ROAD WIDTH CENTRAL RESERVE WIDT LANE WIDTH AVAILABLE T LANE WIDTH AVAILABLE T LANE WIDTH AVAILABLE T VISIBILITY TO THE LEFT F VISIBILITY TO THE RIGHT VISIBILITY TO THE RIGHT	TH TO VEHICLE WAITING IN STREAM b-a TO VEHICLE WAITING IN STREAM b-c TO VEHICLE WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM b-a FOR VEHICLES WAITING IN STREAM b-c FOR VEHICLES WAITING IN STREAM b-c FOR VEHICLES WAITING IN STREAM b-c				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEM	ENT :	COMPARISION OF TO CAPACITY:	DESIGN FLOW			
METRIC DETAILS: MAJOR ROAD (#						COMPARISION OF TO CAPACITY:				
MAJOR ROAD (A W =	4.20 (metres)	D	= 0.68744683	Qb-a =	428		DFC b-a	= 0.000		
MAJOR ROAD (A W = W cr =	4.20 (metres) 0 (metres)	DE	= 0.731326415	Q b-a = Q b-c =	428 543		DFC b-a DFC b-c	= 0.000)	
MAJOR ROAD (A W =	4.20 (metres) 0 (metres) 0 (pcu/hr)	D E F	= 0.731326415 = 0.803411444	Qb-a = Qb-c = Qc-b =	428 543 596		DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000))	
MAJOR ROAD (A W = W cr =	4.20 (metres) 0 (metres)	DE	= 0.731326415	Qb-a = Qb-c = Qc-b =	428 543		DFC b-a DFC b-c	= 0.000))	
MAJOR ROAD (A W = W cr = q a-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr)	D E F	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596		DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000))	
MAJOR ROAD (A W = W cr = q a-b = q a-c =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000))	
MAJOR ROAD (# W = W cr = q a-b = q a-c = MAJOR ROAD (A	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000))	
MAJOR ROAD (# W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000))	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b =	4.20 (metres) 0 (metres) 0 (pcuhr) 10 (pcu/hr) ARM C) 2.5 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
MAJOR ROAD (<i>k</i> W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.000 = 0.000		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) ARM B)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
MAJOR ROAD (<i>k</i> W = Q a-b = Q a-c = MAJOR ROAD (<i>A</i> W c-b = Vr c-b = Q c-a = Q c-a = Q c-b = MINOR ROAD (<i>A</i>] W b-a =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) ARM B) 1.5 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
MAJOR ROAD (<i>A</i> W = Q ab = Q ab = Q ac = MAJOR ROAD (A W c-b = Vr c-b = Q c-a = Q c-b = MINOR ROAD (A W b-a = W b-c =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) ARM B) 1.5 (metres) 1.5 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
$\begin{array}{rcl} \text{MAJOR ROAD}(\textit{k})\\ & W & = \\ & W \ cr & = \\ & q \ ab & = \\ & M \ bb & b & = \\ & Vr \ cb & = \\ & q \ cb & = \\ & M \ inner \ ROAD \ (Al \ W \ bb & a & = \\ & W \ bb & b & b & a & = \\ & W \ bb & b & b & a & = \\ & W \ bb & b & a & = \\ & W \ bb & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & a & = \\ & W \ b & b & b & a & = \\ & W \ b & b & b & b & b \\ & W \ b & b & b & b & b \\ & W \ b & b & b & b & b \\ & W \ b & b & b & b \\ & W \ b & b & b & b \\ & W \ b & B \ b & b & b \\ & W \ b & b & b & b \\ & W \ b & b & b & b \\ & W \ b & b & b \\ & W \ b & B \ & W \ b & b \\ & W \ b & B \ & W \ b & b \\ & W \ b & W \ b & W \ b & B \ & W \ b & W \ b & W \ b & W \ b & W \ b & W \ b & W $	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) NRM B) 1.5 (metres) 1.5 (metres) 50 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
$\begin{array}{rcl} \text{MAJOR ROAD}(\textit{k})\\ W & = & \\ W \text{cr} & = & \\ q a \text{-} c & = & \\ q a \text{-} c & = & \\ q a \text{-} c & = & \\ V r \text{-} b & = & \\ V r \text{-} b & = & \\ q c \text{-} b & = & \\ q c \text{-} b & = & \\ \text{MINOR ROAD}(\textit{AI})\\ W b \text{-} a & = & \\ W b \text{-} a & = & \\ W b \text{-} c & = & \\ V l \text{-} a & = & \\ V l \text{-} a & = & \\ V l \text{-} a & = & \\ V r \text{-} a & = & \\ \end{array}$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) ARM B) 1.5 (metres) 1.5 (metres) 30 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b = MINOR ROAD (AI W b-a = W b-c = Vrb-a = Vrb-a = Vrb-c =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) ARM B) 1.5 (metres) 50 (metres) 30 (metres) 30 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		
$\begin{array}{rcl} \text{MAJOR ROAD}(\textit{k})\\ W & = & \\ W \text{cr} & = & \\ q a \text{-} c & = & \\ q a \text{-} c & = & \\ q a \text{-} c & = & \\ V r \text{-} b & = & \\ V r \text{-} b & = & \\ q c \text{-} b & = & \\ q c \text{-} b & = & \\ \text{MINOR ROAD}(\textit{AI})\\ W b \text{-} a & = & \\ W b \text{-} a & = & \\ W b \text{-} c & = & \\ V l \text{-} a & = & \\ V l \text{-} a & = & \\ V l \text{-} a & = & \\ V r \text{-} a & = & \\ \end{array}$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 5 (pcu/hr) 0 (pcu/hr) ARM B) 1.5 (metres) 1.5 (metres) 30 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000		

ZZO TECI	HNOLOGY (HK) L	IMITED		PRIORITY JUN	CTION CALCUL	ATION			INITIALS	DATE
	/ Warehouse for Construction Ma l of 3 Years and Associated Filling			Vs and Rural Workshop with Ancillary	PROJECT NO.:	83133		PREPARED BY	CSY	Dec-24
Unnamed Roa	ad A / Access to Portion A			2025Des_PM	FILENAME :			CHECKED BY	: LL	Dec-24
5 Reference AM	M Peak Hour Traffic Flows (C	onstruction Stage)		2025Des_PM	J1_Unname	ed Road A_Access to Portion A_P.xl	s	REVIEWED BY	: PCN	Dec-24
Access to Po (A [6] 0 - [5] 10 - Unnamed Road A (ARM A)	ARM B)		[3] [4] named Road A (ARM C)	W cr = C W b-a = L W b-c = L W b-c = L V b-a = V V rb-a = V V rb-a = V V rb-c = V D = S E = S F = S	DATA) AJOR ROAD WIDTH ENTRAL RESERVE WIDTH ANE WIDTH AVAILABLE TO VEHICLE NE WIDTH AVAILABLE TO VEHICLE ISIBILITY TO THE LEFT FOR VEHICLE ISIBILITY TO THE RIGHT FOR VEHICLE ISIBILITY FOR VEHICLE ISIBILITY FOR VEHICLE ISIBILITY FOR VEHIC	E WAITING IN STREAM b-c E WAITING IN STREAM c-b ES WAITING IN STREAM b-a ZLES WAITING IN STREAM b-a CLES WAITING IN STREAM b-c				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMEN	Τ:	COMPARISION OF E	DESIGN FLOW			
METRIC DETAILS: MAJOR ROAD (A	ARM A)	GEOMETRIC FACTORS :				COMPARISION OF C TO CAPACITY:				
MAJOR ROAD (A W =	4.20 (metres)	D	= 0.68744683	Q b-a =	428		DFC b-a	= 0.000		
MAJOR ROAD (A	4.20 (metres) 0 (metres)	DE	= 0.731326415	Q b-a = Q b-c =	428 543		DFC b-a DFC b-c	= 0.000	0	
MAJOR ROAD (A W =	4.20 (metres) 0 (metres) 0 (pcu/hr)	D E F	= 0.731326415 = 0.803411444	Q.b-a = Q.b-c = Q.c-b =	428 543 596		DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000	0	
MAJOR ROAD (A W = W cr =	4.20 (metres) 0 (metres)	DE	= 0.731326415	Q b-a = Q b-c =	428 543		DFC b-a DFC b-c	= 0.000	0	
MAJOR ROAD (A W = W cr = q a-b = q a-c =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000	0	
MAJOR ROAD (A W = W cr = q a-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr)	D E F	= 0.731326415 = 0.803411444 = 0.8551	Q.b-a = Q.b-c = Q.c-b =	428 543 596 428		DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000	0	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000	0	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.000 = 0.000	0	
MAJOR ROAD (Å W = W cr = q a-b = q a-c = MAJOR ROAD (Å W c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000	0	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000	0	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 4RM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000	0	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr) ARM B) 1.5 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000	0	
$\begin{array}{rcl} \text{MAJOR ROAD} (A\\ W & = \\ W \text{cr} & = \\ q a \text{-} & c & = \\ q a \text{-} & c & = \\ q a \text{-} & c & = \\ V c \text{-} & b & = \\ V c \text{-} & b & = \\ q c \text{-} & a & = \\ q c \text{-} & b & = \\ \hline \text{MINOR ROAD} (AI\\ W b \text{-} & a & = \\ W b \text{-} & c & = \\ W b \text{-} & c & = \\ \end{array}$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) ARM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr) 4 (pcu/hr) 1.5 (metres) 1.5 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000	0	
$\begin{array}{rcl} \text{MAJOR ROAD} (A\\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ab & = \\ q \ ab & = \\ \\ \text{MJOR ROAD} (A\\ W \ cb & = \\ Vr \ cb & = \\ q \ cb & = \\ \\ \text{MINOR ROAD} (AF \\ W \ bba & = \\ \end{array}$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 4RM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr) 4.5 (metres) 1.5 (metres) 50 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000	0	
$\begin{array}{rcl} \text{MAJOR ROAD} (A\\ W & = \\ W \text{cr} & = \\ q a \text{-c} & = \\ q a \text{-c} & = \\ q a \text{-c} & = \\ V \text{rc-b} & = \\ V \text{rc-b} & = \\ q \text{c-a} & = \\ q \text{c-b} & = \\ \text{MINOR ROAD} (Af \\ W b \text{-a} & = \\ W b \text{-c} & = \\ W b \text{-c} & = \\ V \text{rb-a} & = \\ V \text{rb-a} & = \\ V \text{rb-a} & = \\ \end{array}$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 4RM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr) 4 (pcu/hr) 0 (pcu/hr) 1.5 (metres) 50 (metres) 30 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000	0	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = Vrb-a = Vrb-a = Vrb-c =	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 4.RM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr) 4.RM B) 1.5 (metres) 1.5 (metres) 3.0 (metres) 30 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000	0	
$\begin{array}{rcl} \text{MAJOR ROAD} (A\\ W & = \\ W \text{cr} & = \\ q a \text{-c} & = \\ q a \text{-c} & = \\ q a \text{-c} & = \\ V \text{rc-b} & = \\ V \text{rc-b} & = \\ q \text{c-a} & = \\ q \text{c-b} & = \\ \text{MINOR ROAD} (Af \\ W b \text{-a} & = \\ W b \text{-c} & = \\ W b \text{-c} & = \\ V \text{rb-a} & = \\ V \text{rb-a} & = \\ V \text{rb-a} & = \\ \end{array}$	4.20 (metres) 0 (metres) 0 (pcu/hr) 10 (pcu/hr) 4RM C) 2.5 (metres) 14 (metres) 4 (pcu/hr) 0 (pcu/hr) 4 (pcu/hr) 0 (pcu/hr) 1.5 (metres) 50 (metres) 30 (metres)	D E F Y	= 0.731326415 = 0.803411444 = 0.8551	Qb-a = Qb-c = Qc-b = Qb-ac =	428 543 596 428	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.000 = 0.000 = 0.000	0	

ZZO TEC	HNOLOGY (HK) L	IMITED		PRIORITY JUN	ICTION CALCULATIO	N			INITIALS	DATE
	y Warehouse for Construction Ma d of 3 Years and Associated Filling			s and Rural Workshop with Ancillary	PROJECT NO.: 8	3133		PREPARED BY:	CSY	Dec-24
Unnamed Ro	ad A / Access to Existing Fish	Farm		2025Ref_AM	FILENAME :			CHECKED BY:	LL	Dec-24
5 Reference A	M Peak Hour Traffic Flows (C	onstruction Stage)		2025ICEL_AW	J2_Unnamed Road A_Access	to Existing Fish Farm_P.xls		REVIEWED BY:	PCN	Dec-24
(i) [6] 0 - [5] 6 - Access to Existin (ARM A)	(ARM B)	1 = = = = = 4 [3 4 9 [4 Access to E		W cr = C W b-a = L W b-c = L W b-c = L V b-a = V V rb-a = V V rb-c = V V rb-c = V D = S E = S F = S	I DATA) MAJOR ROAD WIDTH XENTRAL RESERVE WIDTH ANE WIDTH AVAILABLE TO VEHICLE WAITING I ANE WIDTH AVAILABLE TO VEHICLE WAITING I ANE WIDTH AVAILABLE TO VEHICLE WAITING I SIBILITY TO THE LEFT FOR VEHICLES WAITING ISIBILITY TO THE RIGHT FOR VEHICLES WAITING ISIBILITY TO THE RIGHT FOR VEHICLES WAITING STREAM-SPECIFIC B-A TREAM-SPECIFIC B-C STREAM-SPECIFIC C-B 1-0.0345W)	N STREAM b-c N STREAM c-b G IN STREAM b-a IG IN STREAM b-a IG IN STREAM b-c				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMEN	NT :	COMPARISION OF DE	SIGN FLOW			
METRIC DETAILS: MAJOR ROAD ((ARM A)	GEOMETRIC FACTORS :				TO CAPACITY:				
	(ARM A) 4.23 (metres)	GEOMETRIC FACTORS : D =	0.793305108	Q b-a =	493	TO CAPACITY:	DFC b-a	= 0.0000		
MAJOR ROAD (4.23 (metres) 0 (metres)	D = E =	0.862663232	Qb-a = Qb-c =	493 641	TO CAPACITY:	DFC b-a DFC b-c	= 0.0172		
MAJOR ROAD (W =	4.23 (metres) 0 (metres) 0 (pcu/hr)	D = E = F =	0.862663232 0.79459942	Q.b-a = Q.b-c = Q.c-b =	493 641 590	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.0172 = 0.0068		
MAJOR ROAD (W = W cr =	4.23 (metres) 0 (metres)	D = E =	0.862663232	Qb-a = Qb-c =	493 641	TO CAPACITY:	DFC b-a DFC b-c	= 0.0172		
MAJOR ROAD (W = W cr = q a-b = q a-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr)	D = E = F = Y =	0.862663232 0.79459942	Q b-a = Q b-c = Q c-b = Q b-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.0172 = 0.0068		
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (#	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) ARM C)	D = E = F =	0.862663232 0.79459942 0.854065	Q.b-a = Q.b-c = Q.c-b =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.0172 = 0.0068		
MAJOR ROAD (4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) ARM C) 2.4 (metres)	D = E = F = Y =	0.862663232 0.79459942 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.0172 = 0.0068		
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (/ W c-b = Vr c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) ARM C) 2.4 (metres) 12 (metres)	D = E = F = Y =	0.862663232 0.79459942 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.0172 = 0.0068		
MAJOR ROAD (4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) ARM C) 2.4 (metres)	D = E = F = Y =	0.862663232 0.79459942 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0172 = 0.0068 = 0.0172		
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (<i>k</i> W c-b = Vrc-b = q c-a = q c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr)	D = E = F = Y =	0.862663232 0.79459942 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0172 = 0.0068		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr) ARM B)	D = E = F = Y =	0.862663232 0.79459942 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0172 = 0.0068 = 0.0172		
MAJOR ROAD (W = W cr = q ab = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr) ARM B) 2.9 (metres)	D = E = F = Y =	0.862663232 0.79459942 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0172 = 0.0068 = 0.0172		
MAJOR ROAD (W = W cr = q ab = q ac = MAJOR ROAD (/ W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) ARM C) 2.4 (metres) 9 (pcu/hr) 4 (pcu/hr) ARM B) 2.9 (metres) 2.9 (metres)	D = E = F = Y =	0.862663232 0.79459942 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0172 = 0.0068 = 0.0172		
$\begin{array}{rcl} \mbox{MAJOR ROAD}(& & & \\ & W & = & \\ & W \ cr & = & \\ & q \ a \ c & = & \\ & q \ a \ c & = & \\ & MAJOR \ ROAD(& & \\ & W \ c \ b & = & \\ & v \ c \ b & = & \\ & q \ c \ a & = & \\ & q \ c \ a & = & \\ & q \ c \ a & = & \\ & MINOR \ ROAD(& & \\ & W \ b \ a & = & \\ & W \ b \ c & = & \\ & W \ c \ c & = & \\ & W \ c \ c & = & \\ & W \ c \ c & = & \\ & W \ c \ c & = & \\ & W \ c \ c & = & \\ & W \ c \ c & = & \\ & W \ c \ c & = & \\ & W \ c \ c & = & \\ & W \ c \ c & = & \\ & W \ c \ c & = & \\ & W \ c \ c & = & \\ & W \ c \ c & = & \\ & W \ c \ c \ c & = & \\ & W \ c \ c \ c & = & \\ & W \ c \ c \ c & = & \\ & W \ c \ c \ c & = & \\ & W \ c \ c \ c & = & \\ & W \ c \ c \ c & = & \\ & W \ c \ c \ c \ c \ c \ c \ c \ c \ c \$	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr) ARM B) 2.9 (metres) 2.9 (metres) 16 (metres)	D = E = F = Y =	0.862663232 0.79459942 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0172 = 0.0068 = 0.0172		
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = q c-a = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = V b-a = V b-a = V b-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr) ARM B) 2.9 (metres) 16 (metres) 40 (metres)	D = E = F = Y =	0.862663232 0.79459942 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0172 = 0.0068 = 0.0172		
MAJOR ROAD (W = W cr = q ab = q a-c = MAJOR ROAD (/ W c-b = Q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = VI c-b a = VI b-a = VI b-a = VI b-a = VI b-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr) ARM B) 2.9 (metres) 16 (metres) 40 (metres) 40 (metres)	D = E = F = Y =	0.862663232 0.79459942 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0172 = 0.0068 = 0.0172		
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = q c-a = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = V b-a = V b-a = V b-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 6 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 9 (pcu/hr) 4 (pcu/hr) ARM B) 2.9 (metres) 16 (metres) 40 (metres)	D = E = F = Y =	0.862663232 0.79459942 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	493 641 590 641	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0172 = 0.0068 = 0.0172		

ZZO TECI	HNOLOGY (HK) L	MITED		PRIORITY JUN	ICTION CALCULA	TION			INITIALS	DATE
posed Temporary ilities for a Period	Warehouse for Construction Mat of 3 Years and Associated Filling	erials and Construction Mach of Land and Pond and Exca	ineries, Parking of SPV vation of Land	/s and Rural Workshop with Ancillary	PROJECT NO .:	83133		PREPARED B	CSY	Dec-24
Unnamed Roa	ad A / Access to Existing Fish	Farm		2025Ref_PM	FILENAME :			CHECKED B	/: LL	Dec-24
25 Reference Al	M Peak Hour Traffic Flows (Co	onstruction Stage)		ZUZJREI_FWI	J2_Unnamed Road A_Ac	ccess to Existing Fish Farm_P.xl	s	REVIEWED BY	: PCN	Dec-24
(A [6] 0 - [5] 3 - Access to Existin (ARM A)	ARM B)	6 5 Access tr	[3] [4] D Existing Fish Farm (ARM C)	W cr = C W b-a = L W b-c = L W c-b = L V b-a V V V b-a = V Vrb-a = V Vrb-a = V Vrb-b = V D = S E = S F = S	DATA) IAJOR ROAD WIDTH IAJOR ROAD WIDTH IENTRAL RESERVE WIDTH ANE WIDTH AVAILABLE TO VEHICLE WA ANE WIDTH AVAILABLE TO VEHICLE WA ISIBILITY TO THE LIGHT FOR VEHICLES ISIBILITY TO THE RIGHT FOR VEHICLES ISIBILITY ISIBILITY ISIBLE ISIBILITY ISIB ISIBILITY ISIBLE ISIBILITY	iTING IN STREAM b-c ITING IN STREAM c-b VAITING IN STREAM b-a WAITING IN STREAM b-a WAITING IN STREAM b-c				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMEN	ит :	COMPARISION OF D	ESIGN FLOW			
METRIC DETAILS: MAJOR ROAD (/	(ARM A)	GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMEN	IT :	COMPARISION OF D TO CAPACITY:	ESIGN FLOW			
	(ARM A) 4.23 (metres)		= 0.793305108	Q b-a =	1Т : 494		DFC b-a	= 0.004	10	
MAJOR ROAD (A		D	= 0.793305108 = 0.862663232		494 642		DFC b-a DFC b-c	= 0.00 = 0.01		
MAJOR ROAD (A W =	4.23 (metres) 0 (metres) 0 (pcu/hr)	D E F	= 0.862663232 = 0.79459942	Q b-a = Q b-c = Q c-b =	494 642 591		DFC b-a DFC b-c DFC c-b	= 0.014 = 0.010	10 12	
MAJOR ROAD (A W = W cr =	4.23 (metres) 0 (metres)	D E F	= 0.862663232	Qb-a = Qb-c =	494 642		DFC b-a DFC b-c	= 0.014	10 12	
MAJOR ROAD (/ W = W cr = q a-b = q a-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.014 = 0.010	10 12	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C)	D E F	= 0.862663232 = 0.79459942	Q b-a = Q b-c = Q c-b =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.014 = 0.010	10 12	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.014 = 0.010	10 12	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.014 = 0.010	10 12	
MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.014 = 0.010	10 12	
MAJOR ROAD (/ W = Q ab = Q ac = MAJOR ROAD (A W c-b = V c-b = Q c-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01/ = 0.010 = 0.018	10 12 11	
MAJOR ROAD (/ W = Q ab = Q ac = MAJOR ROAD (A W c-b = V c-b = Q c-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01/ = 0.01(= 0.018	10 12 11	
MAJOR ROAD (/ W = W cr = q ab = q ac = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01/ = 0.010 = 0.018	10 12 11	
$\begin{array}{rcl} \text{MAJOR ROAD}(\textit{\textit{i}}) & \textit{\textit{i}} & \textit{i} & \textit{i} & \textit{i} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr) ARM B)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01/ = 0.010 = 0.018	10 12 11	
MAJOR ROAD (/ W = W cr = q ab = q a-c = MAJOR ROAD (A W c-b = V c-b = q c-a = q c-b = MINOR ROAD (A W b-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr) ARM B) 2.9 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01/ = 0.010 = 0.018	10 12 11	
MAJOR ROAD (/ W = Q ab = Q ac = MAJOR ROAD (A W c-b = V c-b = Q c-a = Q c-b = MINOR ROAD (A W b-a = W b-c =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr) ARM B) 2.9 (metres) 2.9 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01/ = 0.010 = 0.018	10 12 11	
$\begin{array}{rcl} \mbox{MAJOR ROAD}({\mbox{\prime}} & \mbox{\ast} & \mbox{\ast} & \mbox{\ast} \\ \mbox{ψ cr $=$} \\ \mbox{q ac $=$} \\ \mbox{q ac $=$} \\ \mbox{w c-b $=$} \\ \mbox{v c-b $=$} \\ \mbox{v c-b $=$} \\ \mbox{q c-b $=$} \\ \mbox{q c-b $=$} \\ \mbox{m mon Road}({\mbox{a}} & \mbox{\ast} & \mbox{\ast} \\ \mbox{w b-a $=$} \\ \mbox{w b-c $=$} \\ \mbox{v b-c $=$} \\ v b-c $=$$	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) ARM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr) ARM B) 2.9 (metres) 2.9 (metres) 16 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01/ = 0.010 = 0.018	10 12 11	
MAJOR ROAD (/ W = Q ab = Q ac = MAJOR ROAD (A W c-b = Vrc-b = Q c-a = Q c-a = Q c-b = MINOR ROAD (A W b-a = W b-c = VIb-a = Vrb-a =	4.23 (metres) 0 (metres) 0 (pcu/hr) 3 (pcu/hr) 4RM C) 2.4 (metres) 12 (metres) 5 (pcu/hr) 6 (pcu/hr) 4RM B) 2.9 (metres) 16 (metres) 40 (metres)	D E F Y	= 0.862663232 = 0.79459942 = 0.854065	Q b-a = Q b-c = Q c-b = Q b-ac =	494 642 591 609	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.01/ = 0.010 = 0.018	10 12 11	

Process Process Parking Full Fam Dec 24 22: Unamed Road A/ Access Existing Full Fam D225Des_AM 22: Unamed Road A/ Access Existing Full Fam D225Des_AM 22: Unamed Road A/ Access Existing Full Fam D125Des_AM 22: Unamed Road A/ Access Existing Full Fam D125Des_AM 22: Unamed Road A/ Access Existing Full Fam D125Des_AM 22: Unamed Road A/ Access Existing Full Fam D125Des_AM 22: Unamed Road A/ Access Existing Full Fam D125Des_AM 22: Unamed Road A/ Access Existing Full Fam D125Des_AM 22: Unamed Road A/ Access Existing Full Fam D125Des_AM 22: Unamed Road A/ Access Existing Full Fam D125000000000000000000000000000000000000	ZZO TECHNOL	LOGY (HK) LIMIT	ED		PR	IORITY JU	NCTION CA	ALCULATION	N			INITIALS	DATE
ZOZS Reference AM Pack Hour Traffic Flores (Construction Stage) ZOZSDes_AM Inclusion: Inclusion: Luciane Road A.coess to Exating Fish Fam. P. x8 Inclusion: Inclusion: Reviewe B y Inclusion: Reviewe B y						rkshop with Ancillary		T NO.: 83	133		PREPARED B	Y: CSY	Dec-24
2225 Reference AM Peak Hour Traffic Flows (Construction Stage) 2 Unnamed Road A. Access to Existing Feb Fam_P.als REVIEWED BY PON Doc24	: Unnamed Road A / Ad	ccess to Existing Fish Farm			20250-		FILENAM	IE :			CHECKED B	Y: LL	Dec-24
$ \begin{array}{c} \left(\begin{array}{c} W & 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \\ \left(\begin{array}{c} W & 0 \\ 0 \\ 0 \\ \end{array} \right) \\ \left(\begin{array}{c} W & 0 \\ 0 \\ \end{array} \right) \\ \left(\begin{array}{c} W & 0 \\ 0 \\ \end{array} \right) \\ \left(\begin{array}{c} W & 0 \end{array} $	25 Reference AM Peak I	Hour Traffic Flows (Constru	ction Stage)		2025De	25_AIVI	J2_Unnan	ned Road A_Access to	D Existing Fish Farm_P.xl	6	REVIEWED B	Y: PCN	Dec-24
M a 4.23 (metes) D a 0.733305108 Qba a 492 DFC ba a 0.0000 W r a 0 (metes) E a 0.0233222 Qbc a 641 DFC bc a 0.0203 q ab c a 0 (pcuhr) Y a 0.04052 Qc ba a 641 DFC bc a 0.0203 M JOR ROAD (ARM (metes) For (Qb ac) y 1 TOTAL FLOW 34 (PCUHR) DFC bc a 0.0203 M OR a 2.44 (pcuhr) Y a 1 TOTAL FLOW a 34 (PCUHR) W c b 2.42 (metes) For (Qb ac) a 1 TOTAL FLOW a 34 (PCUHR) W c b a 2.49 (metes) a a 34 (PCUHR) E a 0.0203 W c b a 2.49 (metes) a a a a a b a b a a a a a a<	(ARM B)		€ ∮ Access	[3] [4] sto Existing Fish Far	`	W = W cr = W b-a = W c-b = V1b-a = V1b-a = V1b-c = V1b-c = V1c-b = E = F =	MAJOR ROAD WIDTH CENTRAL RESERVE WI LANE WIDTH AVAILABL LANE WIDTH AVAILABL LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE RIGH VISIBILITY TO THE RIGH STREAM-SPECIFIC B-C STREAM-SPECIFIC C-B STREAM-SPECIFIC C-B	E TO VEHICLE WAITING IN E TO VEHICLE WAITING IN E TO VEHICLE WAITING IN FOR VEHICLES WAITING I IT FOR VEHICLES WAITING IT FOR VEHICLES WAITING	STREAM b-c STREAM c-b IN STREAM b-a S IN STREAM b-a S IN STREAM b-c				
MuCR ROAD (ARM // V 0													
W cr e 0 (metres) E = 0.082682322 Q bc = 641 DFC bc = 0.0203 q ab c = 0 (pcuh) F = 0.082682322 Q bc = 641 DFC bc = 0.0203 q ab c = 0.0 0.0 State = 0.0 State = 0.0 State DFC bc = 0.0102 DFC bc 0.0102 DFC bc 0.0203 DFC bc DFC	OMETRIC DETAILS:		GEOMETRIC FACTORS :		тне	E CAPACITY OF MOVEM	ENT :			ESIGN FLOW			
q ab = 0 (pouhr) F = 0.7949992 Q ob = 590 DFC ob = 0.0102 q ab 6 (pouhr) Y = 0.854065 Q ob ac = 641 DFC ob = 0.0102 MAJOR ROAD (ARM C) F for (Qb-ac) = 1 TOTAL FLOW = 34 (PCUHR) W ob = 2.4 (metres) = 1 TOTAL FLOW = 34 (PCUHR) Q ob a = 9 (pouhr) = 1 TOTAL FLOW = 34 (PCUHR) Q ob a = 9 (pouhr) = 1 TOTAL FLOW = 34 (PCUHR) Q ob a = 0 (pouhr) = 34 (PCUHR) E	MAJOR ROAD (ARM A)												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MAJOR ROAD (ARM A) W = 4.23	(metres)	D		3305108	Qb-a =	492			DFC b-a			
MAJOR ROAD (ARM C) F for (Qb-ac) = 1 TOTAL FLOW = 34 (PCU/HR) W c-b = 24 (metres) Vrob = 12 (metres) q c-a = 9 (pcu/hr) q c-b = 6 (pcu/hr) Q ob = 6 (metres) W b-a = 2.9 (metres) W b-a = 2.9 (metres) Vrob = 16 (metres) Vrba = 40 (metres) Vrba = 40 (metres) Vrba = 40 (metres) Vrba = 40 (metres) Q b-a = 0 (pcu/hr)	$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ \text{W} &= & 4.23 \\ \text{W cr} &= & 0 \end{array}$	(metres) (metres)	D E	= 0.862	3305108 2663232	Q b-a = Q b-c =	492 641			DFC b-a DFC b-c	= 0.02	03	
W c-b = 2.4 (metres) V c-b = 12 (metres) q c-b = 9 (pcu/hr) q c-b = 9 (pcu/hr) q c-b = 9 (pcu/hr) d c-b = 0.02 MINOR ROAD (ARM B) - - 0.02 W b-a = 2.9 (metres) V b-a = 16 (metres) V b-a = 16 (metres) V b-a = 40 (metres) V b-a = 0 (pcu/hr)	$ \begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.23 \\ W \text{ cr} &= & 0 \\ q \text{ a-b} &= & 0 \end{array} $	(metres) (metres) (pcu/hr)	D E F	= 0.862 = 0.79	3305108 2663232 9459942	Q b-a = Q b-c = Q c-b =	492 641 590			DFC b-a DFC b-c DFC c-b	= 0.02 = 0.03	03 02	
W c-b = 2.4 (metres) V c-b = 12 (metres) q c-b = 9 (pcu/hr) q c-b = 9 (pcu/hr) q c-b = 9 (pcu/hr) d c-b = 0.02 MINOR ROAD (ARM B) - - 0.02 W b-a = 2.9 (metres) V b-a = 16 (metres) V b-a = 16 (metres) V b-a = 40 (metres) V b-a = 0 (pcu/hr)	$ \begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.23 \\ W \text{ cr} &= & 0 \\ q \text{ a-b} &= & 0 \end{array} $	(metres) (metres) (pcu/hr)	D E F	= 0.862 = 0.79	3305108 2663232 9459942	Q b-a = Q b-c = Q c-b =	492 641 590			DFC b-a DFC b-c DFC c-b	= 0.02 = 0.03	03 02	
Vr ob = 12 (metres) q ob = 9 (pou/h) q ob = 0 (pou/h) q ob = 0 (pou/h) q ob = 0 (pou/h) q ob = 0.02 MINOR robub - = 0.02 W bb = 2.9 (metres) W bb = 2.9 (metres) V bb = 16 (metres) V bb = 40 (metres) V rb = 40 (metres) V rb = 0 (pou/h)	MAJOR ROAD (ARM A) W = 4.23 W cr = 0 q a-b = 0 q a-c = 6	(metres) (metres) (pcu/hr)	D E F Y	= 0.862 = 0.79 = 0.	8305108 2663232 3459942 .854065	Q b-a = Q b-c = Q c-b = Q b-ac =	492 641 590 641	(PCU/HR)		DFC b-a DFC b-c DFC c-b	= 0.02 = 0.03	03 02	
q c-a=9(pcu/h)q c-b=6(pcu/h)q c-b=60.2NINOR CARME VNNV b-a=2.9(metres)V b-a=2.9(metres)V b-a=16(metres)V b-a=40(metres)V b-a=0(metres)V b-a=0(pcu/h)		(metres) (metres) (pcu/hr) (pcu/hr)	D E F Y	= 0.862 = 0.79 = 0.	8305108 2663232 3459942 .854065	Q b-a = Q b-c = Q c-b = Q b-ac =	492 641 590 641	(PCU/HR)		DFC b-a DFC b-c DFC c-b	= 0.02 = 0.03	03 02	
r 6 (pcuhr) r 6 (pcuhr) r 0 (meres) r 0 (pcuhr)	MAJOR ROAD (ARM A) W = 4.23 W cr = 0 q a-b = 0 q a-c = 6 MAJOR ROAD (ARM C) W c-b = 2.4	(metres) (metres) (pcu/hr) (pcu/hr) (metres)	D E F Y	= 0.862 = 0.79 = 0.	8305108 2663232 3459942 .854065	Q b-a = Q b-c = Q c-b = Q b-ac =	492 641 590 641	(PCU/HR)		DFC b-a DFC b-c DFC c-b	= 0.02 = 0.03	03 02	
MINOR ROAD (ARM B)W b-a =2.9(metres)W b-c =2.9(metres)V b-a =1.6(metres)V b-a =4.0(metres)V r b-c =4.0(metres)V r b-a =0(pourbre)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(metres) (metres) (pcu/hr) (pcu/hr) (metres) (metres)	D E F Y	= 0.862 = 0.79 = 0.	8305108 2663232 3459942 .854065	Q b-a = Q b-c = Q c-b = Q b-ac =	492 641 590 641	(PCU/HR)		DFC b-a DFC b-c DFC c-b	= 0.02 = 0.03	03 02	
W b-a =2.9(metres)W b-c =2.9(metres)V b-a =16(metres)V r b-a =40(metres)V r b-a =0(metres)Q b-a =0(pcu/rr)	MAJOR ROAD (ARM A) W = 4.23 W cr = 0 q ab = 0 q ab = 0 q ac = 6 MAJOR ROAD (ARM C) W c-b = 2.4 V rc-b = 12 q c-a = 9	(metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr)	D E F Y	= 0.862 = 0.79 = 0.	8305108 2663232 3459942 .854065	Q b-a = Q b-c = Q c-b = Q b-ac =	492 641 590 641	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	03 02 03	
W b-c =2.9(metres)V b-a =16(metres)V r b-a =40(metres)V r b-c =40(metres)Q b-a =0(pcu/hr)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr)	D E F Y	= 0.862 = 0.79 = 0.	8305108 2663232 3459942 .854065	Q b-a = Q b-c = Q c-b = Q b-ac =	492 641 590 641	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	03 02 03	
VI b-a=16(metres)Vr b-a=40(metres)Vr b-c=40(metres)q b-a=0(pcu/hr)	$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.23 \\ W \text{cr} &= & 0 \\ q \text{ab} &= & 0 \\ q \text{ab} &= & 0 \\ q \text{ac} &= & 0 \\ q \text{ac} &= & 0 \\ \text{MAJOR ROAD (ARM C)} \\ W \text{cb} &= & 2.4 \\ V \text{cb} &= & 12 \\ q \text{ca} &= & 9 \\ q \text{cb} &= & 6 \\ \\ \text{MINOR ROAD (ARM B)} \end{array}$	(metres) (metres) (pcu/hr) (pcu/hr) (metres) (pcu/hr) (pcu/hr)	D E F Y	= 0.862 = 0.79 = 0.	8305108 2663232 3459942 .854065	Q b-a = Q b-c = Q c-b = Q b-ac =	492 641 590 641	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	03 02 03	
Vr b-a =40(metres)Vr b-c =40(metres)q b-a =0(pcu/hr)	$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.23 \\ W \text{cr} &= & 0 \\ q \text{ab} &= & 0 \\ \text{MAJOR ROAD (ARM C)} \\ W \text{cb} &= & 12 \\ q \text{cb} &= & 12 \\ q $	(metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr) (pcu/hr)	D E F Y	= 0.862 = 0.79 = 0.	8305108 2663232 3459942 .854065	Q b-a = Q b-c = Q c-b = Q b-ac =	492 641 590 641	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	03 02 03	
Vr b-c = 40 (metres) $q b-a = 0 (pcwhr)$	MAJOR ROAD (ARM A) W = 4.23 W cr = 0 q ab = 0 q ac = 6 MAJOR ROAD (ARM C) W c-b = 2.4 Vrc-b = 12 q c-a = 9 q c-b = 6 MINOR ROAD (ARM B) W b-a = 2.9 W b-c = 2.9	(metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	D E F Y	= 0.862 = 0.79 = 0.	8305108 2663232 3459942 .854065	Q b-a = Q b-c = Q c-b = Q b-ac =	492 641 590 641	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	03 02 03	
q b-a = 0 (pcwhr)	$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.23 \\ W \text{cr} &= & 0 \\ q \text{ab} &= & 0 \\ q \text{ab} &= & 0 \\ q \text{ac} &= & 0 \\ q \text{ac} &= & 0 \\ \text{MAJOR ROAD (ARM C)} \\ W \text{cb} &= & 2.4 \\ V \text{cb} &= & 12 \\ q \text{ca} &= & 9 \\ q \text{cb} &= & 6 \\ \hline \\ \text{MINOR ROAD (ARM B)} \\ W \text{ba} &= & 2.9 \\ W \text{bc} &= & 2.9 \\ \end{array}$	(metres) (metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr) (pcu/hr) (metres) (metres) (metres) (metres)	D E F Y	= 0.862 = 0.79 = 0.	8305108 2663232 3459942 .854065	Q b-a = Q b-c = Q c-b = Q b-ac =	492 641 590 641	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	03 02 03	
	MAJOR ROAD (ARM A) W = 4.23 W cr = 0 q ab = 0 q ab = 0 q ac = 6 MAJOR ROAD (ARM C) W cb = 2.4 V ccb = 12 q ca = 9 q cb = 6 MINOR ROAD (ARM B) W ba = 2.9 W bc = 2.9 W bc = 2.9 V bba = 16 V v ba = 16	(metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr) (pcu/hr) (pcu/hr) (metres) (metres) (metres) (metres)	D E F Y	= 0.862 = 0.79 = 0.	8305108 2663232 3459942 .854065	Q b-a = Q b-c = Q c-b = Q b-ac =	492 641 590 641	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	03 02 03	
q b-c = 13 (pcu/hr)	$\begin{array}{rrrr} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.23 \\ W \text{cr} &= & 0 \\ q \text{ab} &= & 0 \\ q \text{ab} &= & 0 \\ q \text{ac} &= & 0 \\ q \text{ac} &= & 0 \\ \text{MAJOR ROAD (ARM C)} \\ W \text{cb} &= & 2.4 \\ V \text{rcb} &= & 12 \\ q \text{ca} &= & 9 \\ q \text{cb} &= & 12 \\ q \text{ca} &= & 9 \\ q \text{cb} &= & 12 \\ q \text{cc} &= & 9 \\ q \text{cb} &= & 12 \\ \text{MINOR ROAD (ARM B)} \\ W \text{ba} &= & 2.9 \\ W \text{bc} &= & 2.9 \\ W \text{bc} &= & 2.9 \\ V \text{bba} &= & 16 \\ V \text{rba} &= & 40 \\ V \text{rbc} &= & 40 \\ V \text{rbc} &= & 40 \end{array}$	(metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr) (pcu/hr) (metres) (metres) (metres) (metres) (metres) (metres) (metres)	D E F Y	= 0.862 = 0.79 = 0.	8305108 2663232 3459942 .854065	Q b-a = Q b-c = Q c-b = Q b-ac =	492 641 590 641	(PCU/HR)	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.0 = 0.0 = 0.0	03 02 03	

Proposed Temporary Warehouse for Construction Matchineries, Parking of SPVs and Rural Workshop with Ancillary PROJECT NO:: 83133 PREPARED BY: CSY J2: Unnamed Road A / Access to Existing Fish Farm 2025Des_PM FILENAME : CHECKED BY: LL 2025 Reference AM Peak Hour Traffic Flows (Construction Stage) PROJECT NO:: 83133 PREPARED BY: CSY Unnamed Road A / Access to Existing Fish Farm 2025Des_PM FILENAME : CHECKED BY: LL 201 Image: Construction Stage N REVIEWED BY: PCN PCN			FION CALCULATION		INITIALS	DATE
2025 Reference AM Peak Hour Traffic Flows (Construction Stage) 2025Des_PM Include Construction Stage Oncore State Unnamed Road A (ARM B) (1) (2) (1) (2) (1) (2) Unnamed Road A (ARM B) (1) (2) (1) (2) (1) (2) (1) (2) Unnamed Road A (ARM B) (1) (2) (1) (1) (2) (1) (1) (2) (1) (1) (2) (1)	clines for a Fenou of 3 fears and Associated Filling of Land and Pond and Excavation of		PROJECT NO.: 83133	PREPARED BY:	CSY	Dec-24
2025 Reference AM Peak Hour Traffic Flows (Construction Stage) J2_Unnamed Road A_Access to Existing Fish Farm_P.xls REVIEWED BY: PCN Unnamed Road A (1] [2] 1	:: Unnamed Road A / Access to Existing Fish Farm	2025Dag BM	FILENAME :	CHECKED BY:	LL	Dec-24
(ARM B) (ARM B) (ARM B) (ARM A) (ARM A) (AR	25 Reference AM Peak Hour Traffic Flows (Construction Stage)	2023De5_FW	J2_Unnamed Road A_Access to Existing Fish Farm_P.xls	REVIEWED BY:	PCN	Dec-24
	(ARM B) (6) 0 (5) 3 (6) 0 (6) 0 (6) 0 (7) 8 (3) (4) Access to Existing Fish Farm Access to Existing Fish Farm	W = MAJOR W cr = CENTR. W ba = LANE W W bc = LANE W W bc = LANE W W bb = USIBIL V bb = VISIBIL V cb = VISIBIL D = STREAI E = STREAI F = STREAI	ROAD WIDTH AL RESERVE WIDTH VIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a VIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a VIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a TY TO THE EIGHT FOR VEHICLES WAITING IN STREAM b-a ITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a TY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a TY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a M-SPECIFIC B-A M-SPECIFIC B-A			
GEOMETRIC DETAILS: GEOMETRIC FACTORS : THE CAPACITY OF MOVEMENT : COMPARISION OF DESIGN FLOW TO CAPACITY:	OMETRIC DETAILS: GEOMETRIC FACTORS :	THE CAPACITY OF MOVEMENT :		SIGN FLOW		
MAJOR ROAD (ARM A)						
W = 4.23 (metres) D = 0.793305108 Q b-a = 493 DFC b-a = 0.0041						
W cr = 0 (metres) E = 0.862663232 Q b-c = 642 DFC b-c = 0.0171						
	q a-b = 0 (pcu/hr) F =					
	q a-c = 3 (pcu/hr) Y =	0.854065 Q b-ac = 6	613	DFC b-c (share lane) = 0.0212		
		0.846153846 TOTAL FLOW -	29 (PCI/HR)			
q a-c = 3 (pcu/hr) Y = 0.854065 Q b-ac = 613 DFC b-c (share kane) = 0.0212		I I I I I I I I I I I I I I I I I I I				
q a-c = 3 (pcu/hr) Y = 0.854065 Q b-ac = 613 DFC b-c (share lane) = 0.0212 MAJOR ROAD (ARM C) F for (Qb-ac) = 0.846153846 TOTAL FLOW = 29 (PCU/HR)						
q ac = 3 0 Y = 0.854065 Q b-ac = 613 DFC b-c (share lane) = 0.0212 MAJOR ROAD (ARM C) F for (Qb-ac) = 0.846153846 TOTAL FLOW = 29 (PCU/HR) W c-b = 2.4 (metres)						
q ac = 3 0 (pcu/hr) Y = 0.854065 Q b-ac = 613 DFC b-c (share lane) = 0.0212 MAJOR ROAD (ARM C) F for (Qb-ac) = 0.846153846 TOTAL FLOW = 29 (PCU/HR) W c-b = 2.4 (metres) V rc-b = 12 (metres)						
q = c 3 (pcu/hr) Y = 0.854065 Q b-ac = 613 DFC b-c (share lane) = 0.0212 MAJOR ROAD (ARM C) F for (Qb-ac) = 0.846153846 TOTAL FLOW = 29 (PCU/HR) W c-b = 2.4 (metres) -	· · · · · · · · · · · · · · · · · · ·			C _ 0.02		
Y S S Q Desc G DEC S DEC S DEC S DEC S DEC S	MINOR ROAD (ARM B)		GRITICAL DI	- 0.02		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
q ac = 3 0 (pu/h) Y = 0.84065 Q bac = 613 DFC bc (share lane) = 0.0212 MAJOR ROAD (ARM C) F for (Qb-ac) = 0.846153846 TOTAL FLOW = 29 (PCU/HR) W c-b = 2.4 (metres) - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
q ac =3 $(p cuhr)$ Y $=$ 0.84665 $Q b ac =$ 613 $DFC b c (share lane) =$ 0.0212 MADOR ROAD (ARM C)F for (Q b - a) 0.846153846 TOTAL FLOW = 29 (PCU/HR) $V c b =$ 12 (metres) $(metres)$ $(P cu/hr)$ $(P cu/hr)$ $(P cu/hr)$ $(P cu/hr)$ $q c a =$ 5 $(p cu/hr)$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
q ac a 3 $(pcuh)$ Y a 0.84065 Q bac a 613 DFc bc (share kan) a 0.0212 MAJOR ROAD (ARM C) F for (Qb-ac) a 0.846153846 TOTAL FLOW a 29 (PCU/HR) W cb a 24 (metres) a a b b b b ca a b b b b b ca a b						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	q b a = 2 (pcu/hr)					
q = c = 3 $(q = b)$ Y = 0.84655 Q $b = c =$ 613 DFC $b = c (share lane) =$ 0.0212 MAJOR ROAD (ARM C) F for (Q $b = c) =$ 0.846153846 TOTAL FLOW = 29 (PCU/HR) W $c b =$ 2.4 (metres) 600 (share lane) 9 0.8212 Q $c a =$ 5 (pcu/hr) 600 (share lane) 9 0.84615386 TOTAL FLOW = 29 (PCU/HR) Q $c a =$ 5 (pcu/hr) 600 (share lane) 600 (share lane) 9 0.84615386 Q $c a =$ 5 (pcu/hr) 600 (share lane) 600 (share lane)<	q b - c = 11 (pcu/hr)					

ZZO TECH	HNOLOGY (HK) LI	MITED		PRIORITY JUN	CTION CALCUL	LATION			INITIALS	DATE
	Warehouse for Construction Mate of 3 Years and Associated Filling			s and Rural Workshop with Ancillary	PROJECT NO.:	83133		PREPARED	BY: CSY	Dec-24
Unnamed Road	ad A / Access Road underneat	h KSWH		2025Ref_AM	FILENAME :			CHECKED	BY: LL	Dec-24
25 Reference AM	M Peak Hour Traffic Flows (Co	nstruction Stage)		2025Rei_Aw	Jnnamed Road A_A	Access Road underneath KSWH_P.xl	s	REVIEWED	BY: PCN	Dec-24
(6) 3 - (5) 52 - Access Road under (ARM A)		↓ 11 [3 ↓ 159 [4 Access Road		W cr = C6 W b-a = LA W b-c = LA W c-b = LA V1b-a = V1 V1b-a = V1 V1b-c = V1 V1b-c = V1 V1b-c = V1 D = S1 E = S1 F = S1	DATA) AJOR ROAD WIDTH ENTRAL RESERVE WIDTH INNE WIDTH AVAILABLE TO VEHICI INNE WIDTH AVAILABLE TO VEHICI SIBILITY TO THE LEFT FOR VEHIC SIBILITY TO THE RIGHT FOR VEHI SIBILITY TO THE RIGHT FOR VEHI SIBILITY TO THE RIGHT FOR VEHI IREAM-SPECIFIC B-A TREAM-SPECIFIC B-C TREAM-SPECIFIC B-C TREAM-SPECIFIC B-C TREAM-SPECIFIC B-C TREAM-SPECIFIC B-C TREAM-SPECIFIC B-C	LE WAITING IN STREAM b-c LE WAITING IN STREAM c-b LES WAITING IN STREAM b-a CLES WAITING IN STREAM b-c CLES WAITING IN STREAM b-c				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMEN	т:	COMPARISION OF D TO CAPACITY:	ESIGN FLOW			
METRIC DETAILS: MAJOR ROAD (A						COMPARISION OF D TO CAPACITY:				
MAJOR ROAD (A W =	4.75 (metres)	D =	0.819750132	Qb-a =	488		DFC b-a		.0123	
MAJOR ROAD (A W = W cr =	4.75 (metres) 0 (metres)	D = E =	0.86654348	Qb-a = Qb-c =	488 632		DFC b-a DFC b-c	= 0	.0158	
MAJOR ROAD (A W =	4.75 (metres) 0 (metres) 3 (pcu/hr)	D = E = F =	0.86654348 0.91047865	Qb-a = Qb-c = Qc-b =	488 632 663		DFC b-a DFC b-c DFC c-b	= 0	0.0158 0.0166	
MAJOR ROAD (A W = W cr =	4.75 (metres) 0 (metres)	D = E =	0.86654348	Qb-a = Qb-c =	488 632		DFC b-a DFC b-c	= 0	.0158	
MAJOR ROAD (A W = W cr = q a-b = q a-c =	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0	0.0158 0.0166	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AF	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) NRM C)	D = E = F =	0.86654348 0.91047865	Qb-a = Qb-c = Qc-b =	488 632 663 569		DFC b-a DFC b-c DFC c-b	= 0	0.0158 0.0166	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AF W c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) ARM C) 3.5 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0	0.0158 0.0166	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AF W c-b = Vr c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) ARM C) 3.5 (metres) 35 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0	0.0158 0.0166	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AF W c-b = Vr c-b = q c-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) 4RM C) 3.5 (metres) 35 (metres) 59 (pcu/hr)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0	0.0158 0.0166	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AF W c-b = Vr c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) ARM C) 3.5 (metres) 35 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	TO CAPACITY: CU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = () = ()	0.0158 0.0166 0.0281	
MAJOR ROAD (A W = W cr = q ab = q ac = MAJOR ROAD (AF W c-b = Vr c-b = q c-a = q c-b =	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) 4.RM C) 3.5 (metres) 35 (metres) 59 (pcu/hr) 11 (pcu/hr)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = () = ()	0.0158 0.0166	
$\begin{array}{rcl} \text{MAJOR ROAD (A} \\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ab & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (AF} \\ W \ cb & = \\ Vr \ cb & = \\ q \ ca & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (AF)} \\ \text{MINOR ROAD (AF)} \end{array}$	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) 4RM C) 3.5 (metres) 35 (metres) 59 (pcu/hr) 11 (pcu/hr) RM B)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	TO CAPACITY: CU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = () = ()	0.0158 0.0166 0.0281	
$\begin{array}{rcl} \text{MAJOR ROAD (A}\\ W & = \\ W \ cr & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (AF}\\ W \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (AF}\\ W \ bba & = \\ \end{array}$	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) 4.RM C) 3.5 (metres) 59 (pcu/hr) 11 (pcu/hr) 4.RM B) 2.7 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	TO CAPACITY: CU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = () = ()	0.0158 0.0166 0.0281	
$\begin{array}{rcl} \text{MAJOR ROAD (A}\\ & W & = \\ & W \ cr & = \\ & q \ ab & = \\ & W \ cb & = \\ & Vr \ cb & = \\ & Q \ cb & = \\ & q \ cb & = \\ & \text{MINOR ROAD (AF)}\\ & W \ ba & = \\ & W \ bc & = \\ & W \ bc & = \\ & \end{array}$	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) 4.RM C) 3.5 (metres) 35 (metres) 59 (pcu/hr) 11 (pcu/hr) 4.RM B) 2.7 (metres) 2.7 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	TO CAPACITY: CU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = () = ()	0.0158 0.0166 0.0281	
$\begin{array}{rcl} \text{MAJOR ROAD (A} \\ & W & = \\ & W \ cr & = \\ & q \ a \ b & = \\ & q \ a \ c & = \\ \\ & \text{MAJOR ROAD (AF} \\ & W \ c \ b & = \\ & Vr \ c \ b & = \\ & q \ c \ a & = \\ & q \ c \ b & = \\ \\ & \text{MINOR ROAD (AF} \\ & W \ b \ a & = \\ & W \ b \ c & = \\ & W \ b \ c & = \\ & Vr \ b \ a & = \\ \\ & W \ b \ c & = \\ & Vr \ b \ a & = \\ \end{array}$	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) 3.5 (metres) 35 (metres) 59 (pcu/hr) 11 (pcu/hr) RM B) 2.7 (metres) 2.7 (metres) 60 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	TO CAPACITY: CU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = () = ()	0.0158 0.0166 0.0281	
$\begin{array}{rcl} \text{MAJOR ROAD (A} \\ W & = \\ W \ cr & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (AF} \\ W \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (AF} \\ W \ bb & = \\ \end{array}$	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) 3.5 (metres) 35 (metres) 59 (pcu/hr) 11 (pcu/hr) RM B) 2.7 (metres) 60 (metres) 67 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	TO CAPACITY: CU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = () = ()	0.0158 0.0166 0.0281	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AF W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (AR W b-a = W b-c = Vr b-a = Vr b-a = Vr b-a = Vr b-a = Vr b-a =	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) 4.RM C) 3.5 (metres) 59 (pcu/hr) 11 (pcu/hr) 4.RM B) 2.7 (metres) 60 (metres) 67 (metres) 67 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	TO CAPACITY: CU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = () = ()	0.0158 0.0166 0.0281	
$\begin{array}{rcl} \text{MAJOR ROAD (A} \\ W & = \\ W \ cr & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (AF} \\ W \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (AF} \\ W \ bb & = \\ \end{array}$	4.75 (metres) 0 (metres) 3 (pcu/hr) 52 (pcu/hr) 3.5 (metres) 35 (metres) 59 (pcu/hr) 11 (pcu/hr) RM B) 2.7 (metres) 60 (metres) 67 (metres)	D = E = F = Y =	0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	488 632 663 569	TO CAPACITY: CU/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= () = () = ()	0.0158 0.0166 0.0281	

Proposed Temporary Warehouse for Construction Mathinetes, Parking of SPVs and Rural Workshop with Ancillary PROJECT NO:: 83133 PREPARED BY: CSY Facilities for a Period of 3 Years and Associated Filling of Land and Pond and Excavation of Land 2025Ref_PM FILENAME : CHECKED BY: LL 33: Unnamed Road A / Access Road underneath KSWH 2025Ref_PM FILENAME : CHECKED BY: LL 2025 Reference AM Peak Hour Traffic Flows (Construction Stage) Notes: (GEOMETRIC NPUT DATA) REVIEWED BY: PCN View math (ARM B) Image Road A, Access Road underneath KSWH, P.xts REVIEWED BY: PCN View math Image Road A, Access Road underneath KSWH Notes: (GEOMETRIC NPUT DATA) We math REVIEWED BY: PCN View math Image Road A, Access Road underneath KSWH Notes: (GEOMETRIC NPUT DATA) We math REVIEWED BY: PCN View math Image Road A, Access Road underneath KSWH Image Road A, Access Road underneath KSWH Notes: Law WDH AvaLaBLE TO VERICE WATING IN STREAM b-a We be a Law WDH AvaLaBLE TO VERICE WATING IN STREAM b-a We be a Law WDH AvaLaBLE TO VERICE WATING IN STREAM b-a Vieb a VIBBURY TO THE LEFT FOR VERICES WATING IN STREAM b-a Vieb a VIBBURY TO THE RGHT FOR VERICES WATING IN STREAM b-a Vieb a	Dec-24 Dec-24 Dec-24					ALCULATION	NCTION CA	PRIORITY JUN			() LIMITED	OGY (H	HNOL	DZZO TEC
2025 Reference AM Peak Hour Traffic Flows (Construction Stage) 2025Ref_PM Interval Checked B1 LL Unnamed Road A Access Road underneath KSWH Image Road A Access Road underneath KSWH REVIEWED BY: PCN Image Road A Image Road A Image Road A Image Road A REVIEWED BY: PCN Image Road A Image Road A Image Road A Image Road A REVIEWED BY: PCN Image Road A Image Road A Image Road A Image Road A REVIEWED BY: PCN Image Road A Image Road A Image Road A Image Road A Reviewe Image Road A		CSY	PREPARED BY:		83133	CT NO.: 831:	PROJEC	nd Rural Workshop with Ancillary						
2025 Reference AM Peak Hour Traffic Flows (Construction Stage) Unnamed Road A_Access Road underneath KSWH_P.xls REVIEWED BY: PCN Unnamed Road A_Access Road underneath KSWH_P.xls REVIEWED BY: PCN Unnamed Road A_Access Road underneath KSWH_P.xls REVIEWED BY: PCN Unnamed Road A_Access Road underneath KSWH_P.xls REVIEWED BY: PCN NOTES : (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH W ba = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W bc = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W bc = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W bc = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W bc = USIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrba = STREAM-SPECIFIC D-A E = STREAM-SPECIFIC D-A E = STREAM-SPECIFIC D-C F = STREAM-SPECIFIC D-C	Dec-24	LL	CHECKED BY:			ME :	FILENAM	2025Pof DM			erneath KSWH	ess Road un	ad A / Acce	: Unnamed Roa
(ARM B) a a (ARM B) a a (ARM B) a a (a b a (b) a b (c) b a (c) a b (c) (c) b (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)		PCN	REVIEWED BY:		oad underneath KSWH_P.xls	l Road A_Access Road u	Jnnamed	2025Kei_FiM			ws (Construction Stage)	our Traffic Fl	M Peak Ho	25 Reference A
					i IN STREAM b-c i IN STREAM c-b IG IN STREAM b-a ING IN STREAM b-a ING IN STREAM b-c	LE TO VEHICLE WAITING IN S' LE TO VEHICLE WAITING IN S' LE TO VEHICLE WAITING IN S' TF OR VEHICLES WAITING IN HT FOR VEHICLES WAITING IN HT FOR VEHICLES WAITING IN HT FOR VEHICLES WAITING IN A	ANJOR ROAD WIDTH ANE WIDTH AVAILABLI ANE WIDTH AVAILABLI ANE WIDTH AVAILABLI ANE WIDTH AVAILABLI SIBILITY TO THE LEFT VISIBILITY TO THE RIGH VISIBILITY TO THE RIGH VISIBILITY TO THE RIGH STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C	W = 1 W cr = 0 W ba = 1 W bc = 1 W bc = 1 V ba = 0 Vrba = 0 Vrbc = 1 D = 2 E = 2 F = 2	demeath KSWH	[4] ess Road und			ARM B)	(6) 3 [5] 69 Access Road und
EOMETRIC DETAILS: GEOMETRIC FACTORS : THE CAPACITY OF MOVEMENT : COMPARISION OF DESIGN FLOW TO CAPACITY :				GIGN FLOW			NT :	THE CAPACITY OF MOVEME		RS :	GEOMETRIC FACTO			OMETRIC DETAILS:
MAJOR ROAD (ARM A)														
W = 4.75 (metres) D = 0.819750132 Q b-a = 483 DFC b-a = 0.0166										=	=			
W cr 0 (metres) E = 0.8654348 Q bc = 627 DFC bc = 0.0064											=	. ,		
q a-b 3 (pcu/hr) F = 0.91047865 Q c-b = 658 DFC c-b = 0.0122 q a-c 69 (pcu/hr) Y = 0.836125 Q b-ac = 523 DFC b-c (share lane) = 0.0229												a ,		
			0.0229	DFC b-c (share lane)			523	Q b-ac =	0.836125	=	Ť	(pcu/nr)	69	d a-c =
						(PCU/HR)	= 159		0 33333333	-ac) =	E for (Ob		ARM C)	
						(, conny		.o.nereow	2.000000000		1 101 (QD	(metres)	,	,
MAJOR ROAD (ARM C) F for (Qb-ac) = 0.333333333 TOTAL FLOW = 159 (PCU/HR)												(
MAJOR ROAD (ARM C) F for (Qb-ac) = 0.333333333 TOTAL FLOW = 159 (PCU/HR) W c-b = 3.5 (metres)												. ,		
MAJOR ROAD (ARM C) F for (Qb-ac) = 0.333333333 TOTAL FLOW = 159 (PCU/HR) W c-b = 3.5 (metres) Vr c-b = 35 (metres)												a ,	8	
MAJOR ROAD (ARM C) F for (Qb-ac) = 0.333333333 TOTAL FLOW = 159 (PCU/HR) W c-b = 3.5 (metres) (metres) V c-b = 35 (metres) q c-a = 67 (pcu/hr)			- 0.02	~								(2.2.2)		1
MAJOR ROAD (ARM C) F for (Qb-ac) = 0.333333333 TOTAL FLOW = 159 (PCU/HR) W c-b = 3.5 (metres) Vr c-b = 3.5 (metres) q c-a = 67 (pcu/hr) q c-b = 8 (pcu/hr)			- 0.02		CITICAL DI								ARM B)	
MAJOR ROAD (ARM C) F for (Qb-ac) = 0.333333333 TOTAL FLOW = 159 (PCU/HR) W c-b = 3.5 (metres) Vrc-b = 3.5 (metres) q c-a = 6.7 (pcu/hr) q c-b = 8 (pcu/hr)												(metres)	,	,
MAUOR ROAD (ARM C) F for (Qb-ac) = 0.33333333 TOTAL FLOW = 159 (PCU/HR) W c-b = 3.5 (metres) Vr c-b = 3.5 (metres) q c-a = 67 (pcu/hr) q c-b = 8 (pcu/hr)												, ,		
MAJOR ROAD (ARM C) F for (Qb-ac) = 0.33333333 TOTAL FLOW = 159 (PCU/HR) W c-b = 3.5 (metres) V c-b = 35 (metres) q c-a = 67 (pcu/hr) q c-b = 8 (pcu/hr) W b-a = 2.7 (metres)												, ,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,		
MAJOR ROAD (ARM C) F for (Qb-ac) = 0.33333333 TOTAL FLOW = 159 (PCU/HR) W ob = 3.5 (metres) Y rob = 3.5 (metres) q c = 67 (pcu/hr) q c = 67 (pcu/hr) g c = 8 (pcu/hr) g c = 2.7 (metres) W b = 2.7 (metres) W b = 6.0 (metres)												(116163)		
MAJOR ROAD (ARM C) F for (Qb-ac) = 0.33333333 TOTAL FLOW = 159 (PCU/HR) W ob a = 3.5 (metres)												(metres)	67	
MAJOR ROAD (ARM C) F for (Qb-ac) = 0.33333333 TOTAL FLOW = 159 (PCU/HR) W c-b = 3.5 (metres) Y c-b = 3.5 (metres) q c-a = 67 (pcu/hr) q c-b = 8 (pcu/hr) g c-b = 8 (pcu/hr) W b-a = 2.7 (metres) W b-a = 2.7 (metres) W b-a = 60 (metres)												. ,		Vr b-c =

J3: Umamed Road A / Access Road underseath KSWH 2025Des_AM PLENAME :	DZZO TECHNOLOGY (HK) LIMITED			ICTION CALCULATIO	N		INITIALS	DATE
$2025 \text{Deference AM Peak Hour Traffic Flows (Construction Stage)} 2025 \text{Deference AM Peak Hour Traffic Flows (Construction Stage)} u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{\text{manual Read A, Access Read undernaath (SWH_P,x)} \\ \hline u_{manual Read A, Access Read undernaath (SWH_P,$			/s and Rural Workshop with Ancillary	PROJECT NO.: 8	33133	PREPARED	BY: CSY	Dec-24
$2225 \text{ Reference AM Peak Hour Traffic Flows (Construction Stage)} \underline{\text{In named Road A A Access Read underneath KSWH, P.als}} \\ Reverse Day: P.o. Decation of the stage of t$: Unnamed Road A / Access Road underneath KSWH		2025Doo AM	FILENAME :		CHECKED	BY: LL	Dec-24
$\frac{(AMMB)}{(1 + 1)^{2}} \xrightarrow{(1 + 1)^{2}} (1 + 1)^{$	25 Reference AM Peak Hour Traffic Flows (Construction Sta	ige)	ZUZJDES_AW	Jnnamed Road A_Access Roa	ad underneath KSWH_P.xls	REVIEWED	BY: PCN	Dec-24
To CAPACITY: W = 4.75 (mores) D = 0.81975012 Q ba = 482 D FC ba = 0.014 W ar = 0 (mores) E = 0.8665448 Q ba = 632 DFC ba = 0.014 q ab = 3 (pu/h) F = 0.9104765 Q ba = 632 DFC ba = 0.014 q ab = 3 (pu/h) F = 0.9104765 Q ba = 632 DFC ba = 0.047 Q ba = 3 (pu/h) Y = 0.8105 Q ba = 637 DFC ba = 0.053 MALOR FUNC F for (Da-ba) Y 0.8125 TOTAL FLOW = 173 (PCU/HR) PEC ba = 0.955 V cb = 359 (pu/h) = 152 (PCU/HR) F = 0.8125 F F F 0.956 F 9 0.95 F F	(ARM B) (6) 3 (5) 52 Access Road underneath KSWH	27 [3] - 59 [4] Access Road undermeath KSWH	W = M W or = C W b-a = C W b-c = L V b-b = L V b-a = V V rb-a = V V rb-c = V V rb-c = V D = S E = S F = S	NUOR ROAD WIDTH VENTRAL RESERVE WIDTH ANNE WIDTH AVAILABLE TO VEHICLE WAITING I ANE WIDTH AVAILABLE TO VEHICLE WAITING IANE WIDTH AVAILABLE TO VEHICLE WAITING ISIBILITY TO THE LEFT FOR VEHICLES WAITIN ISIBILITY TO THE RIGHT FOR VEHICLES WAITIN ISTREAM-SPECIFIC B-C TREAM-SPECIFIC B-C	IN STREAM b-c IN STREAM c-b G IN STREAM b-a NG IN STREAM b-a NG IN STREAM b-c			
W a 4.75 (metres) D a 0.819750132 Q b a a 482 DFC b a a 0.0124 W or a 0 (metres) E a 0.819750132 Q b a a 632 DFC b a a 0.0401 a b 3 (pouh) F 0.391047865 Q b a a 597 DFC b a a 0.0407 MAJOR ROAD (ARM (C) F for (Q b ac) a 0.8125 TOTAL FLOW a 173 (PCU/HR) W c b a 3.5 (metres) (pouh) F for (Q b ac) a 0.8125 TOTAL FLOW a 173 (PCU/HR) W c b a 3.5 (metres) (pouh) a 0.8125 TOTAL FLOW a 173 (PCU/HR) V c b a 3.5 (metres) (pouh) a 173 (PCU/HR) (PCU/HR) a 0.856 V c b a 3.5 (metres) (pouh) (pouh) (pouh) (pouh) (pouh) (pouh) (pouh) (pouh) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
W cra0(mercs)Ea0.86654348Q bc a632q aba3(pcuhr)Fa0.91047865Q cba663DFC cba0.0407q aba52(pcuhr)Ya0.836125Q baca597DFC bca0.0407MAJOR ROAD (ARM (Mercs)F60 (Q bac)a173(PCU/HR)DFC bca0.0411W cba35(metres)(metres)a0.8125TOTAL FLOWa173(PCU/HR)W cba35(metres)(metres)a0.8125TOTAL FLOWa173(PCU/HR)W cba35(metres)(metres)a0.8125TOTAL FLOWa173(PCU/HR)W cba35(metres)(metres)a0.8125TOTAL FLOWa173(PCU/HR)W cba35(metres)(metres)a0.8125(F close)a173(PCU/HR)W cba35(metres)(metres)(F close)a0.8125(F close)a173(PCU/HR)W cba2.7(metres)(F close)(F close)(F close)(F close)(F close)(F close)(F close)(F close)W cba2.7(metres)(F close)(F close)(F close)(F close)(F close)(F close)(F close)W cba2.7(metres)<		C FACTORS :	THE CAPACITY OF MOVEMEN	ग :		Sign FLOW		
q ab a3(pcu/h)Fa0.91047865Q cb a663DFC cba0.0407q ab a52(pcu/h)Ya0.836125Q ba aa597DFC bb (share lane)a0.0407MAJOR ROAD (ARM C)F for (Qb-ac)a0.8125TOTAL FLOWa173(PCU/HR)W cb a35(metres)(pcu/h)(pcu/h)(PCU/HR)aa0.6125MOR ROAD (ARM B)F (or ubric)a0.8125TOTAL FLOWa173(PCU/HR)W cb a35(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)0 cb a2.7(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)0 b a2.7(metres)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)0 b a2.7(metres)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)0 b a2.7(metres)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)0 b a2.7(metres)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)0 b a2.7(metres)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h)(pcu/h) <t< td=""><td>MAJOR ROAD (ARM A)</td><td></td><td></td><td></td><td>TO CAPACITY:</td><td></td><td></td><td></td></t<>	MAJOR ROAD (ARM A)				TO CAPACITY:			
q ac a 52(pouhr)Y a 0.836125 Q bac a 597 DFC bc (share lane) a a 0.0536 MAIOR ROAD (ARM C)F for (Qb-ac) a a 0.8125 $TOTAL FLOW = 173$ (PCU/HR) W cb a 3.5 (metres) a 3.5 (metres) a a 596 (pouhr) a	MAJOR ROAD (ARM A) W = 4.75 (metres)	D = 0.819750132	Q b-a =	482	TO CAPACITY:	DFC b-a = 0		
MAJOR ROAD (ARM C) F for (Qb-ac) = 0.8125 TOTAL FLOW = 173 (PCU/HR) W c-b = 3.5 (metres) (metres) (metres) (metres) (metres) (pcu/hr) (metres) (pcu/hr) (metres) (metres) (metres) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (metres)	$ \begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.75 & (\text{metres}) \\ \text{W cr} &= & 0 & (\text{metres}) \end{array} $	D = 0.819750132 E = 0.86654348	Qb-a = Qb-c =	482 632	TO CAPACITY:	DFC b-a = 0 DFC b-c = 0	0411	
W c-b = 3.5 (metres) V c-b = 35 (metres) q c-a = 59 (pcu/hr) q c-b = 2.7 (pcu/hr) W b-c = 2.7 (metres)	MAJOR ROAD (ARM A) (metres) W = 4.75 (metres) W cr = 0 (metres) q a-b = 3 (pcu/hr)	D = 0.819750132 E = 0.86654348 F = 0.91047865	Qb-a = Qb-c = Qc-b =	482 632 663	TO CAPACITY:	DFC b-a = () DFC b-c = () DFC c-b = ()	0411 0407	
W c-b 3.5 (metres) V c-b 3.5 (metres) q c-b 2.7 (pcu/hr) W b-b 2.7 (metres) W b-c 2.7 (metres)	MAJOR ROAD (ARM A) (metres) W = 4.75 (metres) W cr = 0 (metres) q a-b = 3 (pcu/hr)	D = 0.819750132 E = 0.86654348 F = 0.91047865	Qb-a = Qb-c = Qc-b =	482 632 663	TO CAPACITY:	DFC b-a = () DFC b-c = () DFC c-b = ()	0411 0407	
Vr c-b 3 (mers) q c-a 59 (pcu/hr) q c-b 27 (pcu/hr) q c-b 27 (pcu/hr) MINOR ROAD (ARM B) - 0.05 W b-a 2.7 (mers) W b-c 2.7 (mers)		D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = () DFC b-c = () DFC c-b = ()	0411 0407	
q c-a 59 (pou/hr) q c-b 27 (pou/hr) g c-b 27 (pou/hr) MINOR ROAD (ARM B' - 0.05 W b-a 2.7 (meres) W b-c 2.7 (meres)	MAJOR ROAD (ARM A) W = 4.75 (metres) W cr = 0 (metres) q ab = 3 (pouhr) q ac = 52 (pouhr)	D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = () DFC b-c = () DFC c-b = ()	0411 0407	
q c b = 27 (pcwhr) ININGR ROAD (ARM B) E 0.05 W b-a = 2.7 (meres) W b-c = 2.7 (meres)	MAJOR ROAD (ARM A) W = 4.75 (metres) W or = 0 (metres) q a-b = 3 (pcu/hr) q a-c = 52 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 3.5 (metres)	D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = () DFC b-c = () DFC c-b = ()	0411 0407	
MINOR ROAD (ARM B) CRITICAL DFC = 0.05 W b-a = 2.7 (metres) (metres) W b-c = 2.7 (metres)		D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = () DFC b-c = () DFC c-b = ()	0411 0407	
MINOR ROAD (ARM B) W b-a = 2.7 (metres) W b-c = 2.7 (metres)	$ \begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.75 & (metres) \\ W cr &= & 0 & (metres) \\ q ab &= & 3 & (pcuhr) \\ q ac &= & 52 & (pcuhr) \\ \end{array} \\ \begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W cb &= & 3.5 & (metres) \\ V rcb &= & 35 & (metres) \\ q ca &= & 59 & (pcuhr) \end{array} $	D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = () DFC b-c = () DFC c-b = ()	0411 0407	
W b-a = 2.7 (metres) W b-c = 2.7 (metres)	$ \begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.75 & (metres) \\ W cr &= & 0 & (metres) \\ q ab &= & 3 & (pcuhr) \\ q ac &= & 52 & (pcuhr) \\ \end{array} \\ \begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W cb &= & 3.5 & (metres) \\ V rcb &= & 35 & (metres) \\ q ca &= & 59 & (pcuhr) \end{array} $	D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = 0 DFC b-c = 0 DFC c-b = 0 DFC b-c (share lane) = 0	0411 0407 0536	
W b-c = 2.7 (metres)	$ \begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W & = & 4.75 & (metres) \\ W \text{or} & = & 0 & (metres) \\ q a b & = & 3 & (p c u h r) \\ q a c & = & 52 & (p c u h r) \\ \end{array} \\ \hline \\ \text{MAJOR ROAD (ARM C)} \\ \hline \\ \text{MAJOR ROAD (ARM C)} \\ W c \cdot b & = & 3.5 & (metres) \\ V c \cdot b & = & 3.5 & (metres) \\ V r \cdot b & = & 3.5 & (metres) \\ q c \cdot a & = & 59 & (p c u h r) \\ q c \cdot b & = & 27 & (p c u h r) \\ \end{array} $	D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = 0 DFC b-c = 0 DFC c-b = 0 DFC b-c (share lane) = 0	0411 0407 0536	
	$ \begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.75 & (metres) \\ W cr &= & 0 & (metres) \\ q ab &= & 3 & (pcu'hr) \\ q ac &= & 52 & (pcu'hr) \\ \end{array} \\ \begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W c-b &= & 3.5 & (metres) \\ V c-b &= & 35 & (metres) \\ q c-a &= & 59 & (pcu'hr) \\ q c-b &= & 27 & (pcu'hr) \\ \end{array} \\ \end{array} \\ \begin{array}{rcl} \text{MINOR ROAD (ARM B)} \end{array} $	D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = 0 DFC b-c = 0 DFC c-b = 0 DFC b-c (share lane) = 0	0411 0407 0536	
VI b-a - 60 (matras)	$ \begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.75 & (metres) \\ W \text{cr} &= & 0 & (metres) \\ q ab &= & 3 & (pcuhr) \\ q ac &= & 52 & (pcuhr) \\ \end{array} \\ \hline \\ \begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W cb &= & 3.5 & (metres) \\ V ccb &= & 35 & (metres) \\ Q ca &= & 59 & (pcuhr) \\ q cb &= & 27 & (pcuhr) \\ \end{array} \\ \hline \\ \hline \\ \begin{array}{rcl} \text{MINOR ROAD (ARM B)} \\ W ba &= & 2.7 & (metres) \end{array} \\ \end{array} $	D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = 0 DFC b-c = 0 DFC c-b = 0 DFC b-c (share lane) = 0	0411 0407 0536	
	$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W & = & 4.75 & (metres) \\ W cr & = & 0 & (metres) \\ q ab & = & 3 & (pcuhr) \\ q ac & = & 52 & (pcuhr) \\ \\ \text{MAJOR ROAD (ARM C)} \\ \hline \\ \text{MAJOR ROAD (ARM C)} \\ W cb & = & 3.5 & (metres) \\ Vr cb & = & 3.5 & (metres) \\ Vr cb & = & 3.5 & (metres) \\ q ca & = & 59 & (pcuhr) \\ q cb & = & 2.7 & (pcuhr) \\ \hline \\ \text{MINOR ROAD (ARM B)} \\ W ba & = & 2.7 & (metres) \\ W bc & = & 2.7 & (metres) \\ \end{array}$	D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = 0 DFC b-c = 0 DFC c-b = 0 DFC b-c (share lane) = 0	0411 0407 0536	
	$ \begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.75 & (metres) \\ W cr &= & 0 & (metres) \\ q ab &= & 3 & (pcuhr) \\ q ac &= & 52 & (pcuhr) \\ \end{array} \\ \begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W c b &= & 3.5 & (metres) \\ V r c b &= & 35 & (metres) \\ V r c b &= & 35 & (metres) \\ q c a &= & 59 & (pcuhr) \\ q c b &= & 27 & (pcu'hr) \\ \hline \\ \text{MINOR ROAD (ARM B)} \\ W b a &= & 2.7 & (metres) \\ W b b &= & 2.7 & (metres) \\ V U b &= & 60 & (metres) \\ \end{array} $	D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = 0 DFC b-c = 0 DFC c-b = 0 DFC b-c (share lane) = 0	0411 0407 0536	
	$\begin{array}{rcrcrc} \text{MAJOR ROAD (ARM A)} \\ W &= 4.75 & (metres) \\ W cr &= 0 & (metres) \\ q ab &= 3 & (pcuhr) \\ q ac &= 52 & (pcuhr) \\ \end{array}$ $\begin{array}{rcrcrc} \text{MAJOR ROAD (ARM C)} \\ W cb &= 3.5 & (metres) \\ V ccb &= 35 & (metres) \\ q ca &= 59 & (pcuhr) \\ q cb &= 27 & (pcuhr) \\ \end{array}$ $\begin{array}{rcrc} \text{MINOR ROAD (ARM B)} \\ W ba &= 2.7 & (metres) \\ W bc &= 2.7 & (metres) \\ W bc &= 60 & (metres) \\ V Uba &= 60 & (metres) \\ \end{array}$	D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = 0 DFC b-c = 0 DFC c-b = 0 DFC b-c (share lane) = 0	0411 0407 0536	
q b-a = 6 (pcu/hr)	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = 0 DFC b-c = 0 DFC c-b = 0 DFC b-c (share lane) = 0	0411 0407 0536	
a b a = 6 (b c u b t)	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D = 0.819750132 E = 0.86654348 F = 0.91047865 Y = 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	482 632 663 597	TO CAPACITY:	DFC b-a = 0 DFC b-c = 0 DFC c-b = 0 DFC b-c (share lane) = 0	0411 0407 0536	

ZZO TECHNOLOGY (F	IK) LIMITED		PRIORITY JUN	ICTION CAL	CULATION			INITIALS	DATE
	ction Materials and Construction Machineries ted Filling of Land and Pond and Excavation		Workshop with Ancillary	PROJECT N	O.: 83133		PREPARED	BY: CSY	Dec-24
: Unnamed Road A / Access Road u	nderneath KSWH	2025	Des_PM	FILENAME :			CHECKED	BY: LL	Dec-24
25 Reference AM Peak Hour Traffic F	Flows (Construction Stage)	2025		Jnnamed Roa	ad A_Access Road underneath KSWH_P.	xls	REVIEWED	BY: PCN	Dec-24
Unnamed Road A (ARM B) [6] 3 [5] 69 Access Road underneath KSWH (ARM A)	[1] [2] 8 20 ↓ 24 [3] ↓ 24 [3] ↓ 67 [4] Access Road under (ARM C		W cr = 0 W b-a = 1 W b-c = 1 V b-a = 0 V rb-a = 0 V rb-a = 0 V rb-c = 0 D = 0 E = 0 F = 0	IAJOR ROAD WIDTH IENTRAL RESERVE WIDTH ANE WIDTH AVAILABLE TO ANE WIDTH AVAILABLE TO SIBILITY TO THE LEFT FOO ISIBILITY TO THE RIGHT FO ISIBILITY TO THE RIGHT FO) VEHICLE WAITING IN STREAM b-a VEHICLE WAITING IN STREAM b-c) VEHICLE WAITING IN STREAM b-a R VEHICLES WAITING IN STREAM b-a DR VEHICLES WAITING IN STREAM b-c DR VEHICLES WAITING IN STREAM b-c DR VEHICLES WAITING IN STREAM b-c				
DMETRIC DETAILS:	GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT		COMPARISION OF TO CAPACITY:	DESIGN FLOW			
MAJOR ROAD (ARM A)									
MAJOR ROAD (ARM A) W = 4.75 (metres)	D =	0.819750132	Qb-a =	477		DFC b-a		0168	
MAJOR ROAD (ARM A) W = 4.75 (metres) W cr = 0 (metres)	D = E =	0.819750132 0.86654348	Qb-a = Qb-c =	477 627		DFC b-a DFC b-c	= 0	0319	
MAJOR ROAD (ARM A) W = 4.75 (metres) W cr = 0 (metres) q a-b = 3 (pcu/hr)	D = E = F =	0.819750132 0.86654348 0.91047865	Q b-a = Q b-c = Q c-b =	477 627 658		DFC b-a DFC b-c DFC c-b	= 0 = 0	0319 0365	
MAJOR ROAD (ARM A) W = 4.75 (metres) W cr = 0 (metres)	D = E =	0.819750132 0.86654348	Qb-a = Qb-c =	477 627		DFC b-a DFC b-c	= 0 = 0	0319	
MAJOR ROAD (ARM A) W = 4.75 (metres) W cr = 0 (metres) q a-b = 3 (pcu/hr) q a-c = 69 (pcu/hr)	D = E = F = Y =	0.819750132 0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	477 627 658 575	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0 = 0	0319 0365	
MAJOR ROAD (ARM A) W = 4.75 (metres) W cr = 0 (metres) q a-b = 3 (pcu/hr) q a-c = 69 (pcu/hr) MAJOR ROAD (ARM C)	D = E = F =	0.819750132 0.86654348 0.91047865	Q b-a = Q b-c = Q c-b =	477 627 658		DFC b-a DFC b-c DFC c-b	= 0 = 0	0319 0365	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D = E = F = Y =	0.819750132 0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	477 627 658 575	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0 = 0	0319 0365	
$\begin{array}{rcl} \mbox{MAJOR ROAD (ARM A)} \\ W &= & 4.75 & (metres) \\ W \mbox{ cr} &= & 0 & (metres) \\ q \mbox{ ab} &= & 3 & (p \mbox{cu/hr}) \\ q \mbox{ ac} &= & 69 & (p \mbox{cu/hr}) \\ \mbox{MAJOR ROAD (ARM C)} \\ W \mbox{ cb} &= & 3.5 & (metres) \\ V \mbox{ cb} &= & 3.5 & (metres) \\ \end{array}$	D = E = F = Y =	0.819750132 0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	477 627 658 575	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0 = 0	0319 0365	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D = E = F = Y =	0.819750132 0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	477 627 658 575	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0 = 0	0319 0365	
$\begin{array}{rcl} \mbox{MAJOR ROAD (ARM A)} & & & & & \\ W & = & 4.75 & (metres) \\ W cr & = & 0 & (metres) \\ q ab & = & 3 & (pcu/hr) \\ q ac & = & 69 & (pcu/hr) \\ \mbox{MAJOR ROAD (ARM C)} & & & \\ \mbox{MAJOR ROAD (ARM C)} & & & \\ W cb & = & 3.5 & (metres) \\ V cc & = & 35 & (metres) \\ q ca & = & 67 & (pcu/hr) \\ \end{array}$	D = E = F = Y =	0.819750132 0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	477 627 658 575	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	0319 0365 0487	
$\begin{array}{rcl} \mbox{MAJOR ROAD (ARM A)} & & & & & \\ W & = & 4.75 & (metres) \\ W cr & = & 0 & (metres) \\ q ab & = & 3 & (pcu/hr) \\ q ac & = & 69 & (pcu/hr) \\ \mbox{MAJOR ROAD (ARM C)} & & & \\ \mbox{MAJOR ROAD (ARM C)} & & & \\ W cb & = & 3.5 & (metres) \\ V cc & = & 35 & (metres) \\ q ca & = & 67 & (pcu/hr) \\ \end{array}$	D = E = F = Y =	0.819750132 0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	477 627 658 575	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0	0319 0365 0487	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D = E = F = Y =	0.819750132 0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	477 627 658 575	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	0319 0365 0487	
$\begin{array}{rcl} \mbox{MAJOR ROAD (ARM A)} \\ W &= & 4.75 & (metres) \\ W \mbox{ cr} &= & 0 & (metres) \\ q \mbox{ ab} &= & 3 & (p \mbox{cu/hr}) \\ q \mbox{ ac} &= & 69 & (p \mbox{cu/hr}) \\ \mbox{MAJOR ROAD (ARM C)} \\ W \mbox{ cb} &= & 3.5 & (metres) \\ V \mbox{ cb} &= & 3.5 & (metres) \\ Q \mbox{ ca} &= & 67 & (p \mbox{cu/hr}) \\ q \mbox{ cb} &= & 24 & (p \mbox{cu/hr}) \\ \mbox{MINOR ROAD (ARM B)} \end{array}$	D = E = F = Y =	0.819750132 0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	477 627 658 575	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	0319 0365 0487	
$\begin{array}{rcl} \mbox{MAJOR ROAD (ARM A)} \\ W &= & 4.75 & (metres) \\ W \mbox{ or } &= & 0 & (metres) \\ q \mbox{ ab } &= & 3 & (pcu/hr) \\ q \mbox{ ac } &= & 69 & (pcu/hr) \\ \mbox{MAJOR ROAD (ARM C)} \\ W \mbox{ c-b } &= & 3.5 & (metres) \\ V \mbox{ c-b } &= & 35 & (metres) \\ V \mbox{ c-b } &= & 67 & (pcu/hr) \\ q \mbox{ c-b } &= & 24 & (pcu/hr) \\ q \mbox{ c-b } &= & 24 & (pcu/hr) \\ \mbox{MINOR ROAD (ARM B)} \\ W \mbox{ b-a } &= & 2.7 & (metres) \end{array}$	D = E = F = Y =	0.819750132 0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	477 627 658 575	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	0319 0365 0487	
$\begin{array}{rcl} \mbox{MAJOR ROAD (ARM A)} & & & & & & \\ \mbox{W cr} & = & & & & & & \\ \mbox{Q a-b} & = & & & & & & \\ \mbox{Q a-c} & = & & & & & & & \\ \mbox{MAJOR ROAD (ARM C)} & & & & & \\ \mbox{MAJOR ROAD (ARM C)} & & & & & \\ \mbox{W c-b} & = & & & & & & \\ \mbox{V c-b} & = & & & & & & \\ \mbox{V c-b} & = & & & & & & \\ \mbox{V c-b} & = & & & & & & \\ \mbox{V c-b} & = & & & & & & \\ \mbox{Q c-b} & = & & & & & \\ \mbox{Q c-b} & = & & & & & \\ \mbox{Q c-b} & = & & & & & \\ \mbox{Q c-b} & = & & & & & \\ \mbox{Q c-b} & = & & & & & \\ \mbox{Q c-b} & = & & & & \\ \mbox{Q c-b} & = & & & & \\ \mbox{MINOR ROAD (ARM B)} & & & \\ \mbox{W b-a} & = & & & & & & \\ \mbox{W b-c} & = & & & & & & \\ \mbox{W b-c} & = & & & & & & \\ \mbox{Q c-b} & & & & & & \\ \mbox{Q c-b} & & & & & & \\ \mbox{W b-c} & = & & & & & & \\ \mbox{Q c-b} & & & & & & \\ \mbox{W b-c} & = & & & & & & \\ \mbox{Q c-b} & & & & & & \\ \mbox{Q c-b} & & & & & & \\ \mbox{W b-c} & & & & & & \\ \mbox{Q c-b} & & & & & & \\ \mbox{Q c-b} & & & & & & \\ \mbox{Q c-b} & & & & & & \\ \mbox{Q c-b} & & & \\ \mbox{Q c-b} & & & & \\ \mbox{Q c-b} & & $	D = E = F = Y =	0.819750132 0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	477 627 658 575	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	0319 0365 0487	
$\begin{array}{rcrr} \mbox{MAJOR ROAD (ARM A)} & W & = & 4.75 & (metres) \\ W \ cr & = & 0 & (metres) \\ q \ ab & = & 3 & (pcu/hr) \\ q \ ac & = & 69 & (pcu/hr) \\ \hline \mbox{MAJOR ROAD (ARM C)} & & & \\ W \ cb & = & 3.5 & (metres) \\ V \ cb & = & 3.5 & (metres) \\ V \ cb & = & 2.4 & (pcu/hr) \\ \hline \ \mbox{MINOR ROAD (ARM B)} & & \\ \hline \ \mbox{W } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	D = E = F = Y =	0.819750132 0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	477 627 658 575	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	0319 0365 0487	
$\begin{array}{rcl} \mbox{MAJOR ROAD (ARM A)} & & & & & & & & & \\ \mbox{W cr} & = & & & & & & & & \\ \mbox{W cr} & = & & & & & & & & & \\ \mbox{q ab} & = & & & & & & & & & \\ \mbox{q ab} & = & & & & & & & & \\ \mbox{q ab} & = & & & & & & & & \\ \mbox{q ab} & = & & & & & & & & \\ \mbox{q ab} & = & & & & & & & & \\ \mbox{q ab} & = & & & & & & & & \\ \mbox{MAJOR ROAD (ARM C)} & & & & & & & \\ \mbox{W cb} & = & & & & & & & & \\ \mbox{W cb} & = & & & & & & & & \\ \mbox{q case} & = & & & & & & & & \\ \mbox{q case} & = & & & & & & & & & \\ \mbox{q case} & = & & & & & & & & \\ \mbox{q case} & = & & & & & & & & \\ \mbox{q case} & = & & & & & & & & \\ \mbox{q case} & = & & & & & & & & \\ \mbox{q case} & = & & & & & & & & \\ \mbox{q case} & = & & & & & & & \\ \mbox{MINOR ROAD (ARM B)} & & & & & & \\ \mbox{W bc} & = & & & & & & & & \\ \mbox{W bc} & = & & & & & & & & \\ \mbox{W bc} & = & & & & & & & & \\ \mbox{W bc} & = & & & & & & & & \\ \mbox{W bc} & = & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & & & & & & \\ \mbox{V bc} & = & & & & & & & & & & & & & & & & & $	D = E = F = Y =	0.819750132 0.86654348 0.91047865 0.836125	Qb-a = Qb-c = Qc-b = Qb-ac =	477 627 658 575	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0 = 0 = 0	0319 0365 0487	

ZZO TECH	HNOLOGY (HK) L	IMITED		PRIORITY JUN	CTION CALCUL	ATION			INITIALS	DATE
	Warehouse for Construction Mat of 3 Years and Associated Filling			and Rural Workshop with Ancillary	PROJECT NO .:	83133		PREPARE	BY: CSY	Dec-24
Access Road u	underneath KSWH / Ha Tsue	n Road		2025Ref_AM	FILENAME :			CHECKE	DBY: LL	Dec-24
25 Reference AM	M Peak Hour Traffic Flows (C	onstruction Stage)		2025Ref_AM	LAccess Road under	meath KSWH_Ha Tsuen Road_P.xl	5	REVIEWE	BY: PCN	Dec-24
Access Road undern (AR [6] 11 [5] 703 Ha Tsuen R (ARM A)		51 59 681 Access Ros	[3] [4] Id underneath KSWH (ARM C)	W cr = CE W b-a = LA W b-c = LA W c-b = LA V b-a = VK V t-b-a = VK V t-c = VK V t-c = VK D = ST E = ST F = ST	DATA) AJOR ROAD WIDTH SINTRAL RESERVE WIDTH INE WIDTH AVAILABLE TO VEHICLE WIDTH AVAILABLE TO VEHICLE SIBILITY TO THE LEFT FOR VEHICLE SIBILITY TO THE RIGHT FOR VEHICLE REAM-SPECIFIC B-A REAM-SPECIFIC B-C REAM-SPECIFIC C-B -0.0345W)	: WAITING IN STREAM b-c : WAITING IN STREAM c-b ES WAITING IN STREAM b-a LES WAITING IN STREAM b-a LES WAITING IN STREAM b-c				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT	τ:	COMPARISION OF D TO CAPACITY:	ESIGN FLOW			
MAJOR ROAD (AF										
MAJOR ROAD (AF W =	7.41 (metres)	D	= 0.711636816	Qb-a =	211		DFC b-a		0.0521	
MAJOR ROAD (AF W = W cr =	7.41 (metres) 0 (metres)	D	= 0.72335517	Qb-a = Qb-c =	211 400		DFC b-a DFC b-c	=	0.1275	
MAJOR ROAD (AF W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr)	D E F	= 0.72335517 = 0.9325	Qb-a = Qb-c = Qc-b =	211 400 514		DFC b-a DFC b-c DFC c-b	=	0.1275 0.1148	
MAJOR ROAD (AF W = W cr =	7.41 (metres) 0 (metres)	D E F	= 0.72335517	Qb-a = Qb-c =	211 400		DFC b-a DFC b-c	=	0.1275	
MAJOR ROAD (AF W = W cr = q a-b = q a-c =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	=	0.1275 0.1148	
MAJOR ROAD (AF W = W cr = q a-b = q a-c = MAJOR ROAD (AR	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) NRM C)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b =	211 400 514 345		DFC b-a DFC b-c DFC c-b	=	0.1275 0.1148	
MAJOR ROAD (AF W = W cr = q a-b = q a-c = MAJOR ROAD (AR W c-b =	7.41 (metres) 0 (metres) 11 (pou/hr) 703 (pou/hr) ARM C) 3.7 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	=	0.1275 0.1148	
MAJOR ROAD (AF W = W cr = q a-b = q a-c = MAJOR ROAD (AR W c-b = Vr c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	=	0.1275 0.1148	
MAJOR ROAD (AF W = W cr = q a-b = q a-c = MAJOR ROAD (AR W c-b = Vr c-b = q c-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 681 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b	=	0.1275 0.1148	
MAJOR ROAD (AF W = W cr = q a-b = q a-c = MAJOR ROAD (AR W c-b = Vr c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY: U/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1275 0.1148 0.1796	
MAJOR ROAD (AF W = W cr = q ab = q ac = MAJOR ROAD (AR W c-b = Vrc-b = q c-a = q c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) 45 (metres) 681 (pcu/hr) 59 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1275 0.1148	
MAJOR ROAD (AF W = W cr = q a-b = q a-c = MAJOR ROAD (AR W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (AR	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 681 (pcu/hr) 59 (pcu/hr) RM B)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY: U/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1275 0.1148 0.1796	
$\begin{array}{rcl} \text{MAJOR ROAD (AF}\\ W & = \\ W \ cr & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (AR}\\ W \ cb & = \\ q \ cb & = \\ \text{MINOR ROAD (AR}\\ W \ bba & = \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) 3.7 (metres) 45 (metres) 681 (pcu/hr) 59 (pcu/hr) RM B) 1.3	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY: U/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1275 0.1148 0.1796	
$\begin{array}{rcl} \text{MAJOR ROAD (AF}\\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ab & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (AR}\\ W \ cb & = \\ V \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (AR}\\ W \ ba & = \\ W \ bc & = \\ W \ bc & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) 3.7 (metres) 45 (metres) 681 (pcu/hr) 59 (pcu/hr) RM B) 1.3 1.3 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY: U/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1275 0.1148 0.1796	
MAJOR ROAD (AF W = Q a-b = Q a-c = MAJOR ROAD (AR W c-b = Vr c-b = Q c-a = Q c-b = MINOR ROAD (AR W b-a = W b-c = VI-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 3.7 (metres) 45 (metres) 681 (pcu/hr) 59 (pcu/hr) RM B) 1.3 1.3 (metres) 1.3 (metres) 1.3 (metres) 1.3 (metres) 123 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY: U/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1275 0.1148 0.1796	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) 3.7 (metres) 45 (metres) 681 (pcu/hr) 59 (pcu/hr) RM B) 1.3 1.3 (metres) 123 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY: U/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1275 0.1148 0.1796	
MAJOR ROAD (AF W = W cr = q a-b = q a-c = MAJOR ROAD (AR W c-b = Q c-a = q c-b = MINOR ROAD (AR W b-a = W b-a = VI c-b = VI b-a = VI b-c =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) 3.7 (metres) 45 (metres) 681 (pcu/hr) 59 (pcu/hr) I.3 (metres) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY: U/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1275 0.1148 0.1796	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) 3.7 (metres) 45 (metres) 681 (pcu/hr) 59 (pcu/hr) RM B) 1.3 1.3 (metres) 123 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	211 400 514 345	TO CAPACITY: U/HR)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1275 0.1148 0.1796	

ZZO TECH	HNOLOGY (HK) L	MITED			CTION CALCULATIO	N			INITIA	LS	DATE
	Warehouse for Construction Mat of 3 Years and Associated Filling			and Rural Workshop with Ancillary	PROJECT NO.: 8	3133		PREPAR	ED BY: CS	,	Dec-24
Access Road u	underneath KSWH / Ha Tsuer	n Road		2025Dof DM	FILENAME :			CHECK	ED BY: LL		Dec-24
25 Reference AM	M Peak Hour Traffic Flows (Co	onstruction Stage)		2025Ref_PM	Access Road underneath KS	WH_Ha Tsuen Road_P.xls		REVIEW	ED BY: PC	I	Dec-24
Access Road undern (Af [6] 11 - [5] 593- Ha Tsuen R (ARM A)		62 ↓ 64 ↓ 64 ↓ 580 Access Rot	[3] [4] id underneath KSWH (ARM C)	$\label{eq:wcr} \begin{array}{rcl} W \ cr & = & CEN \\ W \ b-a & = & LAN \\ W \ b-c & = & LAN \\ W \ c-b & = & LAN \\ V \ b-a & = & VISI \\ V \ rb-a & = & VISI \\ V \ rb-c & = & VISI \\ V \ rc-b & = & VISI \\ D & = & STR \\ E & = & STR \\ F & = & STR \end{array}$	ATA) JOR ROAD WIDTH VTRAL RESERVE WIDTH WE WIDTH AVAILABLE TO VEHICLE WAITING WE WIDTH AVAILABLE TO VEHICLE WAITING WE WIDTH AVAILABLE TO VEHICLES WAITIN IBILITY TO THE LEFT FOR VEHICLES WAITIN IBILITY TO THE RIGHT FOR VEHICLES WAITIN IBILITY TO THE RIGHT FOR VEHICLES WAITIN IBILITY TO THE RIGHT FOR VEHICLES WAITIN REAM-SPECIFIC B-A REAM-SPECIFIC B-A REAM-SPECIFIC C-B L0345W)	N STREAM b-c N STREAM c-b G IN STREAM b-a IG IN STREAM b-a IG IN STREAM b-c					
DMETRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT :	:	COMPARISION OF DE TO CAPACITY:	ESIGN FLOW				
MAJOR ROAD (A											
MAJOR ROAD (A W =	7.41 (metres)	D	= 0.711636816	Qb-a =	243		DFC b-a	=	0.0453		
MAJOR ROAD (A W = W cr =	7.41 (metres) 0 (metres)	DE	= 0.72335517	Q b-a = Q b-c =	243 422		DFC b-a DFC b-c	= =	0.1469		
MAJOR ROAD (A W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr)	D E F	= 0.72335517 = 0.9325	Qb-a = Qb-c = Qc-b =	243 422 542		DFC b-a DFC b-c DFC c-b	=	0.1469 0.1181		
MAJOR ROAD (A W = W cr =	7.41 (metres) 0 (metres)	D E F	= 0.72335517	Q b-a = Q b-c =	243 422		DFC b-a DFC b-c	-	0.1469		
MAJOR ROAD (A W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542		DFC b-a DFC b-c DFC c-b	=	0.1469 0.1181		
MAJOR ROAD (A W = W cr = q a-b = q a-c =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542 380		DFC b-a DFC b-c DFC c-b	=	0.1469 0.1181		
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AF	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) xRM C)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542 380		DFC b-a DFC b-c DFC c-b	=	0.1469 0.1181		
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AF W c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) 4RM C) 3.7 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542 380		DFC b-a DFC b-c DFC c-b	=	0.1469 0.1181		
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AF W c-b = Vr c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) NRM C) 3.7 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542 380	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1469 0.1181 0.1922		
MAJOR ROAD (A W = W cr = q ab = q ac = MAJOR ROAD (AF W c-b = Vrc-b = q c-a = q c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) 45 (metres) 580 (pcu/hr) 64 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542 380		DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1469 0.1181		
$\begin{array}{rcl} \text{MAJOR ROAD (A} \\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ac & = \\ \\ \text{MAJOR ROAD (AF} \\ W \ cb & = \\ Vr \ cb & = \\ q \ ca & = \\ q \ cb & = \\ \\ \text{MINOR ROAD (AF)} \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) NRM C) 3.7 (metres) 45 (metres) 580 (pcu/hr) 64 (pcu/hr) RM B)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542 380	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1469 0.1181 0.1922		
MAJOR ROAD (A W = W cr = q ab = q a-c = MAJOR ROAD (AF W c-b = q c-a = q c-b = MINOR ROAD (AR W b-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) 45 (metres) 45 (metres) 580 (pcu/hr) 64 (pcu/hr) RM B) 1.3 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542 380	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1469 0.1181 0.1922		
MAJOR ROAD (A W = W cr = q ab = q ac = MAJOR ROAD (AF W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (AR W b-a = W b-c =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) 45 (metres) 45 (metres) 580 (pcu/hr) 64 (pcu/hr) RM B) 1.3 (metres) 1.3 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542 380	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1469 0.1181 0.1922		
MAJOR ROAD (A W = W cr = q ab = q ac = MAJOR ROAD (AF W c-b = Vrc-b = q c-a = q c-b = MINOR ROAD (AF W b-a = W b-c = VIb-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) MRM C) 3.7 (metres) 45 (metres) 580 (pcu/hr) 64 (pcu/hr) RM B) 1.3 (metres) 1.3 (metres) 1.23 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542 380	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1469 0.1181 0.1922		
$\begin{array}{rcl} \text{MAJOR ROAD}(A\\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ab & = \\ q \ ab & = \\ \hline q \ ab & = \\ W \ cb & = \\ V \ cb & = \\ V \ cb & = \\ q \ cb & = \\ \hline q \ cb & = \\ \hline \text{MINOR ROAD}(AR \\ W \ bb & = \\ \hline W \ bb & = \\ \hline V \ cb & = \\ \hline W \ bb & = \\ \hline \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) NRM C) 3.7 (metres) 45 (metres) 580 (pcu/hr) 64 (pcu/hr) RM B) 1.3 (metres) 123 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542 380	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1469 0.1181 0.1922		
MAJOR ROAD (A W = W cr = q ab = q ac = MAJOR ROAD (AF W c-b = q c-a = q c-b = MINOR ROAD (AR W b-a = W b-c = VI b-a = VI b-a = VI b-a = VI b-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) 3.7 (metres) 45 (metres) 580 (pcu/hr) 64 (pcu/hr) 1.3 (metres) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542 380	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1469 0.1181 0.1922		
$\begin{array}{rcl} \text{MAJOR ROAD}(A\\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ab & = \\ q \ ab & = \\ \hline q \ ab & = \\ W \ cb & = \\ V \ cb & = \\ V \ cb & = \\ q \ cb & = \\ \hline q \ cb & = \\ \hline \text{MINOR ROAD}(AR \\ W \ bb & = \\ \hline W \ bb & = \\ \hline V \ cb & = \\ \hline W \ bb & = \\ \hline \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) NRM C) 3.7 (metres) 45 (metres) 580 (pcu/hr) 64 (pcu/hr) RM B) 1.3 (metres) 123 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	243 422 542 380	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1469 0.1181 0.1922		

ZZO TECI	HNOLOGY (HK) L	IMITED			CTION CALCULAT	ΓION			INITIALS	DATE
	Warehouse for Construction Mat of 3 Years and Associated Filling			s and Rural Workshop with Ancillary	PROJECT NO.:	83133		PREPARED E	Y: CSY	Dec-24
Access Road u	underneath KSWH / Ha Tsuer	n Road		2025Des_AM	FILENAME :			CHECKED E	Y: LL	Dec-24
25 Reference AN	M Peak Hour Traffic Flows (Co	onstruction Stage)		2025Des_Aw	_Access Road undernea	th KSWH_Ha Tsuen Road_P.xk	5	REVIEWED E	Y: PCN	Dec-24
Access Road under (A [6] 11 - [5] 703- Ha Tsuen F (ARM A)	ARM B)	67	[3] [4] ad underneath KSWH (ARM C)	$\begin{array}{rcl} W \ cr & = & CE \\ W \ ba & = & LAI \\ W \ bc & = & LAI \\ W \ cb & = & LAI \\ Vl \ ba & = & VIS \\ Vl \ ba & = & VIS \\ Vl \ ba & = & VIS \\ Vl \ cb & = & VIS \\ Vl \ cb & = & VIS \\ D & = & STI \\ E & = & STI \\ F & = & STI \end{array}$	DATA) AJOR ROAD WIDTH ENTRAL RESERVE WIDTH INE WIDTH AVAILABLE TO VEHICLE WAI NE WIDTH AVAILABLE TO VEHICLE WAI SIBILTY TO THE LEPLE TO VEHICLES W SIBILTY TO THE RIGHT FOR VEHICLES V SIBILTY TO THE RIGHT FOR VEHICLES V SIBILTY TO THE RIGHT FOR VEHICLES V REAM-SPECIFIC B-A TREAM-SPECIFIC B-C TREAM-SPECIFIC B-C TREAM-SPECIFIC C-B -0.0345W)	ITING IN STREAM b-c ITING IN STREAM c-b /AITING IN STREAM b-a /VAITING IN STREAM b-a /VAITING IN STREAM b-c				
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT	т:	COMPARISION OF D TO CAPACITY:	ESIGN FLOW			
MAJOR ROAD (A										
MAJOR ROAD (A W =	7.41 (metres)	D	= 0.711636816	Q b-a =	206		DFC b-a	= 0.0		
MAJOR ROAD (A W = W cr =	7.41 (metres) 0 (metres)	D	= 0.72335517	Qb-a = Qb-c =	206 400		DFC b-a DFC b-c	= 0.1	75	
MAJOR ROAD (A W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr)	D	= 0.72335517 = 0.9325	Q.b-a = Q.b-c = Q.c-b =	206 400 514		DFC b-a DFC b-c DFC c-b	= 0.1 = 0.1	75 59	
MAJOR ROAD (A W = W cr =	7.41 (metres) 0 (metres)	D E F	= 0.72335517	Qb-a = Qb-c =	206 400		DFC b-a DFC b-c	= 0.1 = 0.1	75 59	
MAJOR ROAD (A W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr)	D E F	= 0.72335517 = 0.9325	Q.b-a = Q.b-c = Q.c-b =	206 400 514	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.1 = 0.1	75 59	
MAJOR ROAD (A W = W cr = q a-b = q a-c =	7.41 (metres) 0 (metres) 11 (pou/hr) 703 (pou/hr) ARM C) 3.7 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	206 400 514 353	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.1 = 0.1	75 59	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AI	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	206 400 514 353	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.1 = 0.1	75 59	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AI W c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 681 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	206 400 514 353	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b	= 0.1 = 0.1	75 59	
MAJOR ROAD (A W = W cr = q a-b = q a-c = MAJOR ROAD (AI W c-b = Vr c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	206 400 514 353	то сарасіту:)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.1 = 0.1 = 0.2	75 59 09	
MAJOR ROAD (A W = W cr = q ab = q ac = MAJOR ROAD (A W c-b = Vrc-b = q c-a = q c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 45 (metres) 681 (pcu/hr) 75 (pcu/hr)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	206 400 514 353	ΤΟ CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.1 = 0.1	75 59 09	
$\begin{array}{rcl} \text{MAJOR ROAD (A}\\ & W & = \\ & W \ cr & = \\ & q \ ab & = \\ & q \ ac & = \\ & q \ ac & = \\ & M \ cb & = \\ & Vr \ cb & = \\ & q \ cb & = \\ & q \ cb & = \\ & q \ cb & = \\ & \text{MINOR ROAD (AF)} \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 681 (pcu/hr) 75 (pcu/hr) ARM B)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	206 400 514 353	то сарасіту:)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.1 = 0.1 = 0.2	75 59 09	
MAJOR ROAD (A W = W cr = q ab = q a-c = MAJOR ROAD (AI W c-b = V c-b = q c-a = q c-b = MINOR ROAD (AF W b-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 681 (pcu/hr) 75 (pcu/hr) ARM B) 1.3 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	206 400 514 353	то сарасіту:)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.1 = 0.1 = 0.2	75 59 09	
$\begin{array}{rcl} \mbox{MAJOR ROAD}(A\\ W & = \\ W \mbox{ cr} & = \\ q \mbox{ abs} & = \\ q \mbox{ abs} & = \\ \mbox{MAJOR ROAD}(A\\ W \mbox{ cb} & = \\ V \mbox{ c-b} & = \\ q \mbox{ c-a} & = \\ q \mbox{ c-b} & = \\ \mbox{MINOR ROAD}(A\\ W \mbox{ b-a} & = \\ W \mbox{ b-c} & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 681 (pcu/hr) 75 (pcu/hr) 48M B) 1.3 (metres) 1.3 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	206 400 514 353	то сарасіту:)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.1 = 0.1 = 0.2	75 59 09	
$\begin{array}{rcl} \mbox{MAJOR ROAD}(A\\ W & = \\ W $	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 3.7 (metres) 45 (metres) 681 (pcu/hr) 75 (pcu/hr) RM B) 1.3 1.3 (metres) 1.3 (metres) 1.3 (metres) 1.3 (metres) 123 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	206 400 514 353	то сарасіту:)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.1 = 0.1 = 0.2	75 59 09	
$\begin{array}{rcl} \text{MAJOR ROAD} (A\\ W & = \\ W \ cr & = \\ q \ ab & = \\ W \ cb & = \\ V \ cb & = \\ V \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \hline \text{MINOR ROAD} (AI \\ W \ bb & = \\ $	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) 3.7 (metres) 45 (metres) 681 (pcu/hr) 75 (pcu/hr) NRM B) 1.3 1.3 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	206 400 514 353	то сарасіту:)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.1 = 0.1 = 0.2	75 59 09	
MAJOR ROAD (A W = W cr = q ab = q a-c = MAJOR ROAD (Al W c-b = V c-b = q c-a = q c-b = MINOR ROAD (AF W b-a = W b-c = V lb-a = V lb-a = V lb-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) ARM C) 3.7 (metres) 45 (metres) 681 (pcu/hr) 75 (pcu/hr) 45 (metres) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	206 400 514 353	то сарасіту:)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.1 = 0.1 = 0.2	75 59 09	
$\begin{array}{rcl} \text{MAJOR ROAD} (A\\ W & = \\ W \ cr & = \\ q \ ab & = \\ W \ cb & = \\ V \ cb & = \\ V \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \hline \text{MINOR ROAD} (AI \\ W \ bb & = \\ $	7.41 (metres) 0 (metres) 11 (pcu/hr) 703 (pcu/hr) 3.7 (metres) 45 (metres) 681 (pcu/hr) 75 (pcu/hr) NRM B) 1.3 1.3 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres)	D E F Y	= 0.72335517 = 0.9325 = 0.7445275	Qb-a = Qb-c = Qc-b = Qb-ac =	206 400 514 353	то сарасіту:)	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	= 0.1 = 0.1 = 0.2	75 59 09	

ZZO TECH	HNOLOGY (HK) L	IMITED			CTION CALCULATION	ON			INIT	TIALS	DATE
	Warehouse for Construction Ma of 3 Years and Associated Filling			and Rural Workshop with Ancillary	PROJECT NO.:	83133		PREPAR	RED BY: C	SY	Dec-24
Access Road u	underneath KSWH / Ha Tsue	n Road		2025Des_PM	FILENAME :			CHECK	KED BY: L	LL	Dec-24
25 Reference AM	M Peak Hour Traffic Flows (C	onstruction Stage)		2025Des_PM	LAccess Road underneath	KSWH_Ha Tsuen Road_P.xk	5	REVIEW	/ED BY: PO	CN	Dec-24
Access Road underr (AF [6] 11 - [5] 593 - Ha Tsuen R (ARM A)	RM B)	78	3] 4] d) underneath KSWH ARM C)	$\begin{array}{rcl} W \ cr & = & CEN \\ W \ b-a & = & LAN \\ W \ b-c & = & LAN \\ W \ c-b & = & LAN \\ Vi \ b-a & = & VISI \\ Vr \ b-c & = & VISI \\ Vr \ b-c & = & VISI \\ Vr \ b-c & = & VISI \\ D & = & STR \\ E & = & STR \\ F & = & STR \end{array}$	DATA) JOR ROAD WIDTH NTRAL RESERVE WIDTH NE WIDTH AVAILABLE TO VEHICLE WAITIN NE WIDTH AVAILABLE TO VEHICLE WAITIN NE WIDTH AVAILABLE TO VEHICLE WAITIN SIBILITY TO THE LEFT FOR VEHICLES WAIT SIBILITY TO THE RIGHT FOR VEHICLES WAIT REAM-SPECIFIC B-A REAM-SPECIFIC B-A REAM-SPECIFIC B-C REAM-SPECIFIC C-B 0.03455W)	IG IN STREAM b-c IG IN STREAM c-b 'ING IN STREAM b-a ITING IN STREAM b-a ITING IN STREAM b-c					
METRIC DETAILS:		GEOMETRIC FACTORS :		THE CAPACITY OF MOVEMENT	·:-	COMPARISION OF D TO CAPACITY:	ESIGN FLOW				
MAJOR ROAD (A											
MAJOR ROAD (A W =	7.41 (metres)	D	= 0.711636816	Q b-a =	239		DFC b-a		0.0460		
MAJOR ROAD (Al W = W cr =	7.41 (metres) 0 (metres)	D =	0.72335517	Qb-a = Qb-c =	239 422		DFC b-a DFC b-c		0.1848		
MAJOR ROAD (Al W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr)	D = E = F =	= 0.72335517 = 0.9325	Q.b-a = Q.b-c = Q.c-b =	239 422 542		DFC b-a DFC b-c DFC c-b	=	0.1848 0.1476		
MAJOR ROAD (Al W = W cr =	7.41 (metres) 0 (metres)	D =	= 0.72335517 = 0.9325	Qb-a = Qb-c =	239 422		DFC b-a DFC b-c	-	0.1848		
MAJOR ROAD (Al W = W cr = q a-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr)	D = E = F =	= 0.72335517 = 0.9325	Q.b-a = Q.b-c = Q.c-b =	239 422 542		DFC b-a DFC b-c DFC c-b	=	0.1848 0.1476		
MAJOR ROAD (Al W = W cr = q a-b = q a-c =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr)	D = = E = = F = = Y = =	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	239 422 542 386		DFC b-a DFC b-c DFC c-b	=	0.1848 0.1476		
MAJOR ROAD (AI W = W cr = q a-b = q a-c = MAJOR ROAD (AF	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) RM C)	D = = E = = F = = Y = =	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	239 422 542 386		DFC b-a DFC b-c DFC c-b	=	0.1848 0.1476		
MAJOR ROAD (AI W = W cr = q a-b = q a-c = MAJOR ROAD (AF W c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) RM C) 3.7 (metres)	D = = E = = F = = Y = =	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	239 422 542 386		DFC b-a DFC b-c DFC c-b	=	0.1848 0.1476		
MAJOR ROAD (A) W = W cr = q a-b = q a-c = MAJOR ROAD (AF W c-b = Vr c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) RM C) 3.7 (metres) 45 (metres)	D = = E = = F = = Y = =	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	239 422 542 386	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1848 0.1476 0.2309		
MAJOR ROAD (A W = W cr = q ab = q ac = MAJOR ROAD (AF W c-b = Vrc-b = q c-a = q c-b =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) RM C) 3.7 (metres) 45 (metres) 580 (pcu/hr) 80 (pcu/hr)	D = = E = = F = = Y = =	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	239 422 542 386		DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	=	0.1848 0.1476		
$\begin{array}{rcl} \mbox{MAJOR ROAD (Al} & W & = & & \\ \mbox{W cr} & = & & \\ \mbox{q a-b} & = & & \\ \mbox{q a-c} & = & & \\ \mbox{MAJOR ROAD (AR} & & \\ \mbox{Vr c-b} & = & & \\ \mbox{q c-a} & = & \\ \mbox{q c-b} & = & \\ \mbox{MINOR ROAD (AR} & & \\ \mbox{MINOR ROAD (AR) (AR)} & & \\ \mbox{MINOR ROAD (AR)} & & \\ MI$	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) RM C) 3.7 (metres) 45 (metres) 580 (pcu/hr) 80 (pcu/hr) RM B)	D = = E = = F = = Y = =	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	239 422 542 386	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1848 0.1476 0.2309		
MAJOR ROAD (A) W = W cr = q ab = q ac = MAJOR ROAD (AF W c-b = Q c-a = q c-b = MINOR ROAD (AR W b-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) RRM C) 3.7 (metres) 45 (metres) 580 (pcu/hr) 80 (pcu/hr) RM B) 1.3 (metres)	D = = E = = F = = Y = =	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	239 422 542 386	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1848 0.1476 0.2309		
$\begin{array}{rcl} \text{MAJOR ROAD (A} \\ W & = \\ W \ cr & = \\ q \ ab & = \\ q \ ab & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (AF \\ W \ cb & = \\ Vr \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (AF \\ W \ ba & = \\ W \ bc & = \\ W \ bc & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) RM C) 3.7 45 (metres) 580 (pcu/hr) 80 (pcu/hr) RM B) 1.3 1.3 (metres)	D = = E = = F = = Y = =	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	239 422 542 386	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1848 0.1476 0.2309		
MAJOR ROAD (A) W = W cr = q a-b = q a-c = MAJOR ROAD (AF W c-b = Vr c-b = Q c-a = q c-b = MINOR ROAD (AR W b-a = W b-c = VI-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) RM C) 3.7 (metres) 45 (metres) 580 (pcu/hr) 80 (pcu/hr) RM B) 1.3 (metres) 1.3 (metres) 1.3 (metres)	D = = E = = F = = Y = =	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	239 422 542 386	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1848 0.1476 0.2309		
$\begin{array}{rcl} \text{MAJOR ROAD (A}\\ W & = \\ W \ cr & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (AF}\\ W \ cb & = \\ q \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (AR}\\ W \ bb & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) 3.7 (metres) 45 (metres) 580 (pcu/hr) 80 (pcu/hr) RM B) 1.3 1.3 (metres) 123 (metres) 45 (metres)	D = = E = = F = = Y = =	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	239 422 542 386	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1848 0.1476 0.2309		
MAJOR ROAD (A) W = W cr = q a-b = q a-c = MAJOR ROAD (AF W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (AR W b-a = W b-c = Vr b-a = Vr b-a = Vr b-a = Vr b-a =	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) 3.7 (metres) 45 (metres) 580 (pcu/hr) 80 (pcu/hr) 80 (pcu/hr) 1.3 (metres) 1.3 (metres) 1.3 (metres) 45 (metres) 45 (metres) 45 (metres) 45 (metres)	D = = E = = F = = Y = =	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	239 422 542 386	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1848 0.1476 0.2309		
$\begin{array}{rcl} \text{MAJOR ROAD (A}\\ W & = \\ W \ cr & = \\ q \ ab & = \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (AF}\\ W \ cb & = \\ q \ cb & = \\ q \ cb & = \\ q \ cb & = \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (AR}\\ W \ bb & = \\ \end{array}$	7.41 (metres) 0 (metres) 11 (pcu/hr) 593 (pcu/hr) 3.7 (metres) 45 (metres) 580 (pcu/hr) 80 (pcu/hr) RM B) 1.3 1.3 (metres) 123 (metres) 45 (metres)	D = = E = = F = = Y = =	= 0.72335517 = 0.9325 = 0.7445275	Q b-a = Q b-c = Q c-b = Q b-ac =	239 422 542 386	TO CAPACITY:	DFC b-a DFC b-c DFC c-b DFC b-c (share lane)	-	0.1848 0.1476 0.2309		

	~) TECHNOLOGY (H	HK) LIMITED				CALCULATION		INITIALS	DATE
		emporary Warehouse for Construction I ry Facilities for a Period of 3 Years and A				PROJECT NO.:	83133	PREPARED BY:	CSY	Dec-24
		Roundabout	Associated Filling of Land and Pon	iu anu E		FILENAME :		CHECKED BY:	LL	Dec-24
		erence AM Peak Hour Traffic Flows	(Construction Stage)		2025Ref_AM		J5_KSWH Roundabout_R.xls	REVIEWED BY:		Dec-24
20231	Neie	sence AW Feat Hour Hame Hows	(Construction Stage)				35_NSWIT Roundabout_N.As	REVIEWED BT.	FON	D60-24
			(ARM D) 6	1158 1356	163 163 17 1360 (ARM C)	N				
				Sli	p Road of Kong Sham Western Highv	/ay				
ARM			A	Sli	p Road of Kong Sham Western Highv	/ay				
	PAR	AMETERS:	A			/ay				
INPUT	PAR#	AMETERS: Approach half width (m)	A 4.0			/ay				
INPUT I		Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	B.2 9.3	/ay				
INPUT V E L	=	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	8.2 9.3 1.8	/ay				
INPUT V E L R	= =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	8.2 9.3 1.8 10.0	/ay				
INPUT E L R D	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	8.2 9.3 1.8 10.0 71.0	/ay				
V E L R D A	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diarneter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	8.2 9.3 1.8 10.0 71.0 21.0	/ay				
INPUT E L R D A Q	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 163	C 7.9 7.9 1.0 100.0 71.0 31.0 1360	8.2 9.3 1.8 10.0 71.0 21.0 6	/ay				
INPUT E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diarneter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	8.2 9.3 1.8 10.0 71.0 21.0	/ay				
INPUT V E L R D A Q Qc	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 163	C 7.9 7.9 1.0 100.0 71.0 31.0 1360	8.2 9.3 1.8 10.0 71.0 21.0 6	/ay				
INPUT V E L D A Q Q C OUTPU	= = = = = = JT PA	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 163 1158	C 7.9 7.9 1.0 100.0 71.0 31.0 1360 17	8.2 9.3 1.8 10.0 71.0 21.0 6 1356	/ay				
INPUT E L R D A Q Q C OUTPU S	= = = = = JT PA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 163	C 7.9 7.9 1.0 100.0 71.0 31.0 1360	8.2 9.3 1.8 10.0 71.0 21.0 6	/ay				
INPUT E L R D A Q Q C OUTPU S K	= = = = = JT PA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) RAMETERS: Sharpness of flare = 1.6(E-V)/L	4.0 6.7 4.8 30.0 71.0 12.0 163 1158 0.90	C 7.9 7.9 1.0 100.0 71.0 31.0 1360 17	8.2 9.3 1.8 10.0 71.0 21.0 6 1356	/ay				
INPUT E L R D A Q Q Q C OUTPU S K X2	= = = = = JT PA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) RAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 163 1158 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1360 17 0.00 1.04 7.90	8.2 9.3 1.8 10.0 71.0 21.0 6 1356 0.98 0.98 8.57	/ay				
INPUT E L R D A Q Q Q C OUTPU S K X2 M	= = = = = JT PA = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) RAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 163 1158 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1360 17 0.00 1.04 7.90 3	8.2 9.3 1.8 10.0 71.0 21.0 6 1356 0.98 0.98 8.57 3	/ay				
INPUT E L R Q Q Q Q C OUTPU S K X2 M F	= = = = = JT PA = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) KAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	4.0 6.7 4.8 30.0 71.0 12.0 163 1158 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1360 17 0.00 1.04 7.90 3 2394	8.2 9.3 1.8 10.0 71.0 21.0 6 1356 0.98 8.57 3 2597	/ay				
INPUT V E L R D A Q Q Q C OUTPU S K X2 M F Td	= = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 163 1158 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1360 17 0.00 1.04 7.90 3 2394 1.12	8.2 9.3 1.8 10.0 71.0 21.0 6 1356 0.98 8.57 3 2597 1.12	/ay				
INPUT V E L D A Q Qc	= = = = = JT PA = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) KAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	4.0 6.7 4.8 30.0 71.0 12.0 163 1158 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1360 17 0.00 1.04 7.90 3 2394	8.2 9.3 1.8 10.0 71.0 21.0 6 1356 0.98 8.57 3 2597	Total In Sum =		1529	PCU	

<u> </u>	_ `	D TECHNOLOGY (I	HK) LIMITED			C SIGNAL CALCULATION		INITIALS	DATE
		emporary Warehouse for Construction I ry Facilities for a Period of 3 Years and <i>i</i>				PROJECT NO.: 83133	PREPARED BY:	CSY	Dec-24
		Roundabout	Associated Filling of Land and r			FILENAME :	CHECKED BY:	LL	Dec-24
		erence AM Peak Hour Traffic Flows	(Construction Stage)		2025Ref_PM	J5 KSWH Roundabout R.xls	REVIEWED BY:	PCN	Dec-24
2025	Neic	stence Aint eachour traine hows	(Construction Stage)				REVIEWED DT.	1011	060-24
			Slip Road of Ko (ARM D) <u>5</u> Access Road	(ARMA) 937 → 1159	169 13 1103 (ARM C)	N			
				Slip	Road of Kong Sham Western Highwa	iy			
			A	Slip	Road of Kong Sham Western Highwa	y			
	PAR/	AMETERS:	A	•		y			
	PAR/	AMETERS: Approach half width (m)	A 4.0	•		y			
INPUT V				c	D	y			
INPUT V	=	Approach half width (m)	4.0	C 7.9	B.2	y			
ARM INPUT V E L R	= =	Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	B.2 9.3	y			
INPUT V E L R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0	8.2 9.3 1.8	y			
INPUT V E L R D	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	8.2 9.3 1.8 10.0	y			
INPUT V E L R D	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	8.2 9.3 1.8 10.0 71.0	y			
INPUT E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	8.2 9.3 1.8 10.0 71.0 21.0	y			
INPUT E L R D A Q Qc		Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 169	C 7.9 7.9 1.0 100.0 71.0 31.0 1103	8.2 9.3 1.8 10.0 71.0 21.0 5	y			
INPUT E L R D A Q Q C	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 169 937	7.9 7.9 1.0 100.0 71.0 31.0 1103 13	B.2 9.3 1.8 10.0 71.0 21.0 5 1159	y			
INPUT V E L D A Q Q C OUTP S	= = = = = JT PA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 169 937 0.90	7.9 7.9 1.0 100.0 71.0 31.0 1103 13	8.2 9.3 1.8 10.0 71.0 21.0 5 1159 0.98	y			
INPUT E L R D A Q Q C OUTP S K	= = = = = JJT PA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) MRAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 169 937 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1103 13 0.00 1.04	8.2 9.3 1.8 10.0 71.0 21.0 5 1159 0.98 0.98	y			
INPUT E L R D A Q Q C S K X2	= = = = = JJT PA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 169 937 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1103 13 0.00 1.04 7.90	8.2 9.3 1.8 10.0 71.0 21.0 5 1159 0.98 0.98 8.57	y			
INPUT V E L R D A Q Q C OUTPI S K X2 M	= = = = = = JJT PA = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 169 937 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1103 13 0.00 1.04 7.90 3	8.2 9.3 1.8 10.0 71.0 21.0 5 1159 0.98 0.98 8.57 3	y			
INPUT V E L R D A Q Q C OUTPI S K X2 M F	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 169 937 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1103 13 0.00 1.04 7.90 3 2394	8.2 9.3 1.8 10.0 71.0 21.0 5 1159 0.98 0.98 8.57 3 2597	y			
INPUT V E L R Q Q Q C S K X2 M F Td	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) XRAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 169 937 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1103 13 0.00 1.04 7.90 3 2394 1.12	8.2 9.3 1.8 10.0 71.0 21.0 5 1159 0.98 0.98 8.57 3 2597 1.12	y			
INPUT V E L R D A Q Q C OUTPI S K X2 M F Td Fc	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 169 937 0.90 1.08 4.96 3 1504 1.12 0.47	7.9 7.9 1.0 100.0 71.0 31.0 1103 13 0.00 1.04 7.90 3 2394 1.12 0.61	8.2 9.3 1.8 10.0 71.0 21.0 5 1159 0.98 0.98 8.57 3 2597 1.12 0.64		1977		
INPUT V E L R D A Q Q C OUTPI S K X2 M F Td	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) XRAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 169 937 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1103 13 0.00 1.04 7.90 3 2394 1.12	8.2 9.3 1.8 10.0 71.0 21.0 5 1159 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1277	PCU	
INPUT V E L R D A Q Q C OUTPI S K X2 M F Td Fc	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 169 937 0.90 1.08 4.96 3 1504 1.12 0.47	7.9 7.9 1.0 100.0 71.0 31.0 1103 13 0.00 1.04 7.90 3 2394 1.12 0.61	8.2 9.3 1.8 10.0 71.0 21.0 5 1159 0.98 0.98 8.57 3 2597 1.12 0.64		1277 0.45	PCU	

UL	~	D TECHNOLOGY (I	HK) LIMITED			IC SIGNAL CALCULATION	1	INITIALS	DATE
		Femporary Warehouse for Construction ry Facilities for a Period of 3 Years and				PROJECT NO.: 83133	PREPARED BY:	CSY	Dec-24
		Roundabout	Associated Filling of Land and F			FILENAME :	CHECKED BY:	LL	Dec-24
		erence AM Peak Hour Traffic Flows	(Construction Stage)		2025Des_AM	J5_KSWH Roundabout_R.xls		PCN	Dec-24
2025	Reie	erence Aim reak nour maine nows	(Construction Stage)					101	D60-24
			Slip Road of Kon (ARM D) <u>6</u> Access Road	g Sham W (ARM A) 1182 1384	estern Highw ay	N			
				Slip	Road of Kong Sham Western Highw	ay			
			A	Slip	Road of Kong Sham Western Highw	ay			
	PARA	AMETERS:	Α			ay			
INPUT	PAR/	AMETERS: Approach half width (m)	A 4.0			ay			
INPUT V				C		ay			
INPUT V	=	Approach half width (m)	4.0	C 7.9	D	ay			
v	= =	Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	B.2 9.3	ay			
INPUT V E L R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	8.2 9.3 1.8	ay			
INPUT V E L R D	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	8.2 9.3 1.8 10.0	ay			
INPUT E L R D A	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	B.2 9.3 1.8 10.0 71.0	ay			
INPUT E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	B.2 9.3 1.8 10.0 71.0 21.0	ay			
INPUT E L D A Q Qc	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 167	C 7.9 7.9 1.0 100.0 71.0 31.0 1388	B.2 9.3 1.8 10.0 71.0 21.0 6	ay			
INPUT E L R D A Q Q C	= = = = = JT PA	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 167 1182	C 7.9 7.9 1.0 100.0 71.0 31.0 1388 17	B.2 9.3 1.8 10.0 71.0 21.0 6 1384	ay			
INPUT E L D A Q Qc OUTPI S	= = = = = JT PA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 167 1182 0.90	C 7.9 7.9 1.0 100.0 71.0 31.0 1388 17	B.2 9.3 1.8 10.0 71.0 21.0 6 1384	ay			
INPUT E L R D A Q Q Q C OUTPI S K	= = = = = JJT PA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 167 1182 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1388 17 0.00 1.04	B.2 9.3 1.8 10.0 71.0 21.0 6 1384 0.98 0.98	ay			
INPUT E L R D A Q Q C S K X2	= = = = = JT PA = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 167 1182 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1388 17 0.00 1.04 7.90	B.2 9.3 1.8 10.0 71.0 21.0 6 1384 0.98 0.98 8.57	ay			
INPUT V E L R D A Q Q Q C OUTPI S K X2 M	= = = = = JT PA = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 167 1182 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1388 17 0.00 1.04 7.90 3	B.2 9.3 1.8 10.0 71.0 21.0 6 1384 0.98 0.98 8.57 3	ay			
INPUT V E L R D A Q Q Q Q C OUTPI S K X2 M F	= = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 167 1182 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1388 17 0.00 1.04 7.90 3 2394	B.2 9.3 1.8 10.0 71.0 21.0 6 1384 0.98 0.98 8.57 3 2597	ay			
INPUT V E L R Q Q Q C S K X2 M F Td	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 167 1182 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1388 17 0.00 1.04 7.90 3 2394 1.12	B.2 9.3 1.8 10.0 71.0 21.0 6 1384 0.98 0.98 8.57 3 2597 1.12	ay			
INPUT V E L R D A Q Q C OUTPI S K X2 M F T d F c	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 167 1182 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1388 17 0.00 1.04 7.90 3 2394 1.12 0.61	8.2 9.3 1.8 10.0 71.0 21.0 6 1384 0.98 8.57 3 2597 1.12 0.64				
INPUT V E L R D A Q Q Q Q C OUTPI S K X2 M F	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 167 1182 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1388 17 0.00 1.04 7.90 3 2394 1.12	B.2 9.3 1.8 10.0 71.0 21.0 6 1384 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1561	PCU	
INPUT V E L R Q Q Q C OUTPI S K X2 M F T d F C	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 167 1182 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1388 17 0.00 1.04 7.90 3 2394 1.12 0.61	8.2 9.3 1.8 10.0 71.0 21.0 6 1384 0.98 8.57 3 2597 1.12 0.64		1561	PCU	

) TECHNOLOGY (I				FIC SIGNAL CALCULATION	1	INITIALS	DATE
		emporary Warehouse for Construction I ry Facilities for a Period of 3 Years and i				PROJECT NO.: 83133	PREPARED BY:	CSY	Dec-24
		Roundabout	Associated Filling of Land and Pr	onu anu E		FILENAME :	CHECKED BY:	LL	Dec-24
		erence AM Peak Hour Traffic Flows	(Construction Stage)		2025Des_PM			PCN	
2023	Rele	erence Am Feak Hour Trainc Flows	(Construction Stage)			J5_KSWH Roundabout_R.xl	REVIEWED BY:	PGN	Dec-24
			Slip Road of Kon (ARM D) 5 Access Road	g Sham W (ARM A) 961 	estern Highw ay	N			
					(ARM C)				
				Slip	Road of Kong Sham Western High	w ay			
ARM			Α			way			
	PAR	AMETERS:	A	Slip C	Road of Kong Sham Western High	w ay			
INPUT				C	D	w ay			
INPUT V	=	Approach half width (m)	4.0	C 7.9	D	w ay			
INPUT V	= =	Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	D 8.2 9.3	w ay			
INPUT V E L	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	D 8.2 9.3 1.8	w ay			
INPUT V E L R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	B.2 9.3 1.8 10.0	w ay			
INPUT V E L R D	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	B.2 9.3 1.8 10.0 71.0	w ay			
V E L R D A	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	D 8.2 9.3 1.8 10.0 71.0 21.0	w ay			
INPUT E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 173	C 7.9 7.9 1.0 100.0 71.0 31.0 1131	D 8.2 9.3 1.8 10.0 71.0 21.0 5	w ay			
INPUT E L R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	D 8.2 9.3 1.8 10.0 71.0 21.0	w ay			
INPUT E L D A Q Qc		Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 173	C 7.9 7.9 1.0 100.0 71.0 31.0 1131	D 8.2 9.3 1.8 10.0 71.0 21.0 5	w ay			
INPUT E L R D A Q Q C	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 173	C 7.9 7.9 1.0 100.0 71.0 31.0 1131	D 8.2 9.3 1.8 10.0 71.0 21.0 5	w ay			
INPUT E L D A Q Qc S	= = = = = = UT PA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 173 961	C 7.9 7.9 1.0 100.0 71.0 31.0 1131 13	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1187	w ay			
INPUT E L D A Q Q C OUTP S K	= = = = = = UT PA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) WRAMETERS: Sharpness of flare = 1.6(E-V)/L	4.0 6.7 4.8 30.0 71.0 12.0 173 961	C 7.9 7.9 1.0 100.0 71.0 31.0 1131 13	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1187 0.98	w ay			
INPUT V E L R D A Q Q C OUTP S K X2	= = = = = = UT PA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) MRAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 173 961 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1131 13 0.00 1.04 7.90	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1187 0.98 0.98 8.57	w ay			
INPUT V E L R D A Q Q C OUTP S K X2 M	= = = = = = UT PA = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 173 961 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1131 13 0.00 1.04 7.90 3	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1187 0.98 0.98 8.57 3	w ay			
INPUT V E L R D A Q Q C OUTP S K X2 M F	= = = = = = UT PA = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) NRAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 173 961 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1131 13 0.00 1.04 7.90 3 2394	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1187 0.98 0.98 8.57 3 2597	w ay			
INPUT V E L R D A Q Q C OUTP S K X2 M F Td	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) NRAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 173 961 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1131 13 0.00 1.04 7.90 3 2394 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1187 0.98 0.98 8.57 3 2597 1.12	w ay			
INPUT V E L R D A Q Q C OUTP S K X2 M F T d F C	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 173 961 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1131 13 0.00 1.04 7.90 3 2394 1.12 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1187 0.98 0.98 8.57 3 2597 1.12 0.64		1309	PCI	
INPUT V E L R D A Q Q C OUTP S K X2 M F Td	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) NRAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 173 961 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1131 13 0.00 1.04 7.90 3 2394 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1187 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1309	PCU	
INPUT V E L R D A Q Q Q C OUTP S K X2 M F Td Fc	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 173 961 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1131 13 0.00 1.04 7.90 3 2394 1.12 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1187 0.98 0.98 8.57 3 2597 1.12 0.64		1309 0.46	PCU	