Excel Link Development Limited

Proposed Temporary Open Storage of Construction Materials, Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land and Pond in "Agriculture" Zone, Various Lots in D.D. 106 and Adjoining Government Land, Shek Kong, Yuen Long, New Territories

Drainage Impact Assessment

Document No. V1053/01 Issue 1

August 2024

V1053/01 Issue 1 August 2024

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond in "Agriculture" Zone, Various Lots in D.D. 106 and Adjoining Government Land, Shek Kong, Yuen Long, New Territories

Drainage Impact Assessment

Approved for Issue by:				
Bryan LEUNG				
Position:	Project Manager			
Date:	13 August 2024			

Excel Link Development Limited 205A Sik Kong Tsuen

Ha Tsuen, Yuen Long N. T

Mannings (Asia) Consultants Ltd

5/F, Winning Commercial Building, 46-48 Hillwood Road, Tsim Sha Tsui, Kowloon.

V1053/01 Issue 1 August 2024

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond in "Agriculture" Zone, Various Lots in D.D. 106 and Adjoining Government Land, Shek Kong, Yuen Long, New Territories

Drainage Impact Assessment

Issue	Prepared by	Reviewed by	Date
1	EM	BLE	13 Aug 2024

.Mannings (Asia) Consultants Limited owned copyright of this report.

All rights reserved.

Opinions and information provided in the report are on the basis of Mannings (Asia) Consultants Limited using due skill, care and diligence in the preparation of the same and no explicit warranty is provided as to their accuracy. It should be noted and it is expressly stated that no independent verification of any of the documents or information supplied to Mannings (Asia) Consultants Limited has been made

This report is produced for authorized usage only. No part of this report may be copied or reproduced by any means without prior written permission from Mannings (Asia) Consultants Limited. If you have received this report in error, please destroy all copies in your possession or control and notify Mannings (Asia) Consultants Limited. This report has been prepared for the exclusive use of the commissioning party and unless otherwise agreed in writing by Mannings (Asia) Consultants Limited, no other party may use, make use of or rely on the contents of the report. No liability is accepted by Mannings (Asia) Consultants Limited for any use of this report, other than for the purposes for which it was originally prepared and provided.

() MANNINGS IIIIIII

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Content

1.0	Introduction	.1
2.0	Site Condition	.2
3.0	Design Methodology and Assumptions	.3
4.0	Drainage Assessment	.6
5.0	Conclusion	.7

List of Appendix

Appendix A:	Drawing
Appendix B:	Design Calculation
Appendix C:	Site Photos

List of Tables

Table 4.1. Kulloll Coefficient

- Table 4.2:
 Minimum pipeline cover and manhole spacing requirements
- Table 4.3:Storm Constant for SDM

(I) MANNINGS IIIIIII

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

1.0 Introduction

- 1.1 This submission presents the drainage impact assessment of the proposed temporary open storage of construction materials construction machineries, auto parts and vehicles with ancillary facilities for a period of 3years and associated filling of land and pond at various lots in D.D. 106 and adjoining government land Shek Kong, Pat Heung, Yuen Long, New Territories ("Site").
- 1.2 The Site has an area of about 78,557m² and it is currently occupied by open space uses. Six 1- storey structures are proposed at the Site for site offices and washrooms with total GFA of about 1,320 m². The general layout plan of the Site is shown in the **Drawing No.** V1053/001.
- 1.3 Due to the concerns of possible drainage impact arising from the change of uses, Mannings (Asia) Consultants Limited (MACL) was commissioned by Excel Link Development Limited to undertake a Drainage Impact Assessment (DIA) to demonstrate the acceptability of drainage impact upon the surrounding environment.

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

2.0 Site Condition

- 2.1 The topography of the Site is generally flat and currently situated with levels ranging from +12.7mPD to +15.10 mPD. In general, the direction of surface runoff flow from east to west. The existing catchment plan refer to the **Drawing No. V1053/009** in **Appendix A**. After completion of the project, the ground level of the Site will be raised to above +15.0mPD to +16.6 mPD. The existing unpaved area will change to paved area for the proposed 6 structures. There is no change of unpaved area for the other areas such as road, parking area and open space. The catchment plan after the development refer to the **Drawing No. V1053/010** in **Appendix A**.
- 2.2 According to the site survey and site observation, there is a natural stream located at the north of the Site flowing from east to west and finally connected to the Kam Tin River. Some of the runoff from the Site will be discharged into the natural stream.
- 2.3 In addition, there are existing u channels and pipes located at the south of the Site. These drain discharging part of the site surface runoff into the river at the south.

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

3.0 Design Methodology and Assumptions

3.1 Design Code

Stormwater Drainage Manual (DSD) - Fifth Edition, January 2018; Stormwater Drainage Manual (DSD) - Corrigendum No. 1/2022; Stormwater Drainage Manual (DSD) - Corrigendum No. 1/2024; Stormwater Drainage Manual (DSD) - Corrigendum No. 2/2024; BS 5911 Code of practice for precast concrete pipe design DSD Standard Drawings

3.2 Design Parameters

a) Runoff Coefficient

Table 3-1 Runoff Coefficients

Surface Characteristic	Runoff Coefficient, C
Roof of Structure	1.00
Existing Concrete	0.95
Grassland (heavy soil**) Flat	0.25

Roughness Coefficient for pipe flow $k_s = 3$

b) Minimum pipeline cover and manhole spacing requirements

Table 3-2 Minimum pipeline cover and manhole spacing requirements

Minimum pipeline cover				
In Roads	0.9 m			
In footways and verges	0.45 m			
Manhole spacing requirements				
D<675 mm 80 m				
675 < D < 1050	100 m			
D > 1050	120 m			

c) Bedding factors

: 1.9
: 2.6
: 3.4
: 4.5

d) Design Flow Velocity

Minimum		1	m	10
Winning	•	T	ш	13

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Maximum

: 3 m/s (desirable) : 6 m/s (absolute)

- 3.3 1 in 10 years return period is used for the drainage design.
- 3.4 Description of Analysis Method
 - a) Rational method is used for calculation of the peak runoff. The formula is extracted from Section 7.5.2 (a) of SDM which is to estimate the stormwater runoff as shown below:

$$Q_p = 0.278 \text{ CiA}$$

Where

- $\begin{array}{ll} Q_p & = \text{peak runoff in m3/s} \\ C & = \text{runoff coefficient (dimensionless)} \\ i & = \text{rainfall intensity in mm/hr} \\ A & = \text{catchment area in km2} \end{array}$
- b) 10% reduction of flow area is allowed taken into account of decomposition of siltation as per DSD's Stormwater Drainage Manual (SDM) 2018.
- c) The time of concentration used for determining the duration of the design storm is considered by the time of entry and the time of flow,

$$t_c = t_e + t_f \qquad t_f = L/V$$

d) where to = inlet time (time taken for flow from the remotest point to reach the most upstream point of the urban drainage system)

Where	t_{f}	= flow time
	L	= Length of drain
	V	= flow velocity

te

e) The time of entry or time of flow in the hinterland is calculated using the Bransby William's Equation.

$$t_e = \frac{0.14465\,L}{A^{0.1}H^{0.2}}$$

Where

- = time of concentration (min) = catchment length (m)
- L = catchment length (m) A = catchment area (m2)
- H = average catchment slope (m/100m)

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

f) The rainfall intensity is extracted from the Section 4.3.2 of SDM which is to estimate the Intensity-Duration –Frequency (IDF) Relationship.

$$i = a / (t_d + b)^c$$

Where

I = extreme mean intensity in mm/hr t_d = duration in minutes (td<240), and a,b,c = storm constants given in table 3 of SDM as below

Table 3-3 Storm Constant of SDM

Return Period T (years)	10
а	2251.3
b	27.46
С	0.661

g) Colebrook-White Equation is used in hydraulic design for pipe flow.

$$V = -\sqrt{(32gRs)}\log\left(\frac{k_s}{14.8R} + \frac{1.255v}{R\sqrt{(32gRs)}}\right)$$

Where

g

V = mean velocity
$$(m/s)$$

- = gravitational acceleration (m/s^2)
- R = hydraulic radius (m)
- D = pipe diameter (m)
- ks = equivalent sand roughness (m)
- v = kinematic viscosity of fluid (m^2/s)
- s = frictional slope (energy gradient due to frictional loss)

4.0 Drainage Assessment

4.1 The surface characteristics of the on-site catchment area (i.e. Catchment A-D) of the existing condition and proposed condition are summarized in Table 3.1.

Catahmant	Existing Catchment		Proposed Catchment	
Catchinent	unpaved	paved	unpaved	paved
А	36027	5,227	30,599	6,107
В	9,023	0	8,906	0
С	50,423	5,110	50,203	5,330
D	32,941	1,173	37,386	1,393

Table 3.1 Existing and Proposed Catchment

- 4.2 The surface runoff within the Site area will be collected by the proposed drainage systems and discharged into the existing drains. The drainage layout plans are shown in Drawing Nos. V1053/003 006 in Appendix A.
- 4.3 The estimated runoff from the existing land use and the proposed land use in summarized in Table 3.2.

Drainage System	Existing runoff (m3/s)	Future runoff (m^3/s)
А	0.75	0.68
В	0.12	0.12
С	1.01	1.00
D	0.53	0.59

Table 3.2 Estimated Runoff of the Existing Land Use and Proposed Land Use

4.4 From the results, there is no increase in surface runoff arising from the land use changes for drainage systems A. B and C. As such, it is anticipated that there is no adverse drainage impact to the existing drainage after implementation of the land use changes. For drainage system D, there is slightly increase in surface runoff arising from the land use changes. The existing 750mm dia. pipe is checked and it provide sufficient capacity to cater for the flow after development.

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

5.0 Conclusion

5.1 A Drainage Impact Assessment has been conducted for the proposed land use changes in Shek Kong. There is no increase in surface runoff for catchment A, B and C. The existing drainage system is checked for catchment D. Based on the calculation, the existing drainage design has enough adequacies to cater the surface water.

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

> Appendix A Drawings

	NOTES : 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS OTHERWISE STATED. 2. ALL LEVELS ARE IN MPD METRE ABOVE HONG KONG PRINCIPAL DATUM.
+14.4	
PROPOSED 450UC	Rev. Description of Revision Date Ckd. Citent EXCEL LINK DEVELOPMENT LIMITED Consultants Design Team Leader Date Scheet Proposed Destruction Materials. Construction Machineries Auto Parts And Vehicles with Ancillary Facilities For a Period of 3 YEARS AND ASSOCIATED Filling OF Landand pond Tit
0 10 20 30 40 50 Huthung 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Drawing No. V1053/002 P -

	NOTES :
BARRACKS	1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS OTHERWISE STATED.
	2. ALL LEVELS ARE IN mPD METRE ABOVE HONG KONG
V1053/004 V1053/003	INTROTIAL DATOM.
mental and	
1-3 m	
Y THE	PARKING SPACE (PRIVATE CAR)
V1053/006 V1053/005	L/UL SPACE (LIGHT GOODS VEHICLE)
	INGRESS/EGRESS
KEY PLAN SCALE 1:10000	
	PROPOSED PIPE
	PROPOSED MANHOLE
	EXISTING U-CHANNEL
	EXISTING PIPE
G座 .15.9 RILA	EXISTING MANHOLE
	+16.6 PROPOSED GROUND SURFACE LEVEL
4	
210A	
Ž 210B	
311	
L	
	Rev. Description of Revision Date Ckd.
25	
	DEVELOPMENT LIMITED
_L + ¹⁶	Consultants
	(Asia) Consultants Limited
	Scale in A3 Date
+ ^{15.6}	AS SHOWN AUG 2024 Designed Drawn Checked
22	EM KAM BLE Design Team Leader Date
199 199	AUG 2024 Approved Date KTC AUG 2024
	Project
	PROPOSED TEMPORARY OPEN STORAGE OF CONSTRUCTION MATERIALS.
\sim	CONSTRUCTION MACHINERIES AUTO PARTS AND VEHICLES WITH ANCILLARY
	FACILITIES FOR A PERIOD OF 3 YEARS AND ASSOCIATED FILLING OF
	T1+Ie
	DRAINAGE LAYOUT PLAN
MATCH_LINE SEE DRAWING NO. V1053/005	
	(SHEET 1 OF 4)
METRES 1 : 1000	V1053/003 P -
K:*V1053 - DIA for	Shek Kong Development#Ustation#V1053-003.dgn

	NOTES :
	1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS
MATCH-LINE	
SFE DRAWING NO. V1053/003	2. ALL LEVELS ARE IN mPD METRE ABOVE HONG KONG PRINCIPAL DATUM.
	LEGEND :
/	
\rightarrow	APPLICATION SITE
	STRUCTURE
	PARKING SPACE (PRIVATE CAR)
	L/UL SPACE (LIGHT GOODS VEHICLE)
道路	
Road	
	PROPOSED PIPE
─────────────────────────────────────	MANHULE
// <i>L</i>	
	LAISTING U-GRANNEL
	EXISTING PIPE
17.3+/ TS //	
/ / TS72K° //	EXISTING MANHOLE
82	+16.6
⁺ 17.1 E , ∰	
TS	
L	
λ	
) / /	
	Rev. Description of Revision Date Ckd.
	Citent
47/~L	DEVELOPMENT LIMITED
~ /	
	Consultants
+16.9	
hu L	(T) H 165
	Asia) Consultants Limited
	Scale in A3 Date
	AUG 2024
	EM KAM BLE
	Design Team Leader Date
+17.1	AUG 2024
	KTC AUG 2024
	Project
• E	PROPOSED TEMPORARY OPEN STORAGE
-	OF CONSTRUCTION MATERIALS.
_	
	AND ASSOCIATED FILLING OF
	LANDAND POND
). ^E	
	T1+Ie
	DRAINAGE LAYOUT PLAN
0 5 10 15 20 25	
	(SHEET 3 OF 4)
	Drawing No. Stage Rev.
	V1053/005 P -
// TS // /+ ^{17.9}	

K:*V1053 - DIA for Shek Kong Development*Ustation*V1053-005.dgn

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

> Appendix B Design Calculations

Rational method is used for calculation of the peak runoff. The formula is extracted from Section 7.5.2 (a) of SDM. Qp = 0.278 C i A Where Qp = peak runoff in m3/s I = rainfall intensity in mm/hr A = catchment area in km2 The parameters and assumptions refer to section 3.

Before Development

Runoff Estimation at Cacthment A

Natural Catch. (m²)	Longest flow path (m)	Highest (mPD)	Lowest (mPD)	Gradient (per 100m) = (h ₁ - h ₂)/L x 100	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	Length of Nullah L (m)	flow vel. (m ³ /s)	t _f = L/v (min)	tc = to + t _f (min)	Runoff coeff.	Total Catch. Area (m²)	10 year Intensity (mm/hr)	10 year design runoff = 0.278CiA	10 year Total runoff (m ³ /s)
41254	199	14 55	0.08	2 4 2	7.97	401	1 219	5	12.4	0.25	36027	103.05	0.49	0.75
41234	100	14.55	9.90	2.43	1.01	401	1.210	5	13.4	0.95	5227	193.95	0.27	0.75

Runoff Estimation at Cacthment B

Natural Catch. (m²)	Longest flow path (m)	Highest (mPD)	Lowest (mPD)	Gradient (per 100m) = (h ₁ - h ₂)/L x 100	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	Length of Nullah L (m)	flow vel. (m³/s)	t _f = L/v (min)	tc = to + t _f (min)	Runoff coeff.	Total Catch. Area (m²)	10 year Intensity (mm/hr)	10 year design runoff = 0.278CiA	10 year Total runoff (m ³ /s)
9023	200	15.1	14.1	0.50	13.37	192	1.343	2	15.7	0.25	9023	186.78	0.12	0.12

Runoff Estimation at Cacthment C

	Natural Catch. (m²)	Longest flow path (m)	Highest (mPD)	Lowest (mPD)	Gradient (per 100m) = (h ₁ - h ₂)/L x 100	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	Length of Nullah L (m)	flow vel. (m ³ /s)	t _f = L/v (min)	tc = to + t _f (min)	Runoff coeff.	Total Catch. Area (m²)	10 year Intensity (mm/hr)	10 year design runoff = 0.278CiA	10 year Total runoff (m³/s)
l	55533	126	14 55	12.87	1 3 3	5 77	280	1 3/13	1	91	0.25	50423	207.63	0.73	1 01
I	00000	120	14.00	12.07	1.55	5.77	200	1.040	*	0.4	0.95	5110	207.00	0.28	1.01

Runoff Estimation at Cacthment D

Nat Cat (r	ural tch. n ²)	Longest flow path (m)	Highest (mPD)	Lowest (mPD)	Gradient (per 100m) = (h ₁ - h ₂)/L x 100	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	Length of Nullah L (m)	flow vel. (m ³ /s)	t _f = L/v (min)	tc = to + t _f (min)	Runoff coeff.	Total Catch. Area (m²)	10 year Intensity (mm/hr)	10 year design runoff = 0.278CiA	10 year Total runoff (m ³ /s)
24	114	170	16.2	15 1	0.70	0.42	70	1 2/2	1	10.4	0.25	32941	202.60	0.47	0.53
54	114	172	10.5	13.1	0.70	3.4Z	10	1.343	1	10.4	0.95	1173	203.09	0.06	0.00

Rational method is used for calculation of the peak runoff. The formula is extracted from Section 7.5.2 (a) of SDM. Qp = 0.278 C i A Where Qp = peak runoff in m3/s I = rainfall intensity in mm/hr A = catchment area in km2 The parameters and assumptions refer to section 3.

After Development

Runoff Estimation at Cacthment A

Natural Catch. (m²)	Longest flow path (m)	Highest (mPD)	Lowest (mPD)	Gradient (per 100m) = (h ₁ - h ₂)/L x 100	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	Length of Nullah L (m)	flow vel. (m³/s)	t _f = L/v (min)	tc = to + t _f (min)	Runoff coeff.	Total Catch. Area (m ²)	10 year Intensity (mm/hr)	10 year design runoff = 0.278CiA	10 year Total runoff (m ³ /s)
										0.25	30599		0.41	
36706	188	14.55	9.98	2.43	7.96	401	1.218	5	13.4	0.95	5227	193.66	0.27	0.68
										1.00	880		0.00	

Runoff Estimation at Cacthment B

Natural Catch. (m²)	Longest flow path (m)	Highest (mPD)	Lowest (mPD)	Gradient (per 100m) = (h ₁ - h ₂)/L x 100	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	Length of Nullah L (m)	flow vel. (m³/s)	t _f = L/v (min)	tc = to + t _f (min)	Runoff coeff.	Total Catch. Area (m²)	10 year Intensity (mm/hr)	10 year design runoff = 0.278CiA	10 year Total runoff (m ³ /s)
8906	200	15.1	14.1	0.50	13.38	192	1.343	2	15.8	0.25	8906	186.73	0.12	0.12

Runoff Estimation at Cacthment C

Natural Catch. (m²)	Longest flow path (m)	Highest (mPD)	Lowest (mPD)	Gradient (per 100m) = (h ₁ - h ₂)/L x 100	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	Length of Nullah L (m)	flow vel. (m³/s)	t _f = L/v (min)	tc = to + t _f (min)	Runoff coeff.	Total Catch. Area (m²)	10 year Intensity (mm/hr)	10 year design runoff = 0.278CiA	10 year Total runoff (m ³ /s)
										0.25	50203		0.72	
55533	126	14.55	12.87	1.33	5.77	289	1.343	4	9.4	0.95	5110	207.63	0.28	1.00
										1.00	220		0.00	

Runoff Estimation at Cacthment D

Natural Catch. (m²)	Longest flow path (m)	Highest (mPD)	Lowest (mPD)	Gradient (per 100m) = (h ₁ - h ₂)/L x 100	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	Length of Nullah L (m)	flow vel. (m ³ /s)	t _f = L/v (min)	tc = to + t _f (min)	Runoff coeff.	Total Catch. Area (m²)	10 year Intensity (mm/hr)	10 year design runoff = 0.278CiA	10 year Total runoff (m ³ /s)
										0.25	37386		0.53	
38779	172	16.3	15.1	0.70	9.30	70	1.343	1	10.3	0.95	1173	204.12	0.06	0.59
										1.00	220		0.00	

Mannings (Asis) (-										
Mannings (Asia) C	onsulta	nts Lta.					Job No.		Sheet No.	Rev.				
Calculation Sheet							Member / Location							
Job Tilte:	Proposed 7	Temporary C	Open Storage	e of Constructi	on Mater	als,	Drg. Ref.							
	Constructio	on Machiner	ies, Auto Pa	rts and Vehicle	s with Ar	icillary								
	Facilities fo													
	Mada Du	NIL II	Data	Chd										
The dusing as design is		Comince By		Date	Chā.									
1 in 10 year design is	relening u	o DODIS OL o tokon	JIVI 2010 Q	Comgendum	I INO. 1/2	uzz anu	Comgenut	11110.1/202	4					
T IN TO year design relu	in penou i	s laken.												
Pational mathed is use	d for colou	lation of the	n nook rung	ff The form	ula ia avt	racted fr	om Soction	7 = 2 (a) of 9						
$\Delta n = 0.279 \text{ C}$ i A	u ioi caicu		e peak rund	m. The formu		Tacleu II	om Section	7.5.2 (a) 01 3						
Qp = 0.276 CTA	ff ::= :== ³ /=													
vvnere Qp = peak runo	II IN M /S													
i = rainiali intensity in m	1/11/11/ 2													
A = catchment area in i	ĸm													
Runoff Estimation	1	1		1	1	r	1	1		т				
	Natural	Longest	Gradient	to (min) =	t, =	tc =	Total	10 vear	10 year design					
Location	Catch.	flow	(m per	0.14465L/	L/v	to + t _f	Catch.	Intensity	runoff =					
	(m ²)	path (m)	100m)	(H ^{0.2} A ^{0.1})	(min)	(min)	Area	(mm/hr)	0.278CiA					
	. ,	• • •	,	·	` '	. ,	(m²)	. ,	(m ³ /s)					
									· · · /					
A1	2581	30	0.010	4.97	0.90	5.87	2581	221.74	0.04]				
A2	9945	98	0.010	14.13	0.06	14.19	9945	191.37	0.13]				
A3	13534	93	0.010	13.14	0.81	13.95	13534	192.10	0.18					
A4	5928	94	0.006	15.67	0.34	16.02	5928	186.02	0.08					
A5	3665	37	0.005	6.69	0.70	7.39	3665	215.29	0.05					
A6	4323	72	0.003	14.63	0.06	14.70	4323	189.84	0.06					
A7	2745	30	0.030	3.96	0.70	4.66	2745	227.21	0.04					
A8	1726	41	0.024	5.92	1.63	7.55	1726	214.65	0.03					
B1	5770	98	0.009	15.23	1.11	16.34	5770	185.10	0.07					
B2	8745	98	0.006	15.85	3.78	19.63	8745	176.46	0.11					
C1	6133	105	0.009	16.45	0.10	16.55	6133	184.52	0.08	1				
C2	15963	134	0.007	20.03	1.08	21.11	15963	172.88	0.19	1				
D1	9098	138	0.007	21.95	0.74	22.69	9098	169.27	0.11	1				
D2	9415	212	0.007	33.52	0.06	33.58	9415	148.64	0.10	1				
D3	4862	100	0.007	16.70	0.19	16.89	4862	183.59	0.06	1				
D4	8139	193	0.005	32.50	0.74	33.24	8139	149.19	0.08	1				
D5	2266	61	0.016	9 27	0.13	941	2266	207 44	0.03					

Stormwater Drainage Design

Manhole		Catchm	ent Area			Nominal	Grad	ient, S _f	Boughpoor		Time of	Time of	Deinfell	10 year	10 year		Total		Adjusted	Cove	r Level	Inve	rt Level
From	То	Increment (m ²)	Accu. (m²)	Length (m)	ength (m) (mm)	(%)	(%) 1 in	Coefficient (m)	Velocity (m/s)	Flow (min)	Conc. (min)	Duration (min)	n Intensity (mm/hr)	Runoff (m ³ /s)	Inflow (m ³ /s)	Flow (m ³ /s)	Capacity (m ³ /s)	Capacity > Total Flow ?	From (mPD)	To (mPD)	From (mPD)	To (mPD)	
CP17	MH7	22096	22096	49	525	0.8	122.5	3.0	1.547	21.11	21.11	21.11	172.88	0.265	0.000	0.265	0.301	Yes	16.00	16.20	14.30	13.90	
MH7	MH8	22096	22096	58	525	0.7	145.0	3.0	1.422	21.11	21.11	21.11	172.88	0.265	0.000	0.265	0.277	Yes	16.20	16.20	13.90	13.50	
MH8	Existing Stream	22096	22096	52	525	0.8	130.0	3.0	1.502	21.11	21.11	21.11	172.88	0.265	0.000	0.265	0.293	Yes	16.20	16.20	13.50	13.10	
CP13	MH2	18513	18513	41	525	1.3	74.5	3.0	1.984	33.58	33.58	33.58	148.64	0.191	0.000	0.191	0.386	Yes	16.00	15.50	13.95	13.40	
CP7	MH9	13000	13000	4	450	2.5	40.0	3.0	2.447	16.89	16.89	16.89	183.59	0.166	0.000	0.166	0.350	Yes	15.50	15.50	14.00	13.90	
CP10	MH2	2266	2266	5	300	2.0	50.0	3.0	1.670	9.41	9.41	9.41	207.44	0.033	0.000	0.033	0.106	Yes	15.50	15.50	14.25	14.15	
MH9	MH1	33780	33780	20	600	2.3	44.4	3.0	2.805	13.95	13.95	13.95	192.10	0.451	0.000	0.451	0.714	Yes	15.50	15.90	13.30	12.85	
MH1	Existing Stream	33780	33780	36	600	1.4	72.0	3.0	2.203	16.02	16.02	16.02	186.02	0.437	0.000	0.437	0.561	Yes	15.50	15.50	12.60	12.10	
	•																						
CP18	MH3	7988	7988	58	450	0.3	290.0	3.0	0.907	14.70	14.70	14.70	189.84	0.105	0.000	0.105	0.130	Yes	16.20	16.40	15.35	15.15	
CP19	MH3	2745	2745	43	450	0.2	430.0	3.0	0.745	14.70	14.70	14.70	189.84	0.036	0.000	0.036	0.107	Yes	16.40	16.40	15.25	15.15	
MH3	MH4	10734	10734	58	525	0.3	290.0	3.0	1.004	14.70	14.70	14.70	189.84	0.142	0.000	0.142	0.196	Yes	16.40	16.00	15.10	14.90	
MH4	MH5	10734	10734	45	525	0.4	225.0	3.0	1.141	14.70	14.70	14.70	189.84	0.142	0.000	0.142	0.222	Yes	16.00	15.90	14.90	14.70	
MH5	MH6	10734	10734	47	525	0.4	235.0	3.0	1.116	16.34	16.34	16.34	185.10	0.138	0.000	0.138	0.217	Yes	15.90	15.59	14.70	14.50	
MH6	Existing Stream	10734	10734	47	525	0.4	235.0	3.0	1.116	16.34	16.34	16.34	185.10	0.138	0.000	0.138	0.217	Yes	15.90	15.80	14.70	14.50	
CP23	MH6	9945	9945	18	450	0.8	120.0	3.0	1.412	14.19	14.19	14.19	191.37	0.132	0.000	0.132	0.202	Yes	15.59	15.90	14.75	14.60	
CP24	MH6	13534	13534	13	450	0.9	108.3	3.0	1.486	16.02	16.02	16.02	186.02	0.175	0.000	0.175	0.213	Yes	15.59	15.90	14.27	14.15	
MH6	Existing Stream	34213	34213	1	600	1.0	100.0	3.0	1.869	33.58	33.58	33.58	148.64	0.353	0.000	0.353	0.476	Yes	15.59	15.90	14.14	14.13	
Check Existing F	Pipe																						
Existing C	atchment Area D	34114	34114	10	750	1.0	100.0	3.0	2.162	3.08	3.08	3.08	234.94	0.557	0.000	0.557	0.859	Yes	14.09	12.17	11.10	11.00	
Proposed (Catchment Area D	38779	38779	10	750	1.0	100.0	3.0	2.162	3.08	3.08	3.08	234.94	0.633	0.000	0.633	0.859	Yes	14.09	12.17	11.10	11.00	

Mean Velocity is calculated by Colebrook- White equation

Ks =Surface Roughness (m)

V =Kinematic viscosity (kg/ms) Sf =Slope of Hydraulic Gradient

g =Gravity (m/s2)

The Roughness Coefficient Ks is assumed to be 3 for concrete.

Peak Runoff is estimated using rational method according to SDM.

 $\overline{V} = -\sqrt{32gRS_f} \log \left[\frac{k_s}{14.8R} + \frac{1.255\nu}{R\sqrt{32gRS_f}}\right]$

Manning	gs (Asia) (Consu	Itants Lt	Job	Sheet No.	Rev.								
Calculation	n Sheet					Member / Location								
Job Tilte:	Proposed Ten	nporary C	Open Storage	of Constructio	n Materials, Construction	Drg. Ref.								
	Machineries, /	Auto Part	s and Vehicle	s with Ancillar	y Facilities for a Period of 3									
	in D.D. 106 ar	nd Adioini	ing Governme	nt Land. Shek	Kong, Yuen Long, New									
	Territories	,	5 -	3, 3,	Made By NHI			Date	Chd					
Checking	of Canacity	(3001)	C)	Mac		I TITLE	Dato	ona.						
onconing	<u>or oupdoity</u>	10000	<u>01</u>											
Input Data	a													
Width of U	С		=	0.3	m	0.15								
Height of L	JC		=	0.3	m	0110								
Design Ru	noff		=	0.04	m ³ /s									
Doolgii i tu				(Odischarge)	1173	0.15								
Flow capa	acitv. Q			(Quisonaige)			0.3							
	0-		$A x r^{2/3} x$	s ^{1/2}										
	Q =		n		-									
where	A	=	cross sec	ctional area	of flow (m ²)	=	0.080343	m²						
	r	=	hydraulic	radius (m)										
	s	=	slope of t	he water su	urface or the linear hydraul	ic head loss	s (m/m)							
	п	=	Manning	coefficient	of roughness									
Hydraulic	radius													
	r	=	<u> </u>	-										
			Р.,		,		0 77							
	р	=	wetted pe	erimeter (m)	=	0.77	m						
	r	=	0 10	m										
	1		0.10											
Slope														
	<u> </u>	_	0.004	m/m										
	5	-	0.004	[[]/[]]										
Manning	coefficient o	of roug	hness											
	n	=	0.014											
Therefore	,													
	0	_	0.00	m^3/c	> Design runoff OK!									
	Q	=	0.08	III /S	> Design runoff, UK!									
	V	=	Q/A	=	1.00 m/s									
	v				1.00 11/0									

Manning	gs (Asia)	Consu	Job	Sheet No.	Rev.										
Calculation	n Sheet					Member / Location									
Job Tilte:	Proposed Te	mporary C	Open Storage	of Constructio	n Materials, Construction	Drg. Ref.									
	Machineries,	Auto Part	s and Vehicle	s with Ancillar	y Facilities for a Period of 3										
	in D D 106 a	nd Adioin	Filling of Land	and Pond in Int Land Shek	Kong Yuen Long New										
	Made By		NHL	Date	Chd.										
Checking	of Capacit	v (450U	C)		5			-							
<u>encenng</u>	<u>or oupdon</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>												
Input Data	3														
Width of U	С		=	0.45	m	0.225									
Height of L	JC		=	0.45	m										
Design Ru	noff		=	0.19	m ³ /s)							
Design Ru	non			(Oafter upcov)	1173	0.225									
Flow capa	acity, Q						0.45								
i ion oupe							0.10								
	-		$A \times r^{2/3} \times r^{2/3}$	s ^{1/2}											
	Q =		n n		-										
where	۸	_	cross soo	tional area	of flow (m^2)	_	0 180772	m^2							
where	~	_	bydroulio	radius (m)		-	0.100772								
	7	_	clope of t	ho wator ci	urface or the linear hydraul	ic hood loss	(m/m)								
	5	_	Monning	coofficient	of roughnoss	ic neau ioss	s (11/11)								
	П	-	wanning	COEIIICIEIII	orroughness										
Hydraulic	radius														
	r	=	Α	-											
			Р.,		,										
	р	=	wetted pe	erimeter (m)	=	1.16	m							
			0.40												
	r	=	0.16	т											
Clana															
Siope															
		_	0.004	m /m											
	S	-	0.004	[[]/[]]											
Manning o	coefficient	of roug	hness												
	n	=	0.014												
Therefore	,														
	Q	=	0.24	m³/s	> Design runoff, OK!										
	V	=	Q/A	=	1.31 m/s										

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

> Appendix C Site Photos

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Photo V1

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Photo V3

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Photo V5

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Photo V7

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Photo V9

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Photo V11

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Photo V13

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Photo V15

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Photo V17

Photo V18

V1053/01 Issue 1

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Photo V19

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Photo V21

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

Photo V23

Proposed Temporary Open Storage of Construction Materials Construction Machineries, Auto Parts and Vehicles with Ancillary Facilities for a Period of 3years and Associated Filling of Land and Pond

