Appendix C

Traffic Impact Assessment

1.0 INTRODUCTION 1
1.1 Background 1
1.2 Scope of Study 1
2.0 PROPOSED DEVELOPMENT 2
2.1 Development Location \& Programme 2
2.2 Schedule of Accommodation 2
2.3 Internal Transport Provisions 2
2.4 Site Accesses 4
2.5 Internal Roads 5
2.6 Bus Lay-by and Pedestrian Crossing at Kam Tin Road5
3.0 EXISTING ROAD NETWORK 6
3.1 Existing Traffic Conditions 6
3.2 Existing Public Transport Provisions 6
4.0 TRAFFIC FORECASTING 8
4.1 Background Traffic Forecast 8
4.2 Site Trip Generation 10
5.0 IMPACT ASSESSMENT 12
5.1 Improvement Works 12
5.2 Road Junctions 12
5.3 Road Sections 14
6.0 SUMMARY AND CONCLUSION 16
6.1 Summary 16
6.2 Conclusion 16
Figure 2.1 Site Location and Critical Junctions
Figure 2.2 Proposed Site Accesses and Bus Lay-by Arrangement
Figure 2.3 Pedestrian Crossing by Transport Department
Figure 3.1 2022 Observed Traffic Flows
Figure $4.1 \quad 2030$ Reference Traffic Flows
Figure 4.2 Development Traffic Flows
Figure 4.32030 Design Traffic Flows
Figure 5.1 Proposed Au Tau Interchange Improvement
Annex A Junction Capacity Calculations
Annex B Detailed GFA Calculations

1.0 INTRODUCTION

1.1 Background

1.1.1 On 18 September 2020, a Section 16 Planning Application No. A/YL-KTN/698 was approved by the Town Planning Board (TPB) for a Proposed Residential Development at Lot No. 1071 in D.D. 103 (previously known as Various Lots in D.D. 103 and Adjoining Government Land), Ha Ko Po Tsuen, Kam Tin, Yuen Long (hereafter referred to as the "Site").
1.1.2 For fulfilment of approval condition (b) imposed under Application No. A/YL-KTN/698, a Consolidated Traffic Impact Assessment Report (TIA) with 563 flats and 2027 completion year was submitted and approved on 23 August 2023, hereinafter this is referred to as the Approved Scheme.
1.1.3 Under the current Section 16 Planning Application, the Applicant proposes to adopt Modular Integrated Construction (MiC) and adjust the average flat size for the Proposed Residential Development, which would result in a change in the total number of flats to 615 units whilst keeping to the development completion year of 2027. This Section 16 Planning Application is for proposed amendments to an approved residential development with minor relaxation of maximum plot ratio and building height restrictions.
1.1.4 RL Consultancy Ltd. has been commissioned to prepare a Traffic Impact Assessment in support of this Application.

1.2 Scope of Study

1.2.1 The key scope of study includes:

- Review previous submissions.
- Examine the information on this new application including the background, latest development schedule, design parameters and architectural drawings.
- Conduct site surveys to establish the latest local traffic characteristics.
- Evaluate the internal transport provisions due to the change in flat numbers and mix.
- Establish the Site trip generation and assess the impact on the road network.
- Prepare this TIA Report.

Section 16 Planning for Proposed Amendments to an Approved Residential Development and Minor Relaxation of Maximum Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at Lot No. 1071 in D.D. 103, Ha Ko Po Tsuen, Kam Tin, Yuen Long - Traffic Impact Assessment

2.0 PROPOSED DEVELOPMENT

2.1 Development Location \& Programme

2.1.1 The Site is located at Lot No. 1071 in D.D. 103, Ha Ko Po Tsuen, Kam Tin as graphically presented on Figure 2.1. This Proposed Scheme is scheduled for completion in year 2027.

2.2 Schedule of Accommodation

2.2.1 A comparison of the key parameters of the Approved Scheme under Application No. A/YLKTN/698 and the new Proposed Scheme using MiC is presented in Table 2.1.

Table 2.1 Comparison of Approved Scheme and Proposed Scheme

	Approved Scheme (A/YL-KTN/698) August 2023	Proposed Scheme (This report) October 2023
Application Site Area	About 16,293 m ${ }^{2}$	
Maximum Plot Ratio (PR)	Not more than 1.43	
	Domestic Accommodation	
Maximum Domestic GFA	Not more than 23,299 m ${ }^{\text {2 }}$ (3)	
No. of Residential Blocks	3	
$\begin{gathered} \hline \text { No. of Units with breakdown }{ }^{(\mathbf{1})} \\ F S \leq 40 \\ 40<F S \leq 70 \\ 70<F S \leq 100 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{5 6 3}: \\ 207 \\ 352 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 615: } \\ 471 \\ 144 \\ 0 \end{gathered}$
	Residents' Clubhouse	
Maximum non-domestic GFA	Not more than 1,165 m ${ }^{2}$	
	Car Parking Provision ${ }^{(2)}$	
P/C for Residents P/C for Visitors Motorcycle Bicycle MGV/HGV Loading / Unloading Bay	$\begin{gathered} 149 \\ 15 \\ 6 \\ 38 \\ 4 \end{gathered}$	$\begin{gathered} 113 \\ 15 \\ 7 \\ 41 \\ 4 \end{gathered}$

Notes: 1. Flat size (FS) is in m^{2} GFA.
2. Please refer to Section 2.3 for detailed calculations.
3. For the Proposed Scheme in this report, the GFA figure excludes 10% of MiC floor area which could be disregarded from calculation of GFA and plot ratio as per Joint Practice Note No. 8. Detailed GFA calculations are attached as Annex B.

2.3 Internal Transport Provisions

2.3.1 The overall intention of the parking provisions is to ensure that the proposed residential development would have sufficient parking provision to cater for the future residents.

Section 16 Planning for Proposed Amendments to an Approved Residential Development and Minor Relaxation of Maximum Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at Lot No. 1071 in D.D. 103, Ha Ko Po Tsuen, Kam Tin, Yuen Long - Traffic Impact Assessment

Existing HKPSG

2.3.2 Calculated using the high end of the Hong Kong Planning Standards and Guidelines (HKPSG), the car parking provisions for the proposed development are given in Table 2.2.

Table 2.2 Proposed Car Parking Provision under the HKPSG

Type	HKPSG	Proposed Scheme	
		Adopted Standard (GPS = 1 car space per 4 flats)	Proposed Provision
Car Parking Spaces	Residents Parking Requirement = GPS x R1 x R2 x R3 - GPS = 1 car space per 4-7 flats - $\mathrm{R}^{(1)}=0.5$ for $\mathrm{FS} \leq 40$ and 1.2 for $40<\mathrm{FS} \leq 70$ - $\mathrm{R} 2=1.00$ for outside a 500m-radius of rail station - $\mathrm{R} 3=1.10$ for $1<\mathrm{PR} \leq 2$	$0.55(0.5 \times 1 \times 1.1)$ spaces per 4 flats for 471 flats with $\mathrm{FS} \leq 40$ $+$ $1.32(1.2 \times 1 \times 1.1)$ spaces per 4 flats for 144 flats with $40<\mathrm{FS} \leq 70$	$\begin{gathered} 113 \\ (65+48) \end{gathered}$
	Visitor car parking for private residential developments with more than 75 units per block should include 1-5 visitor spaces per block	5 spaces per block with more than 75 residential units	$\begin{gathered} 15 \\ (5 \times 3 \\ \text { blocks }) \end{gathered}$
	Total Number of Car Parking Spaces =		$128{ }^{(2)}$
Motor-cycle Parking Spaces	1 space per 100-150 flats	1 space per 100 flats	7
Bicycle Parking Spaces	Within a $0.5-2 \mathrm{~km}$ radius of a rail station, 1 bicycle parking space for every 15 flats with flat size smaller than $70 \mathrm{~m}^{2}$	1 space for every 15 flats	$\begin{gathered} 41 \\ (615 \\ \div 15 \text { with } \\ \text { roundup) } \end{gathered}$
Loading/ Unloading Bay	Minimum of 1 loading / unloading bay for goods vehicles within the site for every 800 flats or part thereof, subject to a minimum of 1 bay per block	1 bay per block	4 (3 blocks plus 1 for clubhouse)

Notes: 1. Flat size (FS) in m^{2} GFA. Breakdown of the total 615 units: 471 units have $\mathrm{FS} \leq 40$ and 144 units are $40<\mathrm{FS} \leq 70$.
2. Three numbers of accessible car parking spaces will be reserved for persons with disabilities in accordance with the HKPSG, all will be reserved for visitor parking.

Summary of Internal Transport Provisions

2.3.3 The recommended number and dimensions for internal transport facilities is summarised in Table 2.3.

Table 2.3 Summary of Internal Transport Provisions

Type	Number Proposed	Size	Minimum Headroom
Private Car Parking Space	125	$5 \mathrm{~m} \times 2.5 \mathrm{~m}$	2.4 m
Disabled Car Parking Space	3	$5 \mathrm{~m} \times 3.5 \mathrm{~m}$	2.4 m
Motorcycle Parking Space	7	$1 \mathrm{~m} \times 2.4 \mathrm{~m}$	2.4 m
Bicycle Parking Space	41	(see Note)	-
Medium/Heavy Goods Vehicle Bay	4	$11 \mathrm{~m} \times 3.5 \mathrm{~m}$	4.7 m

Note: Detailed design will comply with Transport Planning and Design Manual (TPDM), including Volume 3 Chapter 6.5 on Cycle Parking.
2.3.4 All parking and loading/unloading bays will be laid out in such a way to avoid the need for vehicles to reverse onto roads abutting the Site. The manoeuvring of goods vehicles will be within the curtilages of the site and no reversing movement into/from a public road such as Kam Tin Road will be conducted.

2.4 Site Accesses

2.4.1 The two Site accesses of the Proposed Scheme will be the same as that detailed in the approved "Site Vehicular Accesses Report" under approval condition (c) of the Approved Scheme and reproduced in Figure 2.2. The key features are summarised in the following paragraphs.
2.4.2 The Site will have two vehicular accesses: an egress only at Kam Tin Road and a combined run-in and run-out at Ying Ho Road. The proposed site egress at Kam Tin Road will be 7.3 m wide and will include a pedestrian crossing facility. The proposed Site run-in/out at Ying Ho Road will be 8 m wide.
2.4.3 With a Site run-in/out on Ying Ho Road, incoming Site traffic from the east such as Tsing Long Highway will not have to make a U-turn at the Au Tau Interchange to enter at the Kam Tin Road access when compared to only having a single access on Kam Tin Road. As such, Site traffic via Au Tau Interchange will be reduced thereby improving the overall road traffic conditions in the locality. Capacity assessment has been conducted on the priority junction of Kam Tin Road/Ying Ho Road and it will still operate satisfactorily as detailed in Section 5.
2.4.4 An existing run-in/out on Kam Tin Road located west of Ying Ho Road will be closed off and become part of the proposed bus lay-by which is further described in Section 2.6. Besides improving the traffic operation along Kam Tin Road, reducing the number of existing vehicular run-in/outs on Kam Tin Road eastbound will allow a more continuous cycle track along its northern kerbside.

2.5 Internal Roads

2.5.1 The proposed residential blocks, basement car park and other transport facilities within the Proposed Scheme will be linked up by internal roads. Hammerhead and/or cul-de-sac facilities will be provided at the road ends for turnaround movements.
2.5.2 The Applicant undertakes to provide a right-of-way (ROW) for Lot 265 B RP. Relevant terms and conditions have been incorporated in the land lease to ensure the provision of ROW to the concerned lot.

2.6 Bus Lay-by and Pedestrian Crossing at Kam Tin Road

2.6.1 The bus lay-by of the Proposed Scheme will be the same as that detailed in the approved "Report on the Design and Provision of Public Transport Facilities" under approval condition (e) of the Approved Scheme. Reproduced in Figure 2.2, the key features are summarised in the following paragraphs.
2.6.2 An existing run-in/out on Kam Tin Road about 50 m west of Ying Ho Road would be abandoned and a bus lay-by would be constructed to serve the future residents of the proposed development as well as other members of the public residing in the area in response to Transport Department's request on previous applications of this location.
2.6.3 Transport Department has installed a signalled pedestrian crossing at Kam Tin Road just west of Ying Ho Road. The scheme is reproduced on Figure 2.3.

NO. DAT

S16 Application for Proposed Amendments to on Approve Residential Development and Minor Relayation of Maximum Plot Ratio and Building Heigh Restrictions in D.D. 103 and Adjoining Government Land, Ha Ko Po Tsuen, Kam Tin, Yuen Long

FIGURE TITLE

Pedestrian Crossing by Transport Department

FIGURE NO.	2.3	
2.3		
SCALE		
Schematic	DEEIGNED	BC
DRAWN	NL	CHECKED

RL CONSULTANCY LTD.

3.0 EXISTING ROAD NETWORK

3.1 Existing Traffic Conditions

3.1.1 The Site is bounded by Kam Tin Road to the south and Ying Ho Road to the east. Kam Tin Road is a rural road connecting Au Tau Interchange and the Lam Kam Road/Route Twisk Roundabout. It is of dual 2-lane carriageway standard between Au Tau Interchange and the Kam Tin Bypass/Kam Ho Road Roundabout. Ying Ho Road is a single 2-lane rural road serving the residential development of Riva and adjacent villages. With these road links, the Site has easy vehicular access to the external strategic roads and further connection to all parts of Hong Kong.
3.1.2 Classified traffic surveys were undertaken on typical weekdays on 25, 28 and 29 March 2022 to establish the traffic conditions in the vicinity.
3.1.3 The junction types and capacities for year 2022 at these key locations adjacent to the Site are shown in Table 3.1 and graphically illustrated on Figure 2.1 while the observed 2022 traffic flows are shown on Figure 3.1. Detailed calculations, carried out in accordance with the TPDM, are attached in Annex A.

Table 3.1 Intersection Types and Capacities for 2022

Location		Junction Type	Peak	2022 $^{(1)}$
	Hour			
J1	Au Tau Interchange	Roundabout	AM	0.57
			PM	0.47
J2	Kam Tin Road /	Priority T-junction	AM	0.13
	Ying Ho Road		0.09	
J3	Kam Tin Road / Tsing Long	Signalled T-junction	AM	16%
	Highway Slip Road		PM	17%
J4	Kam Tin Road / Kam Tin	Roundabout	AM	0.61
	Bypass / Kam Ho Road		PM	0.55

Notes: 1. Capacity figures show the reserve capacity of a signalled junction or the ratio of flow to capacity of the critical approach of the priority junction and roundabout.
2. Reference - without the proposed development.
3.1.4 It can be seen from Table 3.1 that all the junctions are operating satisfactorily.

3.2 Existing Public Transport Provisions

3.2.1 In addition to taxis, there are also a number of existing public transport facilities running in the area along Kam Tin Road; these include 8 GMB routes and 7 bus routes. These public transport services provide convenient linkage to the MTR station and other major public transport interchanges for onward connection to numerous destinations throughout Hong Kong.
3.2.2 Details of the GMB and bus routes are summarised in Table 3.2.

Section 16 Planning for Proposed Amendments to an Approved Residential Development and Minor Relaxation of Maximum Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at Lot No. 1071 in D.D. 103, Ha Ko Po Tsuen, Kam Tin, Yuen Long - Traffic Impact Assessment

Table 3.2 Public Transport Facilities

$\left.$| Route
 Number | | | |
| :---: | :---: | :---: | :---: |
| Terminal Points | | | | | GMB |
| :---: |
| (Minutes) | \right\rvert\,

3.2.3 It can be seen from Table $\mathbf{3 . 2}$ that there are sufficient existing public transport routes serving the Site area.

4.0 TRAFFIC FORECASTING

4.1 Background Traffic Forecast

4.1.1 According to the latest programme, the development is scheduled for completion in 2027, and year 2030 is taken as the design horizon year for assessment of traffic impact. The Reference traffic flows for 2030 is calculated using the following equation:

2030 Reference Flows = 2022 Observed Flows x Growth Factor (from para. 4.1.4) + traffic from major planned/approved developments (from Table 4.2) + traffic from the Approved Scheme in A/YLKTN/698 (from Table 4.3)

Growth Factor

4.1.2 Information from TD's Annual Traffic Census (ATC) reports was used to calculate the growth factor. Table 4.1 shows the Annual Average Daily Traffic (AADT) figures from 2017 to 2021.

Table 4.1 AADT from 2017 to 2021

Road Name	From	To	Station No.	AADT				
				2017	2018	2019	2020	2021
San Tin Highway, Castle Peak Rd \& San Tam Rd	$\begin{gathered} \text { Kam Tin } \\ \text { Rd } \end{gathered}$	Fairview Park Boulevard	5016	90,650	86,230	90,860	81,870	86,620
Castle Peak Rd - Yuen Long	Yuen Long On Lok Rd	Kam Tin Rd	5019	30,040	29,300	30,160	27,640	29,600
Tsing Long Highway - Tai Lam Tunnel	Au Tau INT	Tuen Mun Rd	5029	60,280	61,100	57,450	45,880	44,500
Kam Tin Rd	Castle Peak Rd Yuen Long	Kam Sheung Rd western junction	6051	34,880	41,960	41,820	41,410	43,020
Kam Ho Rd	$\begin{gathered} \text { Kam Tin } \\ \text { Rd } \end{gathered}$	Tung Wui Rd	6109	9,780	10,400	10,360	10,260	10,660
Kam Tin Bypass	$\begin{gathered} \hline \text { Kam Tin } \\ \text { Rd } \end{gathered}$	Kam Tin Rd	6110	14,120	15,470	14,990	12,810	12,450

Note: Traffic flows are shown in vehicles/day.
4.1.3 Linear regression analysis was applied to the AADT volumes for each of the count stations to obtain an annual growth factor for the Study Area. The average annual growth rate, weighted by traffic volume, for the study area was calculated to be about -1.8%.
4.1.4 For a conservative estimate, a growth rate of $+1 \%$ per annum was applied to the observed 2022 traffic demand to yield the 2030 reference traffic forecasts to account for any uncertainties in the construction programme, land use and transport infrastructure changes.

Major Planned/Approved Developments

4.1.5 There are major newly completed and planned or approved developments in the vicinity of the proposed development. These developments that have also been taken into account in the background traffic forecast are listed in Table 4.2.

Section 16 Planning for Proposed Amendments to an Approved Residential Development and Minor Relaxation of Maximum Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at Lot No. 1071 in D.D. 103, Ha Ko Po Tsuen, Kam Tin, Yuen Long - Traffic Impact Assessment

Table 4.2 Major Planned/Approved Developments

	Location	Details	Peak Hour	2-way Traffic Generation (pcus/hr)
1	Tung Shing Lei Development (A/YL-NSW/274)	1,518 private residential units (average flat size about $46 \mathrm{~m}^{2}$)	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 174 \\ & 101 \end{aligned}$
2	Development in DD107, Sha Po, Kam Tin Phases $1 \& 2$ (A/YL-KTN/118-2)	3,657 private residential units (average flat size about $70 \mathrm{~m}^{2}$)	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 419 \\ & 242 \end{aligned}$
3	Sha Po North Phase 2 Residential Development (A/YL-KTN/663)	1,154 private residential units (average flat size about $42.57 \mathrm{~m}^{2}$)	$\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$	$\begin{aligned} & \hline 58^{(5)} \\ & 32^{(5)} \end{aligned}$
4	Yuen Long Station Property Development (A/YL/209)	1,876 private residential units (average flat size about $100 \mathrm{~m}^{2}$) \& $10,000 \mathrm{~m}^{2}$ retail GFA	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 263 \\ & 191 \end{aligned}$
5	Nam Sang Wai Commercial Development (Y/YL-NSW/3)	$38,300 \mathrm{~m}^{2}$ retail GFA \& 700 hotel rooms	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 378 \\ & 456 \end{aligned}$
6	Kam Tin North Residential Development (A/YL-KTN/567)	200 flats (average flat size about $65 \mathrm{~m}^{2}$)	$\begin{gathered} \hline \mathrm{AM} \\ \mathrm{PM} \end{gathered}$	$\begin{aligned} & 28 \\ & 17 \end{aligned}$
7	Kam Tin South Priority Sites Development	 $43.000 \mathrm{~m}^{2}$ retail GFA	AM PM	$\begin{aligned} & 3,575 \\ & 2,646 \end{aligned}$
8	Au Tau Residential Development (Lot 1066 in DD 103)	333 private residential units (average flat size about $100 \mathrm{~m}^{2}$)	$\begin{gathered} \text { AM } \\ \text { PM } \end{gathered}$	$\begin{gathered} 115 \\ 91 \end{gathered}$
9	Kam Tin West Outlet Mall (A/YL-NSW/241)	37,171 m^{2} retail GFA	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & 177 \\ & 249 \\ & \hline \end{aligned}$
10	Sha Po North Phase 3 (A/YL-KTN/604)	3,891 private residential units (average flat size about $49 \mathrm{~m}^{2}$)	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 558 \\ & 334 \\ & \hline \end{aligned}$
11	Au Tau Development (Lot 1928 in DD107)	International School	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{gathered} 250 \\ 10 \end{gathered}$

Notes: 1. Source includes http://www.tpb.gov.hk
2. For the same location with multiple applications, only the latest application is shown.
3. Completed and occupied developments are not included. Our surveys will have accounted for these traffic flows.
4. Approved Scheme (A/YL-KTN/698) traffic has been included separately (see para. 4.1.1).
5. Additional traffic in addition to the development under application no. A/YL-KTN/118-2.

Design Year Traffic Flows

4.1.6 In summary, the 2030 reference traffic flows were produced by adoption of 1% per annum traffic growth rate applied to the 2022 observed traffic flows and addition of trips generated by the major planned developments as listed in Table 4.2. With the inclusion of the Approved Scheme TIA total traffic generation from Table 4.3 and assigned to the road network based on the approved Site access on Kam Tin Road. The 2030 Reference traffic flows are shown on Figure 4.1.
4.1.7 The Development traffic flows of the Proposed Scheme from Table 4.3 were assigned to the road network as shown on Figure 4.2.
4.1.8 These Development traffic flows were then added to the 2030 Reference traffic flows to produce 2030 Design traffic flows and presented on Figure 4.3. The Design traffic flows for 2030 is calculated using the following equation:

2030 Design Flows $=2030$ Reference Flows + Site traffic from the Proposed Scheme (from Table 4.3).

4.2 Site Trip Generation

4.2.1 Trip generation of the Proposed Scheme was estimated from the trip generation and attraction rates stipulated in Annex C of TPDM Volume 1 Chapter 3. Table 4.3 summarises the adopted trip rates and the resulting Site traffic generation of the Approved Scheme and Proposed Scheme.

Table 4.3 Approved and Proposed Schemes Traffic Generation Comparison

Component	AM		PM	
	Gen	Att	Gen	Att
Adopted Trip Rates (pcus/hr/flat)	0.1021	0.0709	0.0415	0.0464
Proposed Scheme Traffic Generation with 615 Flats (pcus/hr)	63	44	26	29
Approved Scheme Traffic Generation with 563 Flats (pcus/hr)	58	40	24	27
Net Difference (pcus/hr)	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{2}$

Note: Upper limit trip rates of $60 \mathrm{~m}^{2}$ average flat size private housing of high-density / R(A) with car park ratio of 4 flats per car parking space were adopted for assessment.
4.2.2 It can be seen from Table 4.3 that the Proposed Scheme with 615 flats would only produce a total 2-way traffic generation and attraction of $107 \mathrm{pcus} / \mathrm{hr}$ and $55 \mathrm{pcus} / \mathrm{hr}$ for the AM and PM peak hours respectively. With these vehicles distributed onto various parts of the road network, the traffic impact is negligible.
4.2.3 When compared to the latest Approved Scheme, the small increase of $52(615-563)$ flats under the Proposed Scheme would only increase the 2-way traffic generation by 9 pcus $/ \mathrm{hr}$ and 4 pcus/hr for the AM and PM peak hours respectively. Therefore, this Proposed Scheme would have negligible additional impact on traffic conditions.

Section 16 Planning for Proposed Amendments to an Approved Residential Development and Minor Relaxation of Maximum Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at Lot No. 1071 in D.D. 103, Ha Ko Po Tsuen, Kam Tin, Yuen Long - Traffic Impact Assessment
4.2.4 The Approved Scheme TIA has assessed and concluded that all the assessed junctions would be able to cater for the Site traffic demand even after taking into account the potential future developments. Given the negligible additional traffic from this Proposed Scheme, the same finding can be maintained and the Proposed Scheme is considered acceptable from a traffic point of view.
4.2.5 For a comprehensive assessment, however, the traffic impact of the Proposed Scheme has been assessed and the results are presented in Section 5 .

Legend:

PROJECT
 S16 Application for Proposed Amendments to an Approved Residential Development and Plot Ratio ation of Max Heigh Plot Ratio and Building Heig Restrictions in D.D. 103 and Adjoining Government Land, Ha Ko Po Tsuen, Kam Tin, Yuen Long FIGURE TITLE

Development Traffic Flows		

5.0 IMPACT ASSESSMENT

5.1 Improvement Works

5.1.1 A number of traffic improvement schemes have been identified or completed by others to enhance traffic operations in the area. It is worth emphasising that the Applicant is not initiating these improvements, nor such improvements are required by the Proposed Scheme. These improvements are described as follows:

Au Tau Interchange

5.1.2 An improvement measure for the Au Tau Interchange was proposed under Planning Application No. A/YL-KTN/604. It is proposed to widen Castle Peak Road southbound direction so as to provide an exclusive left turn lane from Castle Peak Road southbound into Kam Tin Road eastbound as shown on Figure 5.1.

Kam Tin Road/Tsing Long Highway Slip Road Signalled T-junction

5.1.3 Based on the layout of the improvement works to be carried out at the junction of Kam Tin Road/Tsing Long Highway by CEDD Contract No. YL/2017/01 and Kam Sheung Road Property Development, local road widenings have been identified at 3 approaching arms namely Kam Tin Road eastbound, Kam Tin Road westbound and slip road from Tsing Long Highway.

Kam Tin Road/Kam Tin Bypass/Kam Ho Road Roundabout

5.1.4 A new segregated left turning lane from Kam Ho Road northbound to Kam Tin Road westbound and local widening of Kam Tin Road westbound were gazetted by the Government in March 2016.

Signalled Pedestrian Crossing at Kam Tin Road west of Ying Ho Road

5.1.5 Transport Department has installed a signalled pedestrian crossing at Kam Tin Road just west of Ying Ho Road under Term Contract No. 01/HY/2014 and Work Request No. WR/HY/TE/NW/16/00436 - Improvement works for Pedestrian Crossing with Traffic Signal at Kam Tin Road near Ying Ho Road. The scheme is reproduced on Figure 2.3.

5.2 Road Junctions

5.2.1 Capacity analyses were carried out for the junctions that would be affected by the Site for the design year of 2030 in both the AM and PM peak hours.
5.2.2 Reference Flows refer to the background traffic demand without the Site development. Design Flows, i.e., the traffic flows in the future road network with inclusion of Site traffic from the Proposed Scheme (from Table 4.3).

With Improvement Works

5.2.3 Taking into account the junction improvement schemes mentioned in Section 5.1, results of the junction capacity analyses for 2030 are summarised in Table 5.1. Detailed calculations, carried out in accordance with the TPDM, are attached in Annex A.

Table 5.1 Intersection Capacities for 2030

Location		Peak Hour	$2030{ }^{(1)}$		
		Reference ${ }^{(2)}$	Design ${ }^{(3)}$		
J1	Au Tau Interchange ${ }^{(4)}$		AM	0.82	0.82
	(with existing flyover $\&$ with improvement)	PM	0.68	0.68	
	Au Tau Interchange ${ }^{(4)}$ (without existing flyover \& with	AM	0.84	0.84	
	improvement)	PM	0.74	0.74	
J2	Kam Tin Road / Ying Ho Road	AM	0.20	0.21	
		PM	0.11	0.12	
J3	Kam Tin Road / Tsing Long Highway Slip Road ${ }^{(4)}$	AM	29\%	29\%	
		PM	21\%	21\%	
J4	Kam Tin Road / Kam Tin Bypass / Kam Ho Road ${ }^{(4)}$	AM	0.81	0.81	
		PM	0.64	0.64	
J5	Ying Ho Road / ROW / Site Access	AM	0.01	0.01	
		PM	<0.01	<0.01	
J6	Kam Tin Road/ Site Access / ROW Egress	AM	0.12	0.13	
		PM	0.04	0.05	

Notes: 1. Capacity figures show the reserve capacity of a signalled junction or the ratio of flow to capacity of the critical approach of the priority junction and roundabout.
2. Reference - with traffic from major planned/approved developments in Table 4.2 and Approved Scheme.
3. Design - with traffic from full occupation of the Proposed Scheme.
4. With junction improvements as detailed in Section 5.1.
5.2.4 It can be seen from Table 5.1 that the junction capacities, including the traffic generated from Proposed Scheme, will operate satisfactorily. In fact, the impact of the proposed development is negligible.
5.2.5 In light of the above findings, it can be concluded that the traffic impact imposed onto the adjacent road network due to the Proposed Scheme would be minimal. The proposed development is therefore considered feasible from a traffic engineering point of view.

Without Left-turn Lane Improvement at Au Tau Interchange

5.2.6 Under the approved planning application no. A/YLKTN/604, it was proposed to widen Castle Peak Road southbound direction so as to provide an exclusive left turn lane from Castle Peak Road southbound into Kam Tin Road eastbound at the Au Tau Interchange as shown on Figure 5.1. An assessment has been carried out for the scenario that this exclusive left-turn lane would not be provided, i.e., without the approved development under planning application No. A/YL-KTN/604.
5.2.7 The capacities of Au Tau Interchange, including traffic generation from the approved planning application no. A/YL-KTN/663, were found to operate satisfactorily in 2030. Results of the junction capacity analysis for 2030 are summarised in Table 5.2.

Table 5.2 Au Tau Interchange Capacities for 2030 - Without Improvement

Location		Peak	2030 $^{(1)}$	
	Hour	Reference ${ }^{(2)}$	Design $^{(3)}$	
J1	Au Tau Interchange ${ }^{(4)}$	AM	0.79	0.79
	(with existing flyover but	PM	0.66	0.66

Notes: 1. Capacity figures show the flow to capacity ratio of the critical approach of the roundabout.
2. Reference - with traffic from major planned/approved developments in Table 4.2 and Approved Scheme.
3. Design - with traffic from full occupation of the Proposed Scheme.
4. With existing flyover but without junction improvements shown on Figure 5.1; without traffic from A/YL-KTN/604 but with traffic from A/YL-KTN/663.

5.3 Road Sections

5.3.1 The volume to capacity ratio (V/C) for the road sections that would be affected by the Site traffic were assessed for years 2022 and 2030.
5.3.2 All the V/C ratios were found to be satisfactorily in 2022 and 2030 for both the AM and PM peak hours. Results of the V/C analyses are summarised in Table 5.3.

Section 16 Planning for Proposed Amendments to an Approved Residential Development and Minor Relaxation of Maximum Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at Lot No. 1071 in D.D. 103, Ha Ko Po Tsuen, Kam Tin, Yuen Long - Traffic Impact Assessment

Table 5.3 Road Section Volume to Capacity Ratios for 2022 and 2030

Road Name (Section)		Direction	Capacity (C) (pcus/hr)	$\begin{gathered} \text { Flow } \\ \text { (V) } \\ \text { (pcus/hr) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 2022 \\ \hline \text { Survey } \\ \hline \end{gathered}$		2030				
		Reference					Design				
		AM			PM	AM	PM	AM	PM		
S1	Castle Peak Road-Tam		NB	$3,600^{(1)}$	$\begin{gathered} \mathrm{V} \\ V / C \end{gathered}$	$\begin{aligned} & 1,030 \\ & \mathbf{0 . 2 9} \end{aligned}$	$\begin{aligned} & 780 \\ & 0.22 \end{aligned}$	$\begin{gathered} \hline 2,114 \\ \mathbf{0 . 5 9} \end{gathered}$	$\begin{gathered} 1,401 \\ \mathbf{0 . 3 9} \end{gathered}$	$\begin{gathered} \hline 2,115 \\ \mathbf{0 . 5 9} \end{gathered}$	$\begin{gathered} 1,402 \\ \mathbf{0 . 3 9} \end{gathered}$
	Au Tau Interchange)		SB	$3,600^{(1)}$	$\begin{gathered} \mathrm{V} \\ \boldsymbol{V / C} \end{gathered}$	$\begin{gathered} 1,290 \\ 0.36 \end{gathered}$	$\begin{gathered} 1,230 \\ 0.34 \end{gathered}$	$\begin{array}{r} 2,287 \\ \mathbf{0 . 6 4} \end{array}$	$\begin{gathered} 1,804 \\ 0.50 \end{gathered}$	$\begin{gathered} 2,288 \\ \mathbf{0 . 6 4} \end{gathered}$	$\begin{gathered} 1,805 \\ 0.50 \end{gathered}$
S2	Castle Peak Road-Yuen	EB	5,400 ${ }^{(2)}$	$\begin{gathered} \mathrm{V} \\ \boldsymbol{V} / \mathrm{C} \end{gathered}$	$\begin{gathered} 2,150 \\ \mathbf{0 . 4 0} \end{gathered}$	$\begin{gathered} 1,690 \\ 0.31 \end{gathered}$	$\begin{array}{\|c\|} \hline 3,337 \\ \mathbf{0 . 6 2} \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 2,504 \\ \mathbf{0 . 4 6} \end{array}$	$\begin{gathered} 3,339 \\ \mathbf{0 . 6 2} \end{gathered}$	$\begin{array}{r} 2,505 \\ \mathbf{0 . 4 6} \end{array}$	
	Long (West of Au Tau Interchange)	WB	5,400 ${ }^{(2)}$	$\begin{gathered} \mathrm{V} \\ \boldsymbol{V / C} \end{gathered}$	$\begin{array}{r} 2,360 \\ 0.44 \end{array}$	$\begin{array}{r} 2,890 \\ 0.54 \end{array}$	$\begin{gathered} 3,519 \\ \mathbf{0 . 6 5} \end{gathered}$	$\begin{array}{\|c\|} \hline 3,673 \\ 0.68 \end{array}$	$\begin{gathered} 3,521 \\ 0.65 \end{gathered}$	$\begin{gathered} 3,674 \\ 0.68 \end{gathered}$	
S3	Kam Tin Road (East of Au Tau Interchange)	EB	3,600 ${ }^{(1)}$	$\begin{gathered} \mathrm{V} \\ V / C \end{gathered}$	$\begin{gathered} 1,770 \\ \mathbf{0 . 4 9} \end{gathered}$	$\begin{gathered} 1,520 \\ \mathbf{0 . 4 2} \end{gathered}$	$\begin{gathered} 2,631 \\ \mathbf{0 . 7 3} \end{gathered}$	$\begin{gathered} 2,122 \\ \mathbf{0 . 5 9} \end{gathered}$	$\begin{gathered} 2,634 \\ \mathbf{0 . 7 3} \end{gathered}$	$\begin{gathered} 2,123 \\ 0.59 \end{gathered}$	
		WB	$3,600{ }^{(1)}$	$\begin{gathered} \mathrm{V} \\ \boldsymbol{V} / \boldsymbol{C} \end{gathered}$	$\begin{gathered} 1,720 \\ \mathbf{0 . 4 8} \end{gathered}$	$\begin{gathered} 2,270 \\ \mathbf{0 . 6 3} \end{gathered}$	$\begin{gathered} 2,640 \\ \mathbf{0 . 7 3} \end{gathered}$	$\begin{gathered} 2,888 \\ \mathbf{0 . 8 0} \end{gathered}$	$\begin{gathered} 2,643 \\ \mathbf{0 . 7 3} \end{gathered}$	$\begin{array}{r} 2,889 \\ \mathbf{0 . 8 0} \end{array}$	
S4	Ying Ho Road (North of Kam Tin Road)	2-way	$2,200^{(3)}$	$\begin{gathered} \mathrm{V} \\ \boldsymbol{V} / \boldsymbol{C} \end{gathered}$	$\begin{aligned} & 140 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 130 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 198 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 171 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 203 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 173 \\ & 0.08 \end{aligned}$	
S5	Kam Tin Road (West of Kam Ho Road)	EB	5,400 ${ }^{(2)}$	$\begin{gathered} \mathrm{V} \\ \boldsymbol{V / C} \end{gathered}$	$\begin{gathered} 2,040 \\ 0.38 \end{gathered}$	$\begin{gathered} 1,820 \\ 0.34 \end{gathered}$	$\begin{gathered} \hline 3,117 \\ \mathbf{0 . 5 8} \end{gathered}$	$\begin{array}{r} \hline 2,494 \\ \mathbf{0 . 4 6} \end{array}$	$\begin{gathered} 3,122 \\ 0.58 \end{gathered}$	$\begin{array}{r} \hline 2,496 \\ \mathbf{0 . 4 6} \end{array}$	
		WB	$3,600^{(1)}$	$\begin{gathered} \mathrm{V} \\ V / C \end{gathered}$	$\begin{gathered} 1,660 \\ \mathbf{0 . 4 6} \end{gathered}$	$\begin{gathered} 1,910 \\ 0.53 \end{gathered}$	$\begin{array}{\|c\|} \hline 2,922 \\ \mathbf{0 . 8 1} \end{array}$	$\begin{array}{\|c\|} \hline 2,545 \\ \mathbf{0 . 7 1} \end{array}$	$\begin{gathered} 2,927 \\ \mathbf{0 . 8 1} \end{gathered}$	$\begin{array}{r} 2,547 \\ \mathbf{0 . 7 1} \end{array}$	
S6	Kam Tin Road (East of Kam Ho Road)	2-way	$2,200^{(3)}$	V V/C	$\begin{aligned} & 1,320 \\ & \mathbf{0 . 6 0} \end{aligned}$	$\begin{aligned} & 1,370 \\ & 0.62 \end{aligned}$	$\begin{aligned} & 1,795 \\ & \mathbf{0 . 8 2} \end{aligned}$	$\begin{array}{\|c} 1,756 \\ 0.80 \end{array}$	$\begin{aligned} & 1,795 \\ & \mathbf{0 . 8 2} \end{aligned}$	$\begin{aligned} & 1,756 \\ & \mathbf{0 . 8 0} \end{aligned}$	

Notes: 1. Road capacity for dual 2-lane carriageway in pcus/hr.
2. Road capacity for dual 3-lane carriageway in pcus/hr.
3. Road capacity for single 2-lane carriageway in pcus $/ \mathrm{hr}$.

PROJECT

S16 Application for Proposed Amendments to an Approved Residential Development and Plot Retio and Building Height Restrictions in D.D. 103 and Adjoining Government Land, Ha Ko Po Tsuen, Kam Tin, Yuen Long FIGURE TITLE

Proposed Au Tau Interchange Improvement
FIGURE NO.

SCALE		
Schematic	DESIGNED	BC
DRAWN	NL	CHECKED

RL CONSULTANCY LTD.

6.0 SUMMARY AND CONCLUSION

6.1 Summary

6.1.1 The Application Site is bounded by Kam Tin Road to the south and Ying Ho Road to the east. It is currently zoned "Residential (Group E)" with a Site area of about $16,293 \mathrm{~m}^{2}$.
6.1.2 To adopt Modular Integrated Construction (MiC), the Applicant proposes a residential development in the Application Site with a plot ratio of not more than 1.43 comprising a total of 615 residential units.
6.1.3 The provision of internal transport facilities including car parking and loading/unloading provisions were proposed at the higher end of the range under the HKPSG. The proposed development will provide 128 resident and visitor car parking spaces including 3 for the disabled, 7 motorcycle parking spaces, 41 bicycle parking spaces and 4 loading/unloading bays for goods vehicles.
6.1.4 Same as the Approved Scheme, the Site will have two vehicular accesses: an egress only at Kam Tin Road and a combined run-in and run-out at Ying Ho Road. With this arrangement, incoming Site traffic from the east such as Tsing Long Highway will not have to make a U-turn at the Au Tau Interchange to enter at the Kam Tin Road access. As such, the traffic via Au Tau Interchange will be reduced thereby improving the overall road traffic conditions in the locality. Besides improving the traffic operation along Kam Tin Road, reducing the number of existing vehicular run-in/outs on Kam Tin Road eastbound will allow a more continuous cycle track along the northern kerbside.
6.1.5 The Proposed Scheme of 615 flats would only produce a total 2-way traffic generation and attraction of $107 \mathrm{pcus} / \mathrm{hr}$ and $55 \mathrm{pcus} / \mathrm{hr}$ for the AM and PM peak hours respectively. With these traffic flows distributed onto various parts of the road network, the impact of this small amount of traffic is negligible.
6.1.6 When compared to the Approved Scheme, the small increase of 52 flats under the Proposed Scheme would only increase the 2-way traffic generation by 9 pcus/hr and 4 pcus/hr for the AM and PM peak hours respectively. Therefore, this Proposed Scheme would have negligible additional impact on traffic conditions in the area.
6.1.7 This TIA has assessed and concluded that all the assessed junctions would be able to cater for the Site traffic demand even after taking into account the potential future developments under planning.

6.2 Conclusion

6.2.1 In light of the findings of this Traffic Impact Assessment, the traffic impact imposed onto the adjacent road network due to the Proposed Scheme would be minimal and the proposed development is feasible from a traffic engineering point of view.

Annex A

Junction Capacity Calculations

Junction: Description: Design Year:	Au Tau Interchange (with Flyover)				Designed by: Checked by:	$\begin{aligned} & \mathrm{EF} \\ & \hline \mathrm{RL} \\ & \hline \end{aligned}$
	Ref (existing layout) Date: Aug 2023					
	2022					
Description:			$\begin{gathered} \hline \text { CPR-Tam Mi } \\ \text { SB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Kam Tin Rd } \\ \text { WB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CPR-YL } \\ \text { EB } \\ \hline \end{gathered}$	
Input: V E L R D A Q Qc	$\begin{aligned} & =\text { Approach half width }(\mathrm{m}) \\ & =\text { Entry width }(\mathrm{m}) \\ & =\text { Effective length of flare }(\mathrm{m}) \\ & =\text { Entry radius }(\mathrm{m}) \\ & =\text { Inscribed circle diameter }(\mathrm{m}) \\ & =\text { Entry angle (degree) } \\ & =\text { Entry flow (pcus/hr) } \\ & =\text { Circulating flow across entry (pcus/hr) } \end{aligned}$	AM PM AM PM	$\begin{gathered} 7.0 \\ 10.0 \\ 13.0 \\ 50.0 \\ 65.0 \\ 45 \\ 560 \\ 430 \\ 1,650 \\ 1,530 \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ 7.0 \\ 1.0 \\ 100.0 \\ 65.0 \\ 30 \\ 510 \\ 610 \\ 440 \\ 440 \end{gathered}$	$\begin{gathered} 7.3 \\ 10.5 \\ 45.0 \\ 100.0 \\ 65.0 \\ 20 \\ 1,590 \\ 1,290 \\ 530 \\ 620 \end{gathered}$	
Output: S K X2 M F Td Fc Qe	$\begin{aligned} & =\text { Sharpness of flare }=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L} \\ & =1-0.00347(\mathrm{~A}-30)-0.978(1 / \mathrm{R}-0.05) \\ & =\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})) \\ & =\mathrm{EXP}((\mathrm{D}-60) / 10) \\ & =303 * \mathrm{X} 2 \\ & =1+(0.5 /(1+\mathrm{M})) \\ & =0.21 * \mathrm{Td}(1+0.2 * \mathrm{X} 2) \\ & =\mathrm{K}\left(\mathrm{~F}-\mathrm{Fc}^{*} * \mathrm{Qc}\right) \end{aligned}$	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{gathered} 0.37 \\ 0.98 \\ 8.73 \\ 1.65 \\ 2644 \\ 1.19 \\ 0.69 \\ 1479 \\ 1559 \\ \hline \end{gathered}$	$\begin{gathered} 0.00 \\ 1.04 \\ 7.00 \\ 1.65 \\ 2121 \\ 1.19 \\ 0.60 \\ 1930 \\ 1930 \end{gathered}$	$\begin{gathered} 0.11 \\ 1.07 \\ 9.91 \\ 1.65 \\ 3002 \\ 1.19 \\ 0.74 \\ 2800 \\ 2728 \end{gathered}$	
DFC	$=$ Design flow $/$ Capacity $=\mathrm{Q} / \mathrm{Qe}$	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.38 \\ & 0.28 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.26 \\ & 0.32 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.57 \\ & 0.47 \\ & \hline \end{aligned}$	

ROUNDABOUT CAPACITY CALCULATION
RL CONSULTANCY LTD.

Junction: Description: Design Year:	Au Tau Interchange (with existing Flyover \& with Improvement)				Designed by: Checked by:	$\begin{aligned} & \mathrm{EF} \\ & \hline \mathrm{RL} \\ & \hline \end{aligned}$
	Reference Date: Aug 2023					
	2030 File:					
		ription:	$\begin{gathered} \hline \text { CPR-Tam Mi } \\ \text { SB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Kam Tin Rd } \\ \text { WB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CPR-YL } \\ \text { EB } \\ \hline \end{gathered}$	
Input: V E L R D A Q Qc	$\begin{aligned} & =\text { Approach half width (m) } \\ & =\text { Entry width }(\mathrm{m}) \\ & =\text { Effective length of flare }(\mathrm{m}) \\ & =\text { Entry radius }(\mathrm{m}) \\ & =\text { Inscribed circle diameter }(\mathrm{m}) \\ & =\text { Entry angle (degree) } \\ & =\text { Entry flow (pcus/hr) } \\ & =\text { Circulating flow across entry (pcus/hr) } \end{aligned}$	AM PM AM PM	$\begin{gathered} 7.0 \\ 10.0 \\ 13.0 \\ 50.0 \\ 65.0 \\ 45 \\ 22 \\ 11 \\ 2,113 \\ 1,977 \end{gathered}$	$\begin{gathered} 7.0 \\ 7.0 \\ 1.0 \\ 100.0 \\ 65.0 \\ 30 \\ 868 \\ 864 \\ 479 \\ 479 \\ \hline \end{gathered}$	$\begin{gathered} 7.3 \\ 10.5 \\ 45.0 \\ 100.0 \\ 65.0 \\ 20 \\ 2,049 \\ 1,713 \\ 890 \\ 874 \end{gathered}$	
Output: S K X2 M F Td Fc Qe	$\begin{aligned} & =\text { Sharpness of flare }=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L} \\ & =1-0.00347(\mathrm{~A}-30)-0.978(1 / \mathrm{R}-0.05) \\ & =\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})) \\ & =\mathrm{EXP}((\mathrm{D}-60) / 10) \\ & =303^{* X} 2 \\ & =1+(0.5 /(1+\mathrm{M})) \\ & =0.21 * \mathrm{Td}(1+0.2 * \mathrm{X} 2) \\ & =\mathrm{K}(\mathrm{~F}-\mathrm{Fc} * \mathrm{Qc}) \end{aligned}$	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{gathered} 0.37 \\ 0.98 \\ 8.73 \\ 1.65 \\ 2644 \\ 1.19 \\ 0.69 \\ 1169 \\ 1260 \\ \hline \end{gathered}$	$\begin{gathered} 0.00 \\ 1.04 \\ 7.00 \\ 1.65 \\ 2121 \\ 1.19 \\ 0.60 \\ 1906 \\ 1906 \\ \hline \end{gathered}$	$\begin{gathered} 0.11 \\ 1.07 \\ 9.91 \\ 1.65 \\ 3002 \\ 1.19 \\ 0.74 \\ 2512 \\ 2525 \\ \hline \end{gathered}$	
DFC	$=$ Design flow $/$ Capacity $=\mathrm{Q} / \mathrm{Qe}$	$\begin{gathered} \hline \mathrm{AM} \\ \mathrm{PM} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.02 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.46 \\ & 0.45 \end{aligned}$	$\begin{aligned} & \hline 0.82 \\ & 0.68 \\ & \hline \end{aligned}$	

ROUNDABOUT CAPACITY CALCULATION
RL CONSULTANCY LTD.

Junction: Description: Design Year:	Au Tau Interchange (with existing Flyover \& with Improvement)				Designed by: Checked by:	$\begin{aligned} & \mathrm{EF} \\ & \hline \mathrm{RL} \\ & \hline \end{aligned}$
	Design Date: Aug 2023					
	2030 File:					
		ption:	$\begin{gathered} \hline \text { CPR-Tam Mi } \\ \text { SB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Kam Tin Rd } \\ \text { WB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CPR-YL } \\ \text { EB } \\ \hline \end{gathered}$	
Input: V E L R D A Q Qc	$\begin{aligned} & =\text { Approach half width }(\mathrm{m}) \\ & =\text { Entry width }(\mathrm{m}) \\ & =\text { Effective length of flare }(\mathrm{m}) \\ & =\text { Entry radius }(\mathrm{m}) \\ & =\text { Inscribed circle diameter }(\mathrm{m}) \\ & =\text { Entry angle (degree) } \\ & =\text { Entry flow (pcus/hr) } \\ & =\text { Circulating flow across entry (pcus/hr) } \end{aligned}$	AM PM AM PM	$\begin{gathered} 7.0 \\ 10.0 \\ 13.0 \\ 50.0 \\ 65.0 \\ 45 \\ 22 \\ 11 \\ 2,114 \\ 1,978 \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ 7.0 \\ 1.0 \\ 100.0 \\ 65.0 \\ 30 \\ 869 \\ 864 \\ 479 \\ 479 \end{gathered}$	$\begin{gathered} 7.3 \\ 10.5 \\ 45.0 \\ 100.0 \\ 65.0 \\ 20 \\ 2,051 \\ 1,714 \\ 890 \\ 875 \\ \hline \end{gathered}$	
Output: S K X2 M F Td Fc Qe	$\begin{aligned} & =\text { Sharpness of flare }=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L} \\ & =1-0.00347(\mathrm{~A}-30)-0.978(1 / \mathrm{R}-0.05) \\ & =\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})) \\ & =\mathrm{EXP}((\mathrm{D}-60) / 10) \\ & =303 * \mathrm{X} 2 \\ & =1+(0.5 /(1+\mathrm{M})) \\ & =0.21 * \mathrm{Td}(1+0.2 * \mathrm{X} 2) \\ & =\mathrm{K}\left(\mathrm{~F}-\mathrm{Fc}^{*} \mathrm{Qc}\right) \end{aligned}$	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{gathered} 0.37 \\ 0.98 \\ 8.73 \\ 1.65 \\ 2644 \\ 1.19 \\ 0.69 \\ 1168 \\ 1259 \end{gathered}$	$\begin{gathered} 0.00 \\ 1.04 \\ 7.00 \\ 1.65 \\ 2121 \\ 1.19 \\ 0.60 \\ 1906 \\ 1906 \end{gathered}$	$\begin{gathered} 0.11 \\ 1.07 \\ 9.91 \\ 1.65 \\ 3002 \\ 1.19 \\ 0.74 \\ 2512 \\ 2524 \end{gathered}$	
DFC	$=$ Design flow $/$ Capacity $=\mathrm{Q} / \mathrm{Qe}$	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.46 \\ & 0.45 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.82 \\ & 0.68 \end{aligned}$	

Junction: Description: Design Year:	Au Tau Interchange (without existing Flyover)				Designed by Checked by:	EF
	Ref (with improvement) Date: Aug 2					
	2030 File:					
		ription:	$\begin{gathered} \hline \text { CPR-Tam Mi } \\ \text { SB } \end{gathered}$	$\begin{gathered} \hline \text { Kam Tin Rd } \\ \text { WB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CPR-YL } \\ \text { EB } \\ \hline \end{gathered}$	
Input: V E L R D A Q Qc	$\begin{aligned} & =\text { Approach half width (m) } \\ & =\text { Entry width (m) } \\ & =\text { Effective length of flare (m) } \\ & =\text { Entry radius (m) } \\ & =\text { Inscribed circle diameter (m) } \\ & =\text { Entry angle (degree) } \\ & =\text { Entry flow (pcus/hr) } \\ & =\text { Circulating flow across entry (pcus/hr) } \end{aligned}$	AM PM AM PM	$\begin{gathered} 7.3 \\ 12.0 \\ 25.0 \\ 50.0 \\ 65.0 \\ 25 \\ 1,311 \\ 1,191 \\ 2,113 \\ 1,977 \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ 7.0 \\ 1.0 \\ 100.0 \\ 65.0 \\ 30 \\ 868 \\ 864 \\ 1,769 \\ 1,659 \\ \hline \end{gathered}$	$\begin{gathered} 7.3 \\ 10.5 \\ 45.0 \\ 100.0 \\ 65.0 \\ 20 \\ 2,049 \\ 1,713 \\ 890 \\ 874 \\ \hline \end{gathered}$	
$\begin{array}{\|c} \hline \text { Output: } \\ \mathrm{S} \\ \mathrm{~K} \\ \mathrm{X} 2 \\ \mathrm{M} \\ \mathrm{~F} \\ \mathrm{Td} \\ \mathrm{Fc} \\ \mathrm{Qe} \end{array}$	$\begin{aligned} & =\text { Sharpness of flare }=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L} \\ & =1-0.00347(\mathrm{~A}-30)-0.978(1 / \mathrm{R}-0.05) \\ & =\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})) \\ & =\mathrm{EXP}((\mathrm{D}-60) / 10) \\ & =303 * \mathrm{X} 2 \\ & =1+(0.5 /(1+\mathrm{M})) \\ & =0.21 * \mathrm{Td}(1+0.2 * \mathrm{X} 2) \\ & =\mathrm{K}(\mathrm{~F}-\mathrm{Fc} * \mathrm{Qc}) \end{aligned}$	$\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$	$\begin{gathered} 0.30 \\ 1.05 \\ 10.23 \\ 1.65 \\ 3101 \\ 1.19 \\ 0.76 \\ 1564 \\ 1672 \\ \hline \end{gathered}$	$\begin{gathered} 0.00 \\ 1.04 \\ 7.00 \\ 1.65 \\ 2121 \\ 1.19 \\ 0.60 \\ 1103 \\ 1171 \\ \hline \end{gathered}$	$\begin{gathered} 0.11 \\ 1.07 \\ 9.91 \\ 1.65 \\ 3002 \\ 1.19 \\ 0.74 \\ 2512 \\ 2525 \end{gathered}$	
DFC	$=$ Design flow $/$ Capacity $=\mathrm{Q} / \mathrm{Qe}$	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.84 \\ & 0.71 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.79 \\ & 0.74 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.82 \\ & 0.68 \\ & \hline \end{aligned}$	

ROUNDABOUT CAPACITY CALCULATION
RL CONSULTANCY LTD.

Junction:	Au Tau Interchange (without existing F	ver)				
Description:	Design (with improveme Date: Aug 2				Designed by:	EF
Design Year:	2030 File:				Checked by:	RL
		ription:	$\begin{gathered} \hline \text { CPR-Tam Mi } \\ \text { SB } \\ \hline \end{gathered}$	Kam Tin Rd WB	$\begin{gathered} \hline \text { CPR-YL } \\ \text { EB } \\ \hline \end{gathered}$	
Input:						
V	$=$ Approach half width (m)		7.3	7.0	7.3	
E	$=$ Entry width (m)		12.0	7.0	10.5	
L	$=$ Effective length of flare (m)		25.0	1.0	45.0	
R	$=$ Entry radius (m)		50.0	100.0	100.0	
D	$=$ Inscribed circle diameter (m)		65.0	65.0	65.0	
A	$=$ Entry angle (degree)		25	30	20	
Q	$=$ Entry flow (pcus/hr)	AM	1,311	869	2,051	
	= Entry flow (pcus/hr)	PM	1,191	864	1,714	
	$=\mathrm{Ci}$	AM	2,114	1,769	890	
		PM	1,978	1,659	875	
Output:						
S	$=$ Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$		0.30	0.00	0.11	
K	$=1-0.00347(\mathrm{~A}-30)-0.978(1 / \mathrm{R}-0.05)$		1.05	1.04	1.07	
X2	$=\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S}))$		10.23	7.00	9.91	
M	$=\operatorname{EXP}((\mathrm{D}-60) / 10)$		1.65	1.65	1.65	
F	$=303 * X 2$		3101	2121	3002	
Td	$=1+(0.5 /(1+\mathrm{M})$)		1.19	1.19	1.19	
Fc	$=0.21 * \mathrm{Td}(1+0.2 * \mathrm{X} 2)$		0.76	0.60	0.74	
Qe	$=\mathrm{K}(\mathrm{F}-\mathrm{Fc} * \mathrm{Qc})$	AM	1563	1103	2512	
	$=\mathrm{K}(\mathrm{F}-\mathrm{Fc} * \mathrm{Qc})$	PM	1671	1171	2524	
DFC	$=$ Design flow/Capacity $=\mathrm{Q} / \mathrm{Qe}$	AM	0.84	0.79	0.82	
	Design flow Capaity	PM	0.71	0.74	0.68	

Junction: Description: Design Year:	Au Tau Interchange (with existing Flyover but without Imp \& A/YL-KTN/604)					
	Ref (existing layout) Date: Aug 202				Designed by:	EF
	2030 File:				Checked by:	RL
Description:			$\begin{gathered} \hline \text { CPR-Tam Mi } \\ \text { SB } \end{gathered}$	$\begin{gathered} \text { Kam Tin Rd } \\ \text { WB } \end{gathered}$	$\begin{gathered} \text { CPR-YL } \\ \text { EB } \\ \hline \end{gathered}$	
Input:						
V	Approach half width (m)		7.0	7.0	7.3	
E	$=$ Entry width (m)		10.0	7.0	10.5	
L	$=$ Effective length of flare (m)		13.0	1.0	45.0	
R	$=$ Entry radius (m)		50.0	100.0	100.0	
D	$=$ Inscribed circle diameter (m)		65.0	65.0	65.0	
A	$=$ Entry angle (degree)		45	30	20	
Q	$=$ Entry flow (pcus/hr)	AM	830	757	2,049	
		PM	550	771	1,713	
Qc	$=$ Circulating flow across entry (pcus/hr)	AM	2,113	479	778	
		PM	1,977	479	782	
Output:						
S	$=$ Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$		0.37	0.00	0.11	
K	$=1-0.00347(\mathrm{~A}-30)-0.978(1 / \mathrm{R}-0.05)$		0.98	1.04	1.07	
X2	$=\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S}))$		8.73	7.00	9.91	
M	$=\operatorname{EXP}((\mathrm{D}-60) / 10)$		1.65	1.65	1.65	
F	$=303 *$ X2		2644	2121	3002	
Td	$=1+(0.5 /(1+\mathrm{M})$)		1.19	1.19	1.19	
Fc	$=0.21 * \mathrm{Td}(1+0.2 * \mathrm{X} 2)$		0.69	0.60	0.74	
	$=\mathrm{K}(\mathrm{F}-\mathrm{Fc} * \mathrm{Qc})$	AM	1169	1906	2601	
		PM	1260	1906	2598	
DFC	$=$ Design flow $/$ Capacity $=\mathrm{Q} / \mathrm{Qe}$	AM	0.71	0.40	0.79	
		PM	0.44	0.40	0.66	

ROUNDABOUT CAPACITY CALCULATION
RL CONSULTANCY LTD.

PRIORITY JUNCTION CALCULATION

PRIORITY JUNCTION CALCULATION

PRIORITY JUNCTION CALCULATION

TRAFFIC SIGNAL CALCULATION
RL CONSULTANCY LTD.

TRAFFIC SIGNAL CALCULATION
RL CONSULTANCY LTD.

TRAFFIC SIGNAL CALCULATION
RL CONSULTANCY LTD.

Junction: Description: Design Year:	Kam Tin Road / Kam Tin Bypass / Kam Ho Road				Designed by: Checked by:	EF
	Ref (existing layout) Date: Aug 2023					
	$\underline{2022}$ File:					RL
	Description:		$\begin{array}{\|c} \hline \text { Kam Tin Bypass } \\ \text { SB } \end{array}$	Kam Tin Rd WB	Kam Ho Rd NB	Kam Tin Rd EB
Input:						
V	$=$ Approach half width (m)		6.5	3.5	5.0	7.3
E	$=$ Entry width (m)		11.0	11.5	10.0	11.0
L	$=$ Effective length of flare (m)		15.0	10.5	9.5	13.0
R	$=$ Entry radius (m)		42.5	100.0	20.0	42.5
D	$=$ Inscribed circle diameter (m)		88.0	88.0	88.0	88.0
A	$=$ Entry angle (degree)		39	23	38	29
	Entry flow (pcus/hr)	AM	610	740	440	1,280
	Entry flow (pcushr)	PM	870	650	520	1,160
Qc	= Circulating flow across entry (pcus/hr)	AM	$1,300$	$1,330$	$1,310$	90
Output:						
S	$=$ Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$		0.48	1.22	0.84	0.46
K	$=1-0.00347(\mathrm{~A}-30)-0.978(1 / \mathrm{R}-0.05)$		0.99	1.06	0.97	1.03
X2	$=\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)		8.80	5.83	6.86	9.24
M	$=\operatorname{EXP}((\mathrm{D}-60) / 10)$		16.44	16.44	16.44	16.44
F	$=303 * \mathrm{X} 2$		2665	1766	2079	2799
Td	$=1+(0.5 /(1+\mathrm{M})$)		1.03	1.03	1.03	1.03
Fc	$=0.21 * \mathrm{Td}(1+0.2 * \mathrm{X} 2)$		0.60	0.47	0.51	0.62
Qe	$=\mathrm{K}(\mathrm{F}-\mathrm{Fc} * \mathrm{Qc})$	AM	1880	1216	1371	2824
DFC	$=$ Design flow/Capacity $=\mathrm{Q} / \mathrm{Qe}$	AM	0.32	0.61	0.32	0.45
		PM	0.46	0.55	0.42	0.42

ROUNDABOUT CAPACITY CALCULATION
RL CONSULTANCY LTD.

Junction: Description: Design Year:	Kam Tin Road / Kam Tin Bypass / Kan	m Ho Road			Designed by: Checked by:	EF
	Ref (with improvement) Date: Aug 2023					
	\#REF! File:					RL
Description:			$\begin{gathered} \hline \text { Kam Tin Bypass } \\ \text { SB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Kam Tin Rd } \\ \text { WB } \\ \hline \end{gathered}$	Kam Ho Rd NB	Kam Tin Rd EB
Input:						
V	$=$ Approach half width (m)		6.5	7.3	9.0	7.3
E	$=$ Entry width (m)		11.0	10.0	10.0	11.0
L	$=$ Effective length of flare (m)		15.0	12.0	1.0	13.0
R	$=$ Entry radius (m)		42.5	70.0	20.0	42.5
D	$=$ Inscribed circle diameter (m)		88.0	88.0	88.0	88.0
A	$=$ Entry angle (degree)		39	30	38	29
	$=$ Entry flow (pcus/hr)	AM	659	837	54	2,275
	- Entry flow (pcus/hr)	PM	940	740	97	1,781
Qc	Circulating flow across entry (pcus/hr)	AM	2,318	2,019	1,913	97
		PM	1,889	1,812	1,871	173
Output:						
S	$=$ Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$		0.48	0.36	1.60	0.46
K	$=1-0.00347$ (A-30)-0.978(1/R-0.05)		0.99	1.03	0.97	1.03
X2	$=\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S}))$		8.80	8.87	9.24	9.24
M	$=\operatorname{EXP}((\mathrm{D}-60) / 10)$		16.44	16.44	16.44	16.44
F	$=303 * \mathrm{X} 2$		2665	2688	2799	2799
Td	$=1+(0.5 /(1+\mathrm{M}))$		1.03	1.03	1.03	1.03
Fc	$=0.21 * \mathrm{Td}(1+0.2 * \mathrm{X} 2)$		0.60	0.60	0.62	0.62
	$=\mathrm{K}(\mathrm{F}-\mathrm{Fc} * \mathrm{Qc})$	AM	1277	1530	1580	2819
		PM	1531	1657	1605	2771
DFC	$=$ Design flow $/$ Capacity $=\mathrm{Q} / \mathrm{Qe}$	AM	0.52	0.55	0.03	0.81
		PM	0.61	0.45	0.06	0.64

ROUNDABOUT CAPACITY CALCULATION
RL CONSULTANCY LTD.

Junction: Description: Design Year:	Kam Tin Road / Kam Tin Bypass / Kam Ho Road				Designed by: Checked by:	EF
	Design (with improveme Date: Aug 2023					
	\#REF! File:					RL
Description:			$\begin{gathered} \hline \text { Kam Tin Bypass } \\ \text { SB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Kam Tin Rd } \\ \text { WB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Kam Ho Rd } \\ \text { NB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Kam Tin Rd } \\ \text { EB } \\ \hline \end{gathered}$
Input:						
V	$=$ Approach half width (m)		6.5	7.3	9.0	7.3
E	$=$ Entry width (m)		11.0	10.0	10.0	11.0
L	$=$ Effective length of flare (m)		15.0	12.0	1.0	13.0
R	$=$ Entry radius (m)		42.5	70.0	20.0	42.5
D	$=$ Inscribed circle diameter (m)		88.0	88.0	88.0	88.0
A	$=$ Entry angle (degree)		39	30	38	29
Q	Entry flow (pcus/hr)	AM	659	837	54	2,280
		PM	940	740	97	1,783
Qc	$=$ Circulating flow across entry (pcus/hr)	AM	2,323	2,023	1,918	97
		PM	1,891	1,814	1,873	173
Output:						
S	$=$ Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$		0.48	0.36	1.60	0.46
K	$=1-0.00347(\mathrm{~A}-30)-0.978(1 / \mathrm{R}-0.05)$		0.99	1.03	0.97	1.03
X2	$=\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S}))$		8.80	8.87	9.24	9.24
M	$=\operatorname{EXP}((\mathrm{D}-60) / 10)$		16.44	16.44	16.44	16.44
F	$=303 * \mathrm{X} 2$		2665	2688	2799	2799
Td	$=1+(0.5 /(1+\mathrm{M})$)		1.03	1.03	1.03	1.03
Fc	$=0.21 * \mathrm{Td}(1+0.2 * \mathrm{X} 2)$		0.60	0.60	0.62	0.62
Qe	$\mathrm{K}(\mathrm{F}-\mathrm{Fc} * \mathrm{Qc})$	AM	1274	1527	1577	2819
		PM	1530	1656	1604	2771
DFC	$=$ Design flow/Capacity $=\mathrm{Q} / \mathrm{Qe}$	AM	0.52	0.55	0.03	0.81
		PM	0.61	0.45	0.06	0.64

GEOMETRIC DETAILS: GEOMETRIC FACTORS :
Road Width

Road Widths	
W	$=8.0 \mathrm{~m}$
W cr	$=0.0 \mathrm{~m}$
$\mathrm{~W} \mathrm{b-a}$	$=4.0 \mathrm{~m}$
$\mathrm{~W} \mathrm{b-c}$	$=4.0 \mathrm{~m}$
$\mathrm{~W} \mathrm{c-b}$	$=0.0 \mathrm{~m}$
Visibility	
Vl b-a	$=85 \mathrm{~m}$
Vr b-a	$=30 \mathrm{~m}$
Vr b-c	$=85 \mathrm{~m}$
Vr c-b	$=30 \mathrm{~m}$

Notes:	
W	$=$ Major road width
W cr	$=$ Central reserve width
W b-a	$=$ Lane width available to vehicle waiting in stream b-a
W b-c	$=$ Lane width available to vehicle waiting in stream b-c
$\mathrm{W} \mathrm{c-b}$	$=$ Lane width available to vehicle waiting in stream c-b
Vl b-a	$=$ Visibility to the left for vehicles waiting in stream b-a
Vr b-a	$=$ Visibility to the right for vehicles waiting in stream b-a
Vr b-c	$=$ Visibility to the right for vehicles waiting in stream b-c
Vr c-b	$=$ Visibility to the right for vehicles waiting in stream c-b
D	$=$ Stream-specific b-a
E	$=$ Stream-specific b-c
F	$=$ Stream-specific c-b
Y	$=(1-0.0345 \mathrm{~W})$

$\begin{array}{ll}\mathrm{W} & =\text { Major road width } \\ \mathrm{W} & =\end{array}$
$\mathrm{W} \mathrm{cr}=$ Central reserve width

- Lane width available to vehicle waiting in stream b-a
$\mathrm{b}-\mathrm{c}=$ Lane width available to vehicle waiting in stream b-c
$\mathrm{W} \mathrm{c}-\mathrm{b}=$ Lane width available to vehicle waiting in stream c-b
Vr b-a $=$ Visibility to the right for vehicles waiting in stream b-a
Visibility to the right for vehicles waiting in stream b-c
-b $=$ Visibility to the right for vehicles waiting in stream c-b
$\mathrm{E}=$ Stream-specific b-c
$\mathrm{Y}=(1-0.0345 \mathrm{~W})$

THE CAPACITY OF MOVEMENT :

Qb-a	$=548$
$\mathrm{Q} b-\mathrm{c}$	$=721$
$\mathrm{Q} \mathrm{c-b}$	$=431$
$\mathrm{Q}-\mathrm{ac}$	$=548$
$\mathrm{Qb}-\mathrm{c}(\mathrm{O})$	$=719$

DESIGN FLOW/CAPACITY:

DFC b-a	$=$	0.0106
DFC b-c	$=$	0.0000
DFC c-b	$=$	0.0000
		0.0081
DFC b-c (share lane)	$=$	$\mathbf{0 . 0 1}$
CRITICAL DFC	$=$	

PRIORITY JUNCTION CALCULATION

RL CONSULTANCY LTD.

Road Widths					
W	$=$	8.0 m	D	$=$	0.9283
W cr	$=$	0.0 m	E	$=$	1.0004
W b-a	$=$	4.0 m	F	$=$	0.6037
W b-c	$=$	4.0 m	Y	$=$	0.7240
W c-b	$=$	0.0 m			
VisibilityVl b-aVr b-aVr b-cVr c-b			TRAFFIC FLOWS:		
	$=$	85 m			
	=	30 m	q a-b		28 pcus/hr
	$=$	85 m	q a-c		$86 \mathrm{pcus} / \mathrm{hr}$
	$=$	30 m	ARM		
			q b-a		2 pcus/hr
			q b-c	$=$	0 pcus/hr
			F for (Qb-ac)		0
			ARM		
			q c-a	$=$	$55 \mathrm{pcus} / \mathrm{hr}$
			q c-b	$=$	0 pcus/hr

GEOMETRIC DETAILS:
Road Widths

Notes:
$\mathrm{W} \quad=$ Major road width
$\mathrm{W} \mathrm{cr}=$ Central reserve width
W b-a $=$ Lane width available to vehicle waiting in stream $\mathrm{b}-\mathrm{a}$
W b-c $=$ Lane width available to vehicle waiting in stream b-c
$\mathrm{Wc} \mathrm{c}=$ Lane width available to vehicle waiting in stream c-b
V1 b-a $=$ Visibility to the left for vehicles waiting in stream b-a
Vr b-a $=$ Visibility to the right for vehicles waiting in stream b-a
Vr b-c $=$ Visibility to the right for vehicles waiting in stream b-c
Vr c-b $=$ Visibility to the right for vehicles waiting in stream c-b $\mathrm{D}=$ Stream-specific $\mathrm{b}-\mathrm{a}$
$\mathrm{E}=$ Stream-specific $\mathrm{b}-\mathrm{c}$
$\mathrm{F}=$ Stream-specific c-b
$\mathrm{Y}=(1-0.0345 \mathrm{~W})$

THE CAPACITY OF MOVEMENT :

$\mathrm{Q} \mathrm{b}-\mathrm{a}$	$=550$
$\mathrm{Q} \mathrm{b-c}$	$=720$
$\mathrm{Q} \mathrm{c-b}$	$=432$
$\mathrm{Qb}-\mathrm{ac}$	$=550$
$\mathrm{Qb}-\mathrm{c}(\mathrm{O})$	$=719$

Junction: Description: Design Year:	\qquad	Site Ingress \& Egress
	2030 AM Design	
ARM C Ying Ho Road		
	ARM B Site Ingress \& Egress	ARM A Ying Ho Road

GEOMETRIC DETAILS: GEOMETRIC FACTORS :
Road Width

Road Widths					
W	$=$	8.0 m	D		0.9283
W cr	=	0.0 m	E	$=$	1.0004
W b-a	=	4.0 m	F	$=$	0.6037
W b-c	$=$	4.0 m	Y	$=$	0.7240
W c-b	=	0.0 m			
Visibility $\quad \begin{aligned} & \text { Vl b-a } \\ & \text { Vr b-a } \\ & \text { Vr b-c } \\ & \text { Vr c-b }\end{aligned}$			TRAFFIC FLOWS:		
	$=$	85 m	ARM	A	
	=	30 m	q a-b		$45 \mathrm{pcus} / \mathrm{hr}$
	$=$	85 m	q a-c		76 pcus/hr
	$=$	30 m	ARM		
			q b-a		$6 \mathrm{pcus} / \mathrm{hr}$
			q b-c		0 pcus/hr
			F for (Qb-ac)		0
			ARM		
			q c-a		$77 \mathrm{pcus} / \mathrm{hr}$
			q c-b		0 pcus/hr

Notes:
$\mathrm{W}=$ Major road width
$\mathrm{W} \mathrm{cr}=$ Central reserve width
W b-a $=$ Lane width available to vehicle waiting in stream b-a
W b-c = Lane width available to vehicle waiting in stream b-c
$\mathrm{W} \mathrm{c}-\mathrm{b}=$ Lane width available to vehicle waiting in stream c-b
Vl b-a $=$ Visibility to the left for vehicles waiting in stream b-a
Vr b-a $=$ Visibility to the right for vehicles waiting in stream $b-a$
Vr b-c $=$ Visibility to the right for vehicles waiting in stream b-c
Vr c-b $=$ Visibility to the right for vehicles waiting in stream c-b
$\mathrm{D}=$ Stream-specific $\mathrm{b}-\mathrm{a}$
$\mathrm{E}=$ Stream-specific b-
$F=$ Stream-specific c-b
$\mathrm{Y}=(1-0.0345 \mathrm{~W})$

PRIORITY JUNCTION CALCULATION
RL CONSULTANCY LTD.

Annex B

Detailed GFA Calculations

TABLE SHOWING G.F.A. CALCULATION FOR RESIDENTIAL PARKING SPACE (T1)

TABLE SHOWING G.F.A. CALCULATION FOR RESIDENTIAL PARKING SPACE (T2)

TABLE SHOWING G.F.A. CALCULATION FOR RESIDENTIAL PARKING SPACE (T3)

LOCATION		G.F.A. OF EACH RESIDENTIAL UNIT	MiC FLOOR AREA OF EACH RESIDENTIAL UNIT	EXEMPTION ON 10\% OF THE MiC FLOOR AREA	G.F.A. OF EACH RESIDENTIAL UNIT	THE PRO-RATA G.F.A. OF THE RESIDENTIAL COMMON AREA		SIZE OF EACH RESIDENTIAL UNIT	UNIT	NOS. OF TOTAL RESIDENTIAL UNIT						
		(BEFORE EXEMPTION ON 10\% OF THE MiC FLOOR AREA)			(AFTER EXEMPTION ON 10\% OF THE MiC FLOOR AREA)			<40s.m.		$\begin{aligned} & >40 \mathrm{~s} . \mathrm{m} .- \\ & <70 \mathrm{~s} . \mathrm{m} . \end{aligned}$	$\begin{array}{\|l\|} \hline>70 \text { s.m. - } \\ \text { <100s.m. } \end{array}$	$\begin{gathered} >100 \text { s.m. - } \\ <130 \text { s.m. } \end{gathered}$	$\begin{gathered} \gg 130 \text { s.m. - } \\ <160 \text { s.m. } \end{gathered}$	>160s.m.		
2 F	A	35.415	33.690	3.369	32.046	4216.687 / 19082.063	7.081		39.127	1	1					
	B	31.595	31.215	3.122	28.474		6.292	34.765	1	1						
	C	33.668	33.668	3.367	30.301		6.696	36.997	1	1						
	D	33.578	33.578	3.358	30.220		6.678	36.898	1	1						
	E	31.819	31.819	3.182	28.637		6.328	34.965	1	1						
	F	31.768	31.768	3.177	28.591		6.318	34.909	1	1						
	G	29.033	29.033	2.903	26.130		5.774	31.904	1	1						
	H	29.033	29.033	2.903	26.130		5.774	31.904	1	1						
	J	23.849	23.614	2.361	21.488		4.748	26.236	1	1						
	K	33.464	33.464	3.346	30.118		6.655	36.773	1	1						
	L	33.537	32.383	3.238	30.299		6.695	36.994	1	1						
	M	35.461	33.722	3.372	32.089		7.091	39.180	1	1						
$\begin{gathered} 3 \mathrm{~F}-19 \mathrm{~F} \\ \text { (14 Storeys) } \end{gathered}$	A	37.165	35.440	3.544	33.621		7.429	41.050	14		14					
	B	33.345	32.965	3.297	30.049		6.640	36.689	14	14						
	C	35.418	35.418	3.542	31.876		7.044	38.920	14	14						
	D	35.328	35.328	3.533	31.795		7.026	38.821	14	14						
	E	33.569	33.569	3.357	30.212		6.676	36.888	14	14						
	F	33.518	33.518	3.352	30.166		6.666	36.832	14	14						
	G	30.783	30.783	3.078	27.705		6.122	33.827	14	14						
	H	30.783	30.783	3.078	27.705		6.122	33.827	14	14						
	J	25.599	25.364	2.536	23.063		5.096	28.159	14	14						
	K	35.214	35.214	3.521	31.693		7.003	38.696	14	14						
	L	35.287	33.881	3.388	31.899		7.049	38.948	14	14						
	M	37.211	35.347	3.535	33.676		7.442	41.118	14							
									180	152	28					

NOS. OF CARPARK REQUIRED			
SIZE OF EACH RESIDENTIAL UNIT	NOS. OF UNITS	NO. OF THE RESIDENTIAL PARKING SPACES TO BE PROVIDED	NOS. OF CARPARK REQUIRED
LESS THAN 40 s.m.	$\begin{gathered} 197+122+152 \\ 471 \end{gathered}$	ONE SPACE FOR EVERY 7.27 RESIDENTIAL FLATS OR PART THEREOF	65
NOT LESS THAN 40 s.m. BUT LESS THAN $70 \mathrm{~s} . \mathrm{m}$.	$58+\begin{gathered} 58+28 \\ 144 \end{gathered}$	ONE SPACE FOR EVERY 3.03 RESIDENTIAL FLATS OR PART THEREOF	48
NOT LESS THAN 70 s.m. BUT LESS THAN $100 \mathrm{~s} . \mathrm{m}$.		ONE SPACE FOR EVERY 1.52 RESIDENTIAL FLATS OR PART THEREOF	
NOT LESS THAN 100 s.m. BUT LESS THAN $130 \mathrm{~s} . \mathrm{m}$.		ONE SPACE FOR EVERY 0.89 RESIDENTIAL FLATS OR PART THEREOF	
NOT LESS THAN 130 s.m. BUT LESS THAN $160 \mathrm{~s} . \mathrm{m}$.		ONE SPACE FOR EVERY 0.66 RESIDENTIAL FLATS OR PART THEREOF	
NOT LESS THAN $160 \mathrm{~s} . \mathrm{m}$.		ONE SPACE FOR EVERY 0.52 RESIDENTIAL FLATS OR PART THEREOF	
TOTAL	615	TOTAL	113

