Appendix III

Traffic Impact Assessment

> Traffic Impact Assessment Final Report 21th January 2025

Prepared by: CKM Asia Limited

Prepared for: Join Bright Warehousing Limited

CONTENTS

CH	IAPTER	PAGE
1.	INTRODUCTION Background Scope of Study Structure of Report	1
2.	EXISTING SITUATION The Subject Site The Road Network Historic Traffic Growth Public Transport Facilities Existing Traffic Flows Performance of the Surveyed Junctions Performance of the Surveyed Road Links	2
3.	THE PROPOSED TEMPORARY CONCRETE BATCHING PLANT Development Schedule Vehicular Access Points Upgrading of Chun Yiu Road Proposed Haulage Route Operation of Proposed Temporary Concrete Batching Plant Internal Transport Facilities Swept Path Analysis	5
4.	TRAFFIC IMPACT Design Year Traffic Forecast 2030 Junction Capacity Analysis 2030 Road Link Capacity Analysis	8
5.	SUMMARY Figures Appendix A – Vehicle Composition of Existing Traffic Flows Appendix B – Capacity Analyses	11
	Appendix C – Swept Path Analysis	

TABLES

NUMBER

- 2.1 AADT of ATC Stations Located near the Subject Site
- 2.2 Road-Based Public Transport Services Operating near the Subject Site
- 2.3 Existing Junction Performance
- 2.4 Existing Road Link Performance
- 3.1 Details of Vehicle Movements at Different Time Periods
- 3.2 Results of Traffic Generation Surveys at Other Similar Existing Concrete Batching Plants
- 3.2 Internal Transport Facilities
- 4.1 Details of Other Known Major Planned / Committed Development
- 4.2 Traffic Generation of the Proposed Temporary Concrete Batching Plant
- 4.3 2030 Junction Performance
- 4.4 2030 Road Link Performance

FIGURES

NUMBER

- 1.1 Location of the Subject Site
- 2.1 Road-Based Public Transport Services operating near the Subject Site
- 2.2 Location of Surveyed Junctions and Area of Influence
- 2.3 Junction of Kam Tin Road / Fan Kam Road
- 2.4 Junction of Kam Tin Road / Chun Yiu Road
- 2.5 Junction of Kam Tin Road / Kam Sheung Road / Sheung Tsuen Bus Terminus
- 2.6 Junction of Kam Tin Road / Route Twisk
- 2.7 Existing Peak Hour Hour Traffic Flows
- 3.1 Proposed Upgrading of Chun Yiu Road
- 3.2 Proposed Haulage Routes
- 3.3 Layout of the Proposed Temporary Concrete Batching Plant
- 4.1 Year 2030 Peak Hour Traffic Flows without the Proposed Temporary Concrete Batching Plan
- 4.2 Year 2030 Peak Hour Traffic Flows with the Proposed Temporary Concrete Batching Plant

1.0 INTRODUCTION

Background

- 1.1 The Applicant, Join Bright Warehousing Limited, is authorised by Glorious Concrete (Hong Kong) Limited, the affected business operator, to facilitate the relocation of their concrete batching plant ("the Existing Concrete Batching Plant"). The Existing Concrete Batching Plant is located in Yick Yuen which is within the planned Hung Shui Kiu / Ha Tsuen New Development Area ("HSK/HT NDA"). The captioned site will be acquired by the Government for construction of the planned HSK/HT NDA.
- 1.2 The Applicant is assisting the affected business operator with a proposal to relocate the Existing Concrete Batching Plant to a site located at Lots 573 RP and 1710 in D.D. 114, Shek Kong, Yuen Long (hereinafter "the Proposed Temporary Concrete Batching Plant"). **Figure 1.1** shows location of the Subject Site.
- 1.3 The Subject Site is currently zoned as "*Industrial (Group D)*" in the Approved Shek Kong Outline Zoning Plan No. S/YL-SK/9, and "*Concrete Batching Plant*" is categorized under Column 2 use. Hence, application for permission under Section 16 of the Town Planning Ordinance (Cap. 131), ("S16 Planning Application") is required for the Proposed Temporary Concrete Batching Plant.
- 1.4 In connection, CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned to carry out a Traffic Impact Assessment ("TIA") in support of the S16 planning application for the Proposed Temporary Concrete Batching Plant. This TIA report has been updated in responses to the comments provided by Transport Department during the pre-submission stage.

Scope of Study

- 1.5 The main objectives of this study are as follows:
 - To assess the existing traffic condition in the vicinity of the Subject Site;
 - To present the provision of internal transport facilities;
 - To quantify the amount of traffic generated by the Proposed Temporary Concrete Batching Plant;
 - To examine the traffic impact on the local road network;
 - To identify any deficiencies in the road network in accommodating the expected traffic generation; and
 - To recommend traffic management proposal and improvement measures, if necessary.

Structure of Report

- 1.6 After this introduction, the remaining chapters contain the following:
 - Chapter Two Describes the existing condition and surveys;
 - Chapter Three Outlines the Proposed Temporary Concrete Batching Plant;
 - Chapter Four Presents the traffic impact analyses;
 - Chapter Five Summarises the overall conclusion.

2.0 EXISTING SITUATION

The Subject Site

2.1 The Subject Site is located in Shek Kong to the east of Kam Tin Road. It has a site area of approximately 4,411m² and is currently occupied by an open storage. Access to the Subject Site is from an access road known as Chun Yiu Road, and is connected to Kam Tin Road.

The Road Network

- 2.2 Kam Tin Road is a single carriageway 2-way rural road connecting Lam Kam Road with Tai Po to the east, and it is also connected to Tsuen Wan to the south via Route Twisk. To the west, Kam Tin Road connects Castle Peak Road – Yuen Long, Tsing Long Highway (Route 3) and Fan Kam Road.
- 2.3 Chun Yiu Road is a single track access road connecting Kam Tin Road. At present, Chun Yiu Road is some 3m to 4m wide, and a portion of Chun Yiu Road is often occupied by parked vehicles along the northern side.

Historic Traffic Growth

2.4 Table 2.1 presents the historic annual average daily traffic ("AADT") from the Annual Traffic Census ("ATC") published by the Transport Department for roads located nearby for the latest 5 years, i.e. from 2019 to 2023.

						,	
Station No.	5254	5463	6110	6207	6208	6212	OVERALL
Road	Kam Tin	Lam Kam	Kam Tin	Kam Tin	Kam	Fan Kam	
	Road	Road	Bypass	Road	Sheung	Road	
			<i>,</i> ,		Road		
From	Fan Kam	Kam	Kam Tin	Fan Kam	Kam Tin	Kam Tin	
	Road	Sheung	Road	Road	Road	Road	
		Road					
То	Kam Sheung	Lam Kam	Kam Tin	Kam Sheung	Kam Tin	Castle	
	Road	Road	Road	Road	Road	Peak	
	E. Junction			W. Junction		Road	
Year		Annu	ial Average	Daily Traffic (v	ehicles / day)		
2019	18,510	19,580	14,990	21,300	8,080	11,660	94,120
2020	18,330	19,660	12,810	21,640	9,400	12,250	94,090
2021	19,040	20,420	12,450	20,490	8,960	12,450	93,810
2022	18,850	20,220	12,980	20,520	9,600	12,400	94,570
2023	15,740	20,900	14,490	21,510	10,460	13,890	96,990
	•	•	Ave	rage Annual Gi	owth (2019 -	- 2023) =	0.75%

TABLE 2.1AADT OF ATC STATIONS LOCATED NEAR THE SUBJECT SITE

2.5 Table 2.1 shows that there is increase in AADT in the past 5 years. The average annual growth between 2019 and 2023, is found to be +0.75% per annum.

Public Transport Facilities

2.6 Public transport services are available along Kam Tin Road near the Subject Site, and details of the services are given in Table 2.2, and shown in **Figure 2.1**.

TABLE 2.2ROAD-BASEDPUBLICTRANSPORTSERVICESOPERATINGNEAR THE SUBJECT SITE

		_ / • · · ·
Route	Routing	Frequency (minutes)
KMB 51	Tsuen Wan (Nina Tower) ひ Sheung Tsuen (Circular)	15 – 60
KMB 54	Yuen Long (West) ひ Sheung Tsuen (Circular)	20 - 30
KMB 64K	Yuen Long (West) ↔ Tai Po Market Station	6 - 20
KMB 64S	Sheung Tsuen Playground → Kam Sheung Road Station	10 – 15 (4 trips) (A)(1)
KMB 251A	Kam Sheung Road Station ひ Sheung Tsuen (Circular)	15 - 30
KMB 251B	Pat Heung Road ひ Sheung Tsuen (Circular)	20 – 30
LWB E36P	Sheung Tsuen → Skycity	60 (2 trips) (A)(2)
	Skycity → Sheung Tsuen	20 (2 trips) (P)(2)
KMB 251M	Sheung Tsuen → Tsuen Wan Station	60 ^{(A)(1)}
GMB 72	Yuen Long Tai Hang Street ↔ Lui Kung Tin	10
RS NR917	Fan Kam Road, Yuen Long → Wan Chai	M-F: 5 - 15 (7 trips) (A)(1)
		Sat: 15 - 20 (3 trips) (A)(2)
	Wan Chai → Fan Kam Road, Yuen Long	25 – 30 (4 trips) ^{(P)(1)}
RS NR918	Lam Kam Road → Wan Chai	M-F: 5 - 25 (8 trips) (A)(1)
		Sat: 15 - 20 (3 trips) (A)(2)
	Wan Chai → Lam Kam Road	25 – 30 (3 trips) (P)(1)

Note: KMB – Kowloon Motor Bus LWB – Long Win Bus

GMB – Green Minibus RS – Resident Services

(A) AM Peak Services only.

(P) Afternoon Peak Services only.

(1) Monday to Friday. No services on Saturdays, Sundays and Public Holidays.

(2) Monday to Saturday. No services on Sundays and Public Holidays

Existing Traffic Flows

- 2.7 To quantify the existing traffic flows in the vicinity of the Subject Site, manual classified counts were conducted on Tuesday, 11th June 2024, and also on Friday, 4th October 2024 at the following junctions:
 - J01 Junction of Kam Tin Road / Fan Kam Road;
 - J02 Junction of Kam Tin Road / Chun Yiu Road;
 - J03 Junction of Kam Tin Road / Kam Sheung Road / Sheung Tsuen Bus Terminus; and
 - J04 Junction of Kam Tin Road / Lam Kam Road / Route Twist.
- 2.8 Locations of these surveyed junctions and the area of influence ("AOI") are shown in Figure 2.2, and the existing junction layouts are found in Figures 2.3 2.6.
- 2.9 The traffic counts are classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. This TIA adopted the higher traffic flows observed in October 2024.
- 2.10 Based on the information of the ATC Core Stations 6207 and 6212 for Kam Tin Road and Fan Kam Road, the AM and PM peak hours in the vicinity of the Subject Site is from 0900 to 1000 hours, and from 1900 to 2000 hours. Whereas, the AM and PM peak hours identified from the surveys at the above junctions are found to be from 0800 to 0900 hours, and from 1700 to 1800 hours respectively.

- 2.11 With reference to the ATC, the traffic surveys conducted, and the expected operation of the Proposed Temporary Concrete Batching Plant, the peak hour considered in this TIA included the following:
 - i) 0800 0900 hours ("AM-8 Peak Hour")
 - ii) 0900 1000 hours ("AM-9 Peak Hour")
 - iii) 1700 1800 hours ("PM Peak Hour"), and
 - iv) 1900 2000 hours ("Evening Peak Hour").
- 2.12 **Figure 2.7** presents the observed peak hour traffic flows in pcu/hour, and the detail of vehicle composition is summarised in **Appendix A.**

Performance of the Surveyed Junctions

2.13 Existing performance of the surveyed junctions are calculated based on the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"), which is published by the Transport Department. The results of the performance of junctions are summarised in Table 2.3, and detailed calculations of junction performance are found in **Appendix B**.

Ref.	Junction	Type of	Parameter		Peak	Hour	
		Junction		AM-8	AM-9	PM	Evening
J01	Kam Tin Road / Fan Kam Road	Roundabout	RFC	0.498	0.571	0.506	0.592
J02	Kam Tin Road / Chun Yiu Road	Priority	RFC	0.055	0.054	0.167	0.167
J03	Kam Tin Road / Kam Sheung Road	Priority	RFC	0.81	0.76	0.71	0.73
	/ Sheung Tsuen Bus Terminus						
J04	Kam Tin Road / Lam Kam Road /	Roundabout	RFC	0.551	0.529	0.578	0.587
	Route Twist						

TABLE 2.3 EXISTING JUNCTION PERFORMANCE

Note: RFC – Ratio of Flow to Capacity

For priority and roundabout, RFC < 1 indicates the junction operates within capacity, and $RFC \ge 1$ indicates the junction operates at / over capacity.

2.14 The results in Table 2.3 shows that the junctions analysed operate with capacity.

Performance of the Surveyed Road Links

2.15 The existing performance, in terms of Peak Hourly Flows / Design Flow Ratio ("P/Df"), of Kam Tin Road and Chun Yiu Road within the AOI are calculated based on the observed traffic flows and the analysis results are summarized in Table 2.4.

Road Link	Configuration	Design Flow	Peak Hour 2-way Traffic Flows (veh/hr) [Peak Hour Flows / Design Flow Ratio (P/I		(veh/hr) atio (P/Df)]	
		(veh/hr)	AM-8	AM-9	PM	Evening
Kam Tin Road	Single-2 District	1 <i>,</i> 581 ⁽¹⁾	836	798	866	877
	Distributor		[0.529]	[0.505]	[0.548]	[0.555]
Chun Yiu Road	Single Track	100 (2)	49	48	80	80
	Access Road		[0.490]	[0.480]	[0.800]	[0.800]

TABLE 2.4EXISTING ROAD LINK PERFORMANCE

(1) Design flow in reference with TPDM for single 2-lane 7.3m carriageway, i.e. 1,700 veh/hr for <u>both</u> direction of flow, and reduced by 7% considering percentage of heavy vehicles is between 15% and 20%.

(2) Design flow in reference with TPDM for single track access road, i.e. 100 veh/hr.

2.16 The results in Table 2.4 show that Kam Tin Road and Chun Yiu Road within the AOI operate with capacity.

3.0 THE PROPOSED TEMPORARY CONCRETE BATCHING PLANT

Development Schedule

3.1 The Proposed Temporary Concrete Batching Plant has 2 production lines with maximum concrete production capacity of 100m³/hour/line. Sufficient loading / unloading facilities meeting the operational requirements are provided within the Proposed Temporary Concrete Batching Plant.

Vehicular Access Point

3.2 The Subject Site has an existing vehicular access point at Chun Yiu Road, which connects to Kam Tin Road. The Proposed Temporary Concrete Batching Plant will continue to access via the existing vehicular access point.

Upgrading of Chun Yiu Road

3.3 Chun Yiu Road will be upgraded and paved to allow 2-lane 2-way traffic with a minimum carriageway width of 6m between Kam Tin Road and the Subject Site. **Figures 3.1** shows the proposed upgrading of Chun Yiu Road, and location of the vehicular access point for the Subject Site.

Proposed Haulage Route

3.4 Haulage routes to and from the Subject Site are presented in **Figure 3.2**.

Operation of Proposed Temporary Concrete Batching Plant

3.5 The Proposed Temporary Concrete Batching Plant is expected to operate daily from 0700 to 2300 hours. Details of vehicle movements related to the concrete production and the delivery of raw materials are presented in Table 3.1.

Type of	Type of Vehicle	Typical Vehicle	Traffic	Generation (veh	ı/hour)
Vehicle Movement		Dimension (Approx.)	AM Peak Production (0700 – 0900)	Daytime Operation (0900 – 1900)	Evening Raw Material Delivery (1900 – 2300)
Concrete Prod	luction				
Concrete	Concrete Mixer	Heavy Goods Vehicles: 11m (L) x 2.5m (W)	20 (1)	Max. 20 (2)	4
Raw Material	Delivery		•	•	
Aggregate / Sand	Aggregate/ Sand Truck	Heavy Goods Vehicles: 11m (L) x 2.5m (W)	0	10	11
lce	Ice truck		2	2	0
Admixture	Admixture Truck		0	1	0
Waste	Waste Truck		0	1	0
Cement /	Cement / PFA	Articulated Vehicles:	0	4	1
PFA	Tanker	15.4m (L) x 2.5m (W)			
		TOTAL	22	38	16 ⁽³⁾

TABLE 3.1 DETAILS OF VEHICLE MOVEMENTS AT DIFFERENT TIME PERIODS

Note:

(1) Maximum concrete production capacity = $100m^3$ per production line x 2 production lines ÷ typical capacity of $10m^3$ per concrete mixer truck = 20 nos.

(2) Maximum 20 nos, may be less if hourly production demand does not reach the maximum production capacity.

(3) Due to environmental concern, traffic generation may be limited to either 4 concrete mixers <u>or</u> 12 deliveries of raw material; but to be conservative, a combined number of 16 vehicles in total are assumed in the TIA.

- 3.6 Table 3.1 shows the following:
 - During the <u>AM peak production</u>, i.e. 0700 to 0900 hours, the Proposed Temporary Concrete Batching Plant is expected to operate at its production capacity, and 20 concrete mixer trucks are generated. Raw materials will not be delivered during this time, except for ice which cannot be produced or stored on-site. Hence, a total of 22 vehicles are generated.
 - During the <u>daytime operation</u>, which is from 0900 to 1900 hours, there are no more than 20 concrete mixers and 18 vehicles delivering raw materials per hour. Hence, a total of no more than 38 vehicles are generated.
 - During the <u>evening raw material delivery period</u> which is from 1900 to 2300 hours, the production of concrete is expected to be reduced to only 4 concrete mixers per hour, **or** the delivery of raw materials is expected to be 12 vehicles per hour due to environmental constraints. To be conservative for traffic analysis, the total of 16 vehicles per hour are assumed.
- 3.7 To ensure traffic generation of the Proposed Temporary Concrete Batching Plant will match the estimation presented in Table 3.1 above, the Applicant will require the operator to keep record of all vehicles entering and leaving Proposed Temporary Concrete Batching Plant; and these records can be provided for review by the Authority upon request.

Traffic Generation Surveys at Other Similar Existing Concrete Batching Plant

- 3.8 To verify the estimated traffic generation presented in Table 3.1, traffic generation surveys were conducted at the following 2 existing concrete batching plants which are located in Tong Yan San Tsuen, Yuen Long:
 - Site 1: Golik Concrete Limited
 - Site 2: Redland Concrete Ltd
- 3.9 Similar to the Proposed Temporary Concrete Batching Plant, the 2 surveyed concrete batching plants have 2 production lines. Table 3.2 presents the survey results.

Hours	Traffic Generation (veh/hour)					
	Site 1 -	Golik Concrete L	imited	Site 2 -	Redland Concre	ete Ltd
	Concrete	Raw Material	TOTAL	Concrete	Raw Material	TOTAL
	Mixer	Delivery		Mixer	Delivery	
0700 – 0800	11	2	13	4	2	6
0800 - 0900	18	13	31	8	3	11
0900 – 1000	20	12	32	10	6	16
1000 – 1100	20	18	38	11	4	15
1100 – 1200	19	15	34	19	9	28
1200 – 1300	20	13	33	15	3	18
1300 – 1400	19	16	35	12	5	17
1400 – 1500	19	14	33	16	6	22
1500 – 1600	20	9	29	11	7	18
1600 – 1700	15	1	16	16	5	21
1700 - 1800	14	2	16	13	7	20
1800 – 1900	5	1	6	14	4	18
1900 – 2000	2	0	2	13	2	15

TABLE 3.2	RESULTS	OF	TRAFFIC	GENERATION	SURVEYS	AT	OTHER
	SIMILAR O	CON	CRETE BAT	CHING PLANTS	5		

- 3.10 Table 3.2 shows that Site 1 generates more traffic than Site 2, and the following are observed:
 - i) The number of concrete mixers trucks generated peaked at 18 to 20 vehicles per hour between 0800 and 1600 hours;
 - ii) The number of raw material delivery vehicles was no more than 19 vehicles per hour between 0800 and 1600 hours; and
 - iii) The maximum number of vehicles generated was 38, including 20 concrete mixer trucks, and 18 raw material delivery vehicles.
- 3.11 Results of the above traffic generation surveys show that the estimated traffic generation for the Proposed Temporary Concrete Batching Plant found in Table 3.1 is of similar order.

Internal Transport Facilities

3.12 Internal transport facilities provided for the Proposed Temporary Concrete Batching Plant are presented in **Table 3.3**, and the master layout plan is shown in **Figures 3.3**

Ref.	Туре	Dimension	Quantity			
	Car Parking S	paces				
CP1 & CP2	Car Parking Spaces	5.0m (L) x 2.5m (W) x 2.4m (H)	2			
Goods Vehicle Loading / Unloading						
LP1, LP6 & LP12	Raw Material Unloading and Waster Collection	11.0m(L) x 3.5m(W) x 4.7m(H)	3			
LP2 – LP5, & LP7 – LP9	Concrete Mixer Waiting Spaces	11.0m(L) x 3.5m(W) x 4.7m(H)	7			
LP10 & LP11	Mixer Loading Bays	11.0m(L) x 3.5m(W) x 4.7m(H)	2			
LP13 & LP14	Raw Material Unloading	16.0m(L) x 3.5m(W) x 4.7m(H)	2			
		TOTAL	2 + 14			

TABLE 3.3 INTERNAL TRANSPORT FACILITIES

Swept Path Analysis

- 3.13 Swept path analyses using CAD-based program were carried out to ensure ease of vehicle manoeuvring within the Proposed Temporary Concrete Batching Plant. No manoeuvring issue is found.
- 3.14 In addition, in response to Transport Department comment, swept path of articulated vehicles travelling along the proposed haulage route within the AOI was also carried, and no manoeuvring issue is found also.
- 3.15 The swept path analysis drawings are found in the **Appendix C**

4.0 TRAFFIC IMPACT

Design Year

- 4.1 Should the planning application for the Proposed Temporary Concrete Batching Plant be approved by the Town Planning Board in 2025, the planning permission will expire in 5 years, i.e. 2030. Hence, the traffic assessment year adopted is 2030.
- 4.2 The 2 scenarios for year 2030 assessed are:
 - (i) Year 2030 peak hours without the Proposed Temporary Concrete Batching Plant;
 - (ii) Year 2030 peak hours with the Proposed Temporary Concrete Batching Plant

Traffic Forecast

- 4.3 The design year traffic flows are estimated as follows:
 - (i) Expected traffic growth from 2024 to 2030 with reference to the historic traffic growth from the ATC;
 - (ii) Traffic generated by other known planned / committed developments located in the vicinity, and
 - (iii) Traffic generation of the Proposed Temporary Concrete Batching Plant.
- 4.4 Details of the above are presented in below paragraphs.

(i) <u>Traffic Growth Rate</u>

4.5 With reference to Table 2.1, a conservative growth rate of 1.0% per annum is adopted to produce the 2030 traffic flows from 2024.

(ii) Other Known Planned / Committed Developments

4.6 A review of public domain, including the Town Planning Board's Statutory Planning Portal 3, etc., was undertaken to identify other known major planned / committed developments located in the vicinity. Only 1 development is found with expected completion on or before the design year, and details are presented in Table 4.1.

TABLE 4.1DETAILS OF OTHER KNOWN MAJOR PLANNED / COMMITTED
DEVELOPMENT WITHIN THE AOI

Location	Parameters
Proposed House Development at Lots No. 1691 RP (Part) and 1691 S.E in	8 Houses
D.D.114 and Adjoining Government Land, East of Kam Tin Road, Pat Heung,	
Yuen Long	

4.7 In addition, the Kam Tin South Public Housing Development located some 3.5km west of the Subject Site to the south of MTR Kam Sheung Road Station is also taken into consideration.

(iii) Traffic Generation of the Proposed Temporary Concrete Batching Plant

4.8 With reference to Table 3.1, the estimated traffic generation of the Proposed Temporary Concrete Batching Plant is given in Table 4.2.

TABLE 4.2TRAFFIC GENERATION OF THE PROPOSED TEMPORARY
CONCRETE BATCHING PLANT

ltem	AM Peak Production (AM-8 Peak Hour)		Daytime Operation (AM-9 and PM Peak Hour)		Evening Raw Material Delivery (Evening Peak Hour)	
	Generation	Attraction	Generation	Attraction	Generation	Attraction
Total in veh/hr [From Table 3.1]	22	22	38	38	16	16
PCU Factor	2.5	2.5	2.5	2.5	2.5	2.5
Total in	55	55	95	95	40	40
PCU/Hour	110 (2	2-way)	190 (2	2-way)	80 (2	-way)

4.9 **Table 4.2** shows that the Proposed Temporary Concrete Batching Plant is expected to generate 110 (2-way) pcu during the AM peak hour, 190 (2-way) pcu during the PM peak hour, and 80 (2-way) during the evening peak hour.

2030 Traffic Flows

4.10 Year 2030 traffic flows for the following cases are derived:

2030 Traffic Flows without	= 2024 Existing Traffic Flows +
the Proposed Temporary	Traffic Growth from 2024 to 2030 +
Concrete Batching Plant [A]	Traffic Generated by Other Development
2030 Traffic Flows with the Proposed Temporary Concrete Batching Plant	= [A] + Traffic Generation of the Proposed Temporary Concrete Batching Plant

4.11 **Figures 4.1 and 4.2** show the year 2030 peak hour traffic flows for the cases without and with the Proposed Temporary Concrete Batching Plant.

2030 Junction Capacity Analysis

4.12 The 2030 junction capacity analyses for the cases without and with the Proposed Temporary Concrete Batching Plant are summarised in Table 4.3 and the detailed calculations are found in **Appendix B**.

Ref.	Junction	Without Cor	emporary Plant	With the Proposed Temporary Concrete Batching Plant					
		AM-8	AM-9	PM	Evening	AM-8	AM-9	PM	Evening
J01	Kam Tin Road / Fan Kam Road	0.545	0.622	0.552	0.646	0.570	0.669	0.597	0.666
J02	Kam Tin Road / Chun Yiu	0.060	0.058	0.189	0.189	0.314	0.549	0.749	0.378
	Road								
J03	Kam Tin Road / Kam Sheung	0.91	0.85	0.78	0.81	0.97	0.95	0.88	0.85
	Road / Sheung Tsuen Bus								
	Terminus								
J04	Kam Tin Road / Lam Kam	0.594	0.571	0.622	0.633	0.637	0.646	0.697	0.665
	Road / Route Twist								

TABLE 4.32030 JUNCTION PERFORMANCE

Note: RFC – Ratio of Flow to Capacity

For priority and roundabout, RFC < 1 indicates the junction operates within capacity, and $RFC \ge 1$ indicates the junction operates at / over capacity.

4.13 Table 4.3 shows that the junctions analysed have capacity to accommodate the expected traffic growth to 2030 and the traffic generated by the Proposed Temporary Concrete Batching Plant.

2030 Road Link Capacity Analysis

4.14 Road link capacity analyses for 2030 without and with the Proposed Temporary Concrete Batching Plant are summarised in **Table 4.4**.

Road Link	Configuration	Design Flow	Peak Hour 2-way Traffic Flows [Peak Hour Flows / Design Flow Ratio (P/Df)]									
		(veh/hr)	AM-8	AM-9	PM	Evening						
Without the Proposed Temporary Concrete Batching Plant												
Kam Tin Road	Single-2 District	1,581 ⁽¹⁾	903	865	921	926						
	Distributor		[0.571]	[0.547]	[0.583]	[0.586]						
Chun Yiu Road	Single Track	100 (2)	53	52	84	84						
	Access Road		[0.530]	[0.520]	[0.840]	[0.840]						
With the Proposed Temporary Concrete Batching Plant												
Kam Tin Road	Single-2 District	1,581 ⁽¹⁾	999	1,031	1,087	995						
	Distributor		[0.632]	[0.652]	[0.688]	[0.629]						
Chun Yiu Road	Single-2 Local	720 ⁽³⁾	171 (4)	250 (4)	287 (4)	177 (4)						
	Road		[0.238]	[0.347]	[0.399]	[0.246]						
(1) Design flow ir	n reference with TPDM	for single 2-lan	e 7.3m carriage	eway, i.e. 1,700) veh/hr for bo	th direction of						

TABLE 4.4 2030 ROAD LINK PERFORMANCE

flow, and reduced by 7% considering percentage of heavy vehicles is between 15% and 20%
(2) Design flow in reference with TPDM for single track access road, i.e. 100 veh/hr.

(2) Design now in reference with TPDM for single track access road, i.e. 100 ven/hr.
 (3) Design flow in reference with TPDM for single 2-lane local road, i.e. 800 veh/hr, 2-way, and reduced by 10% considering high percentage of heavy vehicles

(4) In view of very high percentage of heavy vehicles, traffic flows in passenger car unit is adopted.

4.15 Table 4.4 shows that both Kam Tin Road and the upgraded Chun Yiu Road have capacity to accommodate the expected traffic growth in 2030 and the traffic generated by the Proposed Temporary Concrete Batching Plant.

5.0 SUMMARY

- 5.1 The Applicant proposes to relocate the concrete batching plant from Yick Yuen, Hung Sui Kiu in Yuen Long to the Subject Site which is in Shek Kong due to land acquisition by the Government for construction of the planned HSK/HT NDA.
- 5.2 The Proposed Temporary Concrete Batching Plant will have 2 production lines, and provides sufficient internal transport facilities including concrete mixer truck waiting spaces and queuing area to ensure that vehicles will not queue back onto the public road. The existing vehicle access to the Subject Site, which is Chun Yiu Road is proposed to be upgraded to 2-lane with a minimum carriageway width of 6m to serve the Proposed Temporary Concrete Batching Plant.
- 5.3 Manual classified counts were conducted at junctions located in the vicinity of the Proposed Temporary Concrete Batching Plant in order to establish the peak hour traffic flows. Currently, the junctions operate with capacities during the AM, PM and evening PM peak hours.
- 5.4 The Proposed Temporary Concrete Batching Plant is expected to be completed by 2026, and the capacity analyses are undertaken for year 2030. All junctions and road link analysed have sufficient capacity to accommodate the expected traffic flow to 2030 and the traffic generated by the Proposed Temporary Concrete Batching Plant.
- 5.5 From traffic engineering viewpoint, the Proposed Temporary Concrete Batching Plant is considered acceptable.

Figures

\JOB\J7300-J7349\J7342\(2025 01) TIA_R2\Fig 1 1 RevA.dwg

IOB\J7300-J7349\J7342\(2025 01) TIA_R2\Fig 2.1 RevA.dwg

4.0 TS TS TS TS TS 43.3 + 43.3 + 43.3 + ET ET TS 43.6	TS TS TS TS TS TS TS TS TS TS TS TS TS T	J. THURSON IN THE STREET S
TS T	4.0 TS TS TS TS TS TS TS TS TS TS TS TS TS	43.3 +
Project Title PROPOSED TEMPORARY CONCRETE BATCHING PLANT WITH ANCILLARY FACILITIES FOR A PERIOD OF 5 YEARS AT LOTS 573 RP AND 1710 IN D.D. 114, SHEK KONG, YUEN LONG, NT Figure Title Figure Title Figure Title Figure Title Figure Title Figure No. Figure N	Project Title PROPOSED TEMPORARY CONCRETE BATCHING PLANT WITH ANCILLARY FACILITIES FOR A PERIOD OF 5 YEARS AT LOTS 573 RP AND 1710 IN D.D. 114, SHEK KONG, YUEN LONG, NT J7342	Figure No. 2.4 Designed by M.C.Y. S.C.Y. K.C. CKM Asia Limited Traffic and Transportation Planning Consultants 21st Floor: Methodist House: 36 Hennessy Road

\JOB\J7300-J7349\J7342\(2025 01) TIA_R2\Fig 2.7 4.1 4.2 RevA.dwg

9\J7342\(2025 01) TIA_R2\Fig 3.3 & SP1XX Rev A dwg \JOB\J7300

4.2 RevA dwg (2025 01) TIA_R2\Fig 2.7 4.1 7342\(349/J7

OB\J7300-J7349\J7342\(2025 01) TIA_R2\Fig 2.7 4.1 4.2 RevA.dwg

Appendix A – Vehicle Composition of Existing Traffic Flows

\JOB\J7300-J7349\J7342\(2025 01) TIA_R2\Fig 2.7 4.1 4.2 RevA dwg

						0						ΤΟΤΑΙ
ID	мс	PC	Taxi	Van	LGV	M/HGV	PLB	PrLB	NFB	FBSD	FBDD	(VEH)
J01-01	6	181	14	37	11	30	26	2	3	2	3	315
J01-02	1	44	6	9	7	4	0	2	0	0	0	73
J01-03	0	3	0	0	0	1	0	0	0	0	0	4
J01-04	2	61	3	11	5	4	0	0	0	0	0	86
J01-05	9	170	40	26	14	29	7	4	0	0	4	303
J01-06	0	1	0	0	0	2	0	0	0	0	0	3
J01-07	8	202	20	14	11	21	23	2	1	1	3	306
J01-08	10	201	14	29	18	23	9	1	1	1	7	314
J01-09	0	0	0	0	0	0	0	0	0	0	0	0
J02-01	14	269	15	64	22	18	7	1	4	3	3	420
J02-02	0	8	0	1	3	0	0	0	0	0	0	12
J02-03	0	5	0	1	2	2	0	0	0	0	0	10
J02-04	0	6	0	0	0	0	0	0	0	0	0	6
J02-05	0	13	1	2	5	0	0	0	0	0	0	21
J02-06	22	242	11	51	31	19	8	2	3	2	3	394
J03-01	22	230	10	48	31	21	8	2	3	0	0	375
J03-02	0	33	0	32	5	2	0	1	2	0	0	75
J03-03	5	116	9	21	14	8	8	0	0	0	8	189
J03-04	5	95	16	21	19	16	9	4	4	0	8	197
J03-05	14	241	15	32	20	16	7	0	2	3	3	353
J03-06	0	18	1	3	7	0	0	0	0	3	3	35
J04-01	8	182	15	26	19	15	10	0	0	0	4	279
J04-02	9	185	5	27	11	3	6	0	0	0	0	246
J04-03	0	37	2	6	6	13	0	3	3	2	8	80
J04-04	6	79	2	8	4	2	9	0	0	0	0	110
J04-05	1	11	0	2	0	2	0	0	0	0	0	16
J04-06	0	0	0	0	0	0	0	0	0	0	0	0
J04-07	4	121	0	6	0	5	0	0	0	0	0	136
J04-08	5	265	17	34	6	19	9	0	3	0	6	364
J04-09	0	0	0	0	0	3	0	0	0	0	0	3

TABLE A1COMPOSITION FOR EXISTING TRAFFIC FLOW AT AM-8 PEAK HOUR

	_ 0			10112					/			ΤΟΤΑΙ
ID	МС	РС	Taxi	Van	LGV	M/HGV	PLB	PrLB	NFB	FBSD	FBDD	(VEH)
J01-01	6	187	16	35	12	44	25	4	4	2	3	338
J01-02	1	53	9	14	10	5	0	4	0	0	0	96
J01-03	0	4	0	0	0	1	0	0	0	0	0	5
J01-04	3	64	5	16	9	7	0	0	0	0	0	104
J01-05	9	211	39	25	13	28	7	4	0	0	4	340
J01-06	0	1	0	0	0	2	0	0	0	0	0	3
J01-07	8	242	19	13	10	20	22	2	1	1	3	341
J01-08	13	208	20	47	26	30	9	2	1	1	7	364
J01-09	0	0	0	0	0	0	0	0	0	0	0	0
J02-01	13	256	14	60	21	18	7	1	4	3	3	400
J02-02	0	8	0	1	3	0	0	0	0	0	0	12
J02-03	0	5	0	1	2	2	0	0	0	0	0	10
J02-04	0	6	0	0	0	0	0	0	0	0	0	6
J02-05	0	12	1	2	5	0	0	0	0	0	0	20
J02-06	21	231	10	49	29	18	8	2	3	2	3	376
J03-01	21	220	9	47	29	20	8	2	3	0	0	359
J03-02	0	31	0	30	5	2	0	1	2	0	0	71
J03-03	5	111	9	20	13	8	8	0	0	0	8	182
J03-04	5	90	15	20	18	16	9	4	4	0	8	189
J03-05	13	229	14	30	19	16	7	0	2	3	3	336
J03-06	0	17	1	3	7	0	0	0	0	3	3	34
J04-01	9	186	17	22	15	17	9	0	0	0	4	279
J04-02	10	185	5	28	11	3	6	0	0	0	0	248
J04-03	0	1	2	7	7	15	0	3	3	2	8	48
J04-04	8	94	2	9	5	2	9	0	0	0	0	129
J04-05	1	10	0	2	0	2	0	0	0	0	0	15
J04-06	0	0	0	0	0	0	0	0	0	0	0	0
J04-07	4	116	0	6	0	5	0	0	0	0	0	131
J04-08	7	238	22	35	8	19	9	0	3	0	6	347
J04-09	0	0	0	0	0	3	0	0	0	0	0	3

TABLE A2COMPOSITION FOR EXISTING TRAFFIC FLOW AT AM-9 PEAK HOUR

						1						TOTAL
ID	мс	PC	Taxi	Van	LGV	M/HGV	PLB	PrLB	NFB	FBSD	FBDD	(VEH)
J01-01	13	210	7	26	9	10	28	0	3	2	3	311
J01-02	6	57	5	11	9	4	0	0	1	0	0	93
J01-03	0	2	0	0	0	0	0	0	0	0	0	2
J01-04	8	100	4	6	11	8	2	0	1	0	0	140
J01-05	3	290	29	27	24	9	5	0	1	0	3	391
J01-06	0	2	1	0	0	0	0	0	0	0	0	3
J01-07	5	254	33	27	8	15	21	0	0	0	4	367
J01-08	15	194	10	31	8	14	8	1	3	2	3	289
J01-09	0	5	1	0	0	0	0	0	0	0	0	6
J02-01	17	246	15	44	20	27	5	3	1	1	2	381
J02-02	0	12	0	2	4	1	0	0	0	0	0	19
J02-03	0	13	0	4	3	1	0	0	0	0	0	21
J02-04	0	13	0	2	5	2	0	0	0	0	0	22
J02-05	0	13	0	3	2	0	0	0	0	0	0	18
J02-06	26	280	19	56	25	21	7	4	2	2	3	445
J03-01	26	282	17	57	28	22	7	4	2	0	0	445
J03-02	1	40	7	14	4	9	0	2	0	0	0	77
J03-03	5	104	6	27	3	5	7	0	0	0	7	164
J03-04	11	149	13	20	20	8	9	3	0	0	11	244
J03-05	15	206	7	30	19	17	5	1	1	1	2	304
J03-06	0	29	1	5	1	1	0	0	0	1	3	41
J04-01	9	307	14	21	17	8	9	0	1	0	6	392
J04-02	8	120	6	8	8	0	8	0	0	1	0	159
J04-03	2	71	8	11	7	3	2	0	1	2	6	113
J04-04	6	129	2	19	2	2	7	0	0	1	0	168
J04-05	3	15	0	4	0	1	0	0	0	0	0	23
J04-06	0	0	0	0	0	0	0	0	0	0	0	0
J04-07	3	73	0	0	0	1	0	0	0	0	0	77
J04-08	8	212	9	18	7	10	12	2	0	0	7	285
J04-09	0	1	0	0	0	2	0	0	0	0	0	3

TABLE A3COMPOSITION FOR EXISTING TRAFFIC FLOW AT PM PEAK HOUR

												TOTAL
ID	мс	PC	Taxi	Van	LGV	M/HGV	PLB	PrLB	NFB	FBSD	FBDD	(VEH)
J01-01	25	274	15	47	22	21	29	1	5	2	3	444
J01-02	13	63	10	26	21	7	0	0	2	0	0	142
J01-03	0	4	0	0	0	0	0	0	0	0	0	4
J01-04	13	131	8	8	16	10	2	0	1	0	0	189
J01-05	3	279	30	28	25	9	5	0	1	0	3	383
J01-06	0	2	1	0	0	0	0	0	0	0	0	3
J01-07	5	256	34	28	8	15	22	0	0	0	4	372
J01-08	24	251	20	42	10	18	8	1	3	2	3	382
J01-09	0	5	1	0	0	0	0	0	0	0	0	6
J02-01	16	259	14	44	21	24	5	3	1	1	2	390
J02-02	0	12	0	2	4	1	0	0	0	0	0	19
J02-03	0	13	0	4	3	1	0	0	0	0	0	21
J02-04	0	13	0	2	5	2	0	0	0	0	0	22
J02-05	0	13	0	3	2	0	0	0	0	0	0	18
J02-06	27	282	19	56	26	19	7	4	2	2	3	447
J03-01	27	285	16	57	29	20	7	4	2	0	0	447
J03-02	1	41	7	14	4	9	0	2	0	0	0	78
J03-03	5	107	6	28	3	5	7	0	0	0	7	168
J03-04	10	163	13	21	21	8	9	3	0	0	10	258
J03-05	15	222	7	31	20	16	5	1	1	1	2	321
J03-06	0	30	1	5	1	1	0	0	0	1	3	42
J04-01	9	315	15	23	19	8	9	0	1	0	6	405
J04-02	8	130	6	8	8	0	8	0	0	1	0	169
J04-03	2	51	8	10	7	3	2	0	1	2	6	92
J04-04	12	142	5	28	4	2	7	0	0	1	0	201
J04-05	3	40	0	4	0	1	0	0	0	0	0	48
J04-06	0	0	0	0	0	0	0	0	0	0	0	0
J04-07	3	74	0	0	0	1	0	0	0	0	0	78
J04-08	16	171	19	32	10	20	12	2	0	0	7	289
J04-09	0	1	0	0	0	2	0	0	0	0	0	3

TABLE A4COMPOSITION FOR EXISTING TRAFFIC FLOW AT EVENING PEAK HOUR
Appendix B – Capacity Analyses

lunction:		Kam Tin P	Poad / Ean k	(am Road						lo	h Number	17342
Scopario:			ondition	Valli Noau						- 30		1
Design V	aar.	2024		signed By	· MCV	C	becked By:	WCH		Date:	21 Jonu	1 2025
Design re	-al.	2024	. De	signed by		C	neckeu by.	WCH		Dale.	21 Janu	ary 2025
AM(08) P	EAK											
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	0	358	374						732	94		
From B	359	6	95						460	379		
From C	386	83	5						474	365		
From D												
From E												
From F												
From G												
From H												
Total	745	447	474						1666			
										I		
PM (17) F	Peak										_	
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	6	407	325						738	109		
From B	426	3	157						586	333		
From C	354	104	2						460	435		
From D												
From E												
From F												
From G												
From H												
Total	786	514	484						1784			
Legend	1				Geometric	: Paramet	ers					
Arm	Road	(in clockwise	e order)		Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
A	Kam Tin I	Road (EB)			From A	7.7	3.3	35.0	10.0	25	40	0.7
В	Fan Kam	Road (SB)			From B	7.7	2.9	15.0	12.5	25	30	0.6
С	Kam Tin I	Road (WB)			From C	7.7	5.5	100.0	100.0	25	60	0.0
D					From D							
E					From E							
F					From F							
G					From G							
Н					From H							
Predictiv	e Equatior	n Q₌ = K(F -	f_q_)			Limitatio	n					
Q _F	Entry Car	acity	-0-107		ו ר	e	Entry Wid	th		4.0 - 15.0	m	
q _c	Circulatin	g Flow acros	ss the Entry	/		v	Approach	Half Width		2.0 - 7.3 m	ı	
ĸ	= 1-0 003		978[(1/r)-0	051		r	Entry Rad	ius		6.0 - 100.0) m	
F	$= 303x_2$	(]		Ľ	Effective L	_enath of Fl	are	1.0 - 100.0) m	
f _c	= 0.210t _D	(1+0.2x ₂)				D	Inscribed	Circle Diam	eter	15 - 100 m	n	
t _D	= 1+0.5/(1+M)				Ø	Entry Ang	le		10° - 60°		
м	= exp[(D-	60)/101				s	Sharpness	s of Flare		0.0 - 3.0		
x ₂	= v+(e-v)/	(1+2S)			1 '		1					
s	= 1.6(e-v))/L										
					-4							
Ratio-of-I	Flow to Ca	pacity (RFC	C)									
					_	,	(2 _Ε	Entr	y Flow	RI	-C
Arm	X ₂	M	ι _D	K	F	t _c	AM(08)	PM (17)	AM(08)	PM (17)	AM(08)	PM (17)
From A	5.112	0.030	1.485	0.986	1549	0.631	1469	1460	732	738	0.498	0.506
⊢rom B	5.029	0.030	1.485	0.984	1524	0.626	1266	1294	460	586	0.363	0.453
⊢rom C	7.591	0.030	1.485	0.935	2300.174	0.786	1883	1831	474	460	0.252	0.251
From D												
⊢rom E												
From F												
From G												
FIOM H												

Junction:	unction: Kam Tin Road / Fan Kam Road Job Number: J7342								J7342			
Scenario:		Existing C	ondition							-	J01 - P.	2
Design Ye	ear:	2024	De	signed By:	MCY	С	hecked By:	WCH	_	Date:	21 Janu	ary 2025
AM (09) F	Peak											
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	0	390	438						828	123		
From B	394	6	119						519	444		
From C	429	111	6						546	400		
From D												
From E												
From F												
From G												
From H												
Total	823	507	563						1893			
DM (19) E	Doak											
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	6	413	423						842	170		
From B	419	3	210						632	433		
From C	512	163	4						679	428		
From D												
From E												
From F												
From G												
From H												
Total	937	579	637						2153			
Legend					Geometric	Paramet	ers			- / >		
Arm	Road (e order)		Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
					From A	1.1	3.3	35.0	10.0	25	40	0.7
В	Fan Kam				From B	1.1	2.9	15.0	12.5	25	30	0.6
	Kam IIn F	Koad (WB)				1.1	5.5	100.0	100.0	25	60	0.0
					From E							
					FIOIII E							
					From G							
н					From H							
<u> </u>												
Predictiv	e Equation	Q _E = K(F -	f _c q _c)			Limitatio	n					
Q _E	Entry Cap	acity				е	Entry Widt	th		4.0 - 15.0	m	
q _c	Circulating	g Flow acros	ss the Entry	/		v	Approach	Half Width		2.0 - 7.3 m	1	
K	= 1-0.0034	47(Ø-30)-0.	.978[(1/r)-0.	05]		r	Entry Radi	ius		6.0 - 100.0) m	
⊢ _	$= 303X_2$	1.0.22				L	Effective L	ength of Fl	are	1.0 - 100.0) m	
1 _C		$(+0.2x_2)$				D	Inscribed (Circle Diam	leter	15 - 100 m	1	
ч _D	= 1+0.5/(1	+IVI)				0	Entry Angi	e		10° - 60°		
M	= exp[(D-6	50)/10] (1+28)				5	Snarpness	s of Flare		0.0 - 3.0		
^2 0	= v + (e - v)/(e - v)	(1+25)										
	– 1.0(e-v)/	/L			1							
Ratio-of-	Flow to Ca	pacity (RFC	C)				-		-			
A			÷	V	F	f			Entry	y Flow	RI	FC
Arm	×2 E 110	NI	LD	ň	1540	1 ₀	AIVI(09)	1422	AIVI(09)	PM(19)	AIVI(U9)	PIVI(19)
From R	5 020	0.030	1 / 25	0.900	1524	0.031	1226	1922	510	632	0.071	0.592
From C	7 501	0.030	1 /95	0.904	2300 174	0.020	1220	1232	5/6	670	0.423	0.313
From D	1.591	0.030	1.400	0.900	2000.174	0.700	1037	1030	540	079	0.294	0.370
From E												
From F												
From G												
From H												
	1											

Multiple Program 2 Concrete Batching Plant	Scenaric: Without Proposed Temporary Concrete Batching Plant Joi - P. 3 Design Year: 2030 Designed By: MCY Checked By: WCH Date: 21 January 2025 AM06) PEAK Am To A To B To C To D To E To F To G To H Total 4; Am To A To B To C To D To E To F To G To H Total 4; From A 0 390 408 F F To G To H Total 4; From B F F To C To D To E To F To G To H Total 4; From A 6 442 566 F 630 364 116 From B 459 3 188 F 488 630 364 From B F F To C To D To E To F 100 L 100 L 100 L From A	Junction:		Kam Tin R	load / Fan k	Kam Road						Jo	b Number:	J7342
Design Yeer: 2030 Designed By MCY Checked By WCH Date: 21 January 2025 AM(0) PEAK	Design Year: 2030 Designed By: MCY Checked By: WCH Date: 21 January 2025 AM(6) PEAK	Scenario:		Without Pr	oposed Te	mporary C	Concrete Bate	ching Plar	ıt				J01 - P.	3
And (03) PEAK Arm To A To B To C To D To E To F To G To H Total 4.0 From A 0.0 380 6 101 503 413 From C 425 89 5 519 402 From F - - - - - - From F - - - - - - Prom F - - 1820 - - - PM (T7) Peak - - 1820 - - - - Prom A 6 442 356 For To F To G To H Total 94 From B 459 3 168 - 1931 -	AM(69) PEAK Arm To A To B To C To D To E To F To G To H Total 9 From A 0 396 6 101 503 413 From B 396 6 101 519 402 From C 425 89 5 519 402 From R From A 6 421 485 514 1820 From A 6 442 356 6 304 116 From A 6 442 356 6 3044 116 From A 6 442 356 6 3044 116 From A 6 442 356 630 384 168 From A 111 2 497 468 111 2 From A Ran Rnod (EB) From A 7.7 3.3 35.0 10.0 25 40 0.7 From B	Design Ye	ear:	2030	De	signed By	: MCY	С	hecked By:	WCH		Date:	21 Janu	ary 2025
$ \begin{array}{ c c c c c c } \hline AM(0) \ FRAK \\ \hline Amm & To A & To B & To C & To D & To E & To F & To G & To H & Total & Q_{+} \\ \hline From A & 0 & 390 & 408 \\ \hline From B & 396 & 6 & 101 \\ \hline From C & 425 & 89 & 5 \\ \hline From D & - & - & - & - & - & - & - & - & - &$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AM(08) P	EAK											
From A 0 330 408 708 100 From D 366 6 101 503 413 From C 425 89 5 519 402 From D 519 402 519 402 From F - 1820 - - PM (17) Peak - 1820 - - PM (17) Peak - 1820 - - PM (17) Pak - - 1820 - PM (17) Peak - - 1820 - - PM (17) Peak - - 1820 - - Pan Kam Solid (11) 2 - - 1931 - Legend - - - 1931 - Legend (In clockwise order) A Ram Tin Road (RSh) - 7.7 2.3 35.0 10.0 2.5 40 0.7 Geometric Parameters - - 17.7	From A 0 396 6 101 From B 396 6 101 503 413 From C 425 89 5 519 402 From B 821 465 514 1820 143 Prom E 700 M 821 465 514 1820 PM (17) Peak 477 1820 804 116 From A 6 442 396 56 804 116 From B 6 402 366 630 364 116 From B A 6 442 396 56 526 1031 100 From B From C 77 3.3 35.0 10.0 25 40 0.7 A Kam Tin Road (KB) Eagend Conclusting Flow across the Entry Kam Tin Road (VB) Early Capacity A 77 5.5 100.0 100.0 25 60 0.0 G Early Capacity Early Capacity Early Capacity Early Capacity A A A A <td>Arm</td> <td>IO A</td> <td>IOB</td> <td>To C</td> <td>To D</td> <td>IOE</td> <td>IOF</td> <td>To G</td> <td>IOH</td> <td>lotal</td> <td>q_c</td> <td></td> <td></td>	Arm	IO A	IOB	To C	To D	IOE	IOF	To G	IOH	lotal	q _c		
From B 396 6 101 503 413 From D 425 89 5 519 402 From D From B 519 402 402 From B 821 485 514 1820 - PM (7) Peak	From B 386 6 101 503 413 From C 425 89 5 519 402 From F 519 402 402 From F 700 1820 1820 1820 PM (17) Peak 1820 1820 1820 Am To A To B To C To D To E To F To G To H Total 9, From A 6 442 356 804 116 630 364 From A 6 442 356 804 168 630 364 From B 459 3 168 497 468 From B 459 3 163 93 163 From B From B 7.7 3.3 35.0 10.0 25 40 0.7 Am 649 556 526 1931 100.0 25 40 0.7 Legend Am Road (BB) From B 7.7 2.9 15.0 10.0 25 60 <td>From A</td> <td>0</td> <td>390</td> <td>408</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>798</td> <td>100</td> <td></td> <td></td>	From A	0	390	408						798	100		
From C 425 89 5 From D 519 402 From F 1820 - From F 1820 - Prom F 1820 - Prom F 1820 - Prom A 6 442 336 From A 6 442 336 From A 6 442 336 From B 459 3 188 From B 459 3 188 From C 364 111 2 From C 364 497 468 From D From N From N 4097 468 From B 520 1331 - - Legend E - 1331 - Legend E - 1331 - E From B 7.7 3.3 350 10.0 0.7 B Fan Kam Road (B) C From B 7.	From C 425 89 5 519 402 From D From F 519 402 From F From C 7 6 442 366 From A 6 442 366 630 364 From A 6 442 366 630 364 From A 6 442 366 630 364 From B 459 3 168 630 364 From C 384 111 2 497 468 From B From A 7.7 3.3 350 10.0 25 40 0.7 From B From A 7.7 5.5 100.0 100.0 25 40 0.7 From B From A 7.7 5.5 100.0 100.0 25 60 0.0 From B From C 7.7 5.5 100.0 100.0 25 60 0.0 Prom C Ran Tin Road (WB) From F From C 7.7 5.5 100.0 100.0 2.5 <td>From B</td> <td>396</td> <td>6</td> <td>101</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>503</td> <td>413</td> <td></td> <td></td>	From B	396	6	101						503	413		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	From D From E From K Image: Constraint of the second se	From C	425	89	5						519	402		
From E From F From G Image: Second seco	From F From G F <t< td=""><td>From D</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	From D												
From F From H Read (in clockwise order) From H Geometric Parameters Issue Issue Arm To A To B To C To D To E To F To G To H Total 94 PM (17) Peak Arm To A To B To C To D To E To F To G To H Total 94 From B 459 3 168 - 633 364 From C 384 111 2 437 468 From B From C S26 1931 - - Legend - - 1931 - - Arm Road (in clockwise order) N Arm 7.7 3.3 35.0 10.0 25 60 0.7 From H - - From R 7.7 2.9 15.0 12.5 25 30 0.6 Crianting Flow arcos the Entry K + - 7.7 3.3 35.0	From F From H Item Item Total 821 485 514 1820 PM (17) Peak Arm To A To B To C To D To E To F To G To I 480 116 From A 6 442 356 630 364 116 From A 6 442 356 630 364 From B 459 3 168 630 364 From C 384 111 2 497 468 From F From B 7.7 3.3 3.0 1.00 25 40 0.7 From H From B 7.7 2.9 15.0 12.5 25 30 0.6 C Kam Tin Road (EB) From B 7.7 2.9 15.0 12.5 25 30 0.6 From E From H From E From B 7.7 5.5 100.0 100.0 25 60 0.0 D E From H From B From B 7.7 <td< td=""><td>From E</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	From E												
From G From H Issue Tetal 821 485 514 1820 PM (17) Peak Issue Issue Issue Issue Arm To A To B To C To D To E To F To G To H Total 9, From A 6 442 366 50 630 364 116 From B 459 3 168 630 364 116 630 364 From B 499 366 526 1931 1	From G Image: Constraint of the second	From F												
From H Image: respect to the second sec	From H	From G												
Total 821 485 514 1820 PM (17) Peak	Total 821 485 514 1820 PM (17) Peak Image: State of the sta	From H												
PM (17) Peak Am To A To B To C To D To E To F To G To H Total q. From A 6 442 356 804 116 804 116 From B 459 3 168 933 168 933 168 From C 384 111 2 497 468 From D From E 931 100 20 931 Legond Kam Tin Road (k8 corder) 1031 100 25 40 0.7 B Fan Kam Road (SB) From B 7.7 3.3 35.0 100.0 25 40 0.7 From B 7.7 2.9 15.0 12.5 25 30 0.6 From B From B 7.7 5.5 100.0 100.0 25 60 0.0 C Entry Capacity K From B 7.7 5.5 100.0 100.0 10.0 <td< td=""><td>PM (17) Peak Arm To A To B To C To D To E To F To G To H Total q. From A 6 442 356 804 116 630 384 From B 459 3 168 830 384 111 2 497 468 From C 384 111 2 497 468 497 468 From B From A 6 497 468 497 468 From B From A 6 1931 931 931 931 931 Loggend Image: Construct Parameters Image: Construct Parameters 1931 93</td><td>Total</td><td>821</td><td>485</td><td>514</td><td></td><td></td><td></td><td></td><td></td><td>1820</td><td></td><td></td><td></td></td<>	PM (17) Peak Arm To A To B To C To D To E To F To G To H Total q. From A 6 442 356 804 116 630 384 From B 459 3 168 830 384 111 2 497 468 From C 384 111 2 497 468 497 468 From B From A 6 497 468 497 468 From B From A 6 1931 931 931 931 931 Loggend Image: Construct Parameters Image: Construct Parameters 1931 93	Total	821	485	514						1820			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PM (17) F	Peak	To P	To C	To D	ToE	To F	To C	To H	Total	l a	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ann		10 6	100	10 D	IUE	TOF	10 G	10 1	10(2)			
From B 439 3 108 6.30 304 From C 384 111 2 487 468 From E 497 468 468 From E 111 2 497 468 From F 526 1931 1 Legend Geometric Parameters Arm Road (in clockwise order) A Arm Tin Road (EB) From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (BB) From A 7.7 5.5 100.0 100.0 25 60 0.0 D E Fan Kam Road (VB) E From A 7.7 5.5 100.0 100.0 25 60 0.0 D E Fan Kam Road (VB) E From B From B From B From B From B Colspan="2">Conderive Lengthon D(m) Ø(°) * S From D From B From C T.7 5.5 100.0 100.0 25 60 0.0 Prot D From D From B C	From B 4.39 3 108 e.30 364 From C 384 111 2 497 468 From D 384 111 2 497 468 From E 1931 1 <td>From A</td> <td>6</td> <td>442</td> <td>356</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>804</td> <td>116</td> <td></td> <td></td>	From A	6	442	356						804	116		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	From B	459	3	168						630	364		
From D From F From F From H From H 1931 Legend 1931 Arm Road (in clockwise order) A Kam Tin Road (EB) C Kam Tin Road (B) B Fan Am Road (CB) C Kam Tin Road (WB) D B F G G From B F From C F The Road (WB) D E F G G H Prodictive Equation $Q_e = K(F - f_e q_e)$ Image: Consulting Flow across the Entry K = 10.00347 (C2-30)-0.978 (11/r)-0.05] F = 303 k_2 G = 10.00347 (C2-30)-0.978 (11/r)-0.05] F = 303 k_2 F = 0.210 k_0 (1+0.2 k_2) k_5 = 1.00.0347 (C2-30)-0.978 (11/r)-0.05] K_2 = 1.00.0347 (11/e) X_2 = vr(e-v)/(1+2S) S = 1.01/r And(0) M = exp(D+80) (10) X_2 = vr(e-v)/(1+2S) S<	From D From F From F Geometric Parameters Arm Road (in clockwise order) A Kam Tin Road (EB) Arm $r (m)$ $v (m)$ $r (m)$ $L (m)$ $D (m)$ $O (^{\circ})$ S B Fan Kam Road (SB) Form B 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (WB) D $From B$ 7.7 5.5 100.0 100.0 25 60 0.0 C Kam Tin Road (WB) D From B 7.7 5.5 100.0 100.0 25 60 0.0 C Kam Tin Road (WB) D Entry Radius $6.0 - 100.0$ 0.0 100.0 25 60 0.0 Predictive Equation $Q_E = K(F - f, q_e)$ Limitation Constant of the meter stant of the mete	From C	384	111	2						497	468		
From E From K Image: Constraint of the second sec	From E From F Geometric Parameters Arm Road (in clockwise order) A B Fram Kam Tin Road (EB) F From A T.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) C From A T.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (WB) From A T.7 3.3 35.0 10.0 25 60 0.0 D E F F From B T.7 5.5 100.0 100.0 25 60 0.0 From B F.7 5.5 100.0 100.0 25 60 0.0 From B From C From B From C From C	From D												
From F From G Geometric Parameters 1991 Legend Arm Road (in clockwise order) A Arm Geometric Parameters Arm Road (in clockwise order) A Kam Tin Road (KB) C From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) C From B 7.7 2.9 15.0 12.5 25 30 0.6 D E From B 7.7 5.5 100.0 100.0 25 60 0.0 D E From B 7.7 5.5 100.0 100.0 25 60 0.0 From B From C F	From F Total 849 556 526 Lagend Construction of the second of	From E												
From G From H gamma gamma gamma gamma Total 849 556 526 Legend Arm Road (in clockwise order) A Kam Tin Road (EB) From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) From B 7.7 2.9 15.0 12.5 25 30 0.6 C Kam Tin Road (WB) From B 7.7 5.5 100.0 100.0 25 60 0.0 E From B From F From B From F From B 7.7 5.5 100.0 100.0 25 60 0.0 From B From B From B From B From B From B 7.7 5.5 100.0 100.0 25 60 0.0 F G From B From B From B From B 6.0 100.0 0 100.0 0 100.0 100.0 100.0 15.0 m 4.0 15.0 m <t< td=""><td>From G Image: Signed Sig</td><td>From F</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	From G Image: Signed Sig	From F												
From H	From H Image: constraint of the second	From G												
Itegend Geometric Parameters Arm Road (in clockwise order) A Kam Tin Road (EB) Form A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) From B 7.7 2.9 15.0 12.5 2.5 30 0.6 C Kam Tin Road (WB) From B 7.7 5.5 100.0 100.0 25 60 0.0 From B From B From B From B From B 7.7 5.5 100.0 100.0 25 60 0.0 From B From C <td>Iotal 849 556 526 Legend Geometric Parameters Arm Road (in clockwise order) A Kam Tin Road (EB) Form A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) C Kam Tin Road (WB) From A 7.7 2.9 15.0 12.5 25 30 0.6 D E From B 7.7 2.9 15.0 12.5 25 60 0.0 D E From B 7.7 2.9 15.0 12.5 25 60 0.0 D E From B From B From C From C From B From F From B From F From F From F From F F G G G G G <t< td=""><td>From H</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td>	Iotal 849 556 526 Legend Geometric Parameters Arm Road (in clockwise order) A Kam Tin Road (EB) Form A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) C Kam Tin Road (WB) From A 7.7 2.9 15.0 12.5 25 30 0.6 D E From B 7.7 2.9 15.0 12.5 25 60 0.0 D E From B 7.7 2.9 15.0 12.5 25 60 0.0 D E From B From B From C From C From B From F From B From F From F From F From F F G G G G G <t< td=""><td>From H</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	From H												
Geometric Parameters Arm Road (in clockwise order) Arm Read (in clockwise order) A Kam Tin Road (EB) From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) From B 7.7 2.9 15.0 12.5 25 30 0.6 C Kam Tin Road (WB) From C 7.7 5.5 100.0 100.0 25 60 0.0 E From C 7.7 5.5 100.0 100.0 25 60 0.0 From B From C 7.7 5.5 100.0 100.0 25 60 0.0 From B From C From G From G From G From G From G F 9030x f Find Kall Width 2.0 - 7.3 m F Entry Radius 6.0 - 10.0 m D Inscribed Circle Diameter 15 - 100 m Ø Entry Angle 10' - 60° S S harpness of Flare 0.0 - 3.0 S	Geometric Parameters Arm Road (in clockwise order) A Kam Tin Road (EB) From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) From B 7.7 2.9 15.0 12.5 25 30 0.6 C Kam Tin Road (WB) From D From C 7.7 5.5 100.0 100.0 25 60 0.0 F G From D From D <td>lotal</td> <td>849</td> <td>556</td> <td>526</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1931</td> <td></td> <td></td> <td></td>	lotal	849	556	526						1931			
Light Geometric Parameters Arm Road (in clockwise order) A A Kam Tin Road (EB) From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) From A 7.7 2.9 15.0 12.5 25 30 0.6 C Kam Tin Road (WB) From B 7.7 5.5 100.0 100.0 25 60 0.0 F <td>Legend Geometric Parameters Arm Road (in clockwise order) A A Kam Tin Road (EB) From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) From A 7.7 2.9 15.0 12.5 25 30 0.6 D E From B 7.7 2.9 15.0 12.5 25 60 0.0 F From C 7.7 5.5 100.0 100.0 25 60 0.0 F From C 7.7 5.5 100.0 100.0 25 60 0.0 F From C From B From C 7.7 5.5 100.0 100.0 25 60 0.0 Generative Equation $Q_e \in K(F \cdot f_e q_e)$ E Imitation E Entry Width 4.0 - 15.0 m V Approach Half Width 2.0 - 7.3 m T Entry Radius 6.0 - 100.0 m L Effective Length of Flare 1.0 - 100.0 m</td> <td colspan="12"></td>	Legend Geometric Parameters Arm Road (in clockwise order) A A Kam Tin Road (EB) From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) From A 7.7 2.9 15.0 12.5 25 30 0.6 D E From B 7.7 2.9 15.0 12.5 25 60 0.0 F From C 7.7 5.5 100.0 100.0 25 60 0.0 F From C 7.7 5.5 100.0 100.0 25 60 0.0 F From C From B From C 7.7 5.5 100.0 100.0 25 60 0.0 Generative Equation $Q_e \in K(F \cdot f_e q_e)$ E Imitation E Entry Width 4.0 - 15.0 m V Approach Half Width 2.0 - 7.3 m T Entry Radius 6.0 - 100.0 m L Effective Length of Flare 1.0 - 100.0 m													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Arm Road (if blockwise order) Arm if (m) V (m) $L(m)$ $D(n)$ $D(r)$	Legena	Deed	(Geometric		ers		1 (D (m)	a w	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Arm	Koad (e order)		Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A					From A	1.1	3.3	35.0	10.0	25	40	0.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C Ram In Road (WB) From C 7.7 5.5 100.0 100.0 2.5 60 0.0 D E From D From D From D From D 7.7 5.5 100.0 100.0 2.5 60 0.0 Predictive Equation $Q_E = K(F - f_c q_c)$ E From B From H From B From H 4.0 - 15.0 m 9.0	В	Fan Kam				From B	1.1	2.9	15.0	12.5	25	30	0.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Kam In F	Koad (WB)				1.1	5.5	100.0	100.0	25	60	0.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F G From F G From G From G Predictive Equation $Q_E = K(F - f_c q_c)$ Limitation Q_E Entry Capacity 4.0 - 15.0 m q_c Circulating Flow across the Entry K = 1-0.00347(\varnothing -30)-0.978[(1/r)-0.05] Entry Radius 6.0 - 100.0 m F = 303x_2 f_c = 0.210b_0(1+0.2x_2) t_b Effective Length of Flare 1.0 - 100.0 m D Inscribed Circle Diameter 15 - 100 m Ø Entry Angle 10° - 60° S M = exp[(D-60)/10] X2 v (e-v)/(1+2S) S S S harpness of Flare 0.0 - 3.0 Ratio-of-Flow to Capacity (RFC) K F f_c AM(08) PM (17) AM(08) PM (17) From A 5.112 0.030 1.485 0.986 1549 0.631 1465 1455 798 804 0.545 0.552 From B 5.029 0.030 1.485 0.935 2300.174 0.786 1855 1807 519 497 0.280 0.275 From D Com D Colin Circle Di	E					From E							
G H From G From H Predictive Equation $Q_{g} = K(F - f_{c}q_{c})$ Eimitation Q_{e} Entry Capacity q_{c} Circulating Flow across the Entry K $f = 10.00347(0^{-}30) - 0.978[(1/r) - 0.05]$ F $f = 303x_{2}$ f_{c} $f = 0.210t_{0}(1+0.2x_{2})$ t_{0} $f = 1+0.5/(1+M)$ M $e exp[(D-60)/10]$ x_{2} $e + (e-v)/(1+2S)$ S $s = 1.6(e-v)/L$ Limitation Q_{e} Q_{e} $Entry Flow - 60^{\circ}$ S $S = 1.6(e-v)/L$ $Ratio-of-Flow to Capacity (RFC)$ Arm x_{2} M t_{0} K T T T T T Q_{e} $Entry Flow - 7.591$ 0.30 1.485 0.986 1549 0.631 1465 1455 798 804 0.545 0.552 7.591 0.30 1.485 0.935 2300.174 0.786 1855 1807 519 497 0.280 0.275 759 $From F$ Fro	G From G Predictive Equation $Q_E = K(F - f_c q_c)$ Limitation Q_E Entry Capacity q_c Circulating Flow across the Entry K = 1-0.00347(\varnothing -30)-0.978[(1/r)-0.05] F = 303x_2 f_c = 0.210t ₀ (1+0.2x_2) t_o = 1+0.5((1+M) M = exp[(D-60)/10] x_2 = v+(e-v)/(1+2S) S = 1.6(e-v)/L Ratio-of-Flow to Capacity (RFC) K F f_c AM(08) PM (17) AM(08) PM (17) From A 5.112 0.030 1.485 0.986 1549 0.631 1465 1455 798 804 0.545 0.552 0.552 0.529 0.030 1.485 0.935 2300.174 0.786 1855 1807 519 497 0.280 0.275 0.275 0.280 0.275 0.275 0.280 0.275 0.280 0.275 0.280 0.275 0.280 0.275 0.280 0.275 0.280 0.275 0.280 0.275 0.280 0.275	F					From F							
Predictive Equation $Q_E = K(F \cdot f_c q_c)$ Limitation Q_E Entry Capacity 4.0 - 15.0 m q_c Circulating Flow across the Entry K $= 1.0.00347(\emptyset - 30) - 0.978[(1/r) - 0.05]$ F F $= 303x_2$ f_c $= 0.210t_0(1 + 0.2x_2)$ $= 1.0.00347(\emptyset - 30) - 0.978[(1/r) - 0.05]$ F f_c $= 0.210t_0(1 + 0.2x_2)$ $= 1.40.5/(1+M)$ $= 0.210t_0(1 + 0.2x_2)$ $= 1.40.5/(1+M)$ M $= exp[(D-60)/10]$ x_2 $= v+(e-v)/(1+2S)$ S S S $= 1.6(e-v)/L$ $= 1.6(e-v)/L$ $= 1.6(e-v)/L$ $= 1.6(e-v)/L$ $= 1.6(e-v)/L$ Ratio-of-Flow to Capacity (RFC) Ratio-of-Flow to Capacity (RFC) Ratio-0.30 1.485 0.986 1549 0.631 1465 198 0.404 0.494 From A 5.112 0.030 1.485 0.935 2300.174 0.786 1855 1807 519 497 0.280 0.275 From G F f_c $AM(08)$ $PM (17)$ $AM(08)$ $PM (17)$	H From H From H Q_E Entry Capacity $4.0 - 15.0 \text{ m}$ Q_c Circulating Flow across the Entry k $4.0 - 15.0 \text{ m}$ K $= 1-0.00347(\varnothing-30)-0.978[(1/r)-0.05]$ F $= 303x_2$ f_c $= 0.210t_0(1+0.2x_2)$ L Effective Length of Flare $1.0 - 100.0 \text{ m}$ t_b $= 1+0.5/(1+M)$ M $= exp[(D-60)/10]$ x_2 $= v+(e-v)/(1+2S)$ S $S \text{ Sharpness of Flare}$ $0.0 - 3.0$ Ratio-of-Flow to Capacity (RFC) Q _E Entry Flow REC Arm x_2 M t_D K F f_c AM(08) PM (17) AM(08) PM (17) From A 5.112 0.030 1.485 0.986 1549 0.631 1465 1455 798 804 0.545 0.552 From B 5.029 0.030 1.485 0.984 1524 0.626 1245 1275 503 630 0.404 0.494 From D C 7.591 0.030 1.485 0.935 <	G					From G							
$ \begin{array}{c c c c c c c c c } \hline Predictive Equation Q_{E} = K(F - f_{c}q_{c}) \\ \hline Q_{E} & Entry Capacity \\ q_{c} & Circulating Flow across the Entry \\ K &= 1 - 0.00347 (\varnothing - 30) - 0.978[(1/r) - 0.05] \\ F &= 303x_{2} \\ f_{c} &= 0.210t_{D}(1 + 0.2x_{2}) \\ t_{0} &= 1 + 0.57(1 + M) \\ M &= exp[(D - 60)/10] \\ x_{2} &= v + (e - v)/(1 + 2S) \\ S &= 1.6(e - v)/L \\ \hline \end{array} $	Limitation Qe Entry Capacity Q_c Circulating Flow across the Entry K = 1-0.00347(Ø-30)-0.978[(1/r)-0.05] e Entry Radius 6.0 - 100.0 m F = 303x_2 f.c = 0.210t_0(1+0.2x_2) Entry Radius 6.0 - 100.0 m to = 1+0.5/(1+M) Ø Entry Angle 10° - 60° S Sharpness of Flare 0.0 - 3.0 X2 V Approach Half Width 2.0 - 7.3 m r Entry Radius 6.0 - 100.0 m L Effective Length of Flare 1.0 - 100.0 m D Inscribed Circle Diameter 15 - 100 m Ø Entry Angle 10° - 60° S Sharpness of Flare 0.0 - 3.0 M REC X2 M to K F f.c AM(08) PM (17) AM(08) PM (17) AM(08) PM (17) X2 M to K F f.c AM(08) PM (17)													
$ \begin{array}{c c c c c c c } \hline Q_{E} & Entry Capacity & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Predictiv	e Equation	Q _E = K(F -	f _c q _c)			Limitatio	n					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q _E	Entry Cap	acity			ו ר	е	Entry Wid	th		4.0 - 15.0	m	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} K &= 1-0.00347(\varnothing - 30) - 0.978[(1/r) - 0.05] \\ F &= 303x_2 \\ f_c &= 0.210t_D(1 + 0.2x_2) \\ t_D &= 1 + 0.5/(1 + M) \\ M &= \exp[(D - 60)/10] \\ x_2 &= v + (e - v)/(1 + 2S) \\ S &= 1.6(e - v)/L \\ \end{array} \right) \begin{array}{c} r & Entry \ Radius & 6.0 - 100.0 \ m \\ D & Inscribed \ Circle \ Diameter & 15 - 100 \ m \\ \varnothing & Entry \ Angle & 10^\circ - 60^\circ \\ S & Sharpness \ of \ Flare & 0.0 - 3.0 \\ \end{array} \right) \\ \hline \\ \begin{array}{c} Ratio-of-Flow to \ Capacity \ (RFC) \\ \hline \\ \hline \\ Arm & x_2 & M & t_{D} & K & F & f_c \\ AM(08) & PM \ (17) & AM(08) & PM \ (17) \\ From \ A & 5.112 & 0.030 & 1.485 & 0.986 & 1549 & 0.631 \\ From \ S & 5.029 & 0.030 & 1.485 & 0.984 & 1524 & 0.626 \\ From \ B & 5.029 & 0.030 & 1.485 & 0.935 & 2300.174 \\ From \ C & 7.591 & 0.030 & 1.485 & 0.935 & 2300.174 \\ From \ D & I855 & 1807 & 519 \\ From \ B & I \ S \ I \ $	q _c	Circulating	g Flow acros	ss the Entry	/		v	Approach	Half Width		2.0 - 7.3 m	ı	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	к	= 1-0.003	- 47(Ø-30)-0.	۔ .978[(1/r)-0	051		r	Entry Rad	ius		6 0 - 100 0) m	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F	$= 303x_2$]		Ĺ	Effective L	Length of Fl	are	1.0 - 100.0) m	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	f _c	= 0.210t _D ((1+0.2x ₂)				D	Inscribed	Circle Diam	eter	15 - 100 m	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _D	= 1+0.5/(1	(+M)				Ø	Entry Ana	le		10° - 60°		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	м	= exp[(D-6	, 50)/101				S	Sharpnes	s of Flare		00-30		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x ₂	= v+(e-v)/	(1+2S)			L		enaiphiee			010 010		
Ratio-of-Flow to Capacity (RFC) Arm x2 M to K F fc AM(08) PM (17) AM(08) AM (0.44) AM (0.44) AM (0.44) <td>Q_E Entry Flow RFC Arm X₂ M to Q_E Entry Flow RFC Arm X₂ M t_D K F f_c AM(08) PM (17) AM(08) D(0.552) AM(17) AM</td> <td>s</td> <td>= 1 6(e-v)</td> <td>//</td> <td></td>	Q _E Entry Flow RFC Arm X ₂ M to Q _E Entry Flow RFC Arm X ₂ M t _D K F f _c AM(08) PM (17) AM(08) D(0.552) AM(17) AM	s	= 1 6(e-v)	//										
Ratio-of-Fuence Capacity (RFC) Arm x2 M t0 K F fc AM(08) PM (17) AM(08) Question (15) Question (15) Question (15) Question (15)	Ratio-of-Flow to Capacity (RFC) Arm x2 M t0 K F fc AM(08) PM (17) AM(08) Question (17) AM(08) PM (17) AM(08) Question (17)						4							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Arm X2 M to K F fc AM(08) PM (17) AM(08) D.0552 Common Set	Ratio-of-	Flow to Ca	pacity (RFC	C)									
Arm x2 M to K F fc AM(08) PM (17) AM(08) D.552 D.552 D.	Arm x ₂ M t _D K F f _c AM(08) PM (17) AM(08)								0	2 _E	Entry	y Flow	RI	=C
From A 5.112 0.030 1.485 0.986 1549 0.631 1465 1455 798 804 0.545 0.552 From B 5.029 0.030 1.485 0.984 1524 0.626 1245 1275 503 630 0.404 0.494 From C 7.591 0.030 1.485 0.935 2300.174 0.786 1855 1807 519 497 0.280 0.275 From D From F From F From G Image: Second S	From A 5.112 0.030 1.485 0.986 1549 0.631 1465 1455 798 804 0.545 0.552 From B 5.029 0.030 1.485 0.984 1524 0.626 1245 1275 503 630 0.404 0.494 From C 7.591 0.030 1.485 0.935 2300.174 0.786 1855 1807 519 497 0.280 0.275 From D From E Fro	Arm	x ₂	М	t _D	K	F	f _c	AM(08)	PM (17)	AM(08)	PM (17)	AM(08)	PM (17)
From B 5.029 0.030 1.485 0.984 1524 0.626 1245 1275 503 630 0.404 0.494 From C 7.591 0.030 1.485 0.935 2300.174 0.786 1855 1807 519 497 0.280 0.275 From D From F From F Image: Constraint of the second seco	From B 5.029 0.030 1.485 0.984 1524 0.626 1245 1275 503 630 0.404 0.494 From C 7.591 0.030 1.485 0.935 2300.174 0.786 1855 1807 519 497 0.280 0.275 From D From F 0 <t< td=""><td>From A</td><td>5.112</td><td>0.030</td><td>1.485</td><td>0.986</td><td>1549</td><td>0.631</td><td>1465</td><td>1455</td><td>798</td><td>804</td><td>0.545</td><td>0.552</td></t<>	From A	5.112	0.030	1.485	0.986	1549	0.631	1465	1455	798	804	0.545	0.552
From C 7.591 0.030 1.485 0.935 2300.174 0.786 1855 1807 519 497 0.280 0.275 From D From E From F Image: Constraint of the second sec	From C 7.591 0.030 1.485 0.935 2300.174 0.786 1855 1807 519 497 0.280 0.275 From D From F Image: Constraint of the second sec	From B	5.029	0.030	1.485	0.984	1524	0.626	1245	1275	503	630	0.404	0.494
From D From E From F From G	From D	From C	7.591	0.030	1.485	0.935	2300.174	0.786	1855	1807	519	497	0.280	0.275
From E From F From G	From E	From D												
From G		From E												
From G	From F	From F												
	From G	From G												
From H	From H	From H												

Outland Proposed Tempore Concrete Batching Plant John I. P. 4 Q300 Designed By MCY Checked By WCH Date: 21 January 2025 AM (09) Peak Am To A To B To C To D To E To F To G To H Total 9.01 13 From B 433 6 126 For B 665 482 From C From F For A 0 2060 Image: Colspan="2">Option F From B 433 6 126 To E To F To G To H Total 9.03 From F For A To B To C To D To E To F To G To H Total 9.14 181 From B A To A To B To C To F To G To H Total 9.1 From B A Add 460 7.7 2.3 3.0 10.0	Junction:	ction: Kam Tin Road / Fan Kam Road Job Number: J7342											
Design Year: 2030 Designed By MCY Checked By WCH Date: 21.January 2025. AM (6) Peak Am To A To B To C	Scenario:		Without Pr	oposed Ter	mporary C	Concrete Bate	ching Plar	ıt				J01 - P.	4
AM (99) Peck Am To A To B To C To D To E To F To G To H Total 9.00 131 From B 433 6 126 565 482 565 482 565 482 565 482 565 482 566 482 566 482 566 482 566 482 566 482 566 482 566 482 566 482 566 484 480 770	Design Ye	ear:	2030	De	signed By	: MCY	C	hecked By:	WCH		Date:	21 Janu	ary 2025
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AM (09) F	Peak											
From A 0 424 476 900 131 From B 433 6 126 595 482 From C 470 119 6 595 482 From C 470 119 6 595 439 From B - 2080 - - 595 439 From A 6 448 40 - 595 470 From A 6 448 40 - 104 40 From A 6 448 40 - 104 40 From B 452 3 224 - 729 461 From B - - 2322 - - 2322 - From H - - - 1010 25 40 0.7 From B - - - - 2322 - - From H - - 7.7	Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From B 433 6 126 From C 470 119 6 595 439 From F 595 439 595 439 From F 503 549 608 2080 1 PM (19) Peak - 2080 - 2080 - Prom A 6 448 460 723 461 174 From A 6 448 460 723 461 174 From A 6 448 460 723 461 174 From B 452 3 224 723 461 174 From B - - - 123 461 174 From B 77 3.3 36.0 10.0 25 40 0.7 From B From A 7.7 3.3 36.0 10.0 25 60 0.0 From B From B 7.7 5.5 10.0 10.	From A	0	424	476						900	131		
From C 470 119 6 From E 596 439 From F 2080 - Prom F 2080 - Prom A 6 448 460 Prom A 6 448 460 Prom A 6 448 460 - 914 181 From A 6 448 460 - 924 410 470 From A 6 448 460 - 914 181 From C 551 174 4 - 2322 - From D From R Ram Road (In clockwise order) Am Ram Road (ISB) Constant Road (SB) 2322 - C Catal In Road (SB) Constant Road (SB) Constant Road (SB) Constant Road (SB) - 2322 - Prom E From B From C 7.7 3.3 35.0 10.0 25.5 40 0.7 G Contrulating Flow acors the Entry	From B	433	6	126						565	482		
From D From F From F From G Image: Second Seco	From C	470	119	6						595	439		
From F From F From A Solution A To A To B To C To F To G To H Total 903 549 606 PM (19) Peak	From D												
From FG From H Product 2060 PM (19) Pack 2060 2060 Arm To A To B To C To D To E To F To G To H Total 913 944 From A 6 448 480 979 470 974 181 From B 452 3 224 729 461 779 470 From B From C 551 174 4 729 461 729 461 From B From A 6 448 460 77 729 461 From B From A 7.7 3.3 35.0 10.0 292.2 0 Legond Arm Road (in clockwise order) Arm Coconstric Parameters 2322 0 0.7 Arm Road (SB) C Kam Tin Road (KB) Tron B 7.7 2.9 15.0 12.5 25 30 0.6 From C T.7 5.9 100.0 100.0 2.5 80 0.0 0 100.0 0 2.0<	From E												
From G Image: constraint of the second	From F												
From H Image: constraint of the second	From G												
Tetal 903 549 608 PM (19) Peak 2060 Arm To A To B To C To D To E To F To G To H 1014 181 From A 6 448 460 From F 679 470 From C 551 174 4 729 461 From F From F From F 729 461 From F From A 6 448 400 729 461 From F From A Read (in clockwise order) Read (in clockwise order) Read (in clockwise order) A Mar Read (S8) From A 7.7 2.9 15.0 12.5 25 30 0.6 F From B 7.7 2.9 15.0 12.5 25 30 0.6 Ge Entry Capacity Error B From C 7.7 2.9 15.0 12.5 25 30 0.6 G G Circulating Flow across the Entry	From H												
PM (19) Peak Arm To A To B To C To D To E To F To G To H Total q_c From A 6 448 460 914 181 729 461 From C 551 174 4 729 461 729 461 From E From H 2322 2322 2322 3 Legend Cecnetric Parameters 2322 3 3 461 7 7 3 3 5 0 0 2 100 2 100 2 100 0 2 10 0 10 2 10 0 10 2 10 0 10 2 10 0 10 <th10< th=""> 10 <</th10<>	Total	903	549	608						2060			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PM (19) F	Peak	To P	TaC	ToD	ToE	To E	TaG	To H	Total	a a a a a a a a a a a a a a a a a a a	I	
From B 452 3 224 914 101 From C 551 174 4 729 461 From D From B From C 729 461 From C 551 174 4 729 461 From D From A 729 461 400 From H 2322 - - - Legend 2322 - - - - Arm Road (in clockwise order) A Amm Tin Road (WB) -			440	460	10.0	10 L	101	10.0	1011	014	401		
From D 432 3 224 0.79 4.10 From D 551 174 4 729 461 From D From F 729 461 729 461 From E From F Secondaria 2322 100 729 461 Liggend Zam Road (in clockwise order) A Kam Tin Road (EB) Early Capacity 2322 20 B Fan Kam Road (B) From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (B) From B From A 7.7 5.5 100.0 100.0 25 60 0.0 D E From B From R From B From B From B 7.7 5.5 100.0 100.0 25 60 0.0 D E From H From B From B From B 4.0 - 15.0 m 12.5 2.3 12.5 12.5 10.0 10.0 12.5 10.0 10.0 12.5 12.5 12.5 12.5 12.5 12.5 1	From A	0	448	460						914	181		
From D From D From D From D From B From B Z332 From H 1009 625 688 2322 - Legend 2322 2 - - - Am Road (in clockwise order) A Kam Tin Road (EB) - - - - - B Fan Kam Road (SB) From A 7.7 3.3 35.0 10.0 25 40 0.7 C Kam Tin Road (WB) From B 7.7 2.9 15.0 12.5 25 30 0.6 From D From D From C 7.7 5.5 100.0 100.0 25 60 0.0 From D From D From D From H - <		452	3	224						720	470		
From D From F F E 2322 Import of the second of	From C	551	174	4						129	401		
From E From G Z322 Legend Carr 2322 A Road (in clockwise order) A Kam Tin Road (2B) Form A Carr S S C A Kam Tin Road (3B) C C C A Rom Tin Road (3B) C C Tom A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (3B) C C Kam Tin Road (WB) D D From A 7.7 3.3 35.0 10.0 25 60 0.0 C Kam Tin Road (WB) C D From B 7.7 2.9 15.0 12.5 25 30 0.6 C Kam Tin Road (WB) C D Error B From F S 100.0 100.0 25 60 0.0 Q Entry Capacity Q Entry Width 2.0 - 7.3 m R Form F Form F Form F Form F S 100 m Q Entry Width 2.0 - 7.3 m T	From D												
From F Image: From H Image: From F Image: From H Image: From F Image: From F Image: From H Image: From F Image: F	From E												
Initial 1009 625 688 2332 Lagend Commetric Parameters Arm Road (in clockwise order) A Kam Tin Road (EB) From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) From B 7.7 2.9 15.0 12.5 25 30 0.6 D E From B 7.7 5.5 100.0 100.0 25 60 0.0 D E From B 7.7 5.5 100.0 100.0 25 60 0.0 D E E From B 7.7 5.5 100.0 100.0 25 60 0.0 Prom D From B From H E E E E E E D E E 0.0 0.0 25 60 0.0 Qc Entry Capacity Qc Entry Madius 6.0 100.0 M E E E E E E E E E E <	From F												
Prioriti 1009 625 688 Legend Ceometric Parameters Arm Road (in clockwise order) A A Kam Tin Road (EB) B From A 7.7 3.3 35.0 10.0 25 40 0.7 B Fan Kam Road (SB) C Kam Tin Road (WB) D From A 7.7 3.3 35.0 10.0 25 40 0.7 F F From D From B 7.7 5.5 100.0 100.0 25 60 0.0 F From D From C From C From C From C From D From H 2.0 - 7.3 m T E E From H 2.0 - 7.3 m T E E F E F F E F F E F F F F F F F F F F F F F <td>From G</td> <td></td>	From G												
Index 1003 0.03 0.00 Communication Comm Comm Comm <td>Total</td> <td>1000</td> <td>625</td> <td>688</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2322</td> <td></td> <td></td> <td></td>	Total	1000	625	688						2322			
Geometric Parameters Arm Read (in clockwise order) Arm e (m) v (m) r (m) L (m) D (m) Q (°) S A Kam Tin Road (EB) From A 7.7 3.3 35.0 10.0 2.5 40 0.7 B Fan Kam Road (SB) From B 7.7 2.9 15.0 12.5 2.5 30 0.6 C Kam Tin Road (WB) From B 7.7 5.5 100.0 100.0 25 60 0.0 E From C 7.7 5.5 100.0 100.0 25 60 0.0 From D From F From F From F From H 4.0<-15.0 m	Total	1000	020	000						2022			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Legend					Geometric	Paramet	ers					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Arm	Road (in clockwise	e order)		Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	А	Kam Tin F	Road (EB)			From A	7.7	3.3	35.0	10.0	25	40	0.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	В	Fan Kam I	Road (SB)			From B	7.7	2.9	15.0	12.5	25	30	0.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	С	Kam Tin F	Road (WB)			From C	7.7	5.5	100.0	100.0	25	60	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D					From D							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Е					From E							
G H From G Predictive Equation $Q_E = K(F - f_c q_c)$ Limitation Q _E Entry Capacity 4.0 - 15.0 m q _c Circulating Flow across the Entry V Approach Half Width 2.0 - 7.3 m K = 1-0.00347(\odot -30)-0.978[(1/r)-0.05] F 6.0 - 100.0 m L F = 303x ₂ 6.0 - 100.0 m L Effective Length of Flare 1.0 - 100.0 m to = 1+0.5/(1+0.2x ₂) to T Entry Angle 10° - 60° to = 1+0.5/(1+0.2x ₂) to Entry Angle 10° - 60° S sharpness of Flare 0.0 - 3.0 S X ₂ = v+(e-v)/(1+2S) S S Sharpness of Flare 0.0 - 3.0 Ratio-of-Flow to Capacity (RFC) K F f AM(09) PM(19) AM(09) PM(19) From A 5.112 0.030 1.485 0.986 1549 0.631 1446 1415 900 914 0.622 0.646 From B 5.029 0.030 1.485 0.935 2300.174 0.786 1828 1812	F					From F							
H From H Predictive Equation $Q_E = K(F - f_c q_c)$ Limitation Q_E Entry Capacity $4.0 - 15.0 \text{ m}$ Q_c Circulating Flow across the Entry V Approach Half Width $2.0 - 7.3 \text{ m}$ K $= 1-0.00347(\emptyset - 30) - 0.978[(1/r) - 0.05]$ F $= 303x_2$ $6.0 - 100.0 \text{ m}$ F $= 303x_2$ E E E E f_c $= 0.210t_0(1+0.2x_2)$ E E E E f_0 $= 10.5/(1+M)$ M $e \exp[(D-60)/10]$ X_2 Y P $0^\circ - 60^\circ$ S X_2 $= v_1(e-v)/L$ V V P O_E E E E Ratio-of-Flow to Capacity (RFC) Qe E E E E E E F C A A A A A A A A A $O_0 = 3.0$ X Y	G					From G							
Limitation Qe Entry Capacity Qe Circulating Flow across the Entry K $4.0 - 15.0 \text{ m}$ K = 1-0.00347(Ø-30)-0.978[(1/r)-0.05] F $303x_2$ $6.0 - 100.0 \text{ m}$ fc = 0.210t_0(1+0.2x_2) L Effective Length of Flare $1.0 - 100.0 \text{ m}$ b = 1+0.5/(1+M) L Effective Length of Flare $1.0 - 100.0 \text{ m}$ M = exp[(D-60)/10] X_2 $y + (y - y)/(1 + 2S)$ S Sharpness of Flare $0.0 - 3.0$ Ratio-of-Flow to Capacity (RFC) Ratio-of Flow to Capacity (RFC) Arm x_2 M t_0 K F fc c F f_c $AM(09)$ PM(19) $AM(09)$ PM(19) $AM(09)$ PM(19) From A 5.112 0.030 1.485 0.986 1549 0.631 1446 1415 900 914 0.622 0.646 From B 5.029 0.030 1.485 0.985 2300.174 0.786 1828 1812 595 729 0.325 0.402 0.402 From B 5.029 0.030 1.485 0.985 2300.174 0.786 1828 1812 595 729 0.325 0.402 0.402 From B From C 7.591 0.030 1.485 0.935 2300.174 0.786 1828 1812 595 729 0.325 0.402 From From G From From From G From H I I I	Н					From H							
$\begin{array}{c c c c c c } \hline Q_{\mathbb{E}} & \mbox{Entry Capacity} & \mbox{entry K} & \mbox{entry Capacity} & \mbox{f} & \mbox{entry Capacity} & \mbox{entry K} & \mbox{entry Capacity} & \mbox{entry Capacity} & \mbox{entry K} & \mbox{entry Capacity} & $	Predictiv	e Equation	Q₌ = K(F -	f_q_)			l imitatio	n					
qc Circulating Flow across the Entry V Approach Half Width 2.0 - 7.3 m K = 1-0.00347(∅-30)-0.978[(1/r)-0.05] F = 303x2 6.0 - 100.0 m fc = 0.210tp(1+0.2x2) L Entry Radius 6.0 - 100.0 m to = 1+0.5/(1+M) L Effective Length of Flare 1.0 - 100.0 m M = exp[(D-60)/10] X2 = v+(e-v)/(1+2S) S S harpness of Flare 0.0 - 3.0 S = 1.6(e-v)/L K F fc AM(09) PM(19) AM(09) PM(19) From A 5.112 0.030 1.485 0.986 1549 0.631 1446 1415 900 914 0.622 0.661 From B 5.029 0.030 1.485 0.984 1524 0.626 1202 1210 565 679 0.470 0.561 From B 5.029 0.030 1.485 0.935 2300.174 0.786 1828 1812 595 729 0.325 0.402 From C 7.591 0.030 1.485 0.935 2300.174 0.78	Q _F	Entry Cap	acity	-0407		ו ר	e	Entry Widt	th		4.0 - 15.0	m	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	q _c	Circulating	Flow acros	ss the Entry	,		v	Approach	Half Width		2.0 - 7.3 m	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ĸ	= 1-0.0034	47(Ø-30)-0	978[(1/r)-0	051		r	Entry Rad	ius		6.0 - 100 0) m	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F	$= 303x_2$	(Ĺ	Effective L	_ength of Fl	are	1.0 - 100.0) m	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f _c	= 0.210t _D (1+0.2x ₂)				D	Inscribed	- Circle Diam	eter	15 - 100 m	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _D	= 1+0.5/(1	+M)				Ø	Entry Angl	le		10° - 60°		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	М	= exp[(D-6	50)/10]				S	Sharpness	s of Flare		0.0 - 3.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x ₂	= v+(e-v)/	(1+2S)										
Ratio-of-Flow to Capacity (RFC) Arm X2 M tD K F fc AM(09) PM(19) AM(09) AM(09) PM(19) AM(09) AM(09	s	= 1.6(e-v)/	/L										
Arm X2 M to K F fc AM(09) PM(19) AM(09)	Patia of	Flow to Ca	aacity (PEC	•		_							
Arm x2 M tD K F fc AM(09) PM(19) AM(09)				1					Q _E	Entr	y Flow	RI	FC
From A 5.112 0.030 1.485 0.986 1549 0.631 1446 1415 900 914 0.622 0.646 From B 5.029 0.030 1.485 0.984 1524 0.626 1202 1210 565 679 0.470 0.561 From C 7.591 0.030 1.485 0.935 2300.174 0.786 1828 1812 595 729 0.325 0.402 From D From F From F From G From G From H Image: Second	Arm	x ₂	М	t _D	К	F	f _c	AM(09)	PM(19)	AM(09)	PM(19)	AM(09)	PM(19)
From B 5.029 0.030 1.485 0.984 1524 0.626 1202 1210 565 679 0.470 0.561 From C 7.591 0.030 1.485 0.935 2300.174 0.786 1828 1812 595 729 0.325 0.402 From D From F From F Image: Constraint of the second seco	From A	5.112	0.030	1.485	0.986	1549	0.631	1446	1415	900	914	0.622	0.646
From C 7.591 0.030 1.485 0.935 2300.174 0.786 1828 1812 595 729 0.325 0.402 From D From E From F Image: Constraint of the constraint of	From B	5.029	0.030	1.485	0.984	1524	0.626	1202	1210	565	679	0.470	0.561
From D From E From F From G From H From H	From C	7.591	0.030	1.485	0.935	2300.174	0.786	1828	1812	595	729	0.325	0.402
From E From F From G From H	From D												
From F From G From H	From E												
From H	From F												
From H	From G												
	From H												

Junction:	on: Kam Tin Road / Fan Kam Road Job Number: J7342										J7342	
Scenario:		With Propo	osed Temp	orary Con	crete Batchir	ng Plant					J01 - P.	5
Design Ye	ear:	2030	De	signed By	: MCY	C	hecked By:	WCH		Date:	21 Janu	ary 2025
AM(08) P	EAK											
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	0	390	436						826	127		
From B	396	6	128						530	441		
From C	453	116	5						574	402		
From D												
From E												
From F												
From G												
From H												
Total	849	512	569						1930			
Total	010	012	000						1000			
PM (17) F	Peak								-			
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	6	442	404						852	163		
From B	459	3	215						677	412		
From C	432	158	2						592	468		
From D												
From E												
From F												
From G												
From H												
Total	897	603	621						2121			
											-	
Legend					Geometric	Paramet	ers					
Arm	Road (in clockwise	e order)		Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
А	Kam Tin F	Road (EB)			From A	7.7	3.3	35.0	10.0	25	40	0.7
В	Fan Kam	Road (SB)			From B	7.7	2.9	15.0	12.5	25	30	0.6
С	Kam Tin F	Road (WB)			From C	7.7	5.5	100.0	100.0	25	60	0.0
D	0				From D							
Е					From E							
F					From F							
G					From G							
Н					From H							
Predictiv	e Equation	0- = K/F -	fa)			Limitatio	-					
Q _E	Entry Can	acity	·c4c/		ו ר		Entry Wid	th		40-150	m	
~ <u>⊢</u>	Circulating	n Flow acros	s the Entry	,		v	Approach	Half Width		20 - 73 m)	
90 K	- 1 0 002	17(320)	070[/1/m) 0	051						2.0 - 7.0 1)	
	$= 303x_{\circ}$	+1 (\$\$-30)-0.3	ə <i>r</i> o <u>[</u> (1/1)-0.	00]		T I	Enuy Kad	enath of El	are	1.0 - 100.0) m	
f.	= 0 210t_(1+0.2x ₂)					Inscribed	Circle Diam	eter	15 - 100.0	, 1	
'c te	= 1±0 5//1	+M)				a	Entry Ana			10° 60°		
ч <u>о</u> М	= 1+0.5/(1	TIVI)				6				10 - 00		
IVI Xa	$= \exp[(D - c)$	00)/10] (1+28)				5	Snarpness	s of Flare		0.0 - 3.0		
~2 C	= 1.6(a.v)	(1+23)										
5	= 1.6(e-v)	(L										
Ratio-of-I	Flow to Ca	pacity (RFC	;)									
A			+	K	-	f			Entry	y Flow	R	=C
Arm	×2		4 407	K	+		AIVI(08)	PIVI (17)		PIM (17)	AIVI(U8)	PIVI (17)
From A	5.112	0.030	1.485	0.986	1549	0.631	1448	1426	826	852	0.570	0.597
From B	5.029	0.030	1.485	0.984	1524	0.626	1227	1245	530	677	0.432	0.544
From C	7.591	0.030	1.485	0.935	2300.174	0.786	1855	1807	574	592	0.309	0.328
From D												
From E												
From F												
From G												
From H												

Junction:	ion: Kam Tin Road / Fan Kam Road Job Number: <u>J7342</u>										J7342	
Scenario:		With Propo	osed Temp	orary Con	crete Batchir	ng Plant					J01 - P.	6
Design Ye	ear:	2030	De	signed By	: MCY	C	hecked By:	WCH		Date:	21 Janu	ary 2025
AM (09) F	Peak											
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	0	424	524						948	178		
From B	433	6	173						612	530		
From C	518	166	6						690	439		
From D												
From E												
From F												
From G												
From H												
Total	951	596	703						2250			
	1											
PM (19) P	Peak								-			
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	6	448	480						934	201		
From B	452	3	244						699	490		
From C	571	194	4						769	461		
From D												
From E												
From F												
From G												
From H												
Total	1029	645	728						2402			
Legend					Geometric	Paramet	ers					
Arm	Road (in clockwise	e order)		Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
A	Kam Tin F	Road (EB)			From A	7.7	3.3	35.0	10.0	25	40	0.7
В	Fan Kam	Road (SB)			From B	7.7	2.9	15.0	12.5	25	30	0.6
С	Kam Tin F	Road (WB)			From C	7.7	5.5	100.0	100.0	25	60	0.0
D					From D							
E					From E							
F					From F							
G					From G							
H					From H							
Predictive	e Equation	Q₌ = K(F -	f_q_)			l imitatio	n					
Q _E	Entry Cap	acity			ו ר	e	Entry Widt	th		4.0 - 15.0	m	
q _c	Circulating	n Flow acros	s the Entry	,		v	Approach	Half Width		20-73m	1	
ĸ	= 1_0 003	17(Ø_30)_0 (978[(1/r)_0	051		r	Entry Radi	iue		60-1000) m	
F	$= 303x_2$	+/ (© 00) 0.	070[(1/1) 0.	00]		i	Effective I	enath of Fl	are	1 0 - 100.0) m	
f	= 0.210t _D (1+0.2x ₂)				– D	Inscribed (Circle Diam	eter	15 - 100 m	1	
to	= 1+0 5/(1	+M)				ø	Entry And	le		10° - 60°		
м	= evp[/D 6	SO)/101				ŝ	Sharphee	e of Elare		00 30		
X ₂	= v+(e-v)/	(1+2S)			L	0	onarphos			0.0 - 0.0		
S	$= 1.6(e_{-1}y)$	(1.20)										
	- 1.0(C-V)	L			1							
Ratio-of-I	Flow to Ca	pacity (RFC	;)									
Arm	¥.	м	t_	ĸ		f			Entry	Flow	RI AM(00)	=C
	- ^2 E 110	171	۳D 1 405	0.000	1540	1 _C	4447	1400		FIVI(19)	AIVI(09)	PIVI(19)
	5.112	0.030	1.405	0.986	1549	0.631	141/	1402	948	934	0.009	0.000
From B	5.029	0.030	1.485	0.984	1524	0.626	11/3	1197	612	699	0.522	0.584
From C	/.591	0.030	1.485	0.935	2300.174	0.786	1828	1812	690	769	0.377	0.424
⊢rom D												
From E												
From F												
From G												
⊢rom H												

Junctions 9
PICADY 9 - Priority Intersection Module
Version: 9.0.2.5947 © Copyright TRL Limited, 2017
For sales and distribution information, program advice and maintenance, contact TRL: +44 (0)1344 770558 software@trl.co.uk www.trlsoftware.co.uk
The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: J7342_TIA_R2.j9

Path: J:\ENG\Job\J73XX\J7342 Kam Tin - S16 for Proposed Concrete Batching Plant\working\(2024 10) TIA_R2\Junction9 Report generation date: 21/1/2025 17:59:09

```
»Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2024 EXISTING, AM (08)
»Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2024 EXISTING, AM (09)
»Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2024 EXISTING, PM (17)
»Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2024 EXISTING, PM (19)
»Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITHOUT, AM (08)
»Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITHOUT, AM (09)
»Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITHOUT, PM (17)
»Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITHOUT, PM (19)
»Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITHOUT, PM (19)
»Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITH, AM (08)
»Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITH, PM (17)
»Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITH, PM (17)
```

Summary of junction performance

	AM (08)	AM (09)	PM (17)	PM (19)
	RFC	RFC	RFC	RFC
	Kam Tin Rd / Kam	Sheung Rd / Sheun	ig Tsuen BT [Locked	I] - 2024 EXISTING
Stream B-ACD	0.81	0.76	0.71	0.73
Stream A-D	0.00	0.00	0.00	0.00
Stream D-ABC	0.08	0.08	0.09	0.09
Stream C-B	0.00	0.00	0.00	0.00
	Kam Tin Rd / Kam] - 2030 WITHOUT		
Stream B-ACD	0.91	0.85	0.78	0.81
Stream A-D	0.00	0.00	0.00	0.00
Stream D-ABC	0.09	0.09	0.09	0.10
Stream C-B	0.00	0.00	0.00	0.00
	Kam Tin Rd / Ka	im Sheung Rd / She	ung Tsuen BT [Lock	ed] - 2030 WITH
Stream B-ACD	0.97	0.95	0.88	0.85
Stream A-D	0.00	0.00	0.00	0.00
Stream D-ABC	0.09	0.09	0.10	0.10
Stream C-B	0.00	0.00	0.00	0.00

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	Proposed Concrete Batching Plant
Location	Kam Tin
Site number	
Date	31/12/2024
Version	
Status	TIA_R2
Identifier	
Client	
Jobnumber	J7342
Enumerator	СКМ
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles Calculate residual capacity		RFC Threshold	Average Delay threshold (s)	(s) Queue threshold (PCU	
		1.00	36.00	20.00	

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DEX08	2024 EXISTING	AM (08)	ONE HOUR	08:00	09:30	15
DEX09	2024 EXISTING	AM (09)	ONE HOUR	09:00	10:30	15
DEX17	2024 EXISTING	PM (17)	ONE HOUR	17:00	18:30	15
DEX19	2024 EXISTING	PM (19)	ONE HOUR	19:00	20:30	15
DRF08	2030 WITHOUT	AM (08)	ONE HOUR	08:00	09:30	15
DRF09	2030 WITHOUT	AM (09)	ONE HOUR	09:00	10:30	15
DRF17	2030 WITHOUT	PM (17)	ONE HOUR	17:00	18:30	15
DRF21	2030 WITHOUT	PM (19)	ONE HOUR	19:00	20:30	15
DWT08	2030 WITH	AM (08)	ONE HOUR	08:00	09:30	15
DWT09	2030 WITH	AM (09)	ONE HOUR	09:00	10:30	15
DWT17	2030 WITH	PM (17)	ONE HOUR	17:00	18:30	15
DWT19	2030 WITH	PM (19)	ONE HOUR	19:00	20:30	15

Analysis Set Details

ID	Name	Locked	Network flow scaling factor (%)
AJ03	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	~	100.000

Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2024 EXISTING, AM (08)

Data Errors and Warnings

Severity	verity Area Item		Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	Crossroads	Two-way	9.59	А

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Name	Description	Arm type
Α	Kam Tin Road		Major
в	Kam Sheung Road (Arm B) Kam Sheung Road (Arm B) Kam Sheung Road (Arm B) v		Minor
С	Kam Tin Road		Major
D	Sheung Tsuen B/T		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Has right turn bay	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
Α	7.80			100.0		-
С	7.80			65.0		-

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type Lane width (m)		Visibility to left (m)	Visibility to right (m)		
в	One lane	5.00	35	30		
D	One lane	5.00	15	20		

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
1	A-D	632	-	-	-	-	-	-	0.226	0.322	0.226	-	-	-
1	B-A	605	0.101	0.257	0.257	-	-	-	0.161	0.366	-	0.257	0.257	0.128
1	B-C	772	0.109	0.276	-	-	-	-	-	-	-	-	-	-
1	B-D, nearside lane	605	0.101	0.257	0.257	-	-	-	0.161	0.366	0.161	-	-	-
1	B-D, offside lane	605	0.101	0.257	0.257	-	-	-	0.161	0.366	0.161	-	-	-
1	C-B	612	0.218	0.218	0.312	-	-	-	-	-	-	-	-	-
1	D-A	764	-	-	-	-	-	-	0.273	-	0.108	-	-	-
1	D-B, nearside lane	591	0.158	0.158	0.358	-	-	-	0.251	0.251	0.099	-	-	-
1	D-B, offside lane	591	0.158	0.158	0.358	-	-	-	0.251	0.251	0.099	-	-	-
1	D-C	591	-	0.158	0.358	0.125	0.251	0.251	0.251	0.251	0.099	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DEX08	2024 EXISTING	AM (08)	ONE HOUR	08:00	09:30	15

 Vehicle mix source
 PCU Factor for a HV (PCU)

 HV Percentages
 2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	650	100.000
в		~	311	100.000
С		✓	425	100.000
D		✓	48	100.000

Origin-Destination Data

Demand (PCU/hr)

	То								
		Α	в	С	D				
	Α	0	252	398	0				
From	в	224	0	87	0				
	С	425	0	0	0				
	D	48	0	0	0				

Vehicle Mix

Heavy Vehicle Percentages

	То								
		A	в	С	D				
	Α	0	0	0	0				
From	в	0	0	0	0				
	С	0	0	0	0				
	D	0	0	0	0				

Detailed Demand Data

Demand for each time segment

Time Segment	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
	Α	489	489
00.00 00.45	в	234	234
08:00-08:15	С	320	320
	D	36	36
	Α	584	584
09.45 09.20	в	280	280
08.15-08.50	С	382	382
	D	43	43
	Α	716	716
08:30-08:45	в	342	342
	С	468	468
	D	53	53
	Α	716	716
08:45-09:00	в	342	342
00.45-05.00	С	468	468
	D	53	53
	A	584	584
00.00 00.15	в	280	280
09.00-09.15	С	382	382
	D	43	43
	Α	489	489
09-15-09-20	в	234	234
09.15-09:30	С	320	320
	D	36	36

Results

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.81	43.28	3.9	E
A-B				
A-C				
A-D	0.00	0.00	0.0	А
D-ABC	0.08	6.17	0.1	А
C-D				
C-A				
С-В	0.00	0.00	0.0	А

Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2024 EXISTING, AM (09)

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	Crossroads	Two-way	7.74	А

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DEX09	2024 EXISTING	AM (09)	ONE HOUR	09:00	10:30	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	623	100.000
в		✓	299	100.000
С		✓	407	100.000
D		~	47	100.000

Origin-Destination Data

Demand (PCU/hr)

	То				
		A	в	c	D
	Α	0	243	380	0
From	в	216	0	83	0
	С	407	0	0	0
	D	47	0	0	0

	То				
		Α	в	С	D
	Α	0	0	0	0
From	в	0	0	0	0
	С	0	0	0	0
	D	0	0	0	0

Detailed Demand Data

Demand for each time segment

Time Segment	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
	Α	469	469
00.00 00.45	в	225	225
09:00-09:15	С	306	306
	D	35	35
	Α	560	560
00.45 00.20	в	269	269
09:15-09:30	С	366	366
	D	42	42
	Α	686	686
09:30-09:45	в	329	329
	С	448	448
	D	52	52
	Α	686	686
00.45 40.00	в	329	329
09:45-10:00	С	448	448
	D	52	52
	Α	560	560
10.00 10.15	в	269	269
10.00-10.15	С	366	366
	D	42	42
	Α	469	469
40.45 40.20	в	225	225
10:15-10:30	С	306	306
	D	35	35

Results

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.76	34.65	3.0	D
A-B				
A-C				
A-D	0.00	0.00	0.0	A
D-ABC	0.08	6.10	0.1	А
C-D				
C-A				
С-В	0.00	0.00	0.0	A

Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2024 EXISTING, PM (17)

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	Crossroads	Two-way	5.58	A

Junction Network Options

Driving side	Lighting	
Left	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DEX17	2024 EXISTING	PM (17)	ONE HOUR	17:00	18:30	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Jse O-D data Average Demand (PCU/hr)	
Α		~	630	100.000
в		✓	277	100.000
С		✓	495	100.000
D		~	49	100.000

Origin-Destination Data

Demand (PCU/hr)

	То					
From		Α	в	c	D	
	Α	0	286	344	0	
	в	186	0	91	0	
	С	495	0	0	0	
	D	49	0	0	0	

	То				
		Α	В	С	D
	Α	0	0	0	0
From	в	0	0	0	0
	С	0	0	0	0
	D	0	0	0	0

Detailed Demand Data

Demand for each time segment

Time Segment	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
	Α	474	474
47.00 47.45	в	209	209
17:00-17:15	С	373	373
	D	37	37
	Α	566	566
17:15-17:30	в	249	249
	С	445	445
	D	44	44
17:30-17:45	Α	694	694
	в	305	305
	С	545	545
	D	54	54
47 45 40 00	Α	694	694
	в	305	305
17:45-16:00	С	545	545
	D	54	54
	Α	566	566
49.00 49.45	в	249	249
18:00-18:15	С	445	445
	D	44	44
	Α	474	474
40.45 40.20	в	209	209
18:15-18:30	С	373	373
	D	37	37

Results

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.71	28.11	2.3	D
A-B				
A-C				
A-D	0.00	0.00	0.0	A
D-ABC	0.09	6.41	0.1	A
C-D				
C-A				
С-В	0.00	0.00	0.0	A

Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2024 EXISTING, PM (19)

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	Crossroads	Two-way	6.11	A

Junction Network Options

Driving side	Lighting	
Left	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DEX19	2024 EXISTING	PM (19)	ONE HOUR	19:00	20:30	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	660	100.000
в		✓	282	100.000
С		✓	494	100.000
D		~	50	100.000

Origin-Destination Data

Demand (PCU/hr)

	То				
		A	в	c	D
From	Α	0	300	360	0
	в	190	0	92	0
	С	494	0	0	0
	D	50	0	0	0

	То				
		Α	В	С	D
From	Α	0	0	0	0
	в	0	0	0	0
	С	0	0	0	0
	D	0	0	0	0

Detailed Demand Data

Demand for each time segment

Time Segment	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
	Α	497	497
40.00 40.45	в	212	212
19:00-19:15	С	372	372
	D	38	38
	Α	593	593
10.15-10.30	в	254	254
19:15-19:30	С	444	444
	D	45	45
	Α	727	727
19:30-19:45	в	310	310
	С	544	544
	D	55	55
19:45-20:00	Α	727	727
	в	310	310
	С	544	544
	D	55	55
	Α	593	593
20.00-20.15	в	254	254
20.00-20.15	С	444	444
	D	45	45
	Α	497	497
20.15-20.20	в	212	212
20.15-20.30	С	372	372
	D	38	38

Results

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.73	31.06	2.6	D
A-B				
A-C				
A-D	0.00	0.00	0.0	A
D-ABC	0.09	6.42	0.1	A
C-D				
C-A				
С-В	0.00	0.00	0.0	A

Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITHOUT, AM (08)

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	Crossroads	Two-way	16.02	С

Junction Network Options

Driving side	Lighting	
Left	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DRF08	2030 WITHOUT	AM (08)	ONE HOUR	08:00	09:30	15

Vehicle mix source	PCU Factor for a HV (PCU)	
HV Percentages	2.00	

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	705	100.000
в		✓	331	100.000
С		✓	461	100.000
D		~	51	100.000

Origin-Destination Data

Demand (PCU/hr)

	То					
		A	в	С	D	
	Α	0	268	437	0	
From	в	238	0	93	0	
	С	461	0	0	0	
	D	51	0	0	0	

	То				
		Α	В	С	D
	Α	0	0	0	0
From	в	0	0	0	0
	С	0	0	0	0
	D	0	0	0	0

Detailed Demand Data

Demand for each time segment

Time Segment	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
	Α	531	531
00-00-00-45	в	249	249
08:00-08:15	С	347	347
	D	38	38
	Α	634	634
09.15 09.20	в	298	298
08:15-08:30	С	414	414
	D	46	46
	Α	776	776
08:30-08:45	в	364	364
	С	508	508
	D	56	56
	Α	776	776
08.45 00.00	в	364	364
08:45-09:00	С	508	508
	D	56	56
	Α	634	634
00.00 00.45	в	298	298
09:00-09:15	с	414	414
	D	46	46
	Α	531	531
00.45 00.20	в	249	249
09:15-09:30	С	347	347
	D	38	38

Results

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.91	73.97	6.9	F
A-B				
A-C				
A-D	0.00	0.00	0.0	A
D-ABC	0.09	6.32	0.1	A
C-D				
C-A				
С-В	0.00	0.00	0.0	A

Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITHOUT, AM (09)

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	Crossroads	Two-way	11.59	В

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DRF09	2030 WITHOUT	AM (09)	ONE HOUR	09:00	10:30	15

Vehicle mix source	PCU Factor for a HV (PCU)	
HV Percentages	2.00	

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	676	100.000
в		✓	318	100.000
С		✓	442	100.000
D		~	50	100.000

Origin-Destination Data

Demand (PCU/hr)

	То				
		Α	в	С	D
	Α	0	258	418	0
From	в	229	0	89	0
	С	442	0	0	0
	D	50	0	0	0

	То				
		Α	в	С	D
	Α	0	0	0	0
From	в	0	0	0	0
	С	0	0	0	0
	D	0	0	0	0

Detailed Demand Data

Demand for each time segment

Time Segment	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
	Α	509	509
09:00-09:15	в	239	239
	С	333	333
	D	38	38
	Α	608	608
09:15-09:30	в	286	286
	С	397	397
	D	45	45
	Α	744	744
09:30-09:45	в	350	350
	c	487	487
	D	55	55
09:45-10:00	Α	744	744
	в	350	350
	С	487	487
	D	55	55
	Α	608	608
10.00 10.15	в	286	286
10:00-10:15	С	397	397
	D	45	45
	Α	509	509
10:15-10:30	в	239	239
	С	333	333
	D	38	38

Results

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.85	53.17	4.8	F
A-B				
A-C				
A-D	0.00	0.00	0.0	A
D-ABC	0.09	6.25	0.1	A
C-D				
C-A				
С-В	0.00	0.00	0.0	A

Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITHOUT, PM (17)

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	Crossroads	Two-way	7.56	А

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DRF17	2030 WITHOUT	PM (17)	ONE HOUR	17:00	18:30	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	676	100.000
в		✓	295	100.000
С		✓	535	100.000
D		~	52	100.000

Origin-Destination Data

Demand (PCU/hr)

	То				
		Α	в	С	D
	Α	0	304	372	0
From	в	197	0	98	0
	С	535	0	0	0
	D	52	0	0	0

	То				
		Α	в	С	D
	Α	0	0	0	0
From	в	0	0	0	0
	С	0	0	0	0
	D	0	0	0	0

Detailed Demand Data

Demand for each time segment

Time Segment	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
	Α	509	509
47.00 47.45	в	222	222
17:00-17:15	С	403	403
	D	39	39
	Α	608	608
17.15-17.30	в	265	265
17:15-17:30	С	481	481
	D	47	47
	Α	744	744
17:30-17:45	в	325	325
	c	589	589
	D	57	57
47.45.40.00	Α	744	744
	в	325	325
17.45-18.00	С	589	589
	D	57	57
	Α	608	608
10.00 10.15	в	265	265
10.00-10.15	С	481	481
	D	47	47
	A	509	509
18-15-18-20	в	222	222
10.15-10:30	С	403	403
	D	39	39

Results

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.78	38.75	3.3	E
A-B				
A-C				
A-D	0.00	0.00	0.0	A
D-ABC	0.09	6.59	0.1	A
C-D				
C-A				
С-В	0.00	0.00	0.0	A

Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITHOUT, PM (19)

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	Crossroads	Two-way	8.72	A

Junction Network Options

Driving side	Lighting	
Left	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DRF21	2030 WITHOUT	PM (19)	ONE HOUR	19:00	20:30	15

Vehicle mix source	PCU Factor for a HV (PCU)	
HV Percentages	2.00	

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	707	100.000
в		✓	301	100.000
С		✓	534	100.000
D		~	53	100.000

Origin-Destination Data

Demand (PCU/hr)

	То				
		Α	в	С	D
	Α	0	318	389	0
From	в	202	0	99	0
	С	534	0	0	0
	D	53	0	0	0

	То				
		Α	В	С	D
	Α	0	0	0	0
From	в	0	0	0	0
	С	0	0	0	0
	D	0	0	0	0

Detailed Demand Data

Demand for each time segment

Time Segment	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
	Α	532	532
40.00 40.45	в	227	227
19:00-19:15	С	402	402
	D	40	40
	Α	636	636
40.45 40.20	в	271	271
19:15-19:30	С	480	480
	D	48	48
	Α	778	778
19:30-19:45	в	331	331
	с	588	588
	D	58	58
40.45.00.00	Α	778	778
	в	331	331
19:45-20:00	С	588	588
	D	58	58
	Α	636	636
20.00 20.45	в	271	271
20:00-20:15	с	480	480
	D	48	48
	Α	532	532
00.45 00.00	в	227	227
20:15-20:30	С	402	402
	D	40	40

Results

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.81	45.05	3.9	E
A-B				
A-C				
A-D	0.00	0.00	0.0	A
D-ABC	0.10	6.60	0.1	A
C-D				
C-A				
С-В	0.00	0.00	0.0	A

Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITH, AM (08)

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	Crossroads	Two-way	22.25	С

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DWT08	2030 WITH	AM (08)	ONE HOUR	08:00	09:30	15

 Vehicle mix source
 PCU Factor for a HV (PCU)

 HV Percentages
 2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	760	100.000
в		✓	331	100.000
С		✓	516	100.000
D		~	51	100.000

Origin-Destination Data

Demand (PCU/hr)

		То			
		Α	в	c	D
	Α	0	268	492	0
From	в	238	0	93	0
	С	516	0	0	0
	D	51	0	0	0

			То		
		Α	В	С	D
	Α	0	0	0	0
From	в	0	0	0	0
	С	0	0	0	0
	D	0	0	0	0

Detailed Demand Data

Demand for each time segment

Time Segment	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
	Α	572	572
09.00 09.45	в	249	249
08:00-08:15	С	388	388
	D	38	38
	Α	683	683
09.15 09.20	в	298	298
08.15-08.50	С	464	464
	D	46	46
	Α	837	837
09.20 09.45	в	364	364
08:30-08:45	c	568	568
	D	56	56
	Α	837	837
09.45 00.00	в	364	364
08.45-09.00	c	568	568
	D	56	56
	Α	683	683
00.00 00.15	в	298	298
09:00-09:15	С	464	464
	D	46	46
	Α	572	572
00.15 00.20	в	249	249
09.15-09:30	С	388	388
	D	38	38

Results

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.97	110.43	10.7	F
A-B				
A-C				
A-D	0.00	0.00	0.0	A
D-ABC	0.09	6.51	0.1	A
C-D				
C-A				
С-В	0.00	0.00	0.0	A

Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT -2030 WITH, AM (09)

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	Crossroads	Two-way	19.51	С

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DWT09	2030 WITH	AM (09)	ONE HOUR	09:00	10:30	15

 Vehicle mix source
 PCU Factor for a HV (PCU)

 HV Percentages
 2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	771	100.000
в		✓	318	100.000
С		✓	537	100.000
D		~	50	100.000

Origin-Destination Data

Demand (PCU/hr)

	То				
		Α	в	c	D
	Α	0	258	513	0
From	в	229	0	89	0
	С	537	0	0	0
	D	50	0	0	0

	То				
		Α	в	С	D
	Α	0	0	0	0
From	в	0	0	0	0
	С	0	0	0	0
	D	0	0	0	0

Detailed Demand Data

Demand for each time segment

Time Segment	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
	Α	580	580
00.00 00.45	в	239	239
09:00-09:15	С	404	404
	D	38	38
	Α	693	693
00.45 00.20	в	286	286
09:15-09:30	С	483	483
	D	45	45
	Α	849	849
00.20 00.45	в	350	350
09:30-09:45	С	591	591
	D	55	55
	Α	849	849
00.45 40.00	в	350	350
09:45-10:00	С	591	591
	D	55	55
	Α	693	693
40.00 40.45	в	286	286
10:00-10:15	С	483	483
	D	45	45
	Α	580	580
40.45 40.20	в	239	239
10:15-10:30	С	404	404
	D	38	38

Results

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.95	101.80	9.4	F
A-B				
A-C				
A-D	0.00	0.00	0.0	A
D-ABC	0.09	6.57	0.1	A
C-D				
C-A				
С-В	0.00	0.00	0.0	A

Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT -2030 WITH, PM (17)

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	Crossroads	Two-way	11.48	В

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DWT17	2030 WITH	PM (17)	ONE HOUR	17:00	18:30	15

 Vehicle mix source
 PCU Factor for a HV (PCU)

 HV Percentages
 2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	771	100.000
в		✓	295	100.000
С		✓	630	100.000
D		~	52	100.000

Origin-Destination Data

Demand (PCU/hr)

		То			
		Α	в	С	D
	Α	0	304	467	0
From	в	197	0	98	0
	С	630	0	0	0
	D	52	0	0	0

Vehicle Mix

Heavy Vehicle Percentages

			То		
		Α	в	С	D
	Α	0	0	0	0
From	в	0	0	0	0
	С	0	0	0	0
	D	0	0	0	0

Detailed Demand Data

Demand for each time segment

Time Segment	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
	Α	580	580
47.00 47.45	в	222	222
17:00-17:15	С	474	474
	D	39	39
	Α	693	693
17.15-17.30	в	265	265
17.15-17.30	С	566	566
	D	47	47
	Α	849	849
17.30-17.45	в	325	325
17:30-17:45	С	694	694
	D	57	57
	Α	849	849
17.45-18.00	в	325	325
17.45-18.00	С	694	694
	D	57	57
	Α	693	693
10.00 10.15	в	265	265
18:00-18:15	С	566	566
	D	47	47
	Α	580	580
10.15 10.20	в	222	222
10.15-10:30	С	474	474
	D	39	39

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.88	66.79	5.6	F
A-B				
A-C				
A-D	0.00	0.00	0.0	A
D-ABC	0.10	6.96	0.1	A
C-D				
C-A				
С-В	0.00	0.00	0.0	A

Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT - 2030 WITH, PM (19)

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Kam Tin Rd / Kam Sheung Rd / Sheung Tsuen BT	Crossroads	Two-way	10.39	В

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
DWT19	2030 WITH	PM (19)	ONE HOUR	19:00	20:30	15

 Vehicle mix source
 PCU Factor for a HV (PCU)

 HV Percentages
 2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	747	100.000
в		✓	301	100.000
С		✓	574	100.000
D		~	53	100.000

Origin-Destination Data

Demand (PCU/hr)

			То		
		Α	в	c	D
From	Α	0	318	429	0
	в	202	0	99	0
	С	574	0	0	0
	D	53	0	0	0

Vehicle Mix

Heavy Vehicle Percentages

		То										
		Α	в	С	D							
From	Α	0	0	0	0							
	в	0	0	0	0							
	С	0	0	0	0							
	D	0	0	0	0							

Detailed Demand Data

Demand for each time segment

Time Segment	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
	Α	562	562
40.00 40.45	в	227	227
19:00-19:15	С	432	432
	D	40	40
	Α	672	672
10.15-10.30	в	271	271
13.13-13.30	С	516	516
	D	48	48
	Α	822	822
10.30-10.45	в	331	331
19.30-19.43	С	632	632
	D	58	58
	Α	822	822
19-45-20-00	в	331	331
19.45-20.00	С	632	632
	D	58	58
	Α	672	672
20.00 20.15	в	271	271
20.00-20.15	С	516	516
	D	48	48
	Α	562	562
20.15-20.20	в	227	227
20.15-20.30	С	432	432
	D	40	40

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.85	56.64	4.8	F
A-B				
A-C				
A-D	0.00	0.00	0.0	A
D-ABC	0.10	6.75	0.1	A
C-D				
C-A				
С-В	0.00	0.00 0.00		A

Junction:		Kam Tin R	load / Lam	Kam Road	d / Route Tv	visk				Jo	b Number:	J7342
Scenario:		Existing C	ondition							-	J04 - P.	1
Design Ye	ear:	2024	. De	signed By	: MCY		Checked By:	WCH	_	Date:	21 Janu	ary 2025
AM(08) P		To P	To C	To D	To E	ToE	To C	ТаЦ	Total	a	1	
	10 A	10 D	100	10 D	IUE	IUF	10 G	10 11	10(a)	Чс 00		
	121	318	208						697 560	20		
From B	411	8	141						560	379		
	110	18	0						130	540		
From E												
From F												
From G												
Total	650	244	200						1202			
Total	050	344	299						1393		1	
PM (17) F	Peak										_	
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	136	427	167						730	30		
From B	318	6	77						401	303		
From C	176	24	0						200	460		
From D												
From E												
From F												
From G												
From H												
Total	630	457	244						1331			
Logond					Goomotri	c Paramot	ore					
Arm	Road	in clockwis	a order)		Arm		v (m)	r (m)	L (m)	D (m)	Ø (°)	S
	Kam Tin F	and (FR)			From A	60	3.5	100.0	5.5	27	60	0.7
B	ll am Kam				From B	6.0	3.5	25.0	8.0	27	60	0.7
	Route Twi	sk (NR)			From C	7.0	3.5	20.0 65.0	12.0	27	35	0.5
					From D	1.0	0.0	00.0	12.0	21	00	0.0
F					From F							
F					From F							
G					From G							
н					From H							
Duesdietie		0 - K/F	£)									
Predictiv	Entry Can	$Q_E = K(F - C_E)$	T _c q _c)		٦	Limitatio	Entry Wid	th		40 150	m	1
d.	Circulating	acity a Elow acros	ee the Entr	,		e v		Half Width		4.0 - 15.0	· · · ·	
90 K		47(~ 20) 0	070[(1/r) 0	051		v	Costra Dod			2.0 - 7.0 1	1	
r F	$= 303x_{0}$	47(<i>©</i> -30)-0.	970[(1/1)-0.	05]			Effective I	enath of F	are	1.0 - 100.0) m	
fa	$= 0.210 t_{\rm p}$	(1+0.2x ₂)					Inscribed	Circle Diam	eter	15 - 100.0) 1	
to	= 1+0 5/(1	+M)				Ø	Entry And			10° - 60°	1	
M	= 1.0.0/(1)	SO)/101				s	Sharphee	s of Flare		0 30		
	$= v + (e_v)/$	(1+2S)				5	Sharphes	SUITATE		0.0 - 3.0		l
s	= 1.6(e-v)	/1										
		·			4							
Ratio-of-	Flow to Ca	pacity (RFC	C)				0-		Entry Flou	,	DEC	
Arm	x ₂	М	t _D	К	F	f _c	QE AM(08)	PM (17)	AM(08)	PM (17)	AM(08)	PM (17)
From A	4.519	0.037	1.482	0.935	1369	0.593	1266	1264	697	730	0.551	0.578
From B	4.750	0.037	1.482	0.906	1439	0.607	1095	1137	560	401	0.511	0.353
From C	5.310	0.035	1.483	1.017	1609	0.642	1283	1335	136	200	0.106	0.150
From D												
From E												
From F												
From G												
From H												

Junction:		Kam Tin R	load / Lam	Kam Road	d / Route TW	IST				Jo	b Number:	J7342
Scenario:		Existing Co	ondition							-	J04 - P.	2
Design Ye	ear:	2024	De	signed By	: MCY	C	hecked By:	WCH		Date:	21 Janu	ary 2025
AM (09) F	Peak											
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	92	318	260						670	25		
From B	394	8	136						538	352		
From C	137	17	0						154	494		
From D												
From E												
From F												
From G												
From H												
Total	623	343	396						1362			
PM (19) F	Peak											
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	115	442	177						734	55		
From B	335	6	78						419	292		
From C	210	49	0						259	456		
From D												
From E												
From F												
From G												
From H												
Total	660	497	255						1412			
						_						
Legend	<u> </u>				Geometric	Paramet	ers					
Arm	Road (in clockwise	e order)		Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
A	Kam I in F	Road (EB)			From A	6.0	3.5	100.0	5.5	27	60	0.7
В	Lam Kam	Road WB)			From B	6.0	3.5	25.0	8.0	27	60	0.5
C	Route I wi	sk (NB)			From C	7.0	3.5	65.0	12.0	27	35	0.5
					From D							
					From E							
F					From F							
G					From G							
н					From H							
Predictiv	e Equation	Q _F = K(F -	f.a.)			l imitatio	n					
Q	Entry Can	acity	-0-107		ו ר	e	Entry Widt	'n		40-150	m	
q _c	Circulating	n Flow acros	ss the Entry	/		v	Approach	Half Width		20-73 m	ייי ו	
ĸ	= 1_0 003	17(Ø_30)_0	078[(1/r)_0	051		r	Entry Radi			6.0 100.0) m	
F	$= 303x_{2}$	+ <i>1</i> (<i>©</i> -00)-0.	370[(1/1)-0.	00]		1	Effective I	enath of Fl	are	1 0 - 100.0) m	
f	= 0.210t _D (1+0.2x ₂)				– D	Inscribed (Circle Diam	eter	15 - 100 m	1	
t	= 1+0 5/(1	+M)				ø	Entry Angl	e		10° - 60°		
м	$= exp[(D_f)]$	SO)/101				ŝ	Sharnness	of Flare		0.0-3.0		
X ₂	= v+(e-v)/	(1+2S)			¹		onarphood			0.0 0.0		
s	= 1 6(e-v)	(1										
		-			4							
Ratio-of-	Flow to Ca	pacity (RFC	C)					<u></u>	Ente	· F low		-
Arm	x ₂	М	t _D	к	F	f _c	AM(09)	PM(19)	Entr AM(09)	PM(19)	AM(09)	PM(19)
From A	4.519	0.037	1.482	0.935	1369	0.593	1266	1250	670	734	0.529	0.587
From B	4.750	0.037	1.482	0.906	1439	0.607	1110	1143	538	419	0.485	0.367
From C	5.310	0.035	1.483	1.017	1609	0.642	1313	1338	154	259	0.117	0.194
From D												
From E												
From F												
From G												
From H												
	•						•				•	

Junction:	: Kam Tin Road / Lam Kam Road / Route Twisk Job Number: J7342										J7342	
Scenario:		Without Pr	oposed Te	mporary C	Concrete Bate	ching Plar	nt				J04 - P.	3
Design Ye	ear:	2030	De	signed By	: MCY	C	Checked By:	WCH	_	Date:	21 Janu	ary 2025
									-			
AM(08) P	EAK									-	-	
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c	ĺ	
From A	128	349	274						751	27	1	
From B	451	8	150						609	402	1	
From C	125	19	0						144	587	1	
From D											1	
From E											1	
From F											1	
From G											1	
From H											1	
Total	704	376	424						1504		1	
PM (17) F	Peak											
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	144	464	177						785	31		
From B	345	6	82						433	321		
From C	187	25	0						212	495		
From D												
From E												
From F												
From G												
From H												
Total	676	495	259						1430			
Legend					Geometric	Paramet	ters					
Arm	Road	(in clockwise	e order)		Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
А	Kam Tin I	Road (EB)			From A	6.0	3.5	100.0	5.5	27	60	0.7
В	Lam Kam	Road WB)			From B	6.0	3.5	25.0	8.0	27	60	0.5
С	Route Tw	isk (NB)			From C	7.0	3.5	65.0	12.0	27	35	0.5
D	()			From D							
E					From E							
F					From F							
G					From G							
н					From H							
					-							
Predictiv	e Equatior	י Q _E = K(F -	f _c q _c)			Limitatio	n					
Q _E	Entry Cap	pacity				е	Entry Widt	th		4.0 - 15.0	m	
q _c	Circulatin	g Flow acros	ss the Entry	/		v	Approach	Half Width		2.0 - 7.3 m	1	
К	= 1-0.003	47(Ø-30)-0.	978[(1/r)-0.	05]		r	Entry Rad	ius		6.0 - 100.0) m	
F	= 303x ₂					L	Effective L	ength of F	are	1.0 - 100.0) m	
f _c	= 0.210t _D	(1+0.2x ₂)				D	Inscribed	Circle Diam	leter	15 - 100 m	1	
t _D	= 1+0.5/(1+M)				Ø	Entry Angl	le		10° - 60°		
М	= exp[(D-	60)/10]				S	Sharpness	s of Flare		0.0 - 3.0		
x ₂	= v+(e-v)	/(1+2S)										
S	= 1.6(e-v))/L										
Ratio-of-	Flow to Ca	pacity (RFC	;)									
				14	-	£	QE		Entry Flow		RFC	
Arm	X ₂	M	LD	K	+	I _C	AM(08)	PM (17)	AM(08)	PM (17)	AM(08)	PM (17)
From A	4.519	0.037	1.482	0.935	1369	0.593	1265	1263	751	785	0.594	0.622
From B	4.750	0.037	1.482	0.906	1439	0.607	1083	1127	609	433	0.563	0.384
From C	5.310	0.035	1.483	1.017	1609	0.642	1252	1312	144	212	0.115	0.162
From D												
From E												
From F												
From G												
From H											<u> </u>	

Junction:		Kam Tin R	oad / Lam	Kam Road	ad / Route TWIST					Job Number: J7342		
Scenario:		Without Pr	oposed Te	mporary C	concrete Bate	ching Plan	ıt			_	J04 - P.	4
Design Ye	ear:	2030	De	signed By	: MCY	С	hecked By:	WCH		Date:	21 Janu	ary 2025
AM (09) F	Peak											
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	98	349	276						723	26		
From B	433	8	144						585	374		
From C	145	18	0						163	539		
From D												
From E												
From F												
From G												
From H												
Total	676	375	420						1471			
PM (19) P	'eak	Te D	Ta C		ТаГ	ТаГ	Ta C	Tall	Tatal	a	1	
Arm	TOA	10 B	100	10 D	IOE	10 F	10 G	10 H	Total	Y _c		
From A	122	480	188						790	58		
From B	363	6	83						452	310		
From C	223	52	0						275	491		
From D												
From E												
From F												
From G												
From H	708	538	271						1517			
Total	100	000	211						1017			
Legend					Geometric	Paramet	ers					
Arm	Road	(in clockwise	e order)		Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
A	Kam Tin I	Road (EB)			From A	6.0	3.5	100.0	5.5	27	60	0.7
В	Lam Kam	Road WB)			From B	6.0	3.5	25.0	8.0	27	60	0.5
c	Route Tw	isk (NB)			From C	7.0	3.5	65.0	12.0	27	35	0.5
D		()			From D							
Е					From E							
F					From F							
G					From G							
н					From H							
Predictive	e Equatior	n Q _E = K(F -	f _c q _c)			Limitatio	n					
Q _E	Entry Cap	pacity				е	Entry Wid	th		4.0 - 15.0	m	
q _c	Circulatin	g Flow acros	ss the Entry	/		v	Approach	Half Width		2.0 - 7.3 m	1	
К	= 1-0.003	47(∅-30)-0.	978[(1/r)-0	05]		r	Entry Rad	ius		6.0 - 100.0) m	
F	$= 303x_2$	(1 0 0 \				L	Effective L	ength of Fl	are	1.0 - 100.0) m	
t _c	$= 0.210t_{D}$	(1+0.2x ₂)				D	Inscribed	Circle Diam	eter	15 - 100 m	1	
τ _D	= 1+0.5/(1+M)				Ø	Entry Ang	le		10° - 60°		
М	= exp[(D-	60)/10]			[S	Sharpness	s of Flare		0.0 - 3.0		
x ₂	= v+(e-v)/	(1+2S)										
S	= 1.6(e-v))/L										
Ratio-of-I	Flow to Ca	pacity (RFC	;)									
			•		-	£			Entry	/ Flow	RI	-C
Arm	X ₂	M	ι _D	K	+	í _c	AM(09)	PM(19)	AM(09)	PIM(19)	AM(09)	PM(19)
From A	4.519	0.037	1.482	0.935	1369	0.593	1266	1248	723	790	0.571	0.633
From B	4.750	0.037	1.482	0.906	1439	0.607	1098	1133	585	452	0.533	0.399
From C	5.310	0.035	1.483	1.017	1609	0.642	1284	1315	163	275	0.127	0.209
⊢rom D												
⊢rom E												
From F												
From G												
riulli H												

Junction:		Kam Tin R	Road / Lam	Kam Road	/ Route Tv	visk				Jo	b Number:	J7342
Scenario:		With Prop	osed Temp	orary Cond	crete Batch	ing Plant					J04 - P.	5
Design Ye	ear:	2030	. De	signed By:	MCY	- 0	hecked By:	WCH	-	Date:	21 Janu	ary 2025
AM(08) P	EAK											
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	183	349	274						806	27		
From B	451	8	150						609	457		
From C	125	19	0						144	642		
From D	-									-		
From F												
From F												
From G												
From L												
Total	750	376	121						1550			
TULAI	759	370	424						1009			
PM (17) P	Peak											
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	239	464	177						880	31		
From B	345	6	82						433	416		
From C	187	25	0						212	590		
From D												
From E												
From F												
From G												
From H												
Total	771	495	259						1525			
Legend					Geometri	c Paramet	ers					
Arm	Road (in clockwise	e order)		Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
А	Kam Tin F	Road (EB)			From A	6.0	3.5	100.0	5.5	27	60	0.7
В	Lam Kam	Road WB)			From B	6.0	3.5	25.0	8.0	27	60	0.5
С	Route Twi	sk (NB)			From C	7.0	3.5	65.0	12.0	27	35	0.5
D	0				From D							
E					From E							
F					From F							
G					From G							
н					From H							
Prodictiv	o Equation	0 = K/E	fa)			Limitatia	-					
Q _E	Entry Can	acity	'c 4 c/		1		Entry Widt	th		40-150	m	1
~ <u>⊢</u>	Circulating	n Flow acros	es the Entry	,		v	Approach	Half Width		20 - 73 m)	
90 14		$47(\propto 20)$ 0	070[(4/=) 0	051		v				2.0 - 7.5 1	1	
K E	= 1-0.0034 = 303×-	+ <i>r</i> (∞-30)-0.	ອາດ[(1/r)-0.	looj			Entry Radi	ongth of T	are	0.0 - 100.0) m	
f	= 0.210 + 1	1+0 2v \							al c	15 100.0	,	
'c +		······································							IELEI	10 - 100 m	I	
۲ _D	= 1+0.5/(1	+IVI)				Ø	Entry Angi	ie		10" - 60"		
M	= exp[(D-6	50)/10] (1:00)				S	Sharpness	s of Flare		0.0 - 3.0		
A2	= v+(e-v)/((1+25)										
5	= 1.6(e-v)/	(L			1							
Ratio-of-I	Flow to Ca	pacity (RFC	C)									
							Q _E		Entry Flow	/	RFC	
Arm	X ₂	M	t _D	K	F	t _c	AM(08)	PM (17)	AM(08)	PM (17)	AM(08)	PM (17)
From A	4.519	0.037	1.482	0.935	1369	0.593	1265	1263	806	880	0.637	0.697
From B	4.750	0.037	1.482	0.906	1439	0.607	1052	1075	609	433	0.579	0.403
From C	5.310	0.035	1.483	1.017	1609	0.642	1216	1250	144	212	0.118	0.170
From D												
From E												
From F												
From G												
From H												

Somalari With Propagate Temporary Concrete Batching Plant Jud. P. 6 Obsign Verr 2030 Designed By: MCY Checked By: WCH Date: 21 dmanual 2020 Am To A To A <thto a<="" th=""> To A To A</thto>	Junction:		Kam Tin R	oad / Lam	Kam Road	/ Route TV	WIST				Jo	b Number:	J7342
Design Year: 2030 Designed By: MCY Checked By: WCH Date 21 January 2025 AM (0) P=J Am To A To B To C To D To E To F To G To H Total 9 From A 193 369 276 Fors 518 40 From B 433 8 144 585 460 554 400 From D 1155 18 0 Fors 1660	Scenario:		With Propo	osed Temp	orary Conc	rete Batch	ing Plant					J04 - P.	6
Arm To A To B To C To D To F To F To G To H To H To H Set From B 433 8 144 585 469 163 634 From B 433 8 144 585 469 163 634 From C 145 18 0 - 1560 - - From F - - 1560 - - 1560 - From A 771 375 420 - - 1560 - Prom A 162 480 188 - - 433 58 From A 162 480 188 - - 433 53 From B 36 6 35 - - 483 58 From F - - - 1957 - - - Area Tre Road (m clockwise order) - <td< td=""><td>Design Ye</td><td>ear:</td><td>2030</td><td>De</td><td>signed By:</td><td>MCY</td><td>_ C</td><td>hecked By:</td><td>WCH</td><td></td><td>Date:</td><td>21 Janu</td><td>ary 2025</td></td<>	Design Ye	ear:	2030	De	signed By:	MCY	_ C	hecked By:	WCH		Date:	21 Janu	ary 2025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AM (00) E)ook											
Arm Road (n dockwase order) From B Arm Road (n dockwase order) Road (n dockwase order) Second (n dockwase order) Second (n dockwase order) Second (n dockwase order) Road (n dockwase orde) Road (n dockwase order)	Arm	To A	To B	To C	To D	To F	To F	To G	To H	Total	q _c		
Tron B 433 8 144 585 499 From C 145 18 0 163 634 From C 145 18 0 163 634 From F - - - - - From F - - - - - From H - - - - - - From A To A To B To C To D To D To B -	From A	193	349	276						818	26		
Prom C 145 18 0 From D 185 18 0 From D -	From B	433	8	144						585	469		
Prom D From P From F No O O O Prom F From F -	From C	145	18	0						163	634		
From B From B From G From H Iso Iso PM (19) Posk 1560 1 PM (19) Posk 1560 1 Amm To A To B To C To F To A 1560 PM (19) Posk 1 42 188 1 43 53 From A 162 480 188 45 350 58 From A 162 480 188 45 350 58 From B 63 6 83 58 452 350 From D From A 1557 - - 457 50 0.7 From B 6.0 3.5 100.0 5.5 27 60 0.7 From A Kam Road (in clockwise order) - - 1957 - - A Kam Road WB) From A 6.0 3.5 20.0 0.7 - - - - - - - - - - </td <td>From D</td> <td></td> <td>10</td> <td>Ū</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>004</td> <td></td> <td></td>	From D		10	Ū							004		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	From E												
Arm Trill T	From E												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	From G												
Total 771 375 420 1566 PM (19) Pesk To A To B To C To D To E To F To G To H Total 4 Arm To A To B To C To D To E To F To G To H Total 4 From A 162 480 188 803 6 35 350 275 531 From B 363 6 83 271 1557 1	From H												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total	771	375	420						1566			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total		010	120						1000	1		
$ \begin{array}{ c c c c c c } \hline Amma & Io A & Io B & Io C & Io D & Io E & Io F & Io G & Io H & Iotal & q. \\ \hline From A & 162 & 480 & 188 & & & & & & & & & & & & & & & & &$	PM (19) P	Peak											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From B 363 6 83 4452 350 From C 223 52 0 275 531 From D 7700 1557 1557 1557 From F 748 538 271 1557 1557 Legend 1557 A Kam Tin Road (EB) A 6.0 3.5 100.0 5.5 27 60 0.7 B Lam Kam Road WB) From A 6.0 3.5 100.0 5.5 27 60 0.5 C Route Twisk (NB) From A 6.0 3.5 25.0 8.0 27 60 0.5 Form D From B 6.0 3.5 25.0 8.0 27 60 0.5 Form D From B 6.0 3.5 25.0 8.0 27 60 0.5 From D From B From D From D From B 6.0 3.5 0.50 12.0 27 <td>From A</td> <td>162</td> <td>480</td> <td>188</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>830</td> <td>58</td> <td></td> <td></td>	From A	162	480	188						830	58		
From C 223 52 0 275 531 From D From F 275 531 275 531 From E 748 538 271 1557 1 Commentation of the second	From B	363	6	83						452	350		
From D From F From F From G X Total 748 538 271 1557 Lagend Comentic Same Commentation	From C	223	52	0						275	531		
From F From G From H 748 538 271 1557 Legend Mark 1000000000000000000000000000000000000	From D												
From From G From H 748 538 271 1557 Isome G From H Total 748 538 271 1557 Legend Isome G From A Isome C Arm Road (n clockwise order) A Kam Tin Road (EB) S 26 0.7 S B Lam Kam Road WB) C Route Twisk (NB) 0.0 3.5 25.0 8.0 2.7 60 0.5 C Route Twisk (NB) D From B 6.0 3.5 25.0 8.0 2.7 80 0.5 From F From G From F 0.0 1.5 T 0.5 T 0.5 T 0.5 T 0.5 T 0.5 T 0.5 F 0.5 T 0.5 T 0.5 T 0.5 T 0.5 T 0.5 T T T	From E												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	From F												
From H Image: Constraint of the system of the	From G												
Total T48 538 271 1557 Legend A Kam Tin Road (ic clockwise order) A Kam Tin Road (EB) E A M Cond (in clockwise order) A A Kam Tin Road (EB) Form A 6.0 3.5 100.0 5.5 27 60 0.7 B Lam Kan Road WB) E Form B 6.0 3.5 100.0 5.5 27 60 0.5 D E Form A 6.0 3.5 25.0 8.0 27 60 0.5 From B Form B 6.0 3.5 25.0 8.0 27 35 0.5 From B Form F From B Form H 20 27 35 0.5 From F From F From B Form H 20 7.3 m 10.5 10.0 m 2.7 35 0.5 For = 0.210 (c) (10.2 x_2) Form H Entry Width 2.0 - 7.3 m 2.7 3.0 2.7 3.0	From H												
Geometric Parameters Arm Road (in clockwise order) Arm e (m) v (m) r (m) L (m) D (m) $@$ (?) S B Lam Kam Road (EB) From A 6.0 3.5 100.0 5.5 27 60 0.7 B Lam Kam Road (WB) From B 6.0 3.5 25.0 8.0 27 60 0.5 D E From B 6.0 3.5 25.0 8.0 27 60 0.5 From B From C From C 7.0 3.5 65.0 12.0 27 35 0.5 From F From F From F From F From F 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 100000 1000000	Total	748	538	271						1557			
$\begin{array}{ c c c c c c } \hline Arm & Road (in clockwise order) \\ \hline Arm & Kam Tin Road (EB) \\ \hline B & Lam Kam Road (WB) \\ \hline C & Route Twisk (NB) \\ \hline D & \\ F \\ G & \\ \hline H \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Legend					Geometri	c Paramet	ers					
A Kam Tin Road (EB) From A 6.0 3.5 100.0 5.5 21.0 2	Arm	Road (in clockwise	e order)		Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø(°)	S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A	Kam Tin F	Road (EB)			From A	6.0	3.5	100.0	5.5	27	60	0.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	В	Lam Kam	Road WB)			From B	6.0	3.5	25.0	8.0	27	60	0.5
$ \begin{array}{ c c c c c c } \hline Prom P \\ F \\ G \\ H \\ \hline Predictive Equation Q_E = K(F - f_c q_c) \\ \hline From F \\ From G \\ H \\ \hline \\ \hline$	С	Route Twi	sk (NB)			From C	7.0	3.5	65.0	12.0	27	35	0.5
$ \begin{array}{ c c c c c } \hline F & F & F & F & F & F & F & F & F & F$	D		()			From D							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Е					From E							
G H From G From G From G Qe Entry Capacity Imitation 4.0 - 15.0 m 1.0 - 10.0 m Qe Circulating Flow across the Entry V Approach Half Width 2.0 - 7.3 m 1.0 - 100.0 m F = 303x2 6.0 - 100.0 m 1.0 - 100.0 m 1.0 - 100.0 m 1.0 - 100.0 m F = 303x2 1.0 - 10.5/(1+M) 0.0 - 5.00 m 0.0 - 3.0 m 0.0 - 3.0 m to = 1 + 0.5/(1+M) 0.0 - 10.0 (10 m) 0.0 - 10.0 m 0.0 - 3.0 m 0.0 - 3.0 m x2 = v+(e-v)/(1+2S) S S - 1.6(e-v)/L 0.0 - 3.0 m 0.0 - 3.0 m Retroof-Flow to Capacity (RFC) Ration of the second	F					From F							
H From H Predictive Equation $Q_E = K(F - f_c q_c)$ Emitation Q_E Entry Capacity 4.0 - 15.0 m q_c Circulating Flow across the Entry * K = 1-0.00347(0^-30)-0.978[(1/r)-0.05] * F = 303x_2 6.0 - 100.0 m f_c = 0.210b_0(1+0.2x_2) * t_0 = 1+0.5/(1+M) * * M = cept[(D-60)/10] * * x_2 = v+(e-v)/(1+2S) * * S = 1.6(e-v)/L * * Q_E Entry Angle 10° - 60° S * * * S = 1.6(e-v)/L * * * State of the second s	G					From G							
Image: Second	Н					From H							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Prodictiv	o Equation	0 = K/E -	fa)			Limitatia	-					
q _c Circulating Flow across the Entry v Approach Half Width 2.0 - 7.3 m k = 1-0.00347(∅-30)-0.978[(1/r)-0.05] F = 303x ₂ 6.0 - 100.0 m f _c = 0.210t _b (1+0.2x ₂) 10° - 60° 5 Sharpnest 50° - 60° k = exp[(D-60)/10] 5 Sharpnest of Flare 0.0 - 3.0 5 x ₂ = v+(e-v)/(1+2S) S Sharpnest of Flare 0.0 - 3.0 5 Sharpnest of Flare 0.0 - 3.0 Ratio-of-Flow to Capacity (RFC) Ratio-of-Flow to Capacity (RFC) From A 4.519 0.037 1.482 0.935 1369 0.593 1266 1248 818 830 0.646 0.665 From B 4.750 0.037 1.482 0.906 1439 0.607 1046 1111 585 452 0.559 0.407 From B 4.750 0.035 1.483 1.017 1609 0.642 1222 1289 163 275 0.133 0.213 From B From G From G I.483	Q	Entry Can	acity	'cYc/		1	e	Entry Widt	th		40-150	m	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	q _c	Circulating	1 Flow acros	ss the Entry	,		v	Approach	Half Width		20-73m	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ĸ	= 1_0 003/	17(Ø_30)_0	078[(1/r)_0	051			Entry Radi			60 100 0) m	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F	$= 303x_2$	+/ (© 00) 0.	010[(111) 0.	00]		l i	Effective I	ength of Fl	are	1 0 - 100 0) m	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	f _c	= 0.210t _D (1+0.2x ₂)				D	Inscribed (Circle Diam	eter	15 - 100 m	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	t _D	= 1+0.5/(1	+M)				Ø	Entry Anal	e		10° - 60°		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	м	= exp[(D-6	, 50)/101				s	Sharpness	s of Flare		0.0 - 3.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x ₂	= v+(e-v)/	(1+2S)										1
Ratio-of-Flow to Capacity (RFC) Arm X2 M to K F fc AM(09) PM(19) AM(09) AM(09) PM(19) AM(09) AM(09) PM(19) AM(09) AM(09) PM(19) AM(09) AM(09) AM(09) AM(09) AM(07) Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspa="2"Colspa="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colsp	S	= 1.6(e-v)/	/L										
Ratio-of-Flow to Capacity (RFC) Arm x2 M to K F fc AM(09) PM(19) AM(09) PM(19						-							
Arm X2 M to K F fc AM(09) PM(19) AM(09) PM(19) AM(09) PM(19) From A 4.519 0.037 1.482 0.935 1369 0.593 1266 1248 818 830 0.646 0.665 From B 4.750 0.037 1.482 0.906 1439 0.607 1046 1111 585 452 0.559 0.407 From C 5.310 0.035 1.483 1.017 1609 0.642 1222 1289 163 275 0.133 0.213 From D From F From F F	Ratio-of-I	Flow to Cap	pacity (RFC	;))	Entry	/ Flow	R	FC
From A 4.519 0.037 1.482 0.935 1369 0.593 1266 1248 818 830 0.646 0.665 From B 4.750 0.037 1.482 0.906 1439 0.607 1046 1111 585 452 0.559 0.407 From C 5.310 0.035 1.483 1.017 1609 0.642 1222 1289 163 275 0.133 0.213 From D From F From F Image: Constraint of the second sec	Arm	x ₂	М	t _D	К	F	f _c	AM(09)	PM(19)	AM(09)	PM(19)	AM(09)	PM(19)
From B 4.750 0.037 1.482 0.906 1439 0.607 1046 1111 585 452 0.559 0.407 From C 5.310 0.035 1.483 1.017 1609 0.642 1222 1289 163 275 0.133 0.213 From D From F From F From G From G From H	From A	4.519	0.037	1.482	0.935	1369	0.593	1266	1248	818	830	0.646	0.665
From C 5.310 0.035 1.483 1.017 1609 0.642 1222 1289 163 275 0.133 0.213 From D From E From F Image: Constraint of the constrated of the constraint of the constraint of the constraint of the	From B	4.750	0.037	1.482	0.906	1439	0.607	1046	1111	585	452	0.559	0.407
From D From E From F From G From H From H	From C	5.310	0.035	1.483	1.017	1609	0.642	1222	1289	163	275	0.133	0.213
From E From F From G From H	From D												
From F From G From H	From E												
From G From H	From F												
From H	From G												
	From H												

Appendix C – Swept Path Analyses

:\JOB\J7300-J7349\J7342\(2025 01) TIA_R2\Fig 3.3 & SP1XX Rev A.dwg

UOB\J7300-J7349\J7342\(2025 01) TIA_R2\Fig 3.3 & SP1XX Rev A.dwg

.UOB\J7300-J7349\J7342\(2025 01) TIA_R2\Fig 3.3 & SP1XX Rev A.dwg

