

Our Ref. : DD107 Lot 1291 Your Ref. : TPB/A/YL-KTN/1004

The Secretary, Town Planning Board, 15/F, North Point Government Offices, 333 Java Road, North Point, Hong Kong

By Email 29 July 2024

Dear Sir,

4th Further Information

Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land and Pond in "Agriculture" Zone, Lot 1291 (Part) in D.D. 107, Fung Kat Heung, Kam Tin, Yuen Long, New Territories

(S.16 Planning Application No. A/YL-KTN/1004)

We are writing to submit further information to address departmental comments of the subject application (**Appendix I**).

Should you require more information regarding the application, please contact our Mr. Christian CHIM at or the undersigned at your convenience. Thank you for your kind attention.

Yours faithfully,

For and on behalf of R-riches Property Consultants Limited

Louis TSE Town Planner

cc DPO/FSYLE, PlanD

(Attn.: Ms. Andrea YAN (Attn.: Ms. Olivia NG

email: email:))

Responses-to-Comments

Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land and Pond in "Agriculture" Zone, Lot 1291 (Part) in D.D. 107, Fung Kat Heung, Kam Tin, Yuen Long, New Territories

(Application No. A/YL-KTN/1004)

(i) A RtoC Table:

Departmental Comments	Applicant's Responses	
1. Comments of the Chief Engineer/Mainland	North, Drainage Services Department (CE/MN,	
DSD)		
(Contact Person: Mr. Terence TANG; Tel.: 23	00 1257)	
(a) Please add the R-to-C in the report text and also drawing.	Noted. Please refer to Section 4.1.2 in the report and Figure 3C .	
(b) Please submit a full report with all R-to-C record included as appendix for reference.	Noted. Please refer to the updated full report (Annex I).	
2. Comments of the Chief Town Planner/Fanl	ing Sheung Shui and Yuen Long East, Planning	
Department (DPO/FSYLE, PlanD)		
(Contact Person: Ms. Olivia NG; Tel.: 3168 40	945)	
(a) Noting that an area neat the application site is covered by another planning permission under application No. A/YL- KTN/994 for open storage use submitted by the same applicant as the current application, please clarify the relationship between the current application and the application No. A/YL-KTN/994.	The applicant would like to use the application site (the Site) and the adjacent site (i.e. the application site of S.16 planning application No. A/YL-KTN/994) to alleviate the pressing demand for open storage and warehousing services, as well as to support the local warehousing and logistics industries. After planning approval has been granted by the Town Planning Board, the applicant will be responsible for the construction and management of the proposed development, the Site and the adjacent site will be rented to two business operators to specialise in services providing for 'open storage' and 'warehouse' uses. Therefore, two separate S.16 planning applications were submitted for better management, to create additional employment opportunities, and to boost the local economy.	

Proposed Temporary Warehouse (Excluding Dangerous Goods Godown) with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land and Pond in "Agriculture" Zone, Lot 1291 (Part) in D.D. 107, Fung Kat Heung, Kat Tin, Y.L., N.T.

Drainage Appraisal

Drainage Appraisal

Table of Content

1.	Intro	oduction	1
1.	.1	Background	1
1.	.2	The Site	1
2.	Deve	elopment Proposal	2
2.	.1	The Proposed Development	2
3.	Asse	essment Criteria	2
4.	Proposed Drainage System		
5.	Cond	clusion	5

List of Table

Table 1 - Key Development Parameters	2
Table 2– Design Return Periods under SDM	2

List of Figure

Figure 1 – Site Location Plan
Figure 2 - Existing Drainage Plan
Figure 3 – Proposed Drainage System
Figure 4 – Catchment Plan
List of Appendix
Appendix A – Design Calculation
Appendix B - Development Layout Plan
Appendix C – Reference Drawings for UChannel and Catchpit
Appendix D – Sections
Annendix E - Design Checking of existing channel

Appendix F – Responses to Comments Tables

Drainage Appraisal

1. Introduction

1.1 Background

- 1.1.1 The applicant seeks planning permission from the Town Planning Board (the Board) to use Lot 1291 (Part) in D.D. 107, Fung Kat Heung, Kam Tin, Yuen Long, New Territories (the Site) for 'Proposed Temporary Warehouse (Excluding Dangerous Goods Godown) with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land and Pond' (Proposed Development).
- 1.1.2 This Drainage Proposal is to support the planning application for the proposed use.

1.2 The Site

- 1.2.1 The Application Site at Kam Tin North has an area of about 6,968 m². The site is currently an unused grassland with temporary structures and a small dried pond. The site location plan is shown in **Figure 1**.
- 1.2.2 The existing ground level of the site is approx. +12.4 mPD to 15.6 mPD and it is intended to fill to +12.8 mPD to +15.8 mPD. The ground level is gently falling from east to west.
- 1.2.3 There is an existing approx.. 7m width channel about 50m at the south of the site. Existing Drainage Plan and Site Photo of existing 7m width channel are shown in **Figure 2** for reference.
- 1.2.4 Proposed Development Layout plan is shown in **Appendix B** for reference.

Drainage Appraisal

2. Development Proposal

2.1 The Proposed Development

2.1.1 The total site area is approximately 6,968 m². The indicative development schedule is summarized in **Table 1** below for technical assessment purpose. Catchment plan with external catchment is shown in **Figure 4**.

Proposed Development	
Total Site Area (m ²)	6,968
Paved Area (m ²)	6,968
Assume all proposed site area as paved area	
after development for assessment purpose	
Table 1 - Key Development Parameters	

3. Assessment Criteria

3.1.1 The Recommended Design Return Period based on Flood Level from SDM (Table 10) is adopted for this DIA. The recommendation is summarized in **Table 2** below.

Description	Design Return Periods
Intensively Used Agricultural Land	2 – 5 Years
Village Drainage Including Internal Drainage System under a polder Scheme	10 Years
Main Rural Catchment Drainage Channels	50 Years
Urban Drainage Trunk System	200 Years
Urban Drainage Branch System	50 Years

Table 2– Design Return Periods under SDM

3.1.2 The proposed village drainage system intended to collect runoff from the internal site and upper catchment to discharge to existing approx. 7m width channel at the south of the site. 1 in 10 years return period is adopted for the drainage design.

Drainage Appraisal

- 3.1.3 Stormwater drainage design will be carried out in accordance with the criteria set out in the Stormwater Drainage Manual published by DSD. The proposed design criteria to be adopted for design of this stormwater drainage system and factors which have been considered are summarised below.
 - 1. Intensity-Duration-Frequency Relationship The Recommended Intensity-Duration-Frequency relationship is used to estimate the intensity of rainfall. It can be expressed by the following algebraic equation.

$$i = \frac{a}{(t_d + b)^c}$$

The site is located within the HKO Headquarters Rainfall Zone. Therefore, for 10 years return period, the following values are adopted.

а	=	471.9
b	=	3.02
с	=	0.397

2. The peak runoff is calculated by the Rational Method i.e. $Q_p = 0.278$ CiA

where	Q_p	=	peak runoff in m ³ /s
	С	=	runoff coefficient (dimensionless)
	i	=	rainfall intensity in mm/hr
	А	=	catchment area in km ²

3. The run-off coefficient (C) of surface runoff are taken as follows:

•	Paved Area:	C = 0.95
•	Unpaved Area:	C = 0.35

Drainage Appraisal

4. Manning's Equation is used for calculation of velocity of flow inside the channels:

Manning's Equation: $v = \frac{R^{\frac{1}{6}}}{n} R^{\frac{1}{2}} S_f^{\frac{1}{2}}$

Where,

- V = velocity of the pipe flow (m/s)
- S_f = hydraulic gradient
- n = manning's coefficient
- R = hydraulic radius (m)
- 5. Colebrook-White Equation is used for calculation of velocity of flow inside the pipes:

Colebrook-White Equation:

$$\underline{v} = -\sqrt{32gRS} \log \log \left(\frac{k_s}{14.8R} + \frac{1.255v}{R\sqrt{32gRS_f}}\right)$$

where,

V	=	velocity of the pipe flow (m/s)
Sf	=	hydraulic gradient
k_{f}	=	roughness value (m)
v	=	kinematics viscosity of fluid
D	=	pipe diameter (m)
R	=	hydraulic radius (m)

Drainage Appraisal

4. Proposed Drainage System

- 4.1.1 Proposed drainage system are designed for collection of runoff from the application site and external catchment at the north-east. It is proposed to discharge to existing approx. 7m channel at south of the development. The alignment, size and gradient of the proposed drains are shown in **Figure 3**. The catchment plan is shown in **Figure 4**.
- 4.1.2 Where any hoarding or wall to be erected, 100mm separation opening from ground level to be provided along the hoarding/wall.
- 4.1.3 The design calculations of proposed drains are shown in **Appendix A**.
- 4.1.4 The reference standard drawings of drains are shown in **Appendix C**.
- 4.1.5 Design checking of existing downstream approx. 7m channel is shown in **Appendix E**.

5. Conclusion

- 5.1.1 A drainage appraisal has been conducted for the Proposed Development. The surface runoff from the Application Site will be collected by the proposed drains and discharged to the existing channel at south.
- 5.1.2 With the proposed drainage system, it is anticipated that there will be no significant drainage impact to the area after the implementation of the development.

- End of Text -

FIGURES

LEGEND:

	Combined Manhole
ъ	Overflow (Combined)
-	Pipe (Combined)
	Interface Valve Chamber
	Sewer Manhole
	Oil / Petrol Interceptor
S	Overflow (Sewer)
-	Pipe (Sewer)

н	Tapping Point (Sewer)	н	Tapping Point (Storm)
	Sewer Terminal Manhole	٥	Storm Water Terminal Manhole
•	Catchpit	7223	Tunnel Protection Zone (100m / 200m)
↦	Inlet	7223	Tunnel Protection Zone (General Range)
•	Storm Water Manhole		Tunnel / Box Culvert (Sewer)
+-(Outlet	8008	Tunnel / Box Culvert (Storm)
_	Pipe (Storm)		
-	Sand Trap	•••	EXISTING U CHANNEL

Appendix

U Channel 1 (Zone A1 + B1)						
Runoff Estimation						
Design Return Period	Т	1 in	10	vears		
Paved Area	360 + 1990 x 0.3 =		957	(m2)		
Unpaved Area	1990 x 0.7 =		1393	(m2)		. a
Total Equivalent Area	957 x 0.95 + 1393 x 0.35 =		1397	(m2)		$_{*}$ $l = \frac{1}{(t_{*} + h)^{c}}$
Rainfall Intensity, I *			206	mm/hr		(a + b)
Design Discharge Rate, Q	0.278 x 1397 x 206 / 1000000 =		0.080	m3/s		
U Channel						
Channel Size			375	(mm)		
Gradient		1 in 🚽	200			
Area	$\pi \times 0.38^2 / 8 + 0.38 \times 0.38 / 2 =$		0.126	(m2)		
Wetted Perimeter	$\pi \times 0.38 / 2 + 0.38 / 2 \times 2 =$		0.964	(m)		
R	0.126 / 0.964 =		0.130	(m)		
Velocity			1.30	m/s		
Capacity			0.163	m3/s		
Utilization	0.08 / 0.163	=	49.22	%	ОК	(less than 90%, for 10% siltation allowand
U Channel 2 (Zone [A1 + B1]	+A4)					
Runoff Estimation						
Design Return Period	1	1 in	10	vears		
Paved Area	$957 + 2243 \times 1 =$		3200	(m2)		
Unpaved Area	1393 =		1393	(m2)		a
Total Equivalent Area	$3200 \times 0.95 + 1393 \times 0.35 =$		3528	(m2)		$* i = \frac{u}{1 + 1 + 1}$
Rainfall Intensity 1*	6200 X 0100 Y 1000 X 0100 =		206	mm/hr		$(t_d + b)^c$
Design Discharge Rate, O	0 278 x 1393 x 206 / 1000000 -		0 202	m3/s		
U Channel						
Channel Size			450	(mm)		
Gradient		1 in	200			
Area	$\pi \times 0.45^2 / 8 + 0.45 \times 0.45 / 2 =$		0.181	(m2)		
Wetted Perimeter	$\pi \times 0.45 / 2 + 0.45 / 2 \times 2 =$		1.157	(m)		
R	0.181 / 1.157 =		0.156	(m)		
Velocity			1.47	m/s		
Capacity			0.265	m3/s		
Utilization	0.202 / 0.265	=	76.45	%	ОК	(less than 90%, for 10% siltation allowand
U Channel 3 (Zone B2)						
Runoff Estimation		,				
Design Return Period		1 in	10	years		
Paved Area	2366 x 0.3 =		710	(m2)		
Unpaved Area	2366 x 0.7 =		1656	(m2)		a
Total Equivalent Area	710 x 0.95 + 1656 x 0.35 =		1254	(m2)		* $i = \frac{1}{(t + b)^{c}}$
Rainfall Intensity, I *			206	mm/hr		$(l_d + b)^{\circ}$
Design Discharge Rate, Q	0.278 x 1254 x 206 / 1000000 =		0.072	m3/s		
U Channel (Half round to U)	T		000	(
U Channel (Half round to U) Channel Size			300	(mm)		
U Channel (Half round to U) Channel Size Gradient		1 in	300 200	(mm)		
U Channel (Half round to U) Channel Size Gradient Area	π x 0.3 ² /8 + 0.3 x 0.3/2 =	1 in	300 200 0.080	(mm) (m2)		
U Channel (Half round to U) Channel Size Gradient Area Wetted Perimeter	$\begin{aligned} \pi & x \ 0.3^{2} \ /8 \ + \ 0.3 \ x \ 0.3/2 \ = \\ \pi & x \ 0.3 \ / \ 2 \ + \ 0.3/2 \ x \ 2 \ = \end{aligned}$	1 in	300 200 0.080 0.771	(mm) (m2) (m)		
U Channel (Half round to U) Channel Size Gradient Area Wetted Perimeter R	$\pi \times 0.3^{2}/8 + 0.3 \times 0.3/2 = \\\pi \times 0.3/2 + 0.3/2 \times 2 = \\0.08/0.771 =$	1 in	300 200 0.080 0.771 0.104	(mm) (m2) (m) (m)		
U Channel (Half round to U) Channel Size Gradient Area Wetted Perimeter R Velocity	$\begin{aligned} &\pi \times 0.3^{A_2}/8 \ + \ 0.3 \times 0.3/2 \ = \\ &\pi \times 0.3/2 \ + \ 0.3/2 \ \times 2 \ = \\ &0.08/0.771 \ = \end{aligned}$	1 in	300 200 0.080 0.771 0.104 1.12	(mm) (m2) (m) (m) m/s		
U Channel (Half round to U) Channel Size Gradient Area Wetted Perimeter R Velocity Capacity	$\pi \times 0.3^{2}/8 + 0.3 \times 0.3/2 = \\\pi \times 0.3/2 + 0.3/2 \times 2 = \\0.08/0.771 =$	1 in	300 200 0.080 0.771 0.104 1.12 0.090	(mm) (m2) (m) (m) m/s m3/s		
U Channel (Half round to U) Channel Size Gradient Area Wetted Perimeter R Velocity Capacity	$\begin{aligned} &\pi \times 0.3^{A}2 / 8 \ + \ 0.3 \times 0.3 / 2 \ = \\ &\pi \times 0.3 / 2 + 0.3 / 2 \times 2 \ = \\ &0.08 / 0.771 \ = \end{aligned}$	1 in	300 200 0.080 0.771 0.104 1.12 0.090	(mm) (m2) (m) (m) m/s m3/s		

Design Return Period Priod Area T(1 + 1755 = 1 in 10 years Uppaved Area T(0 + 1755 = 1 in 10 years Uppaved Area 1056 = 1056 (m2) 2658 (m2) years 2 default Area 100 (m2) 2658 (m2) 200 (m2) years 2 default Area 0.278 x 2921 x 208 / 1000000 = 0.118 (m2) years 2 default Area 1 m 200 (m2) years years 2 default Area 1 m 200 (m2) years years 2 default Area 1 m 200 (m2) years years 2 default Area 1 m 200 (m2) years years 2 default Area 1 m 10 (m2) years years 2 default Area 1 m 10 (m2) years years 2 default Area 1 m 10 (m2) years years 2 default Area 2 default Area 2 default Area years years 2 default Area 2 default Area 2 default Area years years 2 default Area 2 default Area	Runoff Estimation						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Design Return Period		1 in	10	vears		
$ \begin{array}{c} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 2 & 265 \times 0.55 + 1565 \times 0.35 & 2231 & (m_1^2) \\ 2 & 265 \times 0.55 + 1565 \times 0.35 & 2231 & (m_1^2) \\ 2 & 265 \times 0.55 + 1565 \times 0.35 & 2231 & (m_1^2) \\ 2 & 265 \times 0.55 + 1565 \times 0.35 & 2231 & (m_1^2) \\ 2 & 265 \times 0.55 + 1565 \times 0.35 & 2231 & (m_1^2) \\ 2 & 205 & m_1^{NB} \end{array} $ $ \begin{array}{c} t = \frac{a}{(t_a + b)^2} \\ t = \frac{a}{(t_a + b)^2$	Design Retain Fonda	710 + 1755 =		2465	(m2)		
The definition and the set of th		1656 -		1656	(m2)		<i>a</i>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T-t-L Suivelent Area	1050 = 2465 × 0.05 + 1656 × 0.25 =		2021	(1112)		* i = <u>u</u>
Understelling Comments of the second se	Total Equivalent Area	2405 X U.95 + 1050 X U.55 =		2921	(m∠)		$(t_d + b)^c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rainfall Intensity, I*	0.070 + 2024 + 200 / 4000000		206	mm/hr		
U Channel Channel Size Gradenti Area Im 450 200 (rm) 0.181 Wited Perimeter If x 0.45/2/8 + 0.45 x 0.45/2 = 1 0.187 0.181 (rm) 0.181 Weited Perimeter 0.181/1.157 = 0.157 0.17 (rm) 0.181/1.157 = 0.17 0.161 Weited Perimeter 0.181/1.157 = 0.167 0.167 (rm) 0.265 rm 3/9 OK U Channel 5 (Zone A2 + [A3 + B2]) Runoff Estimation 0.168 / 0.265 = 6.3.1 % % OK (less than 90%, for 10% sittation allowance) U Channel 5 (Zone A2 + [A3 + B2]) Runoff Estimation 2465 + 2210 x 1 = 1 fm 10 years 4675 x 0.95 + 1656 x 0.35 = 5021 (rm2) 4675 x 0.95 + 1656 x 0.35 = 5021 (rm2) 4675 x 0.95 + 1566 x 0.35 = 5021 (rm2) 4675 x 0.95 + 1056 x 0.452 z = 0.156 (rm2) 4675 x 0.95 + 1056 x 0.452 z = 0.156 (rm2) 4675 x 0.95 + 1056 x 0.452 z = 0.156 (rm2) 7 x 0.45/2/8 + 0.452 x 2 = 0.156 (rm2) 7 x 0.45/2/8 + 0.452 x 2 = 0.156 (rm2) 2.077 mtg 2.077 mtg 2.077 rmg 2.077 rmg	Design Discharge Rate, Q	0.278 X 2921 X 2067 1000000 =		0.168	m3/s		
U Channel Im 450 (mm) Gradenti Area $\pi \times 0.45^{1}2/8 + 0.45 \times 0.452 = 1$ 1.16 (m2) Wated Perimeter $\pi \times 0.45^{1}2/8 + 0.452 \times 2 = 0$ 1.15 (mm) Wondoly 0.181 / 1.157 = 0 1.17 (m) Capacity 0.181 / 1.157 = 0 1.17 (m) UBLIZation 0.168 / 0.265 = 6 63.31 % OK (less than 90%, for 10% siltation allowance) U Channel 5 (Zone A2 + [A3 + B2]) Rumoff Estimation 0.168 / 0.265 = 6 63.31 % OK (less than 90%, for 10% siltation allowance) U Channel 5 (Zone A2 + [A3 + B2]) Rumoff Estimation 2465 + 2210 x 1 = 1 1 in 10 years Total Estimation 0.278 x 0.251 x 206 / 1000000 = 0 0.288 mm/hr $t = \frac{a}{(t_a + b)^c}$ Design Discharge Rate, Q 0.278 x 0.25 x 0.452 = 1 1.16 (m2) $t = \frac{a}{(t_a + b)^c}$ U Channel 5/Combined: 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) U Channel 5 (Combined: Zone [A1 + A4 + B1] + [A2 + A3 + B2]) Rumoff Estimation 0.2							
$\begin{array}{c} \text{Latitude 12826} \\ \text{Tr} x 0.45^{1/2}/8 + 0.45 \times 0.452 = 1 \\ \text{Webs} \\ \text{Webs} \\ \text{Velocity} \\ \text{Capacity} \\ \text{Velocity} \\ \text{Capacity} \\ \text{Ullization} \\ \text{Ullization} \\ \text{Unamel S (Zone A2 + [A3 + B2])} \\ \hline \\ \begin{array}{c} \text{Runoff Estimation} \\ \text{Design Return Pariod} \\ \text{Preved Area} \\ \text{Capacity} \\ \text{Unamel Size} \\ \text{Gradient} \\ \text{Runoff Size} \\ \text{Runoff Size} \\ \text{Gradient} \\ \text{Runoff Size} \\ Gra$	U Channel			150	(
Gradient Area Rest Weaking $T \propto 0.452 \ 8 + 0.45 \ x 0.452 \ 2 = 0 \\ T \propto 0.457 \ 2 + 0.452 \ 2 2 = 0 \\ T \propto 0.457 \ 2 + 0.452 \ 2 2 = 0 \\ T \propto 0.457 \ 2 + 0.452 \ 2 2 = 0 \\ T \propto 0.457 \ 2 + 0.452 \ 2 2 = 0 \\ T \propto 0.457 \ 2 + 0.452 \ 2 2 = 0 \\ T \propto 0.457 \ 2 + 0.452 \ 2 2 = 0 \\ T \propto 0.457 \ 2 + 0.452 \ 2 + 0 \\ T \propto 0.457 \ 2 + 0.452 \ 2 + 0 \\ T \propto 0.457 \ 2 + 0.452 \ 2 + 0 \\ T \propto 0.457 \ 2 + 0.452 \ 2 + 0 \\ T \propto 0.457 \ 2 + 0.457 \ 2 + 0.457 \ 2 + 0.457 \ 2 + 0.457 \ 4 + 0.57 \\ T \propto 0.457 \ 2 + 0.457 \ 2 + 0.457 \ 4 + 0.$	Channel Size		4.54	450	(mm)		
Area Tr 2.0 45% 24 + 0.45 × 0.45% 2 = 0.151 (m2) Tr 2.0 45% 24 + 0.45 × 0.45% 2 = 0.157 (m) 0.161 / 1.157 = 0.156 (m) 0.265 m3/s Ublication 0.168 / 0.265 = 6.3.31 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.168 / 0.265 = 6.3.31 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.168 / 0.265 = 6.3.31 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.168 / 0.265 = 6.3.31 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.168 / 0.265 = 0.3.31 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.168 / 0.265 = 0.3.31 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.168 / 0.265 = 0.021 (m2) Draped Area Unpaved Area Tr 2.045 × 2.05 + 1656 x 0.35 = 0.021 (m2) Draped Area Tr 2.045 × 2.05 / 1000000 = 0.268 mm/hr Oceaned Size Gradient Area R N 0.181 / 1.157 = 0.156 (m) O.181 / 1.157 = 0.156 (m) O.181 / 1.157 = 0.156 (m) O.181 / 1.157 = 0.375 m3/s Ublication 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.288 / 0.375 = 0.94 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.288 / 0.375 = 0.94 % OK (less than 90%, for 10% sitiation allowance) Ublication 0.288 / 0.375 = 0.95 % 0.05 % 0.055 = 0.071 mm/hr Design Return Pendo Design	Gradient		1 in 📃	200	()		
We the definition of the set of	Area	$\pi \times 0.45^{2}/8 + 0.45 \times 0.45/2 =$	(0.181	(m2)		
R 0.181 / 1.157 = 0.156 (m) Qapacity 0.265 m34 Ublication 0.168 / 0.265 = 63.31 % OK (less than 90%, for 10% silitation allowance) Ublication 0.168 / 0.265 = 63.31 % OK (less than 90%, for 10% silitation allowance) Ublication 0.168 / 0.265 = 63.31 % OK (less than 90%, for 10% silitation allowance) Ublication 0.168 / 0.265 = 63.31 % OK (less than 90%, for 10% silitation allowance) Ublication 2465 + 2210 x 1 = 1 in 10 years (m) Uppaced Area 1056 = 1.056 (m2) 208 mm/hr Design Batum Period 0.278 x 5021 x 206 / 1000000 = 0.288 mm/hr 0.155 (m) Channel Stoc 0.151 (n.157 = 0.156 (m) 0.375 (m2) 0.455 (m2) Gradent max 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% silitation allowance) Ublication 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% silitation allowance) Ublication <	Wetted Perimeter	$\pi \times 0.45 / 2 + 0.45 / 2 \times 2 =$		1.157	(m)		
Velocity 1.47 m/s Utilization 0.168 / 0.265 = 63.31 % OK (less than 90%, for 10% silitation allowance) Utilization 0.168 / 0.265 = 63.31 % OK (less than 90%, for 10% silitation allowance) U Channel 5 (Zone A2 + [A3 + B2]) Runoff Estimation 1 10 years Paved Area 2465 + 2210 x 1 = 1 10 years Unpaved Area 2465 + 2210 x 1 = 1 100 years Table Equivalent Area 2465 + 2210 x 1 = 1 656 = (m2) Stall Equivalent Area 2465 x 0.35 = 5021 x (m2) . $l = \frac{a}{(t_d + b)^c}$ Channel Sce 1 1 0 0.181 (m2) . $l = \frac{a}{(t_d + b)^c}$ Velocity 2.07 ms 2.07 ms . $l = \frac{a}{(t_d + b)^c}$ Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siliation allowance) Utilization 0.288 / 0.375 = 787.5 (m2) . . $l = \frac{a}{(t_d + b)^c}$ Utilization	R	0.181 / 1.157 =	(0.156	(m)		
Capacity 0.265 m3/s Utilization 0.168 / 0.265 = 63.31 % OK (less than 90%, for 10% sitiation allowance) U Channel 5 (Zone A2 + [A3 + B2]) Runoff Estimation .	Velocity			1.47	m/s		
Utilization 0.168 / 0.26 = 63.31 % OK (less than 90%, for 10% siliation allowance) Utilization 0.168 / 0.26 = 63.31 % OK (less than 90%, for 10% siliation allowance) Utilization Design Return Period Pareed Area Channel Stee Sandardi Markan 2465 + 2210 x 1 = 1 in 10 years 4675 x 0.35 + 1565 x 0.35 = 5021 (m2) 5026 (mn)hr + $i = \frac{a}{(t_a + b)^c}$ Unpared Area Channel Stee Channel Stee Channel Stee Capacity T x 0.457 / 28 + 0.45 x 0.45/2 = 0.161 (m2) 0.181 / 1.157 = 0.081 (m2) 0.0375 m3/s · $i = \frac{a}{(t_a + b)^c}$ Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siliation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siliation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siliation allowance) Utilization 0.288 / 0.375 = 76.94 (m2) 7875 x 0.35 + 3049 x 0.35 = 0.469 (m2) 7875 x 0.35 + 3049 x 0.35 = 0.469 (m2) 7875 x 0.35 + 3049 x 0.35 = 0.467 (m2) 7875 x 0.35 + 3049 x 0.35 = 0.467 (m2) 7875 x 0.35 + 3049 x 0.35 = 0.407 (m3) 7875 x 0.35 + 3049 x 0.35 = 0.407 (m3) 7875 x 0.35 + 3049 x 0.35 = 0.407 (m3) 7875 x 0.35 + 3049 x 0.35 = 0.407 (m3) 7875 x 0.35 + 3049 x 0.35 = 0.407 (m3) 7	Capacity			0.265	m3/s		
U Channel 5 (Zone A2 + [A3 + B2]) Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Channel Scharge Rate, 0 Distign Return Period Paved Area Uppaved Area Channel Size Gradent Area Wetted Perimeter R Ublization 0.288 / 0.375 = 76.54 OK (less than 90%, for 10% siltation allowance) Vilization 0.288 / 0.375 = 76.54 Vilization 0.288 / 0.375 = 76.54 Vilization 0.288 / 0.375 = 76.54 Vilization 0.288 / 0.375 = 7875 Uppaved Area Uppavel Area Using Network Period Paved Area Using Network Period Paved Area Uppavel Area Uppavel Area Uppavel Area Uppavel Area Uppave	Utilization	0.168 / 0.265	=	63.31	%	ОК	(less than 90%, for 10% siltation allowance)
O Channel S L 2010 P A2 + 153 + 52 (1) Canance 100 P A2 + 153 + 52 (1) Design Return Period Paved Area 2465 + 2210 x 1 = 1 in 10 years Unpaved Area 10656 = 11 in 10 years Rainfall Intensity, 1* 2465 + 2210 x 1 = 1666 (m2) 4675 x 0.95 + 1666 x 0.35 = 5021 (m2) Addition Area 4675 x 0.95 + 1666 x 0.35 = 5021 (m2) 206 mm/hr . i = $(t_d + b)^c$ Channel 0.278 x 5021 x 206 / 1000000 = 0.288 mm/hr . . i = $(t_d + b)^c$ Channel 0.278 x 5021 x 206 / 1000000 = 0.288 mm/hr . . . i = $(t_d + b)^c$ Channel Size 1 in 100 .	U Channel 5 (Zone A2 + [
Kurring upper diversion 1 in 10 years Paved Area 2465 + 2210 x1 = 1 in 10 years Dasign Return Period 2465 + 2210 x1 = 4675 (m2) 4675 (m2) Total Equivalent Area Ad55 x 0.95 + 1656 x 0.35 = 5021 (m2) (m2) Adfailal Intensity, 1* Design Discharge Rate, Q CZ78 x 5021 x 206 / 1000000 = 0.288 mm/hr U Channel U Channel T x 0.45 ¹ /2 + 0.45/2 x 2 = 0.181 (m2) mm/r Gradient T x 0.45 ¹ /2 + 0.45/2 x 2 = 0.181 (m2) mm/r R Q.278 x 50.4 x 0.45/2 = 0.181 (m2) mm/r Velecity Q.181 / 1.157 = Q.207 m/s Q.375 m3/s Utilization Q.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) U Channel 6 (Combined: Zone [A1 + A4 + B1] + [A2 + A3 + B2]) Empand Area Mm/r Paved Area Q.278 x 80.48/2 = Q.781 mm/hr Uppaved Area 4675 + 1303 = 206 (m2) mm/r e = $\frac{a}{(t_d + b)^c}$ i = $\frac{a}{(t_d + b)^c}$ UDial Equivalent Area Not Sista 206 / 1000000 = 0.781 mm/hr	Dunoff Estimation	<u>A3 + B2)</u>					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1					
Paved Area Draved Area Total Equivalent Area Rainal Intensity, 1* Design Discharge Rate, Q U Channel U D U Channel U D U 	Design Return Period		1 in	10	years		
Unpared Area Total Equivalent Area Raintall Intensity, I* Design Discharge Rate, Q $\frac{1656 = 4675 \times 0.95 + 1656 \times 0.35 = 5021 (m2)}{0.278 \times 50.21 \times 206 / 1000000 = 0.288 mm/hr}$ $\cdot i = \frac{a}{(t_d + b)^c}$ $\cdot i = \frac{a}{(t_d + b)^c}$ $\cdot i = \frac{a}{(t_d + b)^c}$ $t = \frac{a}{(t_d + b)^c}$	Paved Area	2465 + 2210 x 1 =		4675	(m2)		
Tatal Equivalent Area Rainal Intensity, I * Design Discharge Rate, Q	Unpaved Area	1656 =		1656	(m2)		, a
Raintall Intensity, 1* 208 mm/hr (value) Design Discharge Rate, Q 0.278 x 5021 x 206 / 1000000 = 0.288 mm/hr UChannel 0.278 x 5021 x 206 / 1000000 = 0.288 mm/hr UChannel 1 100 (mm) Area $\pi x 0.45^{52}/8 + 0.45 x 0.45/2 = 0.181 (m2) R 0.181 / 1.157 = 0.186 (m) Velocity 0.181 / 1.157 = 2.07 mis Capacity 0.375 m3/s OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Disgin Return Period 4675 + 3200 = 1 in 10 years Paved Area 7875 x 0.95 + 3049 x 0.35 = 85.48 (m2) . i = (t_d + b)^c Unpaved Area 0.278 x 85.48 x 0.068/2 = $	Total Equivalent Area	4675 x 0.95 + 1656 x 0.35 =		5021	(m2)		$* i = \frac{1}{(t+h)^c}$
Design Discharge Rate, Q 0.278 x 5021 x 206 / 1000000 = 0.288 mm/hr U Output Output Output Output Main of the second s	Rainfall Intensity, I *			206	mm/hr		$(u_d + u)^{-1}$
U Channel Channel Size T x 0.45^2/8 + 0.45 x 0.45/2 = (mm) Gradient T x 0.45^2/8 + 0.45 x 0.45/2 = (n 111) Area T x 0.45/2 + 0.45/2 x 2 = (n 181) (m2) Weted Perimeter T x 0.45/2 + 0.45/2 x 2 = (n 181) (m2) R 0.181/1.157 = 2.07 m/s Capacity 0.375 m3/s OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Design Discharge Rate O 108 109 years 3049 (m2) 3049 (m3) Design Discharge Rate, Q 0.278 x 8548 x 206 / 1000000 = 0.781 mm/hr I = $d(d_d + b)^c$ <	Design Discharge Rate, Q	0.278 x 5021 x 206 / 1000000 =	(0.288	mm/hr		
Uninnel 450 (mm) Gradient 1 in 100 (mm) Gradient $\pi \times 0.45^{5/2}/8 + 0.45 \times 0.45/2 = 0.181$ (mm) Wetted Perimeter $\pi \times 0.45^{5/2}/8 + 0.45 \times 0.45/2 = 0.156$ (mm) R 0.181 / 1.157 = 0.156 (mm) 0.181 / 1.157 = 0.375 m3/s Utilization 0.288 / 0.375 = 76.94 % V Channel 5(Combined: Zone [A1 + A4 + B1] + [A2 + A3 + B2]) R Runoff Estimation 1 in 10 years (n2) Design Return Period 4675 + 3200 = 1 in 7875 (n2) (n2) Paved Area 1656 + 1393 = 3049 (n2) . Total Equivalent Area 7875 x 0.95 + 3049 x 0.35 = 8648 (n2) . Rinfall Intensity. 1* 0.278 x 8548 x 206 / 1000000 = 0.781 mm/hr . . U Channel C U Channel Size 1 in 200 .	11 Ob - must						
Gradient 1 in 100 1 Area $\pi \times 0.455^{12}/8 + 0.45 \times 0.45/2 = 1.157$ (m) 0.181 Wetted Perimeter $\pi \times 0.45^{12}/8 + 0.45/2 \times 2 = 1.157$ (m) 0.181 R 0.181 / 1.157 = 0.156 0.181 Velocity 0.375 m3/s Utilization 0.288 / 0.375 = 76.94 W OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 Velocity 0.375 m3/s OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Uppaved Area 4675 + 3200 = 1 in 7875 (m2) (m2) issee (mm/hr) issee (mm/hr) issee (mm/hr) Rainfall Intensity, I* 0.278 x 8548 x 206 / 10000000 = 0.781 mm/hr) in<	Channel Size		_	450	(mm)		
Area $\pi \times 0.45^2/8 + 0.45 \times 0.45/2 = 0.181$ (m2) $\pi \times 0.45/2 + 0.45/2 \times 2 = 1.157$ (m) 0.181 / 1.157 = 0.156 (m) 0.181 / 1.157 = 0.375 m3/s Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Upper data 1 in 10 years 200 mm/hr Design Return Period 4675 + 3200 = 18775 (m2) 7875 (m2) Unpaved Area 1666 + 1393 = 3049 x 0.35 = 8548 (m2) 7875 x 0.95 + 3049 x 0.35 = 206 mm/hr $i = \frac{a}{(t_d + b)^c}$ UChannel Size T x 0.68^2/8 + 0.68 x 0.68/2 = 0.781 mm/hr $i = \frac{a}{(t_d + b)^c}$ UChannel Size T x 0.68^2/8 + 0.68 x 0.68/2 = 0.407 (m2) $i = \frac{0.234 (m)}{1.32 m/s}$ Velocity 0.407 / 1.735 = 0.234 (m) $i = 0.421 (m3)$	Gradient		1 in	100	` '		
Wetted Perimeter $\pi \times 0.45/2 + 0.45/2 \times 2 =$ 1.157 (m) R 0.181 / 1.157 = 0.156 (m) Velocity 0.375 m3/s Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Design Return Period A4 + B1] + [A2 + A3 + B2]) Runoff Estimation years years Design Return Period 1 in 10 years 7875 (m2) (m2) (less than 90%, for 10% siltation allowance) Unpaved Area 4675 + 3200 = 1 in 10 years years (less than 90%, for 10% siltation allowance) Unpaved Area 1656 + 1393 = 3049 (m2) (m2) (less than 90%, for 10% siltation allowance) Unpaved Area 7875 x 0.95 + 3049 x 0.35 = 8548 (m2) (less than 90%, for 10% siltation allowance) Urbannel 7875 x 0.95 + 3049 x 0.35 = 0.266 mm/hr . i Channel Size 1 in 200 0.407 (m2) . i i	Area	$\pi \times 0.45^{2} / 8 + 0.45 \times 0.45 / 2 =$	1	0.181	(m2)		
Interference Interference <thinterference< th=""> Interferenc <thi< td=""><td>Wetted Perimeter</td><td>$\pi \times 0.45 / 2 + 0.45 / 2 \times 2 =$</td><td></td><td>1.157</td><td>(m)</td><td></td><td></td></thi<></thinterference<>	Wetted Perimeter	$\pi \times 0.45 / 2 + 0.45 / 2 \times 2 =$		1.157	(m)		
Velocity 2.07 m/s Capacity 0.375 m/s Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Up channel 6 (Combined: Zone [A1 + A4 + B1] + [A2 + A3 + B2]) Runoff Estimation	R	0.181/1.157 =	i.	0.156	(m)		
Clapacity Discrete mark Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Upgated Area 1 in 10 years 7875 (m2) 7875 (m2) 98.04 99.05 99.06 99.06 90.07 <	Velocity			2.07	m/s		
Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) Utilization 0.288 / 0.375 = 76.94 % OK (less than 90%, for 10% siltation allowance) U Channel 6 (Combined: Zone [A1 + A4 + B1] + [A2 + A3 + B2]) Runoff Estimation . . i $a = \frac{1}{7875}$. . i $a = \frac{1}{10}$. . i $a = \frac{1}{10}$. . i $a = \frac{1}{10}$. . . $a = \frac{1}{(t_d + b)^c}$. . . $a = \frac{1}{(t_d + b)^c}$ $a = \frac{1}{(t_d + b)^c}$ $a = \frac{1}{(t_d + b)^c}$ $a = \frac{1}{(t_d + b)^c}$ $a = \frac{1}{(t_d + b)^c}$ $a = \frac{1}{(t_d + b)^c}$ $a = \frac{1}{(t_d + b)^c}$ $a = \frac{1}{(t_d + b)^c}$ $a = \frac{1}{(t_d + b)^c}$ $a = \frac{1}{(t_d + b)^c}$. </td <td>Capacity</td> <td></td> <td>,</td> <td>0 375</td> <td>m2/s</td> <td></td> <td></td>	Capacity		,	0 375	m2/s		
Utilization $0.288 / 0.375$ = 76.94 % OK (less than 90%, for 10% siltation allowance) U Channel 6 (Combined: Zone [A1 + A4 + B1] + [A2 + A3 + B2]) Runoff Estimation . . .	Сараску			0.375	1113/5		
U Channel 6 (Combined: Zone [A1 + A4 + B1] + [A2 + A3 + B2]) Runoff Estimation Design Return Period Paved Area 4675 + 3200 = 1 in 10 years Dynaved Area 4675 + 3200 = 7875 (m2) Unpaved Area 1656 + 1393 = 3049 (m2) Total Equivalent Area 7875 x 0.95 + 3049 x 0.35 = 8548 (m2) Rainfall Intensity, 1* 0.278 x 8548 x 206 / 1000000 = 0.781 mm/hr U Channel V Channel Size Gradient m x 0.682 / 8 + 0.68 x 0.68/2 = 0.407 (m2) Area m x 0.682 / 8 + 0.68 x 0.68/2 = 0.407 (m2) Wetted Perimeter m x 0.68 / 2 + 0.68/2 x 2 = 1.735 (m) R 0.407 / 1.735 = 0.234 (m) Velocity 0.491 m3/s 0.491 m3/s	Utilization	0.288 / 0.375	=	76.94	%	OK	(less than 90%, for 10% siltation allowance)
Understand Image: Constraint of the system of	U Channel 6 (Combined: Z	Zone [<u>A1 + A4 + B1] +[A2 + A3 + B</u>	2])				
Design Return Period 1 in 10 years Paved Area 4675 + 3200 = 7875 (m2) Unpaved Area 1656 + 1393 = 3049 (m2) Total Equivalent Area 7875 x 0.95 + 3049 x 0.35 = 8548 (m2) Rainfall Intensity, I* 206 mm/hr $(t_d + b)^c$ Design Discharge Rate, Q 0.278 x 8548 x 206 / 1000000 = 0.781 mm/hr Channel Size 1 in 200 Gradient $\pi x 0.68^{n} 2/8 + 0.68 x 0.68/2 = 0.407 (m2) Wetted Perimeter \pi x 0.68/2 + 0.68/2 x 2 = 1.735 (m) R 0.407 / 1.735 = 0.234 (m) Velocity 0.407 / 1.735 = 0.491 m3/s $	Runoff Estimation						
Paved Area $4675 + 3200 =$ 7875 (m2) Unpaved Area 1656 + 1393 = 3049 (m2) Total Equivalent Area 7875 x 0.95 + 3049 x 0.35 = 8548 (m2) Rainfall Intensity, I * 206 mm/hr 1675 (mm) Design Discharge Rate, Q 0.278 x 8548 x 206 / 1000000 = 0.781 mm/hr U Channel Size 1 in 200 Gradient 1 in 200 Area $\pi x 0.68^{4}/8 + 0.68 x 0.68/2 = 0.407 (m2) Wetted Perimeter \pi x 0.68/2 x 2 = 1.735 (m) R 0.407 / 1.735 = 0.234 (m) Velocity 0.491 m3/s $	Design Return Period		1 in	10	years		
Unpaved Area 1656 + 1393 = 3049 (m2) Total Equivalent Area 7875 x 0.95 + 3049 x 0.35 = 8548 (m2) Rainfall Intensity, 1* 206 mm/hr Design Discharge Rate, Q 0.278 x 8548 x 206 / 1000000 = 0.781 mm/hr U Channel Channel Size Gradient 1 in 200 Area $\pi x 0.68^2/8 + 0.68 x 0.68/2 = 0.407 (m2) Wetted Perimeter \pi x 0.68/2 x 2 = 1.735 (m) R 0.407 / 1.735 = 0.234 (m) Velocity 0.491 m3/s 1.92 m/s $	Paved Area	4675 + 3200 =		7875	(m2)		
Total Equivalent Area $7875 \times 0.95 + 3049 \times 0.35 =$ 8548 $(m2)$ Rainfall Intensity, 1* 206 mm/hr Design Discharge Rate, Q $0.278 \times 8548 \times 206 / 1000000 =$ 0.781 mm/hr U Channel Channel Size Gradient 1 in 200 Area $\pi \times 0.68^{n}/2 / 8 + 0.68 \times 0.68/2 =$ 0.407 (m2) Wetted Perimeter $\pi \times 0.68 / 2 + 0.68 / 2 \times 2 =$ 1.735 (m) R $0.407 / 1.735 =$ 0.234 (m) Velocity 0.491 m3/s m3/s	Unpaved Area	1656 + 1393 =		3049	(m2)		а
Note required intensity, 1* 206 mm/hr Design Discharge Rate, Q $0.278 \times 8548 \times 206 / 1000000 =$ 0.781 mm/hr U Channel 0.278 × 8548 × 206 / 1000000 = 0.781 mm/hr Gradient 1 in 200 Area $\pi \times 0.68^{\circ}2 / 8 + 0.68 \times 0.68 / 2 =$ 0.407 (m2) Wetted Perimeter $\pi \times 0.68 / 2 + 0.68 / 2 \times 2 =$ 1.735 (m) R $0.407 / 1.735 =$ 0.234 (m) Velocity 1.92 m/s Capacity 0.491 m3/s	Total Equivalent Area	$7875 \times 0.95 + 3049 \times 0.35 =$		8548	(m2)		$* i = \frac{1}{(1-i)}$
Unit of the sty, 1 200 mm/h Design Discharge Rate, Q $0.278 \times 8548 \times 206 / 1000000 =$ 0.781 mm/h U Channel Size 675 (mm) Gradient 1 in 200 1 Area $\pi \times 0.68^2 / 8 + 0.68 \times 0.68 / 2 =$ 0.407 (m2) Wetted Perimeter $\pi \times 0.68 / 2 + 0.68 / 2 \times 2 =$ 1.735 (m) R $0.407 / 1.735 =$ 0.234 (m) Velocity 1.92 m/s Capacity 0.491 m3/s	Painfall Intensity 1*	1010 X 0.00 1 0040 X 0.00 =		206	mm/hr		$(t_d + b)^c$
U Channel 0.270 × 8040 × 200 / 100000 = 0.701 mm/m Channel Size 1 in 200 Gradient 1 in 200 Area $\pi \times 0.68^2 / 8 + 0.68 \times 0.68 / 2 = 0.407 (m2) Wetted Perimeter \pi \times 0.68 / 2 + 0.68 / 2 × 2 = 1.735 (m) R 0.407 / 1.735 = 0.234 (m) Velocity 1.92 m/s Capacity 0.491 m3/s $	Docian Discharge Rate O	0 278 x 8548 x 206 / 1000000 -	,	0 781	mm/hr		
U Channel 675 (mm) Gradient 1 in 200 Area $\pi \times 0.68^{A}2/8 + 0.68 \times 0.68/2 = 0.407$ (m2) Wetted Perimeter $\pi \times 0.68/2 + 0.68/2 \times 2 = 1.735$ (m) R $0.407/1.735 = 0.234$ (m) Velocity 1.92 m/s Capacity 0.491 m3/s	Design Discharge Nate, Q	0.270 x 0340 x 2007 1000000 -		0.701	1111/111		
Channel Size 675 (mm) Gradient 1 in 200 Area π x 0.68 ² /8 + 0.68 x 0.68/2 = 0.407 Wetted Perimeter π x 0.68/2 x 2 = 1.735 R 0.407 / 1.735 = 0.234 Velocity 1.92 m/s Capacity 0.491 m3/s	II Channel				i		
Channel Size 1 in 000 (1111) Gradient 1 in 200 200 Area $\pi \times 0.68^{A}2/8 + 0.68 \times 0.68/2 = 0.407$ (m2) (m2) Wetted Perimeter $\pi \times 0.68/2 \times 2 = 1.735$ (m) (m) R 0.407 / 1.735 = 0.234 (m) 1.92 m/s Capacity 0.491 m3/s 1.92 m/s				075	(mm)		
Gradient $\pi x 0.68^{\prime} 2/8 + 0.68 x 0.68/2 = 0.407$ (m2) Area $\pi x 0.68^{\prime} 2/8 + 0.68 x 0.68/2 = 0.407$ (m2) Wetted Perimeter $\pi x 0.68/2 x 2 = 0.735$ (m) R $0.407/1.735 = 0.234$ (m) Velocity 1.92 m/s Capacity 0.491 m3/s	Channel Size		4 in	675	(11111)		
Area π x 0.68'2 / 8 + 0.68 / 2 = 0.407 (mz) Wetted Perimeter π x 0.68 / 2 + 0.68 / 2 = 1.735 (m) R 0.407 / 1.735 = 0.234 (m) Velocity 1.92 m/s Capacity 0.491 m3/s	A		1 in 🔛	200	(
Wetted Perimeter π x 0.68 / 2 + 0.68/2 x 2 = 1.735 (m) R 0.407 / 1.735 = 0.234 (m) Velocity 1.92 m/s Capacity 0.491 m3/s	Gradient			0 407	(m2)		
R 0.407 / 1.735 = 0.234 (m) Velocity 1.92 m/s Capacity 0.491 m3/s	Gradient Area	$\pi \times 0.68^{2}/8 + 0.68 \times 0.68/2 =$	1				
Velocity 1.92 m/s Capacity 0.491 m3/s	Gradient Area Wetted Perimeter	$\pi \times 0.68^2 / 8 + 0.68 \times 0.68 / 2 = \pi \times 0.68 / 2 + 0.68 / 2 \times 2 =$		1.735	(m)		
Capacity 0.491 m3/s	Gradient Area Wetted Perimeter R	$\begin{aligned} \pi & \times 0.68^{*}2 / 8 + 0.68 \times 0.68 / 2 = \\ \pi & \times 0.68 / 2 + 0.68 / 2 \times 2 = \\ 0.407 / 1.735 = \end{aligned}$		1.735 0.234	(m) (m)		
	Gradient Area Wetted Perimeter R Velocity	$\begin{array}{l} \pi \times 0.68^{*}2 / 8 \ + \ 0.68 \times 0.68 / 2 \ = \\ \pi \times 0.68 / 2 \ + \ 0.68 / 2 \ \times 2 \ = \\ 0.407 / 1.735 \ = \end{array}$		1.735 0.234 1.92	(m) (m) m/s		
	Gradient Area Wetted Perimeter R Velocity Capacity	$\begin{array}{l} \pi \times 0.68^{*}2 \ / 8 \ + \ 0.68 \times 0.68 \ / 2 \ = \\ \pi \times 0.68 \ / \ 2 \ + \ 0.68 \ / \ 2 \ = \\ 0.407 \ / \ 1.735 \ = \\ \end{array}$		1.735 0.234 1.92 0. <u>491</u>	(m) (m) m/s m3/s		
	Sradient rea Vetted Perimeter c elocity <u>apacity</u> tilization	π x 0.68 ² /8 + 0.68 x 0.68/2 = π x 0.68 / 2 + 0.68/2 x 2 = 0.407 / 1.735 = 0.781 / 0.491	(1.735 0.234 1.92 0.491 62.83	(m) (m) m/s m3/s	ОК	(less than 90%, for 10% siltation allowance

Appendix C - Reference Drawings

ALTERNATIVE TOP SECTION FOR PRECAST CONCRETE COVERS / GRATINGS

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE SHALL BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2 OR F2 AS APPROPRIATE.
- 4. FOR DETAILS OF JOINT, REFER TO STD. DRG. NO. C2413.
- 5. CONCRETE TO BE COLOURED AS SPECIFIED.
- UNLESS REQUESTED BY THE MAINTENANCE PARTY AND AS DIRECTED BY THE ENGINEER, CATCHPIT WITH TRAP IS NORMALLY NOT PREFERRED DUE TO PONDING PROBLEM.
- 7. UPON THE REQUEST FROM MAINTENANCE PARTY, DRAIN PIPES AT CATCHPIT BASE CAN BE USED BUT THIS IS FOR CATCHPITS LOCATED AT SLOPE TOE ONLY AND AS DIRECTED BY THE ENGINEER.
- FOR CATCHPITS CONSTRUCTED ON OR ADJACENT TO A FOOTPATH, STEEL GRATINGS (SEE DETAIL 'A' ON STD. DRG. NO. C2405 /2) OR CONCRETE COVERS (SEE STD. DRG. NO. C2407) SHALL BE PROVIDED AS DIRECTED BY THE ENGINEER.
- 9. IF INSTRUCTED BY THE ENGINEER, HANDRAILING (SEE DETAIL 'J' ON STD. DRG. NO. C2405 /5; EXCEPT ON THE UPSLOPE SIDE) IN LIEU OF STEEL GRATINGS OR CONCRETE COVERS CAN BE ACCEPTED AS AN ALTERNATIVE SAFETY MEASURE FOR CATCHPITS NOT ON A FOOTPATH NOR ADJACENT TO IT. TOP OF THE HANDRAILING SHALL BE 1 000 mm MIN. MEASURED FROM THE ADJACENT GROUND LEVEL.
- 10. MINIMUM INTERNAL CATCHPIT WIDTH SHALL BE 1 000 mm FOR CATCHPITS WITH A HEIGHT EXCEEDING 1 000 mm MEASURED FROM THE INVERT LEVEL TO THE ADJACENT GROUND LEVEL. AND, STEP IRONS (SEE DSD STD. DRG. NO. DS1043) AT 300 c/c STAGGERED SHALL BE PROVIDED. THICKNESS OF CATCHPIT WALL FOR INSTALLATION OF STEP IRONS SHALL BE INCREASED TO 150 mm.
- 11. FOR RETROFITTING AN EXISTING CATCHPIT WITH STEEL GRATING, SEE DETAIL 'G' ON STD. DRG. NO. C2405 /4.
- 12. SUBJECT TO THE APPROVAL OF THE ENGINEER, OTHER MATERIALS CAN ALSO BE USED AS COVERS / GRATINGS.

	A	MINOR AMENDMENT.	Original Signed 04.2016
	REF.	FORMER DRG. NO. C2406J. REVISION	Original Signed 03.2015 SIGNATURE DATE
CATCHPIT WITH TRAP	C	CIVIL EN	IGINEERING AND ENT DEPARTMENT
(SHEET 2 OF 2)	SCAL DATE	E 1:20 JAN 1991	drawing no. C2406 /2A
卓越工程 建設香港	V	/e Engineer Hong	Kong's Development

Time of Concentration for Catchement of Existing

Catalanant		Highest	Lowest	Gradient (per 100m)	to (min) =	tc =
Catchment	Flow Distance	Level	Level	= (H1-H2)/L x 100	0.14465L/ (H ^{0.2} A ^{0.1})	to + tf
А	L			Н		
(m2)	(m)	(mPD)	(mPD)		(min)	(min)
1076839.86	1851	466	10	24.635	35.172	35.172

Appendix E - Responses to Comments Tables

Proposed Temporary Warehouse (Excluding Dangerous Goods Godown) with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land and Pond in "Agriculture" Zone, Lot 1291 (Part) in D.D. 107, Fung Kat Heung, Kat Tin, Y.L., N.T. (YL-KTN/1004)

DSD Comment on DA (Contact Person: Mr. Terence TANG; Tel.: 2300 1257)

Item	Comments	Responses
(a)	Please clarify why there are two last catchpits provided.	Please find the updated Figure 3A, the last catchpit is CP1.10. The CL and IL on the right indicate the levels of the uchannel connecting from the right.
(b)	Please review if u-channel connecting CP2.3 and CP2.4 should read UC3 for consistency.	Noted. Please find the updated Figure 3A.
(c)	Please advise if any site formation/ land filling works to be carried out under this application. Please note that the overland flow from the adjacent lands should not be affected.	Please note the site formation level would be slightly filled up to pave area for warehouse purpose. The levels at boundary would match with existing levels and the overland flow from the adjacent lands should not be affected.
(d)	Appendix A: The assumption of 15% paved in Zone B1 and B2 is considered underestimated. Please review and revise.	Noted. The paved ratio is updated to 30% for design purpose. Please note the proposed channels have sufficient after update of the pave ratio. Please refer to updated Appendix A.
(e)	Please submit calculation demonstrating the downstream drainage system receiving the discharge from the development has adequate spare capacity to accommodate the runoff.	Noted. Please refer to Appendix E showing the calculation of downstream drainage.
(f)	The existing drainage facilities, to which the stormwater of the development from the subject site would discharge, are not maintained by this office. The applicant should identify the owner of the existing drainage facilities to which the proposed connection will be made. Also, DSD noticed that the proposed drainage connection(s) to the surrounding/downstream area(s) will run through other private lot(s), The applicant shall demonstrate that the proposed drainage construction / improvement / modification works and the operation of the drainage can be practicably implemented.	Noted.
(g)	The applicant should check and ensure the hydraulic capacity of the existing drainage facilities would not be adversely affected by the captioned development. Please provide site photos to show existing condition of the existing drainage facilities which receives the discharge from the application site. Relevant connection details should be provided for reference.	Noted. Please refer to Figure 2 for condition photo for existing approx. 7m width channel. The proposed conditions details are also shown in detail A in Figure 3.

(h)	Please clarify whether any walls or hoarding would be erected along the site boundary. Where walls or hoarding are erected are laid along the site boundary, adequate opening should be provided to intercept the existing overland flow passing through the site.	Noted.
(i)	Cross sections showing the existing and proposed ground levels of the captioned site with respect to the adjacent areas should be given.	Noted. Please refer to Appendix D.
(j)	The development should neither obstruct overland flow nor adversely affect existing natural streams, village drains, ditches and the adjacent areas, etc,	Noted.
(k)	The applicant(s) shall resolve any conflict/disagreement with relevant lot owner(s) and seek LandsD's permission for laying new drains/channels and/or modifying/upgrading existing ones in other private lots or on Government land (where required) outside the application site(s).	Noted.

DSD Comment on DA (Contact Person: Mr. Terence TANG; Tel.: 2300 1257)

Item	Comments	Responses
1	As the 30% paved area is a rough estimate, so that the u-channel 1 capacity has been checked up to 89.24% which is considered underestimated. Please upgrade the u-channel size as appropriate.	Noted. The u-channel 1 size is upgraded from 300mm to 375mm. Please refer to revised Appendix A and Figure 3.
2	Similar to Comment 1, please also upgrade the size of u-channel 6 for conservative approach.	Noted. The u-channel 6 size is upgraded from 600mm to 675mm. Please refer to revised Appendix A and Figure 3.
3	Previous comment (h) has not been addressed. Please clarify whether any walls or hoarding would be erected along the site boundary. Where walls or hoarding are erected are laid along the site boundary, adequate opening should be provided to intercept the existing overland flow passing through the site.	Noted. 100mm separation opening from ground level along the hoarding wall where it is to be erected.
4	Cross sections: Adjacent ground levels should be shown on drawings. The extent of north area in Section 2 should also be included.	Noted. Please refer to the revised Appendix D.
5	Design Calculation: Please show the detailed calculation steps of proposed u-channels.	Noted. Please refer to the updated Appendix A.

DSD Comment on DA (Contact Person: Mr. Terence TANG; Tel.: 2300 1257)

Item	Comments	Responses
1	Please add the R-to-C (c) in the report text and also the drawing.	Noted. Please refer to Section 4.1.2 in the report and Figure 3C.
2	Please submit a full report with all R-to-C record included as appendix	Noted. Please refer to the updated full report.
	for reference.	