寄件者:	luke.yip
寄件日期:	2024年12月23日星期一 9:45
收件者: 副本: 主旨:	tpbpd/PLAND Andrea Wing Yin YAN/PLAND Submission of Further Information (3) for Planning Application No. A/YL-KTN/1037

類別:

Internet Email

Your Ref.: TPB/A/YL-KTN/1037

Date: 23 DEC 2024

Dear Sir/Madam,

We are pleased to submit herewith a Cover Letter, a Response-to-Comments Table (Attachment 3) and revised Drainage Impact Assessment (Appendix V) for the subject Planning Application for your consideration.

Should you have any queries, please contact the undersigned. Thank you.

Best regards,

Luke Yip United Crown Holdings Limited

By Email (tpbpd@pland.gov.hk)

Town Planning Board Secretariat 15/F, North Point Government Offices 333 Java Road North Point Hong Kong (Attn: Ms Andrea Yan)

23 DEC 2024

Dear Sir/Madam,

Application for Permission under Section 16 of the Town Planning Ordinance (Cap.131)

Proposed Temporary Warehouse (Excluding Dangerous Goods Godown) and Open Storage with Ancillary Facilities for a Period of 3 Years and Filling of Land (Planning Application No. A/YL-KTN/1037)

3rd Further Information - Responses to Departmental Comments

We refer to the comments received from various Government Departments on 22 November 2024 on the subject Planning Application.

We are pleased to submit herewith a Response-to-Comments Table (Attachment 3) and revised Drainage Impact Assessment (Appendix V) for your consideration.

We sincerely seek for favourable consideration from the Town Planning Board (TPB) for the approval of the subject S.16 Planning Application.

Should you have any queries, please contact the undersigned.

Best regards,

Luke Yip

For and on behalf of

United Crown Holdings Limited

Attachment 3 - Response-to-Comments Table

No.	Comments	Responses		
1	Drainage Services Department (DSD), dated 22.11.2024	•		
	(a) The DIA should be signed and certified by a qualified engineer (Registered Professional	(a) Noted, followed and amended.		
	Engineer in the Civil Engineering discipline) before it is submitted to DSD for comment. Full name of the qualified engineer or	(b) The Figure 1 is replaced with a clear version.(c) Nated followed and amonded. Only flow		
	register no. should be provided for our reference.	(c) Noted, followed and amended. Only flow velocity within the existing 750mm dia. pipe between existing Catchpit SCH1028857 and existing Manhole SMH1048223 might be		
	(b) Figure 1 is illegible. Please provide a clear version for vetting.	greater than 3m/s due to its existing pipe gradient. The subject development would not disturb the subject drain pipe. To be		
	(c) Calculations - Velocity should be within 0.7m/s to 3m/s. Please review if any necessary upgrading works at your own cost for public drains due to your development is	conservative, the maximum flow velocity of 3m/s is adopted within the existing 750mm dia. pipe in the assessment.		
	required.	(d) Three more cross sections are added.		
	 (d) Please provide more cross sections for reference. 	 (e) Relevant catchment area plan is incorporated into Figure 3 – 'Stormwater Drainage Management Plan (Including 		
	 (e) Catchment area plan should be provided for comment. Please note the external catchment areas should also be considered in the assessment. 	Catchment Boundaries)'. (f) The proposed u-channel alignment is reviewed and catchpits/manholes are added to eliminate channel turning at acute angle.		
	 (f) Channel turning at acute angle should be avoided wherever possible. Please review the proposed u-channel alignment. 	(g) Noted. The design has been amended accordingly.		
	(g) Calculations - Practically, the utilization of proposed pipe/ channel should not be larger than 85%. Please review.	(h) Noted and followed.		
	(h) The Registered Professional Engineer should ensure the submitted DIA complying with the requirements set out in DSD Advice Note No. 1, particularly Appendix I and II. Please critically review the submitted DIA.			
2	Water Services Department (WSD), dated 22.11.2024			
	 (a) It is noted that the maximum headroom will be 16.5 m. Please also advise the minimum headroom. 	(a) The minimum headroom will be not less than 13m.		

Drainage Impact Assessment

in support of Planning Application No. A/YL-KTN/1037

for a Proposed Temporary Warehouse (excluding Dangerous Goods

Godown) with Ancillary Facilities and Open Storage of Unlicensed

Vehicles, Construction Machinery and Construction Materials for a

Period of 3 Years and Filling of Land at Various Lots in D.D. 107

and adjoining Government Land, Kam Tin North, Yuen Long, N.T.

(HT24121)

November 2024

Prepared & Approved by:	LEE Kwok Cheung RPE(Civil), MICE,	
	MHKIE	Ť

何可雇問工程師有限公司 HOTINS ASSOCIATES CONSULTING ENGINEERS LIMITED 香港九龍官塘鴻匮道26號威登中心12楼1201-3室 電話:2895 2236 經文者真:2890 8872 電野:admin@hotin.com.hk Rooms 1201-3, Weslin Centre, 26 Hung To Road, Kwun Tong, Kow/oon, Hong Kong Tel: 2895 2238 Fax: 2890 8872 E-mail: admin@hotin.com.hk

CONTENT

- 1. Introduction
- 2. General Site Description and the Proposed Development
- 3. Existing Drainage System of the Area
- 4. Proposed Drainage Works
- 5. Hydraulic Calculation
- 6. Conclusion

FIGURE

Figure 1	Location Plan
Figure 2	Proposed Development Layout
Figure 3	Stormwater Drainage Management Plan (including
	Catchment Boundaries)
Figure 4	Site Cross Sections (1 of 2)
Figure 5	Site Cross Sections (2 of 2)

APPENDIX Assessment of Hydraulic Capacities of the Proposed Drainage System

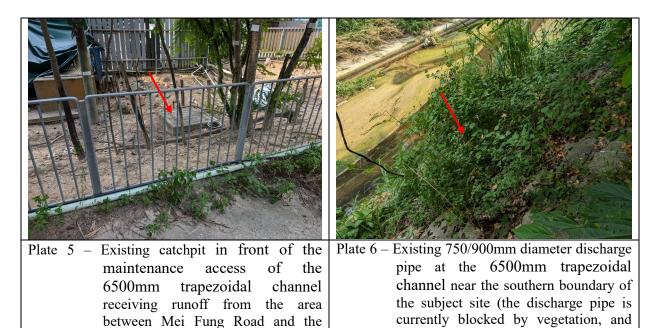
1. Introduction

- 1.1 Ho Tin & Associates Consulting Engineers Limited (HTA) was appointed by the client to prepare a Drainage Impact Assessment (DIA) in support of the Planning Application No. A/YL-KTN/1037 for a proposed temporary warehouse (excluding Dangerous Goods Godown) with Ancillary Facilities and Open Storage of Unlicensed Vehicles, Construction Machinery and Construction Materials for a period of 3 years and filling of land at at Lot 953 S.B, 953 S.C, 953 S.D, 953 S.E, 953 S.F, 953 S.G, 953 S.H, 953 S.I, 953 S.J, 953 S.K, 953 S.L, 960 RP (part), 961 RP (part), 1065, 1072, 1074, 1075, 1076 S.A, 1076 S.B, 1076 S.C, 1077 and 1081 S.A RP in D.D. 107 and adjoining Government Land, Kam Tin North, Yuen Long, N.T (the 'subject site').
- 1.2 This report presents the DIA for the proposed temporary uses at the subject site.
- 1.3 The objectives of this DIA are to:-
 - indicate any changes/increase in drainage characteristics due to the proposed development;
 - assess any potential drainage impacts of the existing/planned drainage facilities nearby due to the proposed development; and
 - propose mitigation measures and drainage improvement work, if necessary, to minimize any adverse drainage impact.
- 1.4 The scope of this DIA includes:-
 - site description and existing land use;
 - identification of stormwater flow pattern before and after proposed development of the Subject site;
 - assessment of impact on the existing drainage facilities due to the proposed development; and
 - proposal of new drainage facilities for the proposed development if found necessary.

2. General Site Description and the Proposed Development

2.1 The subject site is currently zoned "Agriculture" on the Approved Kam Tin North Outline Zoning Plan No. S/YL-KTN/11. It is located on the east side of Mei Fung Road (refer to Plate 1) and encroaches upon the north side of an existing maintenance access of a DSD's 6500mm trapezoidal channel (refer to Plate 2). The subject site area is about 12,945m²

including about $1,533m^2$ of Government land. The subject site is currently partly occupied for temporary carpark, open storage and temporary structures (refer to **Plate 3**) and partly being fallow agricultural land (refer to **Plate 4**). A Location Plan with the locations of photo taken is shown on **Figure 1**.


- 2.2 It is proposed to construct three temporary structures with a total GFA of about 10,423 m² and heights of not more than 16.5 m within the site for warehouse and ancillary office uses, and open storage area of about 2,039 m². A total of 12 parking and loading/unloading (L/UL) spaces will be provided within the site including five private car parking spaces, three light goods vehicle (LGV), three medium goods vehicle (MGV) and one heavy goods vehicle (HGV) L/UL spaces as shown on **Figure 2**.
- 2.3 It is proposed to use the subject site for temporary warehouse (excluding Dangerous Goods Godown) with Ancillary Facilities and Open Storage of Unlicensed Vehicles,

Construction Machinery and Construction Materials for a period of 3 years and filling of land. The subject site covers total land area of approximately 12945 m². The proposed use comprises of 3 nos. of structures with total covered area about 5342 m². The remaining area would be used for open storage and open parking spaces.

2.4 As the existing site level ranges from +7.2 mPD to +10.0 mPD, filling of land area will be required for the entire site (about 12,945 m²) to achieve a flat surface. The subject site will be filled with concrete of not more than 1.2 m (i.e., 0.2 m to 1.2 m) in depth. The Proposed Development Layout is shown in Figure 2.

3. Existing Drainage System of the Area

3.1 The subject site is located at ground levels gradually declining from about +10.0 mPD at the northern corner to about +7.2 mPD at the southern corner. At present, except some localized drainage provisions, there is no formal engineering drainage provisions serving the area between Mei Fung Road and the existing DSD's 6500mm trapezoidal channel. Surface runoff of the subject site would follow the ground levels running from the north to the south in general and into the DSD's 6500mm trapezoidal channel via an existing 750/900mm diameter discharge pipe (refer to **Plate 5** and **6**).

channel

the applicant will clear the blockage after this application is approved)

4. **Proposed Drainage Works**

- 4.1 In order to meet the operation requirements, the subject site will be filled with concrete of not more than 1.2 m (i.e., 0.2 m to 1.2 m) in depth. It is noticed that the proposed development should not obstruct any overland flows and causing ponding, therefore peripheral channels at the lower level will be constructed along the subject site boundary.
- 4.2 In general, the existing flow paths of surface runoff of the area would be maintained after the proposed development, i.e. the surface runoff of the subject area would still flow/be conveyed from the north to the south and be discharged into the existing DSD's 6500mm trapezoidal channel to the south of the subject site.
- 4.3 In order to properly manage surface runoff flowing across the boundary of the subject site and avoid surface runoff flowing outside from the subject site directly onto the surrounding areas, peripheral U-channels will be constructed around the subject site to intercept all surface runoff. The flows inside the channels will be discharged into a proposed terminal manhole (TM1) located at the southern corner of the subject site and from which the flow will be discharged via the existing 750/900mm diameter discharge pipe into the existing DSD's 6500mm trapezoidal channel. However, in order to lessen the loadings inside the existing 750/900mm diameter discharge directly into the DSD's 6500mm trapezoidal channel via another proposed terminal manhole (TM2) of the subject site and a proposed new 600mm diameter discharge pipe. A Stormwater Drainage Management Plan is shown in Figure 3 and Site Cross Sections are shown in Figure 4 and 5.
- 4.4 No solid fence wall of the subject site will be constructed. Hoarding with 100mm gap at bottom will be erected around the subject site for security reasons. The proposed development will not obstruct any flow paths of the area.
- 4.5 The Applicant is committed to obtain consents from owners of adjacent relevant land/lots prior to commencement of the proposed drainage works outside the subject site and to maintain the completed drainage works to the satisfaction of relevant Government departments.
- 4.6 Details of proposed drainage provisions shall follow relevant details shown in Government departments' Standard Drawings as follows:

Proposed Drainage Provisions	Standard Drawings	Drawing No. & Title
Standard manhole Type D1	DSD Standard Drawing	DS 1079A – Standard Manhole Type D1
Terminal manhole		DS 1091A – Terminal Manhole Type T2_1
Catchpit	CEDD Standard Drawings	C 2405/1 to /5 – Standard Catchpit Details
Catchpit precast concrete cover		C 2407B – Precast Concrete Covers for Catchpit and Sand Trap
U-channel		C 2409I – Details of Half-round and U-channels
Channel cover		C 2412E – Cover Slab and Cast Iron Grating for Channels

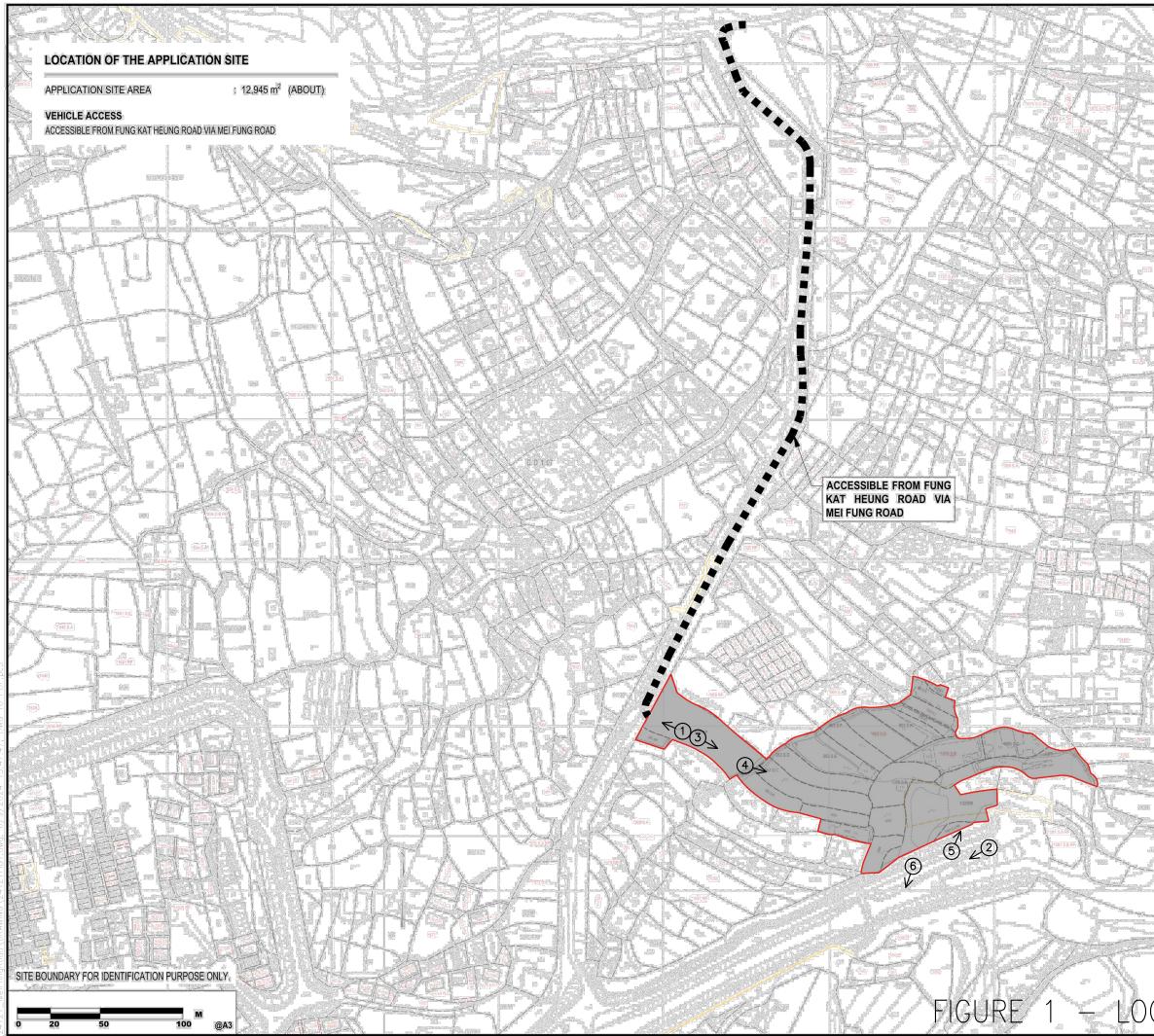
5. Hydraulic Calculation

- 5.1 Assessment criteria is based on the recommendation set out in the Stormwater Drainage Manual (Fifth edition, Jan 2018) (SDM) and its Corrigendum Nos. 1/2022, 1/2024 and 2/2024 issued by DSD. Design Return Period of 50 years (recommended for 'Main Rural Catchment Drainage Channels' in SDM) is being adopted.
- 5.2 The corresponding runoffs under rainfall intensity for various return period are worked out with reference to Rational Method. Brandy-Williams method is used in calculation of the time of concentration. A uniformly distributed rainfall with an intensity is determined by the Intensity-Duration-Frequency. With referenced to Table 3a Storm Constants for different return periods of HKO Headquarters from SDM, the rainfall profiles are derived based on the following equation:

$$i \qquad = \quad \frac{a}{(t_d+b)^c}$$

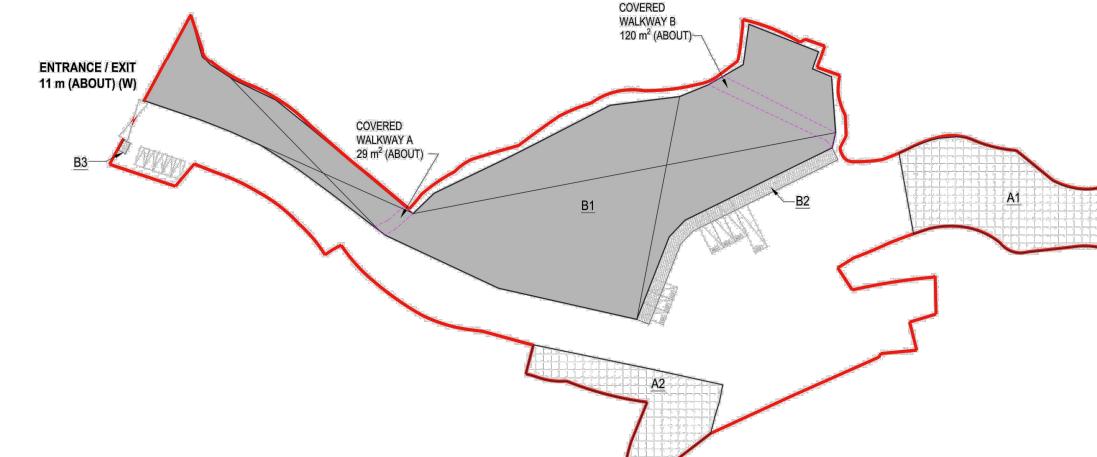
where i = extreme mean intensity in mm/hr, t_d = duration in minutes ($t_d \le 240$), and a, b, c = storm constants given in the table below

Return Period (years)	50
a	505.5
b	3.29
с	0.355


A 16.0% rainfall increase is adopted in the hydraulic calculation to cater for effects due to climate change in accordance with the table 28 with projection to End of 21st Century (it is very conservative, as the subject application is only for 3 years) as stipulated in the item (e) and (k) of the SDM - Corrigendum No. 1/2022.

- 5.3 Hydraulic assessment is enclosed in the **Appendix**. 10% reduction in flow area has been incorporated to cater for potential deposition of sediment in stormwater channels and pipes as recommended in the SDM. The proposed channels and underground drainage were designed to cater for the estimated runoff under the designed rainstorms. With respect to the calculation, the proposed stormwater drainage system is capable to cater for the surface runoff without causing any adverse drainage impacts on the subject site and its surroundings.
- 5.4 Since all channels/pipes would have sufficient spare capacity, no water backup will occur at the upstream under rainstorms of 50-year (or lower) return periods.

6. Conclusion


- 6.1 The subject site will be for temporary warehouse (excluding Dangerous Goods Godown) with Ancillary Facilities and Open Storage of Unlicensed Vehicles, Construction Machinery and Construction Materials for a period of 3 years and filling of land only.
- 6.2 Peripheral U-channels will be constructed around the subject site to intercept all surface runoff crossing the boundary. The flows inside the channels will be discharged into two proposed terminal manholes, namely TM1 and TM2. From TM1, the flow will discharge via the existing catchpit SCH1028857 and manhole SMH1048223 into the DSD's 6500mm trapezoidal channel. In order to lessen the flow inside the existing 750mm diameter pipe between the existing catchpit SCH1028857 and manhole SMH1048223, part of the surface runoff from the subject site will discharge via another terminal manhole TM2 into a proposed new 900mm diameter pipe discharging into the DSD's 6500mm trapezoidal channel. There would be no change in principle nor obstruction to the existing flow paths of the area.

- 6.3 The Applicant is committed to obtain consents from owners of adjacent relevant land/lots prior to commencement of the proposed drainage works outside the subject site and to maintain the completed drainage works to the satisfaction of relevant Government departments, and to clear the vegetation at the existing watercourse to which the surface runoff of the subject site would be discharged into.
- 6.4 In conclusion, the Proposed Development would not cause any adverse drainage impact onto the area.

		• All	DIMEN	Isions are in millimeter Noted	R EXCEP	Ĩ
				CALE DRAWING		
in the second		LE	GEN	D		
×	SR	ſ		APPLICA	ION SI	TE
					100000	~~~
	Pak:77//ØIW			ACCESS	ROUTE	
		3	6		OF PI	юто
	민공(h)/ %/4		U	U TAKEN		
- 6						
1	· 동프 고, 네. 박					
22						
T						
行人						
-						
	DY ZAR					
<	121200					
Í	bh125					
たし						
	고파가는 우수한 (
5						
$\sum_{k=1}^{n}$						
Coape Anto						
	<u>SEEZ/A</u> È					
	I-AMENY			NTION: PLAN	03	JUN 2024
	LT CERT	draw		nome QL & LY	DATE O	3 JUN 2024
		checl		22 22	DATE	<u>ər JUN 2024</u>
		appro contr		101 m	DATE	
		proje	ct no			
	STAR (4)	TITL		TEMPORARY WAREHOUS	E (EXC	LUDING
		FACIL	ITIES	TEMPORARY WAREHOUS GOODS GODOWN) W AND OPEN STORAGE C	F UNLIC	ENSED
	7-4077		TRUCT	ION MATERIALS FOR A PER	HINERY IOD OF 3	
				OF LAND CATION		
	ENK	VARI	OUS	LOTS IN D.D. 107. KAN	1 TIN N	ORTH,
	$X \times X$	YUE	LON	G, NEW TERRITORIES		25
			ng ti TION	tie. PLAN		
$(\cap$	ATION PLAN		ng: n	0.	rev.	
Ч		PLAN	4		388	N.T.S.

DEVELOPMENT PARAMETERS		STRUCTURE	USE	COVERED AREA	GFA	BUILDI
APPLICATION SITE AREA COVERED AREA UNCOVERED AREA	: 12,945 m ² (ABOUT) : 5,276 m ² (ABOUT) : 7,669 m ² (ABOUT)	B1 B2 B3	WAREHOUSE AND ANCILLARY OFFICE RAIN SHELTER FOR LOADING / UNLOADING S SECURITY ROOM	5,020 m ² (ABOUT) PACES 250 m ² (ABOUT) 6 m ² (ABOUT)	9,891 m ² (ABOUT) 250 m ² (ABOUT) 6 m ² (ABOUT)	16.5 m 7 m 3.2 m
PLOT RATIO SITE COVERAGE	: 0.78 (ABOUT) : 41% (ABOUT)	· <u>·</u>	τα	DTAL 5,276 m ² (ABOUT)	10,147 m ² (ABOUT)	
NO. OF STRUCTURE DOMESTIC GFA	: 3 : NOT APPLICABLE	OPEN STORAGE	UNCOVERED AREA			
NON-DOMESTIC GFA TOTAL GFA	: 10,147 m ² (ABOUT) : 10,147 m ² (ABOUT)	A1 A2	1,323 m ² (ABOUT) 713 m ² (ABOUT)			
BUILDING HEIGHT NO. OF STOREY	: 16.5 m (NOT EXCEEDING) : 1 - 2	TOTAL	2,036 m ² (ABOUT)			

PARKING AND LOADING / UNLOADING PROVISIONS

<u> </u>	
NO. OF PRIVATE CAR PARKING SPACE	: 5
DIMENSIONS OF PARKING SPACE	; 5 m (L) X 2.5 m (W)
NO. OF L/UL SPACE FOR LIGHT GOODS VEHICLES	: 3
DIMENSIONS OF PARKING SPACE	: 7 m (L) X 3.5 m (W)
NO. OF L/UL SPACE FOR MEDIUM GOODS VEHICLES	1 3
DIMENSIONS OF PARKING SPACE	;11 m (L) X 3.5 m (W)
NO. OF L/UL SPACE FOR HEAVY GOODS VEHICLES	: 1
DIMENSIONS OF PARKING SPACE	: 16 m (L) X 3.5 m (W)

50

20

М

@A3

100

FIGURE 2 - PROPOSED DEVELOPM

DING HEIGHT

m (NOT EXCEEDING) (2-STOREY) (ABOUT) (1-STOREY) (ABOUT) (1-STOREY)

 ALL DIMENSIONS ARE IN MILLIMETER EXCEPT
 OTHERWISE NOTED · DO NOT SCALE DRAWING

<u>LEGEND</u>

APPLICATION SITE

WAREHOUSE

OPEN STORAGE

RAIN SHELTER

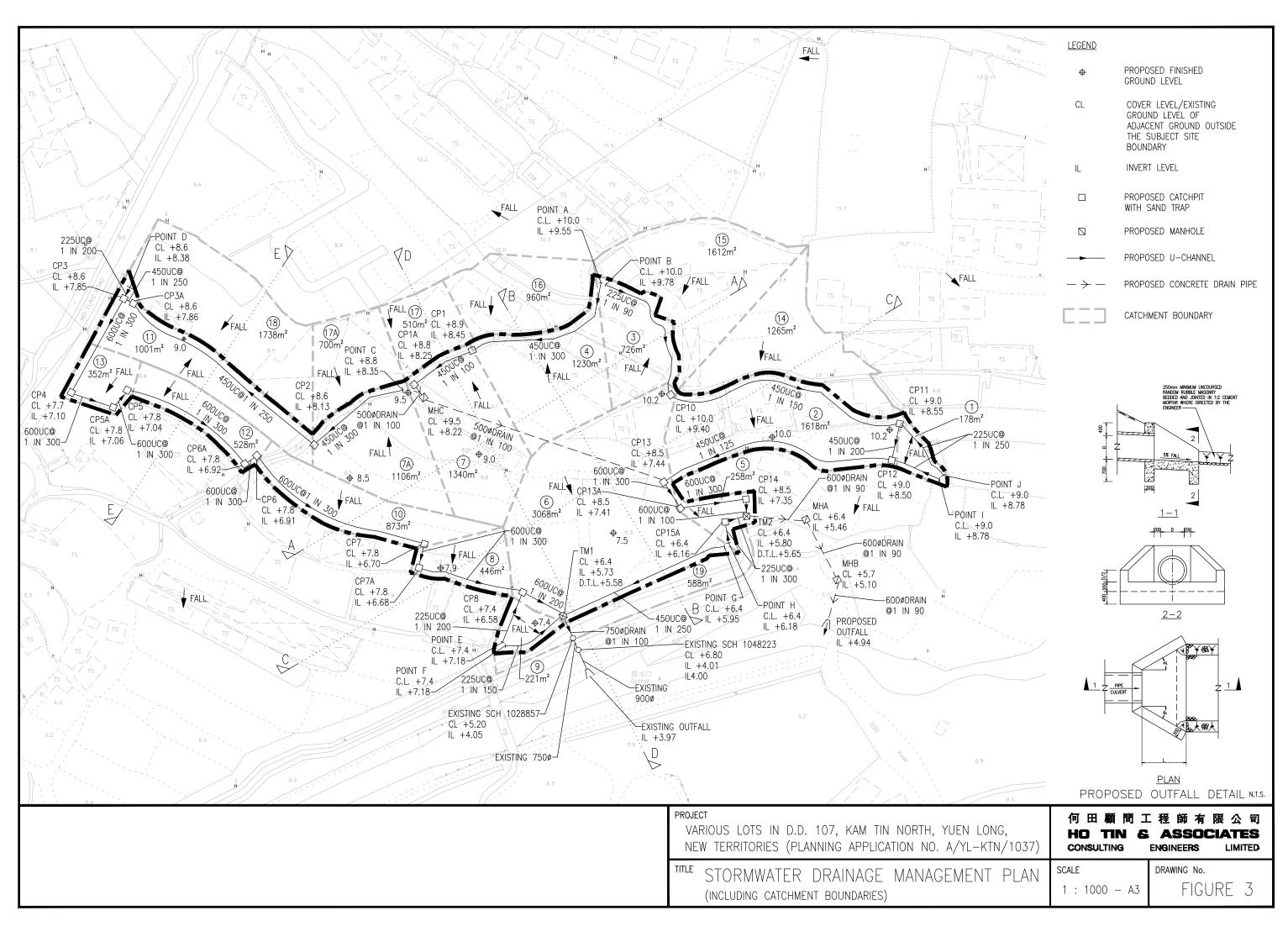
SECURITY ROOM

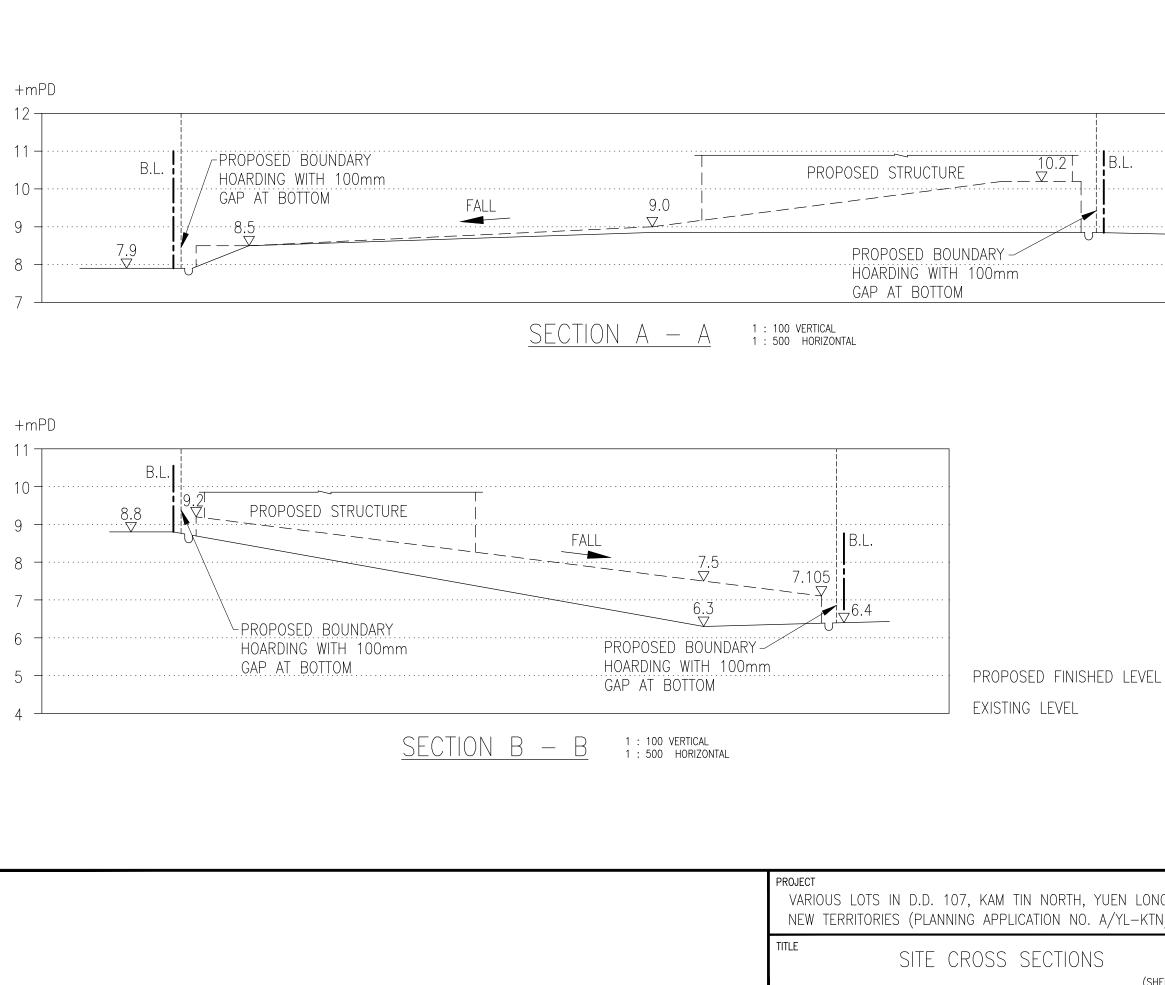
PARKING SPACE 2.5 m (W) X 5 m (L)

L/UL SPACE (LGV) 3.5 m (W) X 7 m (L)

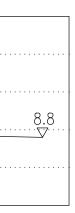
L/UL SPACE (MGV) 3.5 m (W) X 11 m (L)

L/UL SPACE (HGV) 3.5 m (W) X 16 m (L)

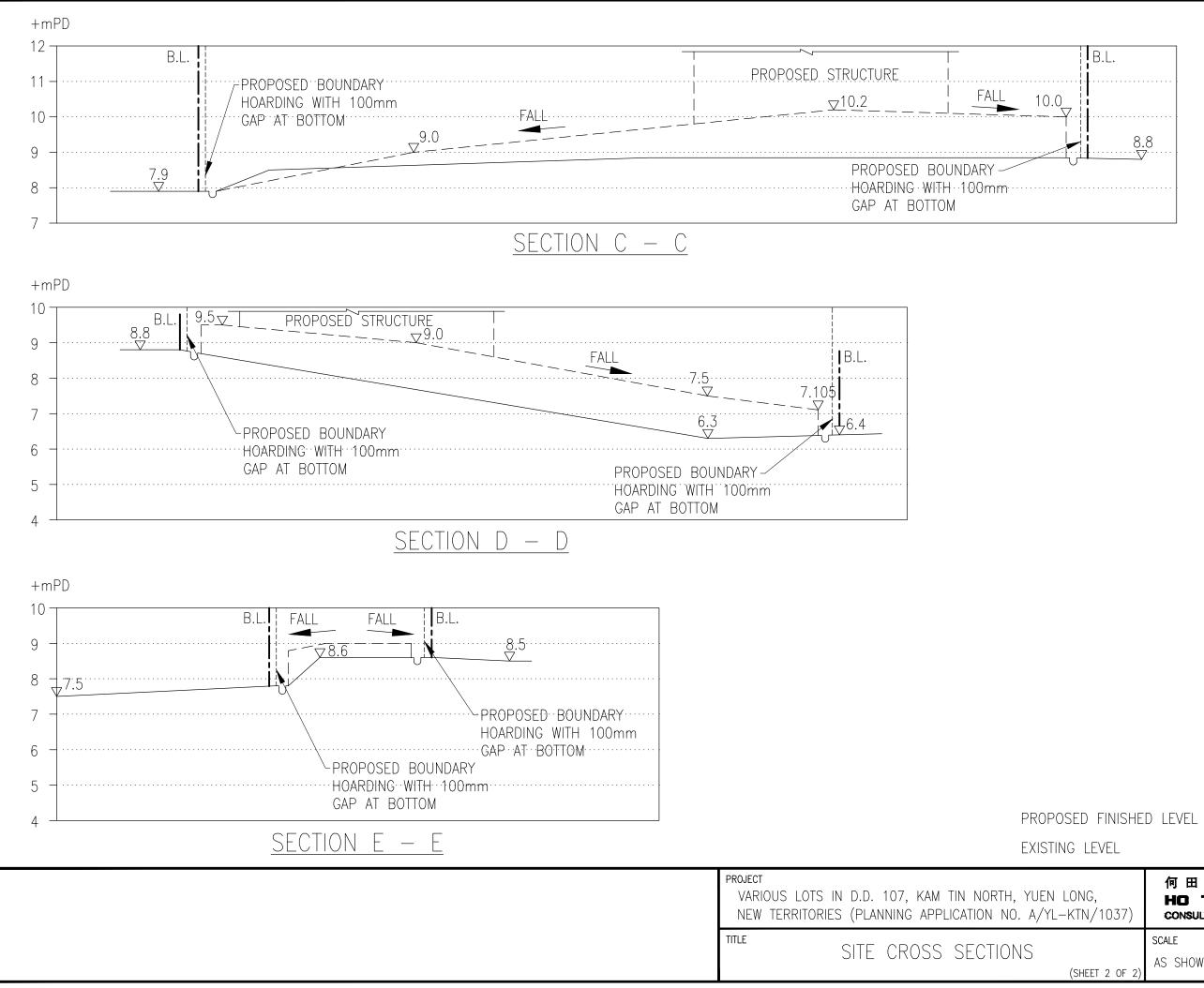

ENTRANCE / EXIT


ENT	LAYOUT

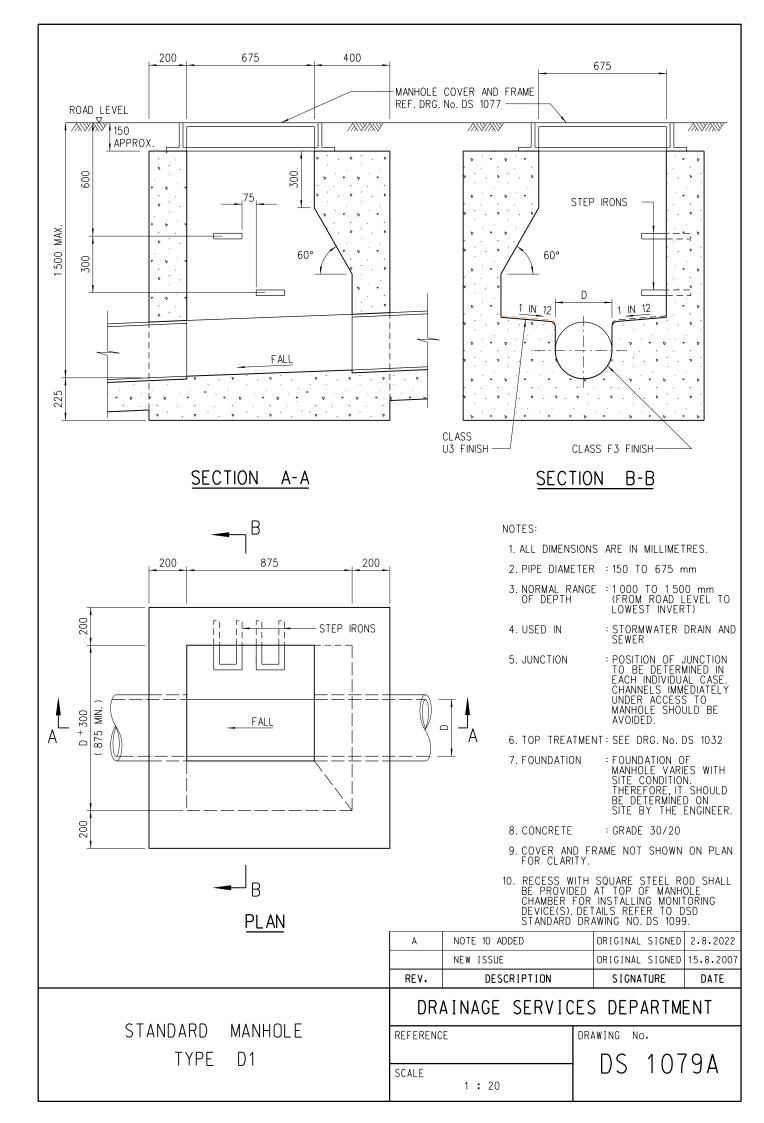
C REVISED WAREHOUSE BOUNDARY 13 SEP 2024 B REVISED WAREHOUSES AND OS BOUNDARY 15 AUG 2024 A REVISED USAGE DETAILS & LEGEND 26 JUN 2024 C LAYOUT. PLAN 03 JUN 2024 REVISION drawn CL&U DATE 03 JUN 2024 checked DATE DATE approved contract no. project no. TITLE : PROPOSED TEMPORARY WAREHOUSE (EXCLUDING PROFOSED LEMFORART WAREHOUSE (EACLIDING DANGEROUS GOODS GODOWI) WITH ANCILLARY FACILITIES AND OPEN STORAGE OF UNLICENSED VEHICLES, CONSTRUCTION MACHINERY AND CONSTRUCTION MATERIALS FOR A PERIOD OF 3 YEARS AND FILLING OF LAND SITE LOCATION : VARIOUS LOTS IN D.D. 107, KAM TIN NORTH, YUEN LONG, NEW TERRITORIES drawing title. LAYOUT PLAN

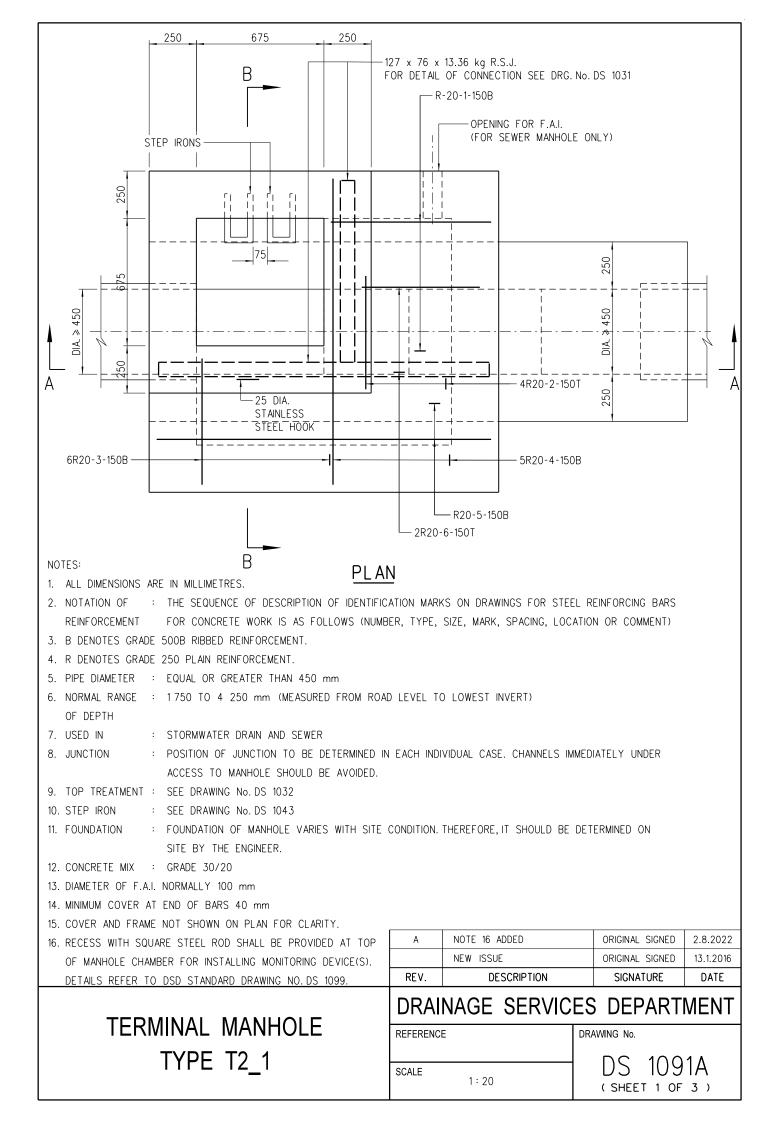

drawing no. PLAN 1

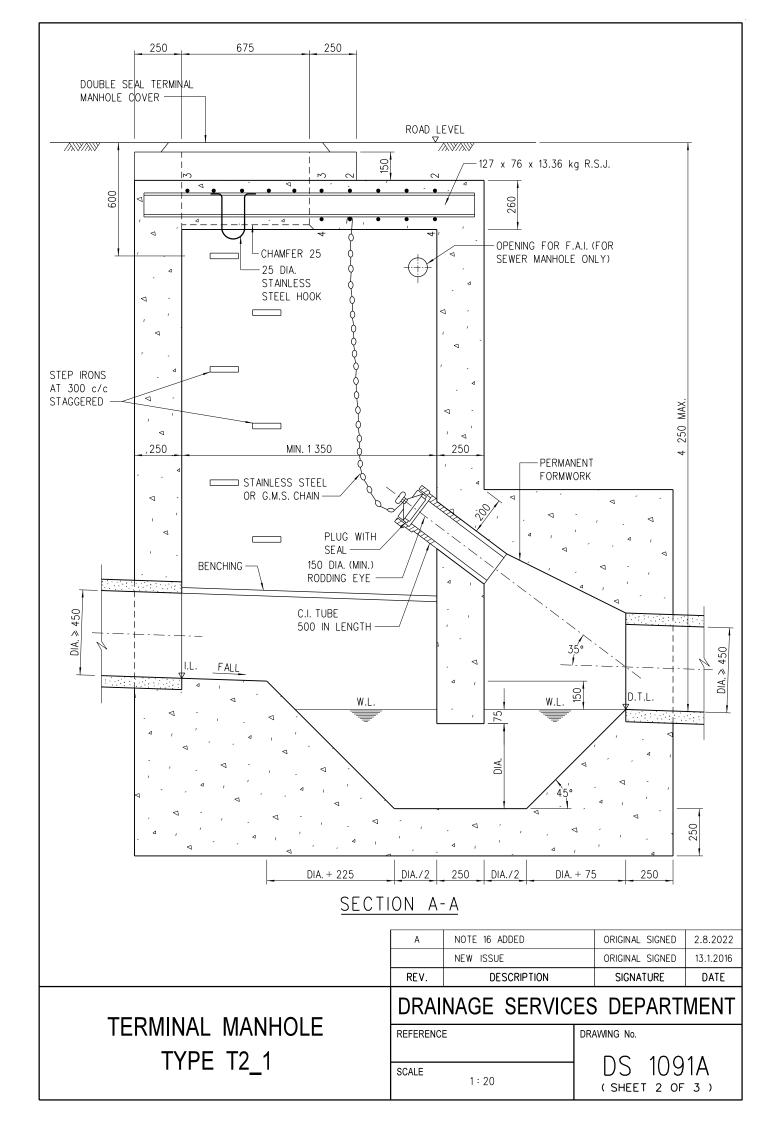
rev. scale ¢ N.T.S.



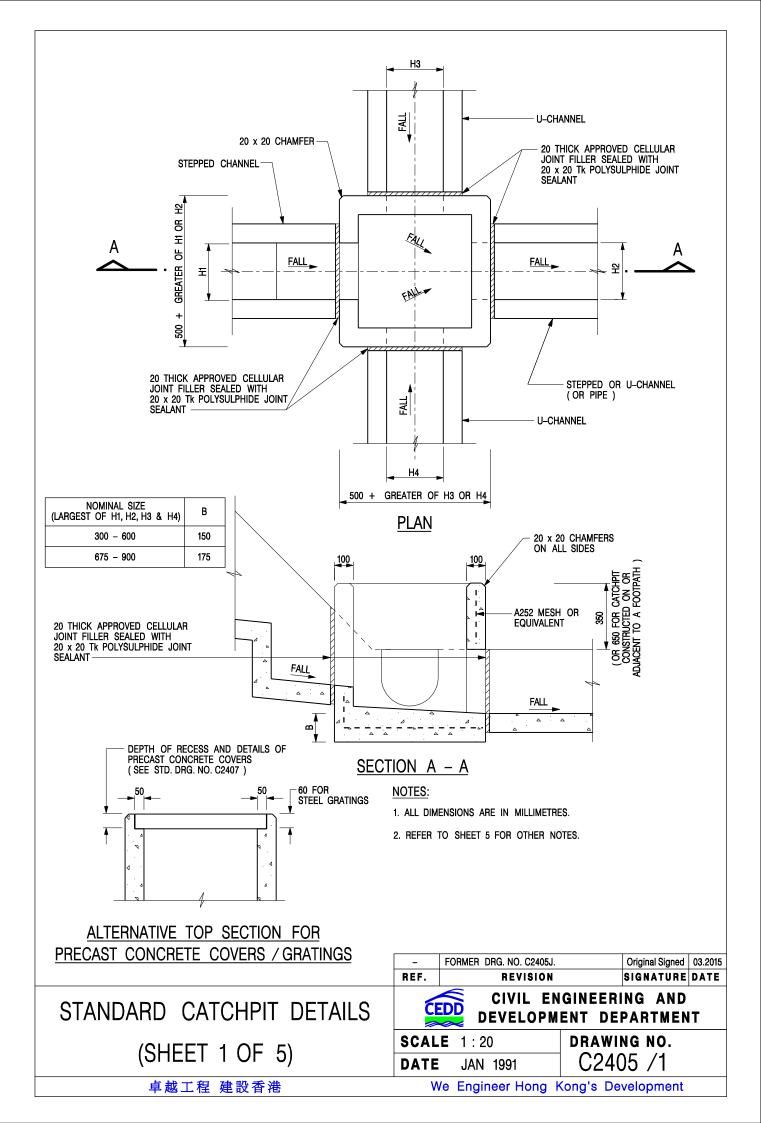
24121_MeiFungRood/DRAWING\24121FIG3_03 & FIG4_02 & FIG5_00.dwg, 26/11/2024 14:25:22, DWG To PDF.pc3

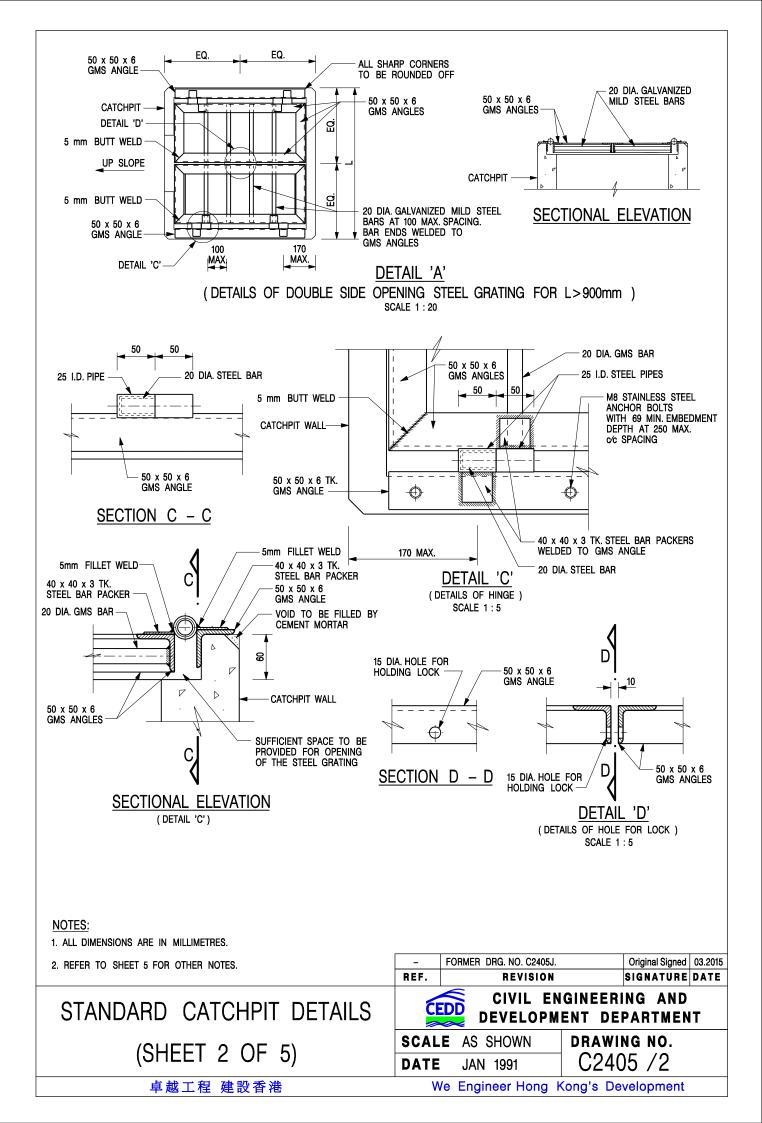


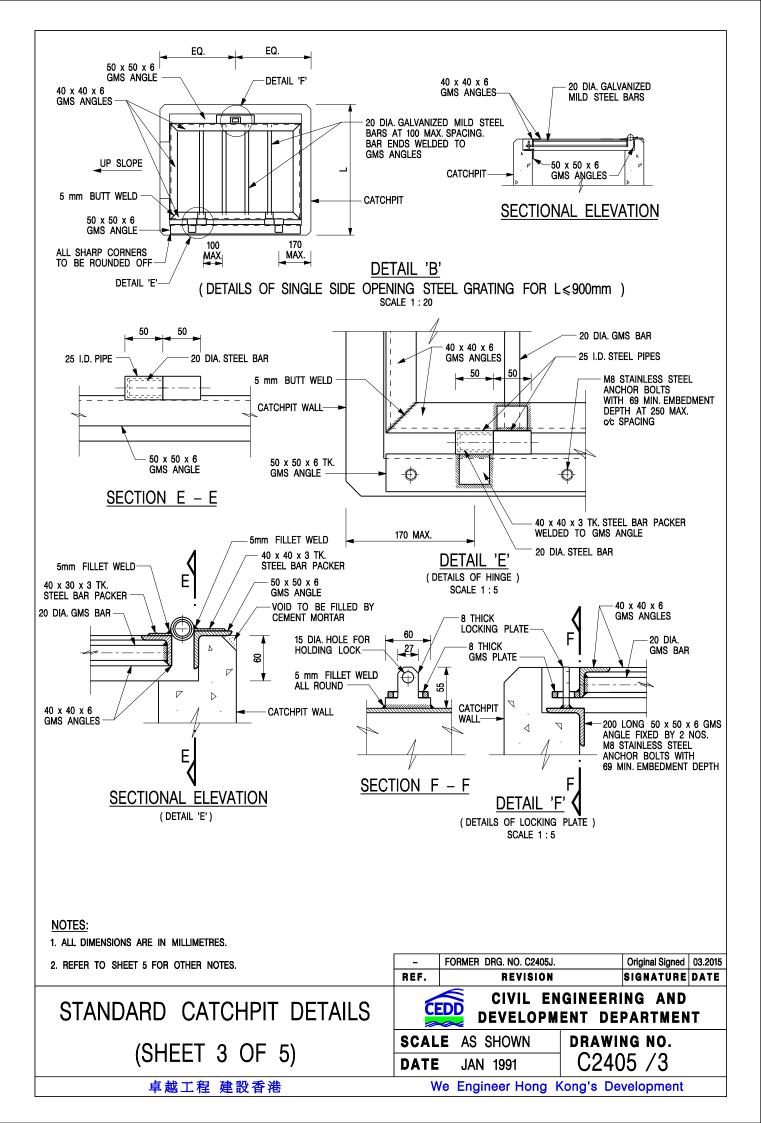

VEL _____

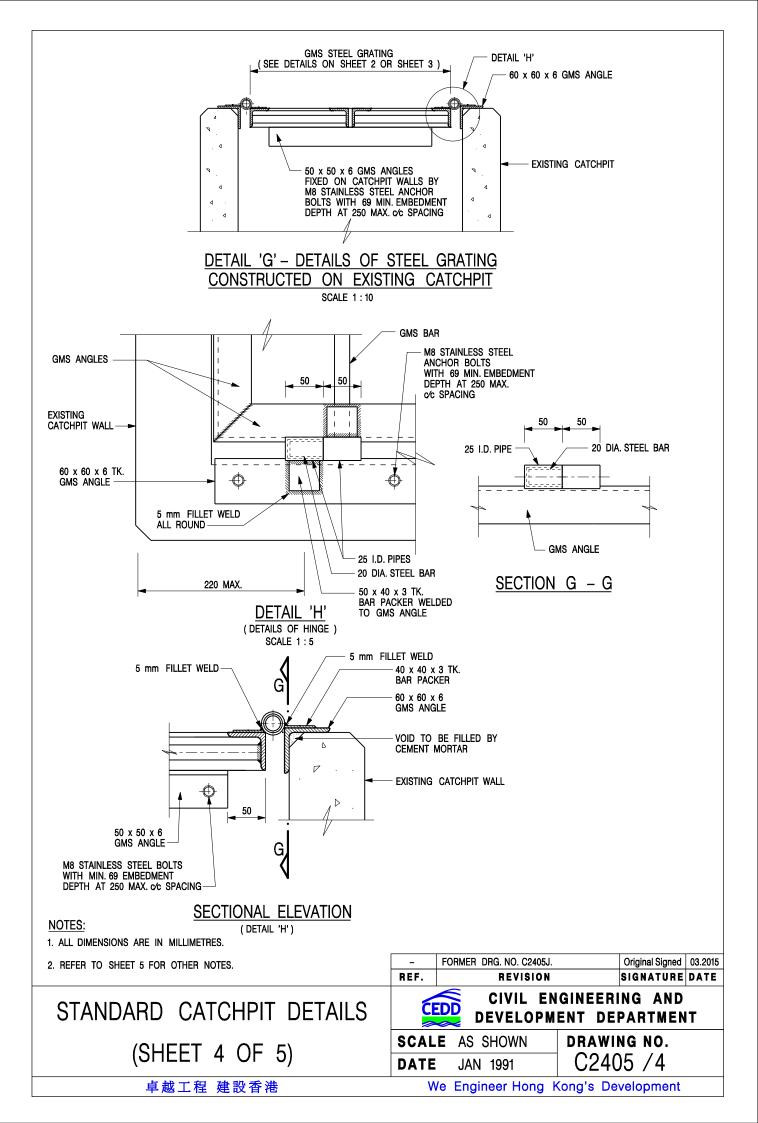

LONG, -KTN/1037)	HO TIN &	E程師有限公司 ASSOCIATES ENGINEERS LIMITED
	SCALE	DRAWING No.
(SHEET 1 OF 2)	AS SHOWN - A3	FIGURE 4

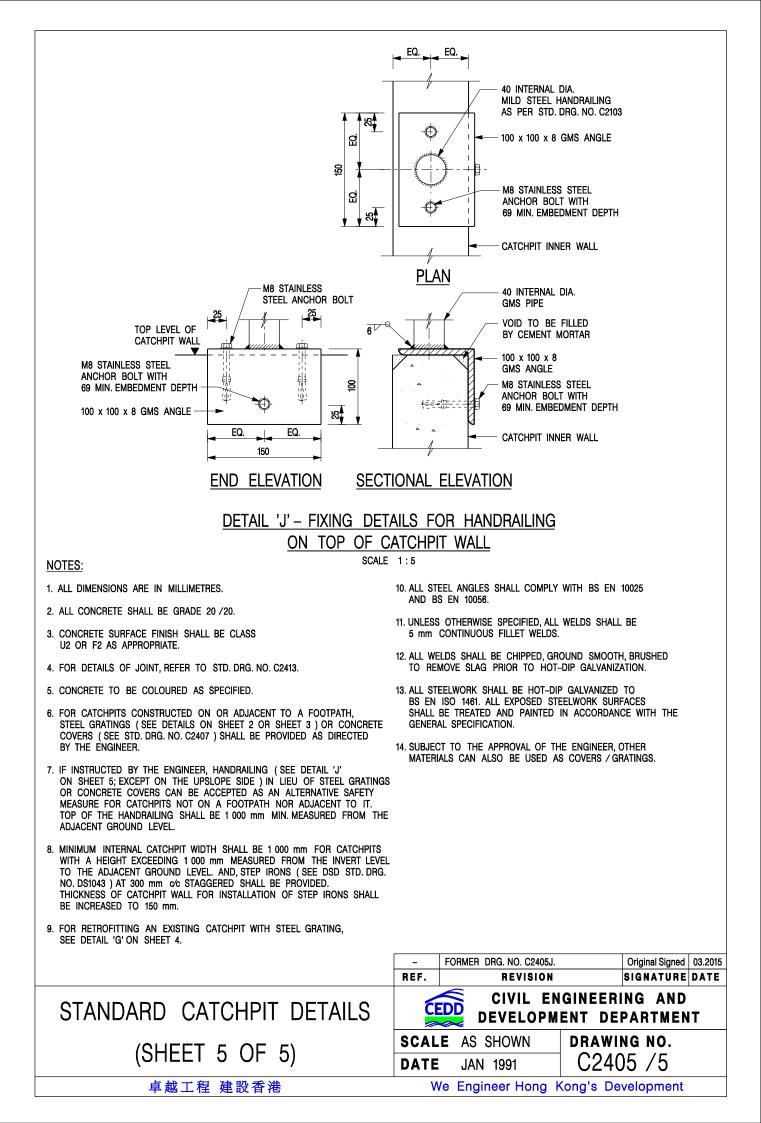


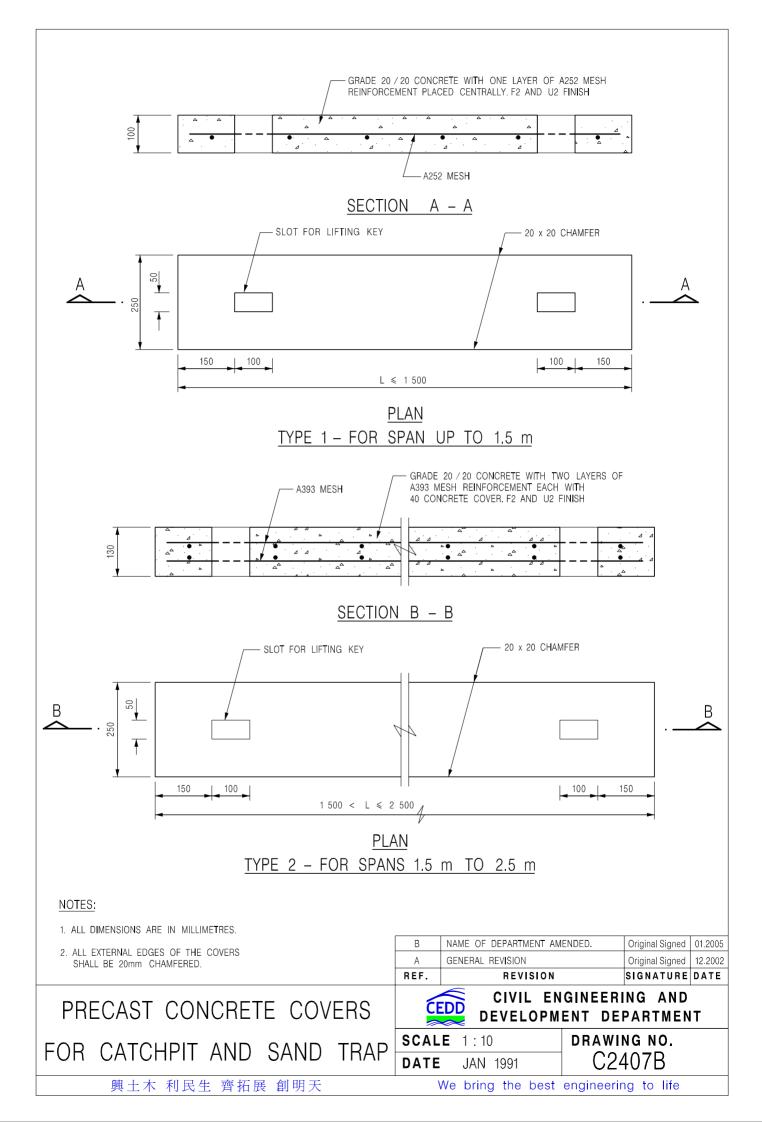

NG LEVEL			
LONG, -KTN/1037)	何田顧問工程師有限公司 HO TIN & ASSOCIATES CONSULTING ENGINEERS LIMITED		
	SCALE	DRAWING No.	
(SHEET 2 OF 2)	AS SHOWN — A3	FIGURE 5	

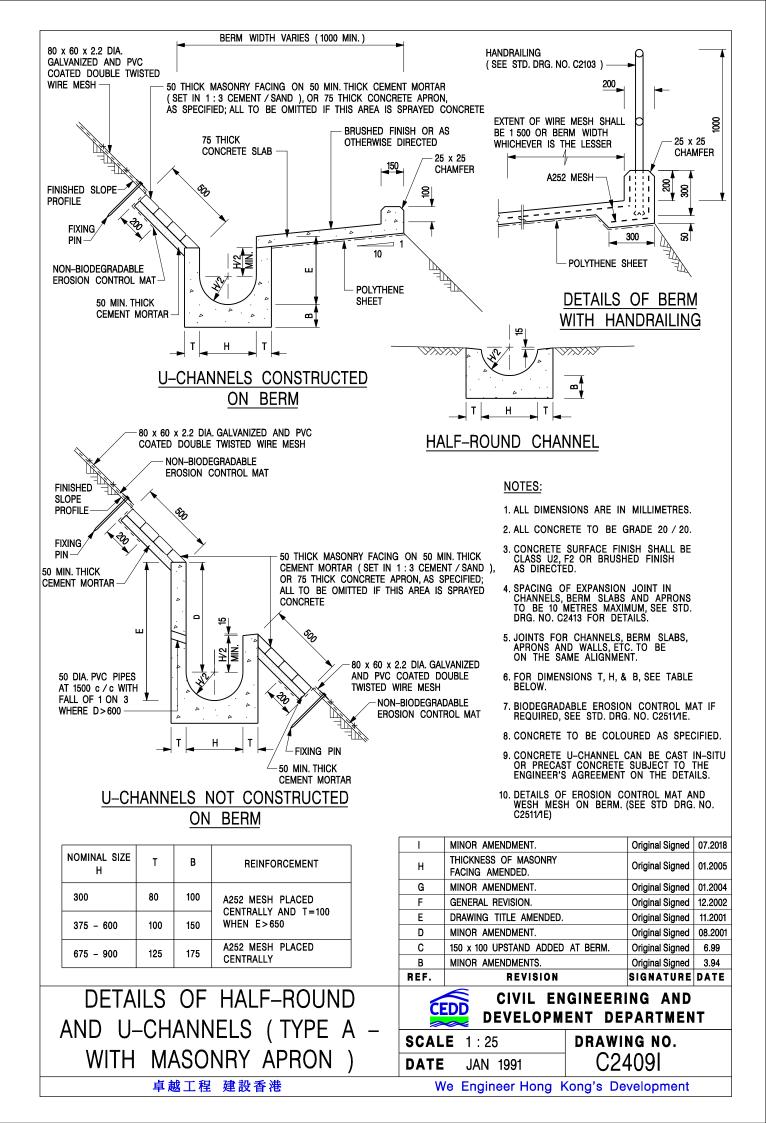


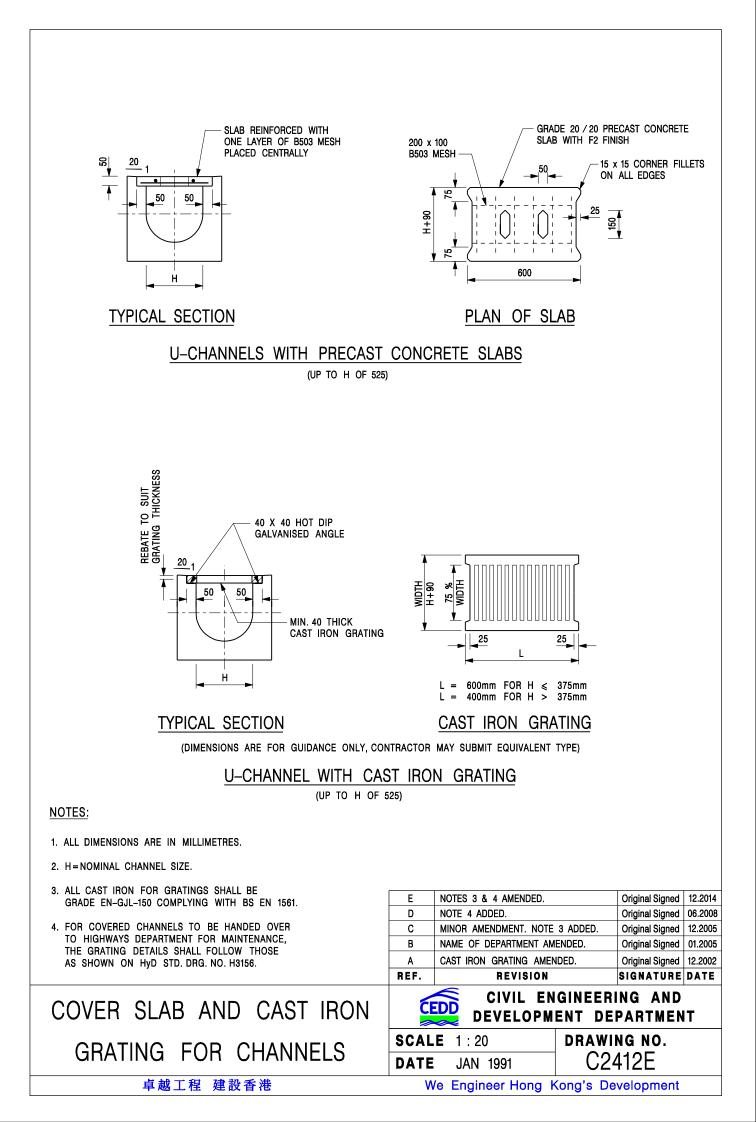












ent of Hydraulic Capacities of the Drainage System for 1 in 50 year design return period

Using Rational Method Design Flow	-		for grassland (heavy soil) - steep, C = 0.35 for asphalt/concrete surface, C = 0.95								
Using Manning Equation (for channel flor Design Mean Velocity =	v)	$R^{1/6}/n(RS_f)^{1/2}$	and	n=	0.015		for concrete channel with fair surface				
Using Gumbel Solution in frequency anal Rainfall intensity =	ysis rface water travelling from the catchment boundary to the drainage)	a / (t _d +b) ^c	where	a= r		, b= Table 3a	3.29 and c= 0.355 in 50 year design return period a in SDM Corrigendum No. 1/2022 - Storm Constants for Different Return Periods of HKO Headquarters				
Inlet time t ₀		0.14465L/ (H ^{0.2} A ^{0.1}))	or	2		when the distance is too short				
Using Colebrook's White Equation (for pi V = - Sqt (8gDs) x log [(k _s / 3.7D) + (2.51v											

k_s (m) = 0.0006

0.6 1.00E-06 9.81

Parameters Input k_s (mm) = v (m²/s) = g (m²/s) =

(1)	(2)	(3)	(4) ((5)	(6) (7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	 conservative, as the (17) 	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)
USCP/USMH	DSCP/DSMH	Collected Runolf from Catchment (refer to Figure 3)	USGL DS	SGL U	SIL DSIL IPD) (mPD)	INVERT		SLOPE	SLOPE	LENGTH FOR	INLET	TIME OF FLOW INSIDE CHANNEL/ DRAIN = I/V (i.e. Column (9)/Column (26)/60) = t, (min)	TIME OF	RAINFALL	RAINFALL	RUNOFF COEF.	SUB- CATCHMENT	EFF.	CUM. EFF.	DESIGN	· · ·	CHANNEL TYPE	VELOCITY V (m/s)	FLOW CAPACITY (m ³ /s)	90% FLOW CAPACITY (m ³ /s) [to cater for effects due to materials deposited on the bed]	SPARE CAPACITY (m ³ /s)
Route 1 Point C CP2	СР2 СРЗА	7A + 17A 7A + 17A 7A + 17A + 11 + 18	8.60 8.		.13 7.86	0.22 0.27	67.00 67.00	0.003 0.004	300 250	42.00	8.28 9.27	0.99 0.83	9.27 10.10	205.86 201.22	238.80 233.42	0.95	1,806 2,739	1,716 2,602	1,716 4,318	0.114	450 450	UC UC	1.13 1.34	0.22 0.42	0.19 0.38	0.081 0.096
CP3A Point D CP3 CP4 CP5A	CP3 CP3 CP4 CP5A CP5	ditto nominal 7A + 17A + 11 + 18 7A + 17A + 11 + 18 + 13 ditto	8.60 8. 8.60 7. 7.70 7.	.60 8. .70 7. .80 7.	.86 7.85 .38 8.36 .85 7.10 .10 7.06 .06 7.04	0.01 0.02 0.12 0.04 0.02	3.00 3.00 36.00 12.00 5.00	0.004 0.005 0.003 0.003 0.003	250 200 300 300 300	- - - - -	10.10 2.00 10.14 10.58 10.73	0.04 0.06 0.44 0.14 0.06	10.14 2.06 10.58 10.73 10.78	201.03 278.76 198.72 198.00 197.71	233.19 323.37 230.51 229.69 229.34	0.95 0.95 0.95 0.95 0.95	0 0 352 0	0 0 334 0	4,318 0 4,318 4,652 4,652	0.280 0.000 0.277 0.297 0.297	450 225 600 600 600	UC UC UC UC UC	1.34 0.87 1.35 1.41 1.42	0.43 0.04 0.43 0.57 0.59	0.38 0.04 0.39 0.52 0.53	0.104 0.038 0.115 0.218 0.234
CP5 CP6A CP6 CP7 CP7A	CP6A CP6 CP7 CP7A CP8	7A + 17A + 11 + 18 + 13 + 12 ditto 7A + 17A + 11 + 18 + 13 + 12 + 10 7A + 17A + 11 + 18 + 13 + 12 + 10 + 8 ditto	7.80 7. 7.80 7. 7.80 7.	.80 6. .80 6. .80 6.	.04 6.92 .92 6.91 .91 6.70 .70 6.68 .68 6.58	0.13 0.01 0.20 0.02 0.10	38.00 3.00 61.00 6.00 30.00	0.003 0.003 0.003 0.003 0.003	300 300 300 300 300		10.78 11.22 11.25 11.93 12.00	0.43 0.03 0.68 0.07 0.35	11.22 11.25 11.93 12.00 12.34	195.59 195.42 192.30 192.00 190.47	226.88 226.69 223.07 222.72 220.95	0.95 0.95 0.95 0.95 0.95	528 0 873 446 0	502 0 829 424 0	5,154 5,154 5,983 6,407 6,407	0.325 0.325 0.371 0.397 0.394	600 600 600 600 600	UC UC UC UC	1.46 1.46 1.50 1.51 1.44	0.72 0.73 0.93 0.95 0.65	0.64 0.65 0.84 0.86 0.58	0.319 0.329 0.467 0.460 0.191
Point E CP8 Point F	CP8 TM1 TM1	0.5 x 9 7A + 17A + 11 + 18 + 13 + 12 + 10 + 8 + 0.5 x 9 0.5 x 9	7.40 7.	.40 7. .40 6.	.18 7.10 .58 5.80 .18 6.18	0.08 0.09 0.13	16.00 17.00 20.00	0.005 0.005 0.007	200 200 150	- - -	2.00 12.34 2.00	0.29 0.17 0.34	2.29 12.51 2.34	274.56 189.74 273.80	318.48 220.10 317.60	0.95 0.95 0.95	111 0 111	105 0 105	105 6,512 105	0.009 0.398 0.009	225 600 225	UC UC UC	0.92 1.66 0.99	0.06 0.53 0.04	0.05 0.48 0.04	0.043 0.081 0.031
Point G External	TM1 Existing Catchpit	6			95 5.73		55.00	0.004		-	2.00	0.69	2.69	267.84	310.70	0.95	3,068		2,915		450	UC	1.32	0.37	0.33	0.081
TM1 <u>Existing</u> Catchpit SCH1028857	SCH1028857 Existing Manhole SMH1048223	7A + 17A + 11 + 18 + 13 + 12 + 10 + 8 + 9 + 6 7A + 17A + 11 + 18 + 13 + 12 + 10 + 8 + 9 + 6 + 19	6.40 5. 5.20 6.		.58 4.45 .05 4.01	0.03	3.00 3.00	0.010 0.013	100 75	-	12.51 12.53	0.02	12.53 12.55	189.66 189.59	220.01 219.93	0.95 0.95	0 588	0 559	9,531 10,090	0.583 0.617	750 750	pipe pipe [#]	2.80 3.00	1.24	1.11	0.530 0.576
Existing Manhole SCH1048223 Route 2	Exsiting outfall	ditto	6.80	- 4	<mark>.00 3.97</mark>	0.03	5.00	0.006	167	•	12.55	0.03	12.58	189.45	219.76	0.95	0	0	10,090	0.616	900	pipe	2.42	1.54	1.39	0.772
Point A CP1 CP1A MHC	CP1 CP1A MHC CP13	4 + 16 4 + 16 + 7 + 17 ditte ditto	8.90 8. 8.80 9.	.80 8. .50 8.	.55 8.45 .45 8.25 .25 8.22 .22 7.44	0.16 0.20 0.03 0.78	49.00 20.00 3.00 78.00	0.003 0.010 0.010 0.010	300 100 100 100	37 - - -	7.16 7.89 8.05 8.08	0.73 0.17 0.02 0.60	7.89 8.05 8.08 8.67	214.56 213.45 213.30 209.45	248.89 247.60 247.42 242.96	0.95 0.95 0.95 0.95	2,190 1,850 0 0	2,081 1,758 0 0	2,081 3,838 3,838 3,838	0.144 0.264 0.264 0.259	450 450 500 500	UC UC pipe pipe	1.12 2.02 2.17 2.17	0.20 0.46 0.43 0.43	0.18 0.41 0.38 0.38	0.038 0.146 0.120 0.125
Point B CP10 Point J CP11 Point I	CP10 CP11 CP11 CP12 CP12	3+15 3+15+14 0.5 x 1 3+15+14+0.5 x 1 0.5 x 1	9.00 9. 9.00 9.	.00 9. .00 8.	78 9.40 40 8.55 78 8.70 55 8.50 78 8.73	0.38 0.49 0.08 0.05 0.05	34.00 73.00 20.00 10.00 12.00	0.011 0.007 0.004 0.005 0.004	90 150 250 200 250	65 	12.49 12.87 2.00 13.64 2.00	0.38 0.77 0.41 0.12 0.25	12.87 13.64 2.41 13.76 2.25	188.24 185.16 272.56 184.70 275.29	218.36 214.78 316.17 214.25 319.34	0.95 0.95 0.95 0.95 0.95	2,338 1,265 89 0 89	2,221 1,202 85 0 85	2,221 3,423 85 3,507 85	0.135 0.204 0.007 0.209 0.008	225 450 225 450 225	UC UC UC UC	1.49 1.58 0.82 1.40 0.80	0.19 0.29 0.05 0.28 0.04	0.17 0.26 0.05 0.26 0.04	0.040 0.053 0.039 0.047 0.033
CP12 CP13 CP13A	CP13 CP13A CP14	3+15+14+1+2 4+16+7+17+3+15+14+1+2 ditto	9.00 8. 8.50 8.	.50 8. .50 7.	.50 7.93 .44 7.41 .41 7.35	<mark></mark>	71.00 8.00 18.00	0.008	125 300 300	-	13.76 14.41 14.50	0.65	14.41 14.50 14.70	182.25 181.93 181.22	211.41 211.04 210.21	0.95	1,618 0 0	1,537 0 0	5,129 8,967 8,967	0.301	450 600 600	UC UC UC	1.81 1.50 1.51	0.42	0.38	0.081
CP14 Point H CP15A	TM2 CP15A TM2	ditto 5 ditto	8.50 6. 6.40 6.	.40 7. .40 6.	.18 6.16 .16 6.15	0.04	4.00 5.00 4.00	0.010 0.003 0.003	100 300 300	-	14.70 2.00 2.12	0.03 0.12 0.09	14.73 2.12 2.21	181.11 277.67 276.01	210.09 322.10 320.17	0.95 0.95 0.95	0 258 0	0 245 0	8,967 245 245	0.524	600 225 225	UC UC UC	2.34 0.71 0.72	0.75 0.03 0.04	0.68	0.154 0.010 0.012
External TM2	МНА	4 + 16 + 7 + 17 + 3 + 15 + 14 + 1 + 2 + 5	6.40 6.	.40 5.	.65 5.46	0.19	17.00	0.011	90		14.73	0.11	14.84	180.72	209.64	0.95	0	0	9,212	0.537	600	pipe	2.57	0.73	0.65	0.117
MHA	мна	4+10+7+17+3+15+14+1+2+5 ditto	6.40 5.		.46 5.10	0.19	19.00	0.011	90		14.73	0.12	14.84	180.72	209.64	0.95	0	0	9,212	0.537	600	pipe	2.57	0.73	0.65	0.117
МНВ	Proposed Outfall	ditto	5.70	- 5	.10 4.94	0.16	14.00	0.011	90		14.96	0.09	15.05	179.97	208.76	0.95	0	0	9,212	0.535	600	pipe	2.57	0.73	0.65	0.119

subcatchment

Grand total =

[#] the existing drain pipe at steep gradient is undisturbed; to be conservative, ma permissible pipe velocity is adopted in the calculation

sub total (the subject site area) =

0.95 20,318

19,302

(28)	(29)	
SPARE CAPACITY	Occupancy of the Proposed	
(m ³ /s)	Pipe / Channel	
	-	
0.081	58.6%	OK!
0.096	74.5%	OK!
0.104	73.0%	OK!
0.038	0.0%	OK!
0.115	70.7%	OK!
0.218	57.6%	OK!
0.234	55.9%	OK!
0.319	50.4%	OK!
0.329	49.7%	OK!
0.467	44.3%	OK!
0.460	46.3%	OK!
0.191	67.3%	OK!
0.043	17.9%	OK!
0.081	83.1%	OK!
0.031	22.9%	OK!
0.081	75.7%	OK!
0.530	52.4%	OK!
0.576	51.7%	OK!
0.772	44.4%	OK!
0.038	79.2%	OK!
0.146	64.5%	OK!
0.120	68.8%	OK!
0.125	67.5%	OK!
0.040	77.2%	OK!
0.053	79.5%	OK!
0.039	16.0%	OK!
0.047	81.6%	OK!
0.033	18.6%	OK!
0.081	78.9%	OK!
0.303	63.4%	OK!
0.360	59.3%	OK!
0.154	77.3%	OK!
0.010	69.7%	OK!
0.012	64.6%	OK!
0.447	00.00/	01/1
0.117	82.2%	OK!
0.118	82.0%	OK!
0.119	81.8%	OK!
0.119	01.8%	UK!