

Date : 17th September, 2024 Our Ref. : ADCL/PLG-10289/L007

The Secretary Town Planning Board 15/F., North Point Government Offices 333 Java Road, North Point, Hong Kong

By Email

Dear Sir/Madam,

Re: Section 16 Planning Application for Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Lot Nos. 1809 (Part), 1813, 1814, 1815 (Part), 1816, 1817 (Part), 1819, 1820, 1824, 1825, 1826, 1827, 1828, 1829, 1830, 1831 S.A, 1831 S.B, 1832, 1833, 1834, 1835, 1837, 1838, 1839 (Part), 1840, 1841, 1842 and 1843 in D.D. 129, Lau Fau Shan, Yuen Long, New Territories (Planning Application No. A/YL-LFS/522)

We refer to the latest comments from Transport Department (dated 6.8.2024) and would like to enclose herewith our Responses-to-Comments Table and Traffic Impact Assessment to address the abovementioned departmental comments for their consideration.

Thank you for your kind attention and should you have any queries, please do not hesitate to contact our Miss Isa YUEN or Mr. Thomas LUK at 3180 7811.

Yours faithfully, For and on behalf of **Grandmax Surveyors Limited**

Thomas Luk' Planning Consultant

Encl.

c.c. Client DPO/TM&YLW, PlanD (Attn: Mr. Wilfred CHU) Planning Application No. A/YL-LFS/522

Department	Date	Comments	Responses to Departmental Comments
Transport	6.8.2024	On the basis of the applicant's statement, approximately 25 to 30 tons of	A Traffic Impact Assessment has been conducted to examine the potential
Department		goods would be transported to the application site. Obviously, 1ha of open	traffic impact arising from the development. Please refer to the attached.
		storage area for storing 25-30 tons of goods is over-provided in terms of site	
		area. The applicant's estimated traffic flow is not convincing and shall clarify	Please refer to the Section 4 for the estimated traffic flow.
		accordingly.	
		As mentioned in our previous reply, traffic assessment shall be conducted to examine the potential traffic impact arising from the development.	

S.16 Planning Application for Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Various Lots in D.D.129 Lau Fau Shan, Yuen Long, New Territories

TRAFFIC IMPACT ASSESSMENT

Reference: 80108-R01-01 Date: September 2024 Prepared by: 8FM Consultancy Limited

Content

1	INTRODUCTION			
	1.1	Background	1	
	1.2	Study Objectives	1	
	1.3	Report Structure	1	
2	PROPOS	SED DEVELOPMENT	3	
	2.1	The Site Location	3	
	2.2	The Development Schedule	3	
	2.3	Vehicle Access Arrangement	3	
	2.4	Internal Transport Facilities	4	
3	EXISTIN	G TRAFFIC SITUATION	5	
	3.1	Existing Road Network	5	
	3.2	Public Transport Facilities	5	
	3.3	Traffic Survey	6	
	3.4	Existing Traffic Condition	6	
4	DEVELO	PMENT TRAFFIC GENERATION	8	
	4.1	Estimated Development Flows	8	
	4.2	Development Flows Distribution	10	
5	FUTURE	TRAFFIC SITUATION	11	

	5.3	Regional Traffic Growth	11
	5.4	Planned and Committed Development	13
	5.5	2027 Traffic Flows	13
	5.6	Future Traffic Impact Assessment	13
6	Summary	and Conclusion	16
	6.1	Summary	16
	6.2	Conclusion	16

Appendix A – Junction Calculation Sheets

List of Table

- Table 2.1Key Development Parameters
- Table 2.2 Internal Transport Facilities
- Table 3.1 Franchised Bus and GMB Services Close to Project Site
- Table 3.2 Existing Road Link Capacity Assessment
- Table 3.3
 Existing Junction Capacity Assessment
- Table 4.1
 Similar Application within the Same OZP
- Table 4.2
 Estimated Traffic Generation & Attraction Arising from Storage Area
- Table 4.3
 Traffic Rates for Office Development
- Table 4.4
 Estimated Traffic Generation & Attraction Arising from Office
- Table 4.5 Estimated Development Flow
- Table 5.1
 AADT Extracted from Annual Traffic Census
- Table 5.2
 2019-Based TPDEM Data for Yuen Long District
- Table 5.3Future Year Link Capacity Assessment
- Table 5.4
 Future Year Junction Capacity Assessment

List of Figure

- Figure 1 Site Location
- Figure 2.1 Layout of Project Site
- Figure 2.2 Vehicle Access Arrangement
- Figure 2.3 Swept Path Analysis
- Figure 3.1 Public Transport Facilities
- Figure 3.2 Key Junctions and Road Links
- Figure 3.3 2024 Observed Traffic Flows during Peak Hours
- Figure 4.1 Proposed Routings
- Figure 5.1 2027 Reference Traffic Flows during Peak Hours
- Figure 5.2 2027 Design Traffic Flows during Peak Hours

1 INTRODUCTION

1.1 Background

The Applicant intends to seek planning permission for the Section 16 Planning Application for Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Lot Nos. 1809 (Part), 1813, 1814, 1815 (Part), 1816, 1817 (Part), 1819, 1820, 1824, 1825, 1826, 1827, 1828, 1829, 1830, 1831 S.A, 1831 S.B, 1832, 1833, 1834, 1835, 1837, 1838, 1839 (Part), 1840, 1841, 1842 and 1843 in D.D. 129, Lau Fau Shan, Yuen Long, New Territories ("Project Site").

The location of the Project Site is shown in **Figure 1**.

8FM Consultancy Limited was commissioned as the traffic consultant to carry out a Traffic Impact Assessment (TIA) Study in support of this planning application.

1.2 Study Objectives

The objectives of this TIA are listed as follows:

- To review the existing traffic conditions in the vicinity of the Project Site;
- To present and evaluate the internal transport facilities;
- To estimate the traffic forecasts of the adopted design year and assess the future traffic situation in the surrounding network;
- To evaluate the potential traffic impact of the proposed development; and
- To suggest traffic improvement proposals, if necessary.

1.3 Report Structure

The report is structured as follows:

• Chapter 2 - Proposed Development

Describing the project site, vehicular access arrangement, development schedule and the proposed internal transport facilities;

Chapter 3 - Existing Traffic Situation

Presenting the existing traffic context, the traffic survey, and the traffic assessment of the existing traffic conditions;

Chapter 4 – Development Traffic Generation

Estimating the traffic flows arising from the proposed development;

• Chapter 5 – Future Traffic Situation

Describing the traffic forecast methodology and presenting the traffic assessment results under reference and design scenarios;

Chapter 6 - Summary and Conclusion

Summarizing the findings and conclusion of this traffic impact assessment study.

2 PROPOSED DEVELOPMENT

2.1 The Site Location

The Project Site is located in the Lau Fau Shan and Mong Tseng area, and it can be accessible from Deep Bay Road via a local track. The location of the Project Site is shown in **Figure 1**.

2.2 The Development Schedule

The project site is proposed to be utilised as the open storage for construction materials and equipment on a temporary basis of 3 years. Based on the planning statement, the operation hour of the proposed use is from 8:00a.m. to 6:00p.m. from Mondays to Saturdays and there will be no operation on Sundays and public holidays.

The project site has a total area of about $15,500m^2$, including open storage area, two one-storey storerooms $(36m^2 \times 2)$ and a one-storey site office $(36m^2)$. The layout of the project site is shown in **Figure 2.1**. Key development parameters of the proposed use are tabulated in **Table 2.1**.

Proposed Use	Temporary Open Storage of Construction Materials and Construction Equipment	
Operation Hours	8:00am-6:00pm (Monday – Sunday, Except Public Holiday)	
Total Site Area	15,500m ²	
Open Storage Area	About 1 hectare	
Storeroom	72m ²	
Site Office	36m ²	

Table 2.1Key Development Parameters

2.3 Vehicle Access Arrangement

At present, there is an existing local access road to the project site. Access to the project site will be provided through an 12m-wide ingress/egress point located at the southwestern boundary, which is connected to a local track leading to Deep Bay Road. The vehicle access arrangement is presented in **Figure 2.2** for reference.

Swept path analysis is also conducted for the access point and the access road. **Figure 2.3** indicates the sufficient turning spaces for the 7m LGV.

2.4 Internal Transport Facilities

The internal transport facilities to be provided in the project site are summarized in **Table 2.2**. As there are no specific parking and loading/unloading requirements for temporary open storage development in accordance to HKPSG, ancillary transport facilities are provided based on the Applicant's requirements to meet operational needs.

Table 2.2 Internal Transport Facilities

Type of Ancillary Transport Facilities	Size	Provision based on Applicant's Operational Needs
Private Car Parking Spaces	5m(L) x 2.5m(W)	3
L/UL Bays	7m(L) x 3.5m(W)	6

3 EXISTING TRAFFIC SITUATION

3.1 Existing Road Network

As indicated in **Figure 2.2**, the project site is located at the east of Deep Bay Road, and it can be accessible from Deep Bay Road via a local unnamed road. The existing condition of the connecting carriageways are summarized as follows:

- Unnamed Road A is a single track access road connecting Deep Bay Road in the west to an unnamed road near Lam Hang Shan in the east. Acting as single carriageway with 1-lane-2 way operation, passing bays are generally identified along the carriageway.
- Deep Bay Road is served as a rural road connecting Lau Fau Shan in the northeast and Pak Nai in the southwest. Acting as single carriageway with 1-lane-2 way operation, passing bays are generally identified along the carriageway.
- Tin Yuet Road is as a rural road connecting Deep Bay Road in the east and Tin Ying Road in the west. Acting as single carriageway with 1-lane-2 way operation, passing bays are generally identified along the carriageway.
- Lau Fau Shan Road is served as a rural road which is mainly a singletwo carriageway, connecting Deep Bay Road in the west and Tin Wah Road in the east.

3.2 Public Transport Facilities

The project site cannot be immediately accessible by taking the public transportation. The nearest franchised bus and GMB services are around 850m away from the site, operating along Lau Fau Shan Road. Details of these public transport services are presented in **Table 3.1** and **Figure 3.1**.

Route	Routing	Peak Frequency (minutes)
MTR K65	Lau Fau Shan ↔Yuen Long Station	9-16
MTR K65A	Lau Fau Shan ↔Tin Shui Wai Station	12-15
GMB 33	Yuen Long (Tai Fung St) ↔ Ha Pak Nai	20
GMB 34A	Ha Tsuen ↔ Lau Fau Shan	15-30
GMB 35	Hong Lee Court ↔ Cai Ha Village	6-7

Table 3.1 Franchised Bus and GMB Services Close to Project Site

3.3 Traffic Survey

In order to evaluate the existing traffic conditions in the vicinity, the classified traffic surveys were conducted on 10 September 2024 (Tuesday) from 7:30 to 10:30 in the morning and from 16:00 to 19:00 in the evening. The key junctions and road links of the study area are indicated **Figure 3.2**.

The traffic flows collected during the traffic surveys have been converted to passenger car unit (PCU) based on the PCU factors as indicated in Volume 2 of Transport Planning and Design Manual (TPDM).

The results of traffic survey identified that the AM and PM peak hours occur during 7:45am to 8:45am and 16:30pm to 17:30pm, respectively. The 2024 observed peak hours traffic flows in the study area are presented in **Figure 3.3**.

3.4 Existing Traffic Condition

Based on the observed traffic flows, the performance of the key junctions and traffic links in the vicinity of the project site during the AM and PM peak hours was assessed.

3.4.1 Existing Road Link Capacity Assessment

The existing links capacity are calculated respectively based on the design capacity suggested in Volume 2 of the TPDM and the results are shown in **Table 3.2**.

Link No.	Link Location	Peak	Design Capacity ⁽ⁱ⁾ (veh/hr)	Traffic Flow (veh/hr)	V/C Ratio ⁽ⁱⁱ⁾
L1	Deep Bay Road	AM	100	59	0.59
L1	(two-way)	PM	100	61	0.61
	Lau Fau Shan Road	AM	800	287	0.36
1.0	(EB)	PM	800	293	0.37
L2	Lau Fau Shan Road	AM	800	309	0.39
	(WB)	PM	800	222	0.28

Table 3.2 Existing Road Link Capacity Assessment

Notes:

(i) Design capacity can be referred to TPDM Vol2 chapter 2.4.1.1 and chapter 3.11.3.1.

(ii) V/C Ratio =Volume/ Design Capacity. A peak hour v/c ratio of 1.0 or less indicates a satisfactory level of traffic. A peak hour v/c ratio greater than 1.0 indicates an unsatisfactory level of traffic with overloaded traffic volume.

The results reveal that the key traffic links operate within capacity during peak hours.

3.4.2 Existing Junction Capacity Assessment

The results of junction performance are indicated in **Table 3.3** and detailed junction calculation sheets are given in **Appendix A**.

Jn No.	Junction Location	Type/ Capacity Index	AM Peak	PM Peak
Α	Tin Ying Rd / Tin Wah Rd	Signal / RC ⁽ⁱ⁾	26.6%	43.4%
В	Lau Fau Shan Rd / Tin Wah Rd / Ping Ha Rd	Priority / DFC ⁽ⁱⁱ⁾	1.18	1.25
С	Lau Fau Shan Roundabout	Roundabout / DFC	0.45	0.40
D	Deep Bay Rd / Unnamed Rd A	Priority / DFC	0.02	0.02
Е	Unnamed Rd A / Unnamed Rd B	Priority / DFC	0.05	0.11
F	Deep Bay Rd / Tin Yuet Rd	Priority / DFC	0.17	0.16

Table 3.3 Existing Junction Capacity Assessment

*Notes:

(i) DFC - Design Flow / Capacity Rati. The performance of a priority junction or roundabout is normally measured by its Design Flow / Capacity (DFC) ratio. A DFC ratio less than 1.0 indicates that the junction is operating within design capacity. A DFC ratio greater than 1.0 indicates that the junction is overloaded, resulting in traffic queues and longer delay time to the minor arm traffic.

(ii) RC =reserve capacity. The performance of a traffic signalised junction is indicated by its reserve capacity (RC). A positive RC (RC>0) indicates that the junction is operating with spare capacity. A negative RC (RC<0) indicates that the junction is overloaded; resulting in traffic queues and longer delay time.

As shown in Table 3.3, it can be seen that the surveyed junctions perform satisfactorily during peak hours with adequate reserve capacities, except for Jn B, i.e. junction of Lau Fau Shan Rd/Tin Wah Rd/Ping Ha Rd, which is currently having inadequate junction capacity during the AM and PM peak hours.

4 DEVELOPMENT TRAFFIC GENERATION

4.1 Estimated Development Flows

With reference to the Planning Statement, the proposed development will only make use of light goods vehicle (LGV) and private cars to travel to/from the application site, and the Applicant manages a fleet of 6 LGV(s).

As the proposed development will be operated as the storage area and a build-up site office, the trip generation & attraction arising from the operational needs will be estimated respectively based on the different land use.

4.1.1 <u>Storage Area</u>

The trip rates for storage area are not found in the TPDM, hence, the traffic generation & attraction will be estimated based on the operational needs. Reference is also made with the approved applications of similar use and the applications in operation within the same outline zoning plan (OZP) approved by the TPB in the recent years, which is tabulated in **Table 4.1**.

Case No.	Decision Date	Applied Use	District	Site Area (sqm)		Peak Hour Generation [Attraction] (veh/hr)
A/YL- HTF/11 33	10/06/2022	Temporary Open Storage of New Vehicles (Private Cars), Construction Materials, Machineries, Equipment and Storage of Tools and Parts with Ancillary Site Office for a Period of 3 Years	Ha Tsuen, Yuen Long	83,668	32	8[8]
A/YL- PS/695	22/09/2023 Renewal of Planning Approval for Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years		Ping Shan, Yuen Long	17,994.8	4	0[3]
A/HSK/ 252	2 06/11/2020 (Plastic, Paper and Metal) with Ancillary Workshop for		Ha Tsuen, Yuen Long	15,800	16	0[0]
A/YL- LFS/505	A Period of 3 Years Temporary Open Stor of Construction Mater and Machineries with Ancillary Workshop, a		Lau Fau Shan, Yuen Long	4400	10	2[2]

Table 4.1 Similar Application within the Same OZP

8FM CONSULTANCY LIMITED 80108-R01-01

Considering the limited fleet size provided by the Applicant, the development will not generate more than 6 LGV(s) per day. Although the entire LGV(s) fleet is unlikely to travel to / from the site in the same one hour due to the limitation of manpower and equipment, the traffic generation & attraction is estimted based six LGV(s) for conservative assessment. The calculated traffic generation & attraction arsing from the operation of storage area during the identified peak hours are esitmated in **Table 4.2**.

Table 4.2 Estimated Traffic Generation & Attraction Arising from Storage Area

Land Use	d Use Daily Trip (pcu/hr)		PM Peak (pcu/hr)		
		Generation	Attraction	Generation	Attraction
Storage Area	6 LGV(s)	9	9	9	9

Notes: Traffic generation/attraction for LGV is calculated with pcu factor 1.5 based on the PCU factors as indicated in Table 2.3.1.1 of TPDM Vol2.

Given that (i) the comparable traffic flow of similar applications within the same OZP and (ii) the operational restriction and limited fleet size of the Applicant, the estimated traffic generation & attraction arising from storage area, as indicated in **Table 4.2**, is therefore deemed acceptable.

4.1.2 <u>Site Office</u>

The trip generation & attraction of the build-up development is estimated with reference to the trip rate tabulated in the TPDM Vol 1. **Table 4.3** shows the trip rates for office development, and the level of upper limit is adopted for conservative assessment.

			A.M.	Peak	PM F	look
Land Use	Unit	Upper Limit/ Mean/ Lower Limit			Generation Rate	
		Upper Limit	0.2361	0.3257	0.1928	0.1510
Office	(pcu/hr/100sq m GFA)	Mean	0.1703	0.2452	0.1573	0.1175
	,	Lower Limit	0.1045	0.1646	0.1217	0.084

Table 4.3 Traffic Rates for Office Development

The calculated traffic generation & attraction arsing from the operation of site office during the identified peak hours are esitmated in **Table 4.4**.

Table 4.4 Estimated Traffic Generation & Attraction Arising from Office

Land Use	Area	AM Peak (pcu/hr)		PM F (pcu	
		Generation	Attraction	Generation	Attraction
Site Office	36m ²	1	1	1	1

4.1.3 <u>Estimated Development Flow</u>

With the trip generation & attraction estimated for different land use, the development flow is summarized in **Table 4.5**.

Table 4.5Estimated Development Flow

Land Use	AM F Land Use (pcu		PM F (pcu	
,	Generation	Attraction	Generation	Attraction
Storage Area	9	9	9	9
Site Office	1	1	1	1
total	10	10	10	10

4.2 Development Flows Distribution

With the traffic management controlled by the Applicant, the development traffic can travel via the Route 1 as indicated in **Figure 4.1**. For conservative assessment, the development flows will be distributed to both Route 1 and Route 2 in a ratio of 50:50.

5 FUTURE TRAFFIC SITUATION

5.1 Design Year

The planning application for the Proposed Temporary Open Storage development involves a period of 3 years, it is assumed that the end year for the Project Site would be year 2027. Therefore, year 2027 is adopted as the design year of this study.

5.2 Traffic Forecast Methodology

To conduct the traffic forecast on the road networks in the vicinity of the project site, the existing traffic flows will be adjusted with the following factors considered:

- Historical traffic data from Annual Traffic Census (ATC) by Transport Department;
- The forecast population and employment from the 2019-based Territorial Population and Employment Data Matrices (TPEDM) planning data by Planning Department;
- Committed and planned developments adjacent the project site.

5.3 Regional Traffic Growth

5.3.1 <u>Annual Traffic Census (ATC)</u>

Reference has been made to the ATC reports from year 2018 to 2022. The historical traffic data of the surrounding road links are based on the Annual Average Daily Traffic (AADT) extracted from ATC issued by Transport Department. The relevant AADT data from year 2018 to 2022 are summarized in **Table 5.1**.

Station	Road	From	То	2018	2019	2020	2021	2022	Growth Rate p.a.					
5858	Ping Ha Rd & Lau Fau Shan	Tin Ha Rd	Deep Bay	12,680	12,590	12,070	10,310	8,390	-9.81%					
	Rd		Rd		-0.7%	-4.1%	-14.6	-18.7%						
6603	Deep Bay Rd	Lau Fau	Nam Sha	2,920	2,320	2,380	2,570	2,760	-1.40%					
0003	Беер Бау Ки	Shan Rd	Po		-20.3%	2.3%	7.9%	7.7%	-1.40 /0					
5284	Tin Ying Rd	Tin Wah	Tin Wah	Tin Wah	Tin Wah	Tin Wah	Tin Wah	Ping Ha	32,180	31,060	29,780	30,970	30,030	-1.71%
5264		Rd	Rd		-3.5%	-4.1%	4.0%	-3.0%	-1.7 1 70					
	Total		47,78 0	45,97 0	44,23 0	43,85 0	41,18 0	-3.65%						

Table 5.1 AADT Extracted from Annual Traffic Census

Table 5.1 indicates that the overall average annual growth rate of the adjacent road network is -3.65%.

5.3.2 <u>Projected Population Data</u>

Reference has been made to the 2019-based Territorial Population and Employment Data Matrices (TPEDM) planning data provided by Planning Department. The population and employment data in Yuen Long District for year 2019, 2024 and 2031 are presented in **Table 5.2**.

Table 5.2 2019-Based TPDEM Data for Yuen Long District

	TPDEM Estimation/Projection			Annual Growth Rate		
Item	2019	2026	2031	2019 to 2026	2026 to 2031	2019 to 2031
Population	175,150	172,350	159,850	-0.2%3	-1.49%	-0.76%
Employment	68,100	70,700	70,250	0.54%	-0.13%	0.26%
total	243,250	243,050	230,100	-0.01%	-1.09%	-0.46%

Source: 2019-based TPEDM by Planning Department

Table 5.2 indicates that the highest annual growth rate for population and employment is 0.54%.

Based on the findings of the above two tables, a conservative growth rate of 0.54% per annum was adopted to estimate the background traffic growth from 2024 to 2027.

5.4 Planned and Committed Development

Based on the published information from Town Planning Board, no planned/committed developments in the site vicinity are identified in design year 2027 in the vicinity of project site.

5.5 2027 Traffic Flows

The growth factor will be applied to the 2024 observed peak hours traffic flows to estimate the 2027 reference flows.

The reference and design flows of the design year 2027 are calculated from the following formula:

2027 Reference Flows (Fig. 5.1)	=	2024 Observed Flows (Fig 3.3) x (1+0.54%) ³
2027 Design Flows (Fig. 5.2)	=	2027 Reference Flows (Fig. 5.1) + Net Change in Development Traffic Flows

Figure 5.1 shows the 2027 Reference Peak Hours Flows in the area. By adding the net development traffic, **Figure 5.2** shows the 2027 Design Peak Hours Traffic Flows.

5.6 Future Traffic Impact Assessment

The traffic impact assessments for design year 2027 were conducted for the key junctions and road links in the vicinity of project site for both Reference and Design scenarios.

5.6.1 Future Year Link Capacity Assessment

Based on the Reference Flows and Design Flows, link capacity assessments for design year 2027 are carried out and the results are presented in **Table 5.3**.

		Design	V/C Ratio				
Link No.	Link Location	Capacity	2027 Referen	nce Scenario	2027 Design Scenario		
110.		(veh/hr)	AM	PM	AM	PM	
L1	Deep Bay Road (two-way)	100	0.60	0.62	0.65	0.67	
1.0	Lau Fau Shan Road(EB)	800	0.37	0.37	0.37	0.38	
L2	Lau Fau Shan Road(WB)	800	0.39	0.28	0.40	0.29	

Table 5.3 Future Year Link Capacity Assessment

- *A peak hour v/c ratio of 1.0 or less indicates a satisfactory level of traffic. A peak hour v/c ratio greater than 1.0 indicates an unsatisfactory level of traffic with overloaded traffic volume.
- (ii) Refer to Figure 3.2 for link location

Table 5.3 reveals that the key road links in the vicinity of the project site will operate within capacity during peak hours for both Reference and Design Scenarios.

5.6.2 Future Year Junction Capacity Assessment

Based on the Reference Flows and Design Flows, junction capacity assessments for design year 2027 are carried out and the results are presented in **Table 5.4**, with detailed calculation sheets given in **Appendix A**.

Jun No	Junction Location	Type/	2027 Reference Scenario		2027 Design Scenario	
oun no.		Capacity Index	АМ	РМ	АМ	РМ
Α	Tin Ying Rd / Tin Wah Rd	Signal / RC	24.3%	40.7%	23.4%	38.9%
В	Lau Fau Shan Rd / Tin Wah Rd / Ping Ha Rd	Priority / DFC	1.22	1.30	1.23	1.31
С	Lau Fau Shan Roundabout	Roundabout / DFC	0.46	0.41	0.47	0.41
D	Deep Bay Rd / Unnamed Rd A	Priority / DFC	0.02	0.02	0.03	0.03
Е	Unnamed Rd A / Unnamed Rd B	Priority / DFC	0.05	0.11	0.05	0.11
F	Deep Bay Rd / Tin Yuet Rd	Priority / DFC	0.17	0.16	0.19	0.17

Table 5.4 Future Year Junction Capacity Assessment

*Notes: RC =reserve capacity; DFC - Design Flow / Capacity Ratio

(i) The performance of a priority junction or roundabout is normally measured by its Design Flow / Capacity (DFC) ratio. A DFC ratio less than 1.0 indicates that the junction is operating within design capacity. A DFC ratio greater than 1.0 indicates that the junction is overloaded, resulting in traffic queues and longer delay time to the minor arm traffic.

(ii) The performance of a traffic signalised junction is indicated by its reserve capacity (RC). A positive RC (RC>0) indicates that the junction is operating with spare capacity. A negative RC (RC<0) indicates that the junction is overloaded; resulting in traffic queues and longer delay time.</p>

(iii) Refer to Figure 3.2 for junction location.

Table 5.4 reveals that all the five junctions will operate satisfactorily with ample junction capacity in both 2027 reference and 2027 design scenarios during peak hours except Junction B. This is mainly due to the existing background traffic but not the development traffic. Comparing the assessment result of Junction B in 2027 design scenario with that in 2024 existing scenario, it is noted that the traffic generated by the project site is expected to have minimal impact to the capacity of Junction B during identified peak hours.

Nevertheless, to avoid aggravating of the existing traffic condition in junction Lau Fau Shan Rd/Tin Wah Rd/Ping Ha Rd, control traffic management is proposed as follows:

5.6.3 Control Measures on Junction B

a) <u>Designated route</u>

As originally planned by the Applicant, the project-related vehicles will travel to/from the project site via the designated Route 1 (Figure 4.1 refers), which will not pass through junction of Lau Fau Shan Rd/Tin Wah Rd/Ping Ha Rd.

b) Regular trip schedule

Considering operational needs, the Applicant will manage the vehicle trips on a regular basis, with maximum one LGV per hour and maximum six LGV(s) per day. By regulating the operation schedule, the trip generation during peak hours is insignificant.

With the above traffic management undertaken by the Applicant, the proposed development would not generate significant impacts to the road network.

6 Summary and Conclusion

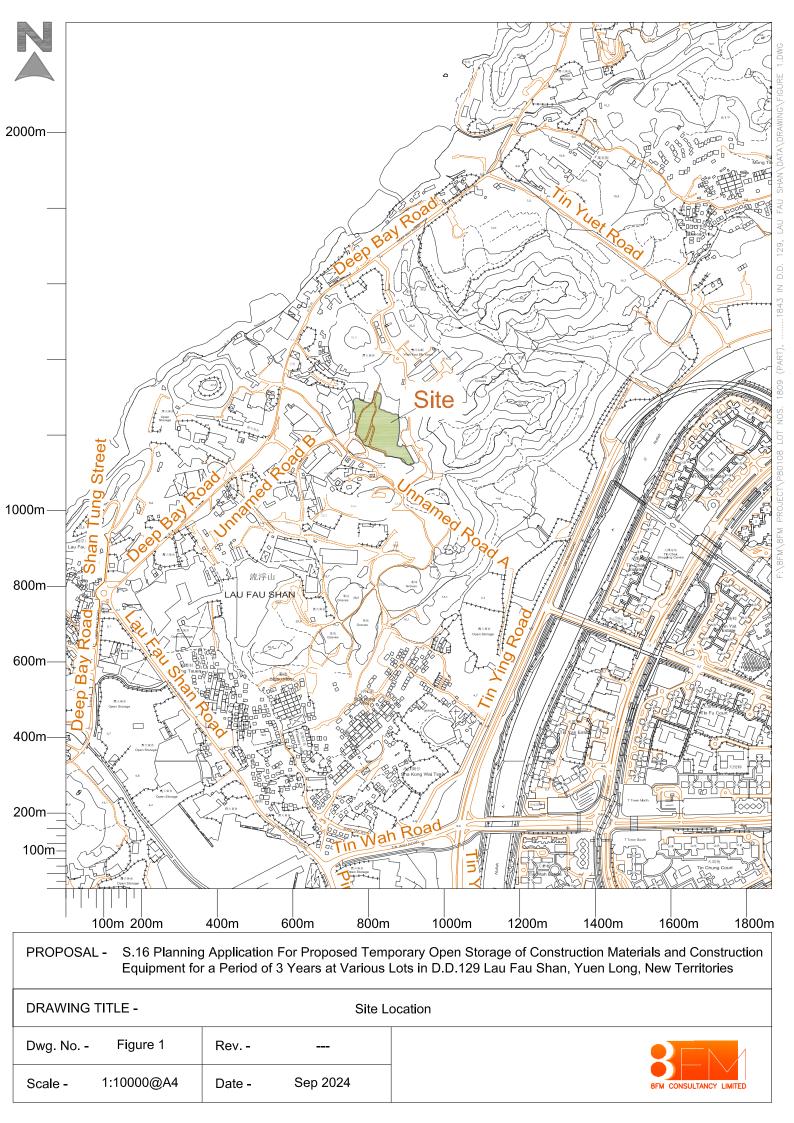
6.1 Summary

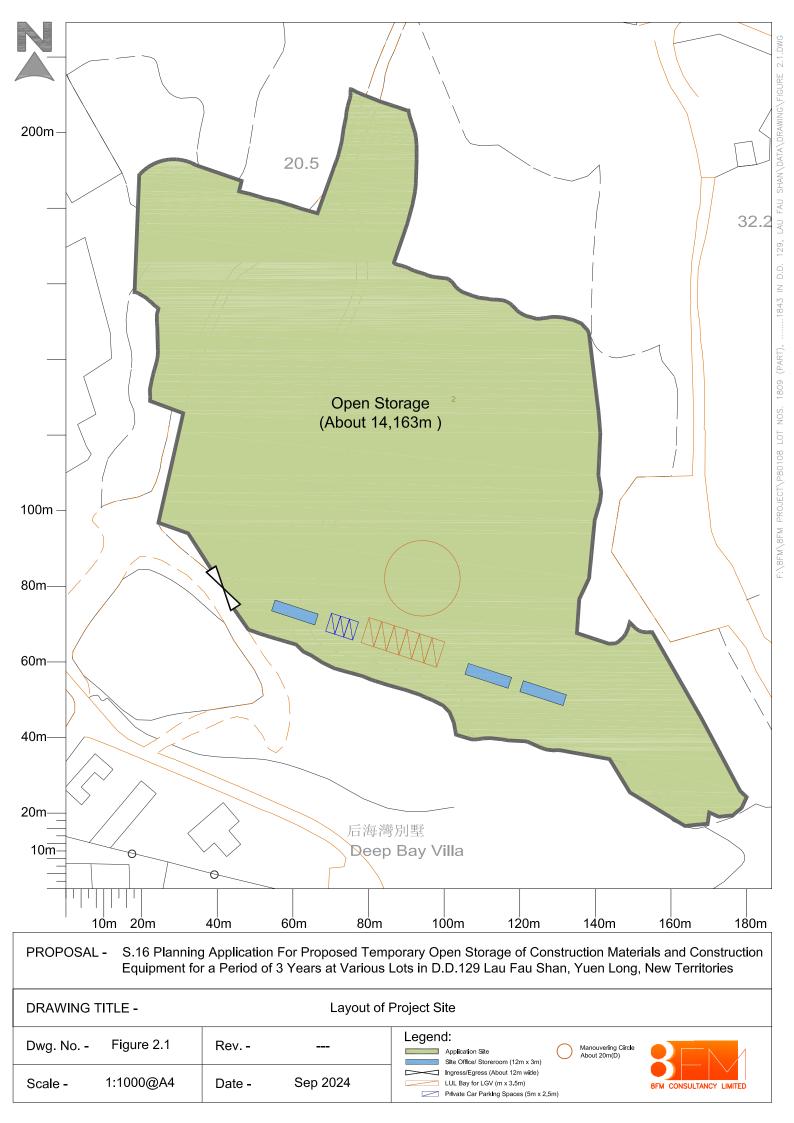
The Applicant intends to seek the Town Planning Board permission to utilise the Project Site as the open storage for construction materials and equipment on a temporary basis of 3 years.

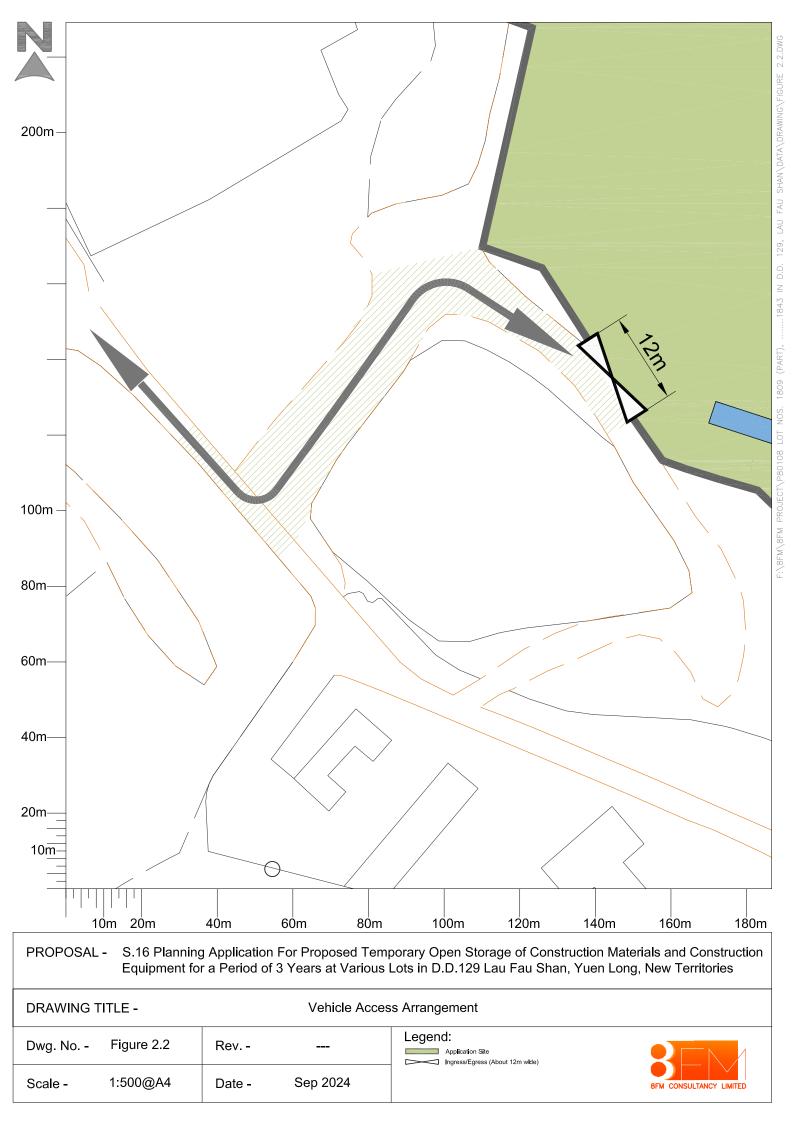
In order to appraise the existing traffic conditions, classified turning movement count surveys have been carried out at the key junctions and road links in the vicinity of project site on 10 September 2024 from 7:30 to 10:30 in the morning and 16:00 to 19:00 in the evening. The morning and evening peak hours of the road network have been identified as 7:45am to 8:45am and 16:30pm to 17:30pm, respectively.

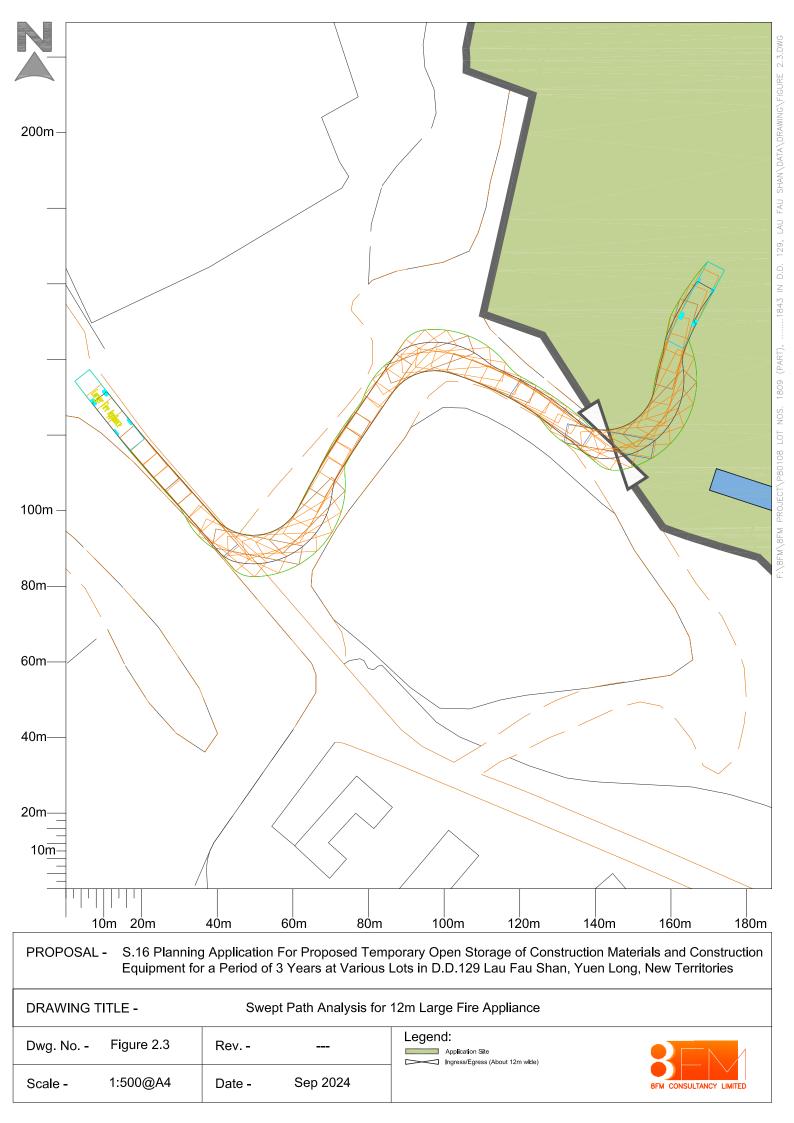
Year 2027 is used as the design year for the traffic impact assessment. Based on the historical data, an annual growth rate of 0.54% was adopted for this study. This growth factor has been applied to the observed traffic flows in 2024 to determine the anticipated traffic flows in design year 2027.

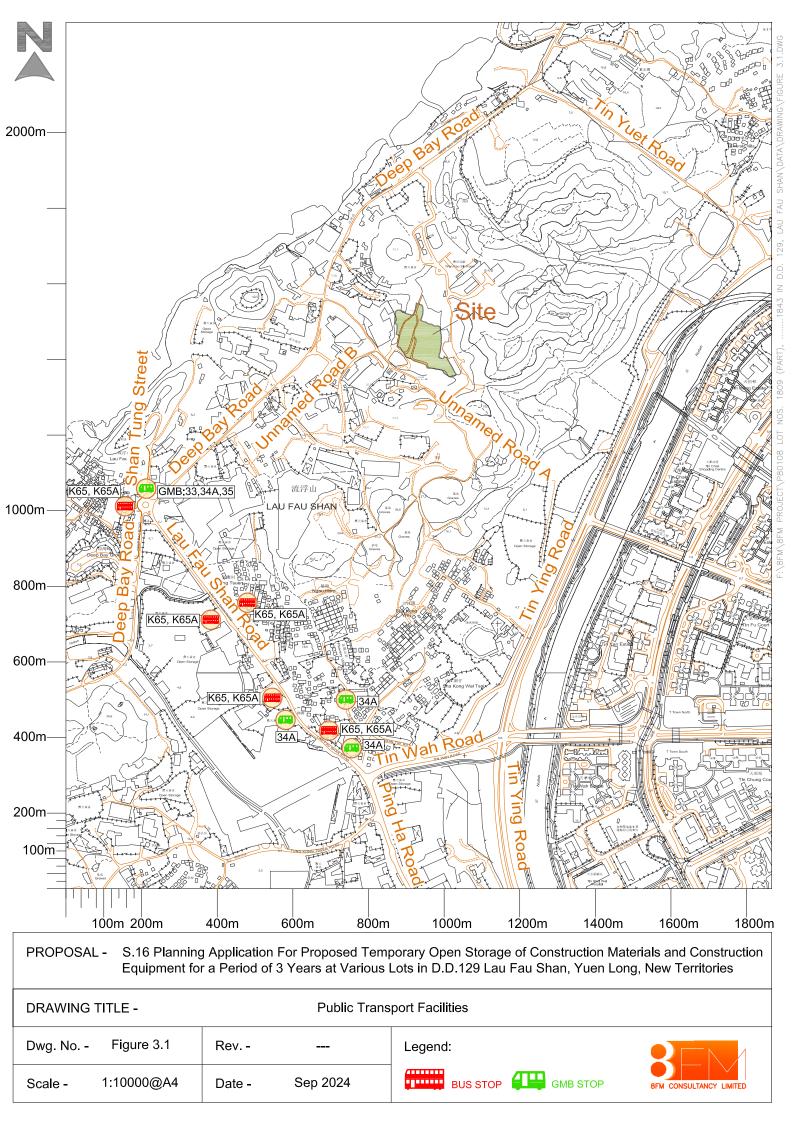
The assessment results reveal that all the key junctions and road links will operate satisfactorily with sufficient capacity in both 2027 reference and 2027 design scenarios during peak hours except Junction B (i.e. junction of Lau Fau Shan Rd/Tin Wah Rd/Ping Ha Rd). This is mainly due to the existing background traffic but not the development traffic. To avoid aggravating the existing traffic condition, the Applicant would undertake the traffic management measures, which include the designated route and the regular trip schedule.

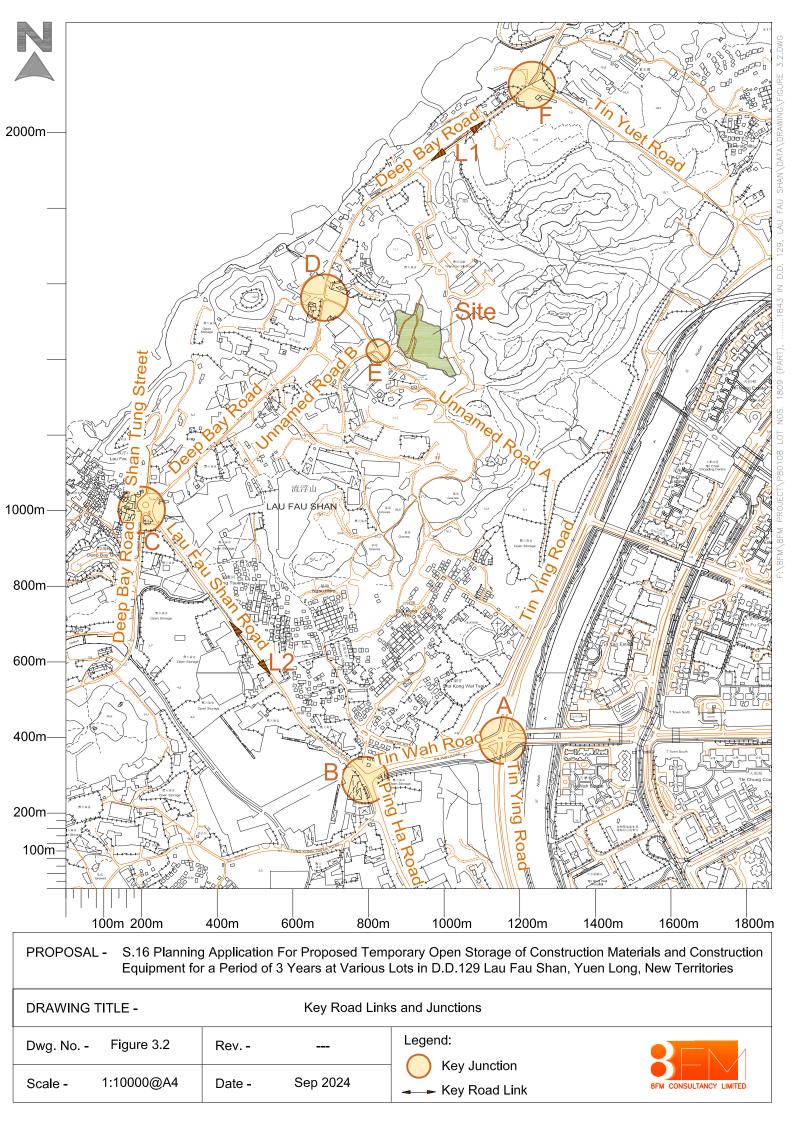

The proposed development, as with most other open storage sites, is not a high traffic generating use. With the above traffic management undertaken by the Applicant, it is believed that the proposed development would not generate significant impact to the adjacent road network.

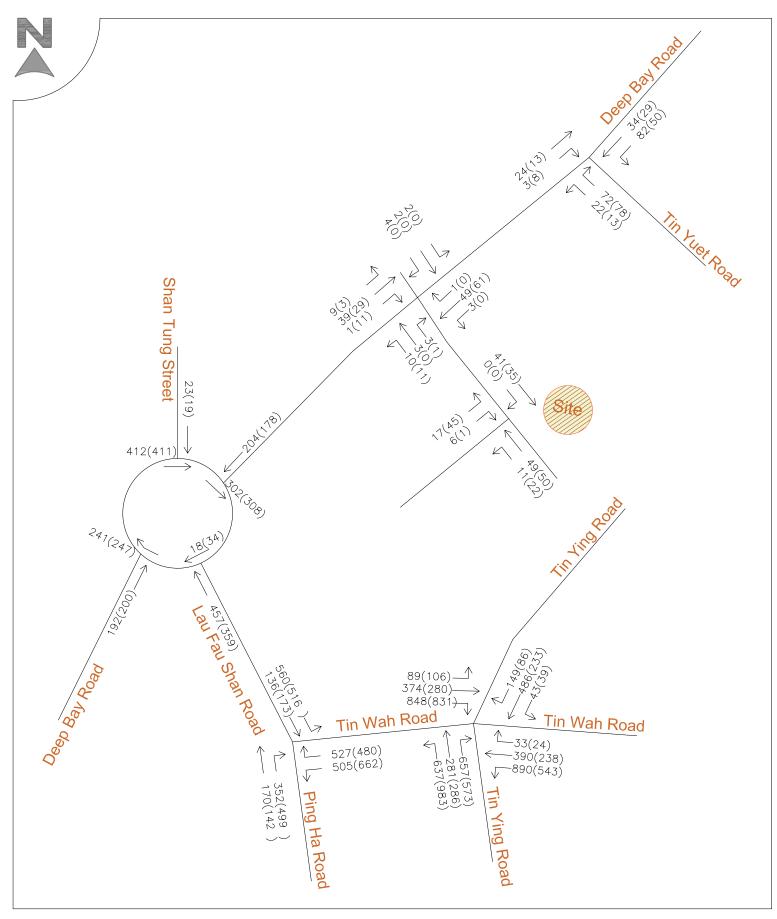

6.2 Conclusion

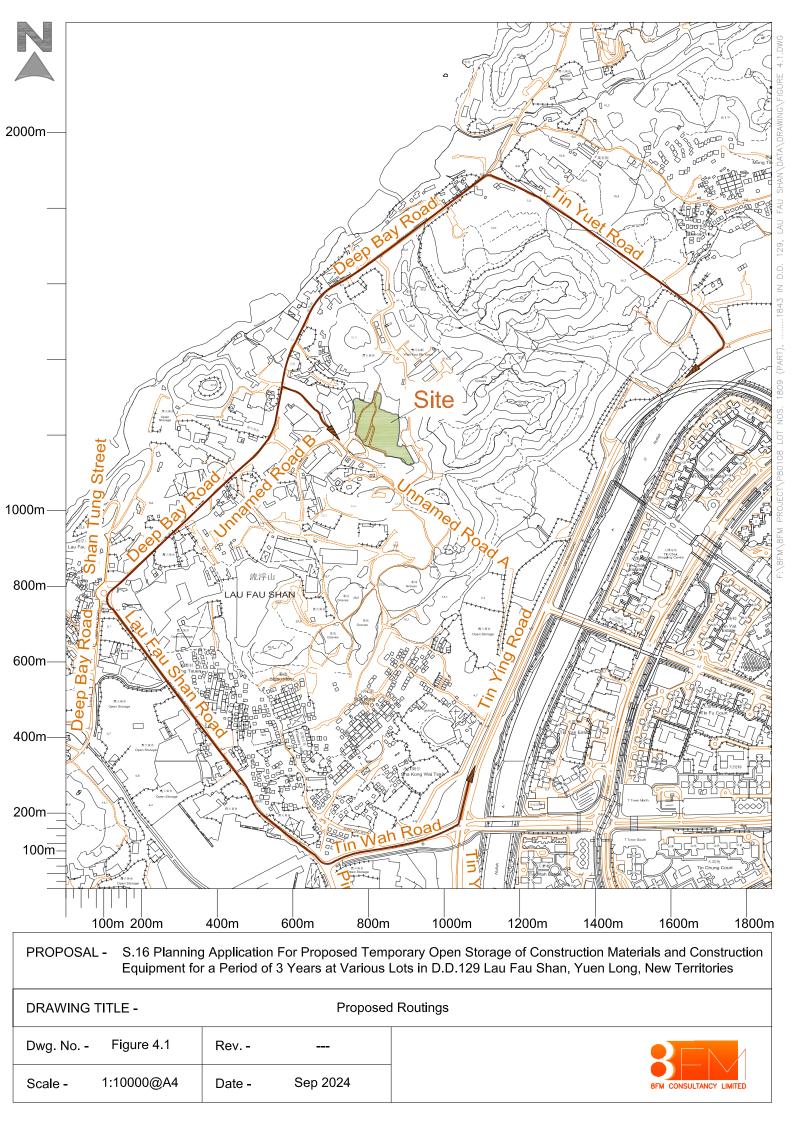

The findings of this study show that the development traffic will not cause adverse traffic impact onto the local road network. The proposed development is therefore supported from the traffic engineering point of view at this stage.

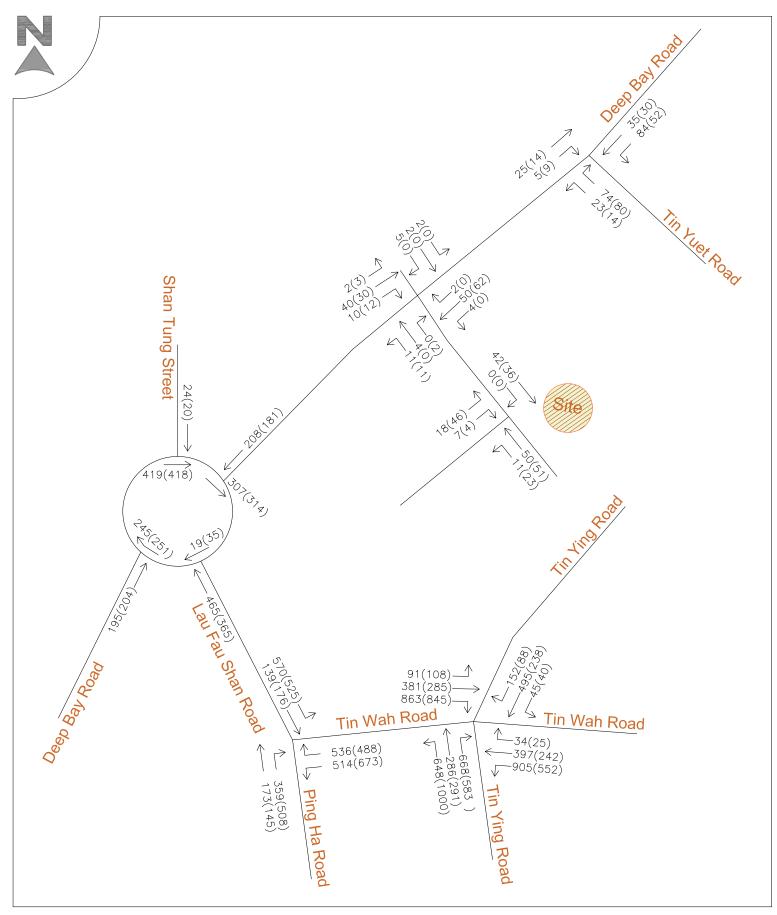




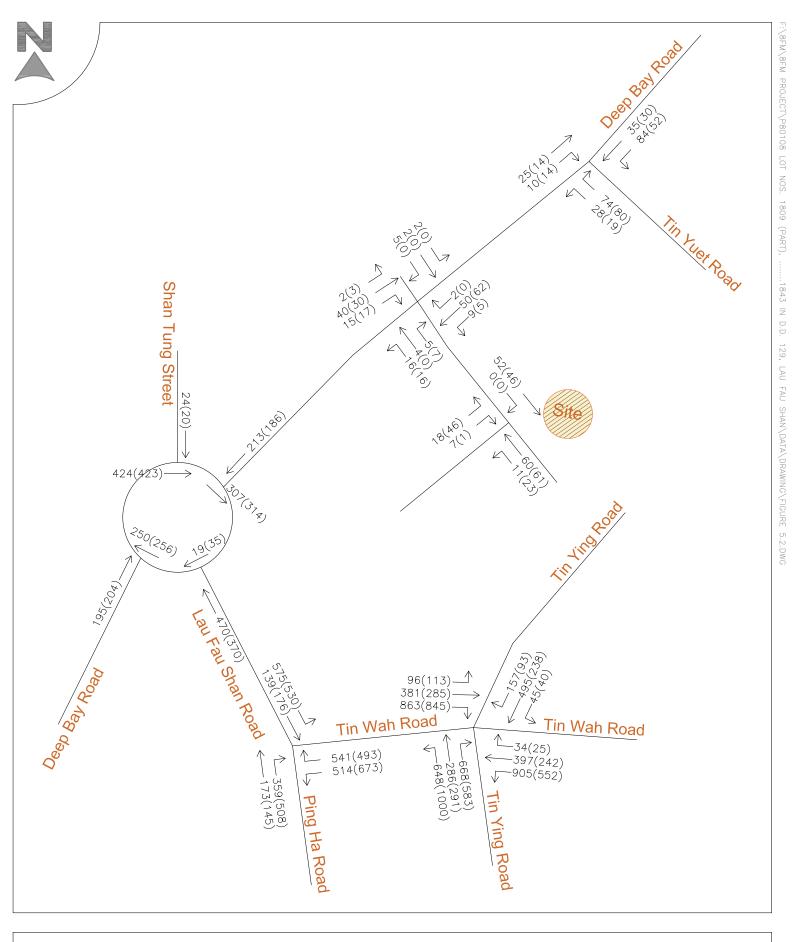








PROPOSAL -	S.16 Planning Application For Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Various Lots in D.D.129 Lau Fau Shan, Yuen Long, New Territories


DRAWING TITLE -	2024 Observed Flows Du	ring AM & PM Peak Hours
Dwg. No Figure 3.3	Rev	Legend:
Scale	Date - Sep 2024	Traffic Flows at AM Peak Hr (PCU/HR)100 100 Traffic Flows at PM Peak Hr (PCU/HR)(100) 8FM CONSULTANCY LIMITED

		S.16 Planning Application For Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Various Lots in D.D.129 Lau Fau Shan, Yuen Long, New Territories
	DRAWING TIT	E - 2027 Reference Traffic Flows during Peak Hours

		5	
Dwg. No Figure 5.1	Rev	Legend:	
Scale	Date - Sep 2024	Traffic Flows at AM Peak Hr (PCU/HR)100 100 Traffic Flows at PM Peak Hr (PCU/HR)(100) 8FM CONSULTANCY LIMITED	

PROPOSAL -	S.16 Planning Application For Proposed Temporary Open Storage of Construction Materials and Construction
	Equipment for a Period of 3 Years at Various Lots in D.D.129 Lau Fau Shan, Yuen Long, New Territories

DRAWING TITLE -	2027 Design Traffic F	lows during Peak Hours	
Dwg. No Figure 5.2	Rev	Legend:	
Scale	Date - Sep 2024	Traffic Flows at AM Peak Hr (PCU/HR)100 Traffic Flows at PM Peak Hr (PCU/HR)(100)	8FM CONSULTANCY LIMITED

Junction Calculation Sheets

	8FN		NSULTA		IITED						TRAFFIC	SIGN	IAL CALC	ULA		١	T				r		INITIALS		DATE
			n DD129, La		า												Project No	b .:	80108		Prepared		FF		Sep-24
	Tin Wah Road / Tin Ying Road											2024 Observed - AM Peak									Checked Reviewe	,	MM FM		Sep-24 Sep-24
	Tin Ying Road										N						No. of sta Intergreer	ycle		N = 4 I = 31 sec					
									Tin Wah Rodd [1] [2] [3]						Cycle time Sum(y) Loss time Total Flow Co = $(1.5^{+}L+5)/(1-Y)$ Cm = $L/(1-Y)$ Yult R.C.ult = $(Yult-Y)/Y^{*}100\%$ Cp = $0.9^{+}L/(0.9-Y)$ Ymax = $1-L/C$ R.C.(C) = $(0.9^{+}Ymax-Y)/Y^{*}100\%$				$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						
		ţ														Pedestria Phase		= (0.9*Yr Stage	,		= 26.6 d Green Time Provi SG			Che	eck
			╶┑╽		<u>↓</u> ↓				۶ ۲																
	8	Stage		8	Stage 2				Stage 4							l		<u> </u>							
	Move- ment	Stage	Lane Width m.	Phase No. o lane		0	N	Straight- Ahead Sat. Flow	Left pcu/h	Straight pcu/h	m Right pcu/h	Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Length	Flare lane Effect	Revised Sat. Flow pcu/h	у	Greater y	L sec	g (required) sec	g) (input) sec	Degree of Saturation X	Queue Length (m/lane)	Average Delay (sec)
	3 2 1	1,2,3,4 3 3	3.40 3.40 3.40	1 2 1	20 25		N	1955 4190 2095 0	890	390	33	890 390 33	1.00 0.00 1.00	1819 4190 1976			1819 4190 1976	0.489 0.093 0.016	0.016	27 9	83 16 3	19 19 12	3.126 0.594 0.168	890 55 5	2018 48 51
ŢŶŶ₽	6 5 4,5 4	1,2 2 2 2	4.80 3.40 3.40 3.40	1 1 1 1	25 35 30		N	2095 2095 2095 2095	637	281 0	329 327	637 281 329 327	1.00 0.00 1.00 1.00	1976 2095 2009 1995			1976 2095 2009 1995	0.322 0.134 0.164 0.164	0.134		54 23 28 28	42 23 23	0.911 0.711 0.868	84 39 53	56 50 68
∢ 4 ♠ ^	8,9 7,8 7	1 1 1	3.40 3.30 3.30	1 1 1	25 28 25		N	1955 2085 2085	89	334 40	417 431	423 457 431	0.21 0.91 1.00	1931 1988 1967			1931 1988 1967	0.219 0.230 0.219	0.219		37 39 37	45 45 37	0.584 0.613 0.711	44 48 50	32 32 40
	12 11 10	3,4 4 4	3.30 3.30 3.30	1 2 1	25 40		N	1945 4170 2085	43	486	149	43 486 149	1.00 0.00 1.00	1835 4170 2010			1835 4170 2010	0.024 0.117 0.074	0.074	9	4 20 13 0	22 22 22 0	0.131 0.650 0.414	6 67 20	42 47 45
																							inWahRd_Tir		

	8FN		NSULTAI		/IITED						TRAFFIC	SIGN	NAL CALC	ULA		١	I				1		INITIALS		DATE
			n DD129, La		in												Project N	D.:	80108		Prepared		FF		Sep-24
	Tin Wah	Road /	Tin Ying Road								2024 Observed	l - PM Pea	ak								Checked Reviewee	,	MM FM		Sep-24 Sep-24
							Tin Ying	Road			N						No. of stages per cycle Intergreen Period					N = 4 I = 31 sec			
								Tin Wah Rodd [1] [2] [3]						Cycle time Sum(y) Loss time Total Flow Co = $(1.5*L+5)/(1-Y)$ Cm = $L/(1-Y)$ Yult R.C.ult = $(Yult-Y)/Y*100\%$ Cp = $0.9*L/(0.9-Y)$ Ymax = $1-L/C$ R.C.(C) = $(0.9*Ymax-Y)/Y*100\%$				$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							
			- ¬↑┌ - /						<u> </u>	↓ ↓ ↓					Pedestria Phase			Green T SG	n Time Required Green Time P 6 FG SG			led (s) FG	Check		
ן נ	8	Stage	1	8	Stage 2	7	Stage 3		8	Stage 4					1										
	Move- ment	Stage	Lane Width m.	Phase No. Ian		0	N	Straight- Ahead Sat. Flow	Left pcu/h	r Straight pcu/h	n Right pcu/h	Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Flare lan Length m.	Flare lane Effect	Revised Sat. Flow pcu/h	у	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queue Length (m/lane)	Average Delay (sec)
	3 2 1	1,2,3,4 3 3	3.40 3.40 3.40	1 2 1			N	1955 4190 2095 0	543	238	24	543 238 24	1.00 0.00 1.00	1819 4190 1976			1819 4190 1976	0.298 0.057 0.012	0.012	27 9	57 11 2	18 18 11	1.955 0.372 0.129	418 34 4	946 46 51
Ţ ♠♠ ሾ	6 5 4,5 4	1,2 2 2 2	4.80 3.40 3.40 3.40	1 1 1 1	35		N	2095 2095 2095 2095	983	286 0	287 285	983 286 287 285	1.00 0.00 1.00 1.00	1976 2095 2009 1995			1976 2095 2009 1995	0.498 0.137 0.143 0.143	0.137		95 26 27 27	45 26 26	1.314 0.628 0.658	409 37 37	342 45 46
∢¶ ∲> ^	8,9 7,8 7	1 1 1	3.40 3.30 3.30	1 1 1	28		N	1955 2085 2085	106	280 0	428 404	386 428 404	0.28 1.00 1.00	1923 1979 1967			1923 1979 1967	0.201 0.216 0.205	0.201		38 41 39	47 47 39	0.510 0.549 0.628	39 43 45	29 30 36
	12 11 10	3,4 4 4	3.30 3.30 3.30	1 2 1			N	1945 4170 2085	39	233	86	39 233 86	1.00 0.00 1.00	1835 4170 2010			1835 4170 2010	0.021 0.056 0.043	0.043	9	4 11 8 0	17 17 17 0	0.149 0.391 0.299	6 33 12	46 47 47
																		nsultano		280108\Deta			inWahRd_Tir		IOBS PM

FM CONSULTANCY LIMITE	D PRIORI	TY JUNCTION CALCULATION	N		INITIALS	DATE
ffic Impact Assessment for Proposed Temporary Open Storage o	f Construction Material and Equipment of 3 Years at Various Lo	ots in D.D.129. Lau Fau Shan		Prepared By:	FF	Sep-202
B - Lau Fau Shan Rd / Tin Wah Rd / Ping Ha R		ved - AM Peak	Project No.: 80108	Checked By:	MM	Sep-202
				Reviewed By:	FM	Sep-202
Lau Fau Shan Rd [4] 560 [3] 136 → (ARM A)	(ARM B) Tin Wah Rd 527 505 	Ріпо на ко	NOTES :(GEOMETRIC INPUT DATA)W=MAJOR ROAD WIDTHW cr=CENTRAL RESERVE VW b-a=LANE WIDTH AVAILABW b-c=LANE WIDTH AVAILABW c-b=LANE WIDTH AVAILABV b-a=VI b-a=VISIBILITY TO THE LEIVr b-a=VISIBILITY TO THE RICVr b-c=VISIBILITY TO THE RICVr c-b=VISIBILITY TO THE RICD=STREAM-SPECIFIC B-IE=STREAM-SPECIFIC B-IF=STREAM-SPECIFIC C-IY=(1-0.0345W)	LE TO VEHICLE W LE TO VEHICLE W SLE TO VEHICLE W FT FOR VEHICLES SHT FOR VEHICLES SHT FOR VEHICLES SHT FOR VEHICLES A C	AITING IN STR AITING IN STR WAITING IN S S WAITING IN S WAITING IN	EAM b-c EAM c-b TREAM b-a STREAM b-a STREAM b-c
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 8.9 (metres) W cr = 0 (metres) q a-b = 560 (pcu/hr)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013	Q b-c = 645	(pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b	F DESIGN FLO = = =	1.1843 0.7829 0.6107
q a-c = 136 (pcu/hr) MAJOR ROAD (ARM C)	Y = 0.693		(pcu/hr) (pcu/hr)	DFC c-a	=	0.2426
W c-b = 3.5 (metres) Vr c-b = 150 (metres) q c-a = 170 (pcu/hr) q c-b = 352 (pcu/hr)				CRITICAL DFC	_	1.18
MINOR ROAD (ARM B) W b-a = 4.2 (metres) W b-c = 4.2 (metres) VI b-a = 200 (metres)						

	TANCY LIMITE	D	PRIORITY	JUNCTION CALCU	JLATION			INITIALS	DATE
fic Impact Assessment for Pro	oposed Temporary Open Storage	of Construction Material and Equipme	ent of 3 Years at Various Lots in D	D 129 Lau Fau Shan			Prepared By:	FF	Sep-202
	/ Tin Wah Rd / Ping Ha F		2024 Observed - I			Project No.: 80108	Checked By:	MM	Sep-202
	,		2021 00001104				Reviewed By:	FM	Sep-202
		(ARM B) Tin Wah Rd [5] [6] 480 662		N	W = W cr =	TRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABL		AITING IN STR	EAM b-a
 Lau Fau Shan Rd (ARM A) 	[4] 516▲ [3] 173 →		▲ 499 [1] ← 142 [2]	(ARM C) Ping Ha Rd	W b-c = W c-b = VI b-a = Vr b-a = Vr b-c = Vr c-b = D = E = F =	LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE LEF VISIBILITY TO THE RIGI VISIBILITY TO THE RIGI STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-B (1-0.0345W)	LE TO VEHICLE W. LE TO VEHICLE W. T FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STR AITING IN STR WAITING IN S S WAITING IN S S WAITING IN S	EAM b-c EAM c-b TREAM b-a STREAM b-a STREAM b-c
GEOMETRIC DE	ETAILS:	GEOMETRIC FAC	TORS :	THE CAPACITY OF M					
							COMPARISION O TO CAPACITY:	F DESIGN FLC	W
MAJOR ROAD (A	. ,						TO CAPACITY:		
MAJOR ROAD (/ W = W cr = q a-b = q a-c =	(ARM A) 8.9 (metres) 0 (metres) 516 (pcu/hr) 173 (pcu/hr)	E = F =	1.161 0.985 1.013 0.693	Q b-a = Q b-c = Q c-b = Q c-a =	383 (pcu/hr) 640 (pcu/hr) 578 (pcu/hr) 246 (pcu/hr)			= = = = =	1.2533 1.0336 0.8633 0.5772
W = W cr = q a-b =	8.9 (metres) 0 (metres) 516 (pcu/hr) 173 (pcu/hr)	E = F =	0.985 1.013	Q b-c = Q c-b =	383 (pcu/hr) 640 (pcu/hr) 578 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	= = =	1.2533 1.0336 0.8633 0.5772
W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b =	8.9 (metres) 0 (metres) 516 (pcu/hr) 173 (pcu/hr) ARM C) 3.5 3.5 (metres) 150 (metres) 142 (pcu/hr) 499 (pcu/hr)	E = F =	0.985 1.013	Q b-c = Q c-b = Q c-a =	383 (pcu/hr) 640 (pcu/hr) 578 (pcu/hr) 246 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	= = =	1.2533 1.0336 0.8633
W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a =	8.9 (metres) 0 (metres) 516 (pcu/hr) 173 (pcu/hr) ARM C) 3.5 3.5 (metres) 150 (metres) 142 (pcu/hr) 499 (pcu/hr)	E = F =	0.985 1.013	Q b-c = Q c-b = Q c-a =	383 (pcu/hr) 640 (pcu/hr) 578 (pcu/hr) 246 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	= = =	1.2533 1.0336 0.8633 0.5772
W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = VI b-a =	8.9 (metres) 0 (metres) 516 (pcu/hr) 173 (pcu/hr) 3.5 (metres) 150 (metres) 142 (pcu/hr) 499 (pcu/hr) ARM B) 4.2 4.2 (metres) 200 (metres)	E = F =	0.985 1.013	Q b-c = Q c-b = Q c-a =	383 (pcu/hr) 640 (pcu/hr) 578 (pcu/hr) 246 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	= = =	1.2533 1.0336 0.8633 0.5772
W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c =	8.9 (metres) 0 (metres) 516 (pcu/hr) 173 (pcu/hr) 3.5 (metres) 150 (metres) 142 (pcu/hr) 499 (pcu/hr) 4RM B) 4.2 4.2 (metres) 200 (metres) 200 (metres)	E = F =	0.985 1.013	Q b-c = Q c-b = Q c-a =	383 (pcu/hr) 640 (pcu/hr) 578 (pcu/hr) 246 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	= = =	1.2533 1.0336 0.8633 0.5772
 W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-a = W b-c = VI b-a = Vr b-a = Vr b-a = 	8.9 (metres) 0 (metres) 516 (pcu/hr) 173 (pcu/hr) 3.5 (metres) 150 (metres) 142 (pcu/hr) 499 (pcu/hr) ARM B) 4.2 4.2 (metres) 200 (metres) 200 (metres)	E = F =	0.985 1.013	Q b-c = Q c-b = Q c-a =	383 (pcu/hr) 640 (pcu/hr) 578 (pcu/hr) 246 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	= = =	1.2533 1.0336 0.8633 0.5772

		ONSULTANCY LIMITED	C				ROUNDABOUT JUNCTION ANALYSIS	INI	TIALS	DATE
		essment for Proposed Temporary Open Storage of					ears at Various Lots in D.D.129, Lau Fau Shan Prepared B	/:	FF	Sep-2024
Jn C -	_au Fa	u Shan Rd / Deep Bay Rd / Shan Tur	ng Str / Lau	ı Fau Sł	nan Mair	n Str	2024 Observed - AM Peak Project No.: 80108 Checked By	: 1	MM	Sep-2024
							Reviewed B	y:	FM	Sep-2024
Sł	an Tun (ARM /		// 412 [6]	[8]			(ARM B) Deep Bay Rd (ARM C) Lau Fau Shan Rd (ARM D) Deep Bay Rd			
GEOME	TRIC D	DETAILS: ARM	1 A	В	с	D				
	=	Approach half width (m)	1.9	1.5	3.2	1.9				
	= =	Approach half width (m) Entry width (m)	1.9 1.9	1.5 4.1	3.2 4.2	1.9 3.7				
	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	1.9 1.9 1.0	1.5 4.1 2.3	3.2 4.2 1.5	1.9 3.7 1.8				
EOME	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	1.9 1.9 1.0 14.0	1.5 4.1 2.3 46.0	3.2 4.2 1.5 7.4	1.9 3.7 1.8 7.5				
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	1.9 1.9 1.0 14.0 38.0	1.5 4.1 2.3 46.0 38.0	3.2 4.2 1.5 7.4 38.0	1.9 3.7 1.8 7.5 38.0				
EOM	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	1.9 1.9 1.0 14.0 38.0 42.0	1.5 4.1 2.3 46.0 38.0 52.0	3.2 4.2 1.5 7.4 38.0 20.0	1.9 3.7 1.8 7.5 38.0 51.0				
	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	1.9 1.9 1.0 14.0 38.0 42.0 23	1.5 4.1 2.3 46.0 38.0 52.0 204	3.2 4.2 1.5 7.4 38.0 20.0 457	1.9 3.7 1.8 7.5 38.0 51.0 192				
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	1.9 1.9 1.0 14.0 38.0 42.0 23	1.5 4.1 2.3 46.0 38.0 52.0	3.2 4.2 1.5 7.4 38.0 20.0	1.9 3.7 1.8 7.5 38.0 51.0				
;	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	1.9 1.9 1.0 14.0 38.0 42.0 23	1.5 4.1 2.3 46.0 38.0 52.0 204	3.2 4.2 1.5 7.4 38.0 20.0 457	1.9 3.7 1.8 7.5 38.0 51.0 192				
с	= = = = = = T PARA	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L	1.9 1.9 1.0 14.0 38.0 42.0 23 412 0.00	1.5 4.1 2.3 46.0 38.0 52.0 204 302 1.81	3.2 4.2 1.5 7.4 38.0 20.0 457 18	1.9 3.7 1.8 7.5 38.0 51.0 192 241 1.60	TOTAL FLC			
JTPU	= = = = = = T PAR4 = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	1.9 1.9 1.0 14.0 38.0 42.0 23 412 0.00 0.94	1.5 4.1 2.3 46.0 38.0 52.0 204 302 1.81 0.95	3.2 4.2 1.5 7.4 38.0 20.0 457 18 1.07 0.95	1.9 3.7 1.8 7.5 38.0 51.0 192 241 1.60 0.85	TOTAL FLO CRITICAL I			1847 (pcu/ 0.45
JTPU	= = = = = = T PAR4 = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	1.9 1.9 1.0 14.0 38.0 42.0 23 412 0.00 0.94 1.90	1.5 4.1 2.3 46.0 38.0 52.0 204 302 1.81 0.95 2.06	3.2 4.2 1.5 7.4 38.0 20.0 457 18 1.07 0.95 3.52	1.9 3.7 1.8 7.5 38.0 51.0 192 241 1.60 0.85 2.33				
JTPU	= = = = = = T PAR4 = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	1.9 1.9 1.0 14.0 38.0 42.0 23 412 0.00 0.94 1.90 0.11	1.5 4.1 2.3 46.0 38.0 52.0 204 302 1.81 0.95 2.06 0.11	3.2 4.2 1.5 7.4 38.0 20.0 457 18 1.07 0.95 3.52 0.11	1.9 3.7 1.8 7.5 38.0 51.0 192 241 1.60 0.85 2.33 0.11				
JTPU	= = = = = T PAR/ = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	1.9 1.9 1.0 14.0 38.0 42.0 23 412 0.00 0.94 1.90 0.11 576	1.5 4.1 2.3 46.0 38.0 52.0 204 302 1.81 0.95 2.06 0.11 625	3.2 4.2 1.5 7.4 38.0 20.0 457 18 1.07 0.95 3.52 0.11 1066	1.9 3.7 1.8 7.5 38.0 51.0 192 241 1.60 0.85 2.33 0.11 706				
с UTPU 1	= = = = = = T PAR/ = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	1.9 1.9 1.0 14.0 38.0 42.0 23 412 0.00 0.94 1.90 0.11 576 1.45	1.5 4.1 2.3 46.0 38.0 52.0 204 302 1.81 0.95 2.06 0.11 625 1.45	3.2 4.2 1.5 7.4 38.0 20.0 457 18 1.07 0.95 3.52 0.11 1066 1.45	1.9 3.7 1.8 7.5 38.0 51.0 192 241 1.60 0.85 2.33 0.11 706 1.45				
c UTPU 2 d	= = = = = T PAR/ = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M)) 0.21*Td(1+0.2*X2)	1.9 1.9 1.0 14.0 38.0 42.0 23 412 0.00 0.94 1.90 0.11 576 1.45 0.42	1.5 4.1 2.3 46.0 38.0 52.0 204 302 1.81 0.95 2.06 0.11 625 1.45 0.43	3.2 4.2 1.5 7.4 38.0 20.0 457 18 1.07 0.95 3.52 0.11 1066 1.45 0.52	1.9 3.7 1.8 7.5 38.0 51.0 192 241 1.60 0.85 2.33 0.11 706 1.45 0.45				
	= = = = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	1.9 1.9 1.0 14.0 38.0 42.0 23 412 0.00 0.94 1.90 0.11 576 1.45	1.5 4.1 2.3 46.0 38.0 52.0 204 302 1.81 0.95 2.06 0.11 625 1.45	3.2 4.2 1.5 7.4 38.0 20.0 457 18 1.07 0.95 3.52 0.11 1066 1.45	1.9 3.7 1.8 7.5 38.0 51.0 192 241 1.60 0.85 2.33 0.11 706 1.45				1847 (pcu/h 0.45

	M CO	ONSULTANCY LIMITED)				ROUNDABOUT JUNCTION ANALYSIS	INITIALS	DATE
Fraffic In	npact Asse	essment for Proposed Temporary Open Storage of	Construction	n Material ar	nd Equipm	ent of 3 Ye	rears at Various Lots in D.D.129, Lau Fau Shan Prepared By:	FF	Sep-2024
Jn C -	Lau Fa	u Shan Roundabout					2024 Observed - PM Peak Project No.: 80108 Checked By:	MM	Sep-2024
							Reviewed By:	FM	Sep-2024
S	han Tun, (ARM /		// 411	[4] 247 227 200			(ARM B) heep Bay Rd (ARM C) Lau Fau Shan Rd (ARM D) Deep Bay Rd		
ЕОМ	ETRIC D	DETAILS: ARM	A	[3] B	с	D			
	=	Approach half width (m)	1.9	1.5	3.2	1.9			
	=	Entry width (m)	1.9	4.1	4.2	3.7			
	= =	Entry width (m) Effective length of flare (m)	1.9 1.0	4.1 2.3	4.2 1.5	3.7 1.8			
	= = =	Entry width (m) Effective length of flare (m) Entry radius (m)	1.9 1.0 14.0	4.1 2.3 46.0	4.2 1.5 7.4	3.7 1.8 7.5			
	= = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	1.9 1.0 14.0 38.0	4.1 2.3 46.0 38.0	4.2 1.5 7.4 38.0	3.7 1.8 7.5 38.0			
	= = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	1.9 1.0 14.0 38.0 42.0	4.1 2.3 46.0 38.0 52.0	4.2 1.5 7.4 38.0 20.0	3.7 1.8 7.5 38.0 51.0			
	= = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	1.9 1.0 14.0 38.0 42.0 19	4.1 2.3 46.0 38.0 52.0 178	4.2 1.5 7.4 38.0 20.0 359	3.7 1.8 7.5 38.0 51.0 200			
	= = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	1.9 1.0 14.0 38.0 42.0	4.1 2.3 46.0 38.0 52.0	4.2 1.5 7.4 38.0 20.0	3.7 1.8 7.5 38.0 51.0			
C	= = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	1.9 1.0 14.0 38.0 42.0 19	4.1 2.3 46.0 38.0 52.0 178	4.2 1.5 7.4 38.0 20.0 359	3.7 1.8 7.5 38.0 51.0 200 247			
C UTPI	= = = = = JT PAR4 =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L	1.9 1.0 14.0 38.0 42.0 19 411	4.1 2.3 46.0 38.0 52.0 178 308 1.81	4.2 1.5 7.4 38.0 20.0 359 34	3.7 1.8 7.5 38.0 51.0 200 247 1.60	TOTAL FLOW	-	
JTPU	= = = = = JT PARA = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	1.9 1.0 14.0 38.0 42.0 19 411 0.00 0.94	4.1 2.3 46.0 38.0 52.0 178 308 1.81 0.95	4.2 1.5 7.4 38.0 20.0 359 34 1.07 0.95	3.7 1.8 7.5 38.0 51.0 200 247 1.60 0.85	TOTAL FLOW CRITICAL DFC	-	1757 (рси/ 0.40
JTPU	= = = = = JT PARA = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	1.9 1.0 14.0 38.0 42.0 19 411 0.00 0.94 1.90	4.1 2.3 46.0 38.0 52.0 178 308 1.81 0.95 2.06	4.2 1.5 7.4 38.0 20.0 359 34 1.07 0.95 3.52	3.7 1.8 7.5 38.0 51.0 200 247 1.60 0.85 2.33			
JTPI	= = = = = JT PARA = = = = = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	1.9 1.0 14.0 38.0 42.0 19 411 0.00 0.94 1.90 0.11	4.1 2.3 46.0 38.0 52.0 178 308 1.81 0.95 2.06 0.11	4.2 1.5 7.4 38.0 20.0 359 34 1.07 0.95 3.52 0.11	3.7 1.8 7.5 38.0 51.0 200 247 1.60 0.85 2.33 0.11			
JTPU	= = = = = JT PARA = = = = = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	1.9 1.0 14.0 38.0 42.0 19 411 0.00 0.94 1.90 0.11 576	4.1 2.3 46.0 38.0 52.0 178 308 1.81 0.95 2.06 0.11 625	4.2 1.5 7.4 38.0 20.0 359 34 1.07 0.95 3.52 0.11 1066	3.7 1.8 7.5 38.0 51.0 200 247 1.60 0.85 2.33 0.11 706			
	= = = = = JT PARA = = = = = = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	1.9 1.0 14.0 38.0 42.0 19 411 0.00 0.94 1.90 0.11 576 1.45	4.1 2.3 46.0 38.0 52.0 178 308 1.81 0.95 2.06 0.11 625 1.45	4.2 1.5 7.4 38.0 20.0 359 34 1.07 0.95 3.52 0.11 1066 1.45	3.7 1.8 7.5 38.0 51.0 200 247 1.60 0.85 2.33 0.11 706 1.45			
с UTPI 2 1	= = = = = JT PARA = = = = = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M)) 0.21*Td(1+0.2*X2)	1.9 1.0 14.0 38.0 42.0 19 411 0.00 0.94 1.90 0.11 576 1.45 0.42	4.1 2.3 46.0 38.0 52.0 178 308 1.81 0.95 2.06 0.95 2.06 0.11 625 1.45 0.43	4.2 1.5 7.4 38.0 20.0 359 34 1.07 0.95 3.52 0.11 1066 1.45 0.52	3.7 1.8 7.5 38.0 51.0 200 247 1.60 0.85 2.33 0.11 706 1.45 0.45			
d d FC	= = = = = JT PAR/ = = = = = = = = = = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	1.9 1.0 14.0 38.0 42.0 19 411 0.00 0.94 1.90 0.11 576 1.45	4.1 2.3 46.0 38.0 52.0 178 308 1.81 0.95 2.06 0.11 625 1.45	4.2 1.5 7.4 38.0 20.0 359 34 1.07 0.95 3.52 0.11 1066 1.45	3.7 1.8 7.5 38.0 51.0 200 247 1.60 0.85 2.33 0.11 706 1.45			1757 (pcu/l 0.40

FM CONSULTANCY	LIMITED	PRIO	RITY JUNC	CTION CALCUL	ATION					INITIALS		DATE
ffic Impact Assessment for Proposed Temporary	Open Storage of Construction Material a	and Equipment of 3 Years at Vario	ous Lots in D.D.129, Lau	Fau Shan					Prepared	By: FF	:	Sep-2024
D - Deep Bay Rd / Unnamed Acces	s	2024 Ob	served - AM Peal	(Project No	o.: 80108	Checked	By: MM	:	Sep-2024
									Reviewed	I By: FM	:	Sep-2024
[9] 2 Unnamed Access [8] 2 [7] 4 (ARM D)	(ARM A) Deep Bay Rd [10] [11] 1 49 ↓ ↓ ↓ ↓	[12] 3 4 0 4 3 10	[1] [2] [3]	Innamed Access (ARM B)	1	NOTES : (GEOM W = W cr = W b-a = W b-c = W c-b = V t b-a = V r b-a = V r b-c = V r c-b = D = E = F =	MAJOR R CENTRAL LANE WIE LANE WIE VISIBILITY VISIBILITY VISIBILITY STREAM- STREAM-	COAD WIDTH RESERVE WI DTH AVAILABL DTH AVAILABL DTH AVAILABL Y TO THE LEFT Y TO THE RIGH Y TO THE RIGH	E TO VEH E TO VEH E TO VEH I FOR VEI IT FOR VI	HICLE WAITING IN ST HICLE WAITING IN ST HICLE WAITING IN ST HICLES WAITING IN S EHICLES WAITING IN EHICLES WAITING IN EHICLES WAITING IN	REAM b-c REAM c-b TREAM I STREAM STREAM	c b-a 1b-a 1b-a 1b-c
	1 39 9 [6] [5] [4] Deep Bay Rd'(AF	RM C)				Y =	(1-0.0345)	W)				
GEOMETRIC DETAILS:		RM C)	GEOMETR	RIC FACTORS :		Y =	(1-0.0345)	W)			ESIGN FL	LOW
GEOMETRIC DETAILS:	[6] [5] [4]	RM C)	GEOMETF				(1-0.0345)			COMPARISION OF DI	ESIGN FL	LOW
GENERAL W = 3.90 (metres)	[6] [5] [4] Deep Bay Rd'(AF		X b X c	= 0.818 = 0.799		Xa Xd	= =	0.845		DFC b-a	=	0.000
GENERAL	[6] [5] [4]	RM C) 0.865	X b X c Z b	= 0.818 = 0.799 = 0.928		Xa Xd Zd	= = =	0.845 1.066 1.188		DFC b-a DFC b-c	=	0.000
GENERAL W = 3.90 (metres) W cr = 0 (metres)	[6] [5] [4] Deep Bay Rd'(AF	0.865	X b X c	= 0.818 = 0.799		X a X d Z d	= =	0.845		DFC b-a DFC b-c DFC c-b	= = =	0.000 0.013 0.010
GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F	0.865 ROAD (ARM C)	X b X c Z b M b	= 0.818 = 0.799 = 0.928 = 0.860		Xa Xd Zd Md	= = =	0.845 1.066 1.188		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-d	= = = =	0.000 0.013 0.010 0.002
GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-D =	0.865 ROAD (ARM C) Z.U (metres)	X b X c Z b M b	= 0.818 = 0.799 = 0.928		Xa Xd Zd Md	= = =	0.845 1.066 1.188		DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC b-d	= = = =	0.00 0.01 0.01 0.00
GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres)	Хb Хc Zb Мb РКОРОК I	= 0.818 = 0.799 = 0.928 = 0.860	I AHEAD IN	Xa Xd Zd Md RAFFIC:		0.845 1.066 1.188 1.097		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-d DFC b-d DFC b-d DFC b-d	= = = = =	0.000 0.015 0.016 0.002 0.002 0.005
$\begin{array}{rcl} \text{GENERAL} & W &=& 3.90 \ (\text{metres}) \\ W \ \text{cr} &=& 0 \ (\text{metres}) \\ \end{array} \\ \begin{array}{rcl} \text{MAJOR ROAD} \ (\text{ARM A}) \\ W \ \text{a-d} &=& 2.0 \ (\text{metres}) \\ Vr \ \text{a-d} &=& 120 \ (\text{metres}) \\ q \ \text{a-b} &=& 3 \ (\text{pcu/hr}) \end{array} \end{array}$	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-D = Vr c-b = q c-a =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr)	Х b Х c Z b М b РКОРОК I г b-а	= 0.818 = 0.799 = 0.928 = 0.860		Xa Xd Zd Md RAFFIC: rd-c	= = = = =	0.845 1.066 1.188 1.097 0.007		DFC b-a DFC b-c DFC c-b DFC b-c DFC b-d DFC b-d DFC d-c DFC d-a	= = = = = =	0.000 0.015 0.002 0.002 0.005 0.006 0.006
$\begin{array}{rcl} \mbox{GENERAL} & W & = & 3.90 \mbox{ (metres)} \\ W \mbox{ cr} & = & 0 \mbox{ (metres)} \\ \mbox{MAJOR ROAD} \mbox{ (ARM A)} \\ W \mbox{ a-d} & = & 2.0 \mbox{ (metres)} \\ V \mbox{ r} \mbox{ a-d} & = & 120 \mbox{ (metres)} \\ q \mbox{ a-b} & = & 3 \mbox{ (pcu/hr)} \\ q \mbox{ a-c} & = & 49 \mbox{ (pcu/hr)} \end{array}$	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr)	Хb Хc Zb Мb РКОРОКI rb-a qlb-d	= 0.818 = 0.799 = 0.928 = 0.860 ION OF MINOK S I KAIGH = 0 = 1.5	(pcu/hr)	Xa Xd Zd Md KAFFIC: rd-c qld-b		0.845 1.066 1.188 1.097 0.007 0.7550628	(pcu/hr)	DFC b-a DFC b-C DFC c-b DFC b-C DFC b-d DFC b-d DFC d-a DFC d-a	= = = = = = =	0.000 0.011 0.002 0.002 0.000 0.000 0.000
$\begin{array}{rcl} \text{GENERAL} & W &=& 3.90 \ (\text{metres}) \\ W \ \text{cr} &=& 0 \ (\text{metres}) \\ \end{array} \\ \begin{array}{rcl} \text{MAJOR ROAD} \ (\text{ARM A}) \\ W \ \text{a-d} &=& 2.0 \ (\text{metres}) \\ Vr \ \text{a-d} &=& 120 \ (\text{metres}) \\ q \ \text{a-b} &=& 3 \ (\text{pcu/hr}) \end{array} \end{array}$	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W C-D = Vr C-D = q C-a = q C-b = q C-b = q C-d =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr)	X b X c Z b M b PROPOR I r b-a ql b-d qr b-d	= 0.818 = 0.799 = 0.928 = 0.860 ION OF MINOR STRAIGH = 0 = 1.5 = 1.5		Xa Xd Zd Md RAFFIC: rd-c		0.845 1.066 1.188 1.097 0.007	(pcu/hr)	DFC b-a DFC b-c DFC c-b DFC b-c DFC b-d DFC b-d DFC d-c DFC d-a	= = = = = =	0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD (A	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr) NRM D)	X b X c Z b M b PROPOR I r b-a ql b-d qr b-d	= 0.818 = 0.799 = 0.928 = 0.860 ION OF MINOK S I KAIGH = 0 = 1.5	(pcu/hr)	Xa Xd Zd Md KAFFIC: rd-c qld-b		0.845 1.066 1.188 1.097 0.007 0.7550628	(pcu/hr)	DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC b-d DFC d-c DFC d-a DFC a-d DFC a-d DFC d-b	= = = = = = =	0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 3 (pcu/hr) q a-c = 49 (pcu/hr) q a-d = 1 (pcu/hr) MINOR ROAD (ARM B) W b-a = 3.3 (metres)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-b = q c-b = q c-b = q c-d = MINOR ROAD (A W d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr) ARM D) 6.0 (metres)	X b X c Z b M b PROPORI r b-a ql b-d qr b-d CAPACITY	= 0.818 = 0.799 = 0.928 = 0.860 ION OF MINOR STRAIGHT = 0 = 1.5 = 1.5 OF MOVEMENT :	(pcu/hr) (pcu/hr)	Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b		0.845 1.066 1.188 1.097 0.007 0.7550628 0.7449372	(pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC b-d DFC d-c DFC d-a DFC a-d DFC a-d DFC d-b	= = = = = = =	0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
$ \begin{array}{rcl} \mbox{GENERAL} & W &=& 3.90 \mbox{ (metres)} \\ W \mbox{ cr } &=& 0 \mbox{ (metres)} \\ \mbox{MAJOR ROAD} \mbox{ (ARM A)} \\ W \mbox{ a-d } &=& 2.0 \mbox{ (metres)} \\ V \mbox{ ra-d } &=& 120 \mbox{ (metres)} \\ q \mbox{ a-b } &=& 3 \mbox{ (pcu/hr)} \\ q \mbox{ a-c } &=& 49 \mbox{ (pcu/hr)} \\ q \mbox{ a-d } &=& 1 \mbox{ (pcu/hr)} \\ \mbox{MINOR ROAD} \mbox{ (ARM B)} \\ W \mbox{ b-a } &=& 3.3 \mbox{ (metres)} \\ W \mbox{ b-c } &=& 3.3 \mbox{ (metres)} \\ \end{array} $	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-b = q c-b = q c-b = q c-d = MINOR ROAD (A W d-c = W d-a =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) ARM D) 6.0 (metres) 6.0 (metres)	X b X c Z b M b PROPORI r b-a ql b-d qr b-d CAPACITY Q b-a	= 0.818 = 0.799 = 0.928 = 0.860 ION OF MINOK STRAIGH = 0 = 1.5 = 1.5 OF MOVEMENT : = 489	(pcu/hr) (pcu/hr) (pcu/hr)	Xa Xd Zd Md KAFFIU: rd-c qld-b qrd-b Qd-c		0.845 1.066 1.188 1.097 0.7550628 0.7449372 637	(pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC b-d DFC d-c DFC d-a DFC a-d DFC a-d DFC d-b	= = = = = = =	0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) w a-d va-d = 2.0 (metres) Vra-d = 120 (metres) va-b = 3 (pcu/hr) qa-c = 49 (pcu/hr) qa-d = 1 (pcu/hr) MINOR ROAD (ARM B) W b-a W b-a = 3.3 (metres) W b-a = 3.3 (metres) VI b-a = 28 (metres)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD (A W d-c = W d-a = VI d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr) ARM D) 6.0 (metres) 6.0 (metres) 22 (metres)	X b X c Z b M b PROPORT r b-a ql b-d qr b-d Gr b-d CAPACITY Q b-a Q b-c	= 0.818 = 0.799 = 0.928 = 0.860 ION OF MINOR STRAIGH = 0 = 1.5 = 1.5 OF MOVEMENT : = 489 = 677	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-c Qd-a		0.845 1.066 1.188 1.097 0.7550628 0.7449372 637 869	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC c-b DFC b-c DFC d-c DFC d-c DFC d-a DFC d-a DFC a-d DFC d-b	= = = = = = = = = = = = = = = = = = = =	0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
$ \begin{array}{rcl} {\sf GENERAL} & {\sf W} & = & 3.90 \ (metres) \\ {\sf W} \ cr & = & 0 \ (metres) \\ \\ {\sf MAJOR \ ROAD \ (ARM \ A) \\ {\sf W} \ a - d & = & 2.0 \ (metres) \\ {\sf V} \ a - d & = & 120 \ (metres) \\ {\sf q} \ a - b & = & 3 \ (pcu/hr) \\ {\sf q} \ a - d & = & 1 \ (pcu/hr) \\ {\sf q} \ a - d & = & 1 \ (pcu/hr) \\ \\ \\ {\sf MINOR \ ROAD \ (ARM \ B) } \\ \\ {\sf W} \ b - a & = & 3.3 \ (metres) \\ {\sf W} \ b - a & = & 28 \ (metres) \\ \\ {\sf Vr} \ b - a & = & 28 \ (metres) \\ \\ \\ {\sf Vr} \ b - a & = & 28 \ (metres) \\ \\ \\ \\ {\sf Vr} \ b - a & = & 28 \ (metres) \\ \end{array} $	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = q c-b = q c-b = q c-b = q c-d = MINOR ROAD (A W d-c = W d-a = VI d-c = VI d-c = VI d-c = VI d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) ARM D) 6.0 (metres) 60 (metres) 60 (metres)	X b X c Z b M b PROPOR I r b-a ql b-d qr b-d CAPACITY Q b-a Q b-c Q c-b	= 0.818 = 0.799 = 0.928 = 0.860 ION OF MINOK STRAIGH = 0 = 1.5 = 1.5 OF MOVEMENT : = 489 = 677 = 582	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	Xa Xd Zd Md rd-c qld-b qrd-b Qd-a Qa-d		0.845 1.066 1.188 1.097 0.7550628 0.7449372 637 869 615	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC b-d DFC d-c DFC d-a DFC a-d DFC a-d DFC d-b	= = = = = = =	0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 3 (pcu/hr) q a-c = 49 (pcu/hr) q a-d = 1 (pcu/hr) MINOR ROAD (ARM B) W b-a = 3.3 (metres) W b-c = 3.3 (metres) VI b-a = 28 (metres) Vr b-a = 28 (metres) Vr b-c = 80 (metres)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d = MINOR ROAD (A W d-c = W d-a = VI d-c = VI d-c = VI d-c = VI d-c = Vr d-a = VI d-c = VI d	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) ARM D) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres) 90 (metres)	X b X c Z b M b PROPORI r b-a ql b-d qr b-d CAPACITY Q b-a Q b-c Q c-b Ql b-d	= 0.818 = 0.799 = 0.928 = 0.860 ION OF MINOR STRAIGHT = 0 = 1.5 = 1.5 OF MOVEMENT : = 489 = 677 = 582 = 515	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b qrd-b Qd-a Qa-d Qa-d Qld-b		0.845 1.066 1.188 1.097 0.7550628 0.7449372 637 869 615 659	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC c-b DFC b-c DFC d-c DFC d-c DFC d-a DFC d-a DFC a-d DFC d-b	= = = = = = = = = = = = = = = = = = = =	0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) w a-d w a-d = 2.0 (metres) y a-d = 120 (metres) y a-b = 3 (pcu/hr) y a-c = 49 (pcu/hr) y a-d = 1 (pcu/hr) MINOR ROAD (ARM B) W b-a W b-a = 3.3 (metres) V b-a = 3.3 (metres) V b-a = 28 (metres) V r b-a = 28 (metres) V r b-a = 80 (metres) Y r b-a = 0 (pcu/hr)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-b = q c-b = q c-b = q c-b = q c-b = VI d-c = Vr d-c = Vr d-c = Vr d-c = Vr d-c = Q d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) ARM D) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres) 90 (metres) 4 (pcu/hr)	X b X c Z b M b PROPOR I r b-a ql b-d qr b-d CAPACITY Q b-a Q b-c Q c-b	= 0.818 = 0.799 = 0.928 = 0.860 ION OF MINOK STRAIGH = 0 = 1.5 = 1.5 OF MOVEMENT : = 489 = 677 = 582	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	Xa Xd Zd Md rd-c qld-b qrd-b Qd-a Qa-d		0.845 1.066 1.188 1.097 0.7550628 0.7449372 637 869 615 659	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC c-b DFC b-c DFC d-c DFC d-c DFC d-a DFC d-a DFC a-d DFC d-b	= = = = = = = = = = = = = = = = = = = =	0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 3 (pcu/hr) q a-c = 49 (pcu/hr) q a-d = 1 (pcu/hr) MINOR ROAD (ARM B) W b-a = 3.3 (metres) W b-c = 3.3 (metres) VI b-a = 28 (metres) Vr b-a = 28 (metres) Vr b-c = 80 (metres)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d = MINOR ROAD (A W d-c = W d-a = VI d-c = VI d-c = VI d-c = VI d-c = Vr d-a = VI d-c = VI d	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) ARM D) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres) 90 (metres)	X b X c Z b M b PROPORI r b-a ql b-d qr b-d CAPACITY Q b-a Q b-c Q c-b Ql b-d	= 0.818 = 0.799 = 0.928 = 0.860 ION OF MINOR STRAIGHT = 0 = 1.5 = 1.5 OF MOVEMENT : = 489 = 677 = 582 = 515	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b qrd-b Qd-a Qa-d Qa-d Qld-b		0.845 1.066 1.188 1.097 0.7550628 0.7449372 637 869 615 659	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC c-b DFC b-c DFC d-c DFC d-c DFC d-a DFC d-a DFC a-d DFC d-b	= = = = = = = = = = = = = = = = = = = =	0.000

FM CONSULTANCY LIMITI	ED	PRI	IORITY JUN	CTION CALCUL	LATION	l				INITIALS		DATE
fic Impact Assessment for Proposed Temporary Open Storage	e of Construction Material a								Prepared	By: FF	:	Sep-202
D - Deep Bay Rd / Unnamed Access		2024	Observed - PM Pea	ık			Project No.	.: 80108	Checked	By: MM	:	Sep-202
									Reviewed	By: FM	:	Sep-202
[9] 0 Unnamed Access [7] 0 (ARM D)	(ARM A) Deep Bay Rd [10] [11] 0 61 ↓ ↓		[1] [2] [3]	N Vinnamed Access (ARM B)		NOTES : (GEOM W = W cr = W b-a = W c-b = V c-b = V r b-a = V r b-a = V r b-c = D = E = F =	MAJOR RC CENTRAL LANE WID LANE WID VISIBILITY VISIBILITY VISIBILITY VISIBILITY STREAM-S STREAM-S	DAD WIDTH RESERVE W OTH AVAILABL OTH AVAILABL OTH AVAILABL Y TO THE LEF Y TO THE RIGH Y TO THE RIGH	IDTH E TO VEH E TO VEH T FOR VE HT FOR VE HT FOR VE HT FOR VE	IICLE WAITING IN ST IICLE WAITING IN ST IICLE WAITING IN ST HICLES WAITING IN S EHICLES WAITING IN EHICLES WAITING IN	REAM b-a REAM b-c REAM c-b TREAM I STREAM STREAM	a C D b-a M b-a M b-c
	 3 29 11 [6] [5] [4] Deep Bay Bd'(AF	RM C)				F = Y =	(1-0.0345W					
		RM C)	GEOMET	RIC FACTORS :		•				COMPARISION OF D	ESIGN FL	LOW
GEOMETRIC DETAILS:	[6] [5] [4]	RM C)				Y =	(1-0.0345W	V)		COMPARISION OF D	ESIGN FL	Low
GEOMETRIC DETAILS:	[6] [5] [4]	RM C)	GEOMET X b X c	RIC FACTORS : = 0.818 = 0.799		•					ESIGN FL	L OW
GEOMETRIC DETAILS:	[6] [5] [4]	RM C)	Xb	= 0.818)	Y =	(1-0.0345W	V) 0.845		TU CAPACITY:		0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres)	(6) [5] [4] Deep Bay Rd'(AF	0.865	X b X c	= 0.818 = 0.799) 3	Y =	(1-0.0345W = =	V) 0.845 1.066		DFC b-a DFC b-c DFC c-b	=	0.00 0.01 0.01
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F	0.865 ROAD (ARM C)	X b X c Z b M b	= 0.818 = 0.799 = 0.928 = 0.860) }	Y = Xa Xd Zd Md	(1-0.0345W = = =	V) 0.845 1.066 1.188		DFC b-a DFC b-c DFC c-b DFC c-b DFC lb-d	= = = =	0.00 0.01 0.01 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres)	 [6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = 	0.865 ROAD (ARM C) 2.0 (metres)	X b X c Z b M b	= 0.818 = 0.799 = 0.928) }	Y = Xa Xd Zd Md	(1-0.0345W = = =	V) 0.845 1.066 1.188		DFC b-a DFC b-c DFC b-c DFC c-b DFC b-d DFC b-d DFC b-d	= = = =	0.00 0.01 0.01 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres)	 [6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = Vr c-b = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres)	Х b Х c Z b М b РКОРОК	= 0.818 = 0.799 = 0.928 = 0.860) } 11 AHEAD	Y = Y = Xa Xd Zd Md	(1-0.0345W = = = =	V) 0.845 1.066 1.188 1.097		DFC b-a DFC b-c DFC c-b DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d	= = = = =	0.00 0.01 0.01 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 0 (pcu/hr)	 [6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-D = Vr c-b = q c-a = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr)	Х b Х c Z b М b РКОРОК r b-a	= 0.818 = 0.799 = 0.928 = 0.860 HION OF MINOR STRAIGH = 0.001567) 3 11 AHEAD 11 ,	Y = Xa Xd Zd Md KAFFIC: rd-c	(1-0.0345W = = = = =	V) 0.845 1.066 1.188 1.097 0.000		DFC b-a DFC b-c DFC c-b DFC l-c DFC l-d DFC l-d DFC d-a	= = = = =	0.000 0.01 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) VV a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 0 (pcu/hr) q a-c = 61 (pcu/hr)	 [6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr)	Хb Хc Zb Мb РкОРОК r b-a ql b-d	= 0.818 = 0.799 = 0.928 = 0.860 HUN OF MINOR STRAIGH = 0.001567 = 0) 3 1 I AHEAU I 1 ,) (pcu/hr)	Y = Ха Ха Zd Md КАГНС: rd-c qld-b	(1-0.0345W = = = = = = =	V) 0.845 1.066 1.188 1.097 0.000 0	(pcu/hr)	DFC b-a DFC b-a DFC c-b DFC b-d DFC b-d DFC d-a DFC d-a DFC a-d	= = = = = = =	0.00 0.01 0.01 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 0 (pcu/hr)	 [6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-D = Vr c-b = q c-a = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr)	Х b Х c Z b М b РКОРОК r b-a	= 0.818 = 0.799 = 0.928 = 0.860 HION OF MINOR STRAIGH = 0.001567) 3 1 AHEAU 7) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c	(1-0.0345W = = = = = = =	V) 0.845 1.066 1.188 1.097 0.000 0		DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC d-c DFC d-a DFC a-d DFC a-d DFC a-d	= = = = =	0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) VV a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 0 (pcu/hr) q a-c = 61 (pcu/hr)	 [6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d	= 0.818 = 0.799 = 0.928 = 0.860 HUN OF MINOR STRAIGH = 0.001567 = 0) 3 1 I AHEAU I 1 ,) (pcu/hr)	Y = Ха Ха Zd Md КАГНС: rd-c qld-b	(1-0.0345W = = = = = = =	V) 0.845 1.066 1.188 1.097 0.000 0	(pcu/hr)	DFC b-a DFC b-a DFC c-b DFC b-d DFC b-d DFC d-a DFC d-a DFC a-d	= = = = = = = =	0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS:GENERAL $W = 3.90 (metres)$ $W cr = 0 (metres)$ Wor = 0 (metres)Wa-d = 2.0 (metres)Vr a-d = 120 (metres)q a-b = 0 (pcu/hr)q a-c = 61 (pcu/hr)q a-d = 0 (pcu/hr)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d	= 0.818 = 0.799 = 0.928 = 0.860 HON OF MINOR STRAIGH = 0.001567 = 0 = 0) 3 1 I AHEAU I 1 ,) (pcu/hr)	Y = Ха Ха Zd Md КАГНС: rd-c qld-b	(1-0.0345W = = = = = = =	V) 0.845 1.066 1.188 1.097 0.000 0	(pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC d-c DFC d-a DFC a-d DFC a-d DFC a-d	= = = = = = = =	0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 0 (pcu/hr) q a-c = 61 (pcu/hr) q a-d = 0 (pcu/hr) MINOR ROAD (ARM B)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-D = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD (A	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) ARM D)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d	= 0.818 = 0.799 = 0.928 = 0.860 HON OF MINOR STRAIGH = 0.001567 = 0 = 0) } , , (pcu/hr)) (pcu/hr)	Y = Ха Ха Zd Md КАГНС: rd-c qld-b	(1-0.0345W = = = = = = = =	V) 0.845 1.066 1.188 1.097 0.000 0 0	(pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC d-c DFC d-a DFC a-d DFC a-d DFC a-d	= = = = = = = =	0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 0 (pcu/hr) q a-c = 61 (pcu/hr) q a-d = 0 (pcu/hr) MINOR ROAD (ARM B) W b-a = 3.3 (metres)	 [6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-b = q c-b = q c-b = q c-d = MINOR ROAD (A W d-c = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) 4RM D) 6.0 (metres) 6.0 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT	= 0.818 = 0.799 = 0.928 = 0.860 HON OF MINOR STRAIGH = 0.001567 = 0 = 0 Y OF MOVEMENT :) 11 AHEAD 1 ,) (pcu/hr)) (pcu/hr) 3 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b	(1-0.0345W = = = = = = = = =	V) 0.845 1.066 1.188 1.097 0.000 0 0	(pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC c-b DFC l-d DFC l-d DFC d-a DFC d-a DFC a-d DFC d-b	= = = = = = = =	0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS:GENERALW=3.90 (metres)W cr=0 (metres)W a-d=2.0 (metres)Vr a-d=120 (metres)Vr a-d=120 (metres)q a-b=0 (pcu/hr)q a-d=0 (pcu/hr)q a-d=0 (pcu/hr)MINOR ROAD (ARM B)W b-a=W b-a=3.3 (metres)W b-c=3.3 (metres)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-b = q c-b = q c-b = q c-d = MINOR ROAD (A W d-c = W d-a =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) ARM D) 6.0 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT Q b-a	= 0.818 = 0.799 = 0.928 = 0.860 HUN OF MINOR STRAIGH = 0.001567 = 0 = 0 Y OF MOVEMENT : = 488	 a AHEAD 11 (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) 	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b	(1-0.0345W = = = = = = = = = = = =	V) 0.845 1.066 1.188 1.097 0.000 0 0 638 874	(pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC d-c DFC d-a DFC a-d DFC a-d DFC a-d	= = = = = = = =	0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS:GENERALW=W3.90 (metres)WaWaQ=0(metres)Vraa=120 (metres)qab=0(pcu/hr)qaq=0(pcu/hr)qq0(pcu/hr)MINOR ROAD (ARM B)Wb-a3.3 (metres)Wb-a28 (metres)VI b-a=28 (metres)	[6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d = MINOR ROAD (A W d-c = W d-a = VI d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) ARM D) 6.0 (metres) 6.0 (metres) 22 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT Q b-a Q b-c	= 0.818 = 0.799 = 0.928 = 0.860 HUN OF MINOR STRAIGH = 0.001567 = 0 = 0 Y OF MOVEMENT : = 488 = 673	 HI AHEAD II (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) 	Υ = Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-c	(1-0.0345W = = = = = = = = = = = = = = =	V) 0.845 1.066 1.188 1.097 0.000 0 0 638 874 617	(pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC c-b DFC l-d DFC l-d DFC d-a DFC d-a DFC a-d DFC d-b	= = = = = = = = = = = = = = = = = = = =	0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS:GENERAL $W = 3.90 \text{ (metres)}$ $W cr = 0 \text{ (metres)}$ MAJOR ROAD (ARM A) $W a - d = 2.0 \text{ (metres)}$ $Vr a - d = 120 \text{ (metres)}$ $q a - b = 0 \text{ (pcu/hr)}$ $q a - b = 0 \text{ (pcu/hr)}$ $q a - c = 61 \text{ (pcu/hr)}$ $q - d = 0 \text{ (pcu/hr)}$ MINOR ROAD (ARM B) $W b - a = 3.3 \text{ (metres)}$ $W b - a = 28 \text{ (metres)}$ $VI b - a = 28 \text{ (metres)}$ $Vr b - a = 28 \text{ (metres)}$	 [6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Q c-a = Q c-b = Q c-b = Q c-d = MINOR ROAD (A W d-c = W d-a = VI d-c = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) ARM D) 6.0 (metres) 60 (metres) 60 (metres) 60 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d Qr b-d CAPACIT Q b-a Q b-c Q c-b	= 0.818 = 0.799 = 0.928 = 0.860 HON OF MINOR STRAIGH = 0.001567 = 0 = 0 Y OF MOVEMENT : = 488 = 673 = 580	 HI AHEAD II (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) 	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-a Qd-a Qa-d	(1-0.0345W = = = = = = = = = = = = = = = = = = =	V) 0.845 1.066 1.188 1.097 0.000 0 0 638 874 617 660	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC c-b DFC l-d DFC l-d DFC d-a DFC d-a DFC a-d DFC d-b	= = = = = = = = = = = = = = = = = = = =	0.000 0.011 0.001 0.000 0.000
GEOMETRIC DETAILS:GENERALW = 3.90 (metres) W cr = 0 (metres)MAJOR ROAD (ARM A)W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 0 (pcu/hr)q a-c = 61 (pcu/hr)q a-d = 0 (pcu/hr)q a-d = 0 (pcu/hr)W b-a = 3.3 (metres) W b-c = 3.3 (metres) VI b-a = 28 (metres) VI b-a = 28 (metres) Vr b-c = 80 (metres) Vr b-c = 80 (metres) Vr b-c = 80 (metres)	 [6] [5] [4] Deep Bay Rd'(AF Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d = MINOK ROAD (A W d-c = W d-a = VI d-c = Vr d-a = Vr d-a = Vr d-a = Vr d-a = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) ARM D) 6.0 (metres) 6.0 (metres) 20 (metres) 90 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d CAPACIT Q b-a Q b-c Q c-b Ql b-d	= 0.818 = 0.799 = 0.928 = 0.860 TION OF MINOR STRAIGH = 0.001567 = 0 = 0 Y OF MOVEMENT : = 488 = 673 = 580 = 513	 AHEAD II (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) 	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-a Qa-d Qa-d Qa-d Qa-d Qa-d	(1-0.0345W = = = = = = = = = = = = = = = = = = =	V) 0.845 1.066 1.188 1.097 0.000 0 0 638 874 617 660	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC c-b DFC l-d DFC l-d DFC d-a DFC d-a DFC a-d DFC d-b	= = = = = = = = = = = = = = = = = = = =	0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

FM CONSULTANCY LIM	ITED	IPRIORITY	JUNCTION CALCUL	ATION			INITIALS	DATE
ffic Impact Assessment for Proposed Temporary Open S	torage of Construction Material and Equipm	nent of 3 Years at Various Lots in D	.D.129. Lau Fau Shan			Prepared By:	FF	Sep-2024
E - Unnamed Access to Subject Site / Un		2024 Observed -			Project No.: 80108	Checked By:	MM	Sep-2024
						Reviewed By:	FM	Sep-2024
			<i>N</i>					
nnamed Access to Site [4] 41 [3] 0 (ARM A)	17 6 [2] [1] (ARM B) Unnamed Access	← 49 [5] ↓ 11 [6]	N Unnamed Access to Site (ARM C)	NOTES : (GEC W = W cr = W b-a = W b-c = W c-b = VI b-a = VI b-a = VI b-a = VI b-a = VI b-c = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE V LANE WIDTH AVAILAE LANE WIDTH AVAILAE VISIBILITY TO THE LE VISIBILITY TO THE RIG VISIBILITY TO THE RIG VISIBILITY TO THE RIG STREAM-SPECIFIC B- STREAM-SPECIFIC C- (1-0.0345W)	WIDTH BLE TO VEHICLE W. BLE TO VEHICLE W. BLE TO VEHICLE W. FT FOR VEHICLES GHT FOR VEHICLES GHT FOR VEHICLES GHT FOR VEHICLES A C	AITING IN STR AITING IN STR WAITING IN ST S WAITING IN S S WAITING IN S	EAM b-c EAM c-b IREAM b-a STREAM b-a STREAM b-c
GEOMETRIC DETAILS:	GEOMETRIC FAC	CTORS :	THE CAPACITY OF MOV	/ement :		COMPARISION O TO CAPACITY:	F DESIGN FLC	w
MAJOR ROAD (ARM A)		CTORS :	THE CAPACITY OF MOV	/EMENT :	· · ·	TO CAPACITY:	F DESIGN FLC	
MAJOR ROAD (ARM A) W = 5.2 (metres)	D =	0.752	Q b-a =	452 (pcu/hr)	· · ·	TO CAPACITY: DFC b-a	=	0.0372
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres)	D = E =	0.752 0.813	Q b-a = Q b-c =	452 (pcu/hr) 596 (pcu/hr)	· · ·	TO CAPACITY: DFC b-a DFC b-c	= =	0.0372 0.0101
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr)	D = E = F =	0.752 0.813 0.813	Q b-a = Q b-c = Q c-b =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr)	· · ·	TO CAPACITY: DFC b-a DFC b-c DFC c-b	= = =	0.0372 0.0101 0.0178
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres)	D = E =	0.752 0.813	Q b-a = Q b-c = Q c-b = Q b-ac =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b	= =	0.0372 0.0101
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 41 (pcu/hr)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr) 1768 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-ac (Share Lane)	= = =	0.0372 0.0101 0.0178 0.0472
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 41 (pcu/hr)	D = E = F =	0.752 0.813 0.813	Q b-a = Q b-c = Q c-b = Q b-ac =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b	= = =	0.0372 0.0101 0.0178
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 41 (pcu/hr) MAJOR ROAD (ARM C) W c-b = W c-b = 2.5 (metres)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr) 1768 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-ac (Share Lane)	= = =	0.0372 0.0101 0.0178 0.0472
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 41 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.5 (metres) Vr c-b = 22 (metres)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr) 1768 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-ac (Share Lane)	= = =	0.0372 0.0101 0.0178 0.0472
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 41 (pcu/hr) MAJOR ROAD (ARM C) W W c-b = 2.5 (metres) Vr c-b = 22 (metres) q c-a = 49 (pcu/hr)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr) 1768 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-ac (Share Lane)	= = =	0.0372 0.0101 0.0178 0.0472
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 41 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.5 (metres) Vr c-b = 22 (metres)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr) 1768 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0372 0.0101 0.0178 0.0472 0.0274
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 & (metres) \\ \text{W cr} &=& 0 & (metres) \\ \text{q a-b} &=& 0 & (pcu/hr) \\ \text{q a-c} &=& 41 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ \text{W c-b} &=& 2.5 & (metres) \\ \text{Vr c-b} &=& 22 & (metres) \\ \text{Vr c-b} &=& 22 & (metres) \\ \text{q c-a} &=& 49 & (pcu/hr) \\ \text{q c-b} &=& 11 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (ARM B)} \end{array}$	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr) 1768 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-ac (Share Lane)	= = =	0.0372 0.0101 0.0178 0.0472
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr) 1768 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0372 0.0101 0.0178 0.0472 0.0274
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 & (metres) \\ \text{W cr} &=& 0 & (metres) \\ \text{q a-b} &=& 0 & (pcu/hr) \\ \text{q a-c} &=& 41 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ \text{W c-b} &=& 2.5 & (metres) \\ \text{Vr c-b} &=& 22 & (metres) \\ \text{Vr c-b} &=& 22 & (metres) \\ \text{q c-a} &=& 49 & (pcu/hr) \\ \text{q c-b} &=& 11 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (ARM B)} \\ \end{array}$	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr) 1768 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0372 0.0101 0.0178 0.0472 0.0274
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr) 1768 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0372 0.0101 0.0178 0.0472 0.0274
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr) 1768 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0372 0.0101 0.0178 0.0472 0.0274
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr) 1768 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0372 0.0101 0.0178 0.0472 0.0274
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 483 (pcu/hr) 1768 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0372 0.0101 0.0178 0.0472 0.0274

FM CONSULTANCY LIMI	ſED	PRIORITY	JUNCTION CALCULA	ATION			INITIALS	DATE
ffic Impact Assessment for Proposed Temporary Open Stor		ent of 3 Years at Various Lots in D	.D.129. Lau Fau Shan			Prepared By:	FF	Sep-2024
E - Unnamed Access to Subject Site / Unna		2024 Observed -			Project No.: 80108	Checked By:	MM	Sep-2024
						Reviewed By:	FM	Sep-2024
nnamed Access to Site [4] 35 [3] 0 (ARM A)	45 4 [2] [1]	← 50 [5] 22 [6]	N Unnamed Access to Site (ARM C)	W = W cr = W b-a = W c-b = V b-a = Vr b-a = Vr b-a = Vr c-b = D = E =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABL LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE LEF VISIBILITY TO THE RIG VISIBILITY TO THE RIG STREAM-SPECIFIC B-A STREAM-SPECIFIC C-B	LE TO VEHICLE WA LE TO VEHICLE WA LE TO VEHICLE WA T FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STR AITING IN STR WAITING IN ST S WAITING IN S S WAITING IN S	EAM b-c EAM c-b TREAM b-a STREAM b-a STREAM b-c
I	(ARM B) Unnamed Access			F = Y =	(1-0.0345W)	9		
GEOMETRIC DETAILS:	()	TORS :	THE CAPACITY OF MOVE	Y =		COMPARISION O TO CAPACITY:	F DESIGN FLC	w
MAJOR ROAD (ARM A)	Unnamed Access			Y =		COMPARISION O TO CAPACITY:		
MAJOR ROAD (ARM A) W = 5.2 (metres)	Unnamed Access GEOMETRIC FAC	0.752	Q b-a =	Y =		COMPARISION O TO CAPACITY: DFC b-a	=	0.0996
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres)	Unnamed Access GEOMETRIC FAC D = E =	0.752 0.813	Q b-a = Q b-c =	Y = MENT : 450 (pcu/hr) 597 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c	=	0.0996 0.0059
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr)	Unnamed Access GEOMETRIC FAC D = E = F =	0.752 0.813 0.813	Q b-a = Q b-c = Q c-b =	Y = MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC b-c DFC c-b	= = =	0.0996 0.0059 0.0363
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres)	Unnamed Access GEOMETRIC FAC D = E = F =	0.752 0.813	Q b-a = Q b-c = Q c-b = Q b-ac =	Y = MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	=	0.0996 0.0059
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 35 (pcu/hr)	Unnamed Access GEOMETRIC FAC D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	Y = #MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0996 0.0059 0.0363 0.1054
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 35 (pcu/hr)	Unnamed Access GEOMETRIC FAC D = E = F = Y =	0.752 0.813 0.813	Q b-a = Q b-c = Q c-b = Q b-ac =	Y = MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0996 0.0059 0.0363
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FAC D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	Y = #MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0996 0.0059 0.0363 0.1054
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FAC D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	Y = #MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0996 0.0059 0.0363 0.1054
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 35 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.5 (metres)	Unnamed Access GEOMETRIC FAC D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	Y = #MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0996 0.0059 0.0363 0.1054 0.0289
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FAC D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	Y = #MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0996 0.0059 0.0363 0.1054
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 & (metres) \\ \text{W cr} &=& 0 & (metres) \\ \text{q a-b} &=& 0 & (pcu/hr) \\ \text{q a-c} &=& 35 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ \text{W c-b} &=& 2.5 & (metres) \\ \text{Vr c-b} &=& 22 & (metres) \\ \text{Vr c-b} &=& 22 & (metres) \\ \text{q c-a} &=& 50 & (pcu/hr) \\ \text{q c-b} &=& 22 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (ARM B)} \\ \end{array}$	Unnamed Access GEOMETRIC FAC D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	Y = #MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0996 0.0059 0.0363 0.1054 0.0289
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 & (metres) \\ \text{W cr} &=& 0 & (metres) \\ \text{q a-b} &=& 0 & (pcu/hr) \\ \text{q a-c} &=& 35 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ \text{W c-b} &=& 2.5 & (metres) \\ \text{Vr c-b} &=& 22 & (metres) \\ \text{Vr c-b} &=& 22 & (metres) \\ \text{q c-a} &=& 50 & (pcu/hr) \\ \text{q c-b} &=& 22 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (ARM B)} \\ \text{W b-a} &=& 2.5 & (metres) \end{array}$	Unnamed Access GEOMETRIC FAC D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	Y = #MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0996 0.0059 0.0363 0.1054 0.0289
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FAC D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	Y = #MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0996 0.0059 0.0363 0.1054 0.0289
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FAC D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	Y = #MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0996 0.0059 0.0363 0.1054 0.0289
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FAC D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	Y = #MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0996 0.0059 0.0363 0.1054 0.0289
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FAC D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	Y = #MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0996 0.0059 0.0363 0.1054 0.0289

M CONSULTANCY LIN		PRIORITY JUNCTION CAL	CULATION		INITIALS	DATE
	Storage of Construction Material and Equipment	of 3 Years at Various Lots in D.D.129, Lau Fau Shan		Prepared By:	FF	Sep-20
- Deep Bay Rd / Tin Yuet Rd		2024 Observed - AM Peak	Project No.: 80108	Checked By:	MM	Sep-20
				Reviewed By:	FM	Sep-20
		N 72 [1] (ARM B) 22 [2] Tin Yuet Rd	NOTES : (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH W cr = CENTRAL RESERVE W b-a = LANE WIDTH AVAILA W b-c = LANE WIDTH AVAILA W c-b = LANE WIDTH AVAILA W c-b = LANE WIDTH AVAILA VI b-a = VISIBILITY TO THE LE Vr b-a = VISIBILITY TO THE RI Vr c-b = VISIBILITY TO THE RI Vr c-b = VISIBILITY TO THE RI D = STREAM-SPECIFIC B E = STREAM-SPECIFIC C Y = (1-0.0345W)	WIDTH BLE TO VEHICLE W BLE TO VEHICLE W BLE TO VEHICLE W FT FOR VEHICLES GHT FOR VEHICLE GHT FOR VEHICLE GHT FOR VEHICLE -A -C	AITING IN STR AITING IN STR WAITING IN S S WAITING IN S WAITING IN	REAM b-c REAM c-b TREAM b-a STREAM b-a STREAM b-c
GEOMETRIC DETAILS:	GEOMETRIC FACT	DRS : THE CAPACITY O	DF MOVEMENT :	COMPARISION C TO CAPACITY:	OF DESIGN FLO	ow
MAJOR ROAD (ARM A)						
W = 4.8 (metres)		.752 Q b-a =	434 (pcu/hr)	DFC b-a	=	0.0509
W cr = 0 (metres)		.826 Q b-c =	609 (pcu/hr)	DFC b-c	=	0.1186
q a-b = 4 (pcu/hr)		.791 Q c-b =	583 (pcu/hr)	DFC c-b	=	0.1407
q a-c = 24 (pcu/hr)	Y = 0	.834 Q b-ac =	556 (pcu/hr)	DFC b-ac	=	0.1695
		Q c-a =	1547 (pcu/hr)	(Share Lane)		
MAJOR ROAD (ARM C)	F for (Qb-ac) = 0	.766 TOTAL FLOW =	82 (pcu/hr)	DFC c-a	=	0.0222
W c-b = 2.1 (metres)						
Vr c-b = 38 (metres)						
q c-a = 34 (pcu/hr) q c-b = 82 (pcu/hr)						
				CRITICAL DFC	=	0.17
MINOR ROAD (ARM B)						
W b-a = 2.5 (metres)						
W b-c = 2.5 (metres)						
VI b-a = 22 (metres)						
Vr b-a = 24 (metres)						
Vr b-a = 24 (metres) Vr b-c = 38 (metres)						
Vr b-a = 24 (metres)						

M CONSULTANCY LIM		PRIORITY JUNCTION CALCULATION			INITIALS	DATE
c Impact Assessment for Proposed Temporary Open S	orage of Construction Material and Equipment of 3			Prepared By:	FF	Sep-20
- Deep Bay Rd / Tin Yuet Rd		2024 Observed - PM Peak	Project No.: 80108	Checked By:	MM	Sep-20
				Reviewed By:	FM	Sep-20
		N NOTES: (W W<	 CENTRAL RESERVE W LANE WIDTH AVAILABI LANE WIDTH AVAILABI LANE WIDTH AVAILABI VISIBILITY TO THE LEF VISIBILITY TO THE RIG VISIBILITY TO THE RIG VISIBILITY TO THE RIG STREAM-SPECIFIC B-A STREAM-SPECIFIC C-E 	LE TO VEHICLE W LE TO VEHICLE W LE TO VEHICLE W TF FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES A	AITING IN STR AITING IN STR WAITING IN S WAITING IN S WAITING IN S	EAM b-c EAM c-b IREAM b-a STREAM b-a STREAM b-c
GEOMETRIC DETAILS:	GEOMETRIC FACTORS	: THE CAPACITY OF MOVEMENT :		COMPARISION O	F DESIGN FLO	w
MAJOR ROAD (ARM A)						
W = 4.8 (metres)	D = 0.752			DFC b-a	=	0.0293
W cr = 0 (metres)	E = 0.826			DFC b-c	=	0.1282
q a-b = 8 (pcu/hr)	F = 0.791 Y = 0.834			DFC c-b	=	0.0861
q a-c = 13 (pcu/hr)	Y = 0.834			DFC b-ac	=	0.1575
		Q c-a = 1645 (pcu/hr)		(Share Lane)		
MAJOR ROAD (ARM C)	F for (Qb-ac) = 0.857	TOTAL FLOW = 50.3 (pcu/hr)		DFC c-a	=	0.0174
W c-b = 2.1 (metres)						
March 00 / 1						
Vr c-b = 38 (metres) a c-a = 29 (neu/br)						
Vr c-b = 38 (metres) q c-a = 29 (pcu/hr) q c-b = 50.3 (pcu/hr)						
q c-a = 29 (pcu/hr)				CRITICAL DFC	-	0.16
q c-a = 29 (pcu/hr) q c-b = 50.3 (pcu/hr)				CRITICAL DFC	=	0.16
q c-a = 29 (pcu/hr) q c-b = 50.3 (pcu/hr) MINOR ROAD (ARM B)				CRITICAL DFC	=	0.16
q c-a = 29 (pcu/hr) q c-b = 50.3 (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres)				CRITICAL DFC	=	0.16
q c-a = 29 (pcu/hr) q c-b = 50.3 (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres) W b-c = 2.5 (metres)				CRITICAL DFC	=	0.16
q c-a = 29 (pcu/hr) q c-b = 50.3 (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres) W b-c = 2.5 (metres) VI b-a = 22 (metres)				CRITICAL DFC	=	0.16
q c-a = 29 (pcu/hr) q c-b = 50.3 (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres) W b-c = 2.5 (metres) VI b-a = 22 (metres) Vr b-a = 24 (metres)				CRITICAL DFC	=	0.16

	8FN	CO	NSULTA		IITED						TRAFFIC	SIGN	IAL CALC	ULA		1	T				r		INITIALS		DATE
			n DD129, La		n						0007 D (Project No	D.:	80108		Prepared		FF		Sep-24
	l in Wah	Road /	Tin Ying Road								2027 Reference	e - AM Pe	eak								Checked Reviewe	,	MM FM		Sep-24 Sep-24
							Tin Ying	Road					N				No. of sta Intergreer		ycle		N = =		sec		
			Tin W	[ah Rodd	9] 91 8] 381 7] 863 6] [5] 48 286	[4] 668	f Tin Ying	[10 152 •	2 495 ↓		[1] [2] [3]		Tin Wah	Rodd			Cm Yult R.C.ult Cp Ymax	/ = (1.5*L+ = L/(1-Y) = (Yult-Y = 0.9*L/(= 1-L/C)/Y*100%		C = Y = = = = = = = = = = =	0.453 45 4965 132.4 82.2 0.563 24.3 90.5 0.625	sec sec % sec		
			,	╸┤╽						<u>_</u>]	↓					Pedestria Phase	(m)	Stage	Green Ti SG	me Required FG	Green Ti SG		ded (s) FG	Che	ack
E	8	Stage	1	8	Stage 2	7	Stage 3		8	Stage 4					1										
	Move- ment	Stage	Lane Width m.	Phase No. o lane		0	N	Straight- Ahead Sat. Flow	Left pcu/h	Straight pcu/h	m Right pcu/h	Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Flare lan Length m.	Flare lane Effect	Revised Sat. Flow pcu/h	у	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queue Length (m/lane)	Average Delay (sec)
	3 2 1	1,2,3,4 3 3	3.40 3.40 3.40	1 2 1	20 25		N	1955 4190 2095 0	905	397	34	905 397 34	1.00 0.00 1.00	1819 4190 1976			1819 4190 1976	0.498 0.095 0.017	0.017	27 9	82 16 3	19 19 12	3.168 0.603 0.174	910 56 5	2057 48 51
ך קייקייקייקיי	6 5 4,5 4	1,2 2 2 2	4.80 3.40 3.40 3.40	1 1 1	25 35 30		N	2095 2095 2095 2095	648	286 0	335 333	648 286 335 333	1.00 0.00 1.00 1.00	1976 2095 2009 1995			1976 2095 2009 1995	0.328 0.137 0.167 0.167	0.137		54 23 28 28	42 23 23	0.926 0.724 0.885	91 40 56	62 51 73
f¶ ≯ ^	8,9 7,8 7	1 1 1	3.40 3.30 3.30	1 1 1	25 28 25		N	1955 2085 2085	91	340 41	424 439	431 465 439	0.21 0.91 1.00	1931 1988 1967			1931 1988 1967	0.223 0.234 0.223	0.223		37 39 37	45 45 37	0.595 0.624 0.724	45 48 51	32 33 41
	12 11 10	3,4 4 4	3.30 3.30 3.30	1 2 1	25 40		N	1945 4170 2085	45	495	152	45 495 152	1.00 0.00 1.00	1835 4170 2010			1835 4170 2010	0.025 0.119 0.076	0.076	9	4 20 13 0	22 22 22 0	0.137 0.661 0.421	6 68 21	42 47 45
																							rinWahRd_Ti		

	8FN	CO	NSULTAI		IITED						TRAFFIC	SIGN	IAL CALC	ULA		١	I						INITIALS		DATE
			n DD129, La		n												Project No	D.:	80108		Prepared		FF		Sep-24
-	Tin Wah	Road /	Tin Ying Road								2027 Reference	e - PM Pe	ak								Checked Reviewed	,	MM FM		Sep-24 Sep-24
							Tin Ying	Road					N				No. of star		ycle		N = =		sec		
			Tin Wa	 ah Rodd	9] 108 8] 285 7] 845 [6] [5] 00 291	[4] 583	f Tin Ying	[10 88 •	3 238 ↓		[1] [2] [3]		Tin Wah	Rodd			Cm Yult R.C.ult Cp Ymax	/ = (1.5*L+ = L/(1-Y) = (Yult-Y = 0.9*L/(= 1-L/C)/Y*100%		C = Y = = = = = = = = = = =	0.400 45 4297 120.8 75.0 0.563 40.7 80.9 0.625	sec sec % sec		
	-		ţ	╸┤╽							↓					Pedestria Phase	Width (m)	Stage	Green Ti SG	me Required FG	Green Tii SG		led (s) FG	Che	eck
Ľ	8	Stage	1	8	Stage 2	7	Stage 3		8	Stage 4					t										
	Move- ment	Stage	Lane Width m.	Phase No. Iane		0	N	Straight- Ahead Sat. Flow	Left pcu/h	r Straight pcu/h	n Right pcu/h	Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Flare lan Length m.	Flare lane Effect	Revised Sat. Flow pcu/h	у	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queue Length (m/lane)	Average Delay (sec)
	3 2 1	1,2,3,4 3 3	3.40 3.40 3.40	1 2 1	20 25		N	1955 4190 2095 0	552	242	25	552 242 25	1.00 0.00 1.00	1819 4190 1976			1819 4190 1976	0.304 0.058 0.013	0.013	27 9	57 11 2	18 18 11	1.982 0.377 0.133	429 34 4	971 46 51
⟨┐ᢩᡣ ᡣᢩᠬᢩᠬᢩᢂ	6 5 4,5 4	1,2 2 2 2	4.80 3.40 3.40 3.40	1 1 1 1	25 35 30		N	2095 2095 2095 2095	1000	291 0	292 291	1000 291 292 291	1.00 0.00 1.00 1.00	1976 2095 2009 1995			1976 2095 2009 1995	0.506 0.139 0.146 0.146	0.139		95 26 27 27	45 26 26	1.336 0.639 0.670	431 38 38	362 45 46
r# ≯ ^	8,9 7,8 7	1 1 1	3.40 3.30 3.30	1 1 1	25 28 25		N	1955 2085 2085	108	285 0	435 410	393 435 410	0.27 1.00 1.00	1923 1979 1967			1923 1979 1967	0.204 0.220 0.209	0.204		38 41 39	47 47 39	0.520 0.559 0.639	40 44 46	29 30 37
	12 11 10	3,4 4 4	3.30 3.30 3.30	1 2 1	25 40		N	1945 4170 2085	40	238	88	40 238 88	1.00 0.00 1.00	1835 4170 2010			1835 4170 2010	0.022 0.057 0.044	0.044	9	4 11 8 0	17 17 17 0	0.152 0.398 0.305	6 34 13	46 47 47
																							inWahRd_Tii		

FM CONSULTANCY LIMITEI	D PRIORI7	FY JUNCTION CALCULATION	N		INITIALS	DATE
ffic Impact Assessment for Proposed Temporary Open Storage o	f Construction Material and Equipment of 3 Years at Various Lot	s in D.D.129, Lau Fau Shan		Prepared By:	FF	Sep-202
B - Lau Fau Shan Rd / Tin Wah Rd / Ping Ha R		nce - AM Peak	Project No.: 80108	Checked By:	MM	Sep-202
				Reviewed By:	FM	Sep-202
Lau Fau Shan Rd [4] 570 [3] 139 → (ARM A)	(ARM B) Tin Wah Rd [5] [6] 536 514 4 359 [1] 4 173 [2]	Pind Ha Kd	NOTES : (GEOMETRIC INPUT DATA)W=MAJOR ROAD WIDTHW cr=CENTRAL RESERVE VW b-a=LANE WIDTH AVAILAIW b-c=LANE WIDTH AVAILAIW c-b=LANE WIDTH AVAILAIW b-a=VISIBILITY TO THE LEVr b-a=VISIBILITY TO THE RIVr b-c=VISIBILITY TO THE RIVr c-b=VISIBILITY TO THE RIVr c-b=VISIBILITY TO THE RID=STREAM-SPECIFIC BE=STREAM-SPECIFIC CF=STREAM-SPECIFIC CY=(1-0.0345W)	WIDTH BLE TO VEHICLE W. BLE TO VEHICLE W. BLE TO VEHICLE W. FT FOR VEHICLES GHT FOR VEHICLES GHT FOR VEHICLES GHT FOR VEHICLES -A -C	AITING IN STR AITING IN STR WAITING IN S 8 WAITING IN 3 8 WAITING IN 3	EAM b-c EAM c-b TREAM b-a STREAM b-a STREAM b-c
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 8.9 (metres) W cr = 0 (metres) q a-b = 570 (pcu/hr)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013	Q b-c = 644	<pre>0 (pcu/hr) 4 (pcu/hr) 5 (pcu/hr)</pre>	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b	F DESIGN FLC = = =	1.2210 0.7981 0.6265
q a-c = 139 (pcu/hr) MAJOR ROAD (ARM C)	Y = 0.693		² (pcu/hr) (pcu/hr)	DFC c-a	=	0.2573
W c-b = 3.5 (metres) Vr c-b = 150 (metres)						
W c-b = 3.5 (metres)				CRITICAL DFC	=	1.22

	ANCY LIMITED	D	PRIORITY	' JUNCTION CALCU	ILATION			INITIALS	DATE
ffic Impact Assessment for Prop	osed Temporary Open Storage of	f Construction Material and Equ	ipment of 3 Years at Various Lots in	D.D.129. Lau Fau Shan			Prepared By:	FF	Sep-202
	Tin Wah Rd / Ping Ha Ro		2027 Reference			Project No.: 80108	Checked By:	MM	Sep-202
							Reviewed By:	FM	Sep-202
Lau Fau Shan Ko	4] 525▲ 3] 176 →	(ARM B) Tin Wah Rd [5] [6] 488 67 488 67		N (ARM C) Ping Ha Rd	NOTES : (GEC W = W cr = W b-a = W b-b = V c-b = Vr b-a = Vr b-a = Vr b-c = Vr c-b = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE V LANE WIDTH AVAILAE LANE WIDTH AVAILAE VISIBILITY TO THE LE VISIBILITY TO THE RIG VISIBILITY TO THE RIG VISIBILITY TO THE RIG STREAM-SPECIFIC B- STREAM-SPECIFIC B- STREAM-SPECIFIC C- (1-0.0345W)	WIDTH BLE TO VEHICLE W BLE TO VEHICLE W BLE TO VEHICLE W FT FOR VEHICLES GHT FOR VEHICLE GHT FOR VEHICLE GHT FOR VEHICLE A C	AITING IN STR AITING IN STR WAITING IN S S WAITING IN S S WAITING IN S	EAM b-c EAM c-b TREAM b-a STREAM b-a STREAM b-c
GEOMETRIC DET MAJOR ROAD (AF W = W cr = q a-b =		GEOMETRIC F D = E = F =	FACTORS : 1.161 0.985 1.013	Q b-a = Q b-c = Q b-c = Q c-b =	OVEMENT : 376 (pcu/hr) 639 (pcu/hr) 575 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b	DF DESIGN FLC = = = =	1.2979 1.0532 0.8835
	176 (pcu/hr)	Y =	0.693	Q c-a =	210 (pcu/hr)		DFC c-a	=	0.6913
MAJOR ROAD (AR W c-b =	M C) 3.5 (metres) 150 (metres) 145 (pcu/hr)			TOTAL FLOW =	2515 (pcu/hr)				
Vr c-b = q c-a =	508 (pcu/hr) M B)						CRITICAL DFC	=	1.30

	M CC	ONSULTANCY LIMITED	כ			ROUN	NDABOUT JUNCTION ANALYSIS	3		INITIALS	DATE
raffic li	npact Asse	essment for Proposed Temporary Open Storage of	Constructio	n Material a	nd Equipm	ent of 3 Years at Variou	is Lots in D.D.129, Lau Fau Shan		Prepared By:	FF	Sep-2024
Jn C -	Lau Fa	u Shan Roundabout				2027 Ref	erence - AM Peak	Project No.: 80108	Checked By:	MM	Sep-2024
									Reviewed By:	FM	Sep-2024
S	han Tung (ARM A		// // // // // // // // // // // // //	[4] 245 245 195	_	(ARM B) Deep Bay R	(ARM C) [1] Lau Fau Shan Rd				
EON	ETRIC D	DETAILS: ARM	1 A	[3] B	с	D					
/	=	Approach half width (m)	1.9	1.5	3.2	1.9					
	=	Entry width (m)	1.9	4.1	4.2	3.7					
	=	Effective length of flare (m)	1.0	2.3	1.5	1.8					
	=	Entry radius (m)	14.0	46.0	7.4	7.5					
	=	Inscribed circle diameter (m)	38.0	38.0	38.0	38.0					
	=	Entry angle (degree)	42.0	52.0	20.0	51.0					
	=	Entry flow (pcu/h)	24	208	465	195					
	=	Circulating flow across entry (pcu/h)		307	19	245					
;			419	507	10						
		AMETERS:	419	507	10						
	JT PARA =	AMETERS: Sharpness of flare = 1.6(E-V)/L	0.00	1.81	1.07	1.60			TOTAL FLOW	=	
JTP	JT PARA = =	AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	0.00 0.94	1.81 0.95	1.07 0.95	0.85				= =	1882 (pcu/ 0.46
JTP	JT PARA = = =	AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	0.00 0.94 1.90	1.81 0.95 2.06	1.07 0.95 3.52	0.85 2.33					
JTP	JT PARA = = = =	AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	0.00 0.94 1.90 0.11	1.81 0.95 2.06 0.11	1.07 0.95 3.52 0.11	0.85 2.33 0.11					
UTP	JT PARA = = = = = =	AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	0.00 0.94 1.90 0.11 576	1.81 0.95 2.06 0.11 625	1.07 0.95 3.52 0.11 1066	0.85 2.33 0.11 706					
UTP 2	JT PARA = = = = = = =	AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	0.00 0.94 1.90 0.11 576 1.45	1.81 0.95 2.06 0.11 625 1.45	1.07 0.95 3.52 0.11 1066 1.45	0.85 2.33 0.11 706 1.45					
c UTP 2 d c e	JT PARA = = = = = =	AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	0.00 0.94 1.90 0.11 576	1.81 0.95 2.06 0.11 625	1.07 0.95 3.52 0.11 1066	0.85 2.33 0.11 706					1882 (pcu/l 0.46

	M CO	ONSULTANCY LIMITED)			RC	OUNDABOUT JUNCTION ANALYSIS	3		INITIALS	DATE
Traffic I	mpact Asse	essment for Proposed Temporary Open Storage of	Construction	n Material ar	nd Equipm	ent of 3 Years at	at Various Lots in D.D.129, Lau Fau Shan		Prepared By:	FF	Sep-2024
Jn C -	- Lau Fa	u Shan Roundabout				2027	27 Reference - PM Peak	Project No.: 80108	Checked By:	MM	Sep-2024
									Reviewed By:	FM	Sep-2024
٤	Shan Tun (ARM A			[8]		↓ 	Bay Rd (ARM C) — 365 [1] Lau Fau Shan Rd				
EON	IETRIC D	DETAILS: ARM	Α	В	с	D					
,	=	Approach half width (m)	1.9	1.5	3.2	1.9					
	=	Entry width (m)	1.9	4.1	4.2	3.7					
	=	Effective length of flare (m)	1.0	2.3	1.5	1.8					
	=	Entry radius (m)									
			14.0	46.0	7.4	7.5					
	=	Inscribed circle diameter (m)	38.0	46.0 38.0	7.4 38.0	7.5 38.0					
	=	Inscribed circle diameter (m) Entry angle (degree)	38.0 42.0	46.0 38.0 52.0	7.4 38.0 20.0	7.5 38.0 51.0					
	= =	Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	38.0 42.0 20	46.0 38.0 52.0 181	7.4 38.0 20.0 365	7.5 38.0 51.0 204					
	=	Inscribed circle diameter (m) Entry angle (degree)	38.0 42.0	46.0 38.0 52.0	7.4 38.0 20.0	7.5 38.0 51.0					
с	= = =	Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	38.0 42.0 20	46.0 38.0 52.0 181	7.4 38.0 20.0 365	7.5 38.0 51.0 204					
c UTP	= = = UT PAR4 =	Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L	38.0 42.0 20 418 0.00	46.0 38.0 52.0 181 314 1.81	7.4 38.0 20.0 365 35 1.07	7.5 38.0 51.0 204 251			TOTAL FLOW	-	
JTP	= = = UT PARA = =	Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	38.0 42.0 20 418 0.00 0.94	46.0 38.0 52.0 181 314 1.81 0.95	7.4 38.0 20.0 365 35 1.07 0.95	7.5 38.0 51.0 204 251 1.60 0.85				=	1788 (pcu/ 0.41
JTP	= = = UT PARA = = = =	Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	38.0 42.0 20 418 0.00 0.94 1.90	46.0 38.0 52.0 181 314 1.81 0.95 2.06	7.4 38.0 20.0 365 35 1.07 0.95 3.52	7.5 38.0 51.0 204 251 1.60 0.85 2.33					
C UTP 2	= = UT PARA = = = =	Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	38.0 42.0 20 418 0.00 0.94 1.90 0.11	46.0 38.0 52.0 181 314 1.81 0.95 2.06 0.11	7.4 38.0 20.0 365 35 1.07 0.95 3.52 0.11	7.5 38.0 51.0 204 251 1.60 0.85 2.33 0.11					
с UTP 2	= = UT PARA = = = = = =	Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	38.0 42.0 20 418 0.00 0.94 1.90 0.11 576	46.0 38.0 52.0 181 314 1.81 0.95 2.06 0.11 625	7.4 38.0 20.0 365 35 1.07 0.95 3.52 0.11 1066	7.5 38.0 51.0 204 251 1.60 0.85 2.33 0.11 706					
с UTP 2	= = = = = = = = = = =	Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	38.0 42.0 20 418 0.00 0.94 1.90 0.11 576 1.45	46.0 38.0 52.0 181 314 1.81 0.95 2.06 0.11 625 1.45	7.4 38.0 20.0 365 35 1.07 0.95 3.52 0.11 1066 1.45	7.5 38.0 51.0 204 251 1.60 0.85 2.33 0.11 706 1.45					
с	= = UT PARA = = = = = =	Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	38.0 42.0 20 418 0.00 0.94 1.90 0.11 576	46.0 38.0 52.0 181 314 1.81 0.95 2.06 0.11 625	7.4 38.0 20.0 365 35 1.07 0.95 3.52 0.11 1066	7.5 38.0 51.0 204 251 1.60 0.85 2.33 0.11 706					1788 (pcu/ł 0.41

FM CONSULTANCY LIMITE	ED	PRIO	RITY JUN	CTION CALCU	LATION	1				INITIA	LS	I	DATE
affic Impact Assessment for Proposed Temporary Open Storage	e of Construction Material and Eq	uipment of 3 Years at Vario	ous Lots in D.D.129, La	u Fau Shan					Prepared	By: FF		Se	ep-2024
n D - Deep Bay Rd / Unnamed Access		2027 Re	eference - AM Pea	ak			Project No	o.: 80108	Checked	By: MM		Se	ep-2024
									Reviewed	d By: FM		Se	ep-2024
[9] 2 Unnamed Access [7] 5 (ARM D)	(ARM A) Deep Bay Rd [10] [11] [1 2 50 4 ↓ ↓		[1] [2] [3]	N Jnnamed Access (ARM B)		NOTES : (GEOM W = W cr = W b-a = W b-c = W c-b = VI b-a = Vr b-a = Vr b-c = Vr c-b = D = E =	MAJOR R CENTRAL LANE WII LANE WII VISIBILIT VISIBILIT VISIBILIT VISIBILIT STREAM	UT DATA) COAD WIDTH - RESERVE WI DTH AVAILABL DTH AVAILABL DTH AVAILABL Y TO THE LEFT Y TO THE RIGH Y TO THE RIGH Y TO THE RIGH SPECIFIC B-A	IDTH E TO VEH E TO VEH T FOR VEH HT FOR VI HT FOR VI HT FOR VI	HICLE WAITING IN HICLE WAITING IN HICLE WAITING IN HICLES WAITING EHICLES WAITING EHICLES WAITING EHICLES WAITING	I STREA I STREA IN STRE G IN STF G IN STF	M b-a M b-c M c-b EAM b-a REAM b	a b-a b-c
	 2 40 10 6] [5] [4])				F = Y =	(1-0.0345)	SPECIFIC C-B					
)	GEOMET	RIC FACTORS :							FDESIC	GN FLC	ow
[GEOMETRIC DETAILS:	6] [5] [4])			8	Y =	(1-0.0345	W)		COMPARISION O	FDESIC	GN FLC	ow
[6] [5] [4])	GEOMETI X b X c	RIC FACTORS : = 0.811 = 0.791								GN FLC	WC
GEOMETRIC DETAILS:	6] [5] [4] Deep Bay Rd'(ARM C	865	X b X c Z b	= 0.811 = 0.799 = 0.921	9 8	Y = Xa Xd Zd	(1-0.0345 ⁻ = = =	W) 0.845 1.066 1.188		DFC	b-a b-c	= =	0.000 0.016
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres)	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4	865	X b X c	= 0.811 = 0.799	9 8	Y =	(1-0.0345 ⁻ = =	W) 0.845 1.066		DFC DFC DFC DFC	b-a b-c c-b	= = =	0.000 0.010 0.01
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A)	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4 MAJOF MAJOR ROAL	865 D (ARM C)	X b X c Z b M b	= 0.811 = 0.791 = 0.921 = 0.860	9 8 0	Y = Xa Xd Zd Md	(1-0.0345 ⁻ = = =	W) 0.845 1.066 1.188		DFC	b-a b-c c-b b-d	= = =	0.00 0.01 0.01 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres)	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4 MAJOF MAJOR ROAL W с-b = 2	865 D (ARM C) 2.0 (metres)	X b X c Z b M b	= 0.811 = 0.799 = 0.921	9 8 0	Y = Xa Xd Zd Md	(1-0.0345 ⁻ = = =	W) 0.845 1.066 1.188		DFC	b-a b-c c-b b-d p-d	= = = =	0.00 0.01 0.01 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres)	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4 MAJOF MAJOR ROAL W с-р = 2 Vr с-b = 2	865 D (ARM C) 2.0 (metres) 60 (metres)	X b X c Z b M b	= 0.811 = 0.792 = 0.921 = 0.861	9 8 0 HIAHEADI	Y = Xa Xd Zd Md KAFFIC:	(1-0.0345) = = = =	W) 0.845 1.066 1.188 1.097		D CAPACITY: DFC DFC DFCI DFCT DFCT DFCT	b-a b-c c-b b-d p-d d-c	= = = =	0.000 0.016 0.017 0.003 0.004 0.004
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 4 (pcu/hr)	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4 MAJOF MAJOR ROAL W c-D = 2 Vr c-b = 2 Vr c-b = 2 q c-a =	865 D (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr)	Х b Х c Z b М b РКОРОК r b-a	= 0.811 = 0.791 = 0.921 = 0.861 HION OF MINOR STRAIG	9 8 0 HIAHEAD I 0	Y = Xa Xd Zd Md KAFFIC: rd-c	(1-0.0345) = = = = =	W) 0.845 1.066 1.188 1.097 0.008		D CAPACITY: DFC DFC DFC DFC DFC DFC DFC DFC	b-a b-c c-b b-d b-d d-c d-a	= = = = =	0.000 0.010 0.003 0.003 0.004 0.005
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 4 (pcu/hr) q a-c = 50 (pcu/hr)	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4 MAJOF MAJOR ROAL W c-b = 2 V c-b = 2 q c-a = q c-b =	865 D (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr)	Х b Х c Z b М b РКОРОК r b-a ql b-d	= 0.81 = 0.79 = 0.92 = 0.86 HON OF MINOR STRAIG = (9 8 0 HIAHEAUI 0 2 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b	(1-0.0345) = = = = = =	W) 0.845 1.066 1.188 1.097 0.008 1.007874	(pcu/hr)	DECAPACITY: DFC DFC DFC DFC DFC DFC DFC DFC DFC DFC	b-a b-c c-b b-d b-d d-c d-a a-d	= = = = = = =	0.000 0.011 0.001 0.003 0.004 0.007 0.002 0.003
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) VV a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 4 (pcu/hr)	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4 MAJOF MAJOR ROAL W c-D = 2 Vr c-b = 2 Vr c-b = 2 q c-a =	865 D (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr)	Х b Х c Z b М b РКОРОК r b-a	= 0.81 = 0.79 = 0.92 = 0.86 HON OF MINOR STRAIG = (9 8 0 HIAHEAD I 0	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b	(1-0.0345) = = = = = =	W) 0.845 1.066 1.188 1.097 0.008	(pcu/hr)	DEC DFC DFC DFC DFC DFC DFC DFC DFC DFC	b-a b-c c-b b-d b-d d-c d-a a-d d-b		0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: $GENERAL$ $W = 3.90 (metres)$ $W cr = 0 (metres)$ $MAJOR ROAD (ARM A)$ $W a-d = 2.0 (metres)$ $Vr a-d = 120 (metres)$ $q a-b = 4 (pcu/hr)$ $q a-c = 50 (pcu/hr)$	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4 MAJOF MAJOR ROAL W c-b = 2 V c-b = 2 q c-a = q c-b =	865 D (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d	= 0.81 = 0.79 = 0.92 = 0.86 HON OF MINOR STRAIG = (9 8 0 HIAHEAUI 0 2 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b	(1-0.0345) = = = = = =	W) 0.845 1.066 1.188 1.097 0.008 1.007874	(pcu/hr)	DECAPACITY: DFC DFC DFC DFC DFC DFC DFC DFC DFC DFC	b-a b-c c-b b-d b-d d-c d-a a-d d-b	= = = = = = =	0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 4 (pcu/hr) q a-c = 50 (pcu/hr) q a-d = 2 (pcu/hr) MINOR ROAD (ARM B)	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4 MAJOF MAJOR ROAL W c-b = 2 Vr c-b = 2 q c-d = 2 MINOR ROAD (ARM I	865 D (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) D)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d	= 0.811 = 0.792 = 0.921 = 0.860 HION OF MINOR STRAIG = (= 2	9 8 0 HIAHEAUI 0 2 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b	(1-0.0345) = = = = = =	W) 0.845 1.066 1.188 1.097 0.008 1.007874	(pcu/hr)	DEC DFC DFC DFC DFC DFC DFC DFC DFC DFC	b-a b-c c-b b-d b-d d-c d-a a-d d-b		0.000 0.011 0.001 0.000 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 4 (pcu/hr) q a-c = 50 (pcu/hr) q a-d = 2 (pcu/hr) MINOR ROAD (ARM B) W b-a = 3.3 (metres)	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4 MAJOF MAJOR ROAL W c-b = 2 Vr c-b = 2 Vr c-b = 2 q c-a = 2 q c-a = 2 q c-b	865 D (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) D) 6.0 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d	= 0.811 = 0.791 = 0.921 = 0.860 HION OF MINOR STRAIG = 0 = 2 = 2 Y OF MOVEMENT :	9 8 0 HIAHEADI 0 2 (pcu/hr) 2 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b	(1-0.0345) = = = = = = =	W) 0.845 1.066 1.188 1.097 0.008 1.007874 0.992126	(pcu/hr) (pcu/hr)	DEC DFC DFC DFC DFC DFC DFC DFC DFC DFC	b-a b-c c-b b-d b-d d-c d-a a-d d-b		0.000 0.011 0.001 0.000 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) W a-d = 2.0 (metres) Vr a-d = 120 (metres) Q a-b = 4 (pcu/hr) Q a-c = 50 (pcu/hr) Q a-d = 2 (pcu/hr) MINOR ROAD (ARM B) W b-a = 3.3 (metres) W b-c = 3.3 (metres)	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4 MAJOF MAJOR ROAL W c-b = Q c-b = Q c-b = Q c-b = Q c-b = Q c-d = MINOR ROAD (ARM I W d-c = W d-a =	865 D (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) D) 6.0 (metres) 6.0 (metres)	X b X c Z b M b PROPOR r b-a qi b-d qr b-d qr b-d Q b-a	= 0.814 = 0.794 = 0.924 = 0.864 HION OF MINOR STRAIG = (= ; = ; Y OF MOVEMENT : = 48	9 8 0 HIAHEADI 0 2 (pcu/hr) 2 (pcu/hr) 7 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-c	(1-0.0345) = = = = = = = = = =	W) 0.845 1.066 1.188 1.097 0.008 1.007874 0.992126 635	(pcu/hr) (pcu/hr)	DEC DFC DFC DFC DFC DFC DFC DFC DFC DFC	b-a b-c c-b b-d b-d d-c d-a a-d d-b		0.000 0.011 0.001 0.000 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS: $GENERAL$ $W = 3.90 (metres)$ $W cr = 0 (metres)$ $MAJOR ROAD (ARM A)$ $W a-d = 2.0 (metres)$ $Vr a-d = 120 (metres)$ $q a-b = 4 (pcu/hr)$ $q a-c = 50 (pcu/hr)$ $q a-d = 2 (pcu/hr)$ $MINOR ROAD (ARM B)$ $W b-a = 3.3 (metres)$ $W b-c = 3.3 (metres)$ $V b-a = 28 (metres)$	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4 MAJOF MAJOR ROAL W c-b = 2 Vr c-b = 2 Vr c-b = 2 q c-a = 2 q c-b	865 D (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) D) 6.0 (metres) 6.0 (metres) 22 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d Qr b-d Qr b-d	= 0.814 = 0.794 = 0.924 = 0.866 TION OF MINOR STRAIG = 0 = 2 Y OF MOVEMENT : = 48 = 676	9 8 0 HIAHEADI 2 (pcu/hr) 2 (pcu/hr) 4 (pcu/hr) 6 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-c Qd-a	(1-0.0345) = = = = = = = = = = = =	W) 0.845 1.066 1.188 1.097 0.008 1.007874 0.992126 635 868	(pcu/hr) (pcu/hr) (pcu/hr)	DFC DFC DFC DFC DFC DFC DFC DFC DFC DFC	b-a b-c c-b b-d b-d d-c d-a a-d d-b d-b		0.000 0.011 0.003 0.000 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS: $GENERAL$ $W = 3.90 (metres)$ $W cr = 0 (metres)$ $MAJOR ROAD (ARM A)$ $W a-d = 2.0 (metres)$ $Vr a-d = 120 (metres)$ $q a-b = 4 (pcu/hr)$ $q a-c = 50 (pcu/hr)$ $q a-d = 2 (pcu/hr)$ $MINOR ROAD (ARM B)$ $W b-a = 3.3 (metres)$ $W b-a = 28 (metres)$ $VI b-a = 28 (metres)$	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.3 MAJOF MAJOR ROAL W c-b = 2 Vrc-b = 2 Vrc-b = 2 q c-a = 2 q c-b = 2 q c-b = 2 q c-b = 2 MINOR ROAD (ARM I W d-c = 6 W d-a = 6 VI d-c = 7 Vr d-c =	865 D (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) D) 6.0 (metres) 22 (metres) 60 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d CAPACIT Q b-a Q b-c Q c-b	= 0.811 = 0.791 = 0.921 = 0.860 TION OF MINOR STRAIG = 0.860 = 0.860 = 0.860 TION OF MINOR STRAIG = 0.811 = 0.921 = 0.860 = 0.921 = 0.921 = 0.860 = 0.921 = 0.921 = 0.860 = 0.921 = 0.921 = 0.860 = 0.921 = 0.860 = 0.921 = 0.860 = 0.921 = 0.860 = 0.921 = 0.860 = 0.921 = 0.921 = 0.860 = 0.921 = 0.	9 8 0 HI AHEAU I 0 2 (pcu/hr) 2 (pcu/hr) 7 (pcu/hr) 6 (pcu/hr) 1 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-a Qd-a Qa-d	(1-0.0345) = = = = = = = = = = = = =	W) 0.845 1.066 1.188 1.097 0.008 1.007874 0.992126 635 868 614	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DEC DFC DFC DFC DFC DFC DFC DFC DFC DFC	b-a b-c c-b b-d b-d d-c d-a a-d d-b d-b		0.000 0.011 0.003 0.000 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 4 (pcu/hr) q a-c = 50 (pcu/hr) q a-d = 2 (pcu/hr) MINOR ROAD (ARM B) W b-a = 3.3 (metres) W b-c = 3.3 (metres) VI b-a = 28 (metres) VI b-a = 28 (metres) Vr b-a = 80 (metres) Vr b-c = 80 (metres)	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.1 MAJOF MAJOR ROAL W c-b = 2 Vr c-b = 2 Vr c-b = 2 q c-a = 2 q c-b	865 D (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) D) 6.0 (metres) 60 (metres) 60 (metres) 90 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d Q b-a Q b-c Q c-b Q l b-d	= 0.811 = 0.791 = 0.921 = 0.860 HION OF MINOR STRAIG = 0 = 2 T OF MOVEMENT : = 48 = 677 = 58 = 51.	9 8 0 HIAHEADI 2 (pcu/hr) 2 (pcu/hr) 4 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-a Qa-d Qa-d Qa-d Qa-d Qa-d	(1-0.0345) = = = = = = = = = = = = = = = = = = =	W) 0.845 1.066 1.188 1.097 0.008 1.007874 0.992126 635 868 614 657	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC DFC DFC DFC DFC DFC DFC DFC DFC DFC	b-a b-c c-b b-d b-d d-c d-a a-d d-b d-b		0.000 0.016 0.017 0.003 0.004 0.004
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	6] [5] [4] Deep Bay Rd'(ARM C Y = 0.4 MAJOF MAJOR ROAL W c-b = 2 Vr c-b = 2 Vr c-b = 2 q c-a = 2 q c-b = 2 q c-b = 2 q c-b = 2 MINOR ROAD (ARM I W d-c = 6 W d-a = 6 VI d-c = 7 Vr d-c	865 D (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) D) 6.0 (metres) 22 (metres) 60 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d CAPACIT Q b-a Q b-c Q c-b	= 0.811 = 0.791 = 0.921 = 0.860 TION OF MINOR STRAIG = 0.860 = 0.860 = 0.860 TION OF MINOR STRAIG = 0.811 = 0.921 = 0.860 = 0.921 = 0.921 = 0.860 = 0.921 = 0.921 = 0.860 = 0.921 = 0.921 = 0.860 = 0.921 = 0.860 = 0.921 = 0.860 = 0.921 = 0.860 = 0.921 = 0.860 = 0.921 = 0.921 = 0.860 = 0.921 = 0.	9 8 0 HIAHEADI 2 (pcu/hr) 2 (pcu/hr) 4 (pcu/hr) 1 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-a Qd-a Qa-d	(1-0.0345) = = = = = = = = = = = = = = = = = = =	W) 0.845 1.066 1.188 1.097 0.008 1.007874 0.992126 635 868 614 657	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC DFC DFC DFC DFC DFC DFC DFC DFC DFC	b-a b-c c-b b-d b-d d-c d-a a-d d-b d-b		0.000 0.016 0.001 0.002 0.002 0.000 0.000 0.000

FM CONSULTANCY LIMITE	ED	PRIC	JRITY JUN	CTION CALCU	JLATION	1				INITIALS		DATE
ffic Impact Assessment for Proposed Temporary Open Storage	e of Construction Material ar	nd Equipment of 3 Years at Var	rious Lots in D.D.129, La	u Fau Shan					Prepared	By: FF		Sep-202
D - Deep Bay Rd / Unnamed Access		2027 R	eference - PM Pea	ak			Project No.	.: 80108	Checked	By: MM		Sep-202
									Reviewed	d By: FM		Sep-202
[9] 0 Unnamed Access [7] 0 (ARM D)	(ARM A) Deep Bay Rd [10] [11] 0 62 ↓ ↓		[1] [2] [3]	Unnamed Access (ARM B)		NOTES : (GEON W = W cr = W b-a = W b-c = W c-b = VI b-a = Vr b-a = Vr b-a = Vr b-c = Vr c-b = D = E = F =	MAJOR RC CENTRAL LANE WID LANE WID VISIBILITY VISIBILITY VISIBILITY VISIBILITY STREAM-S STREAM-S	OAD WIDTH RESERVE W DTH AVAILABL DTH AVAILABL TH AVAILABL (TO THE LEF (TO THE RIG (TO THE RIG	IDTH LE TO VEH LE TO VEH T FOR VE HT FOR V HT FOR V HT FOR V	HICLE WAITING IN S HICLE WAITING IN S HICLE WAITING IN S HICLES WAITING IN EHICLES WAITING I EHICLES WAITING I EHICLES WAITING I	REAM b- REAM c- STREAM STREAI	a -c b b-a M b-a M b-c
	 3 30 12 6] [5] [4]					Y =	(1-0.0345V					
	 3 30 12 6] [5] [4] Deep Bay Rd'(AR	RM C)	GEOMETI	RIC FACTORS :			(1-0.0345V			COMPARISION OF	DESIGN F	LOW
GEOMETRIC DETAILS:	6] [5] [4]	RM C)			18	Y =	`	W)		COMPARISION OF	DESIGN F	LOW
GEOMETRIC DETAILS:	6] [5] [4]	RM C)	GEOMETI X b X c	= 0.8			(1-0.0345V = =	0.845				
GEOMETRIC DETAILS:	6] [5] [4]	0.865	Xb	= 0.8	99	Y =	=	W)		TO CAPACITY:	. =	COW
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres)	6] [5] [4] Deep Bay Rd'(AR	0.865	X b X c	= 0.8 = 0.7	99 28	Y =	=	W) 0.845 1.066		DFC b- DFC b- DFC b- DFC c-	ı = ; =	0.00 0.01 0.02
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A)	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R	0.865 ROAD (ARM C)	X b X c Z b M b	= 0.8 = 0.7 = 0.9 = 0.8	99 28 60	Y = Xa Xd Zd Md	= = =	V) 0.845 1.066 1.188		DFC b- DFC b- DFC b- DFC c- DFC b- DFC b-	= ; = =	0.00 0.01 0.02 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres)	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b =	0.865 ROAD (ARM C) 2.0 (metres)	X b X c Z b M b	= 0.8 = 0.7 = 0.9	99 28 60	Y = Xa Xd Zd Md	= = =	V) 0.845 1.066 1.188		DFC b- DFC b- DFC b- DFC b- DFC b- DFC b- DFC b-	= ; = = =	0.00 0.01 0.02 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres)	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W с-b = Vr с-b =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres)	X b X c Z b M b	= 0.8 = 0.7 = 0.9 = 0.8	99 28 30 3 HIAHEAD I	Y = Xa Xd Zd Md		W) 0.845 1.066 1.188 1.097		DFC b- DFC b- DFC c- DFC b- DFC b- DFC b- DFC d- DFC d-	= = = =	0.00 0.01 0.02 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 0 (pcu/hr)	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-a =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr)	Хb Хc Zb Mb Ркорок r b-a	= 0.8 = 0.7 = 0.9 = 0.8 HON OF MINOR STRAM = 0.003	99 28 50 5HI AHEAU I 14	Y = Xa Xd Zd Md KAFFIC: rd-c	= = = = = = = = = = = = = = = = = = = =	W) 0.845 1.066 1.188 1.097 0.000		DFC b- DFC b- DFC c- DFC b- DFC b- DFC b- DFC d- DFC d- DFC d- DFC d-		0.00 0.01 0.02 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) Q a-b = 0 (pcu/hr) Q a-c = 62 (pcu/hr)	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-a = q c-b =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 12 (pcu/hr)	X b X c Z b M b PROPOR r b-a ql b-d	= 0.8 = 0.7 = 0.9 = 0.8	99 28 50 5 H I AHEAD I 14 0 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b		W) 0.845 1.066 1.188 1.097 0.000 0	(pcu/hr)	DFC b- DFC b- DFC b- DFC b- DFC b- DFC b- DFC c- DFC d- DFC c- DFC c- DFC c-		0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) Ward = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 0 (pcu/hr) q a-c = 62 (pcu/hr) q a-d = 0 (pcu/hr)	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 12 (pcu/hr) 3 (pcu/hr)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d	= 0.8 = 0.7 = 0.9 = 0.8 HON OF MINOR STRAIG = 0.003 = =	99 28 50 5HI AHEAU I 14	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b		W) 0.845 1.066 1.188 1.097 0.000 0		DFC b- DFC b- DFC c- DFC b- DFC b- UFC b- DFC d- DFC d- DFC d- DFC d-		0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 0 (pcu/hr) q a-c = 62 (pcu/hr) q a-d = 0 (pcu/hr) MINOR ROAD (ARM B)	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d = MINOR ROAD (AI	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 12 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d	= 0.8 = 0.7 = 0.9 = 0.8 HON OF MINOR STRAIG = 0.003 =	99 28 50 5 H I AHEAD I 14 0 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b		W) 0.845 1.066 1.188 1.097 0.000 0	(pcu/hr)	DFC b- DFC b- DFC c- DFC c- DFC b- DFC d- DFC d- DFC d- DFC d- DFC d- DFC d- DFC d-		0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS:GENERAL $W = 3.90 (metres)$ $W cr = 0 (metres)$ $W a-d = 2.0 (metres)$ $Vr a-d = 120 (metres)$ $Vr a-d = 0 (pcu/hr)$ $q a-b = 0 (pcu/hr)$ $q a-c = 62 (pcu/hr)$ $q a-d = 0 (pcu/hr)$ $q a-d = 0 (pcu/hr)$ MINOR ROAD (ARM B) $W b-a = 3.3 (metres)$	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-b = q c-d = MINOR ROAD (AI W d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 12 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d Qr b-d	= 0.8 = 0.7 = 0.9 = 0.8 HION OF MINOR STRAM = 0.003 = = Y OF MOVEMENT :	99 28 50 5 H I AHEAD I 14 0 (pcu/hr) 0 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b		W) 0.845 1.066 1.188 1.097 0.000 0 0	(pcu/hr) (pcu/hr)	DFC b- DFC b- DFC c- DFC c- DFC b- DFC d- DFC d- DFC d- DFC d- DFC d- DFC d- DFC d-		0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) W a-d = 2.0 (metres) Vr a-d = 120 (metres) Q a-b = 0 (pcu/hr) Q a-c = 62 (pcu/hr) Q a-d = 0 (pcu/hr) Whore a 3.3 (metres) W b-a = 3.3 (metres) W b-c = 3.3 (metres)	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-b = q c-d = MINOR ROAD (AI W d-c = W d-a =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 12 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) 6.0 (metres) 6.0 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACITY Q b-a	= 0.8 = 0.7 = 0.9 = 0.8 HION OF MINOR STRAM = 0.003 = = Y OF MOVEMENT : = 4	99 85 60 14 0 (pcu/hr) 0 (pcu/hr) 38 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-c		W) 0.845 1.066 1.188 1.097 0.000 0 0 0	(pcu/hr) (pcu/hr)	DFC b- DFC b- DFC c- DFC c- DFC b- DFC d- DFC d- DFC d- DFC d- DFC d- DFC d- DFC d-		0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: $GENERAL$ $W = 3.90 (metres)$ $W cr = 0 (metres)$ $W a-d = 2.0 (metres)$ $Vr a-d = 120 (metres)$ $Vr a-d = 120 (metres)$ $q a-b = 0 (pcu/hr)$ $q a-c = 62 (pcu/hr)$ $q a-d = 0 (pcu/hr)$ $MINOR ROAD (ARM B)$ $W b-a = 3.3 (metres)$ $W b-c = 3.3 (metres)$ $W b-a = 28 (metres)$	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-b = q c-d = MINOR ROAD (AI W d-c = VI d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 12 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) KM D) 6.0 (metres) 6.0 (metres) 22 (metres)	X b X c Z b M b PROPOR r b-a qr b-d qr b-d CAPACITY Q b-a Q b-c	= 0.8 = 0.7 = 0.9 = 0.8 TION OF MINOR STRAM = 0.003 = = Y OF MOVEMENT : = 4 = 6	39 28 50 51 14 0 (pcu/hr) 0 (pcu/hr) 38 (pcu/hr) 73 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC : rd-c qid-b qrd-b Qd-c		V) 0.845 1.066 1.188 1.097 0.000 0 0 637 873	(pcu/hr) (pcu/hr) (pcu/hr)	DFC b- DFC b- DFC c- DFC b- DFC b- DFC b- DFC b- DFC d- DFC d- DFC d- DFC d- DFCr d-		0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vrc-b = q c-a = q c-b = q c-b = q c-b = q c-d = MINOR ROAD (AI W d-c = W d-c = VI d-c = Vr d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 12 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) KM D) 6.0 (metres) 60 (metres) 60 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d Qr b-d CAPACITY Q b-a Q b-c Q c-b	= 0.8 = 0.7 = 0.9 = 0.8 HON OF MINOR STRAIN = 0.003 = = Y OF MOVEMENT : = 44 = 6 = 5	399 28 30 31 34 34 35 36 38 38 38 39 30 30 30 30 30 30 30 30 30 30	Y = Xa Xd Zd Md KAFFIC : rd-c qld-b qrd-b Qd-a Qa-d		W) 0.845 1.066 1.188 1.097 0.000 0 0 0 637 873 616	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b- DFC b- DFC c- DFC c- DFC b- DFC d- DFC d- DFC d- DFC d- DFC d- DFC d- DFC d-		0.00 0.01 0.02 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) W a-d = 2.0 (metres) Vr a-d = 120 (metres) Vr a-d = 120 (metres) q a-b = 0 (pcu/hr) q a-c = 62 (pcu/hr) q a-d = 0 (pcu/hr) W b-a = 3.3 (metres) W b-c = 3.3 (metres) VI b-a = 28 (metres) VI b-a = 28 (metres) Vr b-c = 80 (metres)	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-b = q c-d = MINOR ROAD (AI W d-c = VI d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 12 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) 0 (metres) 6.0 (metres) 60 (metres) 90 (metres)	X b X c Z b M b PROPOR r b-a qr b-d qr b-d CAPACITY Q b-a Q b-c	= 0.8 = 0.7 = 0.9 = 0.8 HON OF MINOR STRAIN = 0.003 = = Y OF MOVEMENT : = 44 = 6 = 5	 39 36 36 36 36 36 36 37 38 40 40 41 <	Y = Xa Xd Zd Md KAFFIC : rd-c qid-b qrd-b Qd-c		W) 0.845 1.066 1.188 1.097 0.000 0 0 0 637 873 616 659	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b- DFC b- DFC c- DFC b- DFC b- DFC b- DFC b- DFC d- DFC d- DFC d- DFC d- DFCr d-		0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) W a-d = 2.0 (metres) Vr a-d = 120 (metres) Vr a-d = 120 (metres) q a-b = 0 (pcu/hr) q a-c = 62 (pcu/hr) q a-d = 0 (pcu/hr) W b-a = 3.3 (metres) W b-c = 3.3 (metres) VI b-a = 28 (metres) VI b-a = 28 (metres) Vr b-c = 80 (metres)	6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-b = q c-d = MINOR ROAD (Al W d-c = W d-a = VI d-c = Vr d-c = Vr d-a = Vr d-a = Vr d-a =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 12 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) KM D) 6.0 (metres) 60 (metres) 60 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d Q b-a Q b-a Q b-c Q c-b Ql b-d	= 0.8 = 0.7 = 0.9 = 0.8 HON OF MINOR STRAIN = 0.003 = = Y OF MOVEMENT : = 4 = 6 = 5 = 5	 39 36 36 36 36 36 37 38 38 49 40 <	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-a Qa-d Qa-d Qa-d Qa-b		W) 0.845 1.066 1.188 1.097 0.000 0 0 0 637 873 616 659	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b- DFC b- DFC c- DFC b- DFC b- DFC b- DFC b- DFC d- DFC d- DFC d- DFC d- DFCr d-		0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00

FM CONSULTANCY LIMIT	ED	PRIORITY	JUNCTION CALCUL	_ATION			INITIALS	DATE
ffic Impact Assessment for Proposed Temporary Open Storag		ent of 3 Years at Various Lots in D	D.129, Lau Fau Shan			Prepared By:	FF	Sep-2024
E - Unnamed Access to Subject Site / Unnan		2027 Reference -			Project No.: 80108		MM	Sep-2024
, , , , , , , , , , , , , , , , ,						Reviewed By:	FM	Sep-2024
[4] 42		→ 50 [5]	И	NOTES : (GEO W = W cr = W b-a = W b-c =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE LANE WIDTH AVAILA LANE WIDTH AVAILA	WIDTH BLE TO VEHICLE W		
(ARM A)	18 7 [2] [1] (ARM B) Unnamed Access	↓ 11 [6] ↓	Unnamed Access to Site (ARM C)	W c-b = VI b-a = Vr b-a = Vr b-c = Vr c-b = D = E = F = Y =	LANE WIDTH AVAILA VISIBILITY TO THE LE VISIBILITY TO THE RI VISIBILITY TO THE RI VISIBILITY TO THE RI STREAM-SPECIFIC B STREAM-SPECIFIC B STREAM-SPECIFIC C (1-0.0345W)	BLE TO VEHICLE W EFT FOR VEHICLES GHT FOR VEHICLES GHT FOR VEHICLES GHT FOR VEHICLES -A -C	AITING IN STR WAITING IN ST 8 WAITING IN S 8 WAITING IN S	EAM c-b TREAM b-a STREAM b-a STREAM b-c
GEOMETRIC DETAILS:	GEOMETRIC FAC	TORS :	THE CAPACITY OF MO	VEMENT :		COMPARISION O TO CAPACITY:	F DESIGN FLC	w
MAJOR ROAD (ARM A)								
W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr) q a-c = 42 (pcu/hr)	D = E = F = Y =	0.752 0.813 0.813 0.821	Qb-a = Qb-c = Qc-b = Qb-ac = Qc-a =	452 (pcu/hr) 596 (pcu/hr) 596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0398 0.0117 0.0185 0.0516
MAJOR ROAD (ARM C) W c-b = 2.5 (metres) Vr c-b = 22 (metres) q c-a = 50 (pcu/hr)	F for (Qb-ac) =	0.28	TOTAL FLOW =	61 (pcu/hr)		DFC c-a	=	0.0283
q c-b = 11 (pcu/hr)								
MINOR ROAD (ARM B)						CRITICAL DFC	=	0.05
W b-a = 2.5 (metres) W b-c = 2.5 (metres) VI b-a = 22 (metres) Vr b-a = 24 (metres)								
Vr b-c = 22 (metres)								

FM CONSUL	LTANCY LIMIT	ED	PRIORIT	Y JUNCTION CALCULA	TION			INITIALS	DATE
ffic Impact Assessment for Pr	roposed Temporary Open Storad	ge of Construction Material and Equi	pment of 3 Years at Various Lots	in D.D.129. Lau Fau Shan			Prepared By:	FF	Sep-2024
	s to Subject Site / Unnan		2027 Reference			Project No.: 80108	Checked By:	MM	Sep-2024
-	,						Reviewed By:	FM	Sep-2024
named Access to Site (ARM A)	$\begin{bmatrix} 4 \end{bmatrix} \begin{array}{c} 36 \\ \hline 3 \end{bmatrix} \begin{array}{c} \bullet \\ \bullet \\ \end{array}$	46 4 [2] [1] (ARM B) Unnamed Access	← 51 [5] ↓ 23 [6]	N Unnamed Access to Site (ARM C)	NOTES : (GEC W = W cr = W b-a = W b-c = W c-b = VI b-a = VI b-a = Vr b-a = Vr b-c = Vr c-b = D = E = F = Y =	DMETRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE LANE WIDTH AVAILAI LANE WIDTH AVAILAI LANE WIDTH AVAILAI VISIBILITY TO THE LE VISIBILITY TO THE RI VISIBILITY TO THE RI VISIBILITY TO THE RI STREAM-SPECIFIC B STREAM-SPECIFIC B STREAM-SPECIFIC C (1-0.0345W)	WIDTH BLE TO VEHICLE W. BLE TO VEHICLE W. BLE TO VEHICLE W. FT FOR VEHICLES GHT FOR VEHICLES GHT FOR VEHICLES GHT FOR VEHICLES A -C	AITING IN STRI AITING IN STRI AITING IN STRI WAITING IN ST S WAITING IN S S WAITING IN S	EAM b-a EAM b-c EAM c-b IREAM b-a STREAM b-a STREAM b-c
						(1 0.00 1011)			
		GEOMETRIC F	ACTORS :	THE CAPACITY OF MOVEM		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	COMPARISION O TO CAPACITY:	F DESIGN FLO)W
MAJOR ROAD	(ARM A)				IENT :		TO CAPACITY:		
MAJOR ROAD W =	(ARM A) 5.2 (metres)	D =	0.752	Qb-a =	IENT : 449 (pcu/hr)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TO CAPACITY: DFC b-a	F DESIGN FLO = =	0.1024
MAJOR ROAD W = W cr =	(ARM A) 5.2 (metres) 0 (metres)	D =	0.752 0.813	Q b-a = Q b-c =	IENT : 449 (pcu/hr) 597 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c	=	0.1024 0.0067
MAJOR ROAD W = W cr = q a-b =	(ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr)	D = E =	0.752 0.813 0.813	Q b-a = Q b-c =	1ENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr)		TO CAPACITY: DFC b-a	= =	0.1024
MAJOR ROAD W = W cr =	(ARM A) 5.2 (metres) 0 (metres)	D = E = F =	0.752 0.813	Q b-a = Q b-c = Q c-b =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b	= = =	0.1024 0.0067 0.0385
MAJOR ROAD W = W cr = q a-b = q a-c =	(ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 36 (pcu/hr)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-ac (Share Lane)	= = =	0.1024 0.0067 0.0385 0.1092
MAJOR ROAD W = W cr = q a-b = q a-c = MAJOR ROAD ((ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 36 (pcu/hr) (ARM C)	D = E = F =	0.752 0.813 0.813	Q b-a = Q b-c = Q c-b = Q b-ac =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b	= = =	0.1024 0.0067 0.0385
MAJOR ROAD W = W cr = q a-b = q a-c = MAJOR ROAD (W c-b =	(ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 36 (pcu/hr) (ARM C) 2.5 (metres)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-ac (Share Lane)	= = =	0.1024 0.0067 0.0385 0.1092
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (W c-b = Vr c-b =	(ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 36 (pcu/hr) (ARM C) 2.5 (metres) 22 (metres)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-ac (Share Lane)	= = =	0.1024 0.0067 0.0385 0.1092
MAJOR ROAD W = W cr = q a-b = q a-c = MAJOR ROAD (W c-b =	(ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 36 (pcu/hr) (ARM C) 2.5 (metres)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1024 0.0067 0.0385 0.1092 0.0295
MAJOR ROAD W = W cr = q a-b = q a-c = MAJOR ROAD (W c-b = Vr c-b = q c-a =	(ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 36 (pcu/hr) (ARM C) 2.5 (metres) 22 (metres) 51 (pcu/hr) 23 (pcu/hr)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-ac (Share Lane)	= = =	0.1024 0.0067 0.0385 0.1092
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (W c-b = Vr c-b = q c-a = q c-b =	(ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 36 (pcu/hr) (ARM C) 2.5 (metres) 22 (metres) 51 (pcu/hr) 23 (pcu/hr)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1024 0.0067 0.0385 0.1092 0.0295
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (/	(ARM A) 5.2 (metres) 0 (pcu/hr) 36 (pcu/hr) 2.5 (metres) 22 (metres) 51 (pcu/hr) 23 (pcu/hr) ARM B) 2.5 (metres)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1024 0.0067 0.0385 0.1092 0.0295
MAJOR ROAD ((ARM A) 5.2 (metres) 0 (pcu/hr) 36 (pcu/hr) (ARM C) 2.5 (metres) 22 (metres) 51 (pcu/hr) 23 (pcu/hr) ARM B) 2.5 (metres) 2.5 (metres) 2.5 (metres)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1024 0.0067 0.0385 0.1092 0.0295
MAJOR ROAD ((ARM A) 5.2 (metres) 0 (pcu/hr) 36 (pcu/hr) 36 (pcu/hr) (ARM C) 2.5 (metres) 22 (metres) 51 (pcu/hr) 23 (pcu/hr) ARM B) 2.5 (metres) 2.5 (metres) 2.5 (metres) 2.5 (metres) 2.5 (metres)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1024 0.0067 0.0385 0.1092 0.0295
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (W b-a = W b-c = VI b-a = Vr b-a =	(ARM A) 5.2 (metres) 0 (pcu/hr) 36 (pcu/hr) 36 (pcu/hr) (ARM C) 2.5 (metres) 51 (pcu/hr) 23 (pcu/hr) ARM B) 2.5 (metres) 2.5 (metre	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1024 0.0067 0.0385 0.1092 0.0295
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (W b-a = W b-c = VI b-a = Vr b-a = Vr b-a = Vr b-c =	(ARM A) 5.2 (metres) 0 (pcu/hr) 36 (pcu/hr) 36 (pcu/hr) 2.5 (metres) 22 (metres) 51 (pcu/hr) 23 (pcu/hr) ARM B) 2.5 (metres) 2.5 (metres) 22 (metres) 22 (metres) 22 (metres) 22 (metres)	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1024 0.0067 0.0385 0.1092 0.0295
MAJOR ROAD (W = W cr = q a-b = q a-c = MAJOR ROAD (W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (W b-a = W b-c = VI b-a = Vr b-a =	(ARM A) 5.2 (metres) 0 (pcu/hr) 36 (pcu/hr) 36 (pcu/hr) (ARM C) 2.5 (metres) 51 (pcu/hr) 23 (pcu/hr) ARM B) 2.5 (metres) 2.5 (metre	D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	IENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1024 0.0067 0.0385 0.1092 0.0295

FM CONSULTANCY LIMIT						Dava and Dava		0
ic Impact Assessment for Proposed Temporary Open Stor - Deep Bay Rd / Tin Yuet Rd	age of Construction Material and Equip		us Lots in D.D.129, Lau Fau Shan ference - AM Peak		Project No.: 80108	Prepared By: Checked By:	FF MM	Sep-20 Sep-20
- Deep Bay Nu / III Tuer Nu		2027 116			Project No 00100	Reviewed By:	FM	Sep-20
	(ARM C) Deep Bay Rd [5] [6] 35 84 ↓ ↓ ↓ ↓ ↓ ↓ 25 5 [4] [3] Deep Bay Rd (ARM A)	— 74 [1] — 23 [2]	(ARM B) Tin Yuet Rd	NOTES : (GEC W = W cr = W b-a = W b-c = W c-b = VI b-a = Vr b-a = Vr b-a = Vr b-c = Vr c-b = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE LANE WIDTH AVAILA LANE WIDTH AVAILA LANE WIDTH AVAILA VISIBILITY TO THE LE VISIBILITY TO THE RI VISIBILITY TO THE RI STREAM-SPECIFIC B STREAM-SPECIFIC D STREAM-SPECIFIC C (1-0.0345W)	WIDTH BLE TO VEHICLE W BLE TO VEHICLE W BLE TO VEHICLE W FT FOR VEHICLES IGHT FOR VEHICLE IGHT FOR VEHICLE IGHT FOR VEHICLE -A -C	AITING IN STR AITING IN STR WAITING IN S S WAITING IN S WAITING IN	REAM b-c REAM c-b TREAM b-a STREAM b-a STREAM b-c
GEOMETRIC DETAILS:	GEOMETRIC F	ACTORS :	THE CAPACITY OF M	OVEMENT :		COMPARISION (TO CAPACITY:	OF DESIGN FLO	ow
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D = E = F = Y =	0.752 0.826 0.791 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0531 0.1215 0.1443 0.1746
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F for (Qb-ac) =	0.763	TOTAL FLOW =	84 (pcu/hr)		DFC c-a	=	0.0227
q c-b = 84 (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres) W b-c = 2.5 (metres) V b-a = 22 (metres) Vr b-a = 24 (metres) Vr b-c = 38 (metres) q b-a = 23 (pcu/hr) q b-c = 74 (pcu/hr)						CRITICAL DFC	-	0.17

FM CONSULTANCY LIMI	IED	PRIORITY JUNCTION CALCULATION			INITIALS	DATI
c Impact Assessment for Proposed Temporary Open Sto	rage of Construction Material and Equipment of 3			Prepared By:	FF	Sep-20
- Deep Bay Rd / Tin Yuet Rd		2027 Reference - PM Peak	Project No.: 80108	Checked By:	MM	Sep-20
				Reviewed By:	FM	Sep-20
	(ARM C) Deep Bay Rd [5] [6] 30 52 ↓ ↓ ↓ 14 80 ↓ 14 14 14 9 [4] [3] Deep Bay Rd	NOTES : (G W = W cr = W b-a = W b-c = W b-c = W c-b = V r b-a = V r b-a = V r b-a = V r b-c = V r c-b = D = E = F = Y =	SEOMETRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE V LANE WIDTH AVAILAE LANE WIDTH AVAILAE LANE WIDTH AVAILAE VISIBILITY TO THE LEI VISIBILITY TO THE RIC VISIBILITY TO THE RIC VISIBILITY TO THE RIC STREAM-SPECIFIC B- STREAM-SPECIFIC C- (1-0.0345W)	BLE TO VEHICLE W BLE TO VEHICLE W BLE TO VEHICLE W FT FOR VEHICLES BHT FOR VEHICLES BHT FOR VEHICLES BHT FOR VEHICLES A C	AITING IN STR AITING IN STR WAITING IN S S WAITING IN S WAITING IN	EAM b-c EAM c-b TREAM b-a STREAM b-a STREAM b-c
GEOMETRIC DETAILS:	(ARM A) GEOMETRIC FACTORS	THE CAPACITY OF MOVEMENT :		COMPARISION C	OF DESIGN FLO	ow
MAJOR ROAD (ARM A)						
W = 4.8 (metres)	D = 0.752			DFC b-a	=	0.0314
W cr = 0 (metres)	E = 0.826			DFC b-c	=	0.1309
q a-b = 9 (pcu/hr) g a-c = 14 (pcu/hr)	F = 0.791 Y = 0.834			DFC c-b DFC b-ac	=	0.0890 0.1623
q a-c = 14 (pcu/hr)	Y = 0.834				=	0.1623
				(Share Lane)		
	F for (Qb-ac) = 0.851	I TOTAL FLOW = 52 (pcu/hr)		DFC c-a	=	0.0183
MAJOR ROAD (ARM C) W c-b = 2.1 (metres) Vr c-b = 38 (metres) q c-a = 30 (pcu/hr)						
W c-b = 2.1 (metres) Vr c-b = 38 (metres)					_	0.40
W c-b = 2.1 (metres) Vr c-b = 38 (metres) q c-a = 30 (pcu/hr) q c-b = 52 (pcu/hr) MINOR ROAD (ARM B) X				CRITICAL DFC	=	0.16
W c-b = 2.1 (metres) Vr c-b = 38 (metres) q c-a = 30 (pcu/hr) q c-b = 52 (pcu/hr)				CRITICAL DFC	-	0.16
W c-b = 2.1 (metres) Vr c-b = 38 (metres) q c-a = 30 (pcu/hr) q c-b = 52 (pcu/hr) MINOR ROAD (ARM B) X				CRITICAL DFC	=	0.16
W c-b = 2.1 (metres) Vr c-b = 38 (metres) q c-a = 30 (pcu/hr) q c-b = 52 (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres)				CRITICAL DFC	-	0.16
W c-b = 2.1 (metres) Vr c-b = 38 (metres) q c-a = 30 (pcu/hr) q c-b = 52 (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres) W b-c = 2.5 (metres)				CRITICAL DFC	=	0.16
W c-b = 2.1 (metres) Vr c-b = 38 (metres) q c-a = 30 (pcu/hr) q c-b = 52 (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres) W b-a = 2.5 (metres) Vb-a = V b-a = 2.5 (metres) Vb-a = V b-a = 2.5 (metres) Vb-a =				CRITICAL DFC	=	0.16
				CRITICAL DFC	=	0.16

	8FN		NSULTA		IITED						TRAFFIC	SIGN	IAL CALC	ULA		١	T				Γ		INITIALS		DATE
			n DD129, La Tin Ying Road		n						'2027 Design	AM Peak					Project No	D.:	80108		Prepared Checked		FF MM		Sep-24 Sep-24
	ini wan	intodu /									2021 Boolgin	/ WIT Out									Reviewed	,	FM		Sep-24
							Tin Ying	Road					N				No. of sta Intergreer		ycle		N = =		sec		
			Tin W	ah Rodd	[9] 96 [8] 381 [7] 863 [6] [5] 48	[4] 668	f Tin Ying	[10 157 •	495 ↓		[1] [2] [3]		Tin Wah	Rodd			Cm Yult R.C.ult Cp Ymax	/ = (1.5*L+ = L/(1-Y) = (Yult-Y = 0.9*L/(= 1-L/C)/Y*100% 0.9-Y)			0.456 4975 133.3 82.7 0.563 23.4 91.2 0.625	sec sec % sec		
																Pedestria Phase		= (0.9*Yr Stage	max-Y)/Y* Green Ti SG	100% me Required FG	= Green Tii SG	ime Provid		Che	eck
	•	→	۶	▲				<u>↓</u> ↓			•														
[8 Move- ment	Stage Stage	Lane Width	8 Phase No.		7 0	Stage 3 N	Straight- Ahead	Left	Straight	m Right	Total Flow	Proportion of Turning	Flow	Length	Flare lane Effect	Sat. Flow	у	Greater	L	g (required)		Degree of Saturation	Queue Length	Average Delay
	3 2 1	1,2,3,4 3 3	m. 3.40 3.40 3.40	1 2 1	m. 20 25		N	Sat. Flow 1955 4190 2095 0	pcu/h 905	pcu/h 397	pcu/h 34	pcu/h 905 397 34	Vehicles 1.00 0.00 1.00	pcu/h 1819 4190 1976	m.		pcu/h 1819 4190 1976	0.498 0.095 0.017	у 0.017	<u>sec</u> 27 9	sec 82 16 3	sec 19 19 12	X 3.171 0.604 0.175	(m/lane) 910 56 5	(sec) 2061 48 51
€↑♠₽	6 5 4,5 4	1,2 2 2 2	4.80 3.40 3.40 3.40	1 1 1	25 35 30		N	2095 2095 2095 2095	648	286 0	335 333	648 286 335 333	1.00 0.00 1.00 1.00	1976 2095 2009 1995			1976 2095 2009 1995	0.328 0.137 0.167 0.167	0.137		54 22 27 27	42 22 22	0.930 0.729 0.891	93 40 58	64 51 76
\$ ↑ ^	8,9 7,8 7	1 1 1	3.40 3.30 3.30	1 1 1	25 28 25		N	1955 2085 2085	96	336 45	422 441	432 467 441	0.22 0.90 1.00	1929 1989 1967			1929 1989 1967	0.224 0.235 0.224	0.224		37 39 37	45 45 37	0.599 0.628 0.729	45 49 52	32 33 41
	12 11 10	3,4 4 4	3.30 3.30 3.30	1 2 1	25 40		N	1945 4170 2085	45	495	157	45 495 157	1.00 0.00 1.00	1835 4170 2010			1835 4170 2010	0.025 0.119 0.078	0.078	9	4 20 13 0	22 22 22 0	0.135 0.652 0.429	6 67 21	42 47 45
																		neultano	(Limited)	280108\Data	Calculati	on\[LA]	inWahRd_Tir		

	8FN		NSULTA		/IITED						TRAFFIC	SIGN	NAL CALC	ULA		١	T						INITIALS		DATE
			n DD129, La		in												Project No	D.:	80108		Prepared		FF		Sep-24
	Tin Wah	Road /	Tin Ying Road								'2027 Design -	PM Peak									Checked Reviewed	,	MM FM		Sep-24 Sep-24
							Tin Ying	Road					N	1			No. of sta Intergreer		ycle		N = =	4	sec		
			Tin W	ah Rodd	[9] 113 [8] 285 [7] 845 [6] [5] [00 291	[4] 583	∫ ↓ Tin Ying	[10] 93 4			[1] [2] [3]		Tin Wah	Rodd			Cp Ymax) /)/Y*100% 0.9-Y)		C = Y = L = = = = = = = =	0.405 45 4307 121.8 75.6 0.563 38.9 81.8 0.625	sec sec % sec		
			<i>•</i>	◄┐╽						<u>_</u>]	↓					Pedestriai Phase	(m)	Stage	Green T SG	ime Required FG	d Green Tii SG		led (s) FG	Che	ck
	8	Stage	1	8	Stage 2	7	Stage 3		8	Stage 4		1			1										
	Move- ment	Stage	Lane Width m.	Phase No. Ian		0	Ν	Straight- Ahead Sat. Flow	Left pcu/h	Straight pcu/h	m Right pcu/h	Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Flare lan Length m.	Flare lane Effect	Revised Sat. Flow pcu/h	у	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queue Length (m/lane)	Average Delay (sec)
	3 2 1	1,2,3,4 3 3	3.40 3.40 3.40	1 2 1			N	1955 4190 2095 0	552	242	25	552 242 25	1.00 0.00 1.00	1819 4190 1976			1819 4190 1976	0.304 0.058 0.013	0.013	27 9	56 11 2	18 18 11	1.986 0.378 0.134	430 34 4	974 46 51
√┐ᡧᢩᠰᢂ	6 5 4,5 4	1,2 2 2 2	4.80 3.40 3.40 3.40	1 1 1 1	35		N	2095 2095 2095 2095	1000	291 0	292 291	1000 291 292 291	1.00 0.00 1.00 1.00	1976 2095 2009 1995			1976 2095 2009 1995	0.506 0.139 0.146 0.146	0.139		94 26 27 27	45 26 26	1.347 0.648 0.679	439 38 38	372 46 47
∢ 4 1≯ 1	8,9 7,8 7	1 1 1	3.40 3.30 3.30	1 1 1	28		N	1955 2085 2085	113	285 0	435 410	398 435 410	0.28 1.00 1.00	1922 1979 1967			1922 1979 1967	0.207 0.220 0.209	0.207		38 41 39	47 47 39	0.533 0.565 0.648	41 44 46	30 30 37
	12 11 10	3,4 4 4	3.30 3.30 3.30	1 2 1	-		N	1945 4170 2085	40	238	93	40 238 93	1.00 0.00 1.00	1835 4170 2010			1835 4170 2010	0.022 0.057 0.046	0.046	9	4 11 9 0	18 18 18 0	0.149 0.390 0.316	6 34 13	46 47 47
																	D:\8FM C	onsultano	v Limited	280108\Deta			inWahRd_Tir	YingRd yler	

	D PRIOR	ITY JUNCTION CALCULATION			INITIALS	DATE
ffic Impact Assessment for Proposed Temporary Open Storage o	f Construction Material and Equipment of 3 Years at Various L	ots in D.D.129. Lau Fau Shan		Prepared By:	FF	Sep-202
B - Lau Fau Shan Rd / Tin Wah Rd / Ping Ha R			Project No.: 80108	Checked By:	MM	Sep-202
5				Reviewed By:	FM	Sep-202
Lau Fau Shan Rd [4] 575 [3] 139 →→ (ARM A)	(ARM B) Tin Wah Rd [5] [6] 541 514 ↓	(ARM C)	NOTES : (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH W cr = CENTRAL RESERVE W W b-a = LANE WIDTH AVAILAB W b-c = LANE WIDTH AVAILAB W c-b = LANE WIDTH AVAILAB VI b-a = VISIBILITY TO THE LEF Vr b-a = VISIBILITY TO THE RIG Vr b-c = VISIBILITY TO THE RIG D = STREAM-SPECIFIC B-/ E = STREAM-SPECIFIC B-/ F = STREAM-SPECIFIC C-/ Y = (1-0.0345W)	VIDTH ILE TO VEHICLE W. ILE TO VEHICLE W. ILE TO VEHICLE W. FT FOR VEHICLES SHT FOR VEHICLES SHT FOR VEHICLES SHT FOR VEHICLES A C	AITING IN STR AITING IN STR AITING IN STR WAITING IN S S WAITING IN S S WAITING IN S	EAM b-a EAM b-c EAM c-b TREAM b-a STREAM b-a STREAM b-c
GEOMETRIC DETAILS: MAJOR ROAD (ARM A)	GEOMETRIC FACTORS :	THE CAPACITY OF MOVEMENT :		COMPARISION O TO CAPACITY: DFC b-a	F DESIGN FLC	w
W = 8.9 (metres) W cr = 0 (metres) q a-b = 575 (pcu/hr) = 120 (mutres)	D = 1.161 $E = 0.985$ $F = 1.013$ $V = 0.002$	Q c-b = 572 (pcu/hr) pcu/hr)	DFC b-c DFC c-b	= = =	1.2323 0.7994 0.6276
W cr = 0 (metres)	E = 0.985	Q b-c = 643 (Q c-b = 572 (Q c-a = 670 (pcu/hr)	DFC b-c DFC c-b DFC c-a	=	0.7994

LON20	LTANCY LIMITE	D	PRIORITY .	JUNCTION CALCU	JLATION			INITIALS	DATE
fic Impact Assessment for F	Proposed Temporary Open Storage	of Construction Material and Equipme	nt of 3 Years at Various Lots in D.I	0.129, Lau Fau Shan			Prepared By:	FF	Sep-202
	d / Tin Wah Rd / Ping Ha F		2027 Design - PM			Project No.: 80108	Checked By:	MM	Sep-202
						,	Reviewed By:	FM	Sep-202
Lau Fau Shan Rd (ARM A)	[4] 530 [3] 176 →	(ARM B) Tin Wah Rd [5] [6] 493 673	508 [1] ← 145 [2]	N (ARM C) Ping Ha Rd	NOTES : (GEC W = W cr = W b-a = W b-c = W c-b = VI b-a = Vr b-a = Vr b-c = Vr c-b = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABI LANE WIDTH AVAILABI VISIBILITY TO THE LEF VISIBILITY TO THE RIG VISIBILITY TO THE RIG STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-E (1-0.0345W)	IDTH LE TO VEHICLE W. LE TO VEHICLE W. LE TO VEHICLE W. T FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STR AITING IN STR AITING IN STR WAITING IN S S WAITING IN S S WAITING IN S	EAM b-a EAM b-c EAM c-b TREAM b-a STREAM b-a STREAM b-c
GEOMETRIC D MAJOR ROAD W = W cr = q a-b = q a-c =		E = F =	F ORS : 1.161 0.985 1.013 0.693	Q b-a = Q b-c = Q c-b = Q c-a =	OVEMENT : 376 (pcu/hr) 638 (pcu/hr) 574 (pcu/hr) 207 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	F DESIGN FLC = = = =	1.3112 1.0549 0.8850 0.7006
		·		~~~~	(pcu/m)				0.1.000
MAJOR ROAD W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (W b-a = W b-c = VI b-a = Vr b-a = Vr b-a = Vr b-c = q b-a =	3.5 (metres) 150 (metres) 145 (pcu/hr) 508 (pcu/hr)			TOTAL FLOW =	2525 (pcu/hr)		CRITICAL DFC	-	1.31

••••		ONSULTANCY LIMITED)			ROL	UNDABOUT JUNCTION ANALYS	IS			INITIALS	DATE
Traffic Im	pact Asse	essment for Proposed Temporary Open Storage of	Construction	n Material ar	nd Equipm				F	Prepared By:	FF	Sep-2024
Jn C -	Lau Fa	u Shan Roundabout				2027 D	Design - AM Peak	Project No.: 80	108 0	Checked By:	MM	Sep-2024
									F	Reviewed By:	FM	Sep-2024
S	han Tun (ARM /			307 [8] [6] [4] 250 [4] 250 [9] 195 [3]		/ //	(ARM C) 470 [1] Lau Fau Shan Rd					
				131								
EOM	ETRIC D	DETAILS: ARM	1 A	B	с	D						
	ETRIC D	Approach half width (m)	1.9	B 1.5	3.2	1.9						
EOM	= =	Approach half width (m) Entry width (m)	1.9 1.9	B 1.5 4.1	3.2 4.2	1.9 3.7						
EOM	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	1.9 1.9 1.0	B 1.5 4.1 2.3	3.2 4.2 1.5	1.9 3.7 1.8						
EOM	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	1.9 1.9 1.0 14.0	B 1.5 4.1 2.3 46.0	3.2 4.2 1.5 7.4	1.9 3.7 1.8 7.5						
EOM	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	1.9 1.9 1.0 14.0 38.0	B 1.5 4.1 2.3 46.0 38.0	3.2 4.2 1.5 7.4 38.0	1.9 3.7 1.8 7.5 38.0						
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	1.9 1.9 1.0 14.0 38.0 42.0	B 1.5 4.1 2.3 46.0 38.0 52.0	3.2 4.2 1.5 7.4 38.0 20.0	1.9 3.7 1.8 7.5 38.0 51.0						
	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	1.9 1.9 1.0 14.0 38.0 42.0 24	B 1.5 4.1 2.3 46.0 38.0 52.0 213	3.2 4.2 1.5 7.4 38.0 20.0 470	1.9 3.7 1.8 7.5 38.0 51.0 195						
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	1.9 1.9 1.0 14.0 38.0 42.0	B 1.5 4.1 2.3 46.0 38.0 52.0	3.2 4.2 1.5 7.4 38.0 20.0	1.9 3.7 1.8 7.5 38.0 51.0						
C		Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	1.9 1.9 1.0 14.0 38.0 42.0 24	B 1.5 4.1 2.3 46.0 38.0 52.0 213	3.2 4.2 1.5 7.4 38.0 20.0 470	1.9 3.7 1.8 7.5 38.0 51.0 195						
c UTPL	= = = = = = T PARA	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L	1.9 1.0 14.0 38.0 42.0 24 424	B 1.5 4.1 2.3 46.0 38.0 52.0 213 307 1.81	3.2 4.2 1.5 7.4 38.0 20.0 470 19	1.9 3.7 1.8 7.5 38.0 51.0 195 250 1.60				FOTAL FLOW		
JTPL	= = = = = = T PARA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	1.9 1.9 1.0 14.0 38.0 42.0 24 424 0.00 0.94	B 1.5 4.1 2.3 46.0 38.0 52.0 213 307 1.81 0.95	3.2 4.2 1.5 7.4 38.0 20.0 470 19 1.07 0.95	1.9 3.7 1.8 7.5 38.0 51.0 195 250 1.60 0.85					=	1902 (pcu/ 0.47
c UTPL 2	= = = = = T PAR/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	1.9 1.0 14.0 38.0 42.0 24 424 0.00 0.94 1.90	B 1.5 4.1 2.3 46.0 38.0 52.0 213 307 1.81 0.95 2.06	3.2 4.2 1.5 7.4 38.0 20.0 470 19 1.07 0.95 3.52	1.9 3.7 1.8 7.5 38.0 51.0 195 250 1.60 0.85 2.33						
) JTPL	= = = = = T PAR/ = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	1.9 1.0 14.0 38.0 42.0 24 424 0.00 0.94 1.90 0.11	B 1.5 4.1 2.3 46.0 38.0 52.0 213 307 1.81 0.95 2.06 0.11	3.2 4.2 1.5 7.4 38.0 20.0 470 19 1.07 0.95 3.52 0.11	1.9 3.7 1.8 7.5 38.0 51.0 195 250 1.60 0.85 2.33 0.11						
с UTPL 2	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	1.9 1.0 14.0 38.0 42.0 24 424 0.00 0.94 1.90 0.11 576	B 1.5 4.1 2.3 46.0 38.0 52.0 213 307 1.81 0.95 2.06 0.11 625	3.2 4.2 1.5 7.4 38.0 20.0 470 19 1.07 0.95 3.52 0.11 1066	1.9 3.7 1.8 7.5 38.0 51.0 195 250 1.60 0.85 2.33 0.11 706						
с UTPL 2	= = = = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	1.9 1.0 14.0 38.0 42.0 24 424 0.00 0.94 1.90 0.11 576 1.45	B 1.5 4.1 2.3 46.0 38.0 52.0 213 307 1.81 0.95 2.06 0.11 625 1.45	3.2 4.2 1.5 7.4 38.0 20.0 470 19 1.07 0.95 3.52 0.11 1066 1.45	1.9 3.7 1.8 7.5 38.0 51.0 195 250 1.60 0.85 2.33 0.11 706 1.45						
c UTPL 2 d c	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))) 0.21*Td(1+0.2*X2)	1.9 1.0 14.0 38.0 42.0 24 424 0.00 0.94 1.90 0.11 576 1.45 0.42	B 1.5 4.1 2.3 46.0 38.0 52.0 213 307 1.81 0.95 2.06 0.11 625 1.45 0.43	3.2 4.2 1.5 7.4 38.0 20.0 470 19 1.07 0.95 3.52 0.11 1066 1.45 0.52	1.9 3.7 1.8 7.5 38.0 51.0 195 250 1.60 0.85 2.33 0.11 706 1.45 0.45						
	= = = = = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	1.9 1.0 14.0 38.0 42.0 24 424 0.00 0.94 1.90 0.11 576 1.45	B 1.5 4.1 2.3 46.0 38.0 52.0 213 307 1.81 0.95 2.06 0.11 625 1.45	3.2 4.2 1.5 7.4 38.0 20.0 470 19 1.07 0.95 3.52 0.11 1066 1.45 0.52 1005	1.9 3.7 1.8 7.5 38.0 51.0 195 250 1.60 0.85 2.33 0.11 706 1.45						1902 (pcu/i 0.47

	VI CO	ONSULTANCY LIMITED)				ROUNDABOUT JUNCTION ANALYSIS		INITIALS	DATE
Traffic In	pact Asse	essment for Proposed Temporary Open Storage of	Construction	n Material ar	nd Equipme			By:	FF	Sep-2024
Jn C -	Lau Fa	u Shan Roundabout				4	2027 Design - PM Peak Project No.: 80108 Checked	By:	MM	Sep-2024
							Reviewed	d By:	FM	Sep-2024
S	han Tun (ARM /			[8]			(ARM B) ep Bay Rd (ARM C) (ARM C) Lau Fau Shan Rd (ARM D) Deep Bay Rd			
EOM	ETRIC D	DETAILS: ARM	A	B	с	D				
	ETRIC D	DETAILS: ARM Approach half width (m)	A 1.9		с 3.2	D 1.9				
EOM				В						
EOM	=	Approach half width (m) Entry width (m) Effective length of flare (m)	1.9	B 1.5 4.1 2.3	3.2 4.2 1.5	1.9 3.7 1.8				
EOM	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	1.9 1.9 1.0 14.0	B 1.5 4.1 2.3 46.0	3.2 4.2 1.5 7.4	1.9 3.7 1.8 7.5				
EOM	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	1.9 1.9 1.0 14.0 38.0	B 1.5 4.1 2.3 46.0 38.0	3.2 4.2 1.5 7.4 38.0	1.9 3.7 1.8 7.5 38.0				
EOM	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	1.9 1.9 1.0 14.0	B 1.5 4.1 2.3 46.0	3.2 4.2 1.5 7.4	1.9 3.7 1.8 7.5				
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	1.9 1.9 1.0 14.0 38.0 42.0 20	B 1.5 4.1 2.3 46.0 38.0 52.0 186	3.2 4.2 1.5 7.4 38.0 20.0 370	1.9 3.7 1.8 7.5 38.0 51.0 204				
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	1.9 1.9 1.0 14.0 38.0 42.0	B 1.5 4.1 2.3 46.0 38.0 52.0	3.2 4.2 1.5 7.4 38.0 20.0	1.9 3.7 1.8 7.5 38.0 51.0				
0	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	1.9 1.9 1.0 14.0 38.0 42.0 20	B 1.5 4.1 2.3 46.0 38.0 52.0 186	3.2 4.2 1.5 7.4 38.0 20.0 370	1.9 3.7 1.8 7.5 38.0 51.0 204				
c UTPL	= = = = = = JT PARA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L	1.9 1.9 1.0 14.0 38.0 42.0 20 423	B 1.5 4.1 2.3 46.0 38.0 52.0 186 314 1.81	3.2 4.2 1.5 7.4 38.0 20.0 370 35	1.9 3.7 1.8 7.5 38.0 51.0 204 256 1.60	TOTAL F		=	1808 (pcu/
C UTPL	= = = = = JT PAR/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	1.9 1.9 1.0 14.0 38.0 42.0 20 423 0.00 0.94	B 1.5 4.1 2.3 46.0 38.0 52.0 186 314 1.81 0.95	3.2 4.2 1.5 7.4 38.0 20.0 370 35 1.07 0.95	1.9 3.7 1.8 7.5 38.0 51.0 204 256 1.60 0.85	TOTAL F CRITICAL		=	1808 (pcu/ 0.41
) JTPL	= = = = = JT PAR/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	1.9 1.0 14.0 38.0 42.0 20 423 0.00 0.94 1.90	B 1.5 4.1 2.3 46.0 38.0 52.0 186 314 1.81 0.95 2.06	3.2 4.2 1.5 7.4 38.0 20.0 370 35 1.07 0.95 3.52	1.9 3.7 1.8 7.5 38.0 51.0 204 256 1.60 0.85 2.33				
) JTPL	= = = = = JT PARA = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	1.9 1.0 14.0 38.0 42.0 20 423 0.00 0.94 1.90 0.11	B 1.5 4.1 2.3 46.0 38.0 52.0 186 314 1.81 0.95 2.06 0.11	3.2 4.2 1.5 7.4 38.0 20.0 370 35 1.07 0.95 3.52 0.11	1.9 3.7 1.8 7.5 38.0 51.0 204 256 1.60 0.85 2.33 0.11				
с UTPL 2	= = = = = JT PAR/ = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	1.9 1.0 14.0 38.0 42.0 20 423 0.00 0.94 1.90 0.11 576	B 1.5 4.1 2.3 46.0 38.0 52.0 186 314 1.81 0.95 2.06 0.11 625	3.2 4.2 1.5 7.4 38.0 20.0 370 35 1.07 0.95 3.52 0.11 1066	1.9 3.7 1.8 7.5 38.0 51.0 204 256 1.60 0.85 2.33 0.11 706				
c UTPL 2	= = = = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + $((E-V)/(1+2S))$ EXP(D-60)/10) 303^*X2 1+(0.5/(1+M))	1.9 1.0 14.0 38.0 42.0 423 0.00 0.94 1.90 0.11 576 1.45	B 1.5 4.1 2.3 46.0 38.0 52.0 186 314 1.81 0.95 2.06 0.11 625 1.45	3.2 4.2 1.5 7.4 38.0 20.0 370 35 1.07 0.95 3.52 0.11 1066 1.45	1.9 3.7 1.8 7.5 38.0 51.0 204 256 1.60 0.85 2.33 0.11 706 1.45				
c UTPL 2 d	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))) 0.21*Td(1+0.2*X2)	1.9 1.0 14.0 38.0 42.0 20 423 0.00 0.94 1.90 0.11 576 1.45 0.42	B 1.5 4.1 2.3 46.0 38.0 52.0 186 314 1.81 0.95 2.06 0.11 625 1.45 0.43	3.2 4.2 1.5 7.4 38.0 20.0 370 35 1.07 0.95 3.52 0.11 1066 1.45 0.52	1.9 3.7 1.8 7.5 38.0 51.0 204 256 1.60 0.85 2.33 0.11 706 1.45 0.45				
c	= = = = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + $((E-V)/(1+2S))$ EXP(D-60)/10) 303^*X2 1+(0.5/(1+M))	1.9 1.0 14.0 38.0 42.0 423 0.00 0.94 1.90 0.11 576 1.45	B 1.5 4.1 2.3 46.0 38.0 52.0 186 314 1.81 0.95 2.06 0.11 625 1.45	3.2 4.2 1.5 7.4 38.0 20.0 370 35 1.07 0.95 3.52 0.11 1066 1.45	1.9 3.7 1.8 7.5 38.0 51.0 204 256 1.60 0.85 2.33 0.11 706 1.45				1808 (pcu/l 0.41

		ED	PR	IORITY JUN	CTION	JALCULA	AHON						11	NITIALS		DATE
ffic Impact Assessment for Pr	Proposed Temporary Open Storag	ge of Construction Material			au Fau Shan							Prepared	By:	FF	S	Sep-2024
D - Deep Bay Rd / Ur	nnamed Access		2027	Design - AM Peak					Pro	ject No.:	80108	Checked	By:	MM	S	Sep-2024
												Reviewed	d By:	FM	S	Sep-2024
					4											
		(ARM A)			×			NOTES : (GI			,					
		Deep Bay Ro				\searrow		W =		JOR ROAD						
		[10] [11]	[12]			\frown		W cr =	CE	NTRAL RE	SERVE WI	DTH				
		2 50	9			`		Wb-a =	LAI	NE WIDTH	AVAILABL	E TO VEH	HICLE WAITIN	NG IN STRE	AM b-a	
								Wb-c =	LAI	NE WIDTH	AVAILABL	E TO VEH	HICLE WAITIN	NG IN STRE	AM b-c	
		↓ ↓	L.					W c-b =	IAI	NE WIDTH	AVAII ARI		HICLE WAITI	NG IN STRE	AM c-h	
-	[9] 2 🛉							VIb-a =					HICLES WAI			
Unnamed Access	[8] 2				Unnamed Acc	888		Vrb-a =	VIS	SIBILITY TO	D THE RIGH	IT FOR V	EHICLES WA	AITING IN S	TREAM	b-a
Official Access	[7] 5		T 5	[1]	official Acc	033		Vr b-c =	VIS	SIBILITY TO	D THE RIGH	IT FOR V	EHICLES WA	AITING IN S	TREAM	b-c
(ARM D)	•		← 4	[2]	(ARM B)			Vr c-b =	VIS	SIBILITY TO	THE RIGH	IT FOR V	EHICLES WA	AITING IN S	TREAM	c-b
()			16	[3]	, ,			D =	ST	REAM-SPE	ECIFIC B-A					
-	•	<hr/>		[0]				E =		REAM-SPE						
		1 1 1						-		REAM-SPE	CIFIC C-B					
		2 40 15						Y =	(1-(0.0345W)						
									(,,	0.004000)						
		[6] [5] [4]							(1)	0.004077)						
		[6] [5] [4] Deep Bay Rd'(A	ARM C)						(1)	0.00+000)						
GEOMETRIC DE			ARM C)	GEOMET									COMPARISI			ow
GEOMETRIC DE			ARM C)	GEOMET	RIC FACTORS	S :							COMPARISI TO CAPACI		GIGN FL	.ow
GENERAL	ETAILS:		ARM C)	Xb	=	0.818			(a =		0.845		TU CAPACI	I Y:		
GENERAL W =	ETAILS: 3.90 (metres)	Deep Bay Rd'(A		X b X c	= =	0.818 0.799)	(a = (d =		1.066		I U CAPACI	IT: DFC b-a	=	0.010
GENERAL	ETAILS:		0.865	X b X c Z b	= = =	0.818 0.799 0.928			(a = (d = (d =		1.066 1.188		I U CAPACI	DFC b-a DFC b-c	= =	0.010 0.023
GENERAL W = W cr =	ETAILS: 3.90 (metres) 0 (metres)	Deep Bay Rd'(A	0.865	X b X c	= =	0.818 0.799			(a = (d =		1.066		I U CAPACI	DFC b-a DFC b-c DFC c-b	= = =	0.010 0.023 0.025
GENERAL W = W cr = MAJOR ROAD (w a-d =	ETAILS: 3.90 (metres) 0 (metres) (ARM A) 2.0 (metres)	Y = MAJOF MAJOR W c-b =	0.865 ROAD (ARM C) 2.0 (metres)	X b X c Z b M b	= = =	0.818 0.799 0.928	AHEAU II))) 2	(a = (d = (d =		1.066 1.188		IU CAPACI	DFC b-a DFC b-c DFC c-b DFC lb-d DFCl b-d DFCl b-d	= = = =	0.010 0.023 0.025 0.003 0.004
GENERAL W = W cr = MAJOR ROAD (W a-d = Vr a-d =	ETAILS: 3.90 (metres) 0 (metres) (ARM A) 2.0 (metres) 120 (metres)	Y = MAJOF MAJOR W c-b = Vr c-b =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres)	Хb Хc Zb Mb Ркорон	= = = =	0.818 0.799 0.928 0.860 DR STRAIGHT	AHEAD II))) 2 	2a = 2d = 2d = 1d =		1.066 1.188 1.097		TU CAPACI	DFC b-a DFC b-c DFC c-b DFC lb-d DFC lb-d DFC d-c	= = = = =	0.010 0.023 0.025 0.003 0.003 0.004
GENERAL W = W cr = MAJOR ROAD W a-d = Vr a-d = q a-b =	ETAILS: 3.90 (metres) 0 (metres) (ARM A) 2.0 (metres) 120 (metres) 9 (pcu/hr)	V = MAJOF MAJOR W c-b = Vr c-b = q c-a =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr)	Хb Хc Zb Мb Ркорон rb-a	= = = :: : ION OF MING	0.818 0.799 0.928 0.860 DR STRAIGHT 0.007924)) Z RAFFIC : r	(a = (d = (d = 1 d = d-c =		1.066 1.188 1.097 0.008		TU CAPACI	DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC d-c DFC d-a	= = = = =	0.010 0.023 0.025 0.003 0.004 0.007 0.002
GENERAL W = W cr = MAJOR ROAD (W a-d = Vra-d = q a-b = q a-c =	ETAILS: 3.90 (metres) 0 (metres) (ARM A) 2.0 (metres) 120 (metres) 9 (pcu/hr) 50 (pcu/hr)	Y = MAJOF MAJOR W c-b = Vr c-b = q c-a = q c-b =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 15 (pcu/hr)	Хb Хc Zb Мb гконом rb-a qlb-d	= = = {110N OF MING = =	0.818 0.799 0.928 0.860 DR S I RAIGH I 0.007924 2.015848	(pcu/hr))) 2 KAFFIC : q	(a = (d = (d = 1 d = d-c = d-b =		1.066 1.188 1.097 0.008 1.0079239	(pcu/hr)	TU CAPACI	DFC b-a DFC b-c DFC c-b DFC lb-d DFC lb-d DFC d-c DFC d-a DFC a-d	= = = = =	0.010 0.023 0.003 0.003 0.004 0.007 0.002 0.003
GENERAL W = W cr = MAJOR ROAD (W a-d = Vr a-d = q a-b = q a-c = q a-d =	ETAILS: 3.90 (metres) 0 (metres) (ARM A) 2.0 (metres) 120 (metres) 9 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr)	Deep Bay Rd'(A Y = MAJOF MAJOR W с-b = Vr с-b = q с-a = q с-b = q с-b = q с-d =	0.865 2.0 (MRM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 15 (pcu/hr) 2 (pcu/hr)	Xb Xc Zb Mb РКОРОК r b-a ql b-d qr b-d	= = = : : I ION OF MING = = =	0.818 0.799 0.928 0.860 DK S I KAIGH I 0.007924 2.015848 1.984152)) 2 KAFFIC : q	(a = (d = (d = 1 d = d-c =		1.066 1.188 1.097 0.008	(pcu/hr)	TU CAPACI	DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC d-c DFC d-a	= = = = =	0.010 0.023 0.003 0.003 0.003 0.003 0.003 0.003
GENERAL W = W cr = MAJOR ROAD (W a-d = Vr a-d = q a-b = q a-b = q a-c = q a-d = MINOR ROAD (/	ETAILS: 3.90 (metres) 0 (metres) (ARM A) 2.0 (metres) 120 (metres) 9 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) ARM B)	Deep Bay Rd'(A Y = MAJOF MAJOR W c-b Vr c-b q c-a q c-b q c-b q c-d MINOR ROAD	0.865 2.0 (MRM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 15 (pcu/hr) 2 (pcu/hr) (ARM D)	Xb Xc Zb Mb РКОРОК r b-a ql b-d qr b-d	= = = {110N OF MING = =	0.818 0.799 0.928 0.860 DK S I KAIGH I 0.007924 2.015848 1.984152	(pcu/hr))) 2 KAFFIC : q	(a = (d = (d = 1 d = d-c = d-b =		1.066 1.188 1.097 0.008 1.0079239	(pcu/hr)	TU CAPACI	DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC d-c DFC d-c DFC d-a DFC a-d DFC a-d	= = = = = =	0.010 0.023 0.003 0.003 0.003 0.003 0.003 0.003
GENERAL	ETAILS: 3.90 (metres) 0 (metres) (ARM A) 2.0 (metres) 120 (metres) 9 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) ARM B) 3.3 (metres)	Deep Bay Rd'(A Y = MAJOF MAJOR W c-b Q c-d WINOR ROAD (W W d-c	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 15 (pcu/hr) 2 (pcu/hr) (AKM D) 6.0 (metres)	X b X c Z b M b PKOPOH r b-a ql b-d qr b-d CAPACIT	= = = : : I ION OF MING = = = = : Y OF MOVEM	0.818 0.799 0.928 0.860 DK STRAIGHT 0.007924 2.015848 1.984152 ENT :	(pcu/hr) (pcu/hr)) XAFFIC : ql qr	(a = (d = (d = 1 d = d-c = d-b = d-b =		1.066 1.188 1.097 0.008 1.0079239 0.9920761	(pcu/hr) (pcu/hr)	TU CAPACI	DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC d-c DFC d-c DFC d-a DFC a-d DFC a-d	= = = = = =	0.010 0.023 0.003 0.003 0.003 0.003 0.003 0.003
GENERAL W = W cr = MAJOR ROAD (W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROAD (<i>f</i> W b-a = W b-c =	ETAILS: 3.90 (metres) 0 (metres) (ARM A) 2.0 (metres) 120 (metres) 9 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) ARM B) 3.3 (metres) 3.3 (metres)	Deep Bay Rd'(A Y = MAJOF MAJOR W c-b q c-b q c-b q c-d W d-c W d-c W d-c	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 15 (pcu/hr) 2 (pcu/hr) (ARM D) 6.0 (metres) 6.0 (metres)	X b X c Z b M b PKOPOH r b-a qi b-d qr b-d CAPACIT Q b-a	= = = = = = = Y OF MOVEM =	0.818 0.799 0.928 0.860 DR S I RAIGH I 0.007924 2.015848 1.984152 ENT : 485	(pcu/hr) (pcu/hr) (pcu/hr)	KAFFIC: r q q Q	(a = (d = (d = 1 d = d-c = d-b = d-b =		1.066 1.188 1.097 0.008 1.0079239 0.9920761 631	(pcu/hr) (pcu/hr) (pcu/hr)	TU CAPACI	DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC d-c DFC d-c DFC d-a DFC a-d DFC a-d	= = = = = =	0.010 0.023 0.025 0.003 0.004 0.007 0.007
GENERAL W = W cr = MAJOR ROAD (W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROAD (/ W b-a = W b-c = VI b-a =	ETAILS: 3.90 (metres) 0 (metres) (ARM A) 2.0 (metres) 120 (metres) 9 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) 3.3 (metres) 3.3 (metres) 28 (metres)	Y = MAJOF MAJOR W c-b Vr c-b q c-a q c-b q c-d Q c-d VI c-d VI c-d VI d-c VI d-c	0.865 2.0 (metres) 60 (metres) 40 (pcu/hr) 15 (pcu/hr) 2 (pcu/hr) 6.0 (metres) 6.0 (metres) 22 (metres)	X b X c Z b M b PROPOR ql b-d qr b-d CAPACII Q b-a Q b-c	= = = = = = = = Y OF MOVEM = =	0.818 0.799 0.928 0.860 DR STRAIGHT 0.007924 2.015848 1.984152 ENT : 485 674	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	RAFFIC: r ql qr QQ	Ca = Cd = Cd = 1 d = d-c = d-b = d-b = d-b = d-c = d-a =		1.066 1.188 1.097 0.008 1.0079239 0.9920761 631 868	(pcu/hr) (pcu/hr) (pcu/hr)	IU CAPACI	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-d DFC d-a DFC d-a DFC d-a DFC a-d DFC d-b		0.01(0.02; 0.02; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000;
GENERAL W = W cr = MAJOR ROAD (W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROAD (<i>f</i> W b-a = W b-c =	ETAILS: 3.90 (metres) 0 (metres) (ARM A) 2.0 (metres) 120 (metres) 9 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) ARM B) 3.3 (metres) 3.3 (metres)	Deep Bay Rd'(A Y = MAJOF MAJOR W c-b q c-b q c-b q c-d W d-c W d-c W d-c	0.865 2.0 (metres) 60 (metres) 40 (pcu/hr) 15 (pcu/hr) 2 (pcu/hr) (ARM D) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres)	X b X c Z b M b PKOPOH r b-a qi b-d qr b-d CAPACIT Q b-a	= = = = = = = = * Y OF MOVEM = = =	0.818 0.799 0.928 0.860 DR S I RAIGH I 0.007924 2.015848 1.984152 ENT : 485	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	RAFFIC : r ql qr Q Q	(a = (d = (d = 1 d = d-c = d-b = d-b =		1.066 1.188 1.097 0.008 1.0079239 0.9920761 631 868 613	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	TU CAPACI	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-d DFC d-a DFC d-a DFC d-a DFC a-d DFC d-b	= = = = = =	0.010 0.023 0.003 0.003 0.004 0.007 0.002 0.003 0.003
GENERAL W = W cr = MAJOR ROAD (W a-d = Q a-b = Q a-b = Q a-c = Q a-d = MINOR ROAD (/ W b-a = W b-c = VI b-a = VI b-a =	ETAILS: 3.90 (metres) 0 (metres) (ARM A) 2.0 (metres) 120 (metres) 9 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) ARM B) 3.3 (metres) 28 (metres) 28 (metres) 28 (metres) 28 (metres)	Y = MAJOF MAJOR W c-b Y c-b Q c-d W d-c W d-a VI d-c VI d-c VI d-c	0.865 2.0 (metres) 60 (metres) 40 (pcu/hr) 15 (pcu/hr) 2 (pcu/hr) 6.0 (metres) 6.0 (metres) 22 (metres)	X b X c Z b M b PKOPOK r b-a ql b-d qr b-d CAPACII Q b-a Q b-c Q c-b	= = = = = = Y OF MOVEM = = = =	0.818 0.799 0.928 0.860 DK S I KAIGH I 0.007924 2.015848 1.984152 ENT : 485 674 580	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	KAFFIC : r ql qr Q Q Q Q	(a = (d = (d = 1 d = d-c = d-b = d-b = d-a = a-d =		1.066 1.188 1.097 0.008 1.0079239 0.9920761 631 868 613 655	(pcu/hr) (pcu/hr) (pcu/hr)	IU CAPACI	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-d DFC d-a DFC d-a DFC d-a DFC a-d DFC d-b		0.01(0.02; 0.02; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000;
GENERAL W = W cr = MAJOR ROAD (W a-d = Vr a-d = q a-b = q a-b = q a-c = q a-d = MINOR ROAD (W b-a = W b-c = Vr b-a = Vr b-a = Vr b-a = Vr b-a =	ETAILS: 3.90 (metres) 0 (metres) (ARM A) 2.0 (metres) 120 (metres) 9 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) ARM B) 3.3 (metres) 3.3 (metres) 28 (metres) 28 (metres) 80 (metres) 80 (metres)	Y = MAJOF MAJOR W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d = MINOR ROAD (W d-c = W d-a = VI d-c = Vr d-a = Vr d-a =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 15 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) 6.0 (metres) 6.0 (metres) 60 (metres) 90 (metres)	X b X c Z b M b r b-a ql b-d qr b-d CAPACII Q b-a Q b-c Q c-b Q b-c Q c-b	= = = = = = = = = = = = = = = = = = =	0.818 0.799 0.928 0.860 OK SIRAIGHI 0.007924 2.015848 1.984152 ENT : 485 674 580 511	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	KAFFIC : r ql qr Q Q Q Q	(a = (d = (d = (d - b) =		1.066 1.188 1.097 0.008 1.0079239 0.9920761 631 868 613 655	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	IU CAPACI	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-d DFC d-a DFC d-a DFC d-a DFC a-d DFC d-b		0.011 0.02: 0.02: 0.000 0.000 0.000 0.000 0.000 0.000

FM CONSULTANCY LIMIT	ED	PRIC	ORITY JUNG	CTION CALCU	LATION	J				INITIALS		DATE
ffic Impact Assessment for Proposed Temporary Open Storag	ge of Construction Material ar	nd Equipment of 3 Years at Vario	ous Lots in D.D.129, Lau	u Fau Shan					Prepared	By: FF		Sep-2024
D - Deep Bay Rd / Unnamed Access		2027 De	esign - PM Peak				Project No.:	80108	Checked	By: MM		Sep-2024
									Reviewed	By: FM		Sep-2024
[9] 0 Unnamed Access [7] 0 (ARM D)	(ARM A) Deep Bay Rd [10] [11] 0 62 ↓ ↓	[12] 5 • 7 • 0 • 16	[1] [2] [3]	Jnnamed Access (ARM B)		NOTES : (GEOM W = W cr = W b-a = W c-b = V c-b = V r b-a = V r b-c = V r c-b = D = E =	MAJOR RO CENTRAL FI LANE WIDT LANE WIDT VISIBILITY VISIBILITY VISIBILITY VISIBILITY STREAM-SU	AD WIDTH RESERVE W TH AVAILABI TH AVAILABI TH AVAILABI TO THE LEF TO THE RIG TO THE RIG PECIFIC B-A PECIFIC B-C	IDTH LE TO VEH LE TO VEH T FOR VEI HT FOR VI HT FOR VI HT FOR VI	IICLE WAITING IN ST IICLE WAITING IN ST IICLE WAITING IN ST HICLES WAITING IN EHICLES WAITING IN EHICLES WAITING IN	REAM b-a REAM b-a REAM c-t TREAM STREAM STREAM	a C D b-a 1 b-a 1 b-c
	 3 30 17 [6] [5] [4]					F = Y =	(1-0.0345W		,			
		RM C)	GEOMETE	RIC FACTORS :						COMPARISION OF D	ESIGN FI	LOW
GEOMETRIC DETAILS:	[6] [5] [4]	RM C)				Y =	(1-0.0345W	') 		COMPARISION OF D	ESIGN FI	LOW
GEOMETRIC DETAILS:	[6] [5] [4]	RM C)	Хb	= 0.818		Y = Xa	(1-0.0345W	0.845	i	TU CAPACITY:	ESIGN FI	
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres)	[6] [5] [4]	0.865		= 0.818	9	Y =	(1-0.0345W	') 				0.014
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres)	[6] [5] [4] Deep Bay Rd'(AR	· · ·	X b X c	= 0.818 = 0.799	3	Y = Xa Xd Zd	(1-0.0345W = =	0.845		DFC b-a	=	_ OW 0.014 0.023 0.025
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres)	[6] [5] [4] Deep Bay Rd'(AR	0.865 ROAD (ARM C)	X b X c Z b	= 0.818 = 0.799 = 0.928	3	Y = Xa Xd Zd	(1-0.0345W = = =	0.845 1.066 1.188		DFC b-a	= =	0.014 0.023 0.029
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-D =	0.865 ROAD (ARM C) 2.0 (metres)	X b X c Z b M b	= 0.818 = 0.799 = 0.928) 3)	Y = Xa Xd Zd Md	(1-0.0345W = = =	0.845 1.066 1.188		DFC b-a DFC b-c DFC b-c DFC c-b DFC l-d DFC r-d	= = = =	0.014 0.023 0.029 0.000
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres)	 [6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres)	X b X c Z b M b	= 0.818 = 0.799 = 0.928 = 0.860)) HIAHEADII	Y = Xa Xd Zd Md KAFFIC:	(1-0.0345W = = = =	() 0.845 1.066 1.188 1.097		DFC b-a DFC b-c DFC c-b DFC b-c DFC b-d DFC b-d DFC b-d DFC d-c	= = = = =	0.014 0.023 0.009 0.000 0.000
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 5 (pcu/hr)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-D = Vr c-b = q c-a =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr)	Xb Xc Zb Mb PROPOR	= 0.818 = 0.799 = 0.928 = 0.860 HION OF MINOR 5 I RAIGI = 0.011058	9 3) HIAHEAD 3	Y = Xa Xd Zd Md KAFFIC : rd-c	(1-0.0345W) = = = = =	() 0.845 1.066 1.188 1.097 0.000		DFC b-a DFC b-c DFC c-b DFC c-b DFC lb-d DFC lb-d DFC d-a	= = = = =	0.014 0.023 0.025 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 5 (pcu/hr) q a-c = 62 (pcu/hr)	 [6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = V c-b = q c-a = q c-b = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 17 (pcu/hr)	Xb Xc Zb Mb PROPOR r b-a ql b-d	= 0.818 = 0.795 = 0.926 = 0.860 HION OF MINOR STRAIGH = 0.011058 = 0.011058) 3 HIAHEAUI 3) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b	(1-0.0345W = = = = = = =	() 0.845 1.066 1.188 1.097 0.000 0	(pcu/hr)	DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC b-d DFC b-d DFC d-a DFC d-a DFC a-d	= = = = = = =	0.014 0.023 0.029 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 5 (pcu/hr)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-D = Vr c-b = q c-a =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr)	Xb Xc Zb Mb PROPOR	= 0.818 = 0.799 = 0.928 = 0.860 HION OF MINOR 5 I RAIGI = 0.011058) 3 HIAHEAUI 3) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC : rd-c	(1-0.0345W = = = = = = =	() 0.845 1.066 1.188 1.097 0.000 0		DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC d-c DFC d-c DFC c-a DFC c-d DFC c-d DFC c-d DFC c-d	= = = = =	0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 5 (pcu/hr) q a-c = 62 (pcu/hr)	 [6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = V c-b = q c-a = q c-b = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 17 (pcu/hr) 3 (pcu/hr)	X b X c Z b M b PROPOR I r b-a ql b-d qr b-d	= 0.818 = 0.795 = 0.926 = 0.860 HION OF MINOR STRAIGH = 0.011058 = 0.011058) 3 HIAHEAUI 3) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b	(1-0.0345W = = = = = = =	() 0.845 1.066 1.188 1.097 0.000 0	(pcu/hr)	DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC b-d DFC b-d DFC d-a DFC d-a DFC a-d	= = = = = = =	0.014 0.023 0.009 0.009 0.009 0.009 0.009 0.009
GEOMETRIC DETAILS:GENERAL $W = 3.90 \text{ (metres)}$ $W cr = 0 \text{ (metres)}$ WAJOR ROAD (ARM A) $w a-d = 2.0 \text{ (metres)}$ $Vr a-d = 120 \text{ (metres)}$ $vr a-d = 120 \text{ (metres)}$ $q a-b = 5 \text{ (pcu/hr)}$ $q a-c = 62 \text{ (pcu/hr)}$ $q a-d = 0 \text{ (pcu/hr)}$	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 17 (pcu/hr) 3 (pcu/hr) .RM D)	X b X c Z b M b PROPOR I r b-a ql b-d qr b-d	= 0.818 = 0.799 = 0.926 = 0.860 HION OF MINOR STRAIGH = 0.011058 = 0) 3 HIAHEAUI 3) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b	(1-0.0345W = = = = = = =	() 0.845 1.066 1.188 1.097 0.000 0	(pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC d-c DFC d-c DFC c-a DFC c-d DFC c-d DFC c-d DFC c-d	= = = = = = =	0.014 0.023 0.000 0.000 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) Vr a-d = 120 (metres) q a-b = 5 (pcu/hr) q a-c = 62 (pcu/hr) q a-d = 0 (pcu/hr) MINOR ROAD (ARM B)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-D = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD (AI	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 17 (pcu/hr) 3 (pcu/hr)	X b X c Z b M b PROPOR I r b-a ql b-d qr b-d	= 0.818 = 0.799 = 0.926 = 0.860 HION OF MINOR STRAIGH = 0.011058 = 0	9 3 1 3 3 (pcu/hr) 0 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b	(1-0.0345W = = = = = = = =	() 0.845 1.066 1.188 1.097 0.000 0 0	(pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC d-c DFC d-c DFC c-a DFC c-d DFC c-d DFC c-d DFC c-d	= = = = = = =	0.014 0.023 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) V ra-d = 120 (metres) q a-b = 5 (pcu/hr) q a-c = 62 (pcu/hr) q a-d = 0 (pcu/hr) MINOR ROAD (ARM B) W b-a = 3.3 (metres)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d = MINOR ROAD (AI W d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 17 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) 4KM D) 6.0 (metres)	X b X c Z b M b PROPORI r b-a ql b-d qr b-d qr b-d	= 0.818 = 0.799 = 0.928 = 0.860 HION OF MINOR STRAIGH = 0.011058 = 00 = 00 Y OF MOVEMENT :	9 3 3 3 3 0 (pcu/hr) 0 (pcu/hr) 5 (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b	(1-0.0345W = = = = = = = = =	() 0.845 1.066 1.188 1.097 0.000 0 0 0	(pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC b-d DFC d-c DFC d-a DFC d-a DFC d-b	= = = = = = =	0.014 0.023 0.000 0.000 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a-d = 2.0 (metres) V r a-d = 120 (metres) q a-b = 5 (pcu/hr) q a-c = 62 (pcu/hr) q a-d = 0 (pcu/hr) MINOR ROAD (ARM B) W b-a = 3.3 (metres) W b-c = 3.3 (metres)	 [6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-b = q c-b = q c-d = MINOR ROAD (AI W d-c = W d-a = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 17 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) 6.0 (metres) 6.0 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d Q b-a	= 0.818 = 0.795 = 0.926 = 0.860 HON OF MINOR STRAIGH = 0.011058 = 0.011058 = 0.011058 = 0.01058 = 0.01058 = 0.01058 = 0.01058 = 0.925 = 0.901058 = 0.011058 = 0.01058 = 0.011058 = 0.	 a b c d d (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) 	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-c	(1-0.0345W = = = = = = = = =	() 0.845 1.066 1.188 1.097 0.000 0 0 633 873	(pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC d-c DFC d-c DFC c-a DFC c-d DFC c-d DFC c-d DFC c-d	= = = = = = =	0.014 0.023 0.000 0.000 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS: GENERAL W = 3.90 (metres) W cr = 0 (metres) MAJOR ROAD (ARM A) W a - d = 2.0 (metres) Vr a - d = 120 (metres) q a - b = 5 (pcu/hr) q a - c = 62 (pcu/hr) q a - d = 0 (pcu/hr) MINOR RUAD (ARM B) W b - a = 3.3 (metres) W b - c = 3.3 (metres) V b - a = 28 (metres)	 [6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d = MINOR ROAD (AI W d-c = W d-c = W d-c = VI d-c = 	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 17 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) 4RM D) 6.0 (metres) 6.0 (metres) 22 (metres)	X b X c Z b M b PROPOR f r b-a ql b-d qr b-d qr b-d CAPACITY Q b-a Q b-c	= 0.818 = 0.795 = 0.926 = 0.860 HON OF MINOR STRAIGH = 0.011058 = 0.01058 = 0.01058 = 0.011058 = 0.011058	 a b c d (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) 	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-c	(1-0.0345W) = = = = = = = = = = = = = = = = =	() 0.845 1.066 1.188 1.097 0.000 0 0 633 873 614	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC b-d DFC d-c DFC d-a DFC d-a DFC d-b	= = = = = = = =	0.014 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS:GENERALW=W cr=0 (metres)MAJOR ROAD (ARM A)W a-d=Vr a-d=120 (metres)q a-b=5 (pcu/hr)q a-c=62 (pcu/hr)q a-d=0 (pcu/hr)MINOR ROAD (ARM B)W b-a=3.3 (metres)W b-a=0.3 (metres)VI b-a=28 (metres)Vr b-a=28 (metres)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-D = Vr c-b = q c-a = q c-b = q c-b = q c-d = MINOR ROAD (AI W d-c = W d-a = VI d-c = Vr d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 17 (pcu/hr) 3 (pcu/hr) KM D) 6.0 (metres) 6.0 (metres) 60 (metres) 60 (metres)	X b X c Z b M b PROPORT r b-a ql b-d qr b-d qr b-d CAPACITO Q b-a Q b-a Q c-b	= 0.818 = 0.799 = 0.928 = 0.860 HION OF MINOR STRAIGH = 0.011058 = 0 Y OF MOVEMENT : = 488 = 677 = 575	 a b c d d	Y = Xa Xd Zd Md Md RAFFIC: rd-c qld-b qrd-b Qd-a Qa-d	(1-0.0345W) = = = = = = = = = = = = = = = = = = =	() 0.845 1.066 1.188 1.097 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC b-d DFC d-c DFC d-a DFC d-a DFC d-b	= = = = = = = =	0.014 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GEOMETRIC DETAILS:GENERALW = 3.90 (metres) W cr = 0 (metres)W dr = 2.0 (metres) MAJOR ROAD (ARM A)W a-d = 2.0 (metres) q a-b = 5 (pcu/hr) q a-b = 5 (pcu/hr) q a-c = 62 (pcu/hr) q a-d = 0 (pcu/hr)MINOR ROAD (ARM B)W b-a = 3.3 (metres) W b-a = 28 (metres) VI b-a = 28 (metres) Vr b-a = 28 (metres) Vr b-a = 80 (metres) Vr b-c = 80 (metres)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR R W c-D = Q c-b = Q c-b = Q c-b = Q c-d = MINOR ROAD (AI W d-c = W d-a = VI d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 30 (pcu/hr) 17 (pcu/hr) 3 (pcu/hr) 3 (pcu/hr) 6.0 (metres) 6.0 (metres) 60 (metres) 90 (metres)	X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d Q b-a Q b-a Q b-a Q b-a Q b-a Q b-c Q c-b Q l b-d	= 0.818 = 0.799 = 0.928 = 0.860 HION OF MINOR STRAIGH = 0.011058 = 0.010	 a b c c	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-a Qa-d Qa-d Qa-d Qa-d Qa-b	(1-0.0345W) = = = = = = = = = = = = = = = = = = =	() 0.845 1.066 1.188 1.097 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC b-d DFC d-c DFC d-a DFC d-a DFC d-b	= = = = = = = =	0.014 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FM CONSULTANCY LIMI	TED	PRIORITY	JUNCTION CALCULA	TION			INITIALS	DATE
ffic Impact Assessment for Proposed Temporary Open Sto		ment of 3 Years at Various Lots in	D.D.129. Lau Fau Shan			Prepared By:	FF	Sep-2024
E - Unnamed Access to Subject Site / Unn		2027 Design - A			Project No.: 80108	Checked By:	MM	Sep-2024
· · · · · ·		Ŭ				Reviewed By:	FM	Sep-2024
nnamed Access to Site [4] 52 [3] 0 (ARM A)	18 7 [2] [1] (ARM B)	← 60 [5] ↓ 11 [6]	N Unnamed Access to Site (ARM C)	NOTES : (GEC W = W cr = W b-a = W b-c = W c-b = VI b-a = VI b-a = Vr b-a = Vr b-c = Vr c-b = D = E = F =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABI LANE WIDTH AVAILABI VISIBILITY TO THE LEF VISIBILITY TO THE RIG VISIBILITY TO THE RIG STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-E	LE TO VEHICLE W. LE TO VEHICLE W. LE TO VEHICLE W. T FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STR AITING IN STR WAITING IN ST S WAITING IN S S WAITING IN S	EAM b-c EAM c-b IREAM b-a STREAM b-a STREAM b-c
	Unnamed Access	1		Y =	(1-0.0345W)			
GEOMETRIC DETAILS:	()	CTORS :	THE CAPACITY OF MOVEN		(1-0.0345W)	COMPARISION O TO CAPACITY:	F DESIGN FLC	w
MAJOR ROAD (ARM A)	Unnamed Access			MENT :	(1-0.0345W)	COMPARISION O TO CAPACITY:		
MAJOR ROAD (ARM A) W = 5.2 (metres)	Unnamed Access GEOMETRIC FA	0.752	Q b-a =	MENT : 448 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a	=	0.0402
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres)	Unnamed Access GEOMETRIC FA D = E =	0.752 0.813	Q b-a = Q b-c =	MENT : 448 (pcu/hr) 593 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c	= =	0.0402 0.0118
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres) q a-b = 0 (pcu/hr)	Unnamed Access GEOMETRIC FA D = E = F =	0.752 0.813 0.813	Q b-a = Q b-c = Q c-b =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC b-c DFC c-b	=	0.0402 0.0118 0.0185
MAJOR ROAD (ARM A) W = 5.2 (metres) W cr = 0 (metres)	Unnamed Access GEOMETRIC FA D = E = F =	0.752 0.813	Q b-a = Q b-c = Q c-b = Q b-ac =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0402 0.0118
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FA D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr) 1767 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0402 0.0118 0.0185 0.0520
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Unnamed Access GEOMETRIC FA D = E = F =	0.752 0.813 0.813	Q b-a = Q b-c = Q c-b = Q b-ac =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0402 0.0118 0.0185
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 & (metres) \\ W cr &=& 0 & (metres) \\ q a-b &=& 0 & (pcu/hr) \\ q a-c &=& 52 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W & c-b &=& 2.5 & (metres) \end{array}$	Unnamed Access GEOMETRIC FA D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr) 1767 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0402 0.0118 0.0185 0.0520
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 & (metres) \\ W cr &=& 0 & (metres) \\ q a {-}b &=& 0 & (pcu/hr) \\ q a {-}c &=& 52 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W & c {-}b &=& 2.5 & (metres) \\ Vr c {-}b &=& 22 & (metres) \end{array}$	Unnamed Access GEOMETRIC FA D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr) 1767 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0402 0.0118 0.0185 0.0520
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FA D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr) 1767 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0402 0.0118 0.0185 0.0520
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 & (metres) \\ \text{W cr} &=& 0 & (metres) \\ \text{q a-b} &=& 0 & (pcu/hr) \\ \text{q a-c} &=& 52 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ \text{W c-b} &=& 2.5 & (metres) \\ \text{Vr c-b} &=& 22 & (metres) \\ \text{Vr c-b} &=& 22 & (metres) \\ \text{q c-a} &=& 60 & (pcu/hr) \\ \text{q c-b} &=& 11 & (pcu/hr) \\ \end{array}$	Unnamed Access GEOMETRIC FA D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr) 1767 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0402 0.0118 0.0185 0.0520
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 & (metres) \\ W cr &=& 0 & (metres) \\ q a-b &=& 0 & (pcu/hr) \\ q a-c &=& 52 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W c-b &=& 2.5 & (metres) \\ Vr c-b &=& 22 & (metres) \\ Vr c-b &=& 22 & (metres) \\ q c-a &=& 60 & (pcu/hr) \\ q c-b &=& 11 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (ARM B)} \\ \end{array}$	Unnamed Access GEOMETRIC FA D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr) 1767 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0402 0.0118 0.0185 0.0520 0.0340
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 & (metres) \\ W cr &=& 0 & (metres) \\ q a-b &=& 0 & (pcu/hr) \\ q a-c &=& 52 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W c-b &=& 2.5 & (metres) \\ Vr c-b &=& 22 & (metres) \\ Q c-a &=& 60 & (pcu/hr) \\ q c-b &=& 11 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (ARM B)} \\ \end{array}$	Unnamed Access GEOMETRIC FA D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr) 1767 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0402 0.0118 0.0185 0.0520 0.0340
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FA D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr) 1767 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0402 0.0118 0.0185 0.0520 0.0340
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FA D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr) 1767 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0402 0.0118 0.0185 0.0520 0.0340
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FA D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr) 1767 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0402 0.0118 0.0185 0.0520 0.0340
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Unnamed Access GEOMETRIC FA D = E = F = Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 448 (pcu/hr) 593 (pcu/hr) 593 (pcu/hr) 481 (pcu/hr) 1767 (pcu/hr)	(1-0.0345W)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0402 0.0118 0.0185 0.0520 0.0340

FM CONSULTANC	Y LIMITED	PRIORI	TY JUNCTION CALCULATI	ION			INITIALS	DATE
	orary Open Storage of Construction Material and Equ	uipment of 3 Years at Various Lo	ts in D.D.129, Lau Fau Shan			Prepared By:	FF	Sep-2024
E - Unnamed Access to Subject		2027 Design			Project No.: 80108	Checked By:	MM	Sep-2024
						Reviewed By:	FM	Sep-2024
nnamed Access to Site [4] 44 [3] 0 (ARM A)		← 61 [5] ↓ 23 [6]		NOTES : (GEC W = W cr = W b-a = W c-b = VI b-a = VI b-a = Vr b-a = Vr c-b = D = E = F = Y =	DMETRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABI LANE WIDTH AVAILABI VISIBILITY TO THE LEF VISIBILITY TO THE RIG VISIBILITY TO THE RIG VISIBILITY TO THE RIG STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-E (1-0.0345W)	LE TO VEHICLE W. LE TO VEHICLE W. LE TO VEHICLE W. TF FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STR AITING IN STR WAITING IN ST S WAITING IN S S WAITING IN S	EAM b-c EAM c-b IREAM b-a STREAM b-a STREAM b-c
					· · · ·			
GEOMETRIC DETAILS:	GEOMETRIC I	FACTORS :		NT :	· · ·	COMPARISION O TO CAPACITY:	F DESIGN FLC	DW .
MAJOR ROAD (ARM A)					· · ·	TO CAPACITY:		
MAJOR ROAD (ARM A) W = 5.2 (metres) D =	0.752	Qb-a =	445 (pcu/hr)	· · ·	TO CAPACITY: DFC b-a	F DESIGN FLC	0.1034
MAJOR ROAD (ARM A) W = 5.2 (W cr = 0 (metres) D = metres) E =			445 (pcu/hr) 595 (pcu/hr)		TO CAPACITY:	=	
MAJOR ROAD (ARM A) W = 5.2 (W cr = 0 (q a-b = 0	metres) D = metres) E =	0.752 0.813	Q b-a = Q b-c =	445 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c	=	0.1034 0.0067
MAJOR ROAD (ARM A) W = 5.2 (W cr = 0 (q a-b = 0	imetres) D = imetres) E = (pcu/hr) F =	0.752 0.813 0.813	Q b-a = Q b-c = Q c-b = Q b-ac =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr)	· · ·	TO CAPACITY: DFC b-a DFC b-c DFC c-b	= = =	0.1034 0.0067 0.0387
MAJOR ROAD (ARM A) W = 5.2 (W cr = 0 (q a-b = 0	imetres) D = imetres) E = (pcu/hr) F =	0.752 0.813 0.813	Q b-a = Q b-c = Q c-b = Q b-ac =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr) 454 (pcu/hr)	· · ·	TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b	= = =	0.1034 0.0067 0.0387
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 & (\\ W \text{cr} &=& 0 & (\\ q a\text{-}b &=& 0 & \\ q a\text{-}c &=& 46 & \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \end{array}$	imetres) D = imetres) E = (pcu/hr) F = (pcu/hr) Y =	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr) 454 (pcu/hr) 1730 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.1034 0.0067 0.0387 0.1101
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	imetres) D = imetres) E = (pcu/hr) F = (pcu/hr) Y = F for (Qb-ac) = imetres) imetres)	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr) 454 (pcu/hr) 1730 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.1034 0.0067 0.0387 0.1101
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	metres) D = metres) E = (pcu/hr) F = (pcu/hr) Y = F for (Qb-ac) = metres) (pcu/hr)	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr) 454 (pcu/hr) 1730 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.1034 0.0067 0.0387 0.1101
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	imetres) D = imetres) E = (pcu/hr) F = (pcu/hr) Y = F for (Qb-ac) = imetres) imetres)	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr) 454 (pcu/hr) 1730 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1034 0.0067 0.0387 0.1101 0.0353
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	metres) D = metres) E = (pcu/hr) F = (pcu/hr) Y = F for (Qb-ac) = metres) (pcu/hr)	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr) 454 (pcu/hr) 1730 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.1034 0.0067 0.0387 0.1101
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 & (\\ W \text{cr} &=& 0 & (\\ q a \text{-}b &=& 0 & (\\ q a \text{-}b &=& 0 & (\\ q a \text{-}c &=& 46 & (\\ \end{array} \\ \begin{array}{r} \text{MAJOR ROAD (ARM C)} \\ W c \text{-}b &=& 2.5 & (\\ V c \text{-}b &=& 2.2 & (\\ q c \text{-}a &=& 61 & (\\ q c \text{-}b &=& 23 & (\\ \end{array} \\ \begin{array}{r} \text{MINOR ROAD (ARM B)} \end{array} \end{array}$	metres) D = metres) E = (pcu/hr) F = (pcu/hr) Y = F for (Qb-ac) = metres) (pcu/hr)	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr) 454 (pcu/hr) 1730 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1034 0.0067 0.0387 0.1101 0.0353
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	imetres) D = imetres) E = (pcu/hr) F = (pcu/hr) Y = F for (Qb-ac) = imetres) imetres) (pcu/hr) (pcu/hr)	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr) 454 (pcu/hr) 1730 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1034 0.0067 0.0387 0.1101 0.0353
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	imetres) D = imetres) E = (pcu/hr) F = (pcu/hr) Y = F for (Qb-ac) = imetres) imetres) (pcu/hr) (pcu/hr) imetres) imetres) (pcu/hr) imetres) imetres) imetres)	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr) 454 (pcu/hr) 1730 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1034 0.0067 0.0387 0.1101 0.0353
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	imetres) D = imetres) E = (pcu/hr) F = (pcu/hr) Y = F for (Qb-ac) = imetres) imetres) (pcu/hr) (pcu/hr) imetres) imetres) imetres) imetres) imetres) imetres) imetres) imetres)	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr) 454 (pcu/hr) 1730 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1034 0.0067 0.0387 0.1101 0.0353
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	imetres) D = imetres) E = (pcu/hr) F = (pcu/hr) Y = F for (Qb-ac) = imetres) (pcu/hr) (pcu/hr) (pcu/hr) imetres) = imetres = imetres	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr) 454 (pcu/hr) 1730 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1034 0.0067 0.0387 0.1101 0.0353
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	imetres) D = metres) E = (pcu/hr) F = (pcu/hr) Y = F for (Qb-ac) = metres) metres) (pcu/hr) (pcu/hr) imetres) imetres) imetres) imetres) imetres) imetres) imetres) imetres) imetres) imetres) imetres) imetres)	0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	445 (pcu/hr) 595 (pcu/hr) 595 (pcu/hr) 454 (pcu/hr) 1730 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.1034 0.0067 0.0387 0.1101 0.0353

M CONSULTA	NCY LIMI	IED	PRIC	RITY JUNCTION CALCUL	ATION		INITIALS	DATE
		rage of Construction Material and Equip				Prepared By:	FF	Sep-20
- Deep Bay Rd / Tin Yue	t Rd		2027 De	sign - AM Peak	Project No.:	80108 Checked By:	MM	Sep-20
						Reviewed By:	FM	Sep-20
		(ARM C) Deep Bay Rd [5] [6] 35 84 ↓ ↓ ↓ ↓ ↓ ↓ 25 10 [4] [3] Deep Bay Rd (ARM A)	- 74 [1] - 28 [2]	(ARM B) Tin Yuet Rd	W b-c=LANE WIDTH AW c-b=LANE WIDTH AVI b-a=VISIBILITY TOVr b-a=VISIBILITY TOVr b-c=VISIBILITY TO	WIDTH SERVE WIDTH AVAILABLE TO VEHICLE W AVAILABLE TO VEHICLE W THE LEFT FOR VEHICLE W THE RIGHT FOR VEHICLE THE RIGHT FOR VEHICLE THE RIGHT FOR VEHICLE CIFIC B-A CIFIC B-C	AITING IN STR AITING IN STR WAITING IN S S WAITING IN S WAITING IN	REAM b-c REAM c-b TREAM b-a STREAM b-a STREAM b-c
GEOMETRIC DETAIL	S:	GEOMETRIC FA	ACTORS :	THE CAPACITY OF MOV	VEMENT :	COMPARISION C TO CAPACITY:	OF DESIGN FLO	ow
MAJOR ROAD (ARM	A)							
W = 4.8	()	D =	0.752	Q b-a =	433 (pcu/hr)	DFC b-a	=	0.0647
W cr = 0	()	E =	0.826	Q b-c =	608 (pcu/hr)	DFC b-c	=	0.1217
q a-b = 10		F = Y =	0.791	Q c-b =	581 (pcu/hr)	DFC c-b	=	0.1446
q a-c = 2	5 (pcu/hr)	Y =	0.834	Q b-ac =	547 (pcu/hr)	DFC b-ac	=	0.1864
				Q c-a =	1540 (pcu/hr)	(Share Lane)		
	.)	F for (Qb-ac) =	0.725	TOTAL FLOW =	84 (pcu/hr)	DFC c-a	=	0.0227
MAJOR ROAD (ARM	,							
W c-b = 2.	1 (metres)							
W c-b = 2. Vr c-b = 38	1 (metres) (metres)							
W c-b = 2.	1 (metres) (metres) (pcu/hr)							
W c-b = 2. Vr c-b = 38 q c-a = 35 q c-b = 84	1 (metres) (metres) (pcu/hr) (pcu/hr)					CRITICAL DFC	=	0.19
W c-b = 2. Vr c-b = 38 q c-a = 35 q c-b = 84 MINOR ROAD (ARM E	(metres) (metres) (pcu/hr) (pcu/hr) 3)					CRITICAL DFC	=	0.19
W c-b = 2. Vr c-b = 38 q c-a = 35 q c-b = 84 MINOR ROAD (ARM E W b-a = 2.4	(metres) (metres) (pcu/hr) (pcu/hr) 3) 5 (metres)					CRITICAL DFC	=	0.19
W c-b = 2. Vr c-b = 38 q c-a = 35 q c-b = 84 MINOR ROAD (ARM E W b-a = 2. W b-c = 2.	(metres) (metres) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (metres)					CRITICAL DFC	-	0.19
W c-b = 2. Vr c-b = 38 q c-a = 35 q c-b = 84 MINOR ROAD (ARM E W b-a = 2. W b-c = 2. VI b-a = 22	(metres) (pcu/hr)) (pcu/hr) (pcu/hr) (pcu/hr)) (pcu/hr) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr)) (pcu/hr))					CRITICAL DFC	-	0.19
W c-b = 2. Vr c-b = 38 q c-a = 35 q c-b = 84 MINOR ROAD (ARM E W b-a = 2. W b-c = 2. VI b-a = 22 Vr b-a = 24	(metres) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (metres) (metres) (metres) (metres)					CRITICAL DFC	-	0.19
W c-b = 2. Vr c-b = 38 q c-a = 35 q c-b = 84 MINOR ROAD (ARM E W b-a = 2. W b-c = 2. VI b-a = 22 Vr b-a = 24 Vr b-c = 38	(metres) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (metres) (metres) (metres) (metres) (metres)					CRITICAL DFC	-	0.19
W c-b = 2. Vr c-b = 38 q c-a = 35 q c-b = 84 MINOR ROAD (ARM E W b-a = 2. W b-c = 2. VI b-a = 22 Vr b-a = 24	i (metres) i (metres) i (pcu/hr) i (pcu/hr) iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii					CRITICAL DFC	-	0.19

FM CONSULTANCY LIMI	IED	PRIO	RITY JUNCTION CALCUL	LATION			INITIALS	DATE
c Impact Assessment for Proposed Temporary Open Sto	age of Construction Material and Equipme					Prepared By:	FF	Sep-20
⁼ - Deep Bay Rd / Tin Yuet Rd		2027 Des	ign - PM Peak		Project No.: 80108	Checked By:	MM	Sep-20
						Reviewed By:	FM	Sep-20
	(ARM C) Deep Bay Rd [5] [6] 30 52 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	80 [1] 19 [2]	(ARM B) Tin Yuet Rd	NOTES : (GE0 W = W cr = W b-a = W b-c = W c-b = VI b-a = Vr b-a = Vr b-a = Vr b-c = D = E = F = Y =	OMETRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE V LANE WIDTH AVAILAB LANE WIDTH AVAILAB LANE WIDTH AVAILAB VISIBILITY TO THE LEI VISIBILITY TO THE RIC VISIBILITY TO THE RIC VISIBILITY TO THE RIC STREAM-SPECIFIC B- STREAM-SPECIFIC B- STREAM-SPECIFIC C- (1-0.0345W)	BLE TO VEHICLE W BLE TO VEHICLE W BLE TO VEHICLE W FT FOR VEHICLES BHT FOR VEHICLE BHT FOR VEHICLE BHT FOR VEHICLE A C	AITING IN STR AITING IN STR WAITING IN S S WAITING IN S WAITING IN	REAM b-c REAM c-b TREAM b-a STREAM b-a STREAM b-c
I	Deep Bay Rd (ARM A)							
GEOMETRIC DETAILS:		TORS :	THE CAPACITY OF MO	DVEMENT :		COMPARISION C	OF DESIGN FLO	ow
MAJOR ROAD (ARM A)	(ARM A) GEOMETRIC FAC		THE CAPACITY OF MO	DVEMENT :		TO CAPACITY:	OF DESIGN FLO	
MAJOR ROAD (ARM A) W = 4.8 (metres)	(ARM A) GEOMETRIC FAC D =	0.752	Qb-a =	446 (pcu/hr)		TO CAPACITY : DFC b-a	=	0.0426
MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres)	(ARM A) GEOMETRIC FAC D = E =	0.752 0.826	Qb-a = Qb-c =	446 (pcu/hr) 611 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c	=	0.0426 0.1309
MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 14 (pcu/hr)	(ARM A) GEOMETRIC FAC D = E = F =	0.752 0.826 0.791	Q b-a = Q b-c = Q c-b =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b	= = =	0.0426 0.1309 0.0892
MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres)	(ARM A) GEOMETRIC FAC D = E =	0.752 0.826	Q b-a = Q b-c = Q c-b = Q b-ac =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	=	0.0426 0.1309
MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 14 (pcu/hr) q a-c = 14 (pcu/hr)	(ARM A) GEOMETRIC FAC D = E = F = Y =	0.752 0.826 0.791 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr) 1639 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0426 0.1309 0.0892 0.1735
MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 14 (pcu/hr) q a-c = 14 (pcu/hr) MAJOR ROAD (ARM C)	(ARM A) GEOMETRIC FAC D = E = F =	0.752 0.826 0.791	Q b-a = Q b-c = Q c-b = Q b-ac =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0426 0.1309 0.0892
MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 14 (pcu/hr) q a-c = 14 (pcu/hr) MAJOR ROAD (ARM C) W c-b = W c-b = 2.1 (metres)	(ARM A) GEOMETRIC FAC D = E = F = Y =	0.752 0.826 0.791 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr) 1639 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0426 0.1309 0.0892 0.1735
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(ARM A) GEOMETRIC FAC D = E = F = Y =	0.752 0.826 0.791 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr) 1639 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0426 0.1309 0.0892 0.1735
MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 14 (pcu/hr) q a-c = 14 (pcu/hr) MAJOR ROAD (ARM C) W c-b = W c-b = 2.1 (metres)	(ARM A) GEOMETRIC FAC D = E = F = Y =	0.752 0.826 0.791 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr) 1639 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0426 0.1309 0.0892 0.1735
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 4.8 & (metres) \\ \text{W cr} &=& 0 & (metres) \\ \text{q a-b} &=& 14 & (pcu/hr) \\ \text{q a-c} &=& 14 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W & \text{c-b} &=& 2.1 & (metres) \\ \text{Vr c-b} &=& 38 & (metres) \\ \text{q c-a} &=& 30 & (pcu/hr) \\ \text{q c-b} &=& 52 & (pcu/hr) \end{array}$	(ARM A) GEOMETRIC FAC D = E = F = Y =	0.752 0.826 0.791 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr) 1639 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0426 0.1309 0.0892 0.1735
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 4.8 & (metres) \\ W cr &=& 0 & (metres) \\ q a-b &=& 14 & (pcu/hr) \\ q a-c &=& 14 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W c-b &=& 2.1 & (metres) \\ Vr c-b &=& 38 & (metres) \\ Q c-a &=& 30 & (pcu/hr) \\ q c-b &=& 52 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (ARM B)} \end{array}$	(ARM A) GEOMETRIC FAC D = E = F = Y =	0.752 0.826 0.791 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr) 1639 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	-	0.0426 0.1309 0.0892 0.1735 0.0183
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 4.8 & (metres) \\ W \ cr &=& 0 & (metres) \\ q \ a-b &=& 14 & (pcu/hr) \\ q \ a-c &=& 14 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W \ c-b &=& 2.1 & (metres) \\ Vr \ c-b &=& 38 & (metres) \\ Q \ c-a &=& 30 & (pcu/hr) \\ q \ c-b &=& 52 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (ARM B)} \\ W \ b-a &=& 2.5 & (metres) \end{array}$	(ARM A) GEOMETRIC FAC D = E = F = Y =	0.752 0.826 0.791 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr) 1639 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	-	0.0426 0.1309 0.0892 0.1735 0.0183
$\begin{array}{rcl} \text{MAJOR ROAD (ARM A)} \\ W &=& 4.8 & (metres) \\ W cr &=& 0 & (metres) \\ q a-b &=& 14 & (pcu/hr) \\ q a-c &=& 14 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W c-b &=& 2.1 & (metres) \\ Vr c-b &=& 38 & (metres) \\ Vr c-b &=& 38 & (metres) \\ q c-a &=& 30 & (pcu/hr) \\ q c-b &=& 52 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcl} \text{MINOR ROAD (ARM B)} \\ W b-a &=& 2.5 & (metres) \\ W b-c &=& 2.5 & (metres) \\ \end{array}$	(ARM A) GEOMETRIC FAC D = E = F = Y =	0.752 0.826 0.791 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr) 1639 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	-	0.0426 0.1309 0.0892 0.1735 0.0183
$\begin{array}{rcrr} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.8 & (metres) \\ W \ cr &= & 0 & (metres) \\ q \ a-b &= & 14 & (pcu/hr) \\ q \ a-c &= & 14 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcrr} \text{MAJOR ROAD (ARM C)} \\ W \ c-b &= & 2.1 & (metres) \\ Vr \ c-b &= & 38 & (metres) \\ q \ c-a &= & 30 & (pcu/hr) \\ q \ c-b &= & 52 & (pcu/hr) \\ q \ c-b &= & 52 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcrr} \text{MINOR ROAD (ARM B)} \\ W \ b-a &= & 2.5 & (metres) \\ W \ b-c &= & 2.5 & (metres) \\ VI \ b-a &= & 22 & (metres) \end{array}$	(ARM A) GEOMETRIC FAC D = E = F = Y =	0.752 0.826 0.791 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr) 1639 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	-	0.0426 0.1309 0.0892 0.1735 0.0183
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(ARM A) GEOMETRIC FAC D = E = F = Y =	0.752 0.826 0.791 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr) 1639 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	-	0.0426 0.1309 0.0892 0.1735 0.0183
$\begin{array}{rcrr} \text{MAJOR ROAD (ARM A)} \\ W &= & 4.8 & (metres) \\ W \ cr &= & 0 & (metres) \\ q \ a-b &= & 14 & (pcu/hr) \\ q \ a-c &= & 14 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcrr} \text{MAJOR ROAD (ARM C)} \\ W \ c-b &= & 2.1 & (metres) \\ Vr \ c-b &= & 38 & (metres) \\ q \ c-a &= & 30 & (pcu/hr) \\ q \ c-b &= & 52 & (pcu/hr) \\ q \ c-b &= & 52 & (pcu/hr) \\ \end{array}$ $\begin{array}{rcrr} \text{MINOR ROAD (ARM B)} \\ W \ b-a &= & 2.5 & (metres) \\ W \ b-c &= & 2.5 & (metres) \\ Vl \ b-a &= & 22 & (metres) \end{array}$	(ARM A) GEOMETRIC FAC D = E = F = Y =	0.752 0.826 0.791 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	446 (pcu/hr) 611 (pcu/hr) 583 (pcu/hr) 570 (pcu/hr) 1639 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	-	0.0426 0.1309 0.0892 0.1735 0.0183