Proposed Amendment to the Building Height Restriction of the "Government, Institution or Community" Zone for Permitted Social Welfare Facility at No.58 Sha Chau Lei Tsuen, Ha Tsuen, Yuen Long, New Territories (Lot No. 2273 in DD 125 and the Extension Thereto) – S12A Amendment of Plan Application

Appendix 3

Traffic Impact Assessment

26/07/2024

Reference number: CHK50749070

THE PROPOSED REDEVELOPMENT OF POK OI HOSPITAL YEUNG CHUN PUI CARE AND ATTENTION HOME IN YUEN LONG BY POK OI HOSPITAL

TRAFFIC IMPACT ASSESSMENT

TABLE OF CONTENTS

CONTENTS

1.	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	STUDY SCOPE	1
1.3	REPORT STRUCTURE	2
2.	PROPOSED DEVELOPMENT	3
2.1	Existing Site Conditions	3
2.2	INTERNAL TRANSPORT PROVISIONS	4
2.3	DEVELOPMENT ACCESS	5
3.	EXISTING TRAFFIC AND TRANSPORT CONTEXT	6
3.1	Existing Road Network	6
3.2	TRAFFIC SURVEY	6
3.3	Public Transport Services	7
3.4	PEDESTRIAN ACCESS ARRANGEMENT	8
4.	TRAFFIC FORECAST	9
4.1	METHODOLOGY OF TRAFFIC FORECAST	9
4.2	TRAFFIC FORECAST ASSUMPTIONS	9
4.3	FUTURE ROAD NETWORK	10
4.4	PLANNED AND COMMITTED DEVELOPMENTS	10
4.5	DEVELOPMENT TRAFFIC GENERATIONS	11
4.6	DESIGN TRAFFIC FORECASTS	13
5.	TRAFFIC IMPACT ASSESSMENT	14
5.1	Future Road Network	14
5.2	JUNCTION CAPACITY ASSESSMENT	14
6.	PEDESTRIAN IMPACT ASSESSMENT	16
6.1	PEDESTRIAN IMPACT ASSESSMENT	16
7.	SUMMARY AND CONCLUSION	18
7.1	Summary	18
7.2	CONCLUSION	18

LIST OF DRAWINGS

Index	Drawing	Page No
Drawing No. 1.1	Site Location	23
Drawing No. 2.1	Layout Plan	24
Drawing No. 2.2	Development Ingress Route	25
Drawing No. 2.3	Development Egress Route	26
Drawing No. 3.1	Existing Road Network and Studied Key Junctions	27
Drawing No. 3.2	Existing Junction Layout: Ping Ha Road/ Tin Ha Road (J1)	28
Drawing No. 3.3	Existing Junction Layout: Ping Ha Road/ Minor Access Road (Sha Chau Lei Tsuen) (J2)	29
Drawing No. 3.4	Existing Junction Layout: Ping Ha Road/ Sha Chau Lei Road (J3)	30
Drawing No. 3.5	Existing Junction Layout: Ping Ha Road/ Shek Po Road (J4)	31
Drawing No. 3.6	Existing Junction Layout: Ping Ha Road/ Tin Ying Road/Hung Tin Road (at grade) (J5)	32
Drawing No. 3.7	Year 2023 Observed Traffic Flows	33
Drawing No. 3.8	Existing Public Transport Services in the Vicinity	34
Drawing No. 3.9	2024 Pedestrian Flows	35
Drawing No. 4.1	Application site Plan of HSK NDA Area	36
Drawing No. 4.2	Predicted Future Development Ingress Route	37
Drawing No. 4.3	Predicted Future Development Egress Route	38
Drawing No. 4.4	Year 2035 Reference Traffic Flows (Without Future Road Network)	39
Drawing No. 4.5	Year 2035 Reference Traffic Flows (With Future Road Network)	40
Drawing No. 4.6	Year 2035 Design Traffic Flows (With Future Road Network)	41
Drawing No. 5.1	Planned New Roundabout (J2 and J6)	42
Drawing No. 6.1	2035 Reference Pedestrian Flows	43
Drawing No. 6.2	2035 Design Pedestrian Flows	44

LIST OF TABLES

Table 2.1 Application Site Details	3
Table 2.2 Proposed Internal Transport Provisions	4
Table 3.1 Identified Key Junctions	7
Table 3.2 Current Operational Performance at Identified Key Junctions	7
Table 3.3 Existing Public Transport Services	8
Table 3.4 Peak Hour Identified for Pedestrian Flows (2-way)	8
Table 4.1 ATC Traffic Counts at Local Area from Years 2016 to 2022	9
Table 4.2 2019-based Territorial Population and Employment Data Matrix Distributions of Population	
and Employment in 2019, 2026 and 2031	10
Table 4.3 Population and Employment Growth Rate Based on 2019- TPEDM	10
Table 4.4 Planned and Committed Developments	11
Table 4.5 Observed Trip Rates at Surveyed Reference Site	12
Table 4.6 Trip rates adopted for the Application Site	13
Table 5.1 Planned New Junction	14
Table 5.2 Operational Performance of Key Junctions for Year 2035	14
Table 5.3 Operational Performance of Key Junctions for the Year 2035	15
Table 6.1 Observed Pedestrian Trip Rates at Reference Sites	16
Table 6.2 Pedestrian Trip Rates Adopted for the Application Site	16
Table 6.3 Peak Hour Identified for Pedestrian Flows	17
Table 6.4 Peak Hour Identified for Pedestrian Flows	17

APPENDICES

Appendix A Junction Calculation Sheets	46
Appendix B Level-Of-Service (Los) Criteria for Pedestrian Walkways	71

1. INTRODUCTION

1.1 Background

- 1.1.1 The Application Site is a proposed redevelopment of existing 3-storey care and attention home for the elderly into new block for the Pok Oi Hospital Yeung Chun Pui Care and Attention Home at 58 Sha Chau Lei Tsuen, Ha Tsuen, Ping Ha Road, Yuen Long at Lot No. 2273 and the Extension thereto in Demarcation District 125, bounded by Sha Chau Lei Road in the east, and a nullah running adjacent to Sha Chau Lei Road with a rezoning site area of about 3,388.7 m² and a development site area (for calculation of plot ratio and site coverage) of about 3,090 m² as shown in **Drawing No. 1.1**.
- 1.1.2 The Proposed redevelopment includes social welfare facilities to cater for the increasing demand for elderly, rehabilitation and childcare services, by providing more floor area and better and updated facilities, under The Special Scheme on Privately Owned Sites for Welfare Uses, administrated by Social Welfare Department (SWD) and self-financing welfare related ancillary facilities.
- 1.1.3 MVA Hong Kong Limited is commissioned by P&T Architects Limited, as the traffic consultant to carry out a feasibility study for the proposed redevelopment of Pok Oi Hospital Yeung Chun Pui Care and Attention Home In Yuen Long. The primary objective of this TIA is to study the technical feasibility of the proposed redevelopment of a care and attention home into an 47.9mPD building with various welfare activities.

1.2 Study Scope

- 1.2.1 The main objectives of this study are as follows:
 - Transport and Traffic Impact Assessment (TTIA) Assessment for Operation stage. To assess and evaluate the nature and extent of the potential traffic impacts arising from the Project, and propose necessary traffic improvement measures;
 - To study and assess the existing travel patterns, road and junction capacities in the local area adjacent to the Application Site ;
 - To identify the traffic generations from the Application Site under the Development Proposal and carry out distribution and assignment of the generated traffic;
 - To estimate the future traffic flows for the design year on the surrounding local road network;
 - To recommend traffic improvement measures to alleviate the foreseeable traffic problems on the surrounding local road network, if necessary; and
 - To propose parking and servicing provisions for required space for cars, trucks, nonemergency ambulance transfer (NEATs) vehicles and refuse collection vehicles.

1.3 Report Structure

- 1.3.1 Following this introductory chapter, there are five further chapters:
 - Chapter 2 Proposed Development, which describes and presents the Proposed Development schedule.
 - Chapter 3 Existing Conditions, which describes the existing traffic context in the vicinity of the Application Site, including the current local road network, a summary of the vehicular survey and an assessment of the existing traffic conditions.
 - **O Chapter 4 Traffic Forecast,** which presents the estimation of traffic trip generations and distribution for the Application Site.
 - **O** Chapter 5 Traffic Impact Assessment, which presents the traffic forecasting methodology and estimates the future vehicular. The traffic impact assessment will also be included in this chapter.
 - **O** Chapter 6 Summary and Conclusion, which presents key findings from the study.

2. PROPOSED DEVELOPMENT

2.1 Existing Site Conditions

- 2.1.1 There is an existing 3-storey high building providing 143 subvented places of Care and Attention Home, located at 58 Sha Chau Lei Tsuen, Ha Tsuen, Ping Ha Road, and Yuen Long at Lot No. 2273 in DD125 and the Extension thereto accessible via Ping Ha Road. The site plan is shown in **Drawing No. 1.1.** According to the approved Hung Shui Kiu and Ha Tsuen Outline Zoning Plan No. S/HSK/2, the existing site is zoned as "Government, Institution or Community" (G/IC).
- 2.1.2 The Proposed redevelopment includes social welfare facilities, namely elderly centre, rehabilitation services, childcare services and other welfare facilities. It is scheduled to be completed by the year 2032 tentatively. The details are summarised in **Table 2.1**.

Component	Existing Scheme of the Development Site	Proposed Scheme for the Redevelopment					
Site Area	Rezoning Site Area of al	bout 3,388.7 m ² and Development Site Area	of about 3,090 m ²				
Class of Site		Class A Site					
		 Care and Attention Home for the Elderly providing a Continuum of Care (C&A Home/CoC) 	192 places				
		2. Day Care Centre for the Elderly (DE)	80 places				
		3. Day Activity Centre (DAC)	50 places				
		4. Hostel for Severely Mentally Handicapped Persons (HSMH)	50 places				
Facility	143 Places of Care and	5. Hostel for Moderately Mentally Handicapped Persons (HMMH)	40 places				
	Attention Home	 Integrated Vocational Rehabilitation Services Centre (IVRSC) 	80 places				
		7. Child Care Centre (CCC)	59 places				
		8. Welfare-related Ancillary Facilities					
		 Showroom for Innovative and Gerontechnology Products 	300 m ²				
		 Clinics - Chinese medicine, Western medicine and Dental service 	110 m²				
		Massage Service CentreCanteen	100 m² 100 m²				

Table 2.1 Application Site Details

Component Existing Scheme of the Development Site		Proposed Scheme for the Redevelopment
GFA	2,351 m ²	17,922 m²
Plot Ratio	0.761	5.8 ⁽¹⁾
Site Coverage	25 %	58% (1)
Building Height	10.25 mPD	47.9 mPD
Number of Storeys	3 storeys	11 storeys

Remarks: (1) Calculated based on the Development Site Area of about 3,090m²

2.2 Internal Transport Provisions

- 2.2.1 There are currently no related standards in HKPSG parking and loading/unloading provisions for the Application Site. Thus, corresponding provisions are proposed based on the daily operation needs of staff, paramedics, elderly residents, and visitors.
- 2.2.2 The proposed internal transport provisions for the Application Site are summarized in **Table 2.2**.

#	Vehicle Type	Requ	uired By	Parking Space Dimension		
1	Private Car	НКРЅС	5 (CLINIC)	5m (L) X 2.5m (W) X 2.4m (H)		
2	Private Car	НКРЅС	5 (CLINIC)	5m (L) X 2.5m (W) X 2.4m (H)		
3	Private Car	HKPSG (CLINIC)	C&AH	5m (L) X 2.5m (W) X 2.4m (H)		
4	Private Car (Disabled)	нкрзс	5 (CLINIC)	5m (L) X 3.5m (W) X 2.4m (H)		
5	16-Seater Light Bus	C	&AH	8m (L) X 3m (W) X 3.3m (H)		
6	16-Seater Light Bus		DE	8m (L) X 3m (W) X 3.3m (H)		
7	16-Seater Light Bus		DE	8m (L) X 3m (W) X 3.3m (H)		
8	16-Seater Light Bus		DE	8m (L) X 3m (W) X 3.3m (H)		
9	16-Seater Light Bus		DE	8m (L) X 3m (W) X 3.3m (H)		
10	24-Seater Light Bus	Н	SMH	8m (L) X 3m (W) X 3.3m (H)		
11	5.5 Tonnes Light Goods Vehicle	IV	/RSC	7m (L) X 3.5m (W) X 3.6m (H)		
12	Refuse Collection Vehicle	FEHB		12m (L) X 5m (W) X 4.5m (H)		
13	Ambulance	HKPSG (CLINIC)	C&AH/ DE	9m (L) X 3.5m (W) X 3.3m (H)		

Table 2.2 Proposed Internal Transport Provisions

The Proposed Redevelopment of Pok Oi Hospital Yeung Chun Pui Care and Attention Home in Yuen Long by Pok Oi Hospital

#	Vehicle Type	Requ	uired By	Parking Space Dimension
Lay-	by			
1	Private Car / Taxi	НКРЅС	5 (CLINIC)	5m (L) X 2.5m (W) X 2.4m (H)
2	Medium Goods Vehicle	HKPSG (CLINIC) C&AH/ DE/ HSMH/ IVRSC		11m (L) X 3.5m (W) X 4.7m (H)
3	Heavy Goods Vehicle	HKPSG (CLINIC)	C&AH/ DE/ HSMH/ IVRSC	11m (L) X 3.5m (W) X 4.7m (H)

Remarks: Parking Provision as per details provided by Client

- 2.2.3 The proposed parking spaces for private cars and the taxi/ private car lay-by will be provided at ground level. The proposed arrangement will ensure no traffic queue (if any) from the layby back to the main entrance at a minor access road even though the chance of a traffic queue at the elderly centre is very low.
- 2.2.4 The proposed loading/unloading bay for goods vehicles and ambulance lay-by will also be provided at ground level. The ground floor layout plan of the Application Site is shown in **Drawings 2.1**.

2.3 Development Access

- 2.3.1 As mentioned in **Section 2.1**, there is an existing 3-storey high building located at the site. The proposed run-in/out of the Application Site is at the Minor Access Road (Sha Chau Lei Tsuen). The existing major vehicular ingress/egress routings accessing the Application Site are shown in **Drawing Nos. 2.2** and **2.3** respectively.
- 2.3.2 As shown in **Drawing Nos. 2.2** and **2.3**, vehicles from the surrounding area will mainly travel via Ping Ha Road and Minor Access Road (Sha Chau Lei Tsuen) and leave the development before scattering into the surrounding area.

3. EXISTING TRAFFIC AND TRANSPORT CONTEXT

3.1 Existing Road Network

- 3.1.1 The existing road network in the vicinity of the Application Site is as shown in **Drawing No.** 3.1.
 - Ping Ha Road
 - Hung Tin Road (at grade)
 - Tin Ying Road
 - Shek Po Road
 - Sha Chau Lei Road
 - Tin Ha Road
 - Minor Access Road (Sha Chau Lei Tsuen)
- 3.1.2 Ping Ha Road is a 4-lane single-carriageway, rural road running in an east-west direction. It is the main road linking the Ha Tsuen area to Yuen Long and other neighbouring towns.
- 3.1.3 Hung Tin Road (at grade) is a 4 lanes dual carriageway and local distributor road running in a north-south direction connecting Hung Shui Kiu to neighbouring towns.
- 3.1.4 Tin Ying Road is a 4 lanes dual carriageway and district distributor road running in a northsouth direction connecting Tin Shui Wai to neighbouring towns.
- 3.1.5 Shek Po Road is a 2-lane single-carriageway road running in the north-south direction.
- 3.1.6 Sha Chau Lei Road is a 2-lane single-carriageway running in the north-south direction.
- 3.1.7 Tin Ha Road is a 2-lane single-carriageway, rural road running in the northeast-southwest direction linking the Ha Tsuen area to Hung Shui Kiu.
- 3.1.8 Minor Access Road (Sha Chau Lei Tsuen) is a 2-lane single-carriageway road running in the north-south direction connecting the Application Site to Ping Ha Road.

3.2 Traffic Survey

3.2.1 In order to investigate the traffic impact on the surrounding road network of the Application Site, the adjacent five key junctions are identified for traffic survey and assessment as listed in Table 3.1. These key junctions are selected according to the future ingress and egress routings of the subject site. The locations of the key junctions are indicated in Drawing No.
 3.1, and the existing junction layout of the surveyed junctions is shown in Drawing Nos. 3.2 to 3.6 respectively.

Table 3.1 Identified Key Junctions

Ref ^{.(1)}	Junction	Туре	Drawing No.
J1	Ping Ha Road/ Tin Ha Road	Signal	3.2
J2	Ping Ha Road/ Minor Access Road (Sha Chau Lei Tsuen)	Priority	3.3
J3	Ping Ha Road/ Sha Chau Lei Road	Priority	3.4
J4	Ping Ha Road/ Shek Po Road	Priority	3.5
J5	Ping Ha Road/ Tin Ying Road/Hung Tin Road (at grade)	Signal	3.6

Remarks: (1) Junction locations refer to Drawing No. 3.1.

3.2.2 To establish the current traffic conditions at the identified key junctions, a manual classified traffic count survey was conducted in October 2023 from 07:30 to 09:30 and 17:00 to 19:00 during the morning and evening peak periods. The observed peak hour traffic flows in the year 2023 are shown in **Drawing No. 3.7**.

Existing Junction Condition

3.2.3 Junction capacity assessments have been conducted at the identified key junctions to observe the current operational performances based on the existing junction layouts and observed traffic flows. The results are summarised in **Table 3.2**.

Ref. ⁽¹⁾	lunctions	Tuno	RC/ RFC ⁽²⁾		
	Junctions	туре	AM Peak	PM Peak	
J1	Ping Ha Road/ Tin Ha Road	Signal	34%	32%	
J2	Ping Ha Road/ Minor Access Road (Sha Chau Lei Tsuen)	Priority	0.08	0.05	
J3	Ping Ha Road/ Sha Chau Lei Road	Priority	0.12	0.10	
J4	Ping Ha Road/ Shek Po Road	Priority	0.17	0.28	
J5	Ping Ha Road/ Tin Ying Road/Hung Tin Road (at grade)	Signal	55%	50%	

Table 3.2 Current Operational Performance at Identified Key Junctions

Remarks: (1) Junction locations refer to Drawing No. 3.1.

(2) RC = Reserve Capacity, RFC = Ratio to Flow Capacity.

(3) Reserve Capacity (R.C.) indicated in %, provides an indication of signal junction performance. R.C. ≥ 15% implies that it is operating satisfactorily, while a negative R.C. suggests that it is overloaded.

(4) For priority junctions and roundabouts, the performance of a priority junction or roundabout is measured in the design flow/capacity ratio (DFC). DFC ≤ 0.85 is the acceptance criteria; DFC over 1.00 indicates overloaded conditions.

3.2.4 Referring to the assessment results in **Table 3.2**, all key junctions are currently operating with adequate capacities during both morning and evening peak periods.

3.3 Public Transport Services

3.3.1 There are frequent franchised bus services currently operating along Ping Ha Road. Details of the public transport services within 150m walking distance of the Application Site are listed in **Table 3.3** and the bus stop locations are illustrated in **Drawing No. 3.8**. There is also a MTR station within 1km walking distance from the Application Site.

Table 3.3 Existing Public Transport Services

Route No.	Origin and Destination	Frequency (mins)	Service
<u>Franchised</u>	<u>I Bus (KMB)</u>		
53	Yoho Mall (Yuen Long) <-> Tsuen Wan (Nina Tower)	25 - 35	Daily
<u>Franchised</u>	<u>I Bus (MTR)</u>		
K65	Yuen Long Station <-> Lau Fau Shan	9 - 16	Daily
K65A	Tin Shui Wai Station <-> Lau Fau Shan	12 -1 5	Mon - Fri
K75A	Tin Shui Wai Station <-> Hung Shui Kiu (Circular)	30	Daily
K75P	Tin Shui <-> Hung Shui Kiu (Circular)	10 - 15	Daily
<u>GMB</u>			
33	Ha Pak Nai To <-> Yuen Long (Tai Fung Street)	25 - 35	Daily
34A	Ha Tsuen (San Sik Road) Minibus Terminus <-> Lau Fau Shan Minibus Terminus	15 - 30	Daily
35	Sha Kiu <-> Yuen Long (Tai Fung Street	18 - 23	Daily

Remark: Service details as of February 2024.

3.4 Pedestrian Access Arrangement

3.4.1 The pedestrian access of the proposed development is located on the left side of the proposed site by connecting it to the existing pedestrian walkway on the Minor Access Road (Sha Chau Lei Tsuen). The pedestrian access routings between the proposed development and the nearby bus stop along Ping Ha Road are shown in **Drawing No. 3.8**.

Existing Pedestrian Flow Condition

- 3.4.2 Pedestrian headcount surveys at the proposed redevelopment site were conducted on a normal day in 2024 from 07:30 to 09:30 and 17:00 to 19:00 during the morning and evening peak periods.
- 3.4.5 To evaluate the existing adjacent pedestrian footpath, the operational performance has been assessed based on the Level-of-Service (LOS) criteria adopted as an indicator in the assessment of pedestrian walkway capacity performance. According to "Highway Capacity Manual 2000" by the Transportation Research Board of National Research Council Washington, D.C., the LOS of a footpath or walkway is classified into 6 levels (i.e. A to F) as described in **Appendix B**.
- 3.4.6 The observed peak of our pedestrian flows in 2024 at the footpaths in ped/min/m and the corresponding LOS are summarised in **Table 3.4** and indicated in **Drawing No.3.9**

Index	Pedestrian Location	Actual Effectiv	Effective (ped/hr		ırly Flow /hr)	Peak Flow Rate (Ped/m/min)		LOS ⁽²⁾	
index		Pedestrian Location (m) (m)	AM PEAK	PM PEAK	AM PEAK	PM PEAK	AM PEAK	PM PEAK	
P1	Minor access road	2.00	1.00	51	32	0.85	0.53	А	А

Note: (1) Effective width of footpath = Actual width – 1.0m dead width (0.5m dead width on one side of footpath) (2) Referring to TPDM Volume 6 Section 10.4.2, the LOS of a footpath is classified into 6 levels (i.e. A to F).

3.4.7 As shown in **Table 3.4**, all the assessed footpaths would operate at LOS A or better, which is a satisfactory walking environment, in the Year 2024.

4. TRAFFIC FORECAST

4.1 Methodology of Traffic Forecast

- 4.1.1 The Application Site is anticipated to be commissioned by the year 2032. As per the guidelines and requirements of TIA published by the Transport Department, the design year of the year 2035 (i.e. 3 years upon completion year) is adopted for traffic forecast purposes.
- 4.1.2 To estimate the year 2035 reference traffic flows (without Application Site) in the local road network, an appropriate growth factor was identified for the area. The derivation of this growth rate is determined with reference to historical growth trends and area planning data, which are summarised below.

4.2 Traffic Forecast Assumptions

Traffic growth trend from the Annual Traffic Census

- 4.2.1 To estimate the background traffic growth for the area, reference has been made to the historical growth trend of the Annual Traffic Census (ATC) report published annually by the Transport Department and the planning data based on the latest Territorial Population and Employment Data Matrix (TPEDM) published by Planning Department.
- **4.2.2** Based on the ATC report, the traffic count stations located within the study area have been selected for review. The record of traffic flows and the percentage change per annum, between 2016 and 2022, at these locations have been extracted from the ATC to establish the historical growth trend as summarized in **Table 4.1**.

Stn. No.	Station Location	Road	Annual Average Daily Traffic (AADT) (veh/day)						/day)			
	Station Location	Characteristics	2016	2017	2018	2019	2020	2021	'day) 1 2022 20 19,710 70 30,030 00 18,460 60 18,690 10 8390 60 95,280			
5689	Ping Ha Rd	Rural Road	17,060	16,800	17,210	17,090	19,360	20,320	19,710			
5284 Tin Ying Rd		District Distributor	27,040	26,610	32,180	31,060	29,780	30,970	30,030			
5277	Ping Ha Rd	District Distributor	15,360	15,120	19,580	19,260	18,460	19,200	18,460			
5880	Tin Yiu Rd	Local Distributor	16,930	16,960	17,380	17,250	16,540	17,460	18,690			
5858	Ping Ha Rd & Lau Fau Shan Rd	Rural Road	14,580	12,370	12,680	12,590	12,070	10,310	8390			
Total				87,860	99,030	97,250	96,210	98,260	95,280			
	Annual Growth Rate = 0.77%											

Table 4.1 ATC Traffic Counts at Local Area from Years 2016 to 2022

Remarks: AADT estimated by growth factor

4.2.3 The records of average annual daily traffic (AADT) from ATC have indicated that overall growth is strengthening at the rate of 0.77% per annum from the year 2016 to 2022 in the local area despite the effects the COVID-19 impacts on the economy and general travel characteristics.

Planning Data from 2019-Based TPEDM

4.2.4 Reference has also been made to the 2019-Based Territorial Population and Employment Data Matrix (TPEDM) planning data published by the Planning Department for years 2019, 2026 and 2031 in the relevant Planning Data District (i.e Tin Shui Wai and Northwest New Territories (Other Area)). The estimated/projected distributions of population data in the local area in the years 2019 and 2031 are listed in **Table 4.2** and **Table 4.3**.

Table 4.2 2019-based Territorial Population and Employment Data Matrix Distributions of Population and Employment in 2019, 2026 and 2031

557	2	019	2	026	2031	
PDZ	Population	Employment	Population	Employment	Population	Employment
Tin Shui Wai	279,950	35,050	283,250	33,100	276,050	31,950
Northwest New Territories (Other Area)	222,800	58,400	239,250	76,850	353,900	140,150
Total	502,750	93,450	522,500	109,950	629,950	172,100

Remark: Referring to 2019 – based Territorial Population and Employment Data Matrix Planning Data

Table 4.3 Population and Employment Growth Rate Based on 2019- TPEDM
--

807	2019/20	026	2019/2031		
PDZ	Population	Employment	Population	Employment	
Tin Shui Wai + Northwest New	0.55%	2.35%	1.90%	5.22%	
(Other Area)					

4.2.5 It is assumed that the Hung Shui Kiu/ Ha Tsuen New Development Area is considered in the Northwest New Territories Area, hence, the growth rate of **<u>1.90% p.a</u>** is assumed for the projection of background traffic growth for the conservative approach.

4.3 **Future Road Network**

4.3.1 As per Approved Hung Shui Kiu and Ha Tsuen Outline Zoning Plan No. S/HSK/2, there are major planned road infrastructure improvement projects in the vicinity of the site assumed to be done at the start of stage 3, which is around the year 2031. The Application Site phasing plan of Hung Shui Kiu/ Ha Tsuen New Development Area is shown in **Drawing No. 4.1.**

4.4 Planned and Committed Developments

4.4.1 The future planned and committed developments surrounding the Application Site, which would contribute to the road network in the vicinity have been considered and shown in **Drawing No. 4.1** and listed in **Table 4.4**.

Planning Area No.	Zone	Site Area (m2)	Development Use	Maximum Plot Ratio	Domestic/ Non-Domestic Plot Raito (DPR/NDPR)	Total GFA (m2)
15	G/IC	15,439	Government, Institution or Community	-	-	-
164			Residential	6.5	DPR	79,250
104	к(А)3	15,850	Retail	0.3	NDPR	7,925
			Residential	6.5	DPR	113,845
16B	R(A)2	20,699	Retail	0.2		800
			Kindergartens	0.3	NDPK	1,732
100	$c(\mathbf{a})$	17 022	Retail (20%)	F		17,923
160	16C C(3)		Hotel (80%)	5	NDPK	71.692
49	0	135,342	Open Space	-	-	-
56	ΟU	13,070	Other Specified Uses (Sewage Pumping Station)	-	-	-
57B	0	161,795	Open Space	-	-	-
FOA		25 024	Residential	5	DPR	179,120
58A	к(А)3	35,824	Retail	0.5	NDPR	17,912
58B	R(A)4	16,304	Residential	5	DPR	81,520
58C	G/IC	18,940	Government, Institution or Community	-	-	-
FOA		20 41 4	Residential	5	DPR	102,070
59A K(A)3)3 20,414	Retail	0.5	NDPR	10,207
59B	R(A)4	14,343	Residential	5	DPR	71,715
59C	G/IC	18,801	Government, Institution or Community	-	-	-
59D	R(A)4	13,518	Residential	5	DPR	67,590

Table 4.4 Planned and Committed Developments

Remarks: Approved Hung Shui Kiu and Ha Tsuen Outline Zoning Plan No. S/HSK/2 from Planning Department

4.5 Development Traffic Generations

- 4.5.1 Currently, there is no standard trip generation rate for elderly centres provided in "Traffic Generation and Attraction Rates" as stated in Annex D of Volume 1 Chapter 3 in the Transport Planning and Design Manual (TPDM) published by the Transport Department, the estimated trip generation rates for vehicular traffic for the Application Site will be derived based on the following assumptions.
- 4.5.2 The staff's working duties at the care and attention home for the Elderly are 24 hours, divided into AM Shift (7 am- 3 pm), PM Shift (1 pm 9 pm) and Overnight Shift (9 pm 7 am). It is anticipated that they will take public transport for their daily commute. Hence, the peak hour of the staff is expected around 7 am, 9 am, 1 pm, and 9 pm on weekdays and weekends. In operation, the visiting hours of the elderly centre are between 9 am and 6 pm during weekdays and weekends. Hence, the peak hour of the traffic is assumed between 7.30-8.30 in the morning and 5.00-7.00 pm in the evening to analyse the worst-case scenario.
- 4.5.3 Taking consideration of the above and to calculate peak traffic for elderly homes, a traffic trip generation/attraction survey has been carried out at similar sites in development nature, size and services offered by public transportation to obtain a reference trip generation/attraction for the proposed Elderly home from 07:30 to 09:30 and 5:00 to 7:00 as explained in Section 3.2. The traffic generation and attraction at the referenced elderly centre is counted and then based on it traffic trip rates during the peak hours were derived shown in Table 4.5 below.
- 4.5.4 There are 3 sites surveyed:

- 1. Existing Pok Oi Hospital Yeung Chun Pui Care and Attention Home
- 2. Jockey Club Rehabilitation Complex, Aberdeen, Hong Kong
- 3. On Tai Estate Ancillary Facilities Block, On Sau Road, Kwun Tong
- 4.5.5 As shown in **Table 4.5**, it is observed that the trip rates for various facilities are different. Hence, to take the conservative approach trip rate of an existing Pok Oi Hospital Yeung Chun Pui Care and Attention Home is used to interpolate the trip rate for the additional proposed elderly centre places. It is calculated by deducting existing places (143) from the proposed elderly places (192).
- 4.5.6 Jockey Club Rehabilitation Complex, Aberdeen and On Tai Estate Ancillary Facilities Block, On Sau Road, Kwun Tong are selected based on their similarity in nature as complex buildings, number of ancillary facilities, car parking provision, location, and presence of public transport. Furthermore, a site with a higher trip rate, Jockey Club Rehabilitation Complex, Aberdeen, was selected for further traffic generation analysis as a conservative approach.
- 4.5.7 Whereas, the trip rate of the Jockey Club Rehabilitation Complex in Aberdeen is used to interpolate the trip rate of other facilities such as the Day Activity Centre (DAC), Day Care Centre for the Elderly (DE), Hostel for Severely Mentally Handicapped Persons (HSMH), Hostel for Moderately Mentally Handicapped Persons (HMMH), Integrated Vocational Rehabilitation Services Centre (IVRSC), Child Care Centre (CCC) and Welfare-related Ancillary Facilities.

		Observed Trip rate (pcu/hr/places)					
Referenced Elderly Centre	Total Places	Α	М	PM			
		Generation (Out)	Attraction (In)	Generation (Out)	Attraction (In)		
Existing Pok Oi Hospital Yeung Chun Pui Care and Attention Home	143	0.26	0.29	0.19	0.17		
Jockey Club Rehabilitation Complex, Aberdeen, Hong Kong	1,352	0.02	0.03	0.01	0.01		
Jockey Club Rehabilitation Complex, Aberdeen, Hong Kong	501	0.02	0.02	0.01	0.01		

Table 4.5 Observed Trip Rates at Surveyed Reference Site

Remark: Trip rate obtained by interpolation

4.5.8 Therefore, the estimated traffic generation by the Application Site is given in **Table 4.6**, which is 21 pcu/hr and attracts about 25 pcu/hr in the morning peak hour period; and generates about 13 pcu/hr and attracts about 12 pcu/hr in the evening peak hour period. This estimated traffic generation of the Application Site would be then distributed in the surrounding road network. The predicted ingress and egress routes are shown in **Drawing No 4.2** and **4.3**, respectively.

	Tatal	A	M	PM	
Application Site Facilities	Places	Generation (Out)	Attraction (In)	Generation (Out)	Attraction (In)
Adopted Trip Rate (pcu/hr/places)					
Elderly Centre (Additional new places)	-	0.26	0.29	0.19	0.17
Other Facilities	-	0.02	0.03	0.01	0.01
Estimated Trips (pcu/hr)					
Elderly Centre (Additional new places)	49 ⁽¹⁾	13	14	9	8
Other Facilities	359	8	11	4	4
Total		21	25	13	12

Table 4.6 Vehicular Traffic Generation and Attraction of the Application Site

Remark: (1) Additional Places of Elderly Centre (49) = Proposed Places (192) – Existing Places (143)

4.6 Design Traffic Forecasts

- 4.6.1 The estimated trip generations for the Application Site (i.e. Application Site and potential planned and committed development) would be superimposed onto the year 2035 reference traffic flows to produce the year 2035 design traffic flows.
- 4.6.2 There are two scenarios considered to analyse the traffic impact which are derived by the equation below and are presented in **Drawing Nos. 4.2 4.4**, respectively:

Scenario 1- Without Future Road Network

2035 Reference Flows	=	2023 Observed Flows
		+ 2023 - 2035 background traffic growth (1.90%)
		(Without Future Road Network)

Scenario 2- With Future Road Network

2035 Reference Flows	=	2023 Observed Flows + 2023 - 2035 background traffic growth (1.90%) (With Future Road Network)
2035 Design Flows	=	2035 Reference Flows (With Future Road Network) + Traffic Generation

5. TRAFFIC IMPACT ASSESSMENT

5.1 Future Road Network

Planned New Junction

5.1.1 According to the "PWP Item No. 7787CL (Part) and 7829CL Hung Shui Kiu/Ha Tsuen New Development Area Advance works Phase 3 and Stage 2 works- Site Formation and Engineering Infrastructure" from the Civil Engineering Development Department (CEDD), there is a new roundabout (J6) along Ping Ha Road to planned to be constructed and operational at the start of stage 3, which is around the year 2031. It is anticipated that the majority of traffic load from Tin Ha Road will shift to Road L1 of a new roundabout. It is also assumed that existing Junction J2 will be merged into the roundabout changing the junction layout to a left-in, left-out priority junction. The Junction details are listed in **Table 5.1**. and illustrated in **Drawing No. 5.1**.

Ref. Junction		Туре	Drawing No.	Anticipated Completion Year			
Planned new junction by the year 2031							
J2 and J6	Planned New Roundabout ⁽¹⁾	Roundabout	5.1	2031			

Table 5.1 Planned New Junction

Remarks: (1) Refer to the PWP Item No. 7787CL (Part) and 7829CL Hung Shui Kiu/Ha Tsuen New Development Area Advance works Phase 3 and Stage 2 works- Site Formation and Engineering Infrastructure

5.2 Junction Capacity Assessment

Scenario 1- Without Future Road Network

6.2.1 To evaluate the traffic impact of the subject development on the local road network, junction assessments on the identified local key junctions have been carried out for both the Reference Scenario (without Application Site and future road network) as shown in **Table 5.1.** The detailed calculation is provided in **Appendix A**.

			Year 20			
Ref.	Junction	Туре	Reference (Without Application Site and Future Road Network)			
			AM	PM		
J1	Ping Ha Road/ Tin Ha Road	Signal	5%	4%		
J2	Ping Ha Road/ Minor Access Road (Sha Chau Lei Tsuen)	Priority	0.15	0.08		
13	Ping Ha Road/ Sha Chau Lei Road	Priority	0.18	0.16		
J4	Ping Ha Road/ Shek Po Road	Priority	0.26	0.45		
J5	Ping Ha Road/ Tin Ying Road/Hung Tin Road (at grade)	Signal	23%	19%		

Table 5.2 Operational Performance of Key Junctions for Year 2035

Remarks: (1) RC = Reserve Capacity, RFC = Ratio to Flow Capacity.

(2)Reserve Capacity (R.C.) indicated in %, provides an indication of signal junction performance. R.C. ≥ 15% implies that it is operating satisfactorily, while a negative R.C. suggests that it is overloaded.

The Proposed Redevelopment of Pok Oi Hospital Yeung Chun Pui Care and Attention Home in Yuen Long by Pok Oi Hospital

(3) For priority junctions and roundabouts, the performance of a priority junction or roundabout is measured in the design flow/capacity ratio (DFC). DFC \leq 0.85 is the acceptance criteria; DFC over 1.00 indicates overloaded conditions.

As indicated in **Table 5.1**, all key junctions would be operating with ample capacities during peak periods under reference scenarios (Scenario 1- Without Future Road Network) in the year 2035 except Junction J1.

Scenario 2- With Future Road Network

6.2.2 In Scenario 2, the junction assessments on the identified local key junctions have been carried out for both the Reference Scenario (without Application Site) and Design Scenario (with Application Site) including the future road network as shown in **Table 5.1.** The detailed calculation is provided in **Appendix A**.

		Туре	Year 2035 (DFC ⁽¹⁾ or RC ⁽²⁾)				
Ref.	Junction		Refer (With Fut Network ar Applicat	rence cure Road nd Without ion Site)	Design (With Future Road Network and Application Site)		
			AM	PM	AM	PM	
J1	Ping Ha Road/ Tin Ha Road	Signal	34%	27%	34%	26%	
J2	Ping Ha Road/ Minor Access Road (Sha Chau Lei Tsuen)	Priority	0.10	0.06	0.15	0.09	
J3	Ping Ha Road/ Sha Chau Lei Road	Priority	0.20	0.17	0.20	0.18	
J4	Ping Ha Road/ Shek Po Road	Priority	0.58	0.71	0.60	0.73	
J5	Ping Ha Road/ Tin Ying Road/Hung Tin Road (at grade)	Signal	18%	16%	17%	16%	
Je	Planned New Roundabout	Roundabout	0.58	0.60	0.59	0.60	

Table 5.3 Operational Performance of Key Junctions for the Year 2035

Remarks: (1) RC = Reserve Capacity, RFC = Ratio to Flow Capacity.

(2) Reserve Capacity (R.C.) indicated in %, provides an indication of signal junction performance. R.C. \ge 15% implies that it is operating satisfactorily, while a negative R.C. suggests that it is overloaded.

(3) For priority junctions and roundabouts, the performance of a priority junction or roundabout is measured in the design flow/capacity ratio (DFC). DFC \leq 0.85 is the acceptance criteria; DFC over 1.00 indicates overloaded conditions.

^{5.2.4} As indicated in **Table 5.1**, all key junctions would operate with ample capacities during peak periods under both reference and design scenarios with future road networks in the year 2035. Hence, no junction improvement is required.

6. PEDESTRIAN IMPACT ASSESSMENT

6.1.1 To analyse the pedestrian impact on the immediate surroundings, a pedestrian trip generation/attraction survey has been carried out at similar sites as explained in **Section 4.5** of the TIA report to obtain a reference trip generation/attraction, and then based on it pedestrian trip rates during the peak hours were derived shown in **Table 6.1** below:

	Total Places	Observed Trip Rate (ped/hr/places)						
Referenced Elderly Centre		AN	1	РМ				
		Generation (Out)	Attraction (In)	Generation (Out)	Attraction (In)			
Existing Pok Oi Hospital Yeung Chun Pui Care and Attention Home	143	0.14	0.22	0.12	0.10			
Jockey Club Rehabilitation Complex, Aberdeen, Hong Kong	1,352	0.04	0.18	0.15	0.01			

Table 6.1 Observed Pedestrian Trip Rates at Reference Sites

Remark: Trip rate obtained by interpolation

6.1.2 the pedestrian trip rates were also calculated by interpolation method as the same method explained in **section 4.5** and are shown in **Table 6.2**.

•	Total Places	A	N.	PM		
Application Site Facilities		Generation (Out)	Attraction (In)	Generation (Out)	Attraction (In)	
Adopted Trip Rate (ped/hr/places)						
Elderly Centre (Additional new places)	-	0.14	0.22	0.12	0.10	
Other Facilities	-	0.04	0.18	0.15	0.01	
Estimated Trips (ped/hr)						
Elderly Centre (Additional new places)	49 ⁽¹⁾	7	11	6	5	
Other Facilities	359	14	52	50	13	
Total		21	62	56	18	

Table 6.2 Pedestrian Trip Generation and Attraction of the Application Site

Remark: (1) Additional Places of Elderly Centre (49) = Proposed Places (192) – Existing Places (143)

6.1.3 Therefore, the estimated pedestrian flow generation by the Application Site is given in Table6.2, which is 21 pcu/hr and attracts about 62 pcu/hr in the morning peak hour period; and generates about 56 pcu/hr and attracts about 18 pcu/hr in the evening peak hour period.

6.1 Pedestrian Impact Assessment

6.1.4 A key pedestrian footpath (P1) was assessed for 2035 under the Reference Scenario (without Application Site) and Design Scenarios (with Application Site) are shown in **Tables 6.3** and 6.4 and illustrated in **Drawing No. 6.1** and **Drawing No. 6.2** respectively.

Reference Year- Pedestrian flows Condition

Index	Pedestrian Location	Actual Width (m)	Effective Width ⁽¹⁾ (m)	Peak Hourly Flow (ped/hr)		Peak Flow Rate (Ped/m/min)		LOS ⁽²⁾	
								PEAK	PEAK
P1	Minor access road	2.00	1.00	64	40	1.07	0.67	А	А
-				•					

Table 6.3 Peak Hour Identified for Pedestrian Flows

Note: (1) Effective width of footpath = Actual width – 1.0m dead width (0.5m dead width on one side of footpath) (2) Referring to TPDM Volume 6 Section 10.4.2, the LOS of a footpath is classified into 6 levels (i.e. A to F).

Design Year- Pedestrian Flows Condition

Table 6.4 Peak Hour Identified for Pedestrian Flows										
Index	Pedestrian Location	Actual Width (m)	Effective Width ⁽¹⁾ (m)	Peak Hourly Flow (ped/hr)		Peak Flow Rate (Ped/m/min)		LOS ⁽²⁾		
				AM PEAK	PM PEAK	AM PEAK	PM PEAK	AM PEAK	PM PEAK	
P1	Minor access road	2.00	1.00	147	115	2.46	1.91	А	А	

Note: (1) Effective width of footpath = Actual width – 1.0m dead width (0.5m dead width on one side of footpath) (2) Referring to TPDM Volume 6 Section 10.4.2, the LOS of a footpath is classified into 6 levels (i.e. A to F).

6.1.5 As shown in **Tables 6.3** and **6.4**, all the assessed footpaths would operate at LOS A or better, which is a satisfactory walking environment, in the Year 2035, for both reference and design scenarios. Thus, no improvement to this pedestrian footpath is deemed necessary.

The Proposed Redevelopment of Pok Oi Hospital Yeung Chun Pui Care and Attention Home in Yuen Long by Pok Oi Hospital

7. SUMMARY AND CONCLUSION

7.1 Summary

- 7.1.1 The Application Site is a proposed redevelopment of an existing 3-storey care and attention home for the elderly into the new block for the Pok Oi Hospital Yeung Chun Pui Care and Attention Home at 58 Sha Chau Lei Tsuen, Ha Tsuen, Ping Ha Road, Yuen Long at Lot No. 2273 and the Extension thereto in Demarcation District 125, bounded by Sha Chau Lei Road in the east, and a nullah running adjacent to Sha Chau Lei a rezoning site area of about 3,388.7 m² and a development site area (for calculation of plot ratio and site coverage) of about 3,090 m². The location plan is shown in **Drawing No. 2.1**.
- 7.1.2 The Proposed redevelopment includes social welfare facilities, namely an elderly centre, rehabilitation, and childcare services. It is scheduled to be completed by the year 2032 tentatively, according to the approved Hung Shui Kiu and Ha Tsuen Outline Zoning Plan No. S/HSK/2, the existing site is zoned as "Government, Institution or Community" (G/IC).
- 7.1.3 The Application Site is scheduled to be completed by the year 2032 tentatively, and thus year 2035 is adopted as a design year for assessment in this TIA study.
- 7.1.4 The traffic forecast for the design scenario is formulated by taking into consideration the background traffic growth as derived from TPEDM, the future traffic trips induced by the planned developments in the vicinity, as well as the anticipated traffic generations from the Application Site.
- 7.1.5 The vehicular access point of the Application Site will be located at an existing Minor Access Road (Sha Chau Lei Tsuen) and then connect to Ping Ha Road. The provision of the internal transport facilities is reviewed and proposed with reference to HKPSG. Since there is no related standard requirement in HKPSG for the Application Site, the provision of a carpark and L/UL facility is based on the daily operational needs.
- 7.1.6 The operational performance of the identified junctions is assessed based on the derived future traffic flows and the planned future road network in design years 2035. The results of the junction operational assessment indicated that all assessed junctions will be operating within their capacities during the morning and evening peak hour traffic. Therefore, no junction improvement is required.
- 7.1.7 The operational performance of the identified key footpath is assessed based on the derived future pedestrian flow in the design year. The results of the pedestrian assessment indicated that the identified key footpath will be operating within its capacity during the morning and evening peak hours. Therefore, no pedestrian footpath improvement is required.

7.2 Conclusion

- 7.2.1 The traffic impact assessment has demonstrated that the future traffic induced by the proposed redevelopment of Pok Oi Hospital Yeung Chun Pui Care and Attention Home would not cause an adverse traffic impact on the surrounding road network.
- 7.2.2 In conclusion, the traffic impact of the proposed redevelopment of Pok Oi Hospital Yeung Chun Pui Care and Attention Home is considered acceptable from a traffic engineering point-ofview.

Drawings

CHK50749010/TIA/F21-B.CDR/LLH/25JUL24

Original Size : A3

Original Size : A3

Original Size : A3

CHK50749010/TIA/F41.CDR/LLH/22FEB24

Original Size : A3

Original Size : A3

CHK50749010/TIA/F43.CDR/LLH/23FEB24

Original Size : A3

Siek Po EAS 955230 145(80)			Buseless Corr Baseless Corr Baseless Corr Corr Corr Corr Corr Corr Corr Corr	
HUNG FIN ROAD (AT GRADE)	840 3000 100 100 100 100 100 100 100 100 1	28 - 1 1 1 1 1 1 1 1 1 1	2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 3.3 3	
,72 ,72) AM(PM)	PEAK HOUR	TRAFFIC FLO	W IN PCU/HR	
FIC FL TWORK	ows -		SYSTIA	0 -
ing No.	4.5	Rev.		
			Original S	Size : A3

Ĩ VING

ROAD

CHK50749010/TIA/F51.CDR/LLH/20FEB24

Original Size : A3

Original Size : A3

Appendix A

Junction Calculation Sheets

Job No.: <u>CHK50749010</u>

MVA HONG KONG LIMITED

Junction:	J1- '	Tin H	a Road	d/Ping H	la Road											Design Yea	r: <u>2023</u>	
Description:	2023	3 Exi	sting Fl	low					Designed By:TAT						Checked By: <u>CYH</u>			
	ents					Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (j	Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme		Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Ping Ha Road WB	d •	↑ •†	B B	2 2	3.000 3.000	30			81%	65%	1840 2055	1855 2055	458 512	0.249 0.249	0.249	453 502	0.244 0.244	0.244
Ping Ha Road EB	d	† ∱►	A A	1 1	3.000 3.000		30		59%	72%	2055 1860	2055 1850	383 347	0.186 0.187	0.187	395 355	0.192 0.192	0.192
Tin Ha Road	ossing	[* *]	С С D р р р р р р р р р р р р р р р р	3 3 1,2 3 1,3 2 2,3 1	3.500 3.300 MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	10 EEN + FL EEN + FL EEN + FL EEN + FL EEN + FL EEN + FL EEN + FL	15 ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5 5	+ + + + + + +	8 11 9 5 7 9	1915 1690 = = = = = = =	1915 1690 13 16 14 10 12 14	255 150	0.133 0.089	0.133	255 210	0.133 0.124	0.133
Notes:					Flow: (po	cu/hr)						[↑] ^N	Group	C,lp,B	C,A,B	Group	C,Ip,B	C,A,B
													У	0.382	0.569	У	0.377	0.570
													L (sec)	28	21	L (sec)	28	21
						$ \rightarrow $	525(495) 150(210)	•	255(255)	600(660) <	V	C (sec)	136	136	C (sec)	129	129
						205(255)			\mathbf{i}		370(295)		y pract.	87%	34%	y pract.	87%	32%
Stage / Phase	Diagrar	ns			I									0, ,0			0.70	0270
		,,, Fp		`	2.	HP L		GP X-J	3. B	Hp L	7 Ep ti Fp		4.			5.		
I/G= 7 I/G= 7				I/G= 8	3				I/G= 9			I/G=			I/G=			
				1.0.1	-				1.0 0	1		Date	FEB, 2024		Juncti	ion: in Ha Road/Ping H	la Road	(J1)

Job Title: TFS for the Proposed Rede	velopment of Pok	Oi Hospital Ye	ung Chun Pui Care and Attention Home In Yue	en Long by Pok Oi Hospitall
Junction: J2 (Ping Ha Road/ Minor A Scheme:	Access Road)			Designed by: TAT Checked by: CYH
Design Year: 2023 Exis	iting Flow	Job No.:	CHK50749010	Date: Feb-24
Arm A: Ping Ha Road (WB)				•
Arm B: Minor Access Road Arm C: Ping Hg Road (FB)				
Arm C				
775 (745)			\longrightarrow	
Ping Ha Road (EB)				
10 (10)				
			V	
				A A
		→ \	965 (960)	
			Ping F	ta koaa (WB)
		/	15 (20)	
	/	1		
	15 (5)			
	<u>13 (3)</u>		¥	
	20 (15)			
		1	I	
	Ar	m B Minor	Access Road	
GEOMETRY				
Major Road Width (m) Central Reserve Width (m)	Wor	16.50	Lane widths (m) w(b-a)	4.00
Blockage of major road right turn	Y/N?	N	w(c-b)	4.20
Combined stream on minor arm	Y/N?	Y		
Visibility Distances (m)	Vr(b-a)	40	Calculated D	0.895
	VI(b-a) Vr(b-c)	40 70	Parameters E	0.986
	Vr(c-b)	38	Ŷ	0.431
ANALISIS			AMILAN	IMILAR
TRAFFIC FLOWS (pcu/hr)	q(c-a)		775	745
	q(c-b)		10	10
	q(a-c)		965	960
	q(b-a)		20	15
	f		0.43	0.25
CAPACITIES (pcu/hr)	Q(b-ac)		427	396
	O(c b)		574	574
	Q(C-D)		5,0	576
RFC's	c-b		0.02	0.02
	b-ac		0.08	0.05
RFC			0.08	0.05
Where VI and Vr are visibility distance	to the left or sight	of the response	ive streams	
D = (1+0.094(w(b-q)-3.65))(1+0.0009)(Vr)	(b-g)-12011(1+0.000	or me respect)6(VI(b-a)-1501	ive sireams)	
E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))	, ,,,		
F = (1+0.094(wc-b)-3.65))(1+0.0009(Vr(c)))(1+0.0009)(Vr(c)))(Vr(с-b)-120))			
f = proportion of minor traffic turning le	ft			
Q(b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+	f*Q(b-a) Capad	city of combine	ed streams	
All the above formulas are in accorda	nce to T.P.D.M. Vo	lume 2 Chapte	er 4 Appendix 1	

Job Title: Th	S for the Proposed R	Redevelopment of I	Pok Oi Hospital Y	eung Chun Pui Care and Attention Hor	ne In Yuen Long by Pok Oi Hospitall
Junction: J	3 (Ping Ha Road/ Sal	n Chau Lei Road)			Checked by: CYH
Design Year:	2023	Existing Flow	Job No.:	CHK50749010	Date: Feb-24
Arm A: Pi	ing Ha Road (WB)				·
Arm B: N	Ninor Access Road				
Arm C: P	ing Ha Road (EB)				
Arm C Ping Ha Road	775 (755) I (EB)			>	
			-	965 (965)	Arm A Ping Ha Road (WB)
		15 (15) 30 (25)		V	<u> </u>
GEOMETRY			Arm B Minc	or Access Road	
Major Road W Central Reserv Blockage of m Combined stre	ridth (m) ve Width (m) najor road right turn eam on minor arm	W Wcr Y/N? Y/N?	16.00 0.00 N Y	Lane widths (m)	w(b-a) 3.80 w(b-c) 3.80 w(c-b) 4.25
Visibility Distar	aces (m)	Vr(b-a) Vl(b-a) Vr(b-c) Vr(c-b)	40 40 70 100	Calculated Parameters	D 0.879 E 0.968 F 1.037 Y 0.448
ANALYSIS				AM	PEAK PM PEAK
TRAFFIC FLOW	S (pcu/hr)	q(c-a) q(c-b) q(a-b) q(a-c) q(b-a) q(b-c) f			775 755 20 5 10 65 765 965 30 25 15 15 0 0
CAPACITIES (p	ocu/hr)	Q(b-ac) Q(c-b)			391 400 508 599
RFC's		c-b b-ac		(0.03 0.01 0.12 0.10
RFC				(0.12 0.10
Where VI and D = (1+0.094)w E = (1+0.094)w F = (1+0.094)w Y = 1-0.0345W f = proportion Q(b-ac) = Q(b All the above	Vr are visibility distar v(b-a)-3.65))(1+0.000 (b-c)-3.65))(1+0.0009 c-b)-3.65))(1+0.0009 of minor traffic turnir o-c)*Q(b-a)/(1-f)*Q(t formulas are in acco		ght of the respec .0006(VI(b-a)-15(pacity of combi Volume 2 Chap	ctive streams D)) ned streams ter 4 Appendix 1	

Job Title:	TFS for the Proposed F	Redevelopment of F	Pok Oi Hospital Y	eung Chun Pui Care and Attention Home	In Yuen Long by Pok Oi Hospitall
Scheme:	J4 (FING HU KOUU/ Sh				Checked by: CYH
Design Year:	2023	Existing Flow	Job No.:	CHK50749010	Date: Feb-24
Arm A:	Ping Ha Road (WB)				
Arm B:	Shek Po Road				
Arm C:	Ping Ha koaa (EB)				
Arm C	765 (760)			>	
Ping на кос	35 (25)			>	
		<u> </u>		935 (980)	Arm A Ping Ha Road (WB)
		40 (50) 30 (60)			
GEOMETRY			Arm B Shek	Po Road	
Major Road ¹ Central Rese Blockage of Combined st	Width (m) rve Width (m) major road right turn ream on minor arm	W Wcr Y/N? Y/N?	15.00 0.00 N Y	Lane widths (m) wi wi wi	(b-a) 3.80 (b-c) 3.80 (c-b) 4.25
Visibility Disto	inces (m)	Vr(b-a) Vl(b-a) Vr(b-c) Vr(c-b)	30 30 46 100	Calculated D Parameters E F Y	0.865 0.947 1.037 0.483
ANALYSIS				AM PE	AK PM PEAK
TRAFFIC FLO	WS (pcu/hr)	q(c-a) q(c-b) q(a-b) q(a-c) q(b-a) q(b-c) f		765 35 50 935 30 40 1	760 25 35 980 60 50 0
CAPACITIES	(pcu/hr)	Q(b-ac)		417	387
		Q(c-b)		593	588
RFC's		c-b b-ac		0.06 0.17	0.04 0.28
RFC				0.17	0.28
Where VI and D = (1+0.094) E = (1+0.094) F = (1+0.094) Y = 1-0.0345V f = proportion Q(b-ac) = Q All the above	d Vr are visibility dista (w(b-a)-3.65))(1+0.000 w(b-c)-3.65))(1+0.000 wc-b)-3.65))(1+0.0009 V of minor traffic turni (b-c)*Q(b-a)/(1-f)*Q(t e formulas are in acc.	nces to the left or rig 9(Vr(b-a)-120))(1+0. 9(Vr(c-c)-120)) (Vr(c-b)-120)) ng left c)+f*Q(b-a) Ca ordance to T.P.D.M.	ght of the respec 0006(VI(b-a)-15(pacity of combi Volume 2 Chap	ctive streams))) ned streams ter 4 Appendix 1	

Job No.: <u>CHK50749010</u>

MVA HONG KONG LIMITED

Junction:	J5-Ping	Ha Roa	ad/ Tin Y	ing Road/H	lung Tin	Road									Design Yea	r: <u>2023</u>	
Description:	2023 Ex	isting F	low								Designed	By: <u>TAT</u>			Checked By	: <u>CYH</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (p	aturation ocu/hr)		AM Peak			PM Peak	
Approach	шолош	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Ping Ha Road WB	• • • • • • • •	B B 1 A	1 1 1 1,3,4	3.500 3.500 3.500 3.500 3.500 3.500	20 25	15				1460 1590 2105 2105 1915	1460 1590 2105 2105 1915	41 44 150 150 540	0.028 0.028 0.071 0.071 0.282	0.282	31 34 165 165 560	0.021 0.021 0.078 0.078 0.292	0.292
Road NB Ping Ha Road	' ⁺ ↑ ↑	D D E F	2 3,4 3,4 2 2	3.500 3.500 3.500 3.500 3.500	10	25 20 50		0%	0%	1855 1960 1965 2105	1890 1855 1960 1965 2105	220 56 59 167 178	0.130 0.030 0.030 0.085 0.085		165 32 33 138 147	0.098 0.017 0.017 0.070 0.070	
EB Tin Ying Road	+ •ך •ך	E E F F	2 2 1 1	3.500 3.300 3.500 3.500	10 20 25	45			0.00	2035 1690 1460 1590	2035 1690 1460 1590	60 405 309 336	0.029 0.240 0.212 0.211	0.240	130 420 254 276	0.064 0.249 0.174 0.174	0.249
Pedestrian Cross	ing	Hp Jp Kp Lp Mp Op	1,4 1,2 2,3,4 1,3,4 1,2,3 1,3,4	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5 5 5 5 5 5 5	+ + + + + + + +	8 8 9 8 9 8 5 5		13 13 14 13 14 13 10 10						
Notes:				Flow: (po	:u/hr)			L			↓ ^N	Group	G,B,C	A,E	Group	G,B,C	A,E
					405(420) 60(130)	345(285)	470(525)) 220(165)		645(530)	540(560) 300(330) 85(65)	V	y L (sec) C (sec) y pract. R.C. (%)	0.447 13 120 0.803 80%	0.522 12 120 0.810 55%	y L (sec) C (sec) y pract. R.C. (%)	0.450 13 120 0.803 78%	0.541 12 120 0.810 50%
Stage / Phase Di	agrams			2				3				4			5		
	Np P Ip Lp		BA				Jp x Jp Kp				A	A. Dp	Jp Jp Lp		5 .		
I/G= I/G=			I/G= {	5				I/G= 9 I/G= 9			/G= /G=			I/G= I/G=	lon:		(IE)
											Date	FEB. 2024		Junct	i on: ing Ha Road/ Tin ነ	'ing Road/Hung T	(J5) in Road

Job No.: CHK50749010 MVA HONG KONG LIMITED

Junction:	J1- Tin	Ha Roa	d/Ping I	Ha Road				-					Design Yea	r: <u>2035</u>	
Description:	2035 R	eference	e Flow((Without Fu	iture Roa	d Netwo	vrk)	Designed By: TAT Checked					Checked By	CYH	
	ints				Radiu	us (m)	t (%)		Pro	o. Turning (%	%)		PM Peak		
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	АМ	РМ	РМ	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Ping Ha Road WB	† ≁†	B B	2 2	3.000 3.000	30			81%	65%	1855 2055	0.313 0.313	0.313	569 631	0.307 0.307	0.307
Ping Ha Road EB	↑ ∱•	A A	1 1	3.000 3.000		30		59%	71%	2055 1850	0.235 0.235	0.235	497 448	0.242 0.242	0.242
Tin Ha Road	ل ہ ا	C C	3 3	3.500 3.300	10	15				1915 1690	0.167 0.112	0.167	320 265	0.167 0.157	0.167
Pedestrian Crossir	ng	Dp Ep	1,2 3	MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH =	5 5	+ +	8 11	13 16					
		Gp Hp Ip	2 2,3 1	MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL	ASH = ASH = ASH =	5 5 5 5	+ + +	5 7 9	10 12 14					
Notes:				Flow: (po	cu/hr)					≜ ^N	C,Ip,B	C,A,B	Group	C,Ip,B	C,A,B
											0.480	0.716	У	0.474	0.716
											28	22	L (sec)	28	22
					\checkmark	660(625)	۰.	755(830)		136	136	C (sec)	120	120
					260(320)		190(205)		-320(320)	465(370)	0.715	0.754	y pract.	0.690	0.735
0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)								γ			49%	5%	R.C. (%)	46%	3%
1.	agrams			2.	HP J			3.	Hp				5.		
Dp F3	FT F	p	~				GPX-'J	в	The formation of the fo	T L ['] Fp					
I/G= 7			I/G=	8				I/G= 10		I/G=		I/G=	•		
1/G- /			I/G=	0				I/G= 10		Date	:	Junct	ion:	- David	(J1)
												J1- Ti	in Ha Road/Ping H	a Road	

Job Title: TFS for the Pro	posed Redevelopment of Pok Oi Hospital Yeung Chun Pui C	are and Attention Home In Yuen Long by Pok Oi Hospitall
Junction: J2 (Ping Ha Ro	Dad/ Minor Access Road)	Designed by: TAI
Scheme.	5 Poforonco Flow (Without Futuro Pogd Notwork)	CHECKED Dy. CTH
Arm A: Ping Hg Pogg		D. CHK50/49010 Ddie. Feb-24
Arm B: Minor Access	Road (Sha Chaulei Isuen)	
Arm C: Ping Hg Road		
	(15)	
Arm C Ping Ha Road (EB)	5 (935) 5 (15)	Arm A 1210 (1205) Ping Ha Road (WB)
CEOMETRY	20 (10) 35 (20) Arm B Minor Access Road (S	20 (30)
GEOMEIRT		
Major Road Width (m) Central Reserve Width (m) Blockage of major road rig Combined stream on mine	W 16.50 Wcr 0.00 ght turn Y/N? N or arm Y/N? Y	Lane widths (m) w(b-a) 4.00 w(b-c) 4.00 w(c-b) 4.20
Visibility Distances (m)	Vr(b-a) 40 V1(b-a) 40 Vr(b-c) 70 Vr(c-b) 100	Calculated D 0.895 Parameters E 0.986 F 1.033 Y 0.431
ANALYSIS		AM PEAK PM PEAK
TRAFFIC FLOWS (pcu/hr)	q(c-a) q(c-b) q(a-b) q(b-c) q(b-c)	975 935 15 15 20 30 1210 1205 35 20 20 10
	f	0 0
CAPACITIES (pcu/hr)	Q(b-ac) Q(c-b)	360 358 570 569
RFC's	c-b b-ac	0.03 0.03 0.15 0.08
RFC		0.15 0.08
Where VI and Vr are visibil D = (1+0.094(w(b-a)-3.65))(E = (1+0.094(w(b-c)-3.65))(F = (1+0.094(wc-b)-3.65))(1 Y = 1-0.0345W $f = proportion of minor traf Q(b-ac) = Q(b-c)^*Q(b-a)/All the phone formulas are$	ity distances to the left or right of the respective streams (1+0.0009(Vr(b-a)-120))(1+0.0006(VI(b-a)-150)) 1+0.0009(Vr(b-c)-120)) +0.0009(Vr(c-b)-120)) fic turning left (1-f)*Q(b-c)+f*Q(b-a) Capacity of combined streams	·

Job Title: TES for the Proposed Rede	velopment of Pok Oi Hospital Yeuna Chun Pu	i Care and Attention Home In Yu	en Long by Pok Oi Hospitall
Junction: J3 (Ping Hg Road/ Sah Ch	au Lei Road)		Designed by: TAT
Scheme:			Checked by: CYH
Design Year: 2035 Reference	Flow (Without Future Road Network)	Job No.: CHK50749010	Date: Feb-24
Arm A: Ping Ha Road (WB)			
Arm B: Minor Access Road			
Arm C: Ping Ha Road (EB)			
Arm C			
975 (950)	,		
Ping Hg Road (FB)			
30 (10)			
		1210 (1210)	Arm A
		Ping	Ha Road (WB)
	< <u>←</u>	15 (85)	
	00.(00)		
	40 (35)		
	Arm B Minor Access Road		
GEOMETRY			
Major Road Width (m)	W 16.00	Lane widths (m) w(b-a)	3.80
Central Reserve Width (m)	Wcr 0.00	w(b-c)	3.80
Blockage of major road right turn	Y/N? N	w(c-b)	4.25
Combined stream on minor arm	Y/N? Y		
Visibility Distances (m)	Vr(b-g) 40	Calculated D	0.879
	VI(b-a) 40	Parameters E	0.968
	Vr(b-c) 70	F	1.037
	Vr(c-b) 100	Y	0.448
2127124			
ANALISIS		AMILAR	TMTEAR
TRAFFIC FLOWS (pcu/hr)	q(c-a)	975	950
	q(c-b)	30	10
	q(a-b)	15	85
	q(a-c)	1210	1210
	d(p-d)	40	35 20
	(10-C) f	0	0
L			-
		225	242
CAPACITIES (pcu/nr)	Q(D-QC)	335	342
	Q(c-b)	566	554
	. /		
REC's	c-b	0.05	0.02
	b-ac	0.05	0.16
		00	
RFC		0.18	0.16
Where VI and Vr are visibility distances	to the left or right of the respective streams		
D = (1+0.094(w(b-a)-3.65))(1+0.009(Vr))	p-aj-120))(1+0.0006(V1(b-a)-150))		
$F = (1+0.094(w_{C}-b)-3.65))(1+0.0009(vr))$			
Y = 1-0.0345W	~ ~ 1 . 2011		
f = proportion of minor traffic turning le	ft		
Q(b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+	f*Q(b-a) Capacity of combined streams		
All the above formulas are in accorda	nce to 1.P.D.M. Volume 2 Chapter 4 Appendix		

Job Titlo: TES I	or the Properted Redev	olonmont of Pol			o and Attont	ion Homo In Vuo	n long by E	Pok Oi Hospitall
Junction: 14 (Pina Ha Road/Shek Po	Road)	COLHOSPILAL FEUNG CH	UNPUICAR	e unu Alleni	Ion Home in Tue	Designed F	
Scheme:	ing na koda, snek i o	Rodaj					Checked b	ov: CYH
Design Year:	2035 Reference F	low (Without Fut	ure Road Network)	Jo	ob No.:	CHK50749010	Date:	Feb-24
Arm A: Ping) Ha Road (WB)							
Arm B: She	k Po Road							
Arm C: Ping) Ha Road (EB)							
Arm C Ping Ha Road (E	B) 45 (35)	55 (65) 40 (80)		→ 	<u>1175</u> 65	(1230) Ping F (45)	Arm A ła Road (WI	3)
GEOMETRY		A	rm B Shek Po Road	1				
Marian D. 1947	H= ()	14/	15.00			-) " '		2.00
Major Road Widt Central Reserve Blockage of maj Combined strea	th (m) Width (m) or road right turn m on minor arm	W Wcr Y/N? Y/N?	15.00 0.00 N Y	Lc	ane widths (r	n) w(b-a) w(b-c) w(c-b)		3.80 3.80 4.25
Visibility Distance	95 (m)	Vr(b-a) VI(b-a) Vr(b-c) Vr(c-b)	30 30 46 100	C Po	alculated arameters	D E F Y	0. 0. 1. 0.	865 947 037 483
ANALYSIS						AM PEAK	PM PEA	ĸ
								-
TRAFFIC FLOWS (pcu/hr)	q(c-a) q(c-b) q(a-b) q(a-c) q(b-a) q(b-c) f				960 45 65 1175 40 55 1	955 35 45 1230 80 65 0	
CAPACITIES (pcu	u/hr)	Q(b-ac)				360	325	
		Q(c-b)				547	541	
RFC's		c-b b-ac				0.08 0.26	0.06 0.45	
RFC						0.26	0.45	
Where VI and Vr D = (1+0.094(w(b F = (1+0.094(w(c) Y = 1-0.0345W f = proportion of Q(b-ac) = Q(b-c	are visibility distances t -a)-3.65))(1+0.0009(Vr(t -c)-3.65))(1+0.0009(Vr(t b)-3.65))(1+0.0009(Vr(c- minor traffic turning left)*Q(b-a)/(1-f)*Q(b-c)+f	o the left or righ a)-120))(1+0.00 -c)-120)) b)-120)) * Q(b-a) Capc	t of the respective stree 06(VI(b-a)-150)) city of combined strea	ams Ims				

Job No.: <u>CHK50749010</u>

MVA HONG KONG LIMITED

Junction:	J5-Ping	Ha Roa	ıd/ Tin Y	ing Road/H	Hung Tin	Road									Design Yea	r: <u>2035</u>	
Description:	2035 Re	ference	Flow (V	Vithout Fut	ture Road	d Networ	k)				Designed	By: <u>TAT</u>			Checked By	/: <u>CYH</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (p	aturation ocu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Ping Ha Road WB Hung Tin Road NB	┥ ┥	B B 1 A C D D	1 1 1,3,4 2 3,4 3,4	3.500 3.500 3.500 3.500 3.500 3.300 3.300 3.500 3.500	20 25 10	15 25 20				1460 1590 2105 2105 1915 1690 1855 1960	1460 1590 2105 2105 1915 1690 1855 1960	53 57 190 190 680 280 71 74	0.036 0.036 0.090 0.090 0.355 0.166 0.038 0.038	0.355	41 44 208 207 705 210 41 44	0.028 0.028 0.099 0.098 0.368 0.124 0.022 0.022	0.368
Ping Ha Road EB Tin Ying Road SB	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	E E F G	2 2 2 1 1 4	3.500 3.500 3.500 3.300 3.500 3.500 3.500	10 20 25	50 45 15		0%	0%	1965 2105 2035 1690 1460 1590 1915	1965 2105 2035 1690 1460 1590 1915	210 225 80 510 388 422 590	0.107 0.107 0.039 0.302 0.266 0.265 0.308	0.302	174 186 165 530 318 347 660	0.089 0.088 0.081 0.314 0.218 0.218 0.345	0.314
Pedestrian Cross	ing	Hp Jp Kp Mp Op	1,4 1,2 2,3,4 2 1,3,4 1 1,2,3 1,3,4	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5 5 5 5 5 5	+ + + + + + + + +	8 9 8 9 8 5 5	= = = = = =	13 13 14 13 14 13 10 10						
Notes:				Flow: (po	cu/hr)						[▲] N	Group	G,B,C	A,E	Group	G,B,C	A,E
					510(530) 80(165)	435(360	590(660)) 280(210) ⁻		810(665) ► ►145(85)	680(705) 380(41 5) 110(85)		y L (sec) C (sec) y pract. R.C. (%)	0.564 13 120 0.803 42%	0.657 12 120 0.810 23%	y L (sec) C (sec) y pract. R.C. (%)	0.568 13 120 0.803 41%	0.682 12 120 0.810 19%
Stage / Phase Di	agrams																
	Np P P P P	Mp ↓ Mp	BA	2. E			lp ∧ Jp Kp	→ → → → → → → → → → → → → →			A	4. Dp	Jp Jp Lp		5.		
I/G= I/G=			I/G= {	5				I/G= 9			I/G= I/G= Date));		I/G= I/G= Juncti	ion:		(J5)

Job No.: CHK50749010 MVA HONG KONG LIMITED

Junction:	J1- Tin	Ha Roa	d/Ping H	Ha Road				-					Design Yea	r: <u>2035</u>		
Description:	2035 R	eference	e Flow (\	With Future	e Road N	etwork)		-		Checked By: <u>CYH</u>						
	ents				Radii	us (m)	t (%)		Pro	o. Turning (%	ırning (%)			PM Peak		
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	РМ	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y	
Ping Ha Road WB	† ≁†	B B	2 2	3.000 3.000	30			9%	7%	1910 2055	0.279 0.279	0.279	544 586	0.285 0.285	0.285	
Ping Ha Road EB	↑ †►	A A	1 1	3.000 3.000		30		6%	7%	2055 1910	0.254 0.253	0.254	529 491	0.257 0.257	0.257	
Tin Ha Road	ب ا ل	C C	3 3	3.500 3.300	10	15				1915 1690	0.018 0.012		35 30	0.018 0.018		
Pedestrian Crossi	ng	Dp Ep Fp	1,2 3 1,3	min gre Min gre Min gre	EN + FL EN + FL EN + FL	ASH = ASH = ASH =	5 5 5	+ + +	8 11 9	13 16 14						
		Gp Hp Ip	2 2,3 1	min gre Min gre Min gre	EN + FL EN + FL EN + FL	ASH = ASH = ASH =	5 5 5	+ + +	5 7 9	10 12 14						
															1	
Notes:				Flow: (po	cu/hr)					[▲] N	C,Ip,B	C,A,B	Group	C,Ip,B	C,A,B	
											0.298	0.533	У	0.285	0.543	
											28	28	L (sec)	34	28	
						975(985) 20(30)	• 1	1055(1090) ►35(35)		136	136	C (sec)	120	120	
					30(35)			\bigvee		50(40)	0.715	0.715 34%	y pract. R.C. (%)	0.645 126%	0.690 27%	
Stage / Phase Dia	agrams			1				I			ļ				I	
1. 4 1p				2.	HP X		Gp	3.	Hp		<		5.			
Dp	,1 K.F	p		D	p × 1		R. A.	в	FEp	L' Fp						
/ /										·						
I/G= 7 I/G= 7			I/G=	8				I/G= 10)	I/G=		I/G=				
<u> </u>				I						Date	:	Junct	ion: in Ha Road/Ping H	a Road	(J1)	

					P 11 1 X		0.11
Job litle:	IFS for the Proposed Rede	velopment of Pok Oi Hospital	Yeung Chun Pui C	are and Affe	ntion Home In Yue	n Long by Pok	COI Hospitall
Scheme:	JZ (FING HA KOAA/ MINOLA					Checked by	
Design Year:	2035 Reference	Flow (With Future Road Netwo	ork)	Job No.:	CHK50749010	Date:	Feb-24
Arm A:	Ping Ha Road (WB)						
Arm B:	Minor Access Road (Sha C	Chau Lei Tsuen)					
Arm C:	Ping Ha Road (EB)						
Arm C Ping Ha Roc	id (EB)	55 (30)	→ → ↓ 		15 (1330) Ping F 20 (30)	Arm A la Road (WB)	
GEOMETRY Major Road	Width (m)	0 (0) Arm B Min	or Access Road (S	ha Chau Lei ⁻	(m) w(h-a)	4 (<u>ρ</u>
Central Rese Blockage of Combined s	vrve Width (m) major road right turn tream on minor arm	Wcr 0.00 Y/N? N Y/N? Y			(iii) w(b-d) w(b-c) w(c-b)	4.0 4.0 4.2	0 0
Visibility Disto	ances (m)	Vr(b-a) 40 VI(b-a) 40 Vr(b-c) 70 Vr(c-b) 100		Calculated Parameters	D E F Y	0.89 0.98 1.03 0.43	5 6 3 1
ANALYSIS					AM PEAK	PM PEAK	
TRAFFIC FLO	WS (pcu/hr)	q(c-a) q(c-b) q(a-b) q(a-c) q(b-a) q(b-c) f			1130 0 20 1345 0 55 1	1030 0 30 1330 0 30 1	
CAPACITIES	(pcu/hr)	Q(b-ac)			526	527	
		Q(c-b)			548	549	
RFC's		c-b b-ac			0.00 0.10	0.00 0.06	
RFC					0.10	0.06	
Where VI an D = (1+0.094) E = (1+0.094) F = (1+0.094) Y = 1-0.0345 f = proportion $Q(b-ac) = QAll the above$	d Vr are visibility distances (w(b-a)-3.65))(1+0.0009(Vr(w(b-c)-3.65))(1+0.0009(Vr(wc-b)-3.65))(1+0.0009(Vr(c v n of minor traffic turning le (b-c)*Q(b-a)/(1-f)*Q(b-c)+	to the left or right of the respe (b-a)-120))(1+0.0006(VI(b-a)-15 b-c)-120)) -b)-120)) ft f*Q(b-a) Capacity of comb area to TPD M. Volume 2 Char	ctive streams (0)) bined streams				

Job Title: TFS for the Proposed Redeve	alopment of Pok Oi Hospital Yeung Chun Pui	Care and Attention Home In Yue	en Long by Pok Oi Hospitall
Junction: J3 (Ping Ha Road/ Sah Chau	Lei Road)		Designed by: TAT
Design Year: 2035 Reference Flo	w (With Future Road Network)	Job No.: CHK50749010	Date: Feb-24
Arm A: Ping Ha Road (WB)			
Arm B: Minor Access Road			
Arm C			
1080 (1015)	>		
Ping Ha Road (EB)			
33 (10)			
	/ *		
			Arm A
		1350 (1340) Ping	Ha Road (WB)
	<	15 (85)	
2	<u>0 (20)</u> {		
4	0 (35)		
	I	Į	
	Arm B Minor Access Road		
GEOMETRY			
Major Road Width (m)	W 16.00	l ane widths (m) w(h-a)	3.80
Central Reserve Width (m)	Wcr 0.00	w(b-c)	3.80
Blockage of major road right turn	X/NS X X/NS N	w(c-b)	4.25
	1/119		
Visibility Distances (m)	Vr(b-a) 40	Calculated D	0.879
	VI(b-a) 40	Parameters E	0.968
	Vr(b-c) 70 Vr(c-b) 100	F	1.037 0.448
		AM PEAK	PM PEAK
TRAFFIC FLOWS (pcu/hr)	q(c-a)	1080	1015
	q(c-b) q(a-b)	35	85
	q(a-c)	1350	1340
	q(b-a) q(b-c)	40 20	35 20
	f	0	0
	$O(h, q_{c})$	202	314
		303	510
	Q(c-b)	542	532
RFC's	c-b	0.06	0.02
	b-ac	0.20	0.17
RFC		0.20	0.17
Where VI and Vr are visibility distances to	the left or right of the respective streams		
D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-3.65)))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65))))(1+0.009(Vr(b-a)-3.65	-a)-120))(1+0.0006(VI(b-a)-150))		
E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-3.65))(1+0.009(Vr(b-c)-3.65))(1+0.009	c)-120))		
Y = 1-0.0345W]-120]]		
f = proportion of minor traffic turning left $O(h, q_0) = O(h, q)^*O(h, q)^{1/1} f(h Q(h, q)) f(h)^*$	O(b, a) Capacity of combined streams		
עוט-טט) = עוט-טי-עוט-מ)/(ו-ד)*ע(ט-כ)+דיי(Capacity of complined stredms		
All the above formulas are in accordance	e to T.P.D.M. Volume 2 Chapter 4 Appendix	1	

Job Title: TES for the Proposed Redeve	elopment of Pok Oi Hospital Yeuna Chun Pui	Care and Attention	Home In Yue	en Long by Pok Oi Hospitall
Junction: J4 (Ping Hg Rogd/ Shek Po F	Road)			Designed by: IAI
Scheme:				Checked by: CYH
Design Year: 2035 Reference Fl	ow (With Future Road Network)	Job No.: C	HK50749010	Date: Feb-24
Arm A: Ping Ha Road (WB)				•
Arm B: Shek Po Road				
Arm C: Ping Ha Road (EB)				
Arm C				
1030 (985)				
Ping Ha Road (EB)				
80 (65)				
				Arm A
	· · · · · · · · · · · · · · · · · · ·	1265 (1	325)	
			Ping F	ta Road (WB)
		100 (8	5)	
	/			
10	00 (100)			
8	35 (115)			
	I	I		
	Arm B Shek Po Road			
	AIII B SHEK FO KOOO			
GEOMETRY				
Major Road Width (m)	W 15.00	Lane widths (m)	w(b-a)	3.80
Central Reserve Width (m)	Wcr 0.00		w(b-c)	3.80
Blockage of major road right furn	Y/N? N		w(c-b)	4.25
Combined stream on minor arm	t/N¢ t			
Visibility Distances (m)	Vr(b-a) 30	Calculated	D	0.865
	VI(b-a) 30	Parameters	E	0.947
	Vr(b-c) 46		F	1.037
	Vr(c-b) 100		Y	0.483
ANALYSIS			AM PFAK	PM PEAK
			,	
TRAFFIC FLOWS (pcu/hr)	q(c-a)		1030	985
	q(c-b)		80	65
	d(a-p)		100	85
	q(a-c)		1265	1325
	q(b-c)		100	100
	f		1	0
	O(b, ac)		301	301
	(J)-(J)		JZI	301
	Q(c-b)		524	516
REC's	c-b		0.15	0.13
	b-ac		0.58	0.71
			2.00	
RFC			0.58	0.71
Where VI and Vr are visibility distances to	the left or right of the respective streams			
D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-3.65))(1+0.009(Vr(b-a)-3.65))(1+0.009	-a)-120))(1+0.0006(VI(b-a)-150))			
$E = (1+0.094(w_{0}-c)-3.65))(1+0.0009(Vr(b-c)-3.65))(1+0.009(Vr(b-c)-3.65))(1+0.0$	·CJ-TZUJ)			
Y = 1-0.0345W	120]]			
f = proportion of minor traffic turning left				
Q(b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*	Q(b-a) Capacity of combined streams			
All the above formulas are in accordance	e to T.P.D.M. Volume 2 Chapter 4 Appendix	1		

Job No.: <u>CHK50749010</u>

MVA HONG KONG LIMITED

Junction:	J5-Ping	Ha Roa	ad/ Tin Y	ing Road/H	Hung Tin	Road									Design Yea	r: <u>2035</u>	
Description:	2035 Re	eference	e Flow (V	Vith Future	e Road N	etwork)					Designed	By: <u>TAT</u>			Checked By	/: <u>CYH</u>	
	ents				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (j	Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Ping Ha Road WB Hung Tin Road NB Ping Ha Road EB Tin Ying Road SB		B B A C D C D E E E F G	1 1 1,3,4 2 3,4 3,4 2 2 2 2 1 1 4	3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500	20 25 10 10 20 25	15 25 20 50 45		0%	0%	1460 1590 2105 2105 1915 1690 1855 1960 1965 2105 2035 1690 1460 1590 1915	1460 1590 2105 2105 1915 1690 1855 1960 1965 2105 2035 1690 1460 1590 1915	53 57 215 215 680 295 71 74 234 251 90 560 388 422 645	0.036 0.036 0.102 0.355 0.175 0.038 0.038 0.119 0.119 0.044 0.331 0.266 0.265 0.337	0.355	41 44 235 235 705 230 39 41 188 202 175 560 318 347 715	0.028 0.028 0.112 0.368 0.136 0.021 0.021 0.096 0.096 0.096 0.331 0.218 0.218 0.218 0.373	0.368
Pedestrian Cross	sing	Hp Jp Kp Lp Np Op	1,4 1,2 2,3,4 2 1,3,4 1 1,2,3 1,3,4	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5 5 5 5 5	+ + + + + + + +	8 8 9 8 9 8 5 5		13 13 14 13 14 13 10 10						
Notes:				Flow: (po	cu/hr)						[▲] N	Group	G,B,C	A,E	Group	G,B,C	A,E
					560(560) 90(175)	485(390	645(715)) 295(230)		810(665 ► ►145(80)	680(705) 430(470) 110(85)	·	y L (sec) C (sec) y pract. R.C. (%)	0.614 13 120 0.803 31%	0.686 12 120 0.810 18%	y L (sec) C (sec) y pract. R.C. (%)	0.621 13 120 0.803 29%	0.700 12 120 0.810 16%
Stage / Phase D	iagrams											 T.					
	Np Np Np Np Np	Mp	B A	2. E	C C		Jp V Jp Kp			Jp Np D D D D D D D D D D D D D	A	4.		Jp D Jp A	5.		
I/G=			I/G=	5				I/G= 9			I/G=			I/G=			
			1,,0= ;	~				10-9	1		Date); 		Junct	ion:		(J5)
												FEB, 2024		J5-P	ing Ha Road/ Tin Y	/ing Road/Hung T	in Road

Roundabout Capacity Calculation

Roundabout Capacity Calculation

Job No.: CHK50749010 MVA HONG KONG LIMITED

Junction:	J1- Tin	Ha Roa	ad/Ping	Ha Road				-		Design Year: 2035						
Description:	2035 D	esign Fl	low					-		Designed I	<u>By:</u> TAT		Checked By	/: <u>CYH</u>		
	ents				Radio	us (m)	t (%)		Pro	o. Turning (%	%)		PM Peak			
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	РМ	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y	
Ping Ha Road WB	† ≁†	B B	2 2	3.000 3.000	30			10%	10%	1905 2055	0.281 0.282	0.281	553 597	0.290 0.291	0.290	
Ping Ha Road EB	↑ †►	A A	1 1	3.000 3.000		30		6%	7%	2055 1910	0.254 0.253	0.254	529 491	0.257 0.257	0.257	
Tin Ha Road	اً ا	C C	3 3	3.500 3.300	10	15				1915 1690	0.018 0.012		35 30	0.018 0.018		
											I					
Pedestrian Crossir	ng	Dp Ep Fp Gp	1,2 3 1,3 2	min gre Min gre Min gre Min gre	EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH =	5 5 5 5	+ + +	8 11 9 5	13 16 14 10						
		Hp Ip	2,3 1	MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH =	5 5	+ +	7 9	12 14						
Nataaa															1	
NOTES:				Flow: (pe	cu/nr)					↓ ^N	C,Ip,B	C,A,B	Group	C,Ip,B	C,A,B	
											0.300	0.535	У	0.290	0.547	
						075/005	``		4000/4005)		28	28	L (sec)	34	28	
						970(960) 20(30)		•35(35)	55(55)	0.715	0.715	v pract	0.645	0.600	
					30(35)			γ		33(33)	139%	34%	R.C. (%)	122%	26%	
Stage / Phase Dia	agrams												1_			
				2.	HP K			3.	Hp				5.			
							Gp SP SP SP	<		→ ⁷¹ ¹ En						
	¥≮.F	Ρ				/		в	Ép	<u>ь</u> ь	`					
			1		•											
I/G= 7 I/G= 7			I/G=	8				I/G= 10 I/G= 10		I/G= I/G=		I/G=				
.										Date	:	Junct	ion: in Ha Road/Ping H	la Road	(JI)	

Junction: J2 (Ping Ha Road/ Minor Access Road) Designed by: TAT Scheme: Checked by: CYH Design Year: 2035 DesignFlow Job No.: CHK50749010 Date: Feb- Arm A: Ping Ha Road (WB) Arm B: Minor Access Road Arm C: Ping Ha Road (EB)	H 24
Scheme: Checked by: CYH Design Year: 2035 DesignFlow Job No.: CHK50749010 Date: Feb- Arm A: Ping Ha Road (WB) Arm B: Minor Access Road Arm C: Ping Ha Road (EB)	H p-24
Arm A: Ping Ha Road (WB) Arm B: Minor Access Road Arm C: Ping Ha Road (EB))-24
Arm B: Minor Access Road Arm C: Ping Ha Road (EB)	
Arm C: Ping Ha Road (EB)	
Arm C	
Ping Ha Road (EB)	
O (0)	
↓	
Arm A	
50 (45)	
90 (45)	
0 (0)	
Arm B Minor Access Road	
GEOMETRY	
Major Poard Width (m) W 14.50 Jane widths (m) w/h g) 400	
Central Reserve Width (m) Wcr 0.00 kdc widths (m) w(b-c) 4.00	
Blockage of major road right turn Y/N? N w(c-b) 4.20	
Combined stream on minor arm Y/N? Y	
Visibility Distances (m) Vr(b-a) 40 Calculated D 0.895	
VI(b-a) 40 Parameters E 0.986	
Vr(b-c) 70 F 1.033	
VT(C-D) 100 T 0.431	
ANALYSIS AM PEAK PM PEAK	
IRAFFIC FLOWs (pcu/nr) q(c-a) 1140 1025 a(c-b) 0 0 0	
((-5) (a(-b)) 50 45	
q(a-c) 1350 1335	
q(b-a) 0 0	
f 1 1	
CAPACITIES (pcu/hr) Q(b-ac) 523 526	
Q(c-b) 543 546	
RFC's c-b 0.00 0.00	
b-ac 0.15 0.09	
RFC 0.15 0.09	
Where VI and Vr are visibility distances to the left or right of the respective streams	
U = (1+0.074(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(V1(b-a)-150)) F = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))	
F = (1+0.094(wc-b)-3.65))(1+0.009(Vr(c-b)-120))	
Y = 1-0.0345W	
f = proportion of minor traffic turning left C_{1} = C_{2} =	
الالمات المالية المراجعة الم	
All the above formulas are in accordance to T.P.D.M. Volume 2 Chapter 4 Appendix 1	

	oi Poad)		Designed by: TAT
Scheme:			Checked by: CYH
Design Year: 2035 DesignFl	low Job No.:	CHK50749010	Date: Feb-24
Arm A: Ping Ha Road (WB)			
Arm C: Ping Ha Road (EB)			
Arm C		>	
Ping Ha Road (EB)			
33 (10)		→	
		- · ·	
			Arm A
	<pre></pre>	1380 (1355)	
		Ping F	
		15 (85)	
20 ((20)	•	
	I	I	
	Arm B Mine	or Access Road	
GEOMETRY			
GLOMEIRT			
Major Road Width (m)	W 16.00	Lane widths (m) w(b-a)	3.80
Central Reserve Width (m)	Wcr 0.00	w(b-c) w(c-b)	3.80
Combined stream on minor arm	Y/N? Y	w(c-b)	7.20
Visibility Distances (m)	Vr(b-a)		0.879
· isibility Distances (itty	VI(b-a) 40	Parameters E	0.968
	Vr(b-c) 70	F	1.037
	Vr(c-b) 100	Ý	0.448
ANALYSIS		AM PEAK	PM PEAK
		1000	1000
TRAFFIC FLOWS (pcu/nr)	q(c-a) a(c-b)	35	1020
	q(a-b)	15	85
	q(a-c)	1380	1355
	q(b-a) a(b-c)	40 20	35 20
f	f	0	0
CAPACITIES (pcu/hr)	Q(b-ac)	297	313
		507	500
	Q(C-D)	557	529
RFC's	c-b	0.07	0.02
k	b-ac	0.20	0.18
PEC		0.00	0.18
		0.20	0.10
Where VI and Vr are visibility distances to the D = $(1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)) E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c))-F = (1+0.094(wc-b)-3.65))(1+0.0009(Vr(c-b)-1) Y = 1-0.0345W$ f = proportion of minor traffic turning left Q(b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)	ne left or right of the respe (-120))(1+0.0006(VI(b-a)-15 (-120)) (120)) b-a) Capacity of comb	ctive streams 0)) ined streams	
All the above formulas are in accordance t	to T.P.D.M. Volume 2 Chan	oter 4 Appendix 1	

Job Title: TFS for the Pro	posed Redevelopment of Po	k Oi Hospital Ye	eung Chun Pui Car	re and Attention H	ome In Yuen	Long by Pok (Di Hospitall
Scheme: J4 (Ping Ha Ro	dad/ snek Po koadj					Checked by:	CYH
Design Year: 203	5 DesignFlow	Job No.:	CHK50749010		C	Date:	Feb-24
Arm A: Ping Ha Road	(WB)						
Arm B: Shek Po Road							
AITT C. FING HU KOUU	(CD)						
Arm C 1044 Ping Ha Road (EB)) (990)						
8.	5 (70)	- //*	_				
	< <u> </u>	-		1290 (134	A Ping Ha	rm A Road (WB)	
	105 (105) 85 (115)		↓ ↓				
	A	Arm B Shek I	Po Road				
GEOMETRY							
Major Road Width (m) Central Reserve Width (m) Blockage of major road rig Combined stream on mind	W Wcr yht turn Y/N? or arm Y/N?	15.00 0.00 N Y	L	ane widths (m)	w(b-a) w(b-c) w(c-b)	3.80 3.80 4.25	
Visibility Distances (m)	Vr(b-a) V1(b-a) Vr(b-c) Vr(c-b)	30 30 46 100	C	Calculated Parameters	D E F Y	0.865 0.947 1.037 0.483	
ANALYSIS				A	M PEAK	PM PEAK	
TRAFFIC FLOWS (pcu/hr)	q(c-a) q(c-b) q(a-b) q(a-c) q(b-a) q(b-c) f				1040 85 100 1290 85 105 1	990 70 85 1340 115 105 0	
CAPACITIES (pcu/hr)	Q(b-ac)				317	300	
	Q(c-b)				520	513	
RFC's	c-b b-ac				0.16 0.60	0.14 0.73	
RFC					0.60	0.73	
Where VI and Vr are visibil D = (1+0.094(w(b-a)-3.65)) E = (1+0.094(wcb-c)-3.65))(1 F = (1+0.094(wc-b)-3.65))(1 Y = 1-0.0345W f = proportion of minor traf Q(b-ac) = Q(b-c)*Q(b-a)/ All the above formulas are	ty distances to the left or righ (1+0.0009(Vr(b-a)-120))(1+0.00 1+0.0009(Vr(b-c)-120)) +0.0009(Vr(c-b)-120)) fic turning left 1-f)*Q(b-c)+f*Q(b-a) Capo in accordance to T.P.D.M. Vo	acity of combin	tive streams)) ed streams er 4 Appendix 1				

Job No.: <u>CHK50749010</u>

MVA HONG KONG LIMITED

Junction:	J5-Ping	Ha Roa	ad/ Tin Y	ing Road/H	Hung Tin	Road									Design Yea	r: <u>2035</u>	
Description:	2035 D	esign F	low								Designed	By: <u>TAT</u>			Checked By	/: <u>CYH</u>	
	nts				Radi	us (m)	t (%)	Pro. Tu	rning (%)	Revised S Flow (j	Saturation ocu/hr)		AM Peak			PM Peak	
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradien	АМ	РМ	АМ	РМ	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Ping Ha Road WB Hung Tin Road NB Ping Ha Road EB Tin Ying Road SB	·	B B B A C D D E E E F G	1 1 1,3,4 2 3,4 3,4 2 2 2 2 1 1 4	3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500	20 25 10 10 20 25	15 25 20 50 45 15		0%	0%	1460 1590 2105 2105 1915 1690 1855 1960 1965 2105 2035 1690 1460 1590 1915	1460 1590 2105 2105 1915 1690 1855 1960 1965 2105 2035 1690 1460 1590 1915	53 57 218 217 680 310 71 74 237 253 95 565 388 422 655	0.036 0.036 0.104 0.103 0.355 0.183 0.038 0.038 0.121 0.120 0.047 0.334 0.266 0.265 0.342	0.355	41 44 238 237 705 240 39 41 191 204 180 565 318 347 720	0.028 0.028 0.113 0.113 0.368 0.142 0.021 0.021 0.097 0.097 0.097 0.088 0.334 0.218 0.218 0.376	0.368
Pedestrian Cros	sing	Hp Jp Kp Lp Np Op	1,4 1,2 2,3,4 2 1,3,4 1 1,2,3 1,3,4	MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH = ASH = ASH =	5 5 5 5 5 5 5 5 5 5	+ + + + + + +	8 9 8 9 8 5 5	= = = = = =	13 13 14 13 14 13 10 10						
Notes:				Flow: (po	565(565) 95(180)	490(395	655(720)) 310(240) ⁻		810(665) ❤ ►145(80)	680(705) 435(47 5) 110(85)	↑ N + N	Group y L (sec) C (sec) y pract. R.C. (%)	G,B,C 0.629 13 120 0.803 28%	A,E 0.689 12 120 0.810 17%	Group y L (sec) C (sec) y pract. R.C. (%)	G,B,C 0.631 13 120 0.803 27%	A,E 0.702 12 120 0.810 15%
Stage / Phase D			B	2.			Jp ↓ Jp ↓ Kp	3. 			A	4. Dp	Jp G C Lp	Jp D Jp A	5.		
I/G= I/G=			I/G= 5	5				I/G= 9 I/G= 9			I/G= I/G= Date	e: FEB, 2024		I/G= I/G= Junct	ion:	(ing Road/Hung T	(J5) in Road

Roundabout Capacity Calculation

Roundabout Capacity Calculation

APPENDIX B

Level-Of-Service (Los) Criteria for Pedestrian Walkways
DESCRIPTION OF LEVEL-OF-SERVICE (LOS) CRITERIA FOR PEDESTRIAN WALKWAYS

(Reference: HCM 2000 Exhibit 18-3 and Transport Planning and Design Manual Volume 6 Chapter 10.5 Section 10.5.2)

LOS	Space	Flow Rate	Description
	(m²/ped)	(ped/min/m)	
A	> 5.6	≤16	Pedestrians basically move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely selected, and conflicts between pedestrians are unlikely.
В	> 3.7 – 5.6	> 16 - 23	Sufficient space is provided for pedestrians to freely select their walking speeds, to bypass other pedestrians and to avoid crossing conflicts with others. At this level, pedestrians begin to be aware of other pedestrians and to respond to their presence in the selection of walking paths.
C	> 2.2 - 3.7	> 23 - 33	Sufficient space is available to select normal walking speeds and to bypass other pedestrians primarily in unidirectional stream. Where reverse direction or crossing movement exist, minor conflicts will occur, and speed and volume will be somewhat lower.
D	> 1.4 - 2.2	> 33 - 49	Freedom to select individual walking speeds and bypass other pedestrians is restricted. Where crossing or reverse-flow movements exist, the probability of conflicts is high and its avoidance requires changes of speeds and position. The LOS provides reasonable fluid flow; however considerable friction and interactions between pedestrians are likely to occur.
E	> 0.75 – 1.4	> 49 – 75	Virtually, all pedestrians would have their normal walking speeds restricted. At the lower range of this LOS, forward movement is possible only by shuffling. Space is insufficient to pass over slower pedestrians. Cross- and reverse-movement are possible only with extreme difficulties. Design volumes approach the limit of walking capacity with resulting stoppages and interruptions to flow.
F	≤ 0.75	> 75	Walking speeds are severely restricted. Forward progress is made only by shuffling. There are frequent and unavoidable conflicts with other pedestrians. Cross- and reverse-movements are virtually impossible. Flow is sporadic and unstable. Space is more characteristics of queued pedestrians than of moving pedestrian streams.

Remark:

i. The criteria range from LOS "A" (best) to LOS "F" (worst)

ii. LOS "A", standing and free circulation through the walkway is possible without disturbing others

- **iii.** LOS "F" is described as "virtually all persons are standing in direct physical contact with those surrounding them. This density is extremely discomforting with potential for panic exists in large crowds at this density".
- iv. The minimum acceptable LOS from Transport Department is "C" for all newly proposed pedestrian facilities and "D" for existing facilities.