Proposed Rezoning of the Site from "Other Specified Uses" annotated "Business" to "Other Specified Uses" annotated "Residential Care Home for the Elderly and Hotel" for a Proposed Composite Development with RCHE and Hotel at Nos. 107 – 109 Wai Yip Street, Kwun Tong

(Planning Application No. Y/K14S/4)



Revised Traffic Impact Assessment

Traffic Impact Assessment Final Report March 2025

Prepared by: CKM Asia Limited

#### CONTENTS

| <u>CHA</u> | PTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PAGE |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.0        | INTRODUCTION<br>Background<br>Scope of the Assessment<br>Contents of the Report                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1    |
| 2.0        | THE EXISTING SITUATION<br>The Subject Site<br>Traffic Survey<br>Adjustment of the traffic flows obtained from the traffic survey<br>Operational Performance of the Surveyed Junctions<br>Pedestrian Facilities<br>Availability of Public Transport Facilities                                                                                                                                                                                                                                                                        | 2    |
| 3.0        | THE PROPOSED DEVELOPMENT<br>Development Parameters<br>Provision of Internal Transport Facilities<br>Reasons for Deviation from the HKPSG Maximum Recommendation for<br>Hotel within the Proposed Development<br>Layout Plans<br>Swept Path Analysis<br>Traffic Management Plan                                                                                                                                                                                                                                                       | 7    |
| 4.0        | <ul> <li>TRAFFIC IMPACT</li> <li>Design Year</li> <li>Traffic Forecast</li> <li>Estimated Traffic Growth Rate from 2031 to 2032</li> <li>Planned Developments in the Vicinity of the Proposed Development</li> <li>Traffic Generated by the Proposed Development</li> <li>Comparison of Traffic Generation between the Approved S16 Scheme<br/>(TPB ref: A/K14/780) and the Proposed Development</li> <li>Planned Junction Improvement Schemes</li> <li>2032 Traffic Flows</li> <li>2032 Junction Operational Performance</li> </ul> | 12   |

### CONTENTS (Continued)

| TER                                                                                                                                                                                                                                                | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PEDESTRIAN ASSESSMENT<br>Surveyed Pedestrian Locations<br>Existing Pedestrian Flows<br>Estimated growth from 2024 to 2032<br>Pedestrian Generated by the Proposed Development<br>Year 2032 Pedestrian Flows<br>Level-Of-Service ("LOS") Assessment | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SENSITIVITY TEST<br>Permitted Maximum Number of Beds for RCHE<br>Sensitivity Test on Traffic Impact<br>Sensitivity Test on Pedestrian Impact                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CONCLUSION<br>FIGURES<br>Appendix 1 – Calculation<br>Appendix 2 – Swept Path Analysis<br>Appendix 3 – Planned Junction Improvement Schemes                                                                                                         | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                    | PEDESTRIAN ASSESSMENT<br>Surveyed Pedestrian Locations<br>Existing Pedestrian Flows<br>Estimated growth from 2024 to 2032<br>Pedestrian Generated by the Proposed Development<br>Year 2032 Pedestrian Flows<br>Level-Of-Service ("LOS") Assessment<br>SENSITIVITY TEST<br>Permitted Maximum Number of Beds for RCHE<br>Sensitivity Test on Traffic Impact<br>Sensitivity Test on Pedestrian Impact<br>CONCLUSION<br>FIGURES<br>Appendix 1 – Calculation<br>Appendix 2 – Swept Path Analysis |

#### TABLES

- 2.1 Existing junction operational performance
- 2.2 Franchised bus and GMB services operating close to the subject site
- 3.1 Provision of internal transport facilities for RCHE within the Proposed Development
- 3.2 Details of RCHEs surveyed
- 3.3 Survey results of the 2 surveyed RCHEs
- 3.4 Comparison of the HKPSG recommendations and proposed internal transport facilities for Hotel within the Proposed Development
- 3.5 Summary of Internal transport facilities provided for the Proposed Development
- 3.6 Goods vehicle trip generation for Hotel within the Proposed Development
- 4.1 2019-based TPEDM data produced by Planning Department for Kwun Tong district
- 4.2 Planned developments in the vicinity of the Proposed Development
- 4.3 Traffic generation of the Proposed Development
- 4.4 Comparison of Traffic Generation between the Approved S16 Scheme (TPB REF: A/K14/780) and The Proposed Development
- 4.5 Planned traffic improvement schemes in the vicinity of the Proposed Development
- 4.6 2032 junction operational performance
- 5.1 Surveyed pedestrian locations
- 5.2 In-house pedestrian generation rates
- 5.3 Pedestrian generated by the Proposed Development
- 5.4 Extract of exhibit 18-3 of the HCM 2000

#### TABLES (Continued)

- 5.5 Effective width of surveyed footpaths
- 5.6 Year 2032 LOS of footpath without and with the Proposed Development
- 5.7 Year 2032 LOS of pedestrian crossing waiting areas without and with the Proposed Development
- 6.1 Comparison of traffic generation
- 6.2 Comparison of 2032 junction operational performance
- 6.3 Comparison of pedestrian generation
- 6.4 Sensitivity test for Year 2032 LOS of footpath
- 6.5 Sensitivity test for Year 2032 pedestrian crossing waiting areas

#### FIGURES

- 1.1 Location of subject site
- 2.1 Location of the surveyed junctions
- 2.2 Layout of Junction of Hoi Bun Road / Shun Yip Street
- 2.3 Layout of junction of Wai Yip Street / Shun Yip Street
- 2.4 Layout of junction of Tai Yip Street / Service Lane
- 2.5 Layout of junction of Hong Tak Road / Tai Yip Street
- 2.6 Layout of junction of Tai Yip Street / Tai Yip Lane
- 2.7 Layout of junction of Kwun Tong Road / Hong Tak Road
- 2.8 Layout of junction of Wai Yip Street / Lai Yip Street
- 2.9 Layout of junction of Kwun Tong Road / Lai Yip Street
- 2.10 Layout of junction of Hoi Bun Road / Lai Yip Street
- 2.11 Layout of junction of Lai Yip Street / Hung To Road
- 2.12 Adjusted 2024 peak hour traffic flows
- 2.13 The public transport services provided in the vicinity of the subject site
- 3.1 G/F layout plan
- 3.2 B1/F layout plan
- 4.1 Location of planned developments in the vicinity of the Proposed Development
- 4.2 Year 2032 peak hour traffic flows without the Proposed Development
- 4.3 Year 2032 peak hour traffic flows with the Proposed Development

#### FIGURES (Continued)

- 4.4 The ingress / egress route for traffic generated by the Proposed Development (via Wai Yip Street)
- 4.5 The ingress / egress route for traffic generated by the Proposed Development (via the Service Lane)
- 5.1 Observed existing pedestrian flows
- 5.2 Year 2032 pedestrian flows without the Proposed Development
- 5.3 Year 2032 pedestrian flows with the Proposed Development
- 6.1 Sensitivity test 2032 peak hour traffic flows
- 6.2 The ingress / egress route of sensitivity test (via Wai Yip Street)
- 6.3 The ingress / egress route of sensitivity test (via the Service Lane)
- 6.4 Sensitivity test 2032 pedestrian flows

#### 1.0 INTRODUCTION

#### Background

- 1.1 The Subject Site is located at Nos. 107 109 Wai Yip Street in Kwun Tong, which is now vacant. Figure 1.1 shows the location of the Subject Site.
- 1.2 On 29<sup>th</sup> May 2020, the Town Planning Board ("TPB") approved the S16 Planning Application for Office, Shop and Services & Eating Place Uses at 107-109 Wai Yip Street (TPB ref: A/K14/780) ("Approved S16 Scheme"). The Applicant has the intention to rezone the Subject Site and construct residential care home for the elderly ("RCHE") and a hotel (together known as "Proposed Development").
- 1.3 CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Applicant, to conduct a traffic impact assessment ("TIA") in support of Proposed Development. This report describes the traffic study undertaken.

#### Scope of the Assessment

- 1.4 The main objectives of this TIA are as follows:
  - To assess the existing traffic issues in the vicinity of the subject site;
  - To quantify the traffic and pedestrians generated by the Proposed Development; and
  - To examine the traffic and pedestrian impact on the local road network in the vicinity of the subject site.

#### Contents of the Report

1.5 After this introduction, the remaining chapters contain the following:

| Chapter Two<br>Chapter Three<br>Chapter Four<br>Chapter Five<br>Chapter Six | -<br>-<br>- | describes the existing situation;<br>outlines the development proposal;<br>presents the traffic impact analysis;<br>presents the pedestrian impact analysis<br>presents the traffic and pedestrian sensitivity test; and |
|-----------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chapter Six<br>Chapter Seven                                                | -           | presents the traffic and pedestrian sensitivity test; and summarises the overall conclusion.                                                                                                                             |

#### 2.0 THE EXISTING SITUATION

#### The Subject Site

2.1 The Subject Site fronts onto Wai Yip Street to the south, and is bounded by a service lane to the north. The section of Wai Yip Street fronting the Subject Site is a dual carriageway 3-lane road.

#### Traffic Survey

- 2.2 To quantify the traffic flows at the junctions chosen for the capacity analysis, manual classified counts were conducted on Friday, 15<sup>th</sup> March 2024 during the AM and PM peak periods. The locations of the surveyed junctions are presented in Figure 2.1 and their layout is shown in Figures 2.2 to 2.11.
- 2.3 The surveyed junctions include the following:
  - J1: Hoi Bun Road / Shun Yip Street;
  - J2: Wai Yip Street / Shun Yip Street;
  - J3: Tai Yip Street / Service Lane;
  - J4: Hong Tak Road / Tai Yip Street;
  - J5: Tai Yip Street / Tai Yip Lane;
  - J6: Kwun Tong Road / Hong Tak Road;
  - J7: Wai Yip Street / Lai Yip Street;
  - J8: Kwun Tong Road / Lai Yip Street;
  - J9: Hoi Bun Road / Lai Yip Street and;
  - J10: Lai Yip Street / Hung To Road
- 2.4 The counts were classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. From the survey, the AM and PM peak hours were found to be between 0845 0945 and 1730 1830 hours respectively.

#### Adjustment of the traffic flows obtained from the traffic survey

- 2.5 The traffic flows obtained from the traffic surveys conducted in March 2024 were reviewed against the traffic flows of the Traffic Impact Assessment of other approved planning applications and found to be of similar order. Nevertheless, adjustment of the traffic flows obtained from the traffic survey is made based on the Annual Average Daily Traffic ("AADT") of Annual Traffic Census ("ATC") station 3020 Wai Yip Street (from Lai Yip Street to Hoi Yuen Road), in order to produce adjusted annual average traffic flows.
- 2.6 AADT is only available up to 2023. However, the AADT for 2019 is not considered due to the impact of the social events, and the AADT for 2020 to 2023 are also not considered due to the impact of the COVID-19 pandemic. Hence, reference is made to 2018 AADT. The 2018 monthly variation in the AADT for ATC station 3020 Wai Yip Street in Kwun Tong, is found in Chart A.

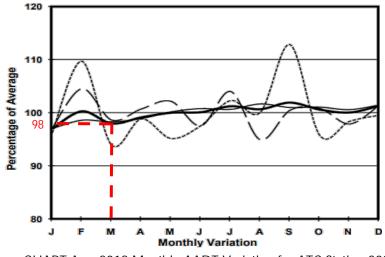



CHART A: 2018 Monthly AADT Variation for ATC Station 3020

2.7 Chart A shows that the AADT for the month of March<sub>7</sub> is around 2% lower than the annual average. In view that the traffic survey for the captioned project was conducted in March, the monthly variation factor of 1.02 (Calculation: 1 / 0.98 = 1.02) is applied to the traffic flows. The adjusted peak hour traffic flows are presented in Figure 2.12.

#### Operational Performance of the Surveyed Junctions

2.8 The existing operational performance of the surveyed junctions is calculated based on the observed traffic counts and the analysis is undertaken using the methods outlined in Volume 2 of Transport Planning and Design Manual ("TPDM"). The existing operational performance of the surveyed junctions are summarised in Table 2.1 and the detailed calculations are found in Appendix 1.

| Ref                                                          | Junction                                     | Type of Junction | Parameter <sup>(1)</sup> | AM Peak | PM Peak |
|--------------------------------------------------------------|----------------------------------------------|------------------|--------------------------|---------|---------|
| J1                                                           | Hoi Bun Road / Shun Yip Street               | Signal           | RC                       | 56%     | 43%     |
| J2                                                           | Wai Yip Street / Shun Yip Street             | Signal           | RC                       | 66%     | 62%     |
| J3                                                           | Tai Yip Street / Service Lane                | Priority         | RFC                      | 0.016   | 0.010   |
| J4                                                           | Hong Tak Road / Tai Yip Street               | Priority         | RFC                      | 0.226   | 0.181   |
| J5                                                           | Tai Yip Street / Tai Yip Lane                | Priority         | RFC                      | 0.058   | 0.025   |
| J6                                                           | Kwun Tong Road / Hong Tak Road               | Priority         | RFC                      | 0.365   | 0.454   |
| J7                                                           | Wai Yip Street / Lai Yip Street              | Signal           | RC                       | 69%     | 87%     |
| J8                                                           | Kwun Tong Road / Lai Yip Street              | Signal           | RC                       | 58%     | 43%     |
| J9                                                           | Hoi Bun Road / Lai Yip Street                | Signal           | RC                       | 81%     | 87%     |
| J10                                                          | Lai Yip Street / Hung To Road <sup>(2)</sup> | Signal           | RC                       | 85%     | 104%    |
| Notes: (1) DC Deserve Canacity DEC Datie of Flow to Canacity |                                              |                  |                          |         |         |

TABLE 2.1EXISTING JUNCTION OPERATIONAL PERFORMANCE

Notes: <sup>(1)</sup> RC – Reserve Capacity RFC – Ratio of Flow to Capacity <sup>(2)</sup> Kerbside on-street activities are reflected in the junction performance

2.9 The results in Table 2.1 indicate that the junctions now operate with capacities during the AM and PM peak hours.

#### Pedestrian Facilities

2.10 There are good pedestrian facilities provided in the vicinity of the Subject Site, including footpaths, and at-grade pedestrian crossings are provided at the signalised road junctions.

#### Availability of Public Transport Facilities

- 2.11 The Subject Site is well-served by various types of public transport services, including road-based franchised bus and public light bus. These services operate along Kwun Tong Road and Wai Yip Street within 500m or about 10 minutes' walk away. The Subject Site is located closest to the Ngau Tau Kok MTR Station and the nearest entrance is at Lai Yip Street, which is some 500 metres or 10 minutes' walk away.
- 2.12 Details of the road-based public transport services operating in the vicinity of the Subject Site are shown in Figure 2.13 and Table 2.2.

### TABLE 2.2FRANCHISED BUS AND GMB SERVICES OPERATING CLOSE TO<br/>THE SUBJECT SITE

| KMB 11BKwun Tong (Tsui Ping Road) – Kowloon City Ferry10 – 25KMB 11CChuk Yuen Estate – Sau Mau Ping (Upper)15 – 25KMB 11DLok Fu – Kwun Tong Ferry15 – 30KMB 13DPo Tat – Island Harbourview15 – 25KMB 13MKwun Tong (Elegance Road) – Po Tat (Circular)15 – 30KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 30KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 25KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)12 – 20KMB 15Ping Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15APing Tin – Tsz Wan Shan (North)20 – 30KMB 16ALam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Hong Kok (Park Avenue)8 – 20KMB 16PKwun Tong Ferry – Mong Kok (Park Avenue)AM, PM PeaKMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 30KMB 23SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong20 – 25KMB 38Kwai Shing (East) – Ping Tin5 – 20KMB 38Kwai Shing (Central) – Ping Tin5 – 20KMB 400Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeaKMB 40B<                                                                      | Route   | Route Routing                                   |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------|-------------|--|
| KMB 3DTsz Wan Shan (Central) – Kwun Tong (Yue Man Square)4 – 16KMB 5RKai Tak Cruise Terminal – Kwun Tong (apm) (Circular)30KMB 6PCheung Sha Wan (So Uk Estate) – Lei Yue Mun EstateAM, PM PeaKMB 11BKwun Tong (Tsui Ping Road) – Kowloon City Ferry10 – 25KMB 11CChuk Yuen Estate – Sau Mau Ping (Upper)15 – 30KMB 13DPo Tat – Island Harbourview15 – 25KMB 13DPo Tat – Island Harbourview15 – 25KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 148Ngau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 30KMB 15Ping Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15Ping Tin – Tsz Wan Shan (North)20 – 30KMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16Lam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 23BTsuen Wan West Station – Yau Tong15 – 30KMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33Tsuen Wan West Station – Yau Tong15 – 25KMB 248Choi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 248Kwai Shing (Central)Ping Tin5 – 20KMB 33Tsuen Wan West Station – Yau Tong15 – 20KMB 33BTsuen Wan West Station – Yau Tong15 – 30<                                                                  | KMB 1A  | Sau Mau Ping (Central) – Star Ferry             | 5 – 15      |  |
| KMB 5RKai Tak Cruise Terminal – Kwun Tong (apm) (Circular)30KMB 6PCheung Sha Wan (So Uk Estate) – Lei Yue Mun EstateAM, PM PeaKMB 11BKwun Tong (Tsui Ping Road) – Kowloon City Ferry10 – 25KMB 11CChuk Yuen Estate – Sau Mau Ping (Upper)15 – 25KMB 11DLok Fu – Kwun Tong Ferry15 – 30KMB 13DPo Tat – Island Harbourview15 – 25KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 30KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 30KMB 15Ping Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15Ping Tin – Tsz Wan Shan (North)20 – 30KMB 16Lam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16Lok Wah – Shun Lee (Circular)12 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33BTsuen Wan (Belvedere Garden) – Laguna City12 – 20KMB 400Tsuen Wan (Belvedere Garden) – Laguna City12 – 20KMB 400Tsuen Wan (Belvedere Garden) – Laguna City12 – 20KMB 33                                                                 | KMB 3D  |                                                 | 4 – 16      |  |
| KMB 6PCheung Sha Wan (So Uk Estate) – Lei Yue Mun EstateAM, PM PeaKMB 11BKwun Tong (Tsui Ping Road) – Kowloon City Ferry10 – 25KMB 11CChuk Yuen Estate – Sau Mau Ping (Upper)15 – 25KMB 11DLok Fu – Kwun Tong Ferry15 – 30KMB 13DPo Tat – Island Harbourview15 – 25KMB 13MKwun Tong (Elegance Road) – Po Tat (Circular)15 – 30KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 14Ngau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 30KMB 15Ping Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15Ping Tin – Tsz Wan Shan (North)20 – 30KMB 16Lam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Hong Kok (Park Avenue)8 – 20KMB 16Lam Tin (Kwong Tin Estate) – Hong Kok (Park Avenue)8 – 20KMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 33KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 38Kwai Shing (Central) – Ping Tin5 – 20KMB 38Kwai Shing (Central) – Ping Tin5 – 20KMB 28BKhoi Gook – Kai Tak (Kai Ching Estate)15 – 30KMB 33Tsuen Wan West Station – Yau Tong20 – 25KMB 38Kwai Shing (Central) – Ping Tin5 – 20KMB 38Kwai Shing (Central) – Ping TinAM PeakKMB 400<                                                                 | KMB 5R  |                                                 | 30          |  |
| KMB 11CChuk Yuen Estate – Sau Mau Ping (Upper)15 – 25KMB 11DLok Fu – Kwun Tong Ferry15 – 30KMB 13DPo Tat – Island Harbourview15 – 25KMB 13MKwun Tong (Elegance Road) – Po Tat (Circular)15 – 30KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 30KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 25KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)12 – 20KMB 15Ping Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15APing Tin – Tsz Wan Shan (North)20 – 30KMB 16Lam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16Kwun Tong Ferry – Mong Kok (Park Avenue)4 – 20KMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 38Tsuen Wan West Station – Yau Tong15 – 20KMB 38Kwai Shing (Central) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 20KMB 40APing Tin – Kwai Hing StationAM, PM PeaKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwai Chung Estate – Ping T                                                                          | KMB 6P  |                                                 | AM, PM Peak |  |
| KMB 11CChuk Yuen Estate – Sau Mau Ping (Upper)15 – 25KMB 11DLok Fu – Kwun Tong Ferry15 – 30KMB 13DPo Tat – Island Harbourview15 – 25KMB 13MKwun Tong (Elegance Road) – Po Tat (Circular)15 – 30KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 30KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 25KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)12 – 20KMB 15Ping Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15APing Tin – Tsz Wan Shan (North)20 – 30KMB 16Lam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16Kwun Tong Ferry – Mong Kok (Park Avenue)4 – 20KMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 38Tsuen Wan West Station – Yau Tong15 – 20KMB 38Kwai Shing (Central) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 20KMB 40APing Tin – Kwai Hing StationAM, PM PeaKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwai Chung Estate – Ping T                                                                          | KMB 11B | Kwun Tong (Tsui Ping Road) – Kowloon City Ferry | 10 – 25     |  |
| KMB 11DLok Fu – Kwun Tong Ferry15 – 30KMB 13DPo Tat – Island Harbourview15 – 25KMB 13MKwun Tong (Elegance Road) – Po Tat (Circular)15 – 30KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 30KMB 14WYau Tong (Shung Tak Wai) – Tsim Sha Tsui (Circular)15 – 30KMB 15PPing Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15APing Tin – Tsz Wan Shan (North)20 – 30KMB 16Lam Tin (Kwong Tin Estate) – Mung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16PKwun Tong Ferry – Mong Kok (Park Avenue)AM, PM PeaKMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 23BChoi Fook – Kai Tak (Kai Ching Estate)15 – 30KMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33BTsuen Wan West Station – Yau Tong20 – 25KMB 38Kwai Shing (Central) – Ping TinAM PeakKMB 40APing Tin – Kwai Hing StationAM, PM PeaKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM Peak<                                                    | KMB 11C |                                                 | 15 – 25     |  |
| KMB 13DPo Tat – Island Harbourview15 – 25KMB 13MKwun Tong (Elegance Road) – Po Tat (Circular)15 – 30KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 14Kwun Tong (Shung Tak Wai) – Tsim Sha Tsui (Circular)15 – 25KMB 14Yau Tong (Shung Tak Wai) – Tsim Sha Tsui (Circular)15 – 30KMB 15Ping Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15APing Tin – Tsz Wan Shan (North)20 – 30KMB 16Lam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Hong Kok (Park Avenue)8 – 20KMB 16PKwun Tong Ferry – Mong Kok (Park Avenue)8 – 20KMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 23BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 23BKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 38Kwai Shing (Central) – Ping Tin5 – 20KMB 38Kwai Shing (Central) – Ping TinAM PeakKMB 400Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwai Chung Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 40PKw                                                                          | KMB 11D |                                                 | 15 – 30     |  |
| KMB 13MKwun Tong (Elegance Road) – Po Tat (Circular)15 – 30KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 25KMB 14XYau Tong (Shung Tak Wai) – Tsim Sha Tsui (Circular)15 – 30KMB 15Ping Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15APing Tin – Tsz Wan Shan (North)20 – 30KMB 16Lam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16Kwun Tong Ferry – Mong Kok (Park Avenue)AM, PM PeaKMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 23BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 23BKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong20 – 25KMB 38PKwai Shing (East) – Ping Tin5 – 20KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeakKMB 40PKwai Chung Estate – Ping TinAM PeakKMB 40PKwai Chung Estate – Ping TinAM PeakKMB 40PKwai Chung Estate – Ping TinAM, PM PeakKMB 40PKwai Chung Estate – Ping TinAM, PM PeakKMB 40PKwai Chung Estate – Ping TinAM, PM PeakKMB 40PKwai Chung F                                                                          | KMB 13D |                                                 |             |  |
| KMB 14Lei Yue Mun Estate – China Ferry Terminal12 – 25KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 25KMB 14XYau Tong (Shung Tak Wai) – Tsim Sha Tsui (Circular)15 – 30KMB 15Ping Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15APing Tin – Tsz Wan Shan (North)20 – 30KMB 16Lam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16Kwun Tong Ferry – Mong Kok (Park Avenue)AM, PM PeaKMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 28BKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong20 – 25KMB 38PKwai Shing (East) – Ping Tin5 – 20KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeaKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwai Chung Estate – Ping TinAM PeakKMB 40PKwai Chung Estate – Ping TinAM, PM PeaKMB 40PKwai Chung Estate – Ping Tin </td <td></td> <td></td> <td></td>                                         |         |                                                 |             |  |
| KMB 14BNgau Tau Kok – Lam Tin (Kwong Tin Estate)15 – 25KMB 14XYau Tong (Shung Tak Wai) – Tsim Sha Tsui (Circular)15 – 30KMB 15Ping Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15APing Tin – Tsz Wan Shan (North)20 – 30KMB 15XLam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16Kwun Tong Ferry – Mong Kok (Park Avenue)8 – 20KMB 17Kwun Tong Ferry – Mong Kok (Park Avenue)AM, PM PeaKMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 28BKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33BTsuen Wan West Station – Yau Tong20 – 25KMB 38PKwai Shing (East) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 40PKwun Tong Ferry – Tsu                                                                          |         |                                                 |             |  |
| KMB 14XYau Tong (Shung Tak Wai) – Tsim Sha Tsui (Circular)15 – 30KMB 15Ping Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15APing Tin – Tsz Wan Shan (North)20 – 30KMB 15XLam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16PKwun Tong Ferry – Mong Kok (Park Avenue)8 – 20KMB 17Kwun Tong Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 28SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33BTsuen Wan West Station – Yau Tong20 – 25KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 400Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeakKMB 40PKwai Chung Estate – Ping TinAM PeakKMB 40PKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok) <td< td=""><td></td><td></td><td></td></td<> |         |                                                 |             |  |
| KMB 15Ping Tin – Hung Hom (Hung Luen Road)12 – 20KMB 15APing Tin – Tsz Wan Shan (North)20 – 30KMB 15XLam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16Kwun Tong Ferry – Mong Kok (Park Avenue)AM, PM PeaKMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 28SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 38PKwai Shing (East) – Ping Tin5 – 20KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 400Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 40PKuun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 40PKuun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 40PKuun Tong Ferry – Tsuen Wan (Shek                                      |         |                                                 |             |  |
| KMB 15APing Tin – Tsz Wan Shan (North)20 – 30KMB 15XLam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16PKwun Tong Ferry – Mong Kok (Park Avenue)AM, PM PeaKMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 28SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 38BTsuen Wan West Station – Yau Tong20 – 25KMB 38PKwai Shing (Central) – Ping Tin5 – 20KMB 400Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                              |         |                                                 |             |  |
| KMB 15XLam Tin (Kwong Tin Estate) – Hung Hom StationAM, PM PeaKMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16PKwun Tong Ferry – Mong Kok (Park Avenue)AM, PM PeaKMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 28SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33BTsuen Wan West Station – Yau Tong20 – 25KMB 38PKwai Shing (East) – Ping Tin5 – 20KMB 400Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 408Kwai Chung Estate – Ping TinAM PeakKMB 409Kwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 409Kwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeaKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                             |         |                                                 |             |  |
| KMB 16Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)8 – 20KMB 16PKwun Tong Ferry – Mong Kok (Park Avenue)AM, PM PeaKMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 28SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33BTsuen Wan West Station – Yau Tong20 – 25KMB 38Kwai Shing (East) – Ping Tin5 – 20KMB 400Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeakKMB 40PKwai Chung Estate – Ping TinAM PeakKMB 40PKwai Chung Estate – Ping TinAM PeakKMB 40PKwai Chung Estate – Ping TinAM PeakKMB 40PKwai Chung Estate – Ping TinAM, PM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeakKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                     |         |                                                 |             |  |
| KMB 16PKwun Tong Ferry – Mong Kok (Park Avenue)AM, PM PeaKMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 28SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33BTsuen Wan West Station – Yau Tong20 – 25KMB 38Kwai Shing (East) – Ping Tin5 – 20KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 400Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 408Kwai Chung Estate – Ping TinAM PeakKMB 409Kwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeaKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                 |             |  |
| KMB 17Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)5 – 20KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 28SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33BTsuen Wan West Station – Yau Tong20 – 25KMB 38Kwai Shing (East) – Ping Tin5 – 20KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeakKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                                 |             |  |
| KMB 23MLok Wah – Shun Lee (Circular)12 – 20KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 28SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33BTsuen Wan West Station – Yau Tong20 – 25KMB 38Kwai Shing (East) – Ping Tin5 – 20KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeakKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                 |             |  |
| KMB 28BChoi Fook – Kai Tak (Kai Ching Estate)15 – 25KMB 28SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33BTsuen Wan West Station – Yau Tong20 – 25KMB 38Kwai Shing (East) – Ping Tin5 – 20KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeaKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                 |             |  |
| KMB 28SKwun Tong (Yue Mun Square) – Lok WahAM PeakKMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33BTsuen Wan West Station – Yau Tong20 – 25KMB 38Kwai Shing (East) – Ping Tin5 – 20KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeaKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                 |             |  |
| KMB 33Tsuen Wan West Station – Yau Tong15 – 30KMB 33BTsuen Wan West Station – Yau Tong20 – 25KMB 38Kwai Shing (East) – Ping Tin5 – 20KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeaKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                                 |             |  |
| KMB 33BTsuen Wan West Station – Yau Tong20 – 25KMB 38Kwai Shing (East) – Ping Tin5 – 20KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeakKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                 |             |  |
| KMB 38Kwai Shing (East) – Ping Tin5 – 20KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeakKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | · · · · · · · · · · · · · · · · · · ·           |             |  |
| KMB 38PKwai Shing (Central) – Ping TinAM PeakKMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeakKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeakKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeakKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                 |             |  |
| KMB 40Tsuen Wan (Belvedere Garden) – Laguna City12 – 25KMB 40APing Tin – Kwai Hing StationAM, PM PeaKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeaKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                 |             |  |
| KMB 40APing Tin – Kwai Hing StationAM, PM PeaKMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeaKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                                 |             |  |
| KMB 40BKwai Chung Estate – Ping TinAM PeakKMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeaKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                 |             |  |
| KMB 40PKwun Tong Ferry – Tsuen Wan (Shek Wai Kok)AM, PM PeaKMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeaKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | · · · ·                                         |             |  |
| KMB 42CTsing Yi (Cheung Hang Estate) – Lam Tin Station5 – 15KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeaKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                 |             |  |
| KMB 49Ching Fu Court – Tseung Kwan O Industrial EstateAM, PM PeaKMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                 |             |  |
| KMB 62PTuen Mun Central – Lei Yue Mun Estate8 – 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                 |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                 |             |  |
| A = 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KMB 62X | Tuen Mun Central – Lei Yue Mun Estate           | 8 – 25      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                 | AM, PM Peak |  |
| KMB 74CKau Lung Hang – Kwun Tong FerryAM Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | ,                                               |             |  |
| KMB 74DKau Lung Hang – Kwun Tong Ferry25 – 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                 |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                 | AM, PM Peak |  |
| KMB 74FKwun Tong Ferry – Education University of Hong KongAM Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                 |             |  |
| KMB 74PKwun Tong Ferry – Tai Po CentralAM Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                 |             |  |
| KMB 74XTai Po Central – Kwun Tong Ferry3 – 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                 |             |  |
| KMB 94XHarro central = Kwah rong reny3 = 13KMB 80Mei Lam – Kwah rong Ferry5 – 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                                 |             |  |
| KMB 80AMei Lam – Kwun Tung FerryAM Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                 |             |  |
| KMB 80PHin Keng – Kwun Tong FerryAM Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                 |             |  |

| Route        | Routing                                                                        | Frequency<br>(minutes) |
|--------------|--------------------------------------------------------------------------------|------------------------|
| KMB 80X      | Chun Shek – Kwun Tong Ferry                                                    | 8 – 25                 |
| KMB 83A      | Shui Chuen O – Kwun Tong Ferry                                                 | AM Peak                |
| KMB 83X      | Shui Chuen O – Kwun Tong Ferry                                                 | 8 - 30                 |
| KMB 88X      | Fo Tan Chung Yeung Estate – Ping Tin (Circular)                                | 20 - 30                |
| KMB 89       | Lek Yuen – Kwun Tong Station                                                   | 8 - 20                 |
|              |                                                                                |                        |
| KMB 89B      | Shatin Wai – Kwun Tong Station                                                 | 10 - 25                |
| KMB 89C      | Heng On – Kwun Tong (Tsui Ping Road)                                           | 12 – 30                |
| KMB 89D      | Wu Kai Sha Station – Lam Tin Station                                           | 3 – 20                 |
| KMB 89P      | Ma On Shan Town Centre – Lam Tin Station Bus Terminus                          | AM Peak                |
| KMB 89X      | Shatin Station – Kwun Tong (Tsui Ping Road)                                    | 7 – 20                 |
| KMB 93K      | Po Lam – Mong Kok East Station                                                 | 15 – 30                |
| KMB 95M      | Tsui Lam – Kwun Tong Road (Elegance Road)                                      | 20 – 30                |
| KMB 98       | Tseung Kwan O Industrial Estate – Ngau Tau Kok Station<br>(Circular)           | 15 – 20                |
| KMB 98A      | Hang Hau (North) (Tseung Kwan O Hospital) – Ngau Tau<br>Kok Station (Circular) | 8 – 20                 |
| KMB 98B      | Hang Hau (North) (Tseung Kwan O Hospital) – Kwun Tong<br>Station               | AM Peak                |
| KMB 213B     | On Tai – Ting Fu Street (Circular)                                             | AM Peak                |
| KMB 215X     | Lam Tin (Kwong Tin Estate) – Kowloon Station                                   | 5 – 20                 |
| KMB 234C     | Sham Tseng – Kwun Tong Station                                                 | AM, PM Peak            |
|              |                                                                                |                        |
| KMB 234D     | Tsing Lung Tau – Kwun Tong Station                                             | AM, PM Peak            |
| KMB 252X     | Handsome Court – Lam Tin Station                                               | AM, PM Peak            |
| KMB 258A     | Hung Shui Kiu (Hung Fuk Estate) – Lam Tin Station                              | AM Peak                |
| KMB 258D     | Tuen Mun (Po Tin Estate) – Lam Tin Station                                     | 5 – 20                 |
| KMB 258P     | Hung Shui Kiu (Hung Fuk Estate) – Lam Tin Station                              | AM, PM Peak            |
| KMB 258S     | Tuen Mun (Shan King Estate) – Lam Tin Station                                  | AM Peak                |
| KMB 258X     | Tuen Mun (Po Tin Estate) – Kwun Tong Ferry                                     | AM, PM Peak            |
| KMB 259D     | Tuen Mun (Lung Mun Oasis) – Lei Yue Mun Estate                                 | 7 – 25                 |
| KMB 259X     | Lung Mun Oasis – Kwun Tong Ferry                                               | AM, PM Peak            |
| KMB 267X     | Tuen Mun (Siu Hong Court) – Lam Tin Station                                    | AM, PM Peak            |
| KMB 268A     | Long Ping Estate – Kwun Tong Ferry                                             | AM, PM Peak            |
| KMB 268C     | Long Ping Station – Kwun Tong Ferry                                            | 5 – 20                 |
| KMB 268P     | Ma Wang Road (Shan Shui House) – Kwun Tong Ferry                               |                        |
|              | Kwun Tong Ferry – Long Ping Station                                            | AM, PM Peak            |
| KMB 269C     | Tin Shui Wai Town Centre – Kwun Tong Ferry                                     | 5 – 20                 |
| KMB 269S     | Tin Shui Wai Town Centre – Kwun Tong Ferry                                     | AM, PM Peak            |
| KMB 274X     | Kwun Tong Ferry – Tai Po Central                                               | PM Peak                |
| KMB 277A     | Sha Tau Kok – Lam Tin Station                                                  | AM, PM Peak            |
| KMB 277E     | Lam Tin Station – Sheung Shui (Tin Ping)                                       | 15 – 30                |
| KMB 277P     | Sheung Shui (Tin Ping) – Lam Tin Station                                       | AM, PM Peak            |
| KMB 277X     | Fanling (Luen Wo Hui) – Lam Tin Station                                        | 5 – 30                 |
| KMB 296A     | Sheung Tak – Ngau Tau Kok Station (Circular)                                   | 7 – 15                 |
| KMB 296C     | Sheung Tak – Cheung Sha Wan (Hoi Ying Estate)                                  | 15 – 30                |
| KMB N3D      | Kwun Tong (Yue Man Square) – Tsz Wan Shan (Central)                            | Overnight              |
| KMB N293     | Sheung Yak – Mong Kok East Station                                             | Overnight              |
| KMB T74      | Tai Po (Tai Wo) – Kwun Tong Ferry                                              | AM Peak                |
| KMB T277     |                                                                                |                        |
|              | Sheung Shui – Lam Tin Station                                                  | AM, PM Peak            |
| KMB W2       | Jordan (West Kowloon Station) – Kwun Tong (Circular)                           | 30 - 60                |
| KMB X42C     | Tsing Yi (Cheung Hang Estate) – Yau Tong                                       | 7-30                   |
| KMB X42P     | Tsing Yi (Cheung On Estate) – Lam Tin Station                                  | AM Peak                |
| KMB X89D     | Nai Chung – Kwun Tong Ferry                                                    | AM, PM Peak            |
| KMB/CTB 101  | Kwun Tong (Yue Man Square) – Kennedy Town                                      | 3 20                   |
| KMB/CTB 101X | Kwun Tong (Yue Man Square) – Kennedy Town                                      | AM, PM Peak            |
| KMB/CTB 606  | Siu Sai Wan (Island Resort) – Choi Wan (Fung Shing Street)                     | 20 – 25                |
| KMB/CTB 606A | Shau Kei Wan (Yiu Tung Estate) – Choi Wan (Fung Shing<br>Street)               | AM Peak                |
| KMB/CTB 606X | Siu Sai Wan (Island Resort) – Kowloon Bay                                      | AM, PM Peak            |
| n            | · · · · · ·                                                                    | •                      |

| Route                                                            | Routing                                                   | Frequency     |  |  |  |
|------------------------------------------------------------------|-----------------------------------------------------------|---------------|--|--|--|
|                                                                  |                                                           | (minutes)     |  |  |  |
| KMB/CTB 619                                                      | Shun Lee – Central (Macau Ferry)                          | 4 – 25        |  |  |  |
| KMB/CTB 619P                                                     | Shun Lee – Central (Macau Ferry)                          | AM Peak       |  |  |  |
| KMB/CTB 641                                                      | Kai Tak (Kai Ching Estate) – Central (Macau Ferry)        | AM, PM Peak   |  |  |  |
| KMB/CTB 671                                                      | Diamond Hill Station – Ap Lei Chau Lee Lok Street         | 15 – 45       |  |  |  |
| KMB/CTB 671X                                                     | Ap Lei Chau Lee Lok Street – Diamond Hill Station         | AM Peak       |  |  |  |
| KMB/CTB N619                                                     | Shun Lee – Central (Macau Ferry)                          | Overnight     |  |  |  |
| CTB 55                                                           | Ching Tin and Wo Tin – Kwun Tong Ferry Pier               | AM, PM Peak   |  |  |  |
| CTB 61R                                                          | Lam Tin Station – City One Shatin                         | 12 – 20       |  |  |  |
| CTB 78C                                                          | Queen's Hill Fanling – Kai Tak                            | AM, PM Peak   |  |  |  |
| CTB 78P                                                          | Queen's Hill Fanling – Kwun Tong                          | AM Peak       |  |  |  |
| CTB 78X                                                          | Queen's Hill Fanling – Kai Tak                            | 30 - 60       |  |  |  |
| CTB 796S                                                         | Tseung Kwan O Station – Ngau Tau Kok Station (Circular)   | Overnight     |  |  |  |
| CTB 7903                                                         | Lohas Park – Kowloon Bay (Circular)                       | 15 – 20       |  |  |  |
| CTB A22                                                          | Lam Tin Station – Airport                                 | 15 – 20       |  |  |  |
| CTB A22<br>CTB A29                                               | Tseung Kwan O (Po Lam) – Airport / HZMB Hong Kong Port    | 20 - 60       |  |  |  |
|                                                                  |                                                           |               |  |  |  |
| CTB E22                                                          | Lam Tin (North) – AsiaWorld-Expo                          | 8 - 20        |  |  |  |
| CTB E22A                                                         | Tseung Kwan O (Hong Sing Garden) – AsiaWorld-Expo         | 25 – 30       |  |  |  |
| CTB E22C                                                         | Tiu Keng Leng Station – Aircraft Maintenance Area         | AM, PM Peak   |  |  |  |
| CTB E22S                                                         | Tung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)     | AM, PM Peak   |  |  |  |
| CTB E22X                                                         | Yau Tong – AsiaWorld-Expo                                 | AM, PM Peak   |  |  |  |
| CTB N29                                                          | Tseung Kwan O (Hong Sing Garden) – Tung Chung Station     | Overnight     |  |  |  |
| CTB NA29                                                         | Tseung Kwan O (Po Lam) – Airport / HZMB Hong Kong Port    | Overnight     |  |  |  |
| GMB 22A                                                          | Lok Wah Estate – Cheung Yip Street / Kwun Tong Ferry Pier | 20            |  |  |  |
|                                                                  | (Circular)                                                |               |  |  |  |
| GMB 35                                                           | Choi Ha Estate – Hong Lee Court                           | 5 – 7         |  |  |  |
| GMB 36A                                                          | Crocodile Hill (Hong Lee Court) To Yue Man Square Public  | 4 – 5         |  |  |  |
|                                                                  | Transport Interchange (Circular)                          |               |  |  |  |
| GMB 56                                                           | Richland Gardens – Kwun Tong (Shung Yan St)               | 10 20         |  |  |  |
| GMB 62S                                                          | Kwong Tin Estate – Tsim Sha Tsui (Haiphong Road)          | Overnight     |  |  |  |
| GMB 68                                                           | Choi Wan Estate – Kowloon Bay (Enterprise Square)         | 8 12          |  |  |  |
| GMB 86                                                           | Kai Tak Cruise Terminal – Telford Gardens                 | 8 20          |  |  |  |
| GMB 90A                                                          | Yau Lai Estate – HK Children's Hospital                   | 20<br>15 – 20 |  |  |  |
| GMB 90B                                                          | Sau Mau Ping Estate Phase 5 – HK Children's Hospital      |               |  |  |  |
| GMB 102                                                          | 2 Hang Hau Station – San Po Kong (Hong Keung Street)      |               |  |  |  |
| GMB 102B                                                         | Hang Hau (Yuk Ming Court) – Choi Hung                     | 12 – 20       |  |  |  |
| GMB 102S                                                         | Hang Hau Station – San Po Kong (Hong Keung Street)        | Overnight     |  |  |  |
| GMB 104                                                          | The HK University of Science and Technology – Ngau Tau    | 12 – 25       |  |  |  |
|                                                                  | Kok Station                                               |               |  |  |  |
| GMB 106                                                          | Tseung Kwan O (Po Lam) – Kowloon Bay (Enterprise Square)  | 7 – 25        |  |  |  |
| GMB 501S                                                         | Sheung Shui Station – Kwun Tong (Yue Man Square)          | Overnight     |  |  |  |
| Note: KMB – Kowloon Motor Bus CTB – City Bus GMB – Green Minibus |                                                           |               |  |  |  |

 Note:
 KMB – Kowloon Motor Bus
 CTB – City Bus
 GMB – Green Minibus

#### 3.0 THE PROPOSED DEVELOPMENT

#### Development Parameters

- 3.1 The Proposed Development has a RCHE with: (i) no less than 302, but not more than 557 beds ("RCHE within the Proposed Development"), and (ii) a Hotel with 200 guest rooms ("Hotel within the Proposed Development").
- 3.2 The internal transport facilities and traffic assessment below assume that the RCHE within the Proposed Development has 557 beds, and the Hotel within the Proposed Development has 200 guest rooms.

#### Provision of Internal Transport Facilities

#### (a) RCHE within the Proposed Development

- 3.3 The HKPSG has no recommendation on the provision of internal transport facilities for RCHE, hence, the provision for the RCHE within the Proposed Development, is provided based on the operational needs and also with reference to similar type RCHE in Kwun Tong.
- 3.4 Provision of internal transport facilities for RCHE within the Proposed Development are shown in Table 3.1.

| WITHIN THE PROPOSED DEVELOPMENT                                                     |                                                                       |  |  |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| Item                                                                                | Proposed Provision                                                    |  |  |  |
| Car Parking                                                                         | 8 nos. car parking spaces provided based on operational needs:        |  |  |  |
| Space                                                                               | (i) 5 parking spaces @ 5m (L) x 2.5m (W) x 2.4m (H) for senior        |  |  |  |
| management staff of RCHE;                                                           |                                                                       |  |  |  |
|                                                                                     | (ii) 3 parking spaces for RCHE visitors, including                    |  |  |  |
|                                                                                     | - 2 nos. @ 5m (L) x 2.5m (W) x 2.4m (H) ; and                         |  |  |  |
|                                                                                     | - 1 no accessible car parking space @ 5m (L) x 3.5m (W) x 2.4m (H)    |  |  |  |
| Motorcycle <u>2 nos.</u> motorcycle parking spaces @ 2.4m (L) x 1.0m (W) x 2.4m (H) |                                                                       |  |  |  |
| Parking Space                                                                       | provided                                                              |  |  |  |
| Loading /                                                                           | 1 no. Heavy Goods Vehicles loading / unloading bay @ 11.0m (L) x 3.5m |  |  |  |
| Unloading Bay (W) x 4.7m (H) are provided for shared use, i.e., for RCHE and Hotel  |                                                                       |  |  |  |
| Ambulance lay-by                                                                    | 1 no. ambulance lay-by @ 9.0m (L) x 3.0m (W) x 3.6m (H) shared use by |  |  |  |
|                                                                                     | ambulance and mini-coach is provided based on the operational needs.  |  |  |  |

TABLE 3.1PROVISION OF INTERNAL TRANSPORT FACILITIES FOR RCHEWITHIN THE PROPOSED DEVELOPMENT

- 3.5 Table 3.1 shows the provision of 8 car parking spaces, 2 motorcycle parking spaces and 1 ambulance lay-by shared use by ambulance and mini-coach. In addition, 1 HGV loading/unloading bay is also provided which is for shared used with the Hotel within the Proposed Development.
- 3.6 Most RCHEs in Hong Kong are located within buildings where there are other uses, and access to the RCHE is shared with other uses. Therefore, it is not possible to distinguish traffic generated by the RCHE from other uses for these type of RCHEs, i.e., those located within in a multi-use building. Nevertheless, several RCHEs located in a single use building were identified for the conduct of traffic surveys, and the surveyed RCHEs have similar characteristic as the Proposed Development, in terms of: (i) location; (ii) scale; (iii) accessibility to Public Transport Services, and (iv) availability of internal transport facilities.

3.7 The utilisation surveys were conducted from 0800 – 1959 hours on a weekday. Details of the surveyed RCHE are given in Table 3.2, and the survey results are presented in Table 3.3.

| Location of<br>Elderly Home          | No. of<br>Beds                                                | Accessibility to Public Transport Services                                                                                                                                                                              |     |
|--------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (A) 8 Kung<br>Lok Road,<br>Kwun Tong | Lok Road, convenient with numerous bus and GMB routes operate |                                                                                                                                                                                                                         | Yes |
| Lok Road, conve<br>Kwun Tong in the  |                                                               | Access to public transport services from this RCHE is<br>convenient with numerous bus and GMB routes operate<br>in the vicinity. The nearest MTR Ngau Tau Kok Station is<br>located within 500m from this elderly home. | Yes |

#### TABLE 3.3 SURVEY RESULTS OF THE 2 SURVEYED RCHES

| Time Period                                | Maximum Number of Vehicles Observed at any time |                        |                     |            |           |
|--------------------------------------------|-------------------------------------------------|------------------------|---------------------|------------|-----------|
| (hours)                                    |                                                 |                        | Medium /            | Mini coach | Ambulance |
| · · ·                                      | and taxi                                        | vehicle <sup>(1)</sup> | heavy goods vehicle |            |           |
|                                            |                                                 |                        | <i>y</i> <u>y</u>   | 1          | 1         |
| (A) 8 Kung Lok                             | Road, Kwun To                                   | ng (266 beds)          |                     |            |           |
| 0800 – 0859                                | 1                                               | 0                      | 0                   | 0          | 0         |
| 0900 – 0959                                | 0                                               | 1                      | 0                   | 0          | 0         |
| 1000 – 1059                                | 0                                               | 0                      | 0                   | 1          | 0         |
| 1100 – 1159                                | 0                                               | 0                      | 0                   | 0          | 0         |
| 1200 – 1259                                | 0                                               | 1                      | 0                   | 0          | 0         |
| 1300 – 1359                                | 0                                               | 1                      | 0                   | 0          | 0         |
| 1400 – 1459                                | 0                                               | 0                      | 0                   | 1          | 0         |
| 1500 – 1559                                | 0                                               | 0                      | 0                   | 0          | 1         |
| 1600 – 1659                                | 0                                               | 0                      | 0                   | 1          | 0         |
| 1700 – 1759                                | 0                                               | 0                      | 0                   | 1          | 0         |
| 1800 – 1859                                | 1                                               | 0                      | 0                   | 0          | 0         |
| 1900 – 1959                                | 0                                               | 0                      | 0                   | 0          | 0         |
| Maximum                                    | <u>1</u>                                        | <u>1</u>               | <u>0</u>            | <u>1</u>   | <u>1</u>  |
| (0800 – 1959)                              |                                                 |                        |                     |            |           |
| (B) 88 Kung Lok Road, Kwun Tong (226 beds) |                                                 |                        |                     |            |           |
| 0800 - 0859                                | 0                                               | 0                      | 0                   | 0          | 0         |
| 0900 - 0959                                | 0                                               | 1                      | 0                   | 0          | 0         |
| 1000 – 1059                                | 0                                               | 0                      | 0                   | 1          | 0         |
| 1100 – 1159                                | 0                                               | 0                      | 0                   | 1          | 0         |
| 1200 – 1259                                | 0                                               | 1                      | 0                   | 0          | 0         |
| 1300 – 1359                                | 0                                               | 0                      | 0                   | 1          | 0         |
| 1400 – 1459                                | 1                                               | 0                      | 0                   | 0          | 0         |
| 1500 – 1559                                | 1                                               | 0                      | 0                   | 0          | 0         |
| 1600 – 1659                                | 1                                               | 0                      | 0                   | 0          | 0         |
| 1700 – 1759                                | 1                                               | 0                      | 0                   | 0          | 0         |
| 1800 – 1859                                | 0                                               | 0                      | 0                   | 0          | 0         |
| 1900 – 1959                                | 0                                               | 0                      | 0                   | 0          | 0         |
| Maximum<br>(0800 – 1959)                   | <u>1</u>                                        | <u>1</u>               | <u>0</u>            | <u>1</u>   | <u>0</u>  |

Note: <sup>(1)</sup> including goods van, light goods vehicle

3.8 Table 3.3 shows the number of vehicles observed within the same hour but these vehicles are not present at the same time. For example, at Location (A) 8

Kung Lok Road, Kwun Tong, during the period 0800 – 0859 hours, the Private car and taxi were not observed at the same time as the Light goods vehicle.

3.9 Table 3.3 also shows the following:

#### (ai) Private car parking spaces

- 3.10 The maximum number of private car and taxi observed at both surveyed RCHEs at the same time was 1. Based on this rate, the RCHE within the Proposed Development is estimated to generate a maximum of 3 vehicles at the same time only. [Calculation: 1 vehicle / 226 beds x 557 beds = 2.46, say, 3]
- 3.11 Taxis stop momentarily to pick-up and drop-off. Therefore, taxis can use the private car parking spaces PC-09 or PC-10 on G/F as shown in Figure 3.1.
- 3.12 Hence, the provision of 8 car parking spaces is more than sufficient to serve the RCHE within the Proposed Development.

#### (aii) Goods Vehicle Loading / Unloading Bay

3.13 As shown in Table 3.3, no more than 1 goods vehicle was observed at any one time. Hence, the provision of 1 HGV loading/unloading bay for shared use by RCHE and Hotel is sufficient to serve the RCHE within the Proposed Development.

#### (aiii) Layby for shared use by ambulance and mini-coach

3.14 As shown in Table 3.3, no ambulance and mini-coach arrived at the same time. Hence, 1 ambulance layby which is for shared use with mini-coach is sufficient to serve the RCHE within the Proposed Development.

#### (b) Hotel within the Proposed Development

3.15 The internal transport facilities for Hotel within the Proposed Development are provided in accordance to the recommendations of the HKPSG, and are presented in Table 3.4.

# TABLE 3.4COMPARISON OF THE HKPSG RECOMMENDATIONS AND<br/>PROPOSED INTERNAL TRANSPORT FACILITIES FOR HOTEL<br/>WITHIN THE PROPOSED DEVELOPMENT

| HKPSG Recommendation for a Hotel with 200 guest rooms                                                                                         | Proposed Provision                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Car Parking Space                                                                                                                             |                                                                                               |
| 1 car parking space per 100 rooms.<br>200/100 = 2 nos.                                                                                        | $\frac{2 \text{ nos. } @ 5m (L) \times 2.5m (W) \times 2.4m}{(H) = HKPSG recommendation}$     |
| Motorcycle Parking Space                                                                                                                      |                                                                                               |
| 5 to 10% of the total provision for private cars<br>Minimum = $2 \times 5\% = 0.1$ , say 1 no.<br>Maximum = $2 \times 10\% = 0.2$ , say 1 no. | $\frac{1 \text{ no. } @ 2.4 \text{m (L) x 1m (W) x 2.4m (H)}}{= \text{HKPSG recommendation}}$ |
| Taxi and Private Car Layby                                                                                                                    |                                                                                               |
| Minimum 2 lay-by for taxi and private cars for $\leq$ 299 rooms $=$ 2 nos.                                                                    | $\frac{2 \text{ nos. } @ 5m (L) x 2.5m (W) x 2.4m (H)}{= HKPSG recommendation}$               |
| Single-Deck Tour Bus Layby                                                                                                                    |                                                                                               |

| HKPSG Recommendation for a Hotel with 200 guest rooms      | Proposed Provision                          |
|------------------------------------------------------------|---------------------------------------------|
| Minimum 1 lay-by for single-deck tour buses for $\leq$ 299 | <u>1 no.</u> @ 12m (L) x 3.5m (W) x 3.8m    |
| rooms <u>= 1 no.</u>                                       | (H) <u>= HKPSG recommendation</u>           |
| Goods Vehicle Loading / Unloading Bay                      |                                             |
| 0.5 - 1 goods vehicle bay per 100 rooms                    | <u>1 no.</u> @ 7m (L) x 3.5m (W) x 3.6m (H) |
| Minimum = $200 / 100 \times 0.5 = 1 \text{ no.}$           | for Light Goods Vehicles                    |
| Maximum = $200 / 100 \times 1 = 2$ nos.                    | = HKPSG recommendation                      |

3.16 For ease of reference, the internal transport facilities for the Proposed Development presented in Tables 3.1 and 3.4, are summarised in Table 3.5.

### TABLE 3.5SUMMARY OF INTERNAL TRANSPORT FACILITIES PROVIDED<br/>FOR THE PROPOSED DEVELOPMENT

| Item                                      | Use                    | Proposed Provision |
|-------------------------------------------|------------------------|--------------------|
| Car Parking Space                         | RCHE                   | 8                  |
|                                           | Hotel                  | 2                  |
|                                           | Total                  | <u>10</u>          |
| Ambulance Parking Space                   | RCHE                   | 1                  |
| Motorcycle Parking Space                  | Hotel                  | 1                  |
|                                           | RCHE                   | 2                  |
|                                           | Total                  | 3                  |
| Taxi and Private Car Layby                | Hotel                  | 2                  |
| Single-Deck Tour Bus Layby                | Hotel                  | 1                  |
| LGV Goods Vehicle Loading / Unloading Bay | Hotel                  | 1                  |
| HGV Goods Vehicle Loading / Unloading     | Shared use by RCHE and | 1                  |
| Вау                                       | Hotel                  |                    |
|                                           | Total                  | 2                  |

Reasons for Deviation from the HKPSG Maximum Recommendation for Hotel within the Proposed Development

#### (a) Site Constraint

- 3.17 The only internal transport facility for the Hotel within the Proposed Development, which deviates from the HKPSG maximum recommendation is the provision of 1 goods vehicles loading / unloading bay, instead of 2. However, a second goods vehicle loading / unloading bay is provided, which is for shared use with the RCHE within the Proposed Development.
- 3.18 The provision of an additional goods vehicle loading / unloading bay on the ground floor was considered, but not found to be possible due site constraint, and is explained as follows:
  - The Outline Development Plan no. D/K14A/1H require setback along Wai Yip Street of 2.3m, and (ii) 1.5m setback and 1.5m non-building area along the service lane and;
  - (2) With the above setback requirements, the length of the subject site (i.e. measured from Wai Yip Street to the service lane) which is only 21.3m is further reduced to only 17.5m (reduction of length of 17.8%, which is substantial).

3.19 After accommodating the essential facilities such as, structural columns, staircases, escalators, lift lobby and vehicle ramp to the basement car park, etc, the provision of another goods vehicle loading / unloading bay is not possible. The Authorised Person has used his utmost effort to ensure the layout is arranged and utilised in good order.

#### (b) Limited Goods Vehicles Generated

3.20 Goods vehicles generated are mostly related to room cleaning services, and the deliveries of toiletry and beverages. The expected goods vehicle trip generated for the Hotel within the Proposed Development is summarised in Table 3.6.

### TABLE 3.6GOODS VEHICLE TRIP GENERATION FOR HOTEL WITHIN THE<br/>PROPOSED DEVELOPMENT

| Item                  | Activity                         | Expected goods vehicles generated |
|-----------------------|----------------------------------|-----------------------------------|
| Room cleaning service | Replenish cleaning material      | 4 trips per month                 |
| Toiletry              | Restock toiletries, eg, shampoo, | 1 trip per month                  |
|                       | lotion, etc.                     |                                   |
| Beverages             | Deliver distilled water          | 8 trips per month                 |
|                       | Total goods vehicle trips =      | 13 trips per month                |

3.21 Table 3.6 shows that the Hotel within the Proposed Development is expected to generate 13 goods vehicle trips per month, or 1 vehicle trip every 2.3 days, which is low. Hence, the provision of 1 LGV goods vehicle loading/unloading bay and 1 HGV loading/unloading bay which is for shared use by RCHE and Hotel, is sufficient to serve the loading / unloading activities of the Hotel.

#### Layout Plans

- 3.22 The carpark layout plans for G/F and B1/F are found in Figures 3.1 3.2. Similar to the Approved S16 Planning Application (TPB ref: A/K14/809), two vehicular access points are provided for the Proposed Development, and these are located at:
  - (i) The service lane at the northern side of the Proposed Development
  - (ii) Wai Yip Street

#### Swept Path Analysis

3.23 The CAD-based swept path analysis program, Autodesk Vehicle Tracking, was used to check the ease of vehicle manoeuvring, and the swept path drawings of vehicle manoeuvring on the parking levels are found in in Appendix 2. Vehicles are found to have no manoeuvring problems and all vehicles could enter and leave the spaces with ease.

#### Traffic Management Plan

- 3.24 Loading / unloading related to goods deliveries will be undertaken during the non-peak hours. The Management Office will ensure good maintenance of the turntable and should there the turntable fail to operate, the Management Office will immediately contact the turntable maintenance company to repair.
- 3.25 If necessary, the Management Office will stagger the delivery of goods so that only 1 goods vehicle will be present at the same time.

#### 4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Development is expected to be completed by 2029, and the design year adopted for the capacity analysis is 2032, i.e. 3 years after the completion of the development.

#### Traffic Forecast

4.2 The 2032 traffic flows used for the junction analysis are produced with reference to the (i) 2031 traffic flows from the Base District Traffic Model ("BDTM"); (ii) estimated traffic growth from 2031 to 2032; (iii) the planned developments in the vicinity of the Proposed Development, and (iv) additional traffic generated by the Proposed Development.

#### Estimated Traffic Growth Rate from 2031 to 2032

4.3 Reference is made to the 2019 – based Territorial Population and Employment Data Matrix ("TPEDM") data produced by Planning Department for Kwun Tong District, which are for 2019, 2026 and 2031 and are presented in Table 4.1.

| TABLE 4.1 | 2019-BA | SED TPEDI         | M DATA | PRODUCED    | ΒY | PLANNING |
|-----------|---------|-------------------|--------|-------------|----|----------|
|           | DEPARTI | MENT FOR <b>k</b> | WUN TO | NG DISTRICT |    |          |
|           |         |                   |        |             |    |          |

| Item            | TPEDM Estimation / Projection                          |                           |           |  |
|-----------------|--------------------------------------------------------|---------------------------|-----------|--|
|                 | 2019 2026                                              |                           |           |  |
| Population      | 693,900                                                | 769,400                   | 741,300   |  |
| Employment      | 395,350                                                | 410,550                   | 408,250   |  |
| Total           | <u>1,089,250</u>                                       | <u>1,179,950</u>          | 1,149,550 |  |
| Average Growth% | From 2019 to 2026: +1.15%<br>From 2019 to 2031: +0.45% | From 2026 to 2031: -0.52% | N/A       |  |

4.4 Table 4.1 shows that the highest average annual growth rate is 1.15%. In view that there is no estimation beyond 2031 and to err on the high side, the growth rate of 1.15% per annum is adopted for the traffic growth between 2031 and 2032.

Planned Developments in the Vicinity of the Proposed Development

4.5 The planned developments included in the 2032 reference traffic flows are presented in Table 4.2, and the locations of planned developments are shown in Figure 4.1.

### TABLE 4.2PLANNEDDEVELOPMENTSINTHEVICINITYOFTHEPROPOSEDDEVELOPMENT

| Site | Planning<br>Application No. /<br>Plan No. | Address            | Use        | Development<br>Parameters<br>(Approx.) |
|------|-------------------------------------------|--------------------|------------|----------------------------------------|
| 1    | A/K14/763                                 | 350 Kwun Tong Road | Commercial | GFA=25,658m <sup>2</sup>               |
| 2    | A/K14/766                                 | 41 King Yip Street | Commercial | GFA=30,576m <sup>2</sup>               |
| 3    | A/K14/771                                 | 32 Hung To Road    | Commercial | GFA=13,122m <sup>2</sup>               |
| 4    | A/K14/773                                 | 82 Hung To Road    | Industrial | GFA=13,378m <sup>2</sup>               |
| 5    | A/K14/774                                 | 7 Lai Yip Street   | Commercial | GFA=14,775m <sup>2</sup>               |
| 6    | A/K14/775                                 | 132 Wai Yip Street | Commercial | GFA=6,021m <sup>2</sup>                |
| 7    | A/K14/777                                 | 71 How Ming Street | Office     | GFA=18,312m <sup>2</sup>               |
| 8    | A/K14/778                                 | 203 Wai Yip Street | Industrial | GFA=13,479m <sup>2</sup>               |

| Site | Planning<br>Application No. /<br>Plan No.                                                                                            | Address                                        | Use        | Development<br>Parameters<br>(Approx.)                                         |
|------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------|--------------------------------------------------------------------------------|
| 9    | A/K14/782                                                                                                                            | 4 Tai Yip Street                               | Retail     | GFA=8,027m <sup>2</sup>                                                        |
| 10   | A/K14/787                                                                                                                            | 33 Hung To Road                                | Industrial | GFA=13,830m <sup>2</sup>                                                       |
| 11   | A/K14/796                                                                                                                            | 28A Hung To Road                               | Hotel      | No. of rooms=89                                                                |
| 12   | A/K14/804                                                                                                                            | 334 -336 and 338 Kwun<br>Tong Road             | Commercial | GFA=23,211m <sup>2</sup>                                                       |
| 13   | A/K14/806                                                                                                                            | 11 Lai Yip Street                              | Office     | GFA=15,051m <sup>2</sup>                                                       |
| 14   | A/K14/807                                                                                                                            | Kun Tong Inland Lots 1 S.A ,<br>1 RP, 3 and 15 | Commercial | GFA=66,890m <sup>2</sup>                                                       |
| 15   | A/K14/808                                                                                                                            | 201 Wai Yip Street                             | Commercial | GFA=13,478m <sup>2</sup>                                                       |
| 16   | A/K14/809                                                                                                                            | 1 Tai Yip Street and 111 Wai<br>Yip Street     | Commercial | GFA=13,349m <sup>2</sup>                                                       |
| 17   | A/K14/810                                                                                                                            | 5 Lai Yip Street                               | Commercial | GFA=14,788m <sup>2</sup>                                                       |
| 18   | A/K14/820                                                                                                                            | 73 – 75 Hung To Road                           | Commercial | GFA=26,757m <sup>2</sup>                                                       |
| 19   | A/K14/822                                                                                                                            | 25 Tai Yip Street, Kwun Tong                   | Commercial | $GFA = 5,572m^2$                                                               |
| 20   | A/K14/819 &<br>S/K14S/URA1/3<br>Urban Renewal<br>Authority's (URA)<br>latest 'Vertical City'<br>scheme of a mixed<br>use development | Areas 4 and 5 of Kwun Tong<br>Town Centre      |            | GFA = 65,000m <sup>2</sup> ,<br>127,619m <sup>2</sup> and<br>601m <sup>2</sup> |
| 21   | N/A                                                                                                                                  | EKEO Lai Yip Street<br>Development             | Commercial | GFA=23,000m <sup>2</sup>                                                       |
| 22   | N/A                                                                                                                                  | Kwun Tong Action Area                          | Commercial | GFA=89,350m <sup>2</sup>                                                       |
| 23   | N/A                                                                                                                                  | Kowloon Bay Action Area                        | Commercial | GFA=500,000m <sup>2</sup>                                                      |

- 4.6 The infrastructure and road network included in the BDTM are as follows:
  - Kai Tak Development
  - Tseung Kwan O Lam Tin Tunnel
  - Central Kowloon Route
  - Trunk Road T2 between Central Kowloon Route and Tseung Kwan O Lam Tin Tunnel

#### Traffic Generated by the Proposed Development

- 4.7 In view that the TPDM does not provide trip generation rates for RCHE, reference is made to the traffic generation of similar elderly homes, and the surveyed RCHE are found in Table 3.2.
- 4.8 As for Hotel, reference is also made to surveyed hotels which are of similar class, number of hotel rooms and traffic characteristics, i.e. proximity to the MTR and road-based public transport services. The surveyed hotels are:
  - (i) 254-room Nina Hotel Kowloon East at 38 Chong Yip St, Kwun Tong
  - (ii) 298-room Tuen Mun Pentahotel at 6 Tsun Wen Road, Tuen Mun
- 4.9 The surveyed hotel trip generation rates are found to be lower than the lower limit of rates for Hotel found in the TPDM. Hence, to be conservative, the lower limit of trip generation rates taken from TPDM is adopted to estimate the traffic generation associated to the Hotel within the Proposed Development. The adopted trip generation rates and the calculated traffic generation associated with the Proposed Development are presented in Table 4.3.

#### TABLE 4.3TRAFFIC GENERATION OF THE PROPOSED DEVELOPMENT

| Item                                                  | Item AM Peak Hour |           | PM Peak Hour |        |        |       |
|-------------------------------------------------------|-------------------|-----------|--------------|--------|--------|-------|
|                                                       | In                | Out       | 2-way        | In     | Out    | 2-way |
| Trip Generation Rates for RCHE (pcu/hour/bed)         |                   |           |              |        |        |       |
| RCHE                                                  | 0.0155            | 0.0155    | NA           | 0.0133 | 0.0133 | NA    |
| Trip Generation Rates for hotel (pcu/hour,            | 5                 | · /       |              |        |        |       |
| Hotel <sup>(1)</sup>                                  | 0.0832            | 0.0843    | NA           | 0.0908 | 0.0883 | NA    |
| Traffic Generation of Proposed Development (pcu/hour) |                   |           |              |        |        |       |
| RCHE: 557 beds [a]                                    | 9                 | 9         | 18           | 8      | 8      | 16    |
| Hotel: 200 guest rooms [b]                            | 17                | 17        | 34           | 19     | 18     | 37    |
| Total [a] + [b]                                       | <u>26</u>         | <u>26</u> | <u>52</u>    | 27     | 26     | 53    |

Note: <sup>(1)</sup> lower limit of rates taken from TPDM

4.10 Table 4.3 shows the Proposed Development generates 52 and 53 more pcu (2way) during the AM and PM peak hours respectively.

Comparison of Traffic Generation between the Approved S16 Scheme (TPB ref: A/K14/780) and the Proposed Development

- 4.11 The traffic generated by the Approved S16 Scheme (TPB ref: A/K14/780) is compared with the Proposed Development and is presented in Table 4.4.
  - TABLE 4.4COMPARISONOFTRAFFICGENERATIONBETWEENTHEAPPROVEDS16SCHEME(TPBREF:A/K14/780)ANDTHEPROPOSEDDEVELOPMENT

|                                              | -          | T (C)                   | 0       | . ,      | 4      | <b>`</b> |
|----------------------------------------------|------------|-------------------------|---------|----------|--------|----------|
| Scheme                                       |            | Iraffic                 | Generat | tion (po | cu/hou | r)       |
|                                              |            | AM Peak Hour PM Peak Ho |         |          | Hour   |          |
|                                              | In         | Out                     | 2-way   | In       | Out    | 2-way    |
| Approved S16 Scheme (TPB ref: A/K14/780) [A] | 42         | 30                      | 72      | 21       | 28     | 49       |
| Proposed Development [B]                     | 26         | 26                      | 52      | 27       | 26     | 53       |
| Difference [B] – [A]                         | <u>-16</u> | -4                      | -20     | +6       | -2     | +4       |

4.12 Table 4.4 shows that compared with the Approved S16 Scheme (TPB ref: A/K14/780), the Proposed Development generates 20 pcu (2-way) less and 4 pcu more during the AM and PM peak hours respectively. It can be concluded from traffic generation aspect the Proposed Development is a better-off scheme compared to the Approved S16 Scheme (TPB ref: A/K14/780).

Planned Junction Improvement Schemes

4.13 The planned junction improvement schemes found in the vicinity of the Subject Site are summarized in Table 4.5 and shown in Appendix 3.

| TABLE 4.5 | PLANNED TRAFFIC IMPROVEMENT SCHEMES IN THE VICINITY |
|-----------|-----------------------------------------------------|
|           | OF THE PROPOSED DEVELOPMENT                         |

| Junction Description of Work |                 |                                | Project Proponent | Estimated<br>Completion Year |
|------------------------------|-----------------|--------------------------------|-------------------|------------------------------|
| J1                           |                 |                                | Kowloon Bay       | Before 2032                  |
|                              | Shun Yip Street | changed at Shun Yip Street     | Action Area -     |                              |
|                              |                 | Westbound and Eastbound        | Feasibility Study |                              |
| J7                           | Wai Yip Street  | The road alignment is adjusted | Kowloon Bay       |                              |

| Junction Description |                  | Description of Work              | Project Proponent  | Estimated<br>Completion Year |
|----------------------|------------------|----------------------------------|--------------------|------------------------------|
|                      | / Lai Yip Street | at Lai Yip Street Northbound     | Action Area –      |                              |
|                      |                  |                                  | Feasibility Study  |                              |
| J8                   | Kwun Tong        |                                  | Kwun Tong Action   |                              |
|                      | Road / Lai Yip   | at Lai Yip Street Northbound     | Area – Feasibility |                              |
|                      | Street           | reet                             |                    |                              |
| J9                   | Hoi Bun Road     | A new pedestrian crossing        | Technical study on |                              |
|                      | / Lai Yip Street | across Hoi Bun Road              | the Lai Yip Street |                              |
|                      |                  | Eastbound is added and           | site in Kowloon    |                              |
|                      |                  | existing staggered pedestrian    | East               |                              |
|                      |                  | crossing at Lai Yip Street to be |                    |                              |
|                      |                  | converted to straight crossing   |                    |                              |

#### 2032 Traffic Flows

4.14 Year 2032 traffic flows for the following cases are derived:

| 2032 without the<br>Proposed Development<br>[A] | = 2031 traffic flows derived with reference to<br>BDTM + estimated total growth from 2031 to<br>2032 + Traffic generated by the planned<br>developments in the vicinity of the Proposed<br>Development |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2032 with the Proposed<br>Development [B]       | = [A] + traffic generated by the Proposed Development (Table 4.3)                                                                                                                                      |

4.15 The 2032 peak hour traffic flows for the cases without and with the Proposed Development, are shown in Figures 4.2 - 4.3, respectively. The ingress/egress vehicular routings to/from the Proposed Development via Wai Yip Street and the service lane at the northern side of the Proposed Development are shown in Figures 4.4 - 4.5.

#### 2032 Junction Operational Performance

4.16 Year 2032 capacity analysis for the cases without and with the Proposed Development are summarized in Table 4.6 and detailed calculations are found in the Appendix 1.

| Ref.   | Junction                                        | Type of<br>Junction /<br>Parameter <sup>(1)</sup> | Prop  | out the<br>osed<br>opment | Prop  | n the<br>bosed<br>opment |
|--------|-------------------------------------------------|---------------------------------------------------|-------|---------------------------|-------|--------------------------|
|        |                                                 |                                                   | AM    | PM                        | AM    | PM                       |
|        |                                                 |                                                   | Peak  | Peak                      | Peak  | Peak                     |
| J1     | Hoi Bun Road / Shun Yip Street <sup>(3)</sup>   | Signal / RC                                       | 22%   | 17%                       | 22%   | 17%                      |
| J2     | Wai Yip Street / Shun Yip Street                | Signal / RC                                       | 21%   | 19%                       | 20%   | 18%                      |
| J3     | Tai Yip Street / Service Lane                   | Priority / RFC                                    | 0.044 | 0.036                     | 0.057 | 0.048                    |
| J4     | Hong Tak Road / Tai Yip Street                  | Priority / RFC                                    | 0.384 | 0.294                     | 0.414 | 0.329                    |
| J5     | Tai Yip Street / Tai Yip Lane                   | Priority / RFC                                    | 0.135 | 0.117                     | 0.136 | 0.117                    |
| J6     | Kwun Tong Road / Hong Tak Road                  | Priority / RFC                                    | 0.655 | 0.743                     | 0.678 | 0.771                    |
| J7     | Wai Yip Street / Lai Yip Street <sup>(3)</sup>  | Signal / RC                                       | 26%   | 35%                       | 26%   | 35%                      |
| J8     | Kwun Tong Road / Lai Yip Street <sup>(3)</sup>  | Signal / RC                                       | 23%   | 18%                       | 23%   | 18%                      |
| J9     | Hoi Bun Road / Lai Yip Street <sup>(3)</sup>    | Signal / RC                                       | 21%   | 23%                       | 21%   | 23%                      |
| J10    | Lai Yip Street / Hung To Road <sup>(2)</sup>    | Signal / RC                                       | 33%   | 41%                       | 33%   | 41%                      |
| Notes: | <sup>(1)</sup> RC – reserve capacity RFC – Rati | o of Flow to Capacit                              | ty    |                           |       |                          |

TABLE 4.62032 JUNCTION OPERATIONAL PERFORMANCE

<sup>(2)</sup> Kerbside on-street activities are reflected in the junction performance
 <sup>(3)</sup> Junction Improvement Scheme has been incorporated in the assessment

4.17 Table 4.6 shows that the junctions operate with capacities during the AM and PM peak hours for the cases without and with the Proposed Development.

#### 5.0 PEDESTRIAN ASSESSMENT

#### Surveyed Pedestrian Locations

5.1 In order to quantify the existing pedestrian flows, pedestrian counts were conducted at the footpaths and waiting area of the pedestrian crossing shown in Figure 5.1 during the AM and PM peak periods. The survey locations are summarized in Table 5.1.

#### TABLE 5.1 SURVEYED PEDESTRIAN LOCATIONS

| Ref. | Location                                                                                    |  |  |  |  |
|------|---------------------------------------------------------------------------------------------|--|--|--|--|
|      | Footpath                                                                                    |  |  |  |  |
| 1    | Northern footpath of Wai Yip Street between Shun Yip Lane and Tai Yip Street (Eastern side) |  |  |  |  |
| 2    | Northern footpath of Wai Yip Street between Shun Yip Lane and Tai Yip Street (Western side) |  |  |  |  |
| 3    | Shun Yip Lane between Wai Yip Street and Service Lane                                       |  |  |  |  |
|      | Waiting area of pedestrian crossing                                                         |  |  |  |  |
| W1   | Western pedestrian crossing of Wai Yip Street / Shun Yip Street                             |  |  |  |  |
| W2   | Eastern pedestrian crossing of Wai Yip Street / Shun Yip Street                             |  |  |  |  |

Existing Pedestrian Flows

5.2 The existing peak 15-minute 2-way pedestrian flows are also presented in Figure 5.1.

#### Estimated growth from 2024 to 2032

5.3 The 2032 reference pedestrian flows are estimated with the reference of the existing pedestrian flows and a growth rate of 1.15% per annum, which is derived from the latest TPEDM data.

#### Pedestrian Generated by the Proposed Development

5.4 The pedestrian generations associated with the RCHE and Hotel within the Proposed Development, are estimated based on in-house pedestrian rates. The in-house pedestrian rates are presented in Table 5.2, and the estimated pedestrian generation of Proposed Development is found in Table 5.3.

| Use                  | Pedestrian Generation Rates (pedestrian / 15 min / 100m <sup>2</sup> ) |       |         |       |  |  |
|----------------------|------------------------------------------------------------------------|-------|---------|-------|--|--|
|                      | AM                                                                     | Peak  | PM Peak |       |  |  |
|                      | In                                                                     | Out   | In      | Out   |  |  |
| RCHE <sup>(1)</sup>  | 0.049                                                                  | 0.004 | 0.011   | 0.034 |  |  |
| Hotel <sup>(2)</sup> | 0.053                                                                  | 0.173 | 0.156   | 0.177 |  |  |

#### TABLE 5.2IN-HOUSE PEDESTRIAN GENERATION RATES

<sup>(1)</sup> 266-bed RCHE known as Buddhist Sum Ma Shui Ying Care & Attention Home for the Elderly at 8 Kung Lok Road, Kwun Tong

(2) 254-room Nina Hotel Kowloon East at 38 Chong Yip St, Kwun Tong

| ABLE 5.3 | PEDESTRIA | PEDESTRIAN GENERATED BY THE PROPOSED DEVELOPMENT |     |    |      |  |  |
|----------|-----------|--------------------------------------------------|-----|----|------|--|--|
| Use      | GFA (m²)  | Pedestrian Generation (pedestrian / 15 min)      |     |    |      |  |  |
|          |           | AM Peak PM Peak                                  |     |    | Peak |  |  |
|          |           | In                                               | Out | In | Out  |  |  |
| RCHE     | 557 beds  | 28                                               | 3   | 7  | 19   |  |  |
| Hotel    | 200 rooms | 11                                               | 35  | 32 | 36   |  |  |
|          | Total     | <u>39</u>                                        | 38  | 39 | 55   |  |  |

#### Year 2032 Pedestrian Flows

5.5 The 2032 pedestrian flow with and without the Proposed Development are derived using the following method:

| Without the       | <ul> <li>= 2024 observed pedestrian flows + growth from 2024</li></ul> |
|-------------------|------------------------------------------------------------------------|
| Proposed          | to 2032 + pedestrian generated by the planned                          |
| Development [a]   | developments in the vicinity of the Subject Site                       |
| With the Proposed | [a] + pedestrian generated by the Proposed                             |
| Development [b]   | = Development (Table 5.3)                                              |

5.6 The 2032 pedestrian flows without and with the Proposed Development are presented in Figures 5.2 and 5.3.

Level-Of-Service ("LOS") Assessment

5.7 The pedestrian assessment method adopted is referenced to Exhibit 18-3 of Chapter 18 of the Highway Capacity Manual ("HCM") 2000 and the extract of Exhibit 18-3 is summarised in Table 5.4.

| LOS | Space (m²/p) | Flow Rate (p/min/m) |
|-----|--------------|---------------------|
| A   | > 5.6        | <u>≤ 16</u>         |
| В   | > 3.7-5.6    | > 16-23             |
| С   | > 2.2-3.7    | > 23-33             |
| D   | > 1.4-2.2    | > 33-49             |
| E   | > 0.75-1.4   | > 49-75             |
| F   | ≤ 0.75       | variable            |

#### TABLE 5.4EXTRACT OF EXHIBIT 18-3 OF THE HCM 2000

#### (a) LOS of the Footpaths

5.8 The effective width of the surveyed footpaths and the year 2032 LOS without and with the Proposed Development are presented in Tables 5.5 and 5.6.

#### TABLE 5.5EFFECTIVE WIDTH OF SURVEYED FOOTPATHS

| Ref | Footpath width (m) | Effective width (m) <sup>(1)</sup> |
|-----|--------------------|------------------------------------|
| 1   | 3.5                | 2.5                                |
| 2   | 2.7                | 1.7                                |
| 3   | 9.8                | 8.8                                |

Note:<sup>(1)</sup> The effective width does not include 0.5m dead zone on both sides, i.e. 1m

### TABLE 5.6YEAR 2032 LOS OF FOOTPATH WITHOUT AND WITH THE<br/>PROPOSED DEVELOPMENT

| Ref. | Peak<br>Period | Year 2032 without the Proposed Development |                     | Year 2032 with the Proposed<br>Development |              |                     |     |
|------|----------------|--------------------------------------------|---------------------|--------------------------------------------|--------------|---------------------|-----|
|      | Periou         | Flow                                       | Rate <sup>(1)</sup> | LOS                                        | Flow         | Rate <sup>(1)</sup> | LOS |
|      |                | (Ped/15 min)                               | (Ped/min/m)         | L03                                        | (Ped/15 min) | (Ped/ min/m)        | LOJ |
| 1    | AM             | 350                                        | 9.3                 | Α                                          | 369          | 9.8                 | Α   |
|      | PM             | 317                                        | 8.5                 | Α                                          | 340          | 9.1                 | Α   |
| 2    | AM             | 467                                        | 18.3                | В                                          | 516          | 20.2                | В   |
|      | PM             | 336                                        | 13.2                | Α                                          | 395          | 15.5                | Α   |
| 3    | AM             | 969                                        | 7.3                 | Α                                          | 1008         | 7.6                 | Α   |
|      | PM             | 593                                        | 4.5                 | Α                                          | 640          | 4.8                 | Α   |

Note: <sup>(1)</sup> pedestrian flow rate = pedestrian flow  $\div$  15 minutes  $\div$  effective width

5.9 Table 5.6 shows that the footpaths achieve LOS A and B during AM and PM peak for the 2032 cases without and with the Proposed Development.

(b) Waiting area of the Pedestrian Crossing

5.10 The year 2032 LOS of pedestrian crossing waiting areas without and with the Proposed Development are presented in Table 5.7.

## TABLE 5.7YEAR 2032 LOS OF PEDESTRIAN CROSSING WAITING AREAS<br/>WITHOUT AND WITH THE PROPOSED DEVELOPMENT

| Ref | Area<br>(m²)                     |    | of Pedestrians at the<br>ea (ped/signal cycle) | Pedestrian Space (m <sup>2</sup> /ped) |      | LC | DS |  |  |
|-----|----------------------------------|----|------------------------------------------------|----------------------------------------|------|----|----|--|--|
|     |                                  | AM | PM                                             | AM                                     | PM   | AM | PM |  |  |
|     | Without the Proposed Development |    |                                                |                                        |      |    |    |  |  |
| W1  | 150                              | 47 | 11                                             | 3.2                                    | 13.6 | С  | А  |  |  |
| W2  | 63                               | 24 | 24 4                                           |                                        | 15.8 | С  | А  |  |  |
|     | With the Proposed Development    |    |                                                |                                        |      |    |    |  |  |
| W1  | 150                              | 48 | 12                                             | 3.1                                    | 12.5 | С  | А  |  |  |
| W2  | 63                               | 25 | 5                                              | 2.5                                    | 12.6 | С  | A  |  |  |

- 5.11 Table 5.7 shows that the pedestrian crossing waiting areas achieve LOS A and C during AM and PM peak for the 2032 cases without and with the Proposed Development.
- 5.12 It is noted that "In general, LOS C is desirable for most design at streets with dominant 'living' pedestrian activities". Since the LOS in Tables 5.6 and 5.7 are A to C, it can be concluded that the Proposed Development will have no adverse impact to the footpaths and pedestrian crossing waiting areas in the vicinity.

#### 6.0 SENSITIVITY TEST

#### Permitted Maximum Number of Beds for RCHE

- 6.1 Although the proposed maximum number of beds for RCHE is 557, based on the RCHE GFA and the minimum area of floor space per resident as per Code of Practice for Residential Care Homes (Elderly Persons) issued by Social Welfare Department, a total of 644 beds could be provided. Hence, a sensitivity test is undertaken for the RCHE with 644 beds and the Hotel with 200 rooms.
- 6.2 As stated in paragraphs 3.17 3.18, due to site constraints, the Authorised Person has used his utmost effort to ensure the layout is arranged and utilised in good order. Internal transport facilities will remain unchanged as the Proposed Development.

#### Sensitivity Test on Traffic Impact

(a) Comparison of Traffic Generation

6.3 The comparison of traffic generated by the Proposed Development, and the sensitivity test with 644-bed RCHE and 200-room Hotel, is presented in Table 6.1.

| Item                      | А             | M Peak Hou | Jr    | PM Peak Hour |     |       |  |
|---------------------------|---------------|------------|-------|--------------|-----|-------|--|
|                           | In            | Out        | 2-way | In           | Out | 2-way |  |
| Proposed Development      |               |            |       |              |     |       |  |
| RCHE: 557 beds            | 9             | 9          | 18    | 8            | 8   | 16    |  |
| Hotel: 200 guest rooms    | 17            | 17         | 34    | 19           | 18  | 37    |  |
| Total [A]                 | 26            | 26         | 52    | 27           | 26  | 53    |  |
| Sensitivity Test          |               |            |       |              |     |       |  |
| RCHE: 644 beds            | 10            | 10         | 20    | 9            | 9   | 18    |  |
| Hotel: 200 guest rooms    | 17            | 17         | 34    | 19           | 18  | 37    |  |
| Total [B]                 | 27            | 27         | 54    | 28           | 27  | 55    |  |
| Difference in Traffic Ger | neration (pcu | u/hour)    |       |              |     |       |  |
| [B] – [A]                 | +1            | +1         | +2    | +1           | +1  | +2    |  |

TABLE 6.1COMPARISON OF TRAFFIC GENERATION

6.4 Table 6.1 shows that compared with the Proposed Development, the sensitivity test with 644-bed RCHE and 200-room Hotel, generates 2 pcu / hour (2-way) more in both AM and PM peak hours, which is negligible.

#### (b) 2032 Traffic Flows

6.5 The sensitivity test with 644-bed RCHE and 200-room Hotel 2032 peak hour traffic flows are shown in Figure 6.1. The ingress/egress vehicular routings to/from the Proposed Development via Wai Yip Street and the service lane at the northern side of the Proposed Development are shown in Figures 6.2 - 6.3.

#### (c) 2032 Junction Operational Performance

6.6 The comparison of junction capacity analysis for Proposed Development, and the sensitivity test with 644-bed RCHE and 200-room Hotel, is found in Table 6.2 and detailed calculations of the sensitivity test are found in the Appendix 1.

#### TABLE 6.2 OF 2032 JUNCTION **OPERATIONAL** COMPARISON PERFORMANCE

|               |                                                      |                                                   | · L                            |                   | -                       |         |                         |         |
|---------------|------------------------------------------------------|---------------------------------------------------|--------------------------------|-------------------|-------------------------|---------|-------------------------|---------|
| Ref.          | Junction                                             | Type of<br>Junction /<br>Parameter <sup>(1)</sup> | Proposed<br>Development<br>[A] |                   | Sensitivity Test<br>[B] |         | Difference<br>[B] – [A] |         |
|               |                                                      |                                                   | AM Peak                        | PM Peak           | AM Peak                 | PM Peak | AM Peak                 | PM Peak |
| J1            | Hoi Bun Road /<br>Shun Yip<br>Street <sup>(3)</sup>  | Signal / RC                                       | 22%                            | 17%               | 22%                     | 17%     | 0%                      | 0%      |
| J2            | Wai Yip Street /<br>Shun Yip Street                  | Signal / RC                                       | 20%                            | 18%               | 20%                     | 18%     | 0%                      | 0%      |
| J3            | Tai Yip Street /<br>Service Lane                     | Priority /<br>RFC                                 | 0.057                          | 0.048             | 0.057                   | 0.048   | 0.000                   | 0.000   |
| J4            | Hong Tak Road<br>/ Tai Yip Street                    | Priority /<br>RFC                                 | 0.414                          | 0.329             | 0.416                   | 0.329   | 0.002                   | 0.000   |
| J5            | Tai Yip Street /<br>Tai Yip Lane                     | Priority /<br>RFC                                 | 0.136                          | 0.117             | 0.136                   | 0.117   | 0.000                   | 0.000   |
| J6            | Kwun Tong<br>Road / Hong<br>Tak Road                 | Priority /<br>RFC                                 | 0.678                          | 0.771             | 0.680                   | 0.771   | 0.002                   | 0.000   |
| J7            | Wai Yip Street /<br>Lai Yip Street <sup>(3)</sup>    | Signal / RC                                       | 26%                            | 35%               | 26%                     | 35%     | 0%                      | 0%      |
| J8            | Kwun Tong<br>Road / Lai Yip<br>Street <sup>(3)</sup> | Signal / RC                                       | 23%                            | 18%               | 23%                     | 18%     | 0%                      | 0%      |
| J9            | Hoi Bun Road /<br>Lai Yip Street <sup>(3)</sup>      | Signal / RC                                       | 21%                            | 23%               | 21%                     | 23%     | 0%                      | 0%      |
| J10<br>Notes: | Lai Yip Street /<br>Hung To Road <sup>(2)</sup>      | Signal / RC                                       | 33%                            | 41%<br>Flow to Ca | 33%                     | 41%     | 0%                      | 0%      |

<sup>(1)</sup> RC – reserve capacity RFC – Ratio of Flow to Capacity Notes:

<sup>(2)</sup> Kerbside on-street activities are reflected in the junction performance <sup>(3)</sup> Junction Improvement Scheme has been incorporated in the assessment

6.7 Table 6.2 shows there is negligible difference in the junction capacity between the 2 schemes. Hence, the impact of the sensitivity test with a 644-bed RCHE and a 200-room Hotel, is negligible.

#### Sensitivity Test on Pedestrian Impact (a) Comparison of Pedestrian Generation

The comparison of pedestrian generated by the Proposed Development, and the 6.8 sensitivity test with 644-bed RCHE and 200-room Hotel, is presented in Table 6.3.

| Item                                           | AM Peak Hour |           |           | PM Peak Hour |           |           |
|------------------------------------------------|--------------|-----------|-----------|--------------|-----------|-----------|
|                                                | In           | Out       | 2-way     | In           | Out       | 2-way     |
| Proposed Development                           |              |           |           |              |           |           |
| RCHE: 557 beds                                 | 28           | 3         | 31        | 7            | 19        | 26        |
| Hotel: 200 guest rooms                         | 11           | 35        | 46        | 32           | 36        | 68        |
| Total [A]                                      | <u>39</u>    | <u>38</u> | 77        | 39           | <u>55</u> | 94        |
| Sensitivity Test                               |              |           |           |              |           |           |
| RCHE: 644 beds                                 | 32           | 3         | 35        | 8            | 22        | 30        |
| Hotel: 200 guest rooms                         | 11           | 35        | 46        | 32           | 36        | 68        |
| Total [B]                                      | 43           | <u>38</u> | <u>81</u> | 40           | <u>58</u> | <u>98</u> |
| Difference in Pedestrian Generation (pcu/hour) |              |           |           |              |           |           |
| [B] – [A]                                      | + 4          | +0        | + 4       | +1           | +3        | +4        |

TABLE 6.3 COMPARISON OF PEDESTRIAN GENERATION

6.9 Table 6.3 shows the pedestrians generated by the sensitivity test, is 4 more (2way) in the AM and PM peak hours, compared to the Proposed Development, which is negligible.

(b) 2032 Pedestrian Flows

6.10 The sensitivity test 2032 pedestrian flows is presented in Figure 6.4.

(c) LOS of the Footpaths

6.11 The sensitivity test year 2032 LOS is presented in Table 6.4.

#### TABLE 6.4SENSITIVITY TEST FOR YEAR 2032 LOS OF FOOTPATH

| Ref. | Peak Period | Year 2032 Sensitivity Test |                     |     |  |
|------|-------------|----------------------------|---------------------|-----|--|
|      |             | Flow                       | Rate <sup>(1)</sup> | LOS |  |
|      |             | (Ped/15 min)               | (Ped/ min/m)        |     |  |
| 1    | AM          | 370                        | 9.9                 | А   |  |
|      | PM          | 341                        | 9.1                 | А   |  |
| 2    | AM          | 518                        | 20.3                | В   |  |
|      | PM          | 398                        | 15.6                | А   |  |
| 3    | AM          | 1010                       | 7.7                 | А   |  |
|      | PM          | 642                        | 4.9                 | А   |  |

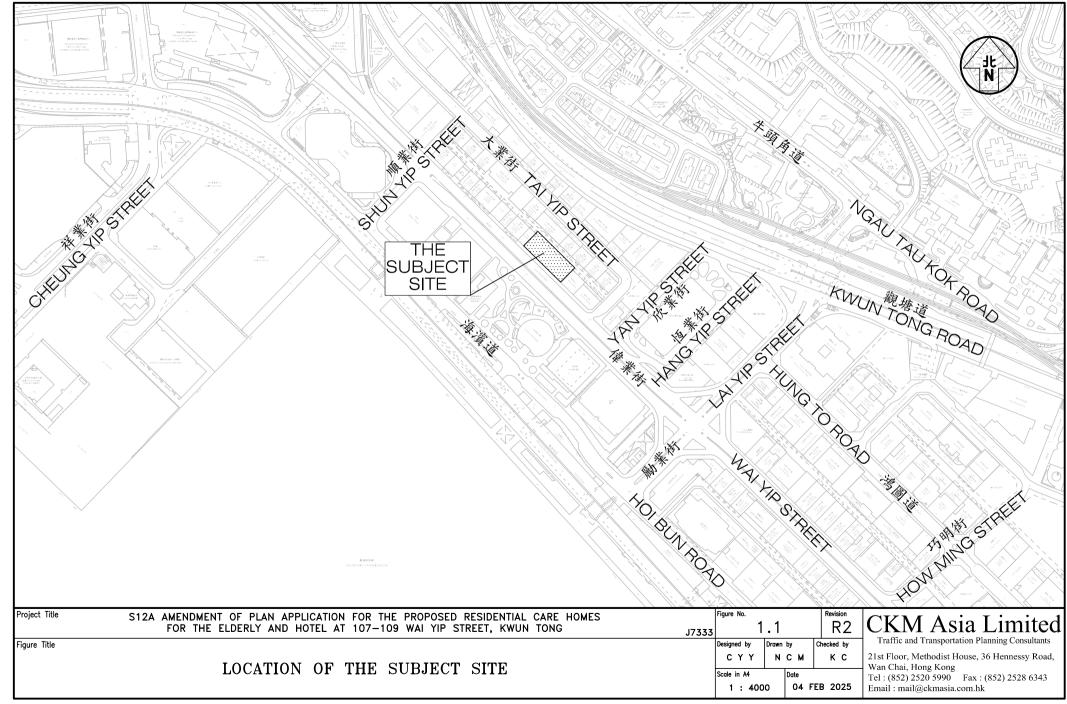
Note: <sup>(1)</sup> pedestrian flow rate = pedestrian flow  $\div$  15 minutes  $\div$  effective width

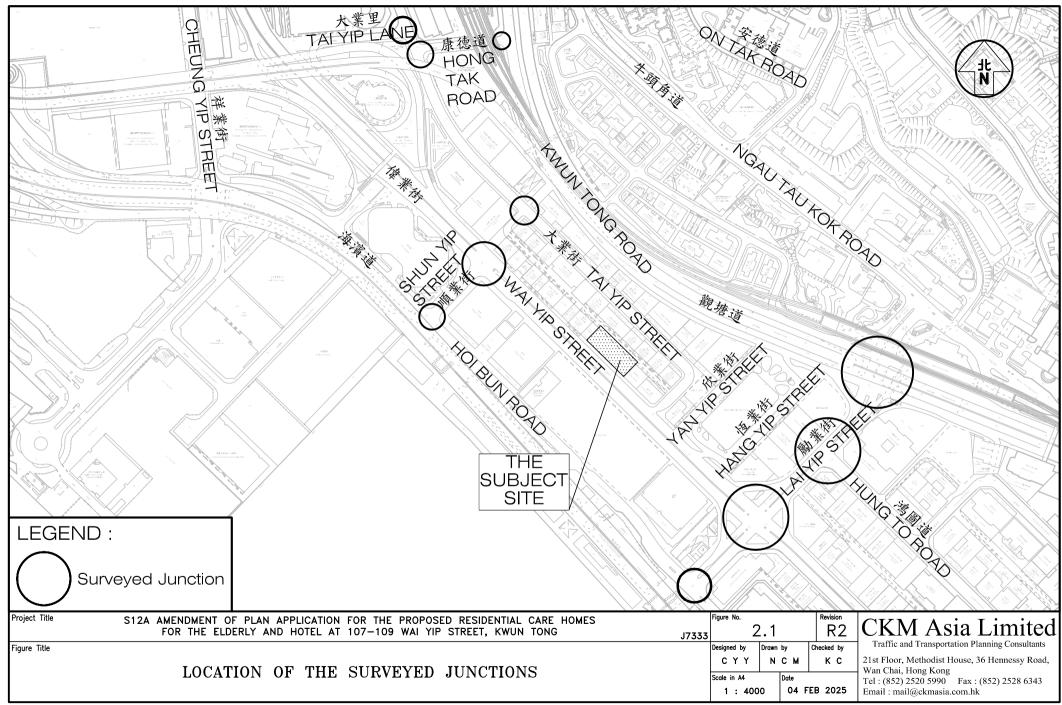
6.12 Table 6.4 shows that the footpaths still achieve LOS A and B during AM and PM peak.

(d) Waiting Area of the Pedestrian Crossing

6.13 Sensitivity test for the year 2032 pedestrian crossing waiting areas is presented in Table 6.5.

### TABLE 6.5SENSITIVITY TEST FOR YEAR 2032 PEDESTRIAN CROSSING<br/>WAITING AREAS

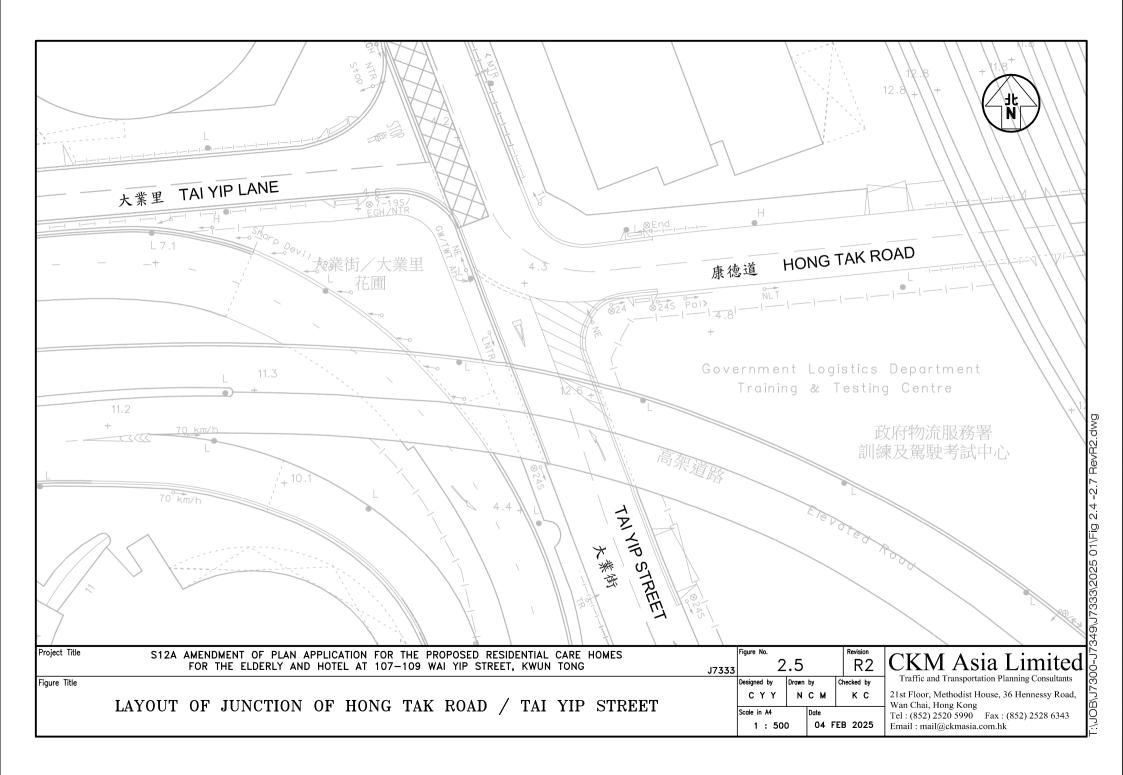

| Ref | Area<br>(m²) | 0  | rage No. of Pedestrians at the<br>hiting area (ped/signal cycle) |     | Pedestrian Space (m <sup>2</sup> /ped) |    |    |
|-----|--------------|----|------------------------------------------------------------------|-----|----------------------------------------|----|----|
|     |              | AM | PM                                                               | AM  | PM                                     | AM | PM |
| W1  | 150          | 48 | 12                                                               | 3.1 | 12.5                                   | С  | А  |
| W2  | 63           | 25 | 5                                                                | 2.5 | 12.6                                   | С  | А  |

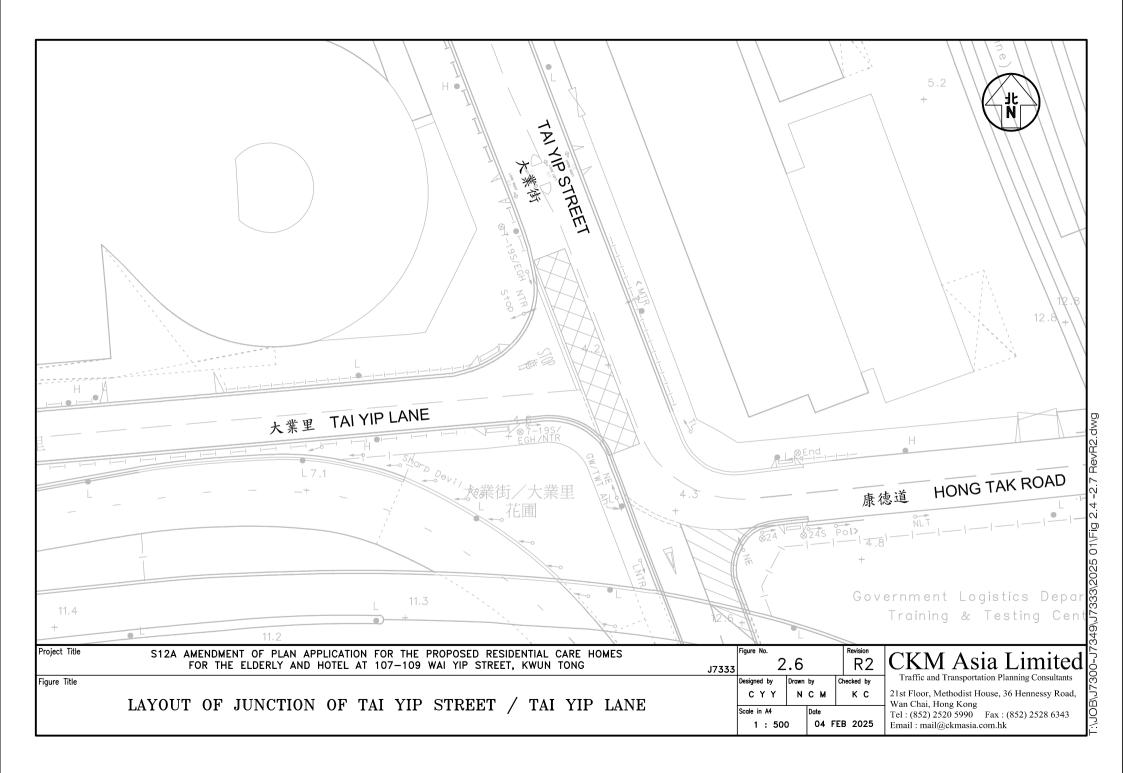

- 6.14 Table 6.5 shows that the pedestrian crossing waiting areas still achieve LOS A and C during AM and PM peak for the sensitivity test.
- 6.15 Since the LOS in Tables 6.4 and 6.5 are A to C, it can be concluded that the sensitivity test found no adverse impact to the footpaths and pedestrian crossing waiting areas in the vicinity.

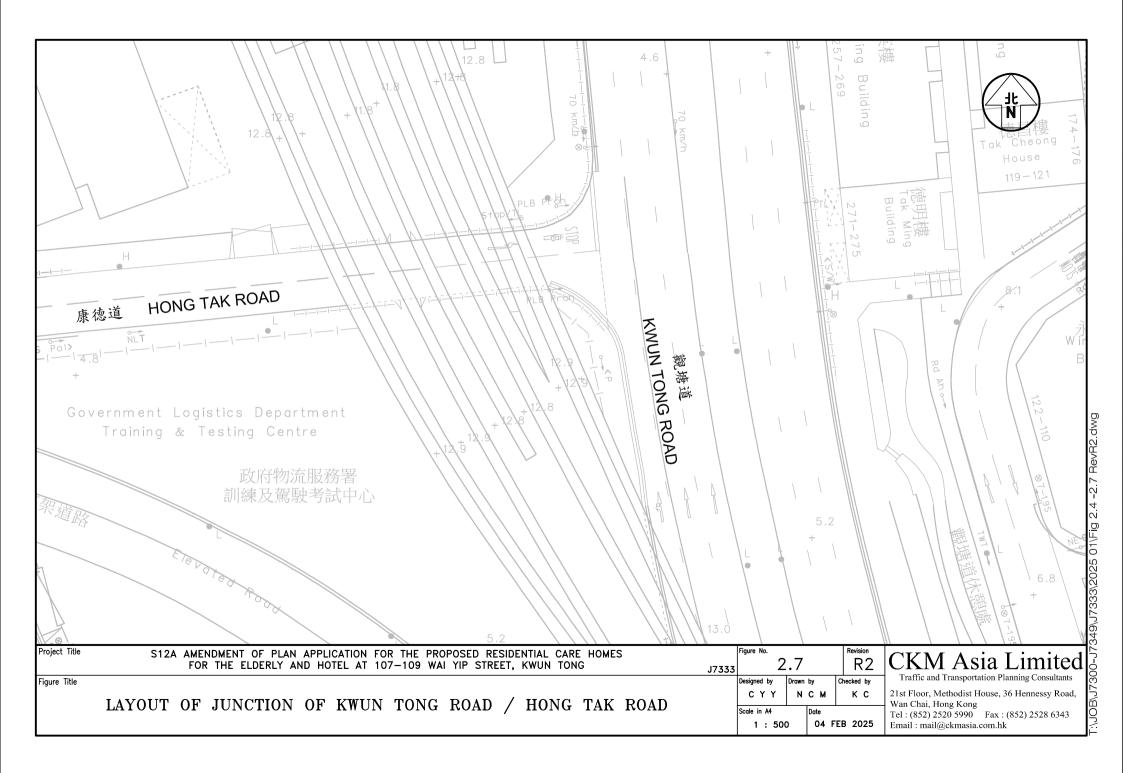
#### 7.0 CONCLUSION

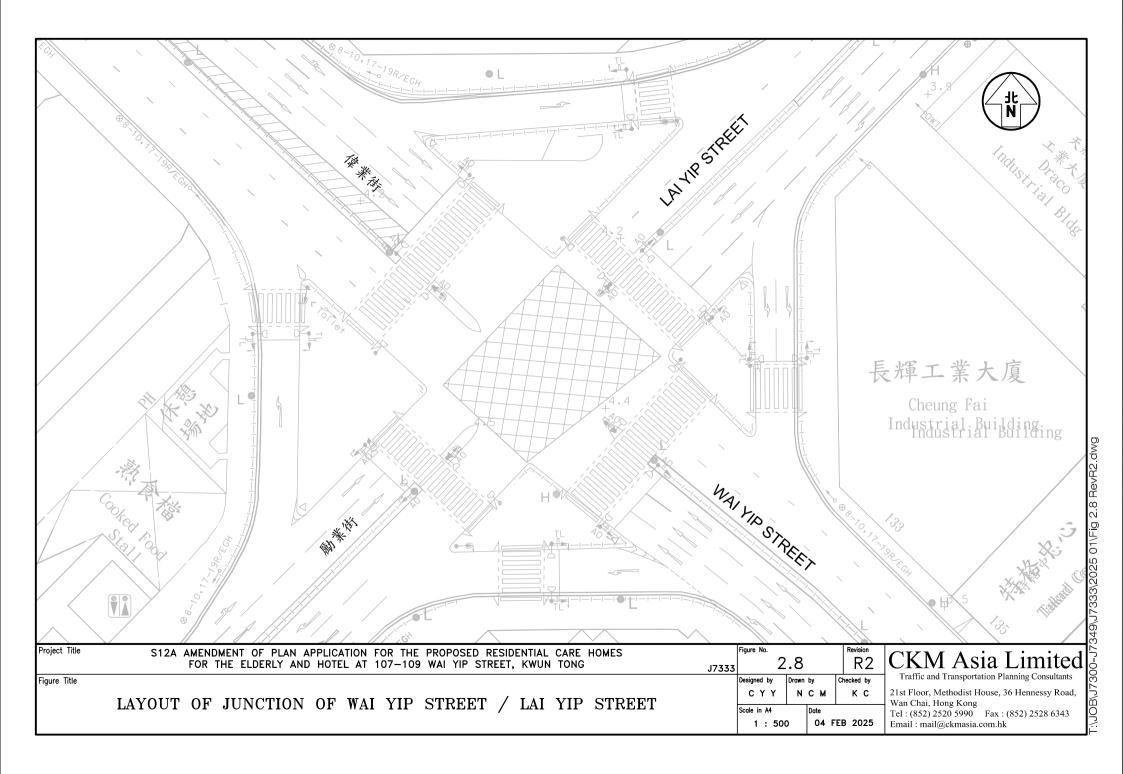
- 7.1 The Subject Site is located at Nos. 107 109 Wai Yip Street in Kwun Tong. On 29<sup>th</sup> May 2020, the TPB approved the S16 Planning Application (TPB ref: A/K14/780) for Office, Shop and Services & Eating Place Uses at the Subject Site.
- 7.2 Subsequent to the Approved S16 Scheme (TPB ref: A/K14/780), the Applicant has the intention to rezone the Subject Site and construct a building which comprises of a RCHE with (i) no less than 302, but not more than 557 beds, and (ii) hotel with 200 rooms.
- 7.3 Manual classified counts were conducted at the junctions located in the vicinity of the Subject Site in order to establish the peak hour traffic flows. Currently, the surveyed junctions operate with capacities during the AM and PM peak hours.
- 7.4 Similar to the Approved S16 Scheme (TPB ref: A/K14/780), two vehicular access points are provided for the Proposed Development, including, (i) the service lane at the northern side of the Proposed Development, and (ii) Wai Yip Street. Compared to the Approved S16 Scheme (TPB ref: A/K14/780), the Proposed Development is expected to generate less traffic during the AM and PM peak hours.
- 7.5 The internal transport facilities provided for RCHE within the Proposed Development are based on the operational needs and also with reference to similar type RCHE in Kwun Tong. Those for the Hotel within the Proposed Development are provided with reference to the recommendation of the HKPSG. Swept path analysis was conducted to ensure that all vehicles could enter and leave the development and the spaces provided with ease.
- 7.6 The Proposed Development is expected to be completed by 2029, and the junction capacity analysis is undertaken for year 2032. For the design year 2032, the junctions analysed are expected to operate with capacities during the peak hours for the case without and with Proposed Development.
- 7.7 The pedestrian assessment conducted found that the surveyed footpaths and waiting area of the pedestrian crossing would operate with LOS A to C in 2032 for the cases without and with the Proposed Development. Hence, it is concluded that the Proposed Development has <u>no</u> adverse impact to the footpaths and pedestrian crossing in the vicinity.
- 7.8 A sensitivity test for the scheme with 644-bed RCHE and 200-room Hotel is undertaken and found to have no adverse traffic and pedestrian impact.
- 7.9 It is concluded that the Proposed Development will result in <u>no</u> adverse traffic impact to the surrounding road network.

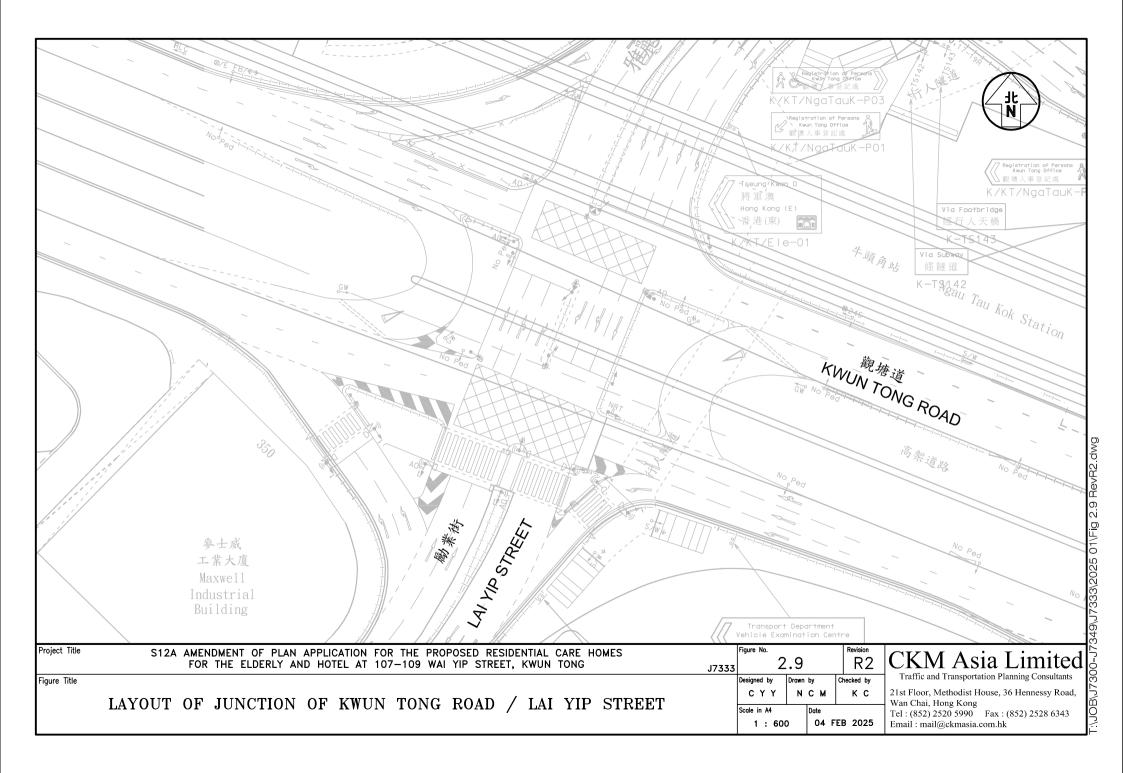
### Figures



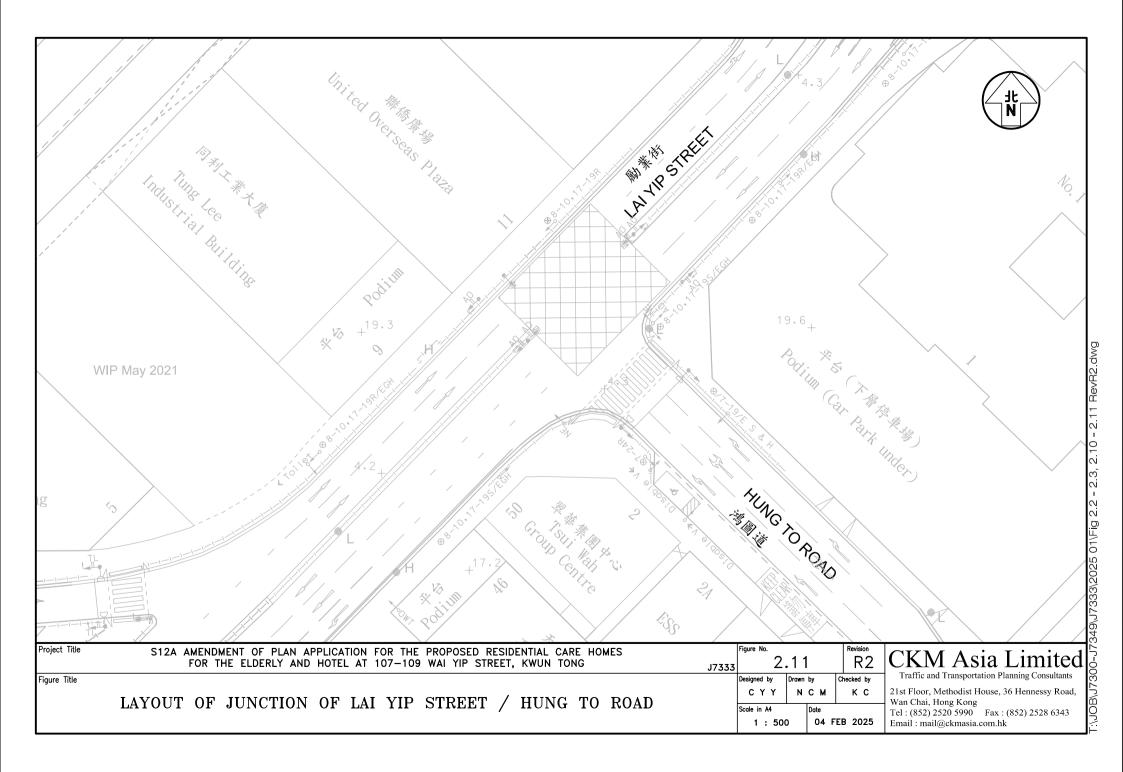



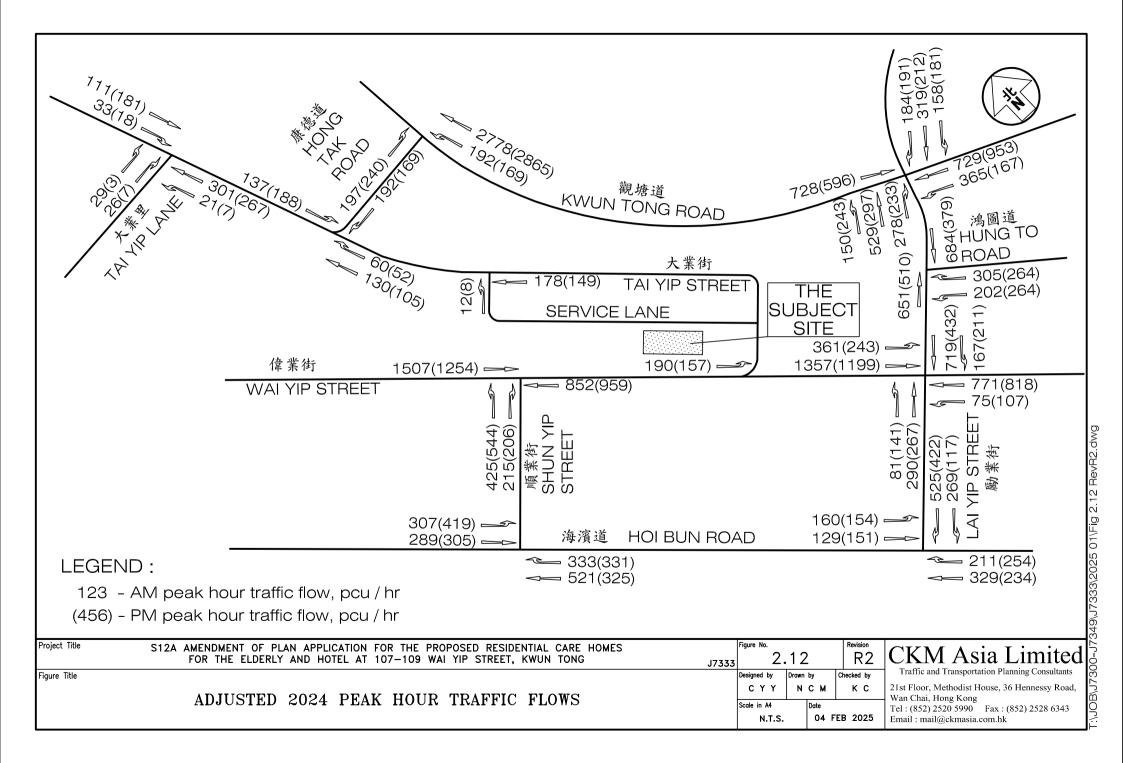


|             |                                                                                      | L<br>H<br>C<br>G          | B. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                          | WATE STREET                                                                                                                                                  | Mest Romer                                                                                                                                                              |
|-------------|--------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | @2-2014<br>15.8 <sub>+</sub>                                                         |                           | +3.9<br>+3.9<br>10<br>10<br>3<br>3<br>4<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | NOND H                                                                                                                                                       |                                                                                                                                                                         |
| FOR THE ELD | 4.2+<br>F PLAN APPLICATION FOR THE P<br>ERLY AND HOTEL AT 107-109<br>TION OF HOI BUN | WAI YIP STREET, KWUN TONG | HOMES                                                                                                                 | Figure No.     Revision       2.2     Revision       Designed by     Drown by       C Y Y     N C M       Scale in A4     Date       1 : 500     04 FEB 2025 | Traffic and Transportation Planning Consultants<br>21st Floor, Methodist House, 36 Hennessy Road,<br>Wan Chai, Hong Kong<br>Tel : (852) 2520 5990 Fax : (852) 2528 6343 |

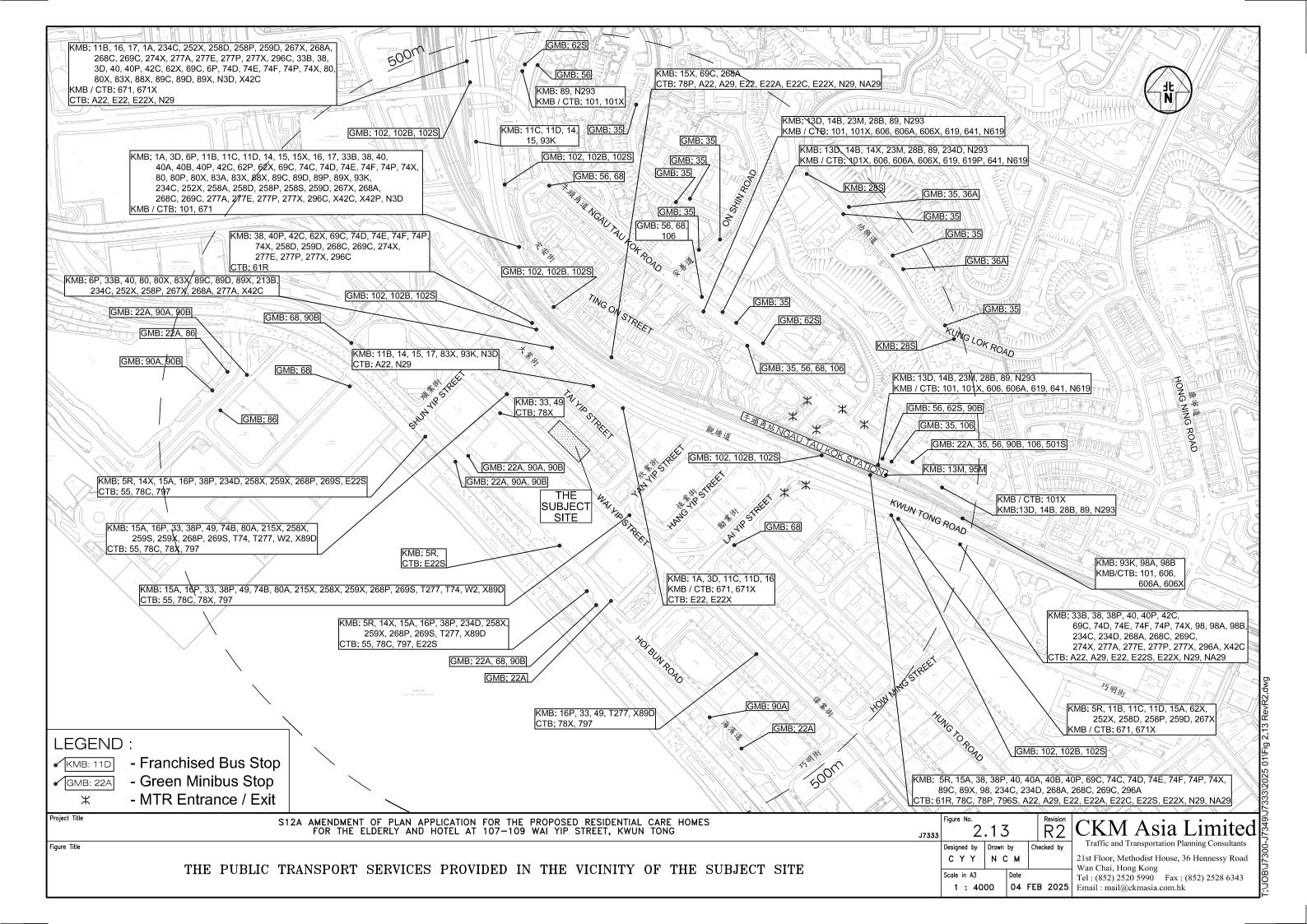

|                                                                                          |                                                                                                                                                                                                     | 5 01/Fig 2:2 - 2:3, 2:10 - 2:11 Re                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Title S12A AMENDMENT OF PLAN APPLICATION FOR THE PROPOSED RESIDENTIAL CARE HOMES | Figure No.         Revision           2.3         2.3           Designed by         Drawn by           C Y Y         N C M           Scale in A4         Date           1 : 500         04 FEB 2025 | CKM Asia Limited<br>Traffic and Transportation Planning Consultants<br>21 st Floor, Methodist House, 36 Hennessy Road,<br>Wan Chai, Hong Kong<br>Tel : (852) 2520 5990 Fax : (852) 2528 6343<br>Email : mail@ckmasia.com.hk |

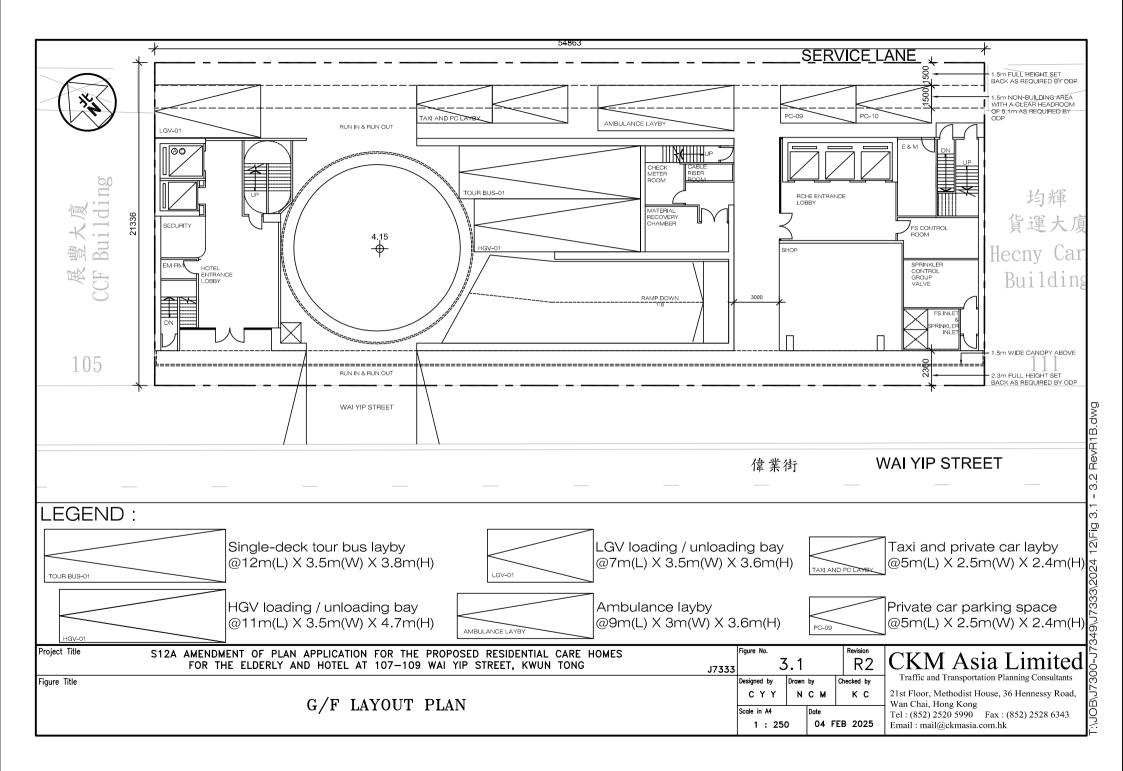

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.3 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e<br>ilding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AMUN TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MG ROAD                                                                                                                                                                                                |
| Find the second | 316-318<br><sup>13</sup> 4 <sup>14</sup> 16-318<br><sup>13</sup> 2 <sup>1</sup> 16-318<br><sup>13</sup> 2 <sup>1</sup> 16<br><sup>13</sup> 2 <sup>1</sup> 18<br><sup>13</sup> 2 <sup>1</sup> 18<br><sup>14</sup> 2 <sup>1</sup> 18<br><sup>14</sup> 11<br><sup>14</sup> 11 <sup>1</sup> 10 <sup>1</sup> <sup>1</sup> |                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 RevR2.dwg                                                                                                                                                                                            |
| Build a second and a second a | × 55<br>× 1<br>+<br>+<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AJ7333/2025 01/Fig 2.4 -2.7 RevR2.dwg                                                                                                                                                                  |
| Project Title S12A AMENDMENT OF PLAN APPLICATION FOR THE PROPOSED RESIDENTIAL CARE HOMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Figure No.<br>2.4 Revision<br>R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CKM Asia Limited                                                                                                                                                                                       |
| FOR THE ELDERLY AND HOTEL AT 107–109 WAI YIP STREET, KWUN TONG J7333<br>Figure Title LAYOUT OF JUNCTION OF TAI YIP STREET / SERVICE LANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S         Z • 24         K Z           Designed by         Drawn by         Checked by           C Y Y         N C M         K C           Scale in A4         Date         04           1 : 500         04         FEB         2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Traffic and Transportation Planning Consultants<br>21st Floor, Methodist House, 36 Hennessy Road,<br>Wan Chai, Hong Kong<br>Tel : (852) 2520 5990 Fax : (852) 2528 6343<br>Email : mail@ckmasia.com.hk |





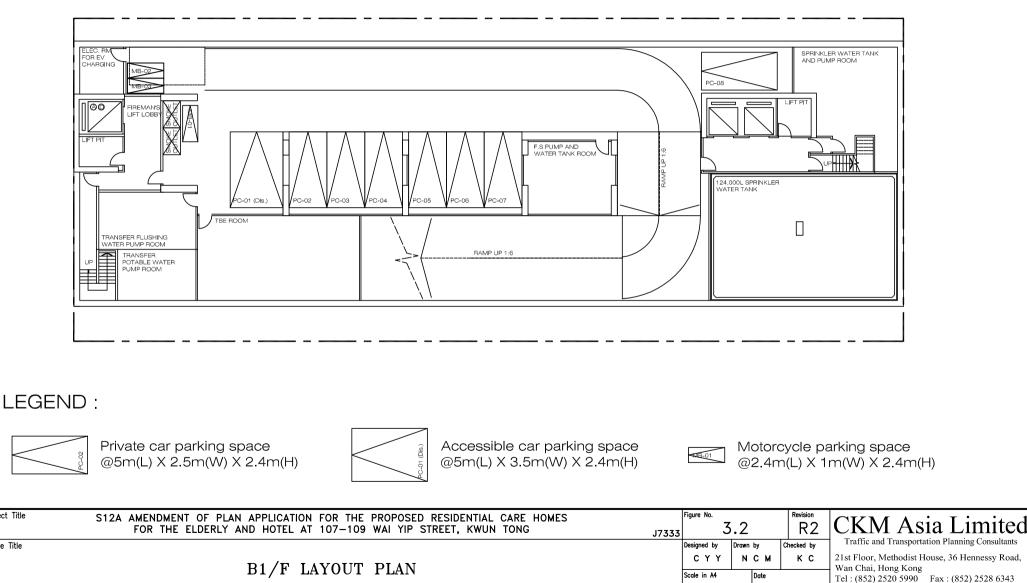




|                                                                                          | HANNE STREET & BOOM AND STREET & COUNTY OF THE STREET & BOOM AND STREET & BOOM AND STREET & S |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Title S12A AMENDMENT OF PLAN APPLICATION FOR THE PROPOSED RESIDENTIAL CARE HOMES | Figure No. Revision CKM Asia Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure Title<br>LAYOUT OF JUNCTION OF HOI BUN ROAD / LAI YIP STREET                      | Z.IU     RZ     CINITIALIIIIIICCU       Designed by     Drown by     Checked by     Traffic and Transportation Planning Consultants       C Y Y     N C M     K C       Scole in A4     Dote       1 : 500     04 FEB 2025   CINITIALSITE Constrained by Checked by K C Base of the constraint of th                                                                                                                                                                                                               |







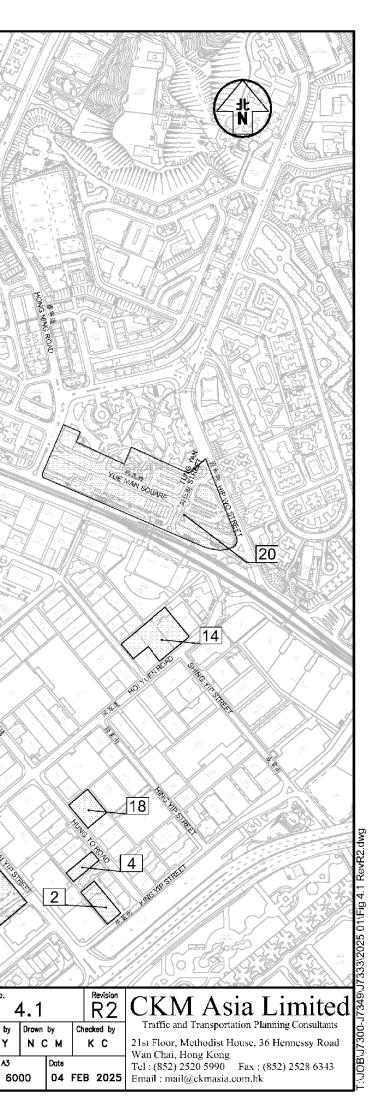


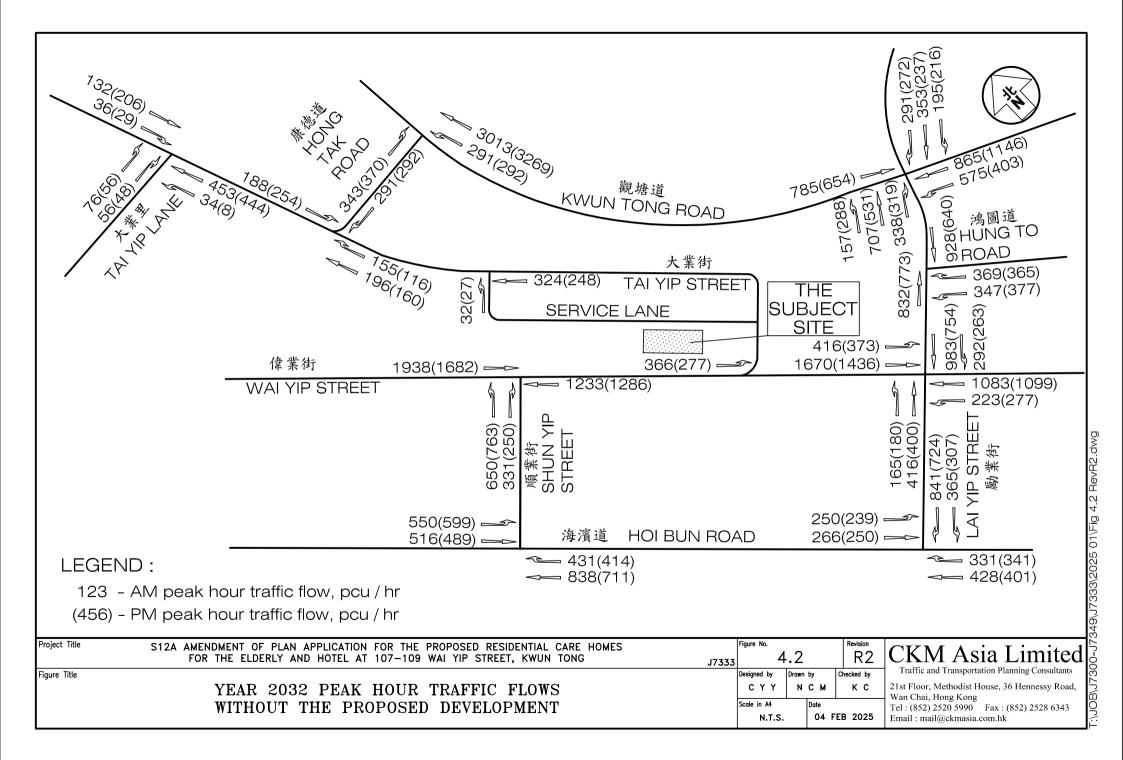


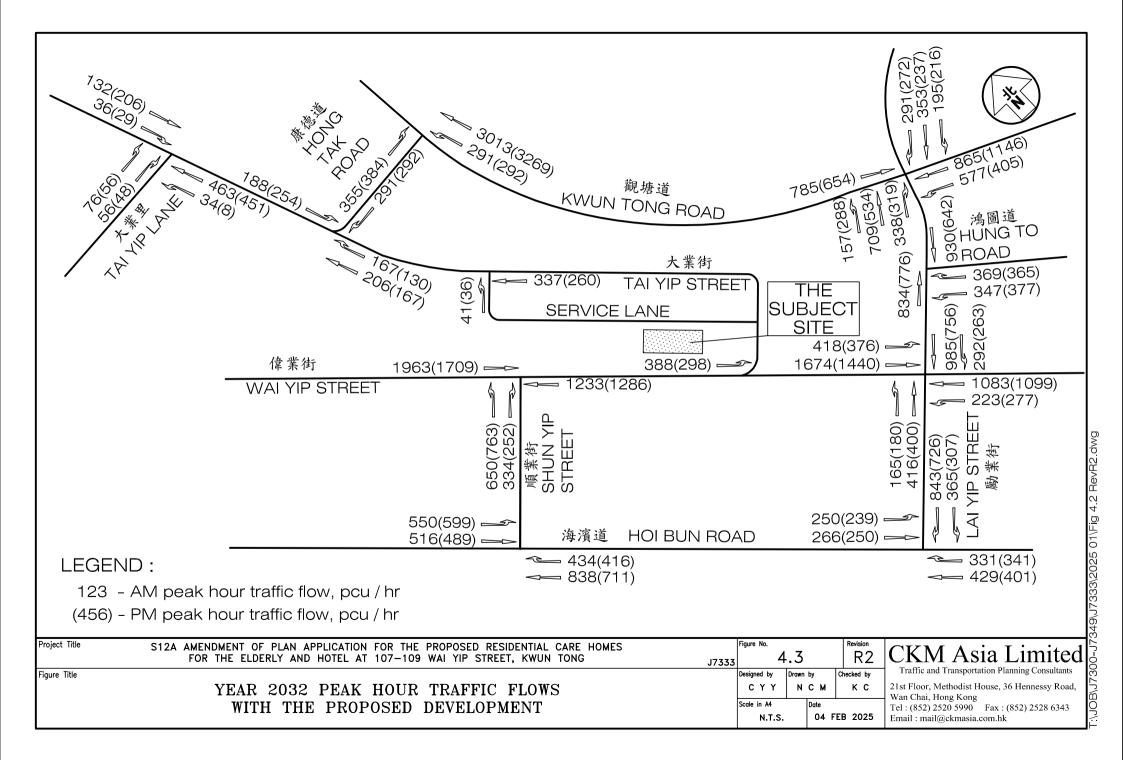

Project Title

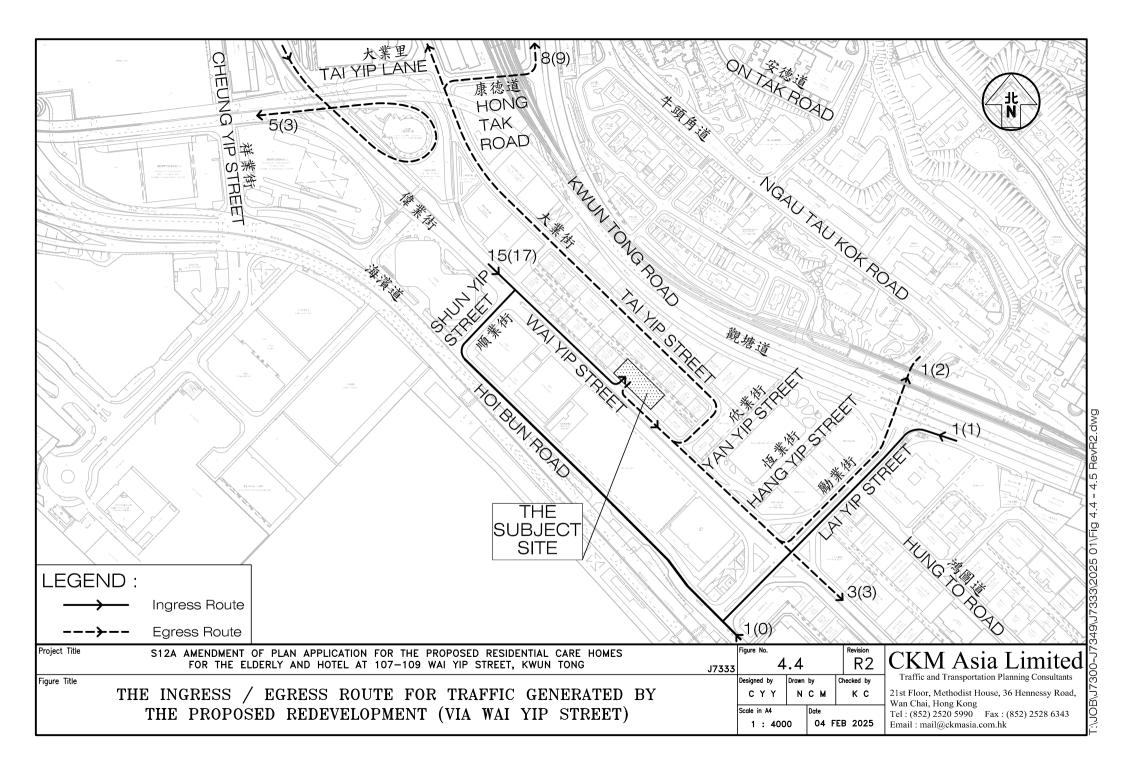
Figure Title

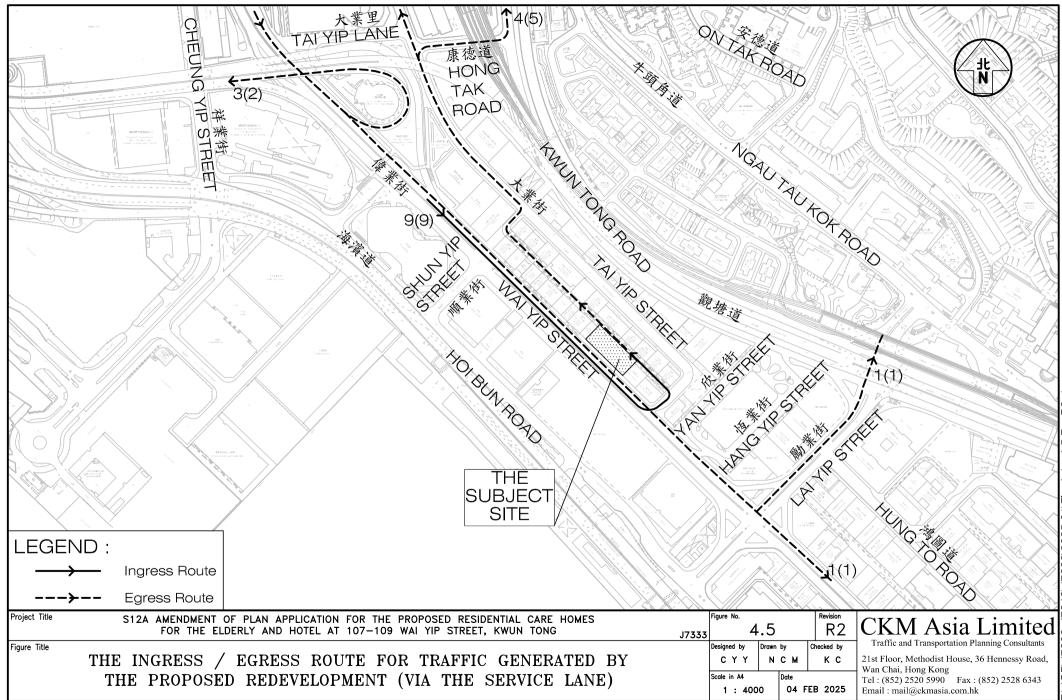


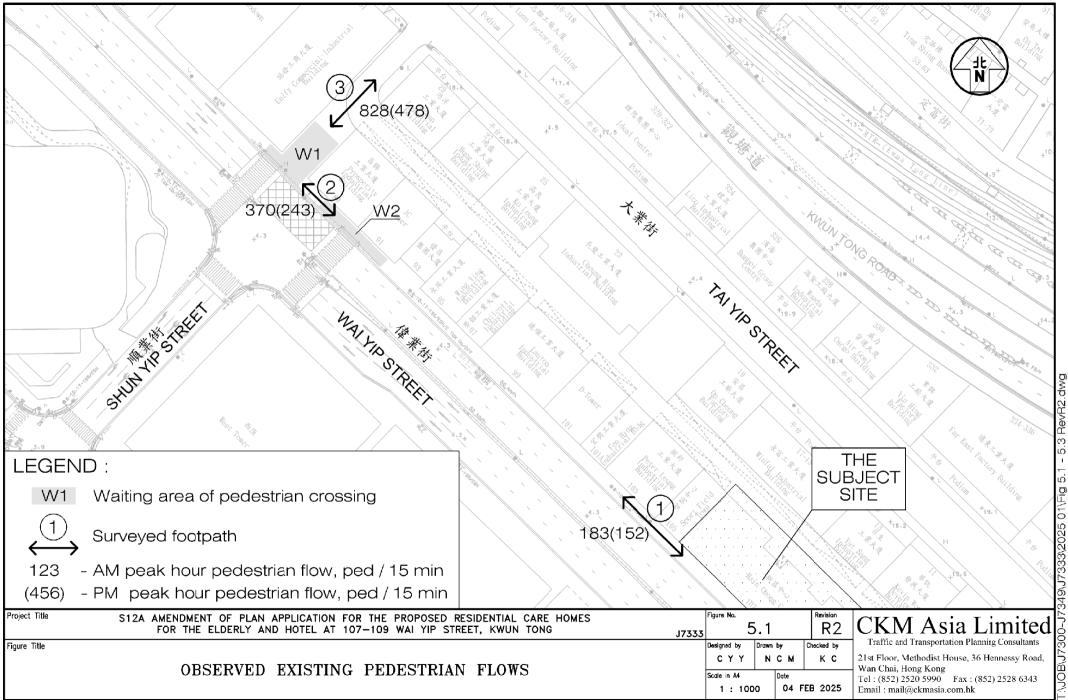

3.2 RevR1B dwg Т I 2\FIg 3.1 9\J7333\2024 9


04 FEB 2025

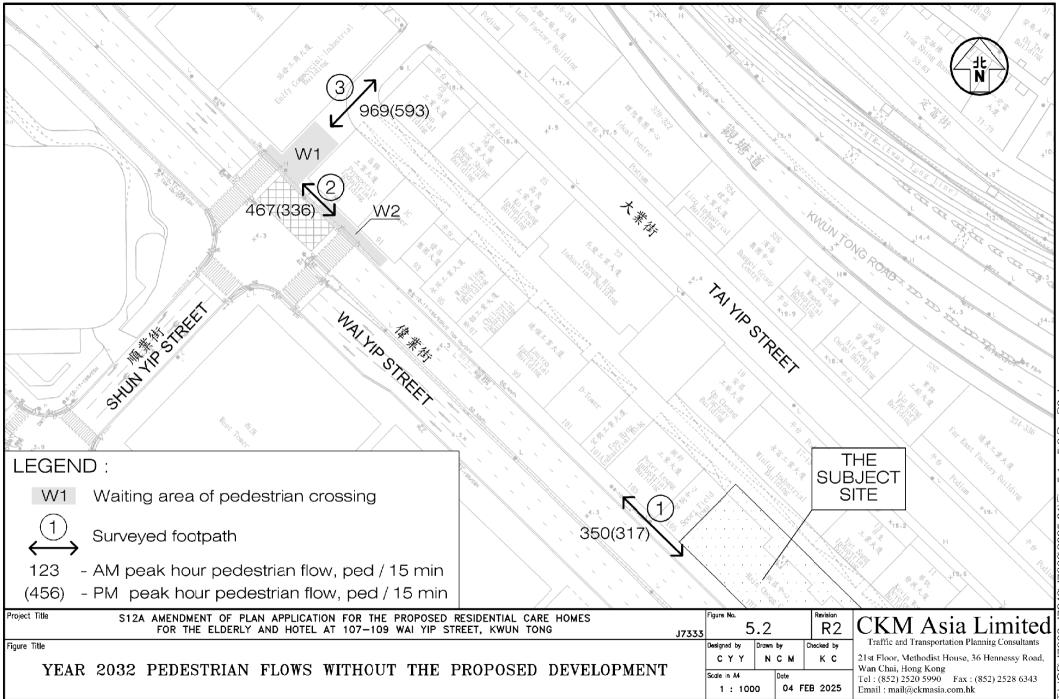

Email : mail@ckmasia.com.hk

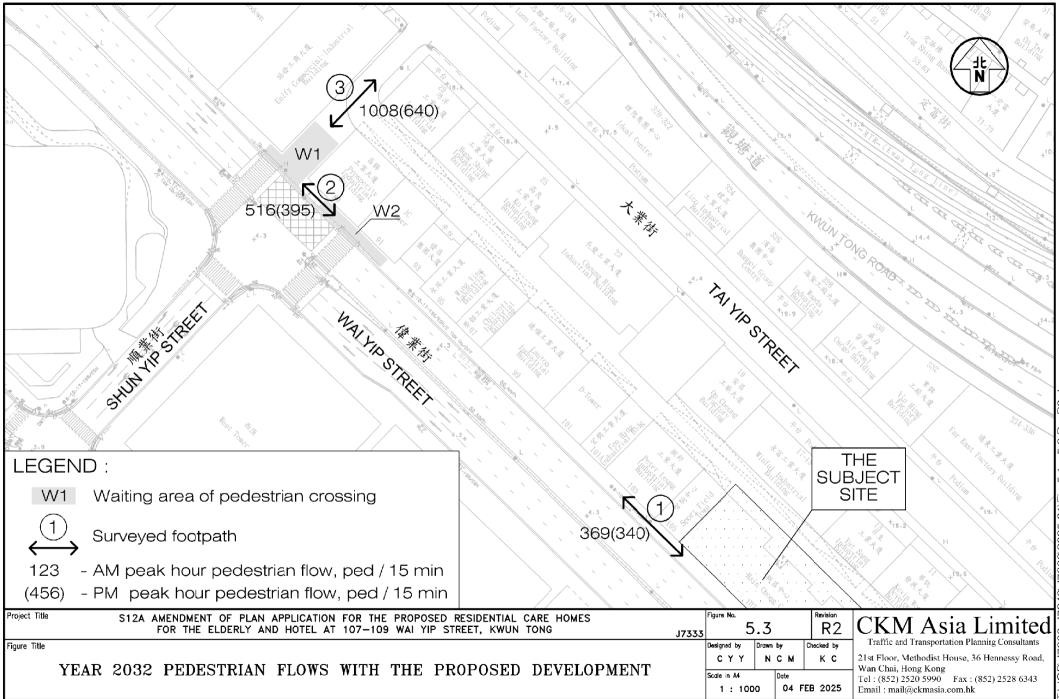

1 : 250


|               |                                                  |                                                                                                                        | 7.11 7                                   |
|---------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|               |                                                  |                                                                                                                        | Sil                                      |
|               |                                                  |                                                                                                                        | HHAR                                     |
| AN HE.        |                                                  |                                                                                                                        | 235                                      |
|               |                                                  |                                                                                                                        | -                                        |
|               |                                                  |                                                                                                                        |                                          |
|               |                                                  |                                                                                                                        | 3:6                                      |
|               |                                                  |                                                                                                                        | 16                                       |
|               |                                                  |                                                                                                                        |                                          |
| 11            | NON MORE SUCCESSION                              | 23 AREA OF INFLUENCE                                                                                                   | 2                                        |
| ~             |                                                  |                                                                                                                        |                                          |
|               |                                                  | 1 1 19 19 19 19 19 19 19 19 19 19 19 19                                                                                |                                          |
|               |                                                  |                                                                                                                        |                                          |
| ///           |                                                  |                                                                                                                        |                                          |
|               |                                                  |                                                                                                                        | TH                                       |
| J/////        |                                                  |                                                                                                                        |                                          |
| S////         |                                                  | K & X _ Come _ S & S & Come _ S & S & Come _ S & S & S & Come _ S & S & S & Come & S & S & S & S & S & S & S & S & S & | HAR.                                     |
|               | Not the the the                                  | THE 16 May 13 May 10 Road                                                                                              |                                          |
|               |                                                  |                                                                                                                        | H. S.                                    |
| LEGENI        | D :                                              |                                                                                                                        | 125                                      |
|               |                                                  |                                                                                                                        |                                          |
| Site          | Address                                          |                                                                                                                        | L                                        |
| 1             | 350 Kwun Tong Road                               |                                                                                                                        |                                          |
| 2             | 41 King Yip Street                               |                                                                                                                        | 1                                        |
| 3             | 32 Hung To Road                                  |                                                                                                                        | 70                                       |
| 4             | 82 Hung To Road                                  |                                                                                                                        | 101                                      |
| 5             | 7 Lai Yip Street                                 |                                                                                                                        | R                                        |
| 6             | 132 Wai Yip Street                               |                                                                                                                        | S                                        |
| 7             | 71 How Ming Street                               |                                                                                                                        | YK                                       |
| 8             | 203 Wai Yip Street                               |                                                                                                                        | S /                                      |
| 9             | 4 Tai Yip Street                                 |                                                                                                                        | X                                        |
| 10            | 33 Hung To Road                                  |                                                                                                                        |                                          |
| 11            | 28A Hung To Road                                 |                                                                                                                        | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
| 12            | 334 -336 and 338 Kwun Tong Road                  |                                                                                                                        |                                          |
| 13            | 11 Lai Yip Street                                |                                                                                                                        |                                          |
| 14            | Kun Tong Inland Lots 1 S.A , 1 RP, 3 and 15      |                                                                                                                        | À,                                       |
| 15            | 201 Wai Yip Street                               |                                                                                                                        | :K                                       |
| 16            | 1 Tai Yip Street and 111 Wai Yip Street          |                                                                                                                        | Q.L                                      |
| 17            | 5 Lai Yip Street                                 |                                                                                                                        | ALL LIN                                  |
| 18            | 73 - 75 Hung To Road                             |                                                                                                                        | Ŋ                                        |
| 19            | 25 Tai Yip Street, Kwun Tong                     |                                                                                                                        |                                          |
| 20<br>21      | Areas 4 and 5 of Kwun Tong Town Centre           |                                                                                                                        | Ú,                                       |
| 21            | EKEO Lai Yip Street Development                  |                                                                                                                        | $\sum$                                   |
| 23            | Kwun Tong Action Area<br>Kowloon Bay Action Area |                                                                                                                        |                                          |
| Project Title |                                                  | ICATION FOR THE PROPOSED RESIDENTIAL CARE HOMES                                                                        | jure No.                                 |
|               | FOR THE ELDERLY AND HO                           | ICATION FOR THE PROPOSED RESIDENTIAL CARE HOMES<br>DTEL AT 107–109 WAI YIP STREET, KWUN TONG<br>J7333                  |                                          |
| Figure Title  |                                                  |                                                                                                                        | signed by<br>C Y Y                       |
|               | LOCATION OF PLANNED DEVELOPMENTS                 | NI THE VICINITY OF THE DOODOGED DEVELODMENT                                                                            | ale in A3                                |
| 1             |                                                  |                                                                                                                        | 1:6                                      |



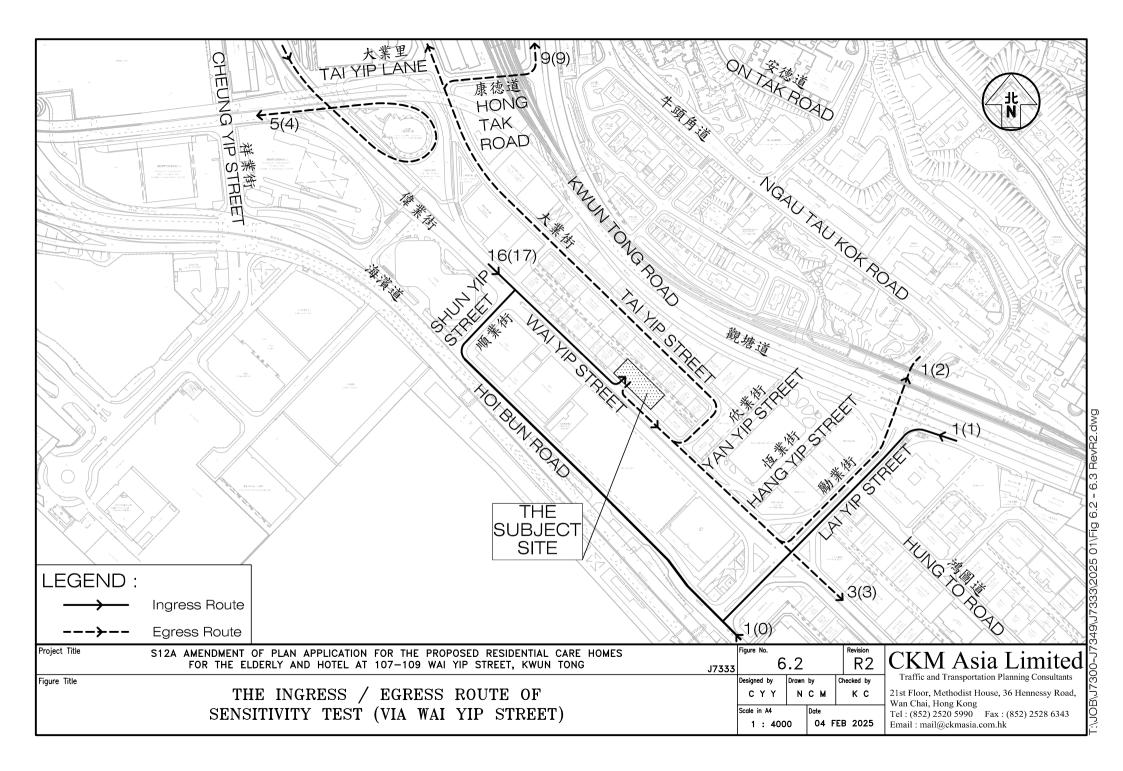


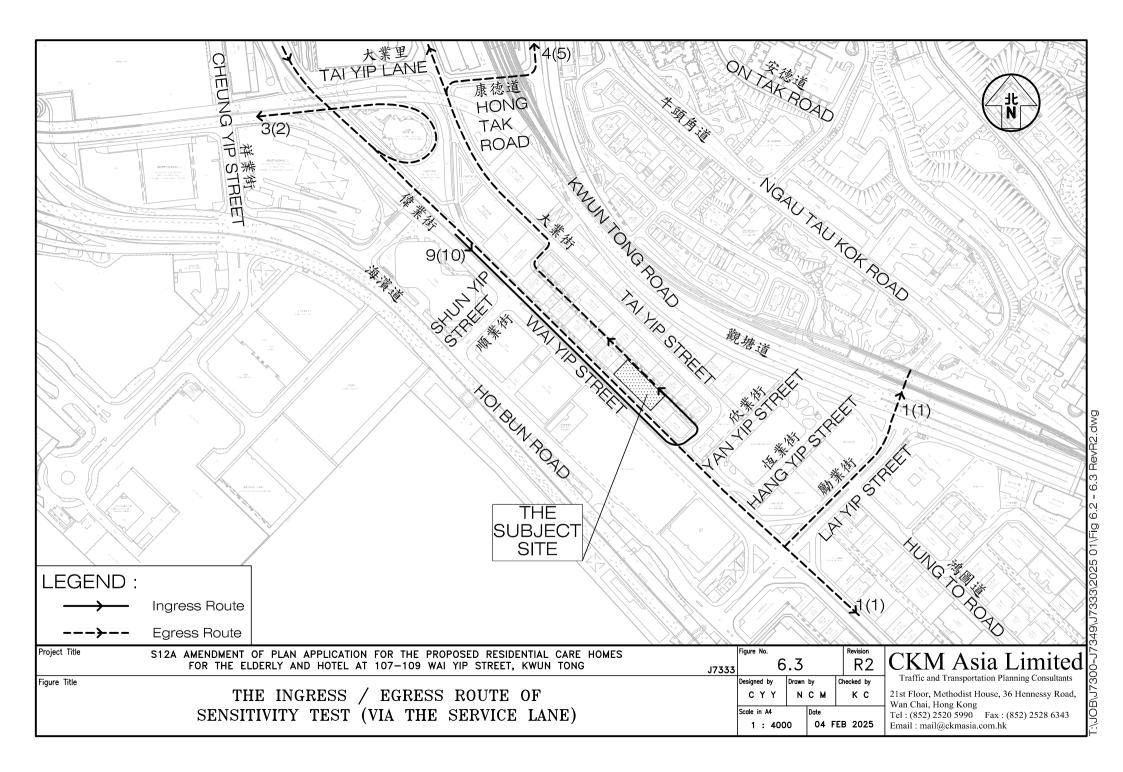



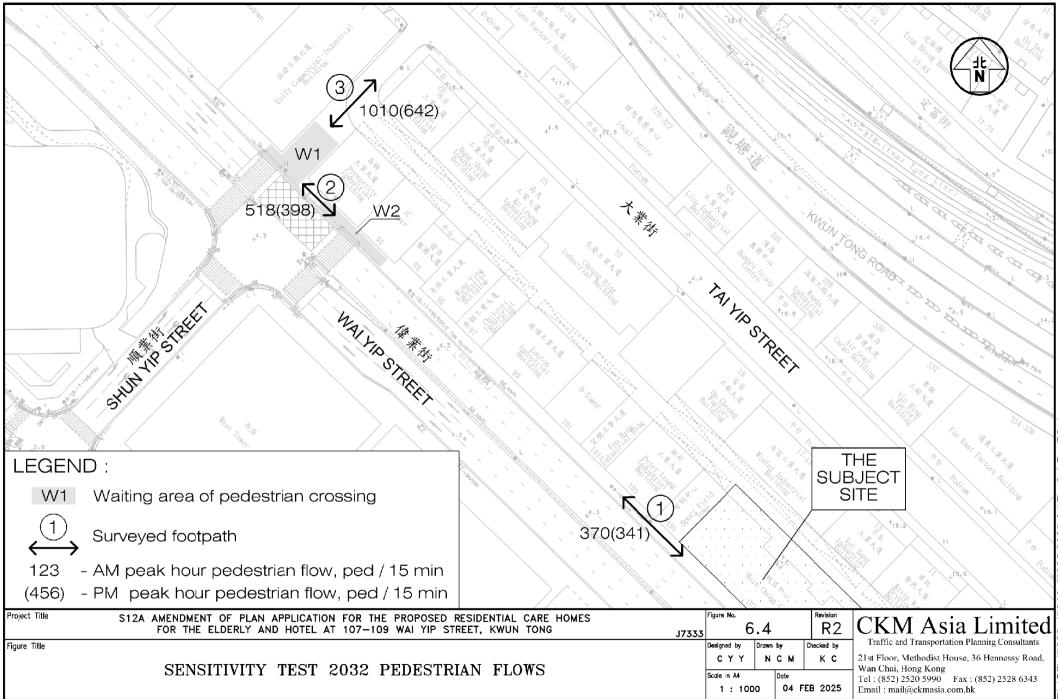









RevR2. ιÖ പ് 2025 01\Fig 349\J7




JOB\J7300-J7349\J7333\2025 01\Fig 5.1 - 5.3 RevR2.dwg









JOB\J7300-J7349\J7333\2025 01\Fig 6.4 RevR2.dwg

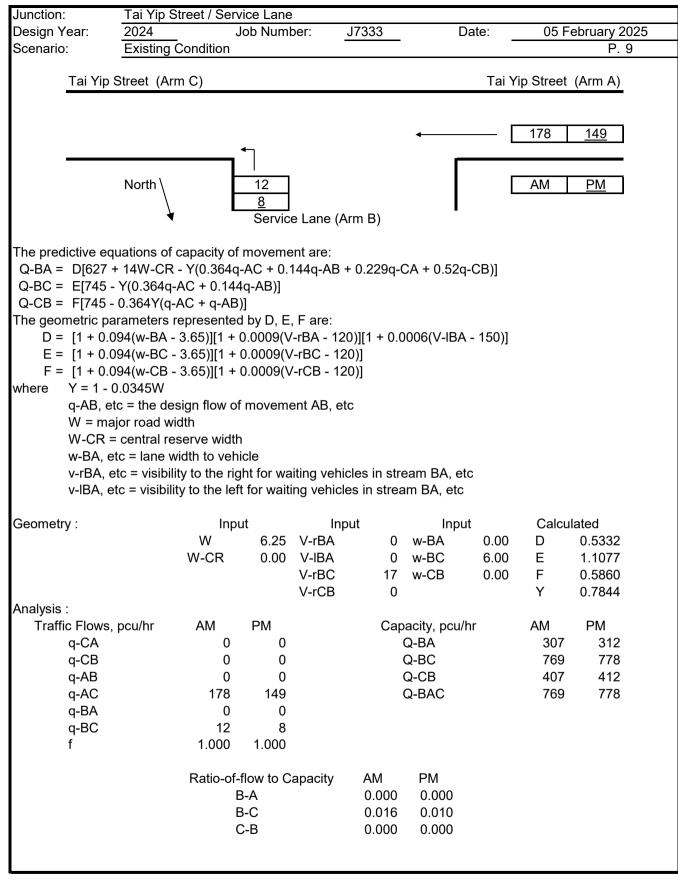
Appendix 1 – Calculation

| Junction:<br>Scenario: | Hoi Bun F | Road / Shun Yi<br>Condition | p Stree  | t          |              |                                               |                       |               |                       |                                       |           |            |                         | -                     | Job Nu           | mber:<br>P. | J7333<br>1 |
|------------------------|-----------|-----------------------------|----------|------------|--------------|-----------------------------------------------|-----------------------|---------------|-----------------------|---------------------------------------|-----------|------------|-------------------------|-----------------------|------------------|-------------|------------|
| Design Year:           | 2024      | Designe                     | ed By:   |            |              |                                               |                       | Checke        | ed By:                |                                       |           |            | -                       | Date:                 | 5 Fe             | ebruary     | 2025       |
|                        |           |                             |          | ~          |              |                                               |                       | <b>T</b> 1 00 | 0.1.51                | AM Peak                               |           | 0.14 L     | <b>T</b> 1 00           | 0.1.5                 | PM Peak          |             |            |
|                        | Approach  |                             | Phase    | Stage      | Width (m)    | Radius (m)                                    | % Up-hill<br>Gradient | Turning %     | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr)                      | y value   | Critical y | Turning %               | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr) | y value     | Critical y |
| Hoi Bun Road           | WB        | SA                          | A1       | 1          | 3.50         |                                               |                       |               | 1965                  | 422                                   | 0.215     | 0.215      |                         | 1965                  | 326              | 0.166       | 0.166      |
|                        |           | SA+RT                       | A2       | 1          | 3.50         | 25.0                                          |                       | 77            | 2012                  | 432                                   | 0.215     |            | 100                     | 1986                  | 330              | 0.166       |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
| Hoi Bun Road           | EB        | LT                          | B1       | 2          | 3.50         | 15.0                                          |                       | 100           | 1786                  | 307                                   | 0.172     | 0.172      | 100                     | 1786                  | 419              | 0.235       | 0.235      |
|                        |           | SA                          | B2       | 2          | 3.50         |                                               |                       |               | 2105                  | 289                                   | 0.137     |            |                         | 2105                  | 305              | 0.145       |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
| L                      |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
| L                      |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
| -                      |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
| n a da atrian in ha    |           |                             | 0        | 4.0        |              | uniu a                                        |                       | 4:            | 7                     |                                       | <u></u>   | 7          |                         | СМ –                  | 4.4              |             |            |
| pedestrian pha         | ise       |                             | Ср       | 1,3        |              |                                               | rossing               |               | 7                     |                                       | GM +      | 7          |                         | GM =                  | 14               | sec         |            |
|                        |           |                             | Dp       | 2,3        |              |                                               | rossing               |               | 6                     | sec                                   |           | 6          |                         | GM =                  | 12               | sec         |            |
|                        |           |                             | Ep       | 3          |              | min c                                         | rossing               | time =        | 11                    | sec                                   | GM +      | 12         | sec F                   | GM =                  | 23               | sec         |            |
|                        |           |                             | Fp       | 3          |              | min c                                         | rossing               | time =        | 8                     | sec                                   | GM +      | 6          | sec F                   | GM =                  | 14               | sec         |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
| AM Traffic Flow (pcu/h | r)        |                             |          | PM Traffic | Flow (pcu/hr | 1                                             |                       |               |                       |                                       |           |            |                         |                       | Note:            |             |            |
|                        | ,         |                             | N        |            | u ·          |                                               |                       |               | N                     |                                       | 00(W–3.25 |            | S=2080+10               |                       |                  |             |            |
| 307                    |           |                             |          |            | 419          |                                               |                       |               | '\                    | S <sub>M</sub> =S÷(1+                 | 1.5f/r)   | S          | 6 <sub>M</sub> =(S–230) | ÷(1+1.5f/r)           |                  |             |            |
| Î Î.                   |           |                             |          |            | Î.           |                                               |                       |               |                       |                                       | AM        | Peak       | PM                      | Peak                  |                  |             |            |
|                        | 289       |                             |          |            |              | 305                                           |                       |               |                       |                                       | 1+2       |            | 1+2                     |                       |                  |             |            |
|                        |           | 333<br>†                    |          |            |              |                                               |                       | 331<br>1      |                       | Sum y                                 | 0.387     |            | 0.401                   |                       |                  |             |            |
|                        |           | 521 -                       |          |            |              |                                               | 325                   | ▲—            |                       | L (s)                                 | 39        |            | 39                      |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       | C (s)                                 | 118       |            | 108                     |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       | practical y                           | 0.603     |            | 0.575                   |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       | R.C. (%)                              | 56%       |            | 43%                     |                       |                  |             |            |
|                        |           |                             |          |            |              | 0                                             |                       |               |                       | 11.0. (70)                            | 0070      |            | 1070                    |                       |                  |             |            |
| 1                      |           | 2                           |          |            |              | 3                                             |                       | Ep            |                       |                                       |           |            |                         |                       |                  |             |            |
| Cp                     |           | в1 —                        |          |            |              |                                               | Ср                    | 1             |                       |                                       |           |            |                         |                       |                  |             |            |
| *                      |           | B2                          | <b>→</b> |            |              |                                               | ÷<br>•                |               | Fp                    |                                       |           |            |                         |                       |                  |             |            |
|                        | t         | Dp                          |          |            |              |                                               | Dp                    |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        | ∔_ہ       | A2                          | 4        |            |              |                                               | •                     | •             |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             |          |            |              |                                               |                       |               |                       |                                       |           |            |                         |                       |                  |             |            |
|                        |           |                             | <u> </u> |            | 1/2          | ۱ <u>ــــــــــــــــــــــــــــــــــــ</u> |                       | 22            | 1/2                   | ـــــــــــــــــــــــــــــــــــــ | ~         |            | 1/2                     | I                     |                  |             |            |
| AM G =                 |           | I/G = 8                     | G =      |            | I/G =        | 8                                             | G =                   | 23            | I/G =                 | 2                                     | G =       |            | I/G =                   |                       | G =              |             |            |
| G =                    |           | I/G =                       | G =      |            | I/G =        |                                               | G =                   |               | I/G =                 |                                       | G =       |            | I/G =                   |                       | G =              |             |            |
| PM G =                 | :         | I/G = 8                     | G =      |            | I/G =        | 8                                             | G =                   | 23            | I/G =                 | 2                                     | G =       |            | I/G =                   |                       | G =              |             |            |
| G =                    |           | I/G =                       | G =      |            | I/G =        |                                               | G =                   |               | I/G =                 |                                       | G =       |            | I/G =                   |                       | G =              |             |            |

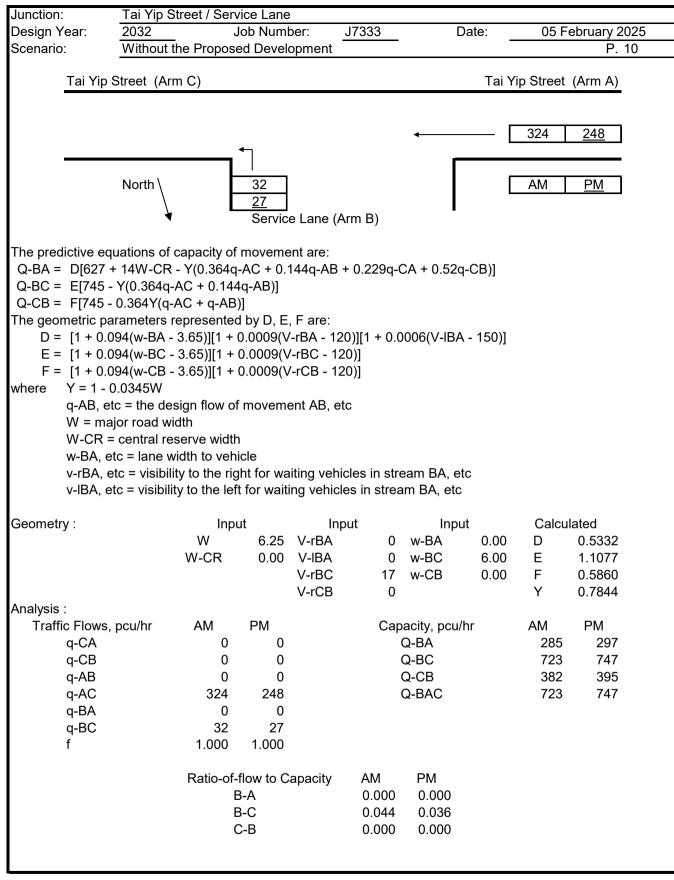
| Junction:                              |          | Road / Shun Yi            |          |             |              |            |                                              |            |                       |                       |           |            |                         | -                     | Job Nu   | imber:                 |              |
|----------------------------------------|----------|---------------------------|----------|-------------|--------------|------------|----------------------------------------------|------------|-----------------------|-----------------------|-----------|------------|-------------------------|-----------------------|----------|------------------------|--------------|
| Scenario:<br>Design Year:              |          | the Proposed D<br>Designe |          |             |              |            |                                              | Checke     | ed By:                |                       |           |            |                         | Date:                 | 5 F(     | P.<br>ebruary 2        |              |
|                                        |          | ,                         |          |             | <del></del>  |            |                                              |            |                       | AM Peak               |           |            |                         |                       | PM Peak  |                        |              |
|                                        | Approach |                           | Phase    | Stage       | Width (m)    | Radius (m) | ) % Up-hill<br>Gradient                      | Turning %  | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr)      | y value   | Critical y | Turning %               | Sat. Flow<br>(pcu/hr) |          | y value                | Critical y   |
| Hoi Bun Road                           | W/R      | SA                        | A1       | 1,2         | 3.50         |            | Glauton                                      |            | 1965                  | 838                   | 0.426     |            |                         | 1965                  | 711      | 0.362                  |              |
|                                        | 110      | RT                        | A2       | 1,2         | 3.50         | 25.0       |                                              | 100        | 1986                  | 431                   |           | 0.217      | 100                     | 1986                  | 414      |                        | 0.208        |
|                                        |          |                           | H2       | <u>  '</u>  | 3.00         | 20.0       |                                              | 100        | 1900                  | 431                   | 0.211     | 0.211      | 100                     | 1900                  | 414      | 0.200                  | 0.200        |
|                                        |          |                           |          | $\vdash$    |              |            | ──′                                          |            |                       |                       |           | - 075      | 100                     | 1700                  | 500      |                        |              |
| Hoi Bun Road                           | EB       | LT                        | B1       | 2           | 3.50         | 15.0       | ───╯                                         | 100        | 1786                  | 491                   | 0.275     |            |                         | 1786                  | 503      | 0.282                  |              |
|                                        |          | SA+LT                     | B2       | 2           | 3.50         | 20.0       | ───′                                         | 10         | 2089                  | 575                   | 0.275     | <b> </b>   | 16                      | 2080                  | 585      | 0.281                  | ──           |
|                                        |          |                           | ⊢−−−−    |             | ──           | ──         | <u> '</u>                                    | <b> </b> ' | ──                    | <b> </b>              | <u> </u>  | <b> </b>   |                         | ──                    | ──       | ──                     | ──           |
| L                                      |          |                           | <b> </b> | <b></b>     | <u> </u>     | <u> </u>   | <u>                                     </u> | <b> </b> ' | Ļ                     |                       | <u> </u>  |            | <b> </b>                | <u> </u>              | <u> </u> | <u> </u>               | <u> </u>     |
|                                        |          |                           | <b> </b> |             |              |            |                                              |            | <u> </u>              |                       |           |            |                         |                       |          |                        |              |
|                                        |          |                           | l        |             |              |            |                                              |            | l                     |                       |           |            | <u> </u>                |                       |          |                        |              |
|                                        |          |                           | <br>     |             |              |            | <u> </u>                                     |            |                       |                       |           |            |                         |                       |          |                        |              |
|                                        |          |                           |          |             |              |            | ر مرا                                        |            |                       |                       |           |            |                         |                       |          |                        |              |
|                                        |          |                           |          |             | <u> </u>     |            |                                              |            |                       | <u> </u>              | <u> </u>  |            |                         |                       |          |                        | 1            |
|                                        |          |                           |          |             |              |            |                                              | '          |                       |                       |           |            |                         | ├                     |          |                        |              |
|                                        |          |                           | [        |             | ┼───         | ──         | ┝───┤                                        | <b> </b> ' | <u> </u>              |                       |           |            | ┣───                    | ├──                   |          | ──                     | +'           |
|                                        |          |                           |          | ──          | ──           |            | ───┘                                         | <b> </b> ' | ┝───                  | <u> </u>              | <u> </u>  |            | ┣───                    | ──                    | ──       | ──                     | <sup> </sup> |
|                                        |          |                           | ┢────    |             | <u> </u>     | <b> </b>   | <u> </u> '                                   | <b> </b> ' | ──                    | <u> </u>              | <u> </u>  | <u> </u>   |                         |                       | <u> </u> | <b> </b>               | <b> </b>     |
|                                        |          |                           | <b> </b> | <u> </u>    | <u> </u>     | <u> </u>   | <u>                                     </u> | <b> </b> ' | L                     |                       |           |            | <b></b>                 | <u> </u>              | <u> </u> | <u> </u>               |              |
|                                        |          |                           | I        |             |              |            |                                              |            |                       |                       |           |            |                         |                       |          |                        |              |
| Γ                                      |          |                           |          | 「           | Γ_           | Γ          | <u> </u>                                     | ſ _ '      | 「                     | Γ                     | Γ         | Γ_         | Γ_                      | Γ                     | Γ        | Γ_                     | Γ_'          |
|                                        |          |                           |          |             |              |            | ر مرا                                        |            |                       |                       |           |            |                         |                       |          |                        |              |
|                                        |          |                           |          |             |              |            | 1                                            |            |                       |                       | <u> </u>  |            |                         |                       |          |                        |              |
|                                        |          |                           |          |             | +            |            |                                              |            | <u> </u>              | <u> </u>              | <u> </u>  | <u> </u>   |                         | <u> </u>              |          |                        | +            |
| - direction nhe                        |          |                           | 0        | 4.2         | +            |            |                                              | ·····      |                       |                       | <u> </u>  | _          |                         |                       | 44       |                        | +            |
| pedestrian pha                         | ase      |                           | Ср       | 1,3         | +            |            | rossing t                                    |            | 7                     |                       | GM +      | 7          |                         | GM =                  | 14       | sec                    | +            |
|                                        |          |                           | Dp       | 3           | ──           |            | crossing t                                   |            | 6                     | sec (                 |           | 6          |                         | FGM =                 | 12       | sec                    | ──           |
|                                        |          |                           | Ep       | 3           | ──           |            | crossing t                                   |            | 11                    | sec (                 | GM +      | 12         | sec F                   | =GM =                 | 23       | sec                    |              |
|                                        |          |                           | Fp       | 3           | <u> </u>     | min c      | crossing t                                   | time =     | 8                     | sec (                 | GM +      | 6          | sec F                   | =GM =                 | 14       | sec                    | <u> </u>     |
|                                        |          |                           | L        |             |              |            |                                              |            |                       |                       |           |            |                         |                       |          |                        |              |
| Γ                                      |          |                           | -<br>I   | Γ           | Γ            | Γ          |                                              |            | Ē                     | Γ                     |           | Γ          | Γ                       |                       | Γ        | Γ                      | Γ            |
|                                        |          |                           |          |             |              | 1          |                                              |            |                       |                       |           |            |                         |                       |          | 1                      |              |
|                                        |          |                           | 1        |             | <u> </u>     |            |                                              |            |                       | <u> </u>              |           |            |                         |                       |          |                        | <u> </u>     |
| ······································ |          |                           |          | C'I Troffie |              |            |                                              |            | <u> </u>              | <u> </u>              |           | <u> </u>   | <u> </u>                |                       |          | <u> </u>               | <u> </u>     |
| AM Traffic Flow (pcu/h                 | r)       |                           | Ν        | PM Trame    | Flow (pcu/hr | )          |                                              |            | Ν                     | S=1940+1              | 00(W–3.25 | i) :       | S=2080+10               | 0(W-3.25)             |          |                        |              |
| 550                                    |          |                           |          | 1           | 599          |            |                                              |            |                       | S <sub>M</sub> =S÷(1+ | 1.5f/r)   | 5          | S <sub>M</sub> =(S–230) | ÷(1+1.5f/r)           |          | n Improver<br>by Other |              |
| l ↑                                    |          |                           | $\sim$   | 1           | t            |            |                                              |            | $\sim$                |                       | AM        | Peak       | PM                      | Peak                  | Guionic  | by Outo.               | Fiojool      |
| ┃ ──└→                                 | 516      |                           | I        | —           | <b>→</b>     | 489        |                                              |            | I                     |                       | 1+2       | l Gai.     | 1+2                     | Guit                  |          |                        |              |
|                                        |          | 431                       | I        | 1           |              |            |                                              | 414        | I                     | 2                     | 0.492     |            | 0.490                   | '                     | 1        |                        |              |
|                                        |          | 838                       | I        | 1           |              |            | 711                                          | Ļ          |                       | Sum y                 |           |            |                         | $\vdash$              | 1        |                        |              |
|                                        |          | 000                       | I        | 1           |              |            |                                              |            | I                     | L (s)                 | 39        |            | 39                      | <b> </b> '            | 1        |                        |              |
|                                        |          |                           | I        | 1           |              |            |                                              |            | I                     | C (s)                 | 118       | ──         | 108                     | <b> </b> '            | 4        |                        |              |
|                                        |          |                           | I        | 1           |              |            |                                              |            | I                     | practical y           | 0.603     | <b> </b>   | 0.575                   | <b>↓</b> '            | 4        |                        |              |
|                                        |          |                           |          | Ĺ           |              |            |                                              |            |                       | R.C. (%)              | 22%       |            | 17%                     |                       |          |                        |              |
| 1                                      |          | 2                         |          |             |              | 3          |                                              |            |                       | T                     |           |            |                         | <u> </u>              |          |                        |              |
| <b>I</b> +                             |          |                           | t        |             |              |            | <b>ب</b> م                                   |            |                       |                       |           |            |                         |                       |          |                        |              |
| Cp                                     |          | B1 1                      |          |             |              |            | Ср                                           |            |                       |                       |           |            |                         |                       |          |                        |              |
|                                        |          | B2                        | →        |             |              |            |                                              |            | Fp                    |                       |           |            |                         |                       |          |                        |              |
|                                        | t        |                           |          |             |              |            | Dp 🖣                                         | ţ          |                       |                       |           |            |                         |                       |          |                        |              |
|                                        |          | A2<br>A1                  |          |             | —— A1        | i          |                                              |            |                       |                       |           |            |                         |                       |          |                        |              |
|                                        |          |                           |          |             |              |            |                                              |            |                       |                       |           |            |                         |                       |          |                        |              |
| AM G =                                 |          | I/G = 8                   | G =      |             | I/G =        | R          | G =                                          | 23         | I/G =                 | 2<br>2                | G =       |            | I/G =                   |                       | G =      | -                      | -            |
|                                        |          |                           |          |             |              |            |                                              |            |                       | 2                     |           |            |                         |                       |          |                        |              |
| G =                                    |          | I/G =                     | G =      |             | I/G =        |            | G =                                          |            | I/G =                 |                       | G =       |            | I/G =                   |                       | G =      |                        |              |
| PM G =                                 |          | I/G = 8                   | G =      |             | I/G =        |            | G =                                          | 23         | I/G =                 | 2                     | G =       |            | I/G =                   |                       | G =      |                        |              |
| G =                                    | -        | I/G =                     | G =      |             | I/G =        |            | G =                                          |            | I/G =                 |                       | G =       |            | I/G =                   |                       | G =      |                        |              |

| Junction:<br>Scenario:  |            | Road / Shun Y<br>Proposed Dev |              |            | bed RC        | HE and     | 200-roo               | m Hotel   | )            |                       |           |            |                         | -                     | Job Nu   | mber:<br>P.          |            |
|-------------------------|------------|-------------------------------|--------------|------------|---------------|------------|-----------------------|-----------|--------------|-----------------------|-----------|------------|-------------------------|-----------------------|----------|----------------------|------------|
|                         | 2032       | Designe                       |              |            |               |            |                       |           |              |                       |           |            | -                       | Date:                 | 5 Fe     | ebruary 2            |            |
|                         |            |                               |              |            | 1             |            |                       |           |              | AM Peak               |           |            |                         |                       | PM Peak  |                      |            |
|                         | Approach   |                               | Phase        | Stage      | Width (m)     | Radius (m) | % Up-hill<br>Gradient | Turning % | Sat. Flow    | Flow<br>(pcu/hr)      | y value   | Critical y | Turning %               | Sat. Flow<br>(pcu/hr) | Flow     | y value              | Critical y |
| Lisi Dum Daard          |            | C.A.                          |              | 4.0        | 2.50          |            | Gradient              |           | (pcu/hr)     |                       | 0.400     |            |                         |                       | (pcu/hr) | 0.000                |            |
| Hoi Bun Road            | WB         | SA                            | A1           | 1,2        | 3.50          |            |                       |           | 1965         | 838                   | 0.426     |            |                         | 1965                  | 711      | 0.362                |            |
|                         |            | RT                            | A2           | 1          | 3.50          | 25.0       |                       | 100       | 1986         | 434                   | 0.219     | 0.219      | 100                     | 1986                  | 416      | 0.209                | 0.209      |
| Hoi Bun Road            | FB         | LT                            | B1           | 2          | 3.50          | 15.0       |                       | 100       | 1786         | 491                   | 0 275     | 0.275      | 100                     | 1786                  | 503      | 0.282                | 0.282      |
| TIOI Dull Road          |            |                               |              |            |               |            |                       |           |              |                       |           | 0.215      |                         |                       |          |                      | 0.202      |
|                         |            | SA+LT                         | B2           | 2          | 3.50          | 20.0       |                       | 10        | 2089         | 575                   | 0.275     |            | 16                      | 2080                  | 585      | 0.281                |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              | -          |               |            |                       |           | -            |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
| pedestrian pha          | ase        |                               | Ср           | 1,3        |               | min c      | rossing               | time =    | 7            | sec                   | GM +      | 7          | sec F                   | GM =                  | 14       | sec                  |            |
|                         |            |                               | Dp           | 3          |               | min c      | rossing               | time =    | 6            | sec                   | GM +      | 6          | sec F                   | GM =                  | 12       | sec                  |            |
|                         |            |                               | Ep           | 3          |               | min c      | rossing               | time =    | 11           | sec                   | GM +      | 12         | sec F                   | GM =                  | 23       | sec                  |            |
|                         |            |                               | Fp           | 3          |               | min c      | rossing               | time =    | 8            | sec                   | GM +      | 6          | sec F                   | GM =                  | 14       | sec                  |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
| AM Traffic Flow (pcu/h  | <i>*</i> 1 |                               |              | DM Troffie | Flow (pcu/hr  |            |                       |           |              | 1                     |           |            |                         |                       | Matai    |                      |            |
| Aim Tranic Flow (pcu/ii | 1)         |                               | Ν            | PWITAIIIC  | riow (pcu/iii |            |                       |           | Ν            | S=1940+1              | 00(W-3.25 | i) :       | S=2080+10               | 00(W-3.25)            | Note:    |                      |            |
| 550                     |            |                               |              |            | 599           |            |                       |           |              | S <sub>M</sub> =S÷(1+ | 1.5f/r)   | s          | 6 <sub>M</sub> =(S-230) | ÷(1+1.5f/r)           |          | Improver<br>by Other |            |
| †                       |            |                               | $\backslash$ |            | 1             |            |                       |           | $\backslash$ |                       | AM        | Peak       | PM                      | Peak                  |          | ,                    | ,          |
|                         | 516        |                               |              |            | <b>&gt;</b>   | 489        |                       |           |              |                       | 1+2       |            | 1+2                     |                       |          |                      |            |
|                         |            | 434<br>†                      |              |            |               |            |                       | 416       |              | Sum y                 | 0.494     |            | 0.491                   |                       |          |                      |            |
|                         |            | 838 ◀                         |              |            |               |            | 711                   | •         |              | L (s)                 | 39        |            | 39                      |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              | C (s)                 | 118       |            | 108                     |                       | 1        |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              | practical y           | 0.603     |            | 0.575                   |                       |          |                      |            |
|                         |            |                               |              |            |               |            |                       |           |              | R.C. (%)              | 22%       |            | 17%                     |                       |          |                      |            |
| -                       |            | -                             |              |            |               | -          |                       |           |              | R.C. (%)              | 2270      |            | 1770                    |                       |          |                      |            |
| 1                       |            | 2                             |              |            |               | 3          |                       | Ep.       |              |                       |           |            |                         |                       |          |                      |            |
| Cp                      |            | B1                            | Ĵ            |            |               |            | Cp                    | ·····•    |              |                       |           |            |                         |                       |          |                      |            |
| ¥                       |            | <sub>В2</sub>                 | →            |            |               |            | ∳<br>Ą                |           | Fp           |                       |           |            |                         |                       |          |                      |            |
|                         | •          |                               |              |            |               |            | Dp                    | l         |              |                       |           |            |                         |                       |          |                      |            |
|                         |            | — A2<br>— A1                  |              |            | —— A1         |            | ٦                     | •         |              |                       |           |            |                         |                       |          |                      |            |
|                         | -          |                               |              | -          | ——- A1        |            |                       |           |              |                       |           |            |                         |                       |          |                      |            |
| AM G =                  |            | I/G = 8                       | G =          |            | I/G =         | 8          | G =                   | 23        | I/G =        | 2                     | G =       |            | I/G =                   | 1                     | G =      |                      |            |
| G =                     |            | I/G = 8                       | G =          |            | I/G =         | 5          | G =                   |           | I/G =        | -                     | G =       |            |                         |                       | G =      |                      |            |
|                         |            |                               |              |            |               | 0          |                       | 22        |              | 2                     |           |            | I/G =                   |                       |          |                      |            |
| PM G =                  |            | I/G = 8                       | G =          |            | I/G =         | Ø          | G =                   | 23        | I/G =        |                       | G =       |            | I/G =                   |                       | G =      |                      |            |
| G =                     | :          | I/G =                         | G =          |            | I/G =         |            | G =                   |           | I/G =        |                       | G =       |            | I/G =                   |                       | G =      |                      |            |

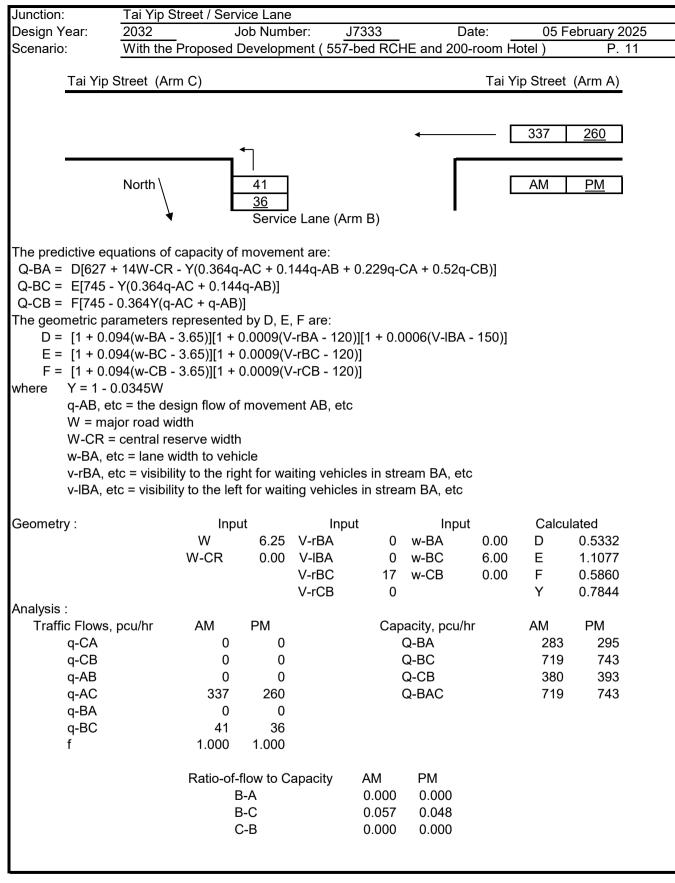
| Junction:                   | Hoi Bun Roa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |               |              | 200 room                  |               |          |                |             |                                                                             |                                                                   |            |                                                              |             | Job Nu             | mber:                |              |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|--------------|---------------------------|---------------|----------|----------------|-------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|------------|--------------------------------------------------------------|-------------|--------------------|----------------------|--------------|
| Scenario:<br>Design Year:   | Sensitivity To<br>2032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Designe               |               |              |                           |               |          | Checke         | ed By:      |                                                                             |                                                                   |            |                                                              | Date:       | 5 Fe               | P.<br>ebruary 2      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                     |               |              |                           |               |          |                |             | AM Peak                                                                     |                                                                   |            |                                                              |             | PM Peak            |                      |              |
|                             | Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | Phase         | Stage        | Width (m)                 | Radius (m)    |          | Turning %      | Sat. Flow   | Flow                                                                        | y value                                                           | Critical y | Turning %                                                    | Sat. Flow   | Flow               | y value              | Critical y   |
| Le: Due Dood                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>              | A 1           | 10           | 2 50                      |               | Gradient |                | (pcu/hr)    | (pcu/hr)                                                                    | 0 406                                                             |            |                                                              | (pcu/hr)    | (pcu/hr)           | 0.262                |              |
| Hoi Bun Road                | WВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA                    | A1            | 1,2          | 3.50                      |               |          |                | 1965        | 838                                                                         | 0.426                                                             | 2.040      | 100                                                          | 1965        | 711                | 0.362                |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RT                    | A2            | 1            | 3.50                      | 25.0          |          | 100            | 1986        | 434                                                                         | 0.219                                                             | 0.219      | 100                                                          | 1986        | 416                | 0.209                | 0.209        |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <b>└───</b> ′ |              |                           | <u> </u>      |          | <b> </b> '     | <b> </b>    |                                                                             | <b> </b>                                                          |            | <sup> </sup>                                                 |             |                    | <u> </u>             |              |
| Hoi Bun Road                | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT                    | B1            | 2            | 3.50                      | 15.0          |          | 100            | 1786        | 491                                                                         | 0.275                                                             | 0.275      | 100                                                          | 1786        | 503                | 0.282                | 0.282        |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SA+LT                 | B2            | 2            | 3.50                      | 20.0          |          | 10             | 2089        | 575                                                                         | 0.275                                                             |            | 16                                                           | 2080        | 585                | 0.281                |              |
| Г                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | ī _'          | ſ            | [                         | Γ             | [ _ ]    | ſ'             | Ī           | [ _ ]                                                                       | Γ                                                                 | [ _ ]      | Ē'                                                           | 「           | Γ                  | []                   | Ē            |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |               |              |                           |               |          |                |             |                                                                             |                                                                   |            |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | l             |              |                           |               |          |                |             |                                                                             |                                                                   |            |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <sup> </sup>  |              |                           |               |          |                |             |                                                                             |                                                                   |            |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <sup> </sup>  |              |                           |               |          | ┨────┤         |             |                                                                             | <u> </u>                                                          | ├───┦      |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <sup> </sup>  |              |                           | ┣───          |          | ┫━━━━┘         |             | l                                                                           | <u> </u>                                                          | ───┦       |                                                              |             |                    | $\square$            |              |
| ļ                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <b>⊢</b> '    |              |                           |               |          | <b> </b> '     |             | ļ!                                                                          | <u> </u>                                                          | └───┦      | <sup> </sup>                                                 |             |                    | <u> </u>             |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <b>ا</b> ا    |              |                           | <u> </u>      |          | <b> </b> '     | <u> </u>    |                                                                             | <u> </u>                                                          |            |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <u> </u>      |              |                           |               |          |                | <u> </u>    |                                                                             |                                                                   |            |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | I'            |              |                           |               |          |                |             |                                                                             |                                                                   |            |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | ı '           |              |                           |               |          |                |             |                                                                             |                                                                   |            |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | i i           |              |                           |               |          |                |             |                                                                             | [                                                                 |            |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | []            |              |                           |               |          |                |             |                                                                             | <u> </u>                                                          |            |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <sup> </sup>  |              |                           |               |          |                |             |                                                                             |                                                                   | ├          |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <sup> </sup>  |              |                           | ┣───          |          | ┫━━━━┘         |             | l                                                                           | <u> </u>                                                          | ───┦       |                                                              |             |                    | $\square$            |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | I'            |              |                           | ┝───          | ļ        | <b> </b> '     | ┝────       | ļ!                                                                          | <u> </u>                                                          |            | <sup> </sup>                                                 |             |                    |                      | <sup> </sup> |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <b>ب</b> ا    |              |                           |               |          |                | <u> </u>    |                                                                             |                                                                   |            |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | L'            |              |                           |               |          |                | l           |                                                                             |                                                                   |            |                                                              |             |                    |                      |              |
| pedestrian pha              | ase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | Ср            | 1,3          | [                         | min c         | rossing  | tim <u>e =</u> | 7           | sec (                                                                       | GM +                                                              | 7          | sec F                                                        | GM =        | 14                 | sec                  | Ī            |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Dp            | 3            |                           |               | rossing  |                | 6           | sec (                                                                       |                                                                   | 6          |                                                              | GM =        | 12                 | sec                  |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Ep            | 3            | 1                         |               | rossing  |                | 11          | sec (                                                                       |                                                                   | 12         | sec F                                                        |             | 23                 | sec                  |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <u> </u>      | 3            |                           |               | rossing  |                | 8           | sec (                                                                       |                                                                   | 6          |                                                              | GM =        | 14                 |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <u>- гр</u>   | 3            |                           | THE G         | rossing  | line –         | 0           | 350 1                                                                       |                                                                   | U          | 5601                                                         | Givi –      | 14                 | sec                  |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | <b>└───</b> ′ |              |                           |               |          |                | L           | <u> </u>                                                                    |                                                                   | <b> </b>   |                                                              | 1           |                    | $\vdash$             |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | · .           |              |                           | 1             |          | (              | 1           |                                                                             |                                                                   |            | •                                                            |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | ļ             |              |                           | ļ             |          |                |             |                                                                             |                                                                   |            |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |               |              |                           |               |          |                |             |                                                                             |                                                                   |            |                                                              |             |                    |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |               |              |                           |               |          |                |             |                                                                             |                                                                   |            |                                                              |             |                    |                      |              |
| AM Traffic Flow (pcu/h      | r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               | PM Traffic I | Flow (pcu/hr)             |               |          |                |             | s=1040+1                                                                    | -0/M-3 25                                                         |            | ·                                                            | 0/1AI_2 25) | Note:              |                      |              |
|                             | r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | N             | PM Traffic F |                           | )<br>         |          |                | N           |                                                                             | 100(W-3.25                                                        |            | 5=2080+10                                                    |             |                    | Improven             | rent         |
| AM Traffic Flow (pcu/h      | r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | × ×           | PM Traffic F | Flow (pcu/hr)             | )<br>         |          |                | N N         | S=1940+1<br>S <sub>M</sub> =S÷(1+                                           |                                                                   |            | S=2080+10<br><sub>M</sub> =(S–230)                           |             | Junction           | Improven<br>by Other |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | -             | PM Traffic F |                           |               |          |                | -           |                                                                             | 1.5f/r)                                                           |            | <sub>M</sub> =(S–230)                                        |             | Junction           |                      |              |
|                             | <sup>nr)</sup> 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | -             | PM Traffic I |                           | 489           |          |                | -           |                                                                             | 1.5f/r)                                                           | S          | <sub>M</sub> =(S–230)                                        | ÷(1+1.5f/r) | Junction           |                      |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 434                   | -             | PM Traffic I |                           |               |          | 416            | -           |                                                                             | 1.5f/r)                                                           | S          | M=(S-230)                                                    | ÷(1+1.5f/r) | Junction           |                      |              |
|                             | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 434<br>338            | -             | PM Traffic I |                           |               | 711      | 1 1            | -           | S <sub>M</sub> =S÷(1+                                                       | 1.5f/r)<br>AM<br>1+2                                              | S          | <b>м=(S-230)</b><br>РМ 1<br>1+2                              | ÷(1+1.5f/r) | Junction           |                      |              |
|                             | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t                     | -             | PM Traffic I |                           |               | 711      | 1 1            | -           | Sum y<br>L (s)                                                              | 1.5f/r)<br>AM<br>1+2<br>0.494<br>39                               | S          | PM<br>1+2<br>0.491<br>39                                     | ÷(1+1.5f/r) | Junction           |                      |              |
|                             | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t                     | -             | PM Traffic I |                           |               | 711      | 1 1            | -           | Sum y<br>L (s)<br>C (s)                                                     | 1.5f/r)<br>AM<br>1+2<br>0.494<br>39<br>118                        | S          | PMI<br>1+2<br>0.491<br>39<br>108                             | ÷(1+1.5f/r) | Junction           |                      |              |
|                             | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t                     | -             | PM Traffic I |                           |               | 711      | 1 1            | -           | Sum y<br>L (s)<br>C (s)<br>practical y                                      | 1.5f/r)<br>AMI<br>1+2<br>0.494<br>39<br>118<br>0.603              | S          | м=(S-230)<br>РМ і<br>1+2<br>0.491<br>39<br>108<br>0.575      | ÷(1+1.5f/r) | Junction           |                      |              |
|                             | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t                     | -             | PM Traffic I |                           |               | 711      | 1 1            | -           | Sum y<br>L (s)<br>C (s)                                                     | 1.5f/r)<br>AM<br>1+2<br>0.494<br>39<br>118                        | S          | PMI<br>1+2<br>0.491<br>39<br>108                             | ÷(1+1.5f/r) | Junction           |                      |              |
|                             | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t                     | -             | PM Traffic I |                           |               |          | <u> </u>       | -           | Sum y<br>L (s)<br>C (s)<br>practical y                                      | 1.5f/r)<br>AMI<br>1+2<br>0.494<br>39<br>118<br>0.603              | S          | м=(S-230)<br>РМ і<br>1+2<br>0.491<br>39<br>108<br>0.575      | ÷(1+1.5f/r) | Junction           |                      |              |
| 550<br>,                    | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t                     | -             | PM Traffic I |                           | 489           |          | 1 1            | -           | Sum y<br>L (s)<br>C (s)<br>practical y                                      | 1.5f/r)<br>AMI<br>1+2<br>0.494<br>39<br>118<br>0.603              | S          | м=(S-230)<br>РМ і<br>1+2<br>0.491<br>39<br>108<br>0.575      | ÷(1+1.5f/r) | Junction           |                      |              |
|                             | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t                     | -             | PM Traffic I |                           | 489           |          | Ep.            |             | Sum y<br>L (s)<br>C (s)<br>practical y                                      | 1.5f/r)<br>AMI<br>1+2<br>0.494<br>39<br>118<br>0.603              | S          | м=(S-230)<br>РМ і<br>1+2<br>0.491<br>39<br>108<br>0.575      | ÷(1+1.5f/r) | Junction           |                      |              |
| 550<br>,                    | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t                     | -             | PM Traffic I |                           | 489           | Cp<br>¢  | Ep.            | -           | Sum y<br>L (s)<br>C (s)<br>practical y                                      | 1.5f/r)<br>AMI<br>1+2<br>0.494<br>39<br>118<br>0.603              | S          | м=(S-230)<br>РМ і<br>1+2<br>0.491<br>39<br>108<br>0.575      | ÷(1+1.5f/r) | Junction           |                      |              |
| 550<br>,                    | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>338              | -             | PM Traffic I | <sup>599</sup> <b>↑</b> , | 489           |          | Ep.            |             | Sum y<br>L (s)<br>C (s)<br>practical y                                      | 1.5f/r)<br>AMI<br>1+2<br>0.494<br>39<br>118<br>0.603              | S          | м=(S-230)<br>РМ і<br>1+2<br>0.491<br>39<br>108<br>0.575      | ÷(1+1.5f/r) | Junction           |                      |              |
| 550<br>,                    | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>B1<br>B2         | -             | PM Traffic I |                           | 489           | Cp<br>¢  | Ep.            |             | Sum y<br>L (s)<br>C (s)<br>practical y                                      | 1.5f/r)<br>AMI<br>1+2<br>0.494<br>39<br>118<br>0.603              | S          | м=(S-230)<br>РМ і<br>1+2<br>0.491<br>39<br>108<br>0.575      | ÷(1+1.5f/r) | Junction           |                      |              |
| 550<br>,                    | 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>338              | -             | PM Traffic I | <sup>599</sup> <b>↑</b> , | 489           | Cp<br>¢  | Ep.            |             | Sum y<br>L (s)<br>C (s)<br>practical y                                      | 1.5f/r)<br>AMI<br>1+2<br>0.494<br>39<br>118<br>0.603              | S          | м=(S-230)<br>РМ і<br>1+2<br>0.491<br>39<br>108<br>0.575      | ÷(1+1.5f/r) | Junction           |                      |              |
| 550<br>,                    | <sup>►</sup> 516<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>338              | -             | PM Traffic I | <sup>599</sup> <b>↑</b> , | 489           | Cp<br>¢  | Ep •           |             | S <sub>M</sub> =S+(1+<br>Sum y<br>L (s)<br>C (s)<br>practical y<br>R.C. (%) | 1.5f/r)<br>AMI<br>1+2<br>0.494<br>39<br>118<br>0.603              | S          | м=(S-230)<br>РМ і<br>1+2<br>0.491<br>39<br>108<br>0.575      | ÷(1+1.5f/r) | Junction           | by Other             |              |
| 550<br>,<br>1<br>           | <ul> <li>516</li> <li>8</li> <li>↓</li> <li>↓<td>2<br/>B1<br/>B2<br/>- A1</td><td></td><td>PM Traffic :</td><td>599</td><td>489<br/>3<br/>8</td><td>Cp<br/>Dp</td><td>Ep •</td><td>Fp</td><td>S<sub>M</sub>=S+(1+<br/>Sum y<br/>L (s)<br/>C (s)<br/>practical y<br/>R.C. (%)</td><td>1.51/r)<br/>AM<br/>1+2<br/>0.494<br/>39<br/>118<br/>0.603<br/>22%</td><td>S</td><td>m=(S-230)<br/>PM<br/>1+2<br/>0.491<br/>39<br/>108<br/>0.575<br/>17%</td><td>÷(1+1.5f/r)</td><td>Junction<br/>Scheme</td><td>by Other</td><td></td></li></ul> | 2<br>B1<br>B2<br>- A1 |               | PM Traffic : | 599                       | 489<br>3<br>8 | Cp<br>Dp | Ep •           | Fp          | S <sub>M</sub> =S+(1+<br>Sum y<br>L (s)<br>C (s)<br>practical y<br>R.C. (%) | 1.51/r)<br>AM<br>1+2<br>0.494<br>39<br>118<br>0.603<br>22%        | S          | m=(S-230)<br>PM<br>1+2<br>0.491<br>39<br>108<br>0.575<br>17% | ÷(1+1.5f/r) | Junction<br>Scheme | by Other             |              |
| 550<br>,<br>1<br><br>AM G = | 516 8 • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $338 \bullet$         | G =           | PM Traffic   | 599<br>↑ →<br>A1<br>I/G = | 489<br>3<br>8 | Cp<br>Dp | Ep             | Fp<br>I/G = | S <sub>M</sub> =S+(1+<br>Sum y<br>L (s)<br>C (s)<br>practical y<br>R.C. (%) | 1.51/r)<br>AM<br>1+2<br>0.494<br>39<br>118<br>0.603<br>22%<br>G = | S          | m=(S−230)<br>PM<br>1+2<br>0.491<br>39<br>108<br>0.575<br>17% | ÷(1+1.5f/r) | G =                | by Other             |              |

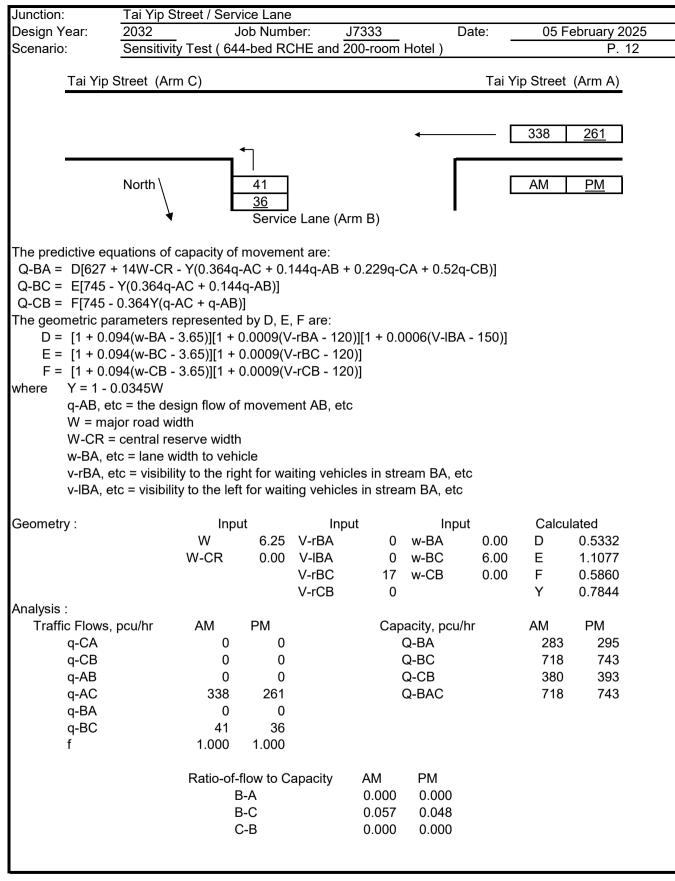

| Junction:                                 | Wai Yip Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | ip Stree                                 | t          |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       | Job Nu           | mber:           | -           |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------|------------|---------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|------------|-------------------------------------------------------------------------|-----------------------|------------------|-----------------|-------------|
| Scenario:<br>Design Year:                 | Existing Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | ed By:                                   |            |               |                   |                                                                                                                                                             | Checke                                | d By:                 |                                                                 |                                                                   |            |                                                                         | Date:                 | 5 Fe             | P.<br>ebruary 2 |             |
|                                           | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | Dhara                                    | 01         |               | Dealine (m)       | 0( LI- 1-11                                                                                                                                                 | Turning %                             | Oct. Flam             | AM Peak                                                         |                                                                   | O-Hissley  | Turnin e 0/                                                             | Orth Flow             | PM Peak          |                 | Oritication |
|                                           | Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | Phase                                    | Stage      |               | Radius (m)        | % Up-hill<br>Gradient                                                                                                                                       | Turning %                             | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr)                                                | y value                                                           | Critical y | Turning %                                                               | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr) | y value         | Critical y  |
| Wai Yip Street                            | t EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SA                      | A1                                       | 1          | 3.50          |                   |                                                                                                                                                             |                                       | 1965                  | 480                                                             | 0.244                                                             | 0.244      |                                                                         | 1965                  | 399              | 0.203           |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SA                      | A2                                       | 1          | 3.50          |                   |                                                                                                                                                             |                                       | 2105                  | 514                                                             | 0.244                                                             |            |                                                                         | 2105                  | 427              | 0.203           | 0.203       |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SA                      | A3                                       | 1          | 3.50          |                   |                                                                                                                                                             |                                       | 2105                  | 513                                                             | 0.244                                                             |            |                                                                         | 2105                  | 428              | 0.203           |             |
| Wai Yip Street                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SA                      | B1                                       | 1          | 3.50          |                   |                                                                                                                                                             |                                       | 1965                  | 271                                                             | 0.138                                                             |            |                                                                         | 1965                  | 305              | 0.155           |             |
|                                           | . 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA                      | B2                                       | 1          | 3.50          |                   |                                                                                                                                                             |                                       | 2105                  | 290                                                             | 0.138                                                             |            |                                                                         | 2105                  | 327              | 0.155           |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SA                      | B3                                       | 1          | 3.50          |                   |                                                                                                                                                             |                                       | 2105                  | 291                                                             | 0.138                                                             |            |                                                                         | 2105                  | 327              | 0.155           |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
| Shun Yip Stree                            | et NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT                      | C1                                       | 3          | 3.50          | 15.0              |                                                                                                                                                             | 100                                   | 1786                  | 205                                                             | 0.115                                                             | 0.115      | 100                                                                     | 1786                  | 261              | 0.146           | 0.146       |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LT+RT                   | C2                                       | 3          | 3.50          | 18.0              |                                                                                                                                                             | 100                                   | 1943                  | 222                                                             | 0.114                                                             |            | 100                                                                     | 1943                  | 283              | 0.146           |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RT                      | C3                                       | 3          | 3.50          | 25.0              |                                                                                                                                                             | 100                                   | 1854                  | 213                                                             | 0.115                                                             |            | 100                                                                     | 1854                  | 206              | 0.111           |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
| pedestrian pha                            | ase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | Dp                                       | 1,2        |               | min c             | rossing                                                                                                                                                     | time =                                | 8                     | sec                                                             | GM +                                                              | 11         | sec F                                                                   | GM =                  | 19               | sec             |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | Ep                                       | 2          |               | min c             | rossing                                                                                                                                                     | time =                                | 12                    |                                                                 | GM +                                                              | 9          | sec F                                                                   |                       | 21               | sec             |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | Fp                                       | 2          |               | min c             | rossing                                                                                                                                                     | time =                                | 13                    | sec                                                             | GM +                                                              | 12         | sec F                                                                   | GM =                  | 25               | sec             |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |            |               |                   |                                                                                                                                                             |                                       |                       |                                                                 |                                                                   |            |                                                                         |                       |                  |                 |             |
| AM Traffic Flow (pcu/hr                   | r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | Z €                                      | PM Traffic | Flow (pcu/hr) | )                 |                                                                                                                                                             |                                       | Z                     | S=1940+1                                                        | 00(W–3.25                                                         | ) :        | S=2080+10                                                               | 0(W–3.25)             | Note:            |                 |             |
| AM Traffic Flow (pcu/h                    | ir)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | z≮                                       | PM Traffic | Flow (pcu/hr) | )                 |                                                                                                                                                             |                                       | ×<br>₹                | S=1940+1<br>S <sub>M</sub> =S÷(1+                               |                                                                   |            | S=2080+10<br><sub>M</sub> =(S–230)·                                     | ```                   | Note:            | I               |             |
|                                           | <sup>sr)</sup><br>★ 1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | z                                        | PM Traffic |               | 1254              |                                                                                                                                                             |                                       | × €                   |                                                                 | 1.5f/r)                                                           |            | <sub>M</sub> =(S−230)·                                                  | ```                   | Note:            | I               |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | z                                        | PM Traffic |               |                   |                                                                                                                                                             |                                       | ×√                    |                                                                 | 1.5f/r)<br>AM<br>1+3                                              | S          | M=(S-230)<br>PM I<br>1+3                                                | ÷(1+1.5f/r)           | Note:            | I               |             |
|                                           | + 1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 352 ←                   | Z                                        | PM Traffic |               |                   | 959                                                                                                                                                         |                                       | z                     | S <sub>M</sub> =S÷(1+<br>Sum y                                  | 1.5f/r)<br>AM<br>1+3<br>0.359                                     | S          | PM I<br>1+3<br>0.349                                                    | ÷(1+1.5f/r)           | Note:            | I               |             |
|                                           | ► 1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | z                                        | PM Traffic |               | <sup>.</sup> 1254 |                                                                                                                                                             |                                       | Z                     | S <sub>M</sub> =S÷(1+<br>Sum y<br>L (s)                         | AM<br>1+3<br>0.359<br>40                                          | S          | PM 1<br>1+3<br>0.349<br>40                                              | ÷(1+1.5f/r)           | Note:            | L               |             |
|                                           | ★ 1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | z                                        | PM Traffic |               | <sup>.</sup> 1254 | 959<br>206                                                                                                                                                  |                                       | Z                     | S <sub>M</sub> =S÷(1+<br>Sum y<br>L (s)<br>C (s)                | 1.5f/r)<br>AM<br>1+3<br>0.359<br>40<br>118                        | S          | м=(S-230)<br>РМ 1<br>1+3<br>0.349<br>40<br>108                          | ÷(1+1.5f/r)           | Note:            |                 |             |
| ,                                         | ► 1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | Z                                        | PM Traffic |               | <sup>.</sup> 1254 |                                                                                                                                                             | •                                     | Z                     | S <sub>M</sub> =S÷(1+<br>Sum y<br>L (s)<br>C (s)<br>practical y | 1.5f/r)<br>AM<br>1+3<br>0.359<br>40<br>118<br>0.595               | S          | м=(S-230) <sup>-</sup><br>РМ 1<br>1+3<br>0.349<br>40<br>108<br>0.567    | ÷(1+1.5f/r)           | Note:            |                 |             |
|                                           | ► 1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | N AND AND AND AND AND AND AND AND AND AN | PM Traffic |               | <sup>.</sup> 1254 |                                                                                                                                                             | 4                                     | Z                     | S <sub>M</sub> =S÷(1+<br>Sum y<br>L (s)<br>C (s)                | 1.5f/r)<br>AM<br>1+3<br>0.359<br>40<br>118                        | S          | м=(S-230)<br>РМ 1<br>1+3<br>0.349<br>40<br>108                          | ÷(1+1.5f/r)           | Note:            |                 |             |
|                                           | ► 1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | z                                        | PM Traffic |               | <sup>.</sup> 1254 |                                                                                                                                                             |                                       | Z                     | S <sub>M</sub> =S÷(1+<br>Sum y<br>L (s)<br>C (s)<br>practical y | 1.5f/r)<br>AM<br>1+3<br>0.359<br>40<br>118<br>0.595               | S          | м=(S-230) <sup>-</sup><br>РМ 1<br>1+3<br>0.349<br>40<br>108<br>0.567    | ÷(1+1.5f/r)           | Note:            |                 |             |
|                                           | ► 1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | Z                                        | PM Traffic | 544           | <sup>.</sup> 1254 |                                                                                                                                                             |                                       | z <u>(</u>            | S <sub>M</sub> =S÷(1+<br>Sum y<br>L (s)<br>C (s)<br>practical y | 1.5f/r)<br>AM<br>1+3<br>0.359<br>40<br>118<br>0.595               | S          | м=(S-230) <sup>-</sup><br>РМ 1<br>1+3<br>0.349<br>40<br>108<br>0.567    | ÷(1+1.5f/r)           | Note:            |                 |             |
|                                           | ► 1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                       | Fp Fp                                    | PM Traffic |               | <sup>.</sup> 1254 |                                                                                                                                                             |                                       | z (                   | S <sub>M</sub> =S÷(1+<br>Sum y<br>L (s)<br>C (s)<br>practical y | 1.5f/r)<br>AM<br>1+3<br>0.359<br>40<br>118<br>0.595               | S          | м=(S-230) <sup>-</sup><br>РМ 1<br>1+3<br>0.349<br>40<br>108<br>0.567    | ÷(1+1.5f/r)           | Note:            |                 |             |
| 425 -                                     | ► 1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>B3<br>B2           |                                          | PM Traffic | 544           | <sup>.</sup> 1254 |                                                                                                                                                             |                                       | Z (                   | S <sub>M</sub> =S÷(1+<br>Sum y<br>L (s)<br>C (s)<br>practical y | 1.5f/r)<br>AM<br>1+3<br>0.359<br>40<br>118<br>0.595               | S          | м=(S-230) <sup>-</sup><br>РМ 1<br>1+3<br>0.349<br>40<br>108<br>0.567    | ÷(1+1.5f/r)           | Note:            |                 |             |
| 425 -                                     | <ul> <li>▶ 1507</li> <li>8</li> <li>▶ 215</li> <li>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>B3                 |                                          |            | 544           | · 1254            | 206                                                                                                                                                         |                                       | z <                   | S <sub>M</sub> =S÷(1+<br>Sum y<br>L (s)<br>C (s)<br>practical y | 1.5f/r)<br>AM<br>1+3<br>0.359<br>40<br>118<br>0.595               | S          | м=(S-230) <sup>-</sup><br>РМ 1<br>1+3<br>0.349<br>40<br>108<br>0.567    | ÷(1+1.5f/r)           | Note:            |                 |             |
| 425 -                                     | + 1507     8     4     215     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7 | B3<br>B2<br>B1          | Fp<br>Dp                                 |            | 544 •         | 3<br>C1           |                                                                                                                                                             |                                       |                       | Sum y<br>L (s)<br>practical y<br>R.C. (%)                       | 1.5f/r)<br>AM<br>1+3<br>0.359<br>40<br>118<br>0.595<br>66%        | S          | M=(S-230) PM I 1+3 0.349 40 108 0.5667 62%                              | ÷(1+1.5f/r)           |                  |                 |             |
| 425 ·                                     | + 1507     8     4     215     7     215     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     | B3<br>B2<br>B1<br>G = 7 | Fp                                       |            | 544 <<br>Ep   | 3<br>C1           | 206                                                                                                                                                         |                                       | I/G =                 | Sum y<br>L (s)<br>practical y<br>R.C. (%)                       | 1.5f/r)<br>AM<br>1+3<br>0.359<br>40<br>118<br>0.595               | S          | m=(S-230)<br>PM 1<br>1+3<br>0.349<br>40<br>108<br>0.567<br>62%<br>I/G = | ÷(1+1.5f/r)           | G =<br>G =       |                 |             |
| 425 -<br>1<br>A1<br>A2<br>A3<br>AM<br>G = |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B3<br>B2<br>B1          | Fp<br>G =                                | 25         | 544 •         | 1254              | $206$ $\begin{array}{c} \bullet\\ $ | · · · · · · · · · · · · · · · · · · · |                       | Sum y<br>L (s)<br>C (s)<br>practical y<br>R.C. (%)              | 1.5f/r)<br>AM<br>1+3<br>0.359<br>40<br>118<br>0.595<br>66%<br>G = | S          | M=(S-230) PM I 1+3 0.349 40 108 0.5667 62%                              | ÷(1+1.5f/r)           | G =              |                 |             |

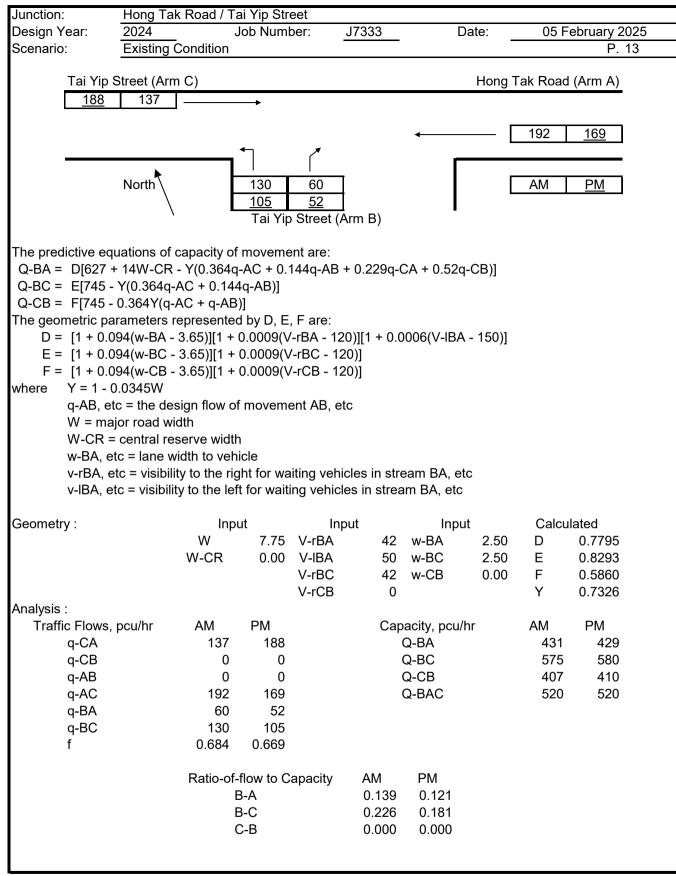
|                                                                                                                  |                |                        |                        |            |               | 0             |                                         |                | narys          |                                   |              |            |                |             |                 |            |            |
|------------------------------------------------------------------------------------------------------------------|----------------|------------------------|------------------------|------------|---------------|---------------|-----------------------------------------|----------------|----------------|-----------------------------------|--------------|------------|----------------|-------------|-----------------|------------|------------|
| Junction:                                                                                                        | Wai Yip Stre   |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             | Job Nu          | mber:      | J7333      |
| Scenario:                                                                                                        | Without the    |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 | P.         |            |
| Design Year:                                                                                                     | 2032           | Designe                | ed By:                 |            |               |               | -                                       | Checke         | d By:          |                                   |              |            |                | Date:       | 5 Fe            | ebruary 2  | 2025       |
|                                                                                                                  | Approach       |                        | Phase                  | Stage      | Width (m)     | Radius (m)    | % Up-hill                               | Turning %      | Sat. Flow      | AM Peak<br>Flow                   | y value      | Critical y | Turning %      | Sat. Flow   | PM Peak<br>Flow | y value    | Critical y |
|                                                                                                                  |                |                        |                        |            |               | ridaido (iii) | Gradient                                | , dirining , o | (pcu/hr)       | (pcu/hr)                          |              | ontiour y  | rannig /o      | (pcu/hr)    | (pcu/hr)        |            | on liber y |
| Wai Yip Street                                                                                                   | t EB           | SA                     | A1                     | 1          | 3.50          |               |                                         |                | 1965           | 617                               | 0.314        |            |                | 1965        | 535             | 0.272      |            |
|                                                                                                                  |                | SA                     | A2                     | 1          | 3.50          |               |                                         |                | 2105           | 661                               | 0.314        | 0.314      |                | 2105        | 573             | 0.272      | 0.070      |
|                                                                                                                  |                | SA                     | A3                     | 1          | 3.50          |               |                                         |                | 2105           | 660                               | 0.314        |            |                | 2105        | 574             | 0.273      | 0.273      |
| Wai Yip Street                                                                                                   | t WB           | SA                     | B1                     | 1          | 3.50          |               |                                         |                | 1965           | 392                               | 0.199        |            |                | 1965        | 409             | 0.208      |            |
|                                                                                                                  |                | SA                     | B2                     | 1          | 3.50          |               |                                         |                | 2105           | 420                               | 0.200        |            |                | 2105        | 438             | 0.208      |            |
|                                                                                                                  |                | SA                     | B3                     | 1          | 3.50          |               |                                         |                | 2105           | 421                               | 0.200        |            |                | 2105        | 439             | 0.209      |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
| Shun Yip Stree                                                                                                   | et NB          | LT                     | C1                     | 3          | 3.50          | 15.0          |                                         | 100            | 1786           | 314                               | 0.176        | 0.176      | 100            | 1786        | 365             | 0.204      |            |
|                                                                                                                  |                | LT+RT                  | C2                     | 3          | 3.50          | 18.0          |                                         | 100            | 1943           | 341                               | 0.176        |            | 100            | 1943        | 398             | 0.205      | 0.205      |
|                                                                                                                  |                | RT                     | C3                     | 3          | 3.50          | 25.0          |                                         | 100            | 1854           | 326                               | 0.176        |            | 100            | 1854        | 250             | 0.135      |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
| u - l - tri- u - l                                                                                               |                |                        | Du                     | 4.0        |               |               |                                         |                | 0              |                                   |              |            |                |             | 40              |            |            |
| pedestrian pha                                                                                                   | ase            |                        | Dp<br>En               | 1,2<br>2   |               |               | rossing t                               |                | 8<br>12        |                                   | GM +         | 11<br>9    | sec F          |             | 19<br>21        | sec        |            |
|                                                                                                                  |                |                        | Ep<br>Fp               | 2          |               |               | rossing t                               |                | 12             |                                   | GM +<br>GM + | 9<br>12    | sec F<br>sec F |             | 25              | sec<br>sec |            |
|                                                                                                                  |                |                        | гр                     | 2          |               |               | IUSSING                                 |                | 13             | Sec                               |              | 12         | Sec P          |             | 20              | Sec        |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                |                                   |              |            |                |             |                 |            |            |
| AM Traffic Flow (pcu/h                                                                                           | nr)            |                        |                        | PM Traffic | Flow (pcu/hr) | 1             |                                         |                |                | 8-1040+4                          | 00(W–3.25    | \          | 6=2080+10      | 0/14/ 2 25) | Note:           |            |            |
|                                                                                                                  |                |                        | N<br>K                 |            |               |               |                                         |                | N<br>K         | S_1940+1<br>S <sub>M</sub> =S÷(1+ |              |            | M=(S-230)      |             |                 |            |            |
|                                                                                                                  | <b>N</b> 4000  |                        |                        |            |               | 4000          |                                         |                |                | 5 <sub>M</sub> =5∓(1∓             |              |            |                |             |                 |            |            |
|                                                                                                                  | + 1938         |                        | `                      |            |               | 1682          |                                         |                | `              |                                   | AM<br>1+3    | Peak       | PM<br>1+3      | Peak        |                 |            |            |
|                                                                                                                  |                |                        |                        |            |               |               |                                         |                |                | Sum y                             | 0.490        |            | 0.478          |             |                 |            |            |
|                                                                                                                  | 12             | 33 🔶                   |                        |            |               |               | 1286                                    | •              |                | L (s)                             | 40           |            | 40             |             |                 |            |            |
|                                                                                                                  | . –            |                        |                        |            | 763 ◄         | ⊢ <b>_</b>    | 250                                     |                |                | C (s)                             | 118          |            | 108            |             |                 |            |            |
| 650                                                                                                              |                |                        |                        |            | 100           |               |                                         |                |                |                                   | -            |            |                |             |                 |            |            |
| 650                                                                                                              |                |                        |                        |            | 703           |               |                                         |                |                | practical y                       | 0.595        |            | 0.567          |             |                 |            |            |
| 650                                                                                                              |                |                        |                        |            | 703           |               |                                         |                |                | practical y<br>R.C. (%)           | 0.595<br>21% |            | 0.567<br>19%   |             |                 |            |            |
| 650                                                                                                              |                | 2                      |                        |            | 765           | 3             |                                         |                |                |                                   |              |            |                |             |                 |            |            |
| 650                                                                                                              |                | 2                      |                        |            | 765           | 3             |                                         |                |                |                                   |              |            |                |             |                 |            |            |
| 650                                                                                                              |                | 2                      |                        |            | •             | 3             |                                         |                |                |                                   |              |            |                |             |                 |            |            |
| $\begin{array}{c} 650 \\ \hline 1 \\ A1 \longrightarrow \\ A2 \longrightarrow \\ A3 \longrightarrow \end{array}$ |                |                        | Fp                     |            | Ep            | 3             |                                         |                |                |                                   |              |            |                |             |                 |            |            |
| $\begin{array}{c} 650 \\ \hline 1 \\ A1 \longrightarrow \\ A2 \longrightarrow \\ A3 \longrightarrow \end{array}$ |                | B3<br>B2               | Fp                     |            | •             | 3             | <u>∗</u> ↓ [+                           |                |                |                                   |              |            |                |             |                 |            |            |
| 1<br>A1 → →<br>A2 → →<br>A3 → →                                                                                  | 331            | В3                     | Fp<br>•<br>•<br>•<br>• |            | •             | •             | <b>◆</b> →   →                          |                |                |                                   |              |            |                |             |                 |            |            |
| 1<br>A1 → →<br>A3 → →<br>D <sub>1</sub>                                                                          | 331<br>331     | B3<br>B2<br>B1         | <b>∢</b><br>Dp         | -          | Ep            | t<br>C1       | ← → →<br><u>C2 C3</u><br>G =            |                | I/G =          | R.C. (%)                          | 21%          |            | 19%            |             | 6=              |            |            |
| $\begin{array}{c} 1 \\ A1 \longrightarrow \\ A2 \longrightarrow \\ A3 \longrightarrow \end{array}$               | 331<br>331<br> | B3<br>B2               | <b>4</b>               | -          | •             | C1            | ← → → → → → → → → → → → → → → → → → → → |                | I/G =<br>I/G = | R.C. (%)                          |              |            |                |             | G =<br>G =      |            |            |
| 1<br>A1<br>A2<br>A3<br>A3<br>AM<br>G =                                                                           | 331            | B3<br>B2<br>B1<br>G= 7 | <b>∢</b><br>Dp<br>G =  | 25         | Ep<br>I/G =   | •<br>C1<br>8  | G =                                     |                |                | R.C. (%)                          | 21%<br>G =   |            | 19%<br>I/G =   |             |                 |            |            |

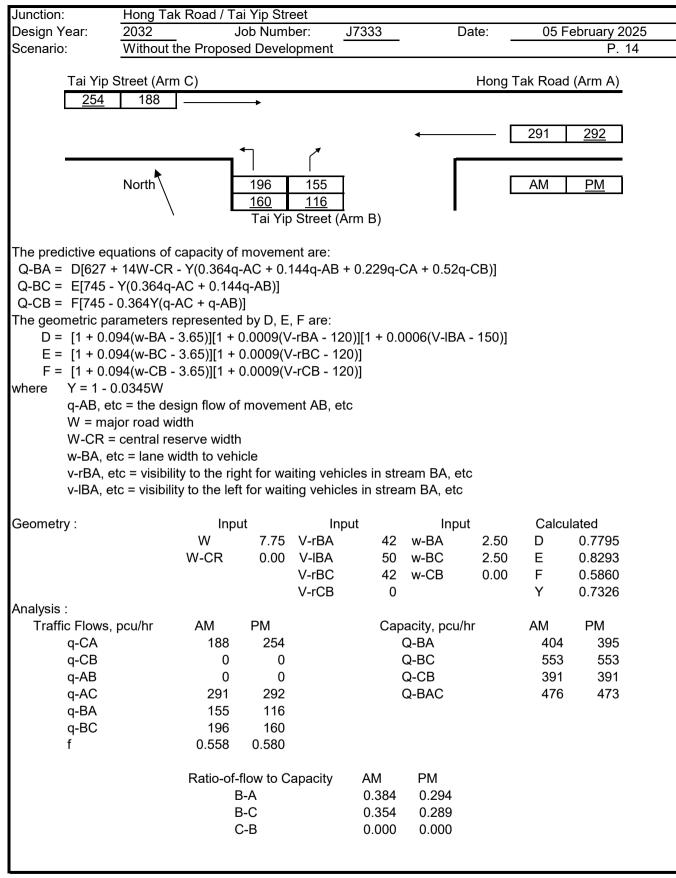

| hum at the             |          |                              | (in 0) |            |               | -          |             |           | -                |                       |           |            |                                      |                  | 1.0             |             | 17000      |
|------------------------|----------|------------------------------|--------|------------|---------------|------------|-------------|-----------|------------------|-----------------------|-----------|------------|--------------------------------------|------------------|-----------------|-------------|------------|
| Junction:<br>Scenario: |          | reet / Shun Y<br>roposed Dev |        |            | -bed RC       | HE and     | 200-roo     | m Hotel   | )                |                       |           |            |                                      |                  | Jod Nu          | mber:<br>P. |            |
| Design Year:           | 2032     |                              |        |            |               |            |             | Checke    |                  |                       |           |            | -                                    | Date:            | 5 Fe            | ebruary 2   |            |
|                        | Approach |                              | Phase  | Stage      | Width (m)     | Radius (m) |             | Turning % | Sat. Flow        | AM Peak<br>Flow       | y value   | Critical y | Turning %                            | Sat. Flow        | PM Peak<br>Flow | y value     | Critical y |
| Wai Yip Street         | t EB     | SA                           | A1     | 1          | 3.50          |            | Gradient    |           | (pcu/hr)<br>1965 | (pcu/hr)<br>625       | 0.318     | 0.318      |                                      | (pcu/hr)<br>1965 | (pcu/hr)<br>544 | 0.277       |            |
| wai np otreet          |          | SA                           | A2     | 1          | 3.50          |            |             |           | 2105             | 669                   | 0.318     | 0.010      |                                      | 2105             | 583             | 0.277       | 0.277      |
|                        |          | SA                           | A3     | 1          | 3.50          |            |             |           | 2105             | 669                   | 0.318     |            |                                      | 2105             | 582             | 0.276       |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
| Wai Yip Street         | t WB     | SA                           | B1     | 1          | 3.50          |            |             |           | 1965             | 392                   | 0.199     |            |                                      | 1965             | 409             | 0.208       |            |
|                        |          | SA                           | B2     | 1          | 3.50          |            |             |           | 2105             | 420                   | 0.200     |            |                                      | 2105             | 438             | 0.208       |            |
|                        |          | SA                           | B3     | 1          | 3.50          |            |             |           | 2105             | 421                   | 0.200     |            |                                      | 2105             | 439             | 0.209       |            |
| Shun Yip Stree         | ot NB    | LT                           | C1     | 3          | 3.50          | 15.0       |             | 100       | 1786             | 315                   | 0.176     |            | 100                                  | 1786             | 365             | 0.204       |            |
|                        | ernd     | LT+RT                        | C2     | 3          | 3.50          | 18.0       |             | 100       | 1943             | 342                   | 0.176     | 0.176      | 100                                  | 1943             | 398             | 0.204       | 0.205      |
|                        |          | RT                           | C3     | 3          | 3.50          | 25.0       |             | 100       | 1854             | 327                   | 0.176     | 0.110      | 100                                  | 1854             | 252             | 0.136       | 0.200      |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
| pedestrian pha         | ase      |                              | Dp     | 1,2        |               | min c      | rossing     | time =    | 8                | sec                   | GM +      | 11         | sec F                                | GM =             | 19              | sec         |            |
|                        |          |                              | Ep     | 2          |               | min c      | rossing     | time =    | 12               |                       | GM +      | 9          | sec F                                |                  | 21              | sec         |            |
|                        |          |                              | Fp     | 2          |               | min c      | rossing     | time =    | 13               | sec                   | GM +      | 12         | sec F                                | GM =             | 25              | sec         |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
| AM Traffic Flow (pcu/h | nr)      |                              |        | PM Traffic | Flow (pcu/hr) |            |             |           |                  |                       |           |            |                                      |                  | Note:           |             |            |
|                        |          |                              | N<br>K |            |               |            |             |           | N K              |                       | 00(W-3.25 |            | S=2080+10                            | · · ·            |                 |             |            |
|                        |          |                              |        |            |               | 4700       |             |           |                  | S <sub>M</sub> =S÷(1+ | 1         |            | 6 <sub>M</sub> =(S−230) <sup>.</sup> |                  |                 |             |            |
|                        | ► 1963   |                              | ``     |            |               | 1709       |             |           | ``               |                       | AM<br>1+3 | Peak       | PM<br>1+3                            | Peak             |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  | Sum y                 | 0.494     |            | 0.482                                |                  |                 |             |            |
|                        | 1        | 233 🔶                        |        |            |               |            | 1286        | •         |                  | L (s)                 | 40        |            | 40                                   |                  |                 |             |            |
| 650                    | ← → 334  | 4                            |        |            | 763 ◄         | <b>⊢</b>   | 252         |           |                  | C (s)                 | 118       |            | 108                                  |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  | practical y           | 0.595     |            | 0.567                                |                  |                 |             |            |
|                        |          |                              |        |            |               |            |             |           |                  | R.C. (%)              | 20%       |            | 18%                                  |                  |                 |             |            |
| 1                      |          | 2                            |        |            |               | 3          |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
| A1>                    |          | <b>+</b>                     |        |            |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
| A2<br>A3               |          |                              | Fp     |            | Ep            |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
|                        | ←        | _ вз                         |        |            |               | •          | <b>┽</b> ┍┝ |           |                  |                       |           |            |                                      |                  |                 |             |            |
| <b>4</b>               | ·····•   | - <sup>B2</sup><br>B1        | 4      | <b>.</b>   |               |            |             |           |                  |                       |           |            |                                      |                  |                 |             |            |
| D                      |          |                              | Dp     |            |               | C1         | C2 C3       |           |                  |                       |           |            |                                      |                  |                 |             |            |
| AM G =                 | =        | I/G = 7                      | G =    | 25         | I/G =         | 8          | G =         |           | I/G =            | 2                     | G =       |            | I/G =                                |                  | G =             |             |            |
| G =                    |          | I/G =                        | G =    |            | I/G =         |            | G =         |           | I/G =            |                       | G =       |            | I/G =                                |                  | G =             |             |            |
| PM G=                  |          | I/G = 7                      | G =    | 25         | I/G =         | 8          | G =         |           | I/G =            | 2                     | G =       |            | I/G =                                |                  | G =             |             |            |
| G =                    | -        | I/G =                        | G =    |            | I/G =         |            | G =         |           | I/G =            |                       | G =       |            | I/G =                                |                  | G =             |             |            |

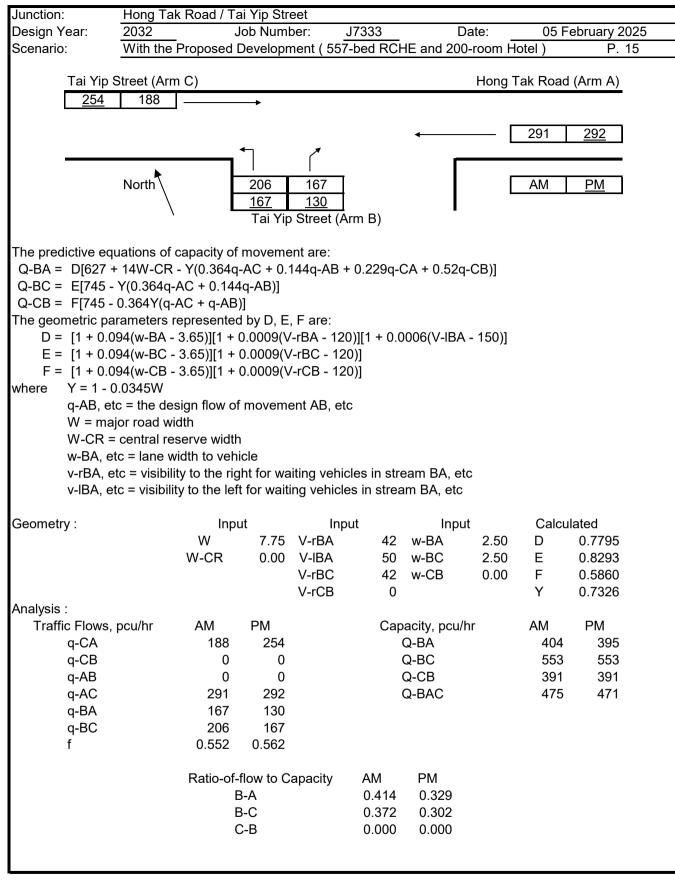
|                                                                                                                  |                |                       |                       |           |                           | _            |                              |           | narys          |                         |            |            |                         |             |                 |                |            |
|------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|-----------------------|-----------|---------------------------|--------------|------------------------------|-----------|----------------|-------------------------|------------|------------|-------------------------|-------------|-----------------|----------------|------------|
| Junction:                                                                                                        | Wai Yip Stree  |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         | -           | Job Nu          | mber:          | -          |
| Scenario:<br>Design Year:                                                                                        | Sensitivity Te |                       |                       |           | :00-room                  |              |                              | Checke    | d By:          |                         |            |            | <u> </u>                | Date:       | 5 Fe            | P.<br>bruary 2 |            |
|                                                                                                                  | Approach       |                       | Phase                 | Stage     | Width (m)                 | Radius (m)   | % Up-hill                    | Turning % | Sat. Flow      | AM Peak<br>Flow         | y value    | Critical y | Turning %               | Sat. Flow   | PM Peak<br>Flow | y value        | Critical y |
|                                                                                                                  | Арргоасті      |                       | Pliase                | Slage     | width (m)                 | Radius (III) | Gradient                     | running % | (pcu/hr)       | (pcu/hr)                | y value    | Chucary    | Turning %               | (pcu/hr)    | (pcu/hr)        | y value        | Chucary    |
| Wai Yip Street                                                                                                   | EB             | SA                    | A1                    | 1         | 3.50                      |              |                              |           | 1965           | 625                     | 0.318      | 0.318      |                         | 1965        | 544             | 0.277          |            |
|                                                                                                                  |                | SA                    | A2                    | 1         | 3.50                      |              |                              |           | 2105           | 670                     | 0.318      |            |                         | 2105        | 583             | 0.277          | 0.277      |
|                                                                                                                  |                | SA                    | A3                    | 1         | 3.50                      |              |                              |           | 2105           | 669                     | 0.318      |            |                         | 2105        | 583             | 0.277          |            |
| Wai Yip Street                                                                                                   | WB             | SA                    | B1                    | 1         | 3.50                      |              |                              |           | 1965           | 392                     | 0.199      |            |                         | 1965        | 409             | 0.208          |            |
| I                                                                                                                |                | SA                    | B2                    | 1         | 3.50                      |              |                              |           | 2105           | 420                     | 0.200      |            |                         | 2105        | 438             | 0.208          |            |
|                                                                                                                  |                | SA                    | B3                    | 1         | 3.50                      |              |                              |           | 2105           | 421                     | 0.200      |            |                         | 2105        | 439             | 0.209          |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
| Shun Yip Stree                                                                                                   | et NB          | LT                    | C1                    | 3         | 3.50                      | 15.0         |                              | 100       | 1786           | 315                     | 0.176      |            | 100                     | 1786        | 365             | 0.204          |            |
|                                                                                                                  |                | LT+RT                 | C2                    | 3         | 3.50                      | 18.0         |                              | 100       | 1943           | 342                     | 0.176      | 0.176      | 100                     | 1943        | 398             | 0.205          | 0.205      |
|                                                                                                                  |                | RT                    | C3                    | 3         | 3.50                      | 25.0         |                              | 100       | 1854           | 327                     | 0.176      |            | 100                     | 1854        | 252             | 0.136          |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
|                                                                                                                  |                |                       |                       |           | <u> </u>                  |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
| pedestrian pha                                                                                                   | ase            |                       | Dp                    | 1,2       |                           | min c        | rossing                      | time =    | 8              | sec                     | GM +       | 11         | sec F                   | GM =        | 19              | sec            |            |
|                                                                                                                  |                |                       | Ep                    | 2         |                           | min c        | rossing                      | time =    | 12             | sec                     | GM +       | 9          | sec F                   | GM =        | 21              | sec            |            |
|                                                                                                                  |                |                       | Fp                    | 2         |                           | min c        | rossing                      | time =    | 13             | sec                     | GM +       | 12         | sec F                   | GM =        | 25              | sec            |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         |            |            |                         |             |                 |                |            |
|                                                                                                                  | 4-             |                       |                       | DM T#     | <b></b>                   |              |                              |           |                |                         |            |            |                         |             | b1-4            |                |            |
| AM Traffic Flow (pcu/h                                                                                           | r)             |                       | N                     | PM Trainc | Flow (pcu/hr)             | )            |                              |           | N              |                         | 00(W-3.25  |            | S=2080+10               |             | Note:           |                |            |
|                                                                                                                  |                |                       | ,                     |           |                           |              |                              |           | ĺ.             | S <sub>M</sub> =S÷(1+   | 1.5f/r)    | S          | S <sub>M</sub> =(S–230) | ÷(1+1.5f/r) |                 |                |            |
|                                                                                                                  | ▶ 1964         |                       | ١                     |           |                           | 1710         |                              |           | ١              |                         |            | Peak       |                         | Peak        |                 |                |            |
|                                                                                                                  |                |                       |                       |           |                           |              |                              |           |                |                         | 1+3        |            | 1+3                     |             |                 |                |            |
|                                                                                                                  | 123            | 33 🔶                  |                       |           |                           |              | 1286                         | ←         |                | Sum y                   | 0.495      |            | 0.482                   |             |                 |                |            |
|                                                                                                                  |                |                       |                       |           | 763 ◄                     | <b>⊢</b> ,→  | 252                          |           |                | L (s)                   | 40<br>118  |            | 40<br>108               |             |                 |                |            |
| 650                                                                                                              |                |                       |                       |           | 705                       |              | 252                          |           |                | C (s)                   | 0.595      |            | 0.567                   |             |                 |                |            |
| 650                                                                                                              | 334            |                       |                       |           |                           |              |                              |           |                |                         |            |            | 0.007                   |             |                 |                |            |
| 650                                                                                                              | 334            |                       |                       |           |                           |              |                              |           |                | practical y<br>R.C. (%) | 20%        |            | 18%                     |             |                 |                |            |
| 1                                                                                                                | 334            | 2                     |                       |           |                           | 3            |                              |           |                |                         |            |            | 18%                     |             |                 |                |            |
| 650                                                                                                              | 334            | 2                     |                       |           |                           | 3            |                              |           |                |                         |            |            | 18%                     |             |                 |                |            |
| 1<br>A1 ───►<br>A2 ───►                                                                                          | 334            | ŧ                     |                       |           |                           | 3            |                              |           |                |                         |            |            | 18%                     |             |                 |                |            |
| $\begin{array}{c} 650 \\ \hline 1 \\ A1 \longrightarrow \\ A2 \longrightarrow \\ A3 \longrightarrow \end{array}$ |                |                       | Fp                    |           | Ep                        | 3            |                              |           |                |                         |            |            | 18%                     |             |                 |                |            |
| 1<br>A1 ───►<br>A2 ───►                                                                                          |                | B3<br>B2              | Fp                    | 4         | Ep                        | 3            | *ๅ* [*                       |           |                |                         |            |            | 18%                     |             |                 |                |            |
| 1<br>A1 ───►<br>A2 ───►                                                                                          |                | вз                    | Fp<br>4Dp             | •         | Ep                        |              | ← ← ←                        |           |                |                         |            |            | 18%                     |             |                 |                |            |
| 1<br>A1 → A2<br>A3 → D <sub>1</sub>                                                                              |                | B3<br>B2<br>B1        | <b>∢</b><br>Dp        |           | ,                         | C1           | ← → →<br><u>C2 C3</u><br>G = |           | I/G =          | R.C. (%)                | 20%        |            |                         |             | G =             |                |            |
| $\begin{array}{c} 1 \\ A1 \longrightarrow \\ A2 \longrightarrow \\ A3 \longrightarrow \end{array}$               |                | B3<br>B2<br>B1<br>= 7 | <b>4</b>              |           | Ep<br>,<br>//G =<br>//G = | C1           | G =<br>G =                   |           | 1/G =<br>1/G = | R.C. (%)                |            |            | 18%<br>I/G =<br>I/G =   |             | G =<br>G =      |                |            |
| 1<br>A1<br>A2<br>A3<br>A3<br>AM<br>G =                                                                           |                | B3<br>B2<br>B1<br>= 7 | <b>∢</b><br>Dp<br>G = | 25        | ,<br>I/G =                | C1           | G =                          |           |                | R.C. (%)                | 20%<br>G = |            | I/G =                   |             |                 |                |            |

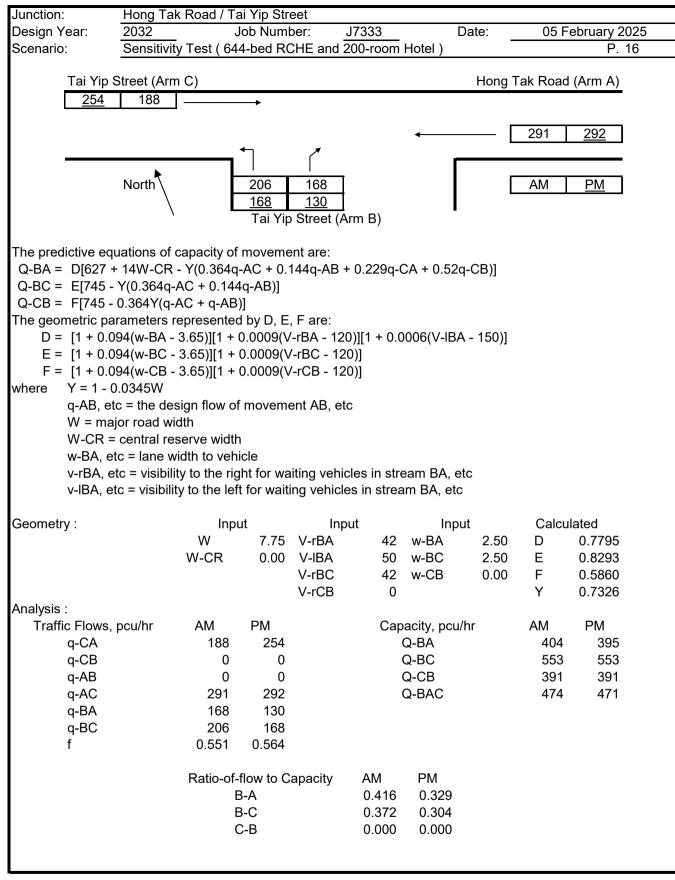

## **Priority Junction Analysis**

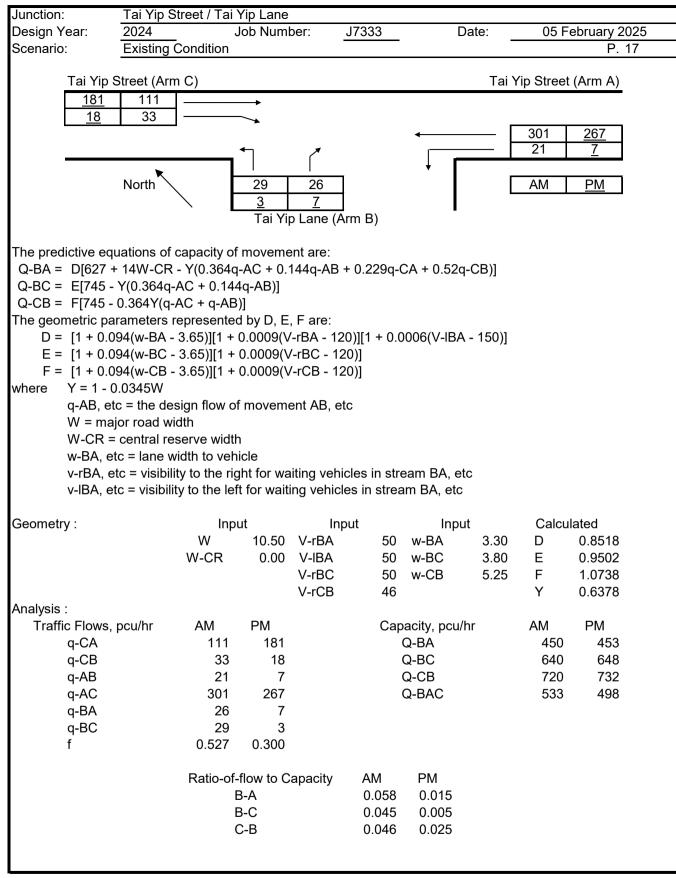


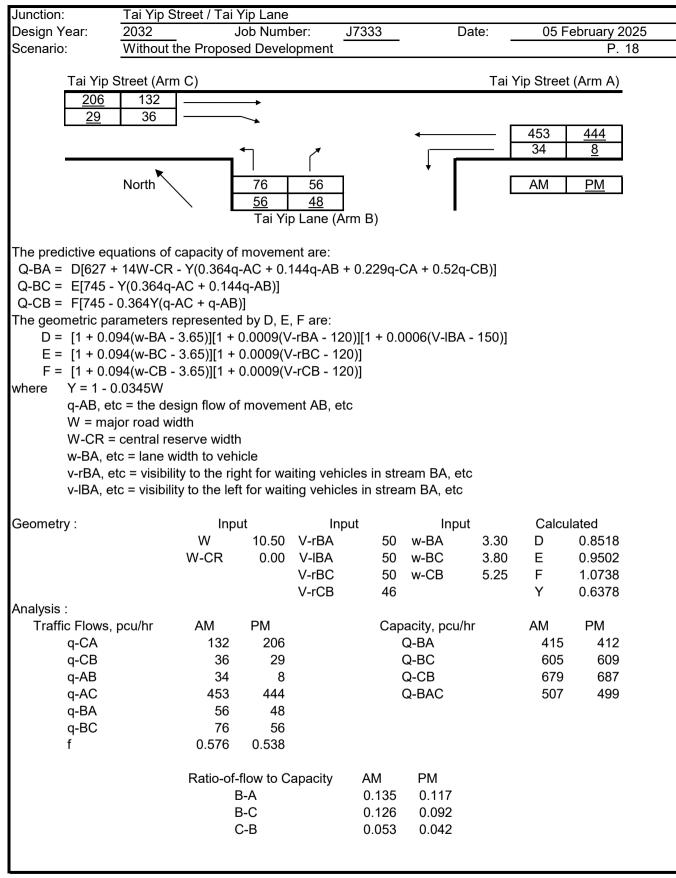


## **Priority Junction Analysis**

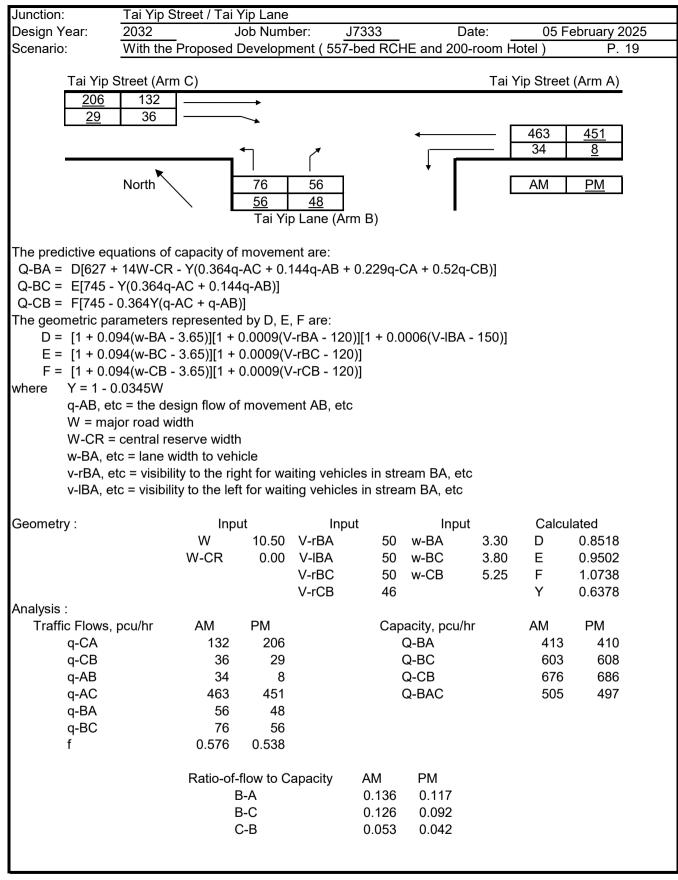


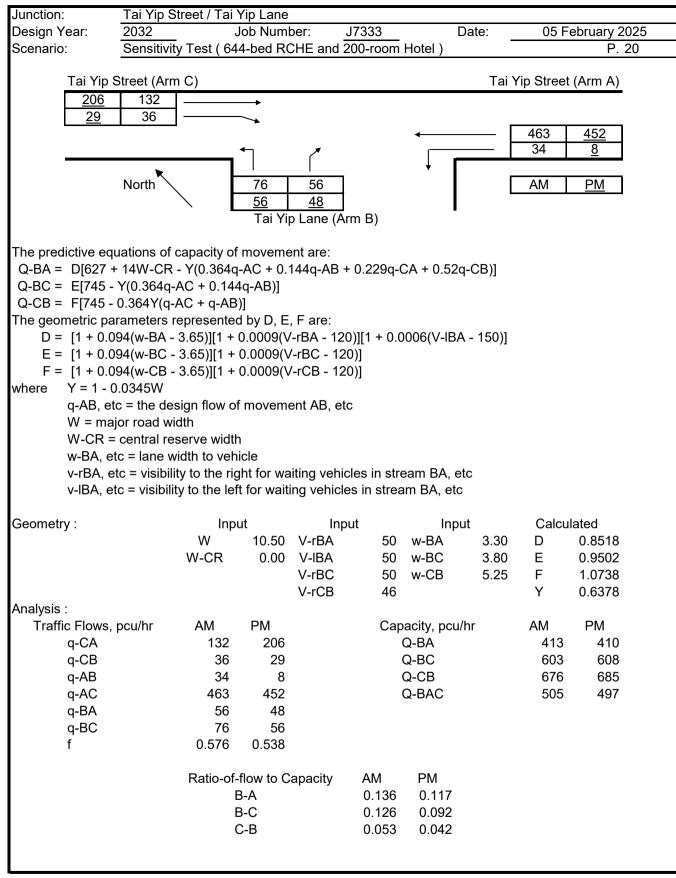


## **Priority Junction Analysis**

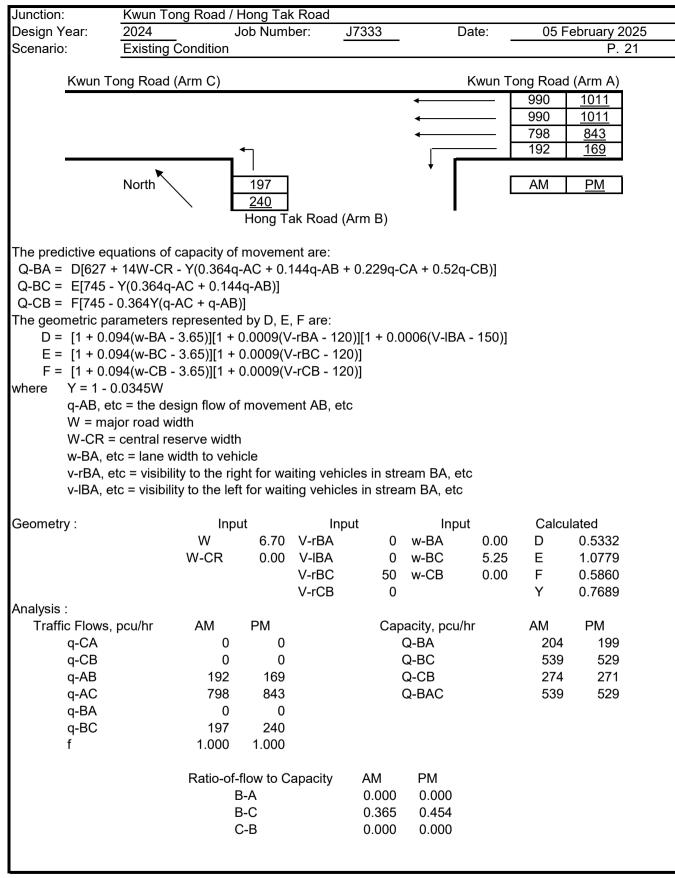


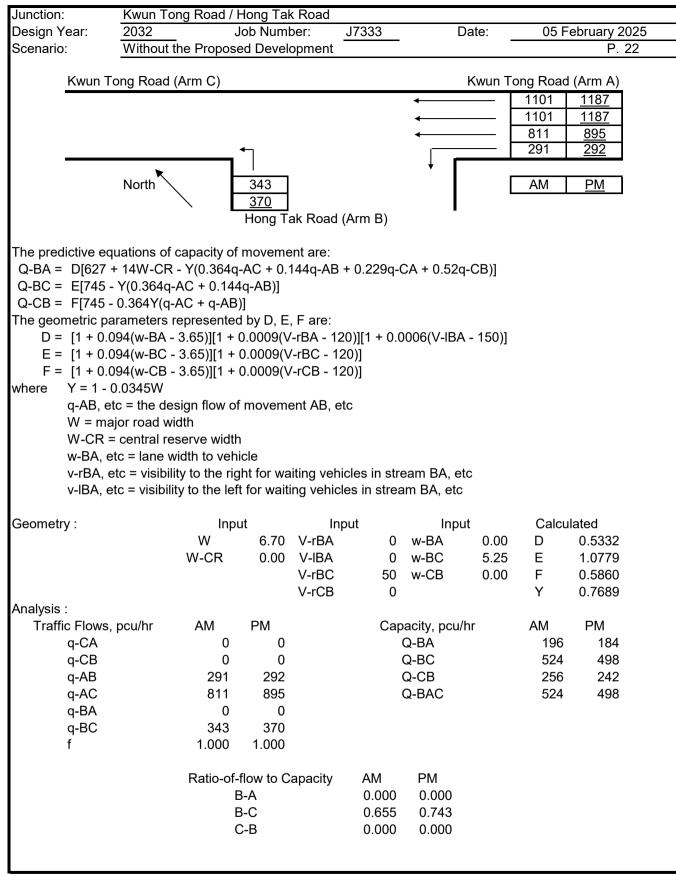



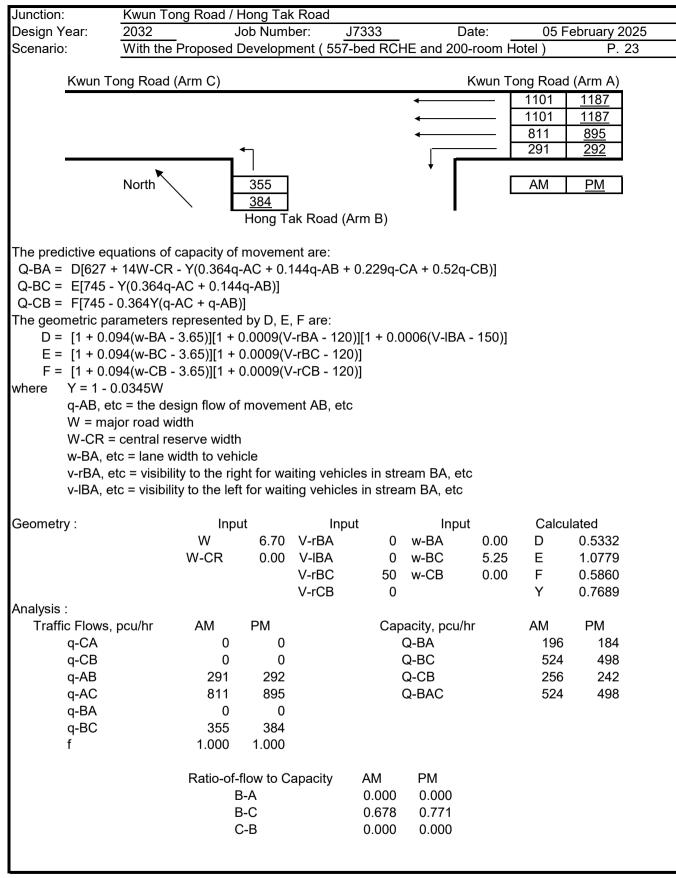



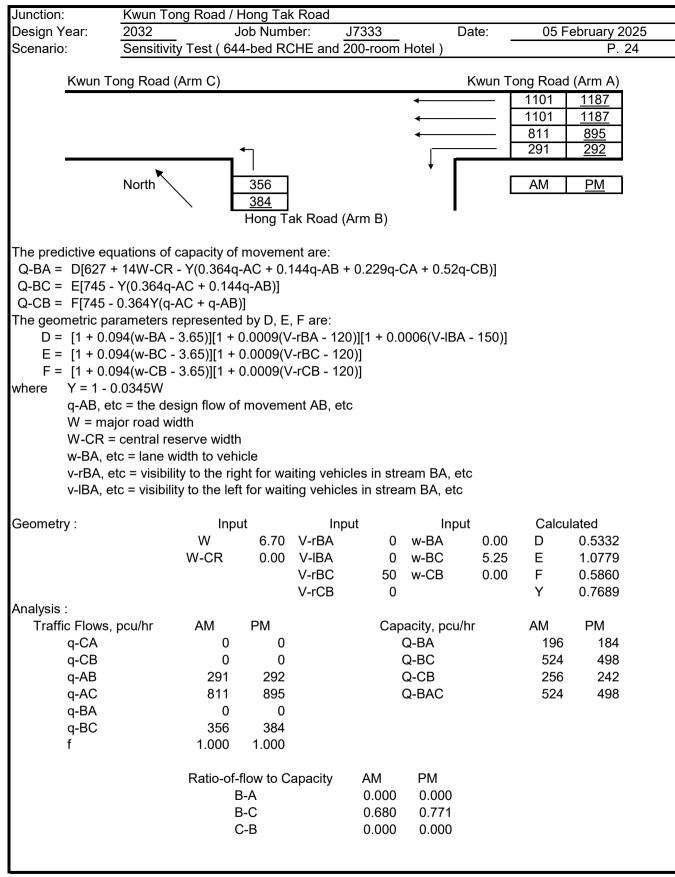














|                        |            |                  |             |            |                 | -          |                       |           | -                     |                       |              |            |                       |                       |                  |                      |            |
|------------------------|------------|------------------|-------------|------------|-----------------|------------|-----------------------|-----------|-----------------------|-----------------------|--------------|------------|-----------------------|-----------------------|------------------|----------------------|------------|
| Junction:              | Wai Yip S  | treet / Lai Yip  | Street      |            |                 |            |                       |           |                       |                       |              |            |                       | -                     | Job Nu           | mber:                | J7333      |
| Scenario:              | Existing C |                  |             |            |                 |            |                       |           |                       |                       |              |            |                       |                       |                  | P.                   | 25         |
| Design Year:           | 2024       | Designe          | ed By:      |            |                 |            |                       | Checke    | d By:                 |                       |              |            |                       | Date:                 | 5 Fe             | ebruary              | 2025       |
|                        |            |                  |             |            | 1               |            |                       |           |                       | AM Peak               |              |            |                       | -                     | PM Peak          | _                    | -          |
|                        | Approach   |                  | Phase       | Stage      | Width (m)       | Radius (m) | % Up-hill<br>Gradient | Turning % | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr)      | y value      | Critical y | Turning %             | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr) | y value              | Critical y |
| Wai Yip Street         | t WB*      | LT               | A1          | 3          | 2.80            | 20.0       |                       | 100       | 1763                  | 75                    | 0.043        |            | 100                   | 1763                  | 107              | 0.061                |            |
|                        |            | SA               | A2          | 3          | 2.80            |            |                       |           | 2035                  | 386                   | 0.190        |            |                       | 2035                  | 409              | 0.201                |            |
|                        |            | SA               | A3          | 3          | 2.80            |            |                       |           | 2035                  | 385                   | 0.189        |            |                       | 2035                  | 409              | 0.201                |            |
| Lai Yip Street         | SB         | LT               | B1          | 2          | 3.10            | 20.0       |                       | 100       | 1971                  | 167                   | 0.085        |            | 100                   | 1991                  | 211              | 0 106                | 0.106      |
|                        | 00         | SA               | B2          | 1,2        | 3.10            | 20.0       |                       | 100       | 2185                  | 370                   | 0.169        | 0.169      | 100                   | 2198                  | 223              | 0.100                | 0.100      |
|                        |            | SA               | B3          | 1,2        | 3.10            |            |                       |           | 2065                  | 349                   | 0.169        | 0.100      |                       | 2065                  | 209              | 0.101                |            |
|                        |            |                  |             | ,          |                 |            |                       |           |                       |                       |              |            |                       |                       |                  |                      |            |
| Wai Yip Street         | t EB       | SA+LT            | C1          | 3          | 3.30            | 20.0       |                       | 63        | 2097                  | 575                   | 0.274        |            | 50                    | 2142                  | 489              | 0.228                | 0.229      |
|                        |            | SA               | C2          | 3          | 3.30            |            |                       |           | 2085                  | 572                   | 0.274        | 0.274      |                       | 2085                  | 476              | 0.228                |            |
|                        |            | SA               | C3          | 3          | 3.30            |            |                       |           | 2085                  | 571                   | 0.274        |            |                       | 2085                  | 477              | 0.229                |            |
|                        |            |                  |             |            |                 |            |                       |           |                       |                       |              |            |                       |                       |                  |                      |            |
| Lai Yip Street         | NB         | SA+LT            | D1          | 1,2        | 3.80            | 20.0       |                       | 44        | 2111                  | 184                   | 0.087        |            | 70                    | 2095                  | 202              | 0.096                |            |
|                        |            | SA               | D2          | 1,2        | 3.80            |            |                       |           | 2135                  | 187                   | 0.088        |            |                       | 2135                  | 206              | 0.096                |            |
|                        |            |                  |             |            |                 |            |                       |           |                       |                       |              |            |                       |                       |                  |                      |            |
|                        |            |                  |             |            |                 |            |                       |           |                       |                       |              |            |                       |                       |                  |                      |            |
|                        |            |                  |             |            |                 |            |                       |           |                       |                       |              |            |                       |                       |                  |                      |            |
|                        |            |                  |             |            |                 |            |                       |           |                       |                       |              |            |                       |                       |                  |                      |            |
|                        |            |                  |             |            |                 |            |                       |           |                       |                       |              |            |                       |                       |                  |                      |            |
|                        |            |                  |             |            |                 |            |                       |           |                       |                       |              |            |                       |                       |                  |                      |            |
| pedestrian pha         | ase        |                  | Ep          | 3          |                 |            | rossing               |           | 11                    |                       | GM +         | 10         |                       | GM =                  | 21               | sec                  |            |
|                        |            |                  | Fp          | 1,2        |                 |            | rossing               |           | 7                     |                       | GM +         | 11         | sec F                 |                       | 18               | sec                  |            |
|                        |            |                  | Gp          | 1,2        |                 |            | rossing               |           | 5                     |                       | GM +         | 10         |                       | GM =                  | 15               | sec                  |            |
|                        |            |                  | Hp<br>Ip    | 1,3<br>3   |                 |            | rossing<br>rossing    |           | 5<br>5                |                       | GM +<br>GM + | 7<br>7     |                       | GM =<br>GM =          | 12<br>12         | sec<br>sec           |            |
|                        |            |                  | ιp          | 5          |                 | minu       | lossing               | ume –     | 5                     | 360                   |              | 1          | 3601                  | GIVI -                | 12               | 360                  |            |
|                        |            |                  |             |            |                 |            |                       |           |                       |                       |              |            |                       |                       |                  |                      |            |
|                        |            |                  |             |            |                 |            |                       |           |                       |                       |              |            |                       |                       |                  |                      |            |
| AM Traffic Flow (pcu/h | r)         |                  | N           | PM Traffic | Flow (pcu/hr)   | 1          | 1                     |           | N                     | S=1940+1              | 00(W-3.25    | ) 5        | S=2080+10             | 0(W-3.25)             | Note:            |                      |            |
|                        | Ļ          | → 167            | N<br>K      |            |                 |            | <b>_</b>              | 211       | Ν<br>Λ                | S <sub>M</sub> =S÷(1+ |              |            | <sub>M</sub> =(S-230) |                       |                  | orary Tr             |            |
| 361                    | Ļ          |                  | $\setminus$ |            | 243             |            | Ļ                     |           | $\setminus$           |                       | AM           | Peak       | PM                    | Peak                  | •                | ement is<br>s at the |            |
| Ť                      | 71         | 19               |             |            | †               |            | 432                   |           |                       |                       | 2+3          | 1,2+3      | 2+3                   | 1,2+3                 |                  |                      |            |
| $\longrightarrow$      | 1357       |                  |             |            | _ <b>_</b>      | 1199       |                       |           |                       | Sum y                 | 0.359        | 0.444      | 0.335                 | 0.330                 |                  |                      |            |
|                        | 290        | 771              | -           |            |                 | 267        | 818                   | <b>↓</b>  | -                     | L (s)                 | 33           | 20         | 33                    | 20                    |                  |                      |            |
| 81                     | 1 +        | 75               |             |            | 141             | •          |                       | 107       |                       | C (s)                 | 120          | 120        | 108                   | 108                   |                  |                      |            |
|                        |            |                  |             |            |                 |            |                       |           |                       | practical y           | 0.653        | 0.750      | 0.625                 | 0.733                 |                  |                      |            |
|                        |            |                  |             |            |                 |            |                       |           |                       | R.C. (%)              | 82%          | 69%        | 87%                   | 122%                  |                  |                      |            |
| 1                      | B3 B2      | 2                |             | B3 B2 B    | 1               | 3          |                       |           |                       |                       |              |            |                       |                       |                  |                      |            |
| Gp 4                   |            | Hp Gp            | *           |            |                 |            | ↑                     | Ep        | Нр                    |                       |              |            |                       |                       |                  |                      |            |
| Fp                     | ** [       | Fp               | 1           | + + + +    | <b>→</b>        | C1<br>C2   | <b>→</b>              | _         | 4.2                   |                       |              |            |                       |                       |                  |                      |            |
| <b>`</b> ††            | Fp         | <b>N</b> .       | <b>†</b> †  | Fp 🔻       | ****            | С3         | -                     |           | A3<br>A2<br>A1        |                       |              |            |                       |                       |                  |                      |            |
|                        | Gp         |                  | ▲           |            | Gp <sup>™</sup> | lp.<br>▲   | . <b>* 4</b> Ep       | ▶ ↓       | —— A1                 |                       |              |            |                       |                       |                  |                      |            |
| D1 D2                  |            |                  | D1 D2       |            |                 | _          |                       |           |                       |                       |              |            |                       |                       |                  |                      |            |
|                        | - 11       | I/G = 2          | G =         |            | I/G =           |            | G =                   |           | I/G =                 |                       | G =          |            | I/G =                 |                       | G =              |                      |            |
| G =                    |            | I/G =            | G =         |            | I/G =           |            | G =                   |           | I/G =                 |                       | G =          |            | I/G =                 |                       | G =              |                      |            |
| PM G =<br>G =          | - 11       | I/G = 2<br>I/G = | G =<br>G =  |            | I/G =<br>I/G =  |            | G =<br>G =            |           | I/G =<br>I/G =        |                       | G =<br>G =   |            | I/G =<br>I/G =        |                       | G =<br>G =       |                      |            |
| G                      | -          |                  | 62          |            | 1/G =           | 15         | 62                    |           | 1/6 =                 | J                     | 6 =          |            | 1/G =                 |                       | 6=               |                      |            |

| -                      |            |                |            |            | -             | J          | Junci       |           |              |                       |           |            |           |              |                 |           |            |
|------------------------|------------|----------------|------------|------------|---------------|------------|-------------|-----------|--------------|-----------------------|-----------|------------|-----------|--------------|-----------------|-----------|------------|
| Junction:              | Wai Yip St | reet / Lai Yip | Street     |            |               |            |             |           |              |                       |           |            |           | -            | Job Nu          | mber:     | J7333      |
| Scenario:              |            | e Proposed D   |            |            |               |            |             |           |              |                       |           |            |           |              |                 |           | 26         |
| Design Year:           | 2032       | Designe        | ed By:     |            |               |            |             | Checke    | d By:        |                       |           |            |           | Date:        | 5 Fe            | ebruary 2 | 2025       |
|                        | Approach   |                | Phase      | Stage      | Width (m)     | Radius (m) | % Up-hill   | Turning % | Sat. Flow    | AM Peak<br>Flow       | y value   | Critical y | Turning % | Sat. Flow    | PM Peak<br>Flow | y value   | Critical y |
|                        |            |                |            |            |               |            | Gradient    |           | (pcu/hr)     | (pcu/hr)              |           | Ontioar y  |           | (pcu/hr)     | (pcu/hr)        |           | Ontioar y  |
| Wai Yip Street         | t WB       | SA+LT          | A1         | 3          | 2.80          | 20.0       |             | 53        | 1943         | 422                   | 0.217     |            | 62        | 1944         | 445             | 0.229     |            |
|                        |            | SA<br>SA       | A2<br>A3   | 3          | 2.80          |            |             |           | 2035<br>2035 | 442<br>442            | 0.217     |            |           | 2035<br>2035 | 466<br>465      | 0.229     |            |
|                        |            | 34             | AS         | 3          | 2.80          |            |             |           | 2035         | 442                   | 0.217     |            |           | 2035         | 405             | 0.229     |            |
| Lai Yip Street         | SB         | LT             | B1         | 2          | 3.10          | 20.0       |             | 100       | 1971         | 292                   | 0.148     |            | 100       | 1991         | 263             | 0.132     | 0.138      |
|                        |            | SA             | B2         | 1,2        | 3.10          |            |             |           | 2185         | 505                   | 0.231     |            |           | 2198         | 389             | 0.177     |            |
|                        |            | SA             | B3         | 1,2        | 3.10          |            |             |           | 2065         | 478                   | 0.231     |            |           | 2065         | 365             | 0.177     |            |
|                        |            |                |            |            |               |            |             |           |              |                       |           |            |           |              |                 |           |            |
| Wai Yip Street         | t EB       | SA+LT          | C1         | 3          | 3.30          | 20.0       |             | 60        | 2101         | 699                   | 0.333     | 0.333      | 61        | 2127         | 611             | 0.287     | 0.287      |
|                        |            | SA             | C2         | 3          | 3.30          |            |             |           | 2085         | 694                   | 0.333     |            |           | 2085         | 599             | 0.287     |            |
|                        |            | SA             | C3         | 3          | 3.30          |            |             |           | 2085         | 693                   | 0.332     |            |           | 2085         | 599             | 0.287     |            |
|                        |            | <u></u>        | <b>D</b> ( |            | 0.00          | 45.0       |             |           | 0000         | 000                   | 0.400     | 0.4.46     |           | 0077         | 000             | 0.400     |            |
| Lai Yip Street         | NR         | SA+LT          | D1         | 2          | 3.80          | 15.0       |             | 58        | 2066         | 286                   | 0.138     | 0.148      | 63        | 2077         | 286             | 0.138     |            |
|                        |            | SA             | D2         | 2          | 3.80          |            |             |           | 2135         | 295                   | 0.138     |            |           | 2135         | 294             | 0.138     |            |
|                        |            |                |            |            |               |            |             |           |              |                       |           |            |           |              |                 |           |            |
|                        |            |                |            |            |               |            |             |           |              |                       |           |            |           |              |                 |           |            |
|                        |            |                |            |            |               |            |             |           |              |                       |           |            |           |              |                 |           |            |
|                        |            |                |            |            |               |            |             |           |              |                       |           |            |           |              |                 |           |            |
|                        |            |                |            |            |               |            |             |           |              |                       |           |            |           |              |                 |           |            |
|                        |            |                |            |            |               |            |             |           |              |                       |           |            |           |              |                 |           |            |
| pedestrian pha         | ase        |                | Ep         | 3          |               | min c      | rossing     | time =    | 11           | sec                   | GM +      | 10         | sec F     | GM =         | 21              | sec       |            |
|                        |            |                | Fp         | 1          |               |            | rossing     |           | 7            |                       | GM +      | 11         |           | GM =         | 18              | sec       |            |
|                        |            |                | Gp         | 1,2        |               |            | rossing     |           | 5            |                       | GM +      | 10         |           | GM =         | 15              | sec       |            |
|                        |            |                | Нр         | 1,3        |               | min c      | rossing     | time =    | 5            | sec                   | GM +      | 7          | sec F     | GM =         | 12              | sec       |            |
|                        |            |                |            |            |               |            |             |           |              |                       |           |            |           |              |                 |           |            |
|                        |            |                |            |            |               |            |             |           |              |                       |           |            |           |              |                 |           |            |
|                        |            |                |            |            |               |            |             |           |              |                       |           |            |           |              |                 |           |            |
| AM Traffic Flow (pcu/h | ir)        |                |            | PM Traffic | Flow (pcu/hr) |            | 1           |           |              | S=1940+1              | 00(W-3.25 | ) 9        | 6=2080+10 | 0/W-3 25)    | Note:           |           |            |
|                        |            | → 292          | N<br>K     |            |               |            |             | 263       | N<br>K       | S <sub>M</sub> =S÷(1+ |           |            | M=(S-230) |              |                 | Improver  |            |
| 416                    | Ļ          |                |            |            | 373           |            | Ļ           |           | $\setminus$  |                       |           | Peak       |           | Peak         | Scheme          | by Other  | Project    |
| +10<br>↑               | 983        | 3              |            |            | †             |            | 754         |           |              |                       | 2+3       | 1,2+3      | 2+3       | 1,2+3        |                 |           |            |
|                        | 1670       |                |            |            |               | 1436       |             |           |              | Sum y                 | 0.481     | 0.564      | 0.425     | 0.464        |                 |           |            |
|                        | 416 1      | 083 -          | -          |            |               | 400        | 1099        | •         | -            | L (s)                 | 39        | 10         | 39        | 10           |                 |           |            |
| 165                    | 5 ←        | 223            |            |            | 180           | ⊷          |             | 277       |              | C (s)                 | 120       | 120        | 108       | 108          |                 |           |            |
|                        |            |                |            |            |               |            |             |           |              | practical y           | 0.608     | 0.825      | 0.575     | 0.817        |                 |           |            |
|                        |            |                |            |            |               |            |             |           |              | R.C. (%)              | 26%       | 46%        | 35%       | 76%          |                 |           |            |
| 1                      | B3 B2      | 2              |            | B3 B2 B    | 1             | 3          |             |           |              |                       |           |            |           |              |                 |           |            |
| Gpi▲                   |            | Hp Gp          | 4          |            |               |            | <b>↑</b> .  | Ep        | ▲            |                       |           |            |           |              |                 |           |            |
| Fp                     | + + 1      |                |            | + + + +    | →             | C1<br>C2   | →<br>→      |           |              |                       |           |            |           |              |                 |           |            |
| •                      | Fp         |                | 11         | Fp 🕇       | *****         | C3         | <b>→</b>    | +         | A3<br>A2     |                       |           |            |           |              |                 |           |            |
|                        | Gp         | •              | •          |            | Gp▲           |            | <b>_</b> Ep | ·····•    | ↓ — A1       |                       |           |            |           |              |                 |           |            |
|                        |            |                | D1 D2      |            |               |            |             |           |              |                       |           |            |           |              |                 |           |            |
|                        |            | I/G = 5        | G =        |            | I/G =         |            | G =         |           | I/G =        |                       | G =       |            | I/G =     |              | G =             |           |            |
| G =                    |            | I/G =          | G =        |            | I/G =         |            | G =         |           | I/G =        |                       | G =       |            | I/G =     |              | G =             |           |            |
|                        |            | I/G = 5        | G =        |            | I/G =         |            | G =         |           | I/G =        |                       | G =       |            | I/G =     |              | G =             |           |            |
| G =                    | -          | I/G =          | G =        |            | I/G =         | υ          | G =         |           | I/G =        | υ                     | G =       |            | I/G =     |              | G =             |           |            |

|                        |             |                |              |            |               | 9            |                       |           |                |                       |           |            |                         |             |                 |                      |            |
|------------------------|-------------|----------------|--------------|------------|---------------|--------------|-----------------------|-----------|----------------|-----------------------|-----------|------------|-------------------------|-------------|-----------------|----------------------|------------|
| Junction:              | Wai Yip Str | reet / Lai Yip | Street       |            |               |              |                       |           |                |                       |           |            |                         |             | Job Nu          | mber:                | J7333      |
| Scenario:              |             | oposed Dev     |              |            |               |              |                       |           | <i>,</i>       |                       |           |            |                         |             |                 |                      | 27         |
| Design Year:           | 2032        | Designe        | ed By:       |            |               |              |                       | Checke    | d By:          |                       |           |            | -                       | Date:       | 5 Fe            | ebruary 2            | 2025       |
|                        | Approach    |                | Phase        | Stage      | Midth (m)     | Radius (m)   | % Up-hill             | Turning % | Sat. Flow      | AM Peak<br>Flow       | y value   | Critical y | Turning %               | Sat. Flow   | PM Peak<br>Flow | y value              | Critical y |
|                        | Approach    |                | Phase        | Slage      | width (m)     | Radius (III) | % Op-fill<br>Gradient | running % | (pcu/hr)       | (pcu/hr)              | y value   | Chucary    | Turning %               | (pcu/hr)    | (pcu/hr)        | y value              | Chucary    |
| Wai Yip Stree          | t WB        | SA+LT          | A1           | 3          | 2.80          | 20.0         |                       | 53        | 1943           | 422                   | 0.217     |            | 62                      | 1944        | 445             | 0.229                |            |
|                        |             | SA             | A2           | 3          | 2.80          |              |                       |           | 2035           | 442                   | 0.217     |            |                         | 2035        | 466             | 0.229                |            |
|                        |             | SA             | A3           | 3          | 2.80          |              |                       |           | 2035           | 442                   | 0.217     |            |                         | 2035        | 465             | 0.229                |            |
| Lai Yip Street         | SB          | LT             | B1           | 2          | 3.10          | 20.0         |                       | 100       | 1971           | 292                   | 0.148     |            | 100                     | 1991        | 263             | 0 132                | 0.138      |
| Lai rip otreet         | 00          | SA             | B2           | 1,2        | 3.10          | 20.0         |                       | 100       | 2185           | 506                   | 0.232     |            | 100                     | 2198        | 390             | 0.132                | 0.100      |
|                        |             | SA             | B3           | 1,2        | 3.10          |              |                       |           | 2065           | 479                   | 0.232     |            |                         | 2065        | 366             | 0.177                |            |
|                        |             |                |              |            |               |              |                       |           |                |                       |           |            |                         |             |                 |                      |            |
| Wai Yip Stree          | t EB        | SA+LT          | C1           | 3          | 3.30          | 20.0         |                       | 60        | 2101           | 701                   | 0.334     |            | 61                      | 2127        | 613             | 0.288                | 0.289      |
|                        |             | SA             | C2           | 3          | 3.30          |              |                       |           | 2085           | 696                   | 0.334     | 0.334      |                         | 2085        | 601             | 0.288                |            |
|                        |             | SA             | C3           | 3          | 3.30          |              |                       |           | 2085           | 695                   | 0.333     |            |                         | 2085        | 602             | 0.289                |            |
|                        |             |                |              |            |               |              |                       |           |                |                       |           |            |                         |             |                 |                      |            |
| Lai Yip Street         | NB          | SA+LT          | D1           | 2          | 3.80          | 15.0         |                       | 58        | 2066           | 286                   | 0.138     | 0.148      | 63                      | 2077        | 286             | 0.138                |            |
|                        |             | SA             | D2           | 2          | 3.80          |              |                       |           | 2135           | 295                   | 0.138     |            |                         | 2135        | 294             | 0.138                |            |
|                        |             |                |              |            |               |              |                       |           |                |                       |           |            |                         |             |                 |                      |            |
|                        |             |                |              |            |               |              |                       |           |                |                       |           |            |                         |             |                 |                      |            |
|                        |             |                |              |            |               |              |                       |           |                |                       |           |            |                         |             |                 |                      |            |
|                        |             |                |              |            |               |              |                       |           |                |                       |           |            |                         |             |                 |                      |            |
|                        |             |                |              |            |               |              |                       |           |                |                       |           |            |                         |             |                 |                      |            |
|                        |             |                |              |            |               |              |                       |           |                |                       |           |            |                         |             |                 |                      |            |
| nodoctrian phy         | 200         |                | En           | 3          |               | min o        | roccing               | timo -    | 11             |                       | GM +      | 10         | 000 F                   | GM =        | 21              |                      |            |
| pedestrian pha         | 456         |                | Ep<br>Fp     | 1          |               |              | rossing rossing       |           | <u>11</u><br>7 |                       | GM +      | 10<br>11   |                         | GM =        | 18              | sec<br>sec           |            |
|                        |             |                | Gp           | 1,2        |               |              | rossing               |           | 5              |                       | GM +      | 10         | sec F                   |             | 15              | sec                  |            |
|                        |             |                | Hp           | 1,3        |               |              | rossing               |           | 5              |                       | GM +      | 7          |                         | GM =        | 12              | sec                  |            |
|                        |             |                |              |            |               |              |                       |           |                |                       |           |            |                         | -           |                 |                      |            |
|                        |             |                |              |            |               |              |                       |           |                |                       |           |            |                         |             |                 |                      |            |
|                        |             |                |              |            |               |              |                       |           |                |                       |           |            |                         |             |                 |                      |            |
|                        |             |                |              |            |               |              |                       |           |                |                       |           |            |                         |             |                 |                      |            |
| AM Traffic Flow (pcu/h | nr)         |                | N            | PM Traffic | Flow (pcu/hr) | 1            | 1                     |           | N              | S=1940+1              | 00(W-3.25 | ) :        | S=2080+10               | 0(W-3.25)   | Note:           |                      |            |
|                        | _           | → 292          | 5            |            |               |              |                       | 263       | 7              | S <sub>M</sub> =S÷(1+ | 1.5f/r)   | s          | S <sub>M</sub> =(S−230) | ÷(1+1.5f/r) |                 | Improver<br>by Other |            |
| 418                    | Ļ           |                | $\setminus$  |            | 376           |              | ţ                     |           | $\setminus$    |                       | AM        | Peak       | PM                      | Peak        | Scheme          | by Other             | Project    |
| t i                    | 985         | 5              |              |            | †             |              | 756                   |           |                |                       | 2+3       | 1,2+3      | 2+3                     | 1,2+3       |                 |                      |            |
|                        | 1674        |                |              |            | _ <b>_</b>    | 1440         |                       |           |                | Sum y                 | 0.482     | 0.566      | 0.426                   | 0.466       |                 |                      |            |
|                        | 416 1       | 083            | -            |            |               | 400          | 1099                  | <b>←</b>  | -              | L (s)                 | 39        | 10         | 39                      | 10          |                 |                      |            |
| 16                     | 5 🛶         | 223            |              |            | 180           | •            |                       | 277       |                | C (s)                 | 120       | 120        | 108                     | 108         |                 |                      |            |
|                        |             |                |              |            |               |              |                       |           |                | practical y           | 0.608     | 0.825      | 0.575                   | 0.817       |                 |                      |            |
|                        | •           |                |              |            |               |              |                       |           |                | R.C. (%)              | 26%       | 46%        | 35%                     | 75%         |                 |                      |            |
| 1                      | B3 B2       | 2              |              | B3 B2 B    | 1             | 3            |                       |           |                |                       |           |            |                         |             |                 |                      |            |
| Gp 🍕                   | A           | Hp Gp          | 4            |            |               |              | <b>↑</b>              | Ep        | ▲              |                       |           |            |                         |             |                 |                      |            |
| Fp                     | + + 🛉       |                |              | + + +      | <b>→</b>      | C1<br>C2     | <u>→</u>              |           |                |                       |           |            |                         |             |                 |                      |            |
| *                      | Fp .        |                | <u>†</u> †   | Fp 🕇       | ••••          | C3           | <b>→</b>              | +<br>+    | A3<br>A2       |                       |           |            |                         |             |                 |                      |            |
|                        | Gp          | •              |              |            | Gp▲           |              | <b>_</b> Ep           | ·····•    | A1             |                       |           |            |                         |             |                 |                      |            |
|                        |             |                | I I<br>D1 D2 |            |               |              |                       |           |                |                       |           |            |                         |             |                 |                      |            |
| AM G =                 | = 18        | I/G = 5        | G =          |            | I/G =         | 12           | G =                   |           | I/G =          | 6                     | G =       |            | I/G =                   |             | G =             |                      |            |
| G =                    | =           | I/G =          | G =          |            | I/G =         | 6            | G =                   |           | I/G =          | 6                     | G =       |            | I/G =                   |             | G =             |                      |            |
| PM G =                 | = 18        | I/G = 5        | G =          |            | I/G =         | 12           | G =                   |           | I/G =          | 6                     | G =       |            | I/G =                   |             | G =             |                      |            |
|                        | =           | I/G =          | G =          |            | I/G =         | 6            | G =                   |           | I/G =          | 6                     | G =       |            | I/G =                   |             | G =             |                      |            |

|                        |             |                |              |            | 0             | gnar         | ouno               |           | nuiye          |                       |           |            |                         |             |                 |            |            |
|------------------------|-------------|----------------|--------------|------------|---------------|--------------|--------------------|-----------|----------------|-----------------------|-----------|------------|-------------------------|-------------|-----------------|------------|------------|
| Junction:              | Wai Yip Str | reet / Lai Yip | Street       |            |               |              |                    |           |                |                       |           |            |                         |             | Job Nu          | mber:      | J7333      |
| Scenario:              |             | Test ( 644-be  |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            | 28         |
| Design Year:           | 2032        | Designe        | ed By:       |            |               |              | -                  | Checke    | d By:          |                       |           |            | -                       | Date:       | 5 Fe            | ebruary 2  | 2025       |
|                        | Approach    |                | Phase        | Stage      | Width (m)     | Radius (m)   | % Up-hill          | Turning % | Sat. Flow      | AM Peak<br>Flow       | y value   | Critical y | Turning %               | Sat. Flow   | PM Peak<br>Flow | y value    | Critical y |
|                        | Арргоаст    |                | FlidSe       | Stage      | wider (iii)   | Radius (III) | Gradient           | runnig %  | (pcu/hr)       | (pcu/hr)              | y value   | Chucary    | running 70              | (pcu/hr)    | (pcu/hr)        | y value    | Critical y |
| Wai Yip Stree          | t WB        | SA+LT          | A1           | 3          | 2.80          | 20.0         |                    | 53        | 1943           | 422                   | 0.217     |            | 62                      | 1944        | 445             | 0.229      |            |
|                        |             | SA             | A2           | 3          | 2.80          |              |                    |           | 2035           | 442                   | 0.217     |            |                         | 2035        | 466             | 0.229      |            |
|                        |             | SA             | A3           | 3          | 2.80          |              |                    |           | 2035           | 442                   | 0.217     |            |                         | 2035        | 465             | 0.229      |            |
| Lai Yip Street         | SB          | LT             | B1           | 2          | 3.10          | 20.0         |                    | 100       | 1971           | 292                   | 0.148     |            | 100                     | 1991        | 263             | 0 132      | 0.138      |
|                        | 00          | SA             | B2           | 1,2        | 3.10          | 20.0         |                    | 100       | 2185           | 506                   | 0.232     |            | 100                     | 2198        | 390             | 0.177      | 0.100      |
|                        |             | SA             | B3           | 1,2        | 3.10          |              |                    |           | 2065           | 479                   | 0.232     |            |                         | 2065        | 366             | 0.177      |            |
|                        |             |                |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
| Wai Yip Stree          | t EB        | SA+LT          | C1           | 3          | 3.30          | 20.0         |                    | 60        | 2101           | 701                   | 0.334     |            | 61                      | 2127        | 613             | 0.288      | 0.289      |
|                        |             | SA             | C2           | 3          | 3.30          |              |                    |           | 2085           | 696                   | 0.334     | 0.334      |                         | 2085        | 601             | 0.288      |            |
|                        |             | SA             | C3           | 3          | 3.30          |              |                    |           | 2085           | 695                   | 0.333     |            |                         | 2085        | 602             | 0.289      |            |
|                        |             |                |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
| Lai Yip Street         | NB          | SA+LT          | D1           | 2          | 3.80          | 15.0         |                    | 58        | 2066           | 286                   | 0.138     | 0.148      | 63                      | 2077        | 286             | 0.138      |            |
|                        |             | SA             | D2           | 2          | 3.80          |              |                    |           | 2135           | 295                   | 0.138     |            |                         | 2135        | 294             | 0.138      |            |
|                        |             |                |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
|                        |             |                |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
|                        |             |                |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
|                        |             |                |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
|                        |             |                |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
|                        |             |                |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
| nodoctrion phy         | 200         |                | En           | 3          |               | mino         | roccing            | timo -    | 11             |                       | GM +      | 10         | 000 F                   | GM =        | 21              |            |            |
| pedestrian pha         | 456         |                | Ep<br>Fp     | 1          |               |              | rossing<br>rossing |           | <u>11</u><br>7 |                       | GM +      | 10<br>11   |                         | GM =        | 18              | sec<br>sec |            |
|                        |             |                | Gp           | 1,2        |               |              | rossing            |           | 5              |                       | GM +      | 10         | sec F                   |             | 15              | sec        |            |
|                        |             |                | Hp           | 1,3        |               |              | rossing            |           | 5              |                       | GM +      | 7          |                         | GM =        | 12              | sec        |            |
|                        |             |                |              | · · ·      |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
|                        |             |                |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
|                        |             |                |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
|                        |             |                |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
| AM Traffic Flow (pcu/h | nr)         |                | N            | PM Traffic | Flow (pcu/hr) | )            | 1                  |           | N              | S=1940+1              | 00(W-3.25 | ) :        | S=2080+10               | 0(W-3.25)   | Note:           |            |            |
|                        | _           | → 292          | 7            |            |               |              | -                  | 263       | 7              | S <sub>M</sub> =S÷(1+ | 1.5f/r)   | s          | 6 <sub>M</sub> =(S−230) | ÷(1+1.5f/r) |                 | Improver   |            |
| 418                    | Ļ           |                |              |            | 376           |              | Ļ                  |           | $\setminus$    |                       | AM        | Peak       | PM                      | Peak        | Scheme          | by Other   | Project    |
| t i                    | 985         | 5              |              |            | †             |              | 756                |           |                |                       | 2+3       | 1,2+3      | 2+3                     | 1,2+3       |                 |            |            |
|                        | 1674        |                |              |            | _ <b>_</b>    | 1440         |                    |           |                | Sum y                 | 0.482     | 0.566      | 0.426                   | 0.466       |                 |            |            |
|                        | 416 1       | 083            | -            |            |               | 400          | 1099               | <b>←</b>  | -              | L (s)                 | 39        | 10         | 39                      | 10          |                 |            |            |
| 165                    | 5 🛶         | 223            |              |            | 180           | •            |                    | 277       |                | C (s)                 | 120       | 120        | 108                     | 108         |                 |            |            |
|                        |             |                |              |            |               |              |                    |           |                | practical y           | 0.608     | 0.825      | 0.575                   | 0.817       |                 |            |            |
|                        | •           |                |              |            |               |              |                    |           |                | R.C. (%)              | 26%       | 46%        | 35%                     | 75%         |                 |            |            |
| 1                      | B3 B2       | 2              |              | B3 B2 B    | 1             | 3            |                    |           |                |                       |           |            |                         |             |                 |            |            |
| Gp ⁴                   | A           | .▼ ►.<br>Hp Gp | 4            |            |               |              | <b>↑</b>           | Ep        | ▲              |                       |           |            |                         |             |                 |            |            |
| Fp                     | + + †       |                |              | + ↓ ▲ Ι    | <b>→</b>      | C1<br>C2     | <b>→</b>           |           | ·              |                       |           |            |                         |             |                 |            |            |
| *                      | Fp .        |                | <u>†</u> †   | Fp 🕇       | ••••          | C3           | <b>→</b>           | <b>↓</b>  | A3             |                       |           |            |                         |             |                 |            |            |
|                        | Gp          | •              |              |            | Gp▲           |              | <b></b> ∎ Ep       | ·····•    | A1             |                       |           |            |                         |             |                 |            |            |
|                        |             |                | I I<br>D1 D2 |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |
| AM G =                 | = 18        | I/G = 5        | G =          |            | I/G =         | 12           | G =                |           | I/G =          | 6                     | G =       |            | I/G =                   |             | G =             |            |            |
| G =                    | =           | I/G =          | G =          |            | I/G =         | 6            | G =                |           | I/G =          | 6                     | G =       |            | I/G =                   |             | G =             |            |            |
| PM G=                  | = 18        | I/G = 5        | G =          |            | I/G =         | 12           | G =                |           | I/G =          | 6                     | G =       |            | I/G =                   |             | G =             |            |            |
|                        |             |                |              |            |               |              |                    |           |                |                       |           |            |                         |             |                 |            |            |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           |       |              |               |              | -             |                   |               |       |                       |           |            |                         |               |                     |                        |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|-------|--------------|---------------|--------------|---------------|-------------------|---------------|-------|-----------------------|-----------|------------|-------------------------|---------------|---------------------|------------------------|-----------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Junction:                | · · · · · |       | Yip Stre     | et            |              |               |                   |               |       |                       |           |            |                         | -             | Job Nu              |                        | J7333     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           |       | ed By:       |               |              |               |                   | Checke        | d By: |                       |           |            | <u>-</u>                | Date:         | 5 Fe                |                        |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           |       |              |               |              |               |                   | <b>T</b> 1 0/ | 0.1.5 |                       |           |            | <b>T</b> 1 00           | 0.15          |                     |                        |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | Approach  |       | Phase        | Stage         | Width (m)    | Radius (m)    |                   | Turning %     |       |                       | y value   | Critical y | Turning %               |               |                     | y value                | Critica   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kwun Tong Ro             | ad EB     |       |              |               | 3.20         |               |                   |               |       | 351                   |           |            |                         |               |                     |                        |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           | SA    | A2           | 1,2           | 3.20         |               |                   |               | 2075  | 377                   | 0.182     | 0.182      |                         | 2075          | 308                 | 0.148                  |           |
| $\begin{split} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _ai Yip Street N         | NB        | LT+SA | B1           | 5             | 3.50         | 30.0          |                   | 31            | 2118  | 480                   | 0.227     |            | 63                      | 2105          | 387                 | 0.184                  | 0.18      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           | SA    | B2           | 5             | 3.50         |               |                   |               | 2105  | 477                   | 0.227     | 0.227      |                         | 2105          | 386                 | 0.183                  |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Elegance Road            | I NB      | SA    | B3           | 5             | 3.50         |               |                   |               | 2105  | 278                   | 0.132     |            |                         | 2105          | 184                 | 0.087                  |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           | SA+RT | B4           | 5             | 3.50         | 18.0          |                   | 9             | 2089  | 276                   | 0.132     |            | 37                      | 2042          | 179                 | 0.088                  |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           | RT    | B5           | 5             | 3.50         | 15.0          |                   | 100           | 1914  | 253                   | 0.132     |            | 100                     | 1914          | 167                 | 0.087                  |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kwun Tong Ro             | ad WB     | LT    | C1           | 1.5           | 3.30         | 15.0          |                   | 100           | 1768  | 365                   | 0.206     |            | 100                     | 1768          | 167                 | 0.094                  |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                        |           |       |              |               |              |               |                   |               |       |                       |           |            |                         |               |                     |                        | 0.22      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           |       |              |               |              |               |                   |               |       |                       |           |            |                         |               |                     |                        |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           | 1.7   | D4           | 2.4           | 2.50         | 45.0          |                   | 100           | 4700  | 450                   | 0.000     | 0.000      | 400                     | 4700          | 404                 | 0.404                  | 0.40      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Elegance Road            | 158       |       |              |               |              | 15.0          |                   | 100           |       |                       |           | 0.088      | 100                     |               |                     |                        | 0.10      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           |       |              |               |              | 10.0          |                   | 15            |       |                       |           |            | 47                      |               |                     |                        |           |
| $\frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |           |       |              |               |              |               |                   |               |       |                       |           |            |                         |               |                     |                        |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           |       | 04           | 3,4           | 5.50         | 15.0          |                   | 100           | 1314  | 150                   | 0.003     |            | 100                     | 1914          | 120                 | 0.007                  |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           |       |              |               |              |               |                   |               |       |                       |           |            |                         |               |                     |                        |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pedestrian pha           | se        |       | Fp           | 12            |              | min c         | rossina           | time =        | 12    | sec                   | GM +      | 10         | sec F                   | GM =          | 22                  | sec                    |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           |       |              |               |              |               |                   |               |       |                       |           |            |                         |               |                     |                        |           |
| $\begin{array}{c} 184 \\ + 158 \\ 319 \\ - 728 \\ - 728 \\ - 729 \\ - 529 \\ 150 \\ - 278 \end{array} \begin{array}{c} 191 \\ + 181 \\ 212 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |           |       | Gp           |               |              | min c         | rossing           | time =        | 5     | sec                   | GM +      | 5          | sec F                   | GM =          | 10                  | sec                    |           |
| $\begin{array}{c} 184 \\ + 158 \\ 319 \\ - 728 \\ - 728 \\ - 729 \\ - 529 \\ 150 \\ - 278 \end{array} \begin{array}{c} 191 \\ + 181 \\ 212 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |           |       |              |               |              |               |                   |               |       |                       |           |            |                         |               |                     |                        |           |
| $\begin{array}{c} 184 \\ + 158 \\ 319 \\ - 728 \\ - 728 \\ - 729 \\ - 529 \\ 150 \\ - 278 \end{array} \begin{array}{c} 191 \\ + 181 \\ 212 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |           |       |              |               |              |               |                   |               |       |                       |           |            |                         |               |                     |                        |           |
| $\begin{array}{c} 184 \\ + 158 \\ 319 \\ - 728 \\ - 728 \\ - 729 \\ - 529 \\ 150 \\ - 278 \end{array} \begin{array}{c} 191 \\ + 181 \\ 212 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |           |       |              |               |              |               |                   |               |       |                       |           |            |                         |               |                     |                        |           |
| $\begin{array}{c} 184 \\ + 158 \\ 319 \\ - 728 \\ - 728 \\ - 729 \\ - 529 \\ 150 \\ - 278 \end{array} \begin{array}{c} 191 \\ + 181 \\ 212 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 596 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 506 \\ - 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |           |       |              |               |              |               |                   |               |       |                       |           |            |                         |               |                     |                        |           |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AM Traffic Flow (pcu/hr) | )         |       | N            | PM Traffic I  | low (pcu/hr) |               |                   |               | N     | S=1940+1              | 00(W–3.25 | ) :        | S=2080+10               | 0(W–3.25)     |                     |                        |           |
| $ \begin{array}{c} & \longrightarrow & 728 \\ & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | 184 🕂     | 158   | 1            |               |              | 191           | $\leftrightarrow$ | 181           | 1     | S <sub>M</sub> =S÷(1+ | 1.5f/r)   | s          | S <sub>M</sub> =(S–230) | ÷(1+1.5f/r)   | 1) In AM<br>Sequenc | Peak, Sta<br>e : 2>4>5 | age<br>>2 |
| $\begin{array}{c} 10^{\circ} \\ 729 \\ 150 \\ \hline \\ 529 \\ 150 \\ \hline \\ 278 \end{array} \qquad \begin{array}{c} 729 \\ 953 \\ 297 \\ 243 \\ \hline \\ 297 \\ 167 \\ \hline \\ (s) \\ 18 \\ 108 \\ \hline \\ practical y \\ 0.786 \\ 0.733 \\ \hline \\ (c. (\%) \\ 58\% \\ 43\% \\ \hline \\ B3 B4 B5 \\ \hline \\ B1 B2 \\ \hline \\ \\ \\ B1 B2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |           | 9     | ١            |               |              |               | 212               |               | \     |                       | AM        | Peak       | PM                      | Peak          |                     |                        |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | 728       |       |              | -             |              | 596           |                   |               |       |                       | 2+4+5     |            | 2+3+5                   |               | Sequenc             | e : 2>3>5              | >2        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           |       |              |               |              |               |                   |               |       | Sum y                 | 0.497     |            | 0.512                   |               |                     |                        |           |
| $150 + 278$ $243 + 233$ $R.C.(%) \overline{58\%} \overline{43\%}$ $R.C.(%) \overline{58\%} \overline{56\%}$ $R.C.(%) \overline{58\%} \overline{56\%}$ $R.C.(%) \overline{56\%}$ $R.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |           | ŧ     | _            |               |              |               | 953               | ŧ             | -     | L (s)                 |           |            |                         |               |                     |                        |           |
| $A^{1} \longrightarrow C^{3} \\ A^{2} \longrightarrow C^{3} \\ F_{P} \longrightarrow C^{1} \\ C^{2} \\ F_{P} \longrightarrow C^{1} \\ C^{2} \\ C^{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |           | 365   |              |               |              | ▲             |                   | 167           |       | C (s)                 |           |            |                         |               |                     |                        |           |
| $A_{2} \xrightarrow{A_{1}} \underbrace{\longrightarrow}_{C_{2}} \underbrace{C_{3}}_{C_{2}} \xrightarrow{A_{1}} \underbrace{\longrightarrow}_{C_{2}} \underbrace{C_{3}}_{F_{p}} \underbrace{\bigoplus}_{F_{p}} \underbrace{C_{3}}_{G_{2}} \xrightarrow{C_{3}} \underbrace{\bigoplus}_{F_{p}} \underbrace{\bigoplus}_{F_{p}} \underbrace{\bigoplus}_{G_{p}} \underbrace{\bigoplus}_{F_{p}} \underbrace{\bigoplus}_{F_{p$ | 150                      | ← → 278   |       |              |               | 243          | ←   →         | 233               |               |       | practical y           |           |            |                         |               |                     |                        |           |
| $A1 \longrightarrow A2 \longrightarrow C3 \longrightarrow C2 \\ F_{P} \longrightarrow C1 \\ M \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | I         |       |              |               |              |               |                   |               |       | R.C. (%)              | 58%       |            | 43%                     |               |                     |                        |           |
| $A^{2} \longrightarrow G^{2} \oplus G^{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                        | <b>}</b>  |       |              |               |              | 3             | D4 D3             | D2 D1         |       | 4                     | D4 D3     | D2 D1      |                         | 5             |                     |                        |           |
| $F_{P} \leftarrow C_{1} \leftarrow C_{2} \leftarrow F_{P} \leftarrow F_{P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |           |       |              |               |              |               |                   |               |       |                       |           |            |                         | ↑ <b> </b> •[ | <b>→</b>            |                        |           |
| $F_{P} \leftarrow E_{P} \leftarrow C^{1} \qquad F_{P} \leftarrow E_{P} \leftarrow G_{P} \qquad F_{P} \leftarrow G_{P} \qquad F_{P} \leftarrow C^{1} \qquad f_{B1} = D \qquad f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |           |       | $\leftarrow$ |               |              |               | ₹                 | Ļ             |       |                       | -         | Ļ          |                         | B3 B4 B5      |                     |                        |           |
| Image: Contract of the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fp. <b>€</b> p           | Ep C1     |       |              |               | 02           | Fp            |                   | Gp<br>▼.      |       | Fp <sub>.</sub>       |           |            |                         | <b>⊷</b> †↑   |                     | Ļ                      | — C1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                 |           |       |              | ··· <b>·A</b> |              | <b>*</b> **** |                   | ·****         |       | <b>*</b> *            |           |            |                         |               |                     |                        |           |
| PM 1/G = 1/G = 7 1/G = 7 1/G = 6 1/G = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AM                       | 1/0       | G =   |              |               | I/G =        |               |                   |               | I/G = | 5                     |           |            | I/G =                   | 10            |                     | I/G =                  | 3         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PM                       | 1/0       | G =   |              |               | I/G =        | 7             |                   |               | I/G = | 7                     |           |            | I/G =                   | 6             |                     | I/G =                  | 3         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |           |       |              |               |              |               |                   |               |       |                       |           |            |                         |               |                     |                        |           |

|                         |             |              |          |              |                 | •          |                       |           | ,                     |                       |                |            |                         |                       |                  |                         |            |
|-------------------------|-------------|--------------|----------|--------------|-----------------|------------|-----------------------|-----------|-----------------------|-----------------------|----------------|------------|-------------------------|-----------------------|------------------|-------------------------|------------|
| Junction:               | Kwun Tong   | Road / Lai ` | Yip Stre | et           |                 |            |                       |           |                       |                       |                |            |                         | -                     | Job Nu           |                         | J7333      |
| Scenario:               | Without the |              |          |              |                 |            |                       |           |                       |                       |                |            |                         |                       |                  |                         | 30         |
| Design Year:            | 2032        | Designe      | ed By:   |              |                 |            |                       | Checke    | ed By:                |                       |                |            | -                       | Date:                 | 5 Fe             | ebruary 2               | 2025       |
|                         |             |              |          |              |                 |            |                       |           |                       | AM Peak               |                |            |                         | 1                     | PM Peak          | 1                       |            |
|                         | Approach    |              | Phase    | Stage        | Width (m)       | Radius (m) | % Up-hill<br>Gradient | Turning % | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr)      | y value        | Critical y | Turning %               | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr) | y value                 | Critical y |
| Kwun Tong Ro            | ad EB       | SA           | A1       | 1,2          | 3.20            |            |                       |           | 1935                  | 379                   | 0.196          |            |                         | 1935                  | 316              | 0.163                   |            |
|                         |             | SA           | A2       | 1,2          | 3.20            |            |                       |           | 2075                  | 406                   | 0.196          |            |                         | 2075                  | 338              | 0.163                   |            |
|                         |             |              |          |              |                 |            |                       |           |                       |                       |                |            |                         |                       |                  |                         |            |
| Lai Yip Street I        | NB          | LT           | B1       | 5            | 3.30            | 30.0       |                       | 100       | 2035                  | 157                   | 0.077          |            | 100                     | 2052                  | 288              | 0.140                   |            |
|                         |             | SA           | B2       | 5            | 3.30            |            |                       |           | 2085                  | 523                   | 0.251          |            |                         | 2085                  | 425              | 0.204                   |            |
|                         |             | SA           | B3       | 5            | 3.30            |            |                       |           | 2085                  | 522                   | 0.250          |            |                         | 2085                  | 425              | 0.204                   |            |
| Elegence Dee            |             | 64           | D4       | F            | 2.50            |            |                       |           | 2105                  | 250                   | 0 171          |            |                         | 2105                  | 204              | 0.140                   |            |
| Elegance Road           | מאו נ       | SA<br>SA+RT  | B4<br>B5 | 5<br>5       | 3.50<br>3.50    | 18.0       |                       | 3         | 2105<br>2100          | 359<br>359            | 0.171<br>0.171 |            | 18                      | 2105<br>2074          | 294<br>289       | 0.140                   |            |
|                         |             | RT           | во<br>В6 | 5            | 3.50            | 15.0       |                       | 3<br>100  | 1914                  | 327                   | 0.171          |            | 100                     | 1914                  | 269              | 0.139                   |            |
|                         |             | NI           | БО       | 5            | 5.50            | 15.0       |                       | 100       | 1914                  | 521                   | 0.171          |            | 100                     | 1914                  | 207              | 0.139                   |            |
| Kwun Tong Ro            | ad WR       | LT           | C1       | 1,5          | 3.30            | 15.0       |                       | 100       | 1768                  | 575                   | 0.325          | 0.325      | 100                     | 1768                  | 403              | 0.228                   | 0.228      |
| rtwair rong rte         |             | SA           | C2       | 1,0          | 3.50            | 10.0       |                       | 100       | 2105                  | 433                   | 0.206          |            | 100                     | 2105                  | 573              | 0.272                   | 0.272      |
|                         |             | SA           | C3       | 1,2          | 3.50            | 1          | 1                     | İ         | 2105                  | 432                   | 0.205          |            |                         | 2105                  | 573              | 0.272                   |            |
|                         |             |              |          | - ,          |                 |            |                       |           |                       |                       |                |            |                         |                       |                  |                         |            |
| Elegance Road           | d SB        | LT           | D1       | 3,4          | 3.50            | 15.0       |                       | 100       | 1786                  | 195                   | 0.109          | 0.109      | 100                     | 1786                  | 216              | 0.121                   | 0.121      |
|                         |             | SA           | D2       | 3,4          | 3.50            |            |                       |           | 2105                  | 224                   | 0.106          |            |                         | 2105                  | 178              | 0.085                   |            |
|                         |             | SA+RT        | D3       | 3,4          | 3.50            | 18.0       |                       | 40        | 2037                  | 217                   | 0.107          |            | 65                      | 1997                  | 169              | 0.085                   |            |
|                         |             | RT           | D4       | 3,4          | 3.50            | 15.0       |                       | 100       | 1914                  | 203                   | 0.106          |            | 100                     | 1914                  | 162              | 0.085                   |            |
|                         |             |              |          |              |                 |            |                       |           |                       |                       |                |            |                         |                       |                  |                         |            |
|                         |             |              |          |              |                 |            |                       |           |                       |                       |                |            |                         |                       |                  |                         |            |
| pedestrian pha          | ISE         |              | Ep       | 1,2          |                 | min c      | rossing               | time =    | 12                    | sec                   | GM +           | 10         | sec F                   | GM =                  | 22               | sec                     |            |
|                         |             |              | Fp       | 1,2,3,4      |                 | min c      | rossing               | time =    | 5                     | sec                   | GM +           | 7          | sec F                   | GM =                  | 12               | sec                     |            |
|                         |             |              | Gp       | 2,3          |                 | min c      | rossing               | time =    | 5                     | sec                   | GM +           | 5          | sec F                   | GM =                  | 10               | sec                     |            |
|                         |             |              |          |              |                 |            |                       |           |                       |                       |                |            |                         |                       |                  |                         |            |
|                         |             |              |          |              |                 |            |                       |           |                       |                       |                |            |                         |                       |                  |                         |            |
|                         |             |              |          |              |                 |            |                       |           |                       |                       |                |            |                         |                       |                  |                         |            |
|                         |             |              |          |              |                 |            |                       |           |                       |                       |                |            |                         |                       |                  |                         |            |
|                         |             |              |          |              |                 |            |                       |           |                       |                       |                |            |                         |                       |                  |                         |            |
| AM Traffic Flow (pcu/hr |             |              | Ν        | PM Traffic I | Flow (pcu/hr)   |            |                       |           | Ν                     | S=1940+1              | 00(W–3.25      | ) :        | S=2080+10               | · ,                   | Note:            |                         |            |
|                         | 291         | 195          | 1        |              |                 | 272        | ŧ                     | 216       | 1                     | S <sub>M</sub> =S÷(1+ | 1.5f/r)        | s          | 6 <sub>M</sub> =(S–230) | ÷(1+1.5f/r)           |                  | ion Improv<br>by Other  |            |
|                         | 35          | 3            | ١        |              |                 |            | 237                   |           | 1                     |                       | AM             | Peak       | PM                      | Peak                  | 2) In AM         | Peak, Sta               | age        |
|                         | 785         |              |          | _            |                 | 654        |                       |           |                       |                       | 2+4+5          |            | 2+3+5                   |                       | Sequend          | ce : 2>4>5              | 5>2        |
|                         |             | NOF 4        | _        |              |                 |            | 4440                  |           | _                     | Sum y                 | 0.640          |            | 0.621                   |                       |                  | Peak, Sta<br>ce : 2>3>5 |            |
|                         |             | 365          |          |              |                 |            | 1146                  | ¥         | _                     | L (s)                 | 15             |            | 20                      |                       | ocquerie         | . 2- 0- 0               | <i>F</i> Z |
| (57                     | 707         | 575          |          |              |                 | 531<br>1   | 0.40                  | 403       |                       | C (s)                 | 118            |            | 108                     |                       |                  |                         |            |
| 157                     | 338         |              |          |              | 288             |            | 319                   |           |                       | practical y           | 0.786          |            | 0.733                   |                       |                  |                         |            |
|                         |             | la           |          |              |                 |            |                       |           |                       | R.C. (%)              | 23%            |            | 18%                     | -                     |                  |                         |            |
| 1                       |             | 2            |          |              |                 | 3          | D4 D3                 | D2 D1     |                       | 4                     | D4 D3          | D2 D1      |                         | 5                     |                  |                         |            |
| A1<br>A2                |             | A1 —<br>A2 — |          |              |                 |            |                       |           |                       |                       |                |            |                         | 141                   | <b>→</b>         |                         |            |
| -                       | ca          | 3            | •        |              | — <sub>C3</sub> |            | ┥                     |           |                       |                       | ┥              |            |                         | B3 B4 B5              |                  |                         |            |
| <u>-</u>                |             | 2            | <u>-</u> |              | — C2            |            | *                     | •         |                       |                       | *              | •          |                         | 4 ↑ ↑ ↑               |                  |                         | — C1       |
| Fp,                     | ► †         | Fp           | Ep       | Gp           |                 | Fp▼        |                       | Gp        |                       | Fp▼                   |                |            |                         |                       |                  | ŧ                       | 0.         |
| *                       |             |              |          | •            |                 |            |                       | •         |                       |                       |                |            |                         | B1 B2 B               | 3                |                         |            |
| АМ                      | 1/          | G =          |          |              | I/G =           |            |                       |           | I/G =                 | 5                     |                |            | I/G =                   | 10                    |                  | I/G =                   | 3          |
|                         |             |              |          |              |                 |            |                       |           |                       |                       |                |            |                         |                       |                  |                         |            |
| РМ                      | 1/          | G =          |          |              | I/G =           | 7          |                       |           | I/G =                 | 7                     |                |            | I/G =                   | 6                     |                  | I/G =                   | 3          |
|                         |             |              |          |              |                 |            |                       |           |                       |                       |                |            |                         |                       |                  |                         |            |

|                         |                |          |          |            |                 | 0            |           |           |              |                       |           |            |                         |              |                 |                       |            |
|-------------------------|----------------|----------|----------|------------|-----------------|--------------|-----------|-----------|--------------|-----------------------|-----------|------------|-------------------------|--------------|-----------------|-----------------------|------------|
| Junction:               | Kwun Tong F    |          |          |            |                 |              |           |           |              |                       |           |            |                         |              | Job Nu          | mber:                 |            |
| Scenario:               | With the Pro   |          |          |            |                 |              |           |           |              |                       |           |            |                         |              |                 |                       | 31         |
| Design Year:            | 2032           | Designe  | ed By:   |            |                 |              |           | Checke    | d By:        |                       |           |            | -                       | Date:        | 5 Fe            | ebruary               | 2025       |
|                         | Approach       |          | Phase    | Stage      | Midth (m)       | Radius (m)   | % Up-hill | Turning % | Sat. Flow    | AM Peak<br>Flow       | y value   | Critical y | Turning %               | Sat. Flow    | PM Peak<br>Flow | y value               | Critical y |
|                         |                |          |          | -          |                 | Radius (III) | Gradient  | Turning % | (pcu/hr)     | (pcu/hr)              | y value   | Chucary    | Turning %               | (pcu/hr)     | (pcu/hr)        | y value               | Critical y |
| Kwun Tong Ro            | ad EB          | SA       | A1       | 1,2        | 3.20            |              |           |           | 1935         | 379                   | 0.196     |            |                         | 1935         | 316             | 0.163                 |            |
|                         |                | SA       | A2       | 1,2        | 3.20            |              |           |           | 2075         | 406                   | 0.196     |            |                         | 2075         | 338             | 0.163                 |            |
|                         |                | 1.7      | D4       | -          | 2.20            | 20.0         |           | 100       | 2025         | 457                   | 0.077     |            | 100                     | 2052         | 200             | 0.440                 |            |
| Lai Yip Street I        | NB             | LT<br>SA | B1<br>B2 | 5<br>5     | 3.30<br>3.30    | 30.0         |           | 100       | 2035<br>2085 | 157<br>524            | 0.077     |            | 100                     | 2052<br>2085 | 288<br>427      | 0.140                 |            |
|                         |                | SA       | B3       | 5          | 3.30            |              |           |           | 2085         | 523                   | 0.251     |            |                         | 2085         | 426             | 0.203                 |            |
|                         |                | 0,1      | 20       |            | 0.00            |              |           |           | 2000         | 020                   | 0.201     |            |                         | 2000         | .20             | 0.201                 |            |
| Elegance Road           | d NB           | SA       | B4       | 5          | 3.50            |              |           |           | 2105         | 360                   | 0.171     |            |                         | 2105         | 295             | 0.140                 |            |
|                         |                | SA+RT    | B5       | 5          | 3.50            | 18.0         |           | 3         | 2100         | 359                   | 0.171     |            | 18                      | 2074         | 290             | 0.140                 |            |
|                         |                | RT       | B6       | 5          | 3.50            | 15.0         |           | 100       | 1914         | 328                   | 0.171     |            | 100                     | 1914         | 268             | 0.140                 |            |
|                         |                |          |          |            |                 |              |           |           |              |                       |           |            |                         |              |                 |                       |            |
| Kwun Tong Ro            | oad WB         | LT       | C1       | 1,5        | 3.30            | 15.0         |           | 100       | 1768         | 577                   |           | 0.326      | 100                     | 1768         | 405             | 0.229                 |            |
|                         |                | SA       | C2       | 1,2        | 3.50            |              |           |           | 2105         | 433                   | 0.206     | 0.206      |                         | 2105         | 573             | 0.272                 | 0.272      |
|                         |                | SA       | C3       | 1,2        | 3.50            |              |           |           | 2105         | 432                   | 0.205     |            |                         | 2105         | 573             | 0.272                 |            |
| Elegance Road           | 1 SB           | LT       | D1       | 3,4        | 3.50            | 15.0         |           | 100       | 1786         | 195                   | 0 100     | 0.109      | 100                     | 1786         | 216             | 0.121                 | 0.121      |
|                         | 100            | SA       | D2       | 3,4        | 3.50            | 13.0         |           | 100       | 2105         | 224                   | 0.109     | 0.109      | 100                     | 2105         | 178             | 0.085                 | 0.121      |
|                         |                | SA+RT    | D3       | 3,4        | 3.50            | 18.0         |           | 40        | 2037         | 217                   | 0.107     |            | 65                      | 1997         | 169             | 0.085                 |            |
|                         |                | RT       | D4       | 3,4        | 3.50            | 15.0         |           | 100       | 1914         | 203                   | 0.106     |            | 100                     | 1914         | 162             | 0.085                 |            |
|                         |                |          |          |            |                 |              |           |           |              |                       |           |            |                         |              |                 |                       |            |
|                         |                |          |          |            |                 |              |           |           |              |                       |           |            |                         |              |                 |                       |            |
| pedestrian pha          | ise            |          | Ep       | 1,2        |                 | min c        | rossing   | time =    | 12           | sec                   | GM +      | 10         | sec F                   | GM =         | 22              | sec                   |            |
|                         |                |          | Fp       | 1,2,3,4    |                 |              | rossing   |           | 5            | sec                   | GM +      | 7          | sec F                   | GM =         | 12              | sec                   |            |
|                         |                |          | Gp       | 2,3        |                 | min c        | rossing t | time =    | 5            | sec                   | GM +      | 5          | sec F                   | GM =         | 10              | sec                   |            |
|                         |                |          |          |            |                 |              |           |           |              |                       |           |            |                         |              |                 |                       |            |
|                         |                |          |          |            |                 |              |           |           |              |                       |           |            |                         |              |                 |                       |            |
|                         |                |          |          |            |                 |              |           |           |              |                       |           |            |                         |              |                 |                       |            |
|                         |                |          |          |            |                 |              |           |           |              |                       |           |            |                         |              |                 |                       |            |
| AM Traffic Flow (pcu/hr | r) I           |          |          | PM Traffic | Flow (pcu/hr    | )            | 1         |           |              | S=1940+1              | 00(W-3.25 | ) 9        | S=2080+10               | 0(W_3 25)    | Note:           |                       |            |
|                         | 291 +          | → 195    | N<br>K   |            |                 | 272          | ← →       | 216       | N<br>K       | S <sub>M</sub> =S÷(1+ |           |            | S <sub>M</sub> =(S-230) | . ,          |                 | on Improv             |            |
|                         | +<br>353       | 3        |          |            |                 |              | ↓<br>237  |           |              |                       | -         | Peak       |                         | Peak         |                 | by Other              |            |
|                         | 785            |          |          | -          |                 | 654          |           |           |              |                       | 2+4+5     | Car        | 2+3+5                   | Car          |                 | Peak, St<br>e : 2>4>{ |            |
|                         |                |          |          |            |                 |              |           |           |              | Sum y                 | 0.641     |            | 0.622                   |              | 3) In PM        | Peak, St              | age        |
|                         | 8              | 65 🗕     | -        |            |                 |              | 1146      | <b>↓</b>  | -            | L (s)                 | 15        |            | 20                      |              |                 | e : 2>3>8             |            |
|                         | 709            | 577      |          |            |                 | 534          |           | 405       |              | C (s)                 | 118       |            | 108                     |              |                 |                       |            |
| 157                     | ′← → 338       |          |          |            | 288             |              | 319       |           |              | practical y           | 0.786     |            | 0.733                   |              |                 |                       |            |
|                         |                |          |          |            |                 |              |           |           |              | R.C. (%)              | 23%       |            | 18%                     |              |                 |                       |            |
| 1                       |                | 2        |          |            |                 | 3            | D4 D3     | D2 D1     |              | 4                     | D4 D3     | D2 D1      |                         | 5            |                 |                       |            |
| A1<br>A2                | $\rightarrow$  | A1<br>A2 |          |            |                 |              |           |           |              |                       |           |            |                         | 1 ∱          | <b>→</b>        |                       |            |
| ←                       | Сз             |          | •        |            | — <sub>C3</sub> |              | ⊷↓        | 1         |              |                       | ⊷↓        |            |                         | B3 B4 B5     |                 |                       |            |
| -                       | C3<br>C2<br>C1 |          | <u>-</u> |            | — C2            |              | +         | •         |              |                       | +         | *          |                         | ▲ 1 ↑ ↑      |                 | r                     | — C1       |
| Fp,                     | ▶ ↓ 0.         | Fp, ▼    | Ep       | Gp         |                 | Fp▼          |           | Gp        |              | Fp▼                   |           |            |                         |              |                 | Ŧ                     | 0.         |
| •                       |                | *        |          | •          |                 |              |           | •         |              | -                     |           |            |                         | B1 B2 B      | 3               |                       |            |
| AM                      | I/G            | 6 =      |          |            | I/G =           |              |           |           | I/G =        | 5                     |           |            | I/G =                   | 10           |                 | I/G =                 | 3          |
| PM                      | I/G            | ; =      |          |            | I/G =           | 7            |           |           | I/G =        | 7                     |           |            | I/G =                   | 6            |                 | I/G =                 | 3          |
|                         | 1/6            |          |          |            | "G =            |              |           |           | <i></i>      | •                     |           |            | "G -                    | 5            |                 | 1/G =                 | 5          |
|                         |                |          |          |            |                 |              |           |           |              |                       |           |            |                         |              |                 |                       |            |

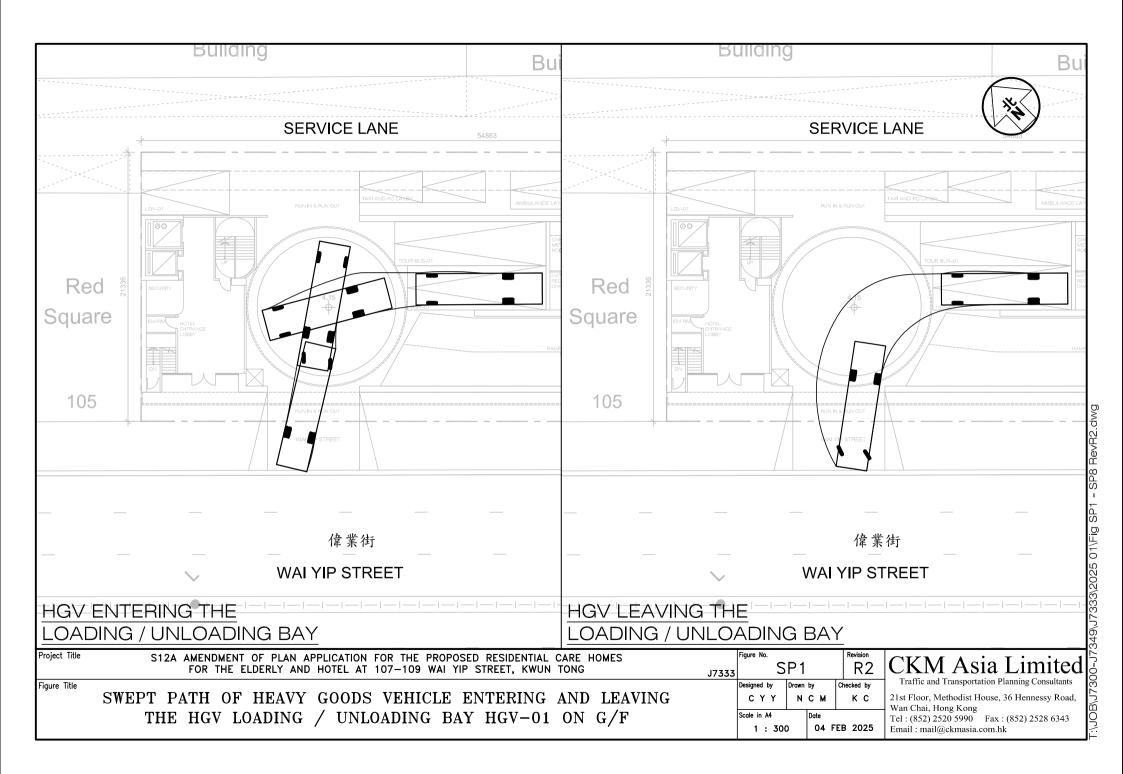
|                           |                                     |                        |                   |                | _            | J            | June                   |           |                       |                       |                     |            |                                      |                       |                  |                       |            |
|---------------------------|-------------------------------------|------------------------|-------------------|----------------|--------------|--------------|------------------------|-----------|-----------------------|-----------------------|---------------------|------------|--------------------------------------|-----------------------|------------------|-----------------------|------------|
| Junction:                 | Kwun Tong                           |                        |                   |                |              |              |                        |           |                       |                       |                     |            |                                      |                       | Job Nu           | mber:                 |            |
| Scenario:<br>Design Year: | Sensitivity T<br>2032               | est ( 644-b<br>Designe |                   |                |              |              |                        | Checke    | d By:                 |                       |                     |            |                                      | Date:                 | 5 Fe             | P.<br>ebruary:        | 32<br>2025 |
|                           |                                     |                        |                   |                |              |              |                        |           |                       | AM Peak               |                     |            |                                      |                       | PM Peak          |                       | 1          |
|                           | Approach                            |                        | Phase             | Stage          | Width (m)    | Radius (m)   | % Up-hill<br>Gradient  | Turning % | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr)      | y value             | Critical y | Turning %                            | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr) | y value               | Critical y |
| Kwun Tong Ro              | oad EB                              | SA                     | A1                | 1,2            | 3.20         |              |                        |           | 1935                  | 379                   | 0.196               |            |                                      | 1935                  | 316              | 0.163                 |            |
|                           |                                     | SA                     | A2                | 1,2            | 3.20         |              |                        |           | 2075                  | 406                   | 0.196               |            |                                      | 2075                  | 338              | 0.163                 |            |
| Lai Yip Street            | NB                                  | LT                     | B1                | 5              | 3.30         | 30.0         |                        | 100       | 2035                  | 157                   | 0.077               |            | 100                                  | 2052                  | 288              | 0.140                 |            |
|                           |                                     | SA                     | B2                | 5              | 3.30         |              |                        |           | 2085                  | 524                   | 0.251               |            |                                      | 2085                  | 427              | 0.205                 |            |
|                           |                                     | SA                     | B3                | 5              | 3.30         |              |                        |           | 2085                  | 523                   | 0.251               |            |                                      | 2085                  | 426              | 0.204                 |            |
| Elegance Roa              | d NP                                | SA                     | B4                | 5              | 3.50         |              |                        |           | 2105                  | 360                   | 0.171               |            |                                      | 2105                  | 295              | 0.140                 |            |
| Elegance Roa              |                                     | SA+RT                  | В5                | 5              | 3.50         | 18.0         |                        | 3         | 2105                  | 359                   | 0.171               |            | 18                                   | 2105                  | 295              | 0.140                 |            |
|                           |                                     | RT                     | B6                | 5              | 3.50         | 15.0         |                        | 100       | 1914                  | 328                   | 0.171               |            | 100                                  | 1914                  | 268              | 0.140                 |            |
|                           |                                     |                        | 00                |                | 0.00         | 10.0         |                        | 100       | 1314                  | 520                   | 0.171               |            | 100                                  | 1314                  | 200              | 0.140                 |            |
| Kwun Tong Ro              | oad WB                              | LT                     | C1                | 1,5            | 3.30         | 15.0         |                        | 100       | 1768                  | 577                   | 0.326               | 0.326      | 100                                  | 1768                  | 405              | 0.229                 | 0.229      |
|                           |                                     | SA                     | C2                | 1,2            | 3.50         |              |                        |           | 2105                  | 433                   | 0.206               |            |                                      | 2105                  | 573              | 0.272                 |            |
|                           |                                     | SA                     | C3                | 1,2            | 3.50         |              |                        |           | 2105                  | 432                   | 0.205               |            |                                      | 2105                  | 573              | 0.272                 |            |
|                           |                                     |                        |                   |                |              |              |                        |           |                       |                       |                     |            | 100                                  |                       |                  |                       |            |
| Elegance Roa              | d SB                                | LT                     | D1                | 3,4            | 3.50         | 15.0         |                        | 100       | 1786                  | 195                   |                     | 0.109      | 100                                  | 1786                  | 216              | 0.121                 | 0.121      |
|                           |                                     | SA                     | D2                | 3,4            | 3.50         | 10.0         |                        | 40        | 2105                  | 224                   | 0.106               |            | 6F                                   | 2105                  | 178              | 0.085                 |            |
|                           |                                     | SA+RT<br>RT            | D3<br>D4          | 3,4<br>3,4     | 3.50<br>3.50 | 18.0<br>15.0 |                        | 40<br>100 | 2037<br>1914          | 217<br>203            | 0.107               |            | 65<br>100                            | 1997<br>1914          | 169<br>162       | 0.085                 |            |
|                           |                                     | NI                     | D4                | 3,4            | 3.50         | 15.0         |                        | 100       | 1914                  | 203                   | 0.100               |            | 100                                  | 1914                  | 102              | 0.005                 |            |
|                           |                                     |                        | _                 |                |              |              |                        |           | 10                    |                       |                     |            |                                      |                       |                  |                       |            |
| pedestrian pha            | ase                                 |                        | Ep                | 1,2            |              |              | rossing                |           | 12                    |                       | GM +                | 10         | sec F                                |                       | 22               | sec                   |            |
|                           |                                     |                        | Fp<br>Gp          | 1,2,3,4<br>2,3 |              |              | rossing t<br>rossing t |           | 5<br>5                |                       | <u>GM +</u><br>GM + | 7<br>5     | sec F                                | GM =                  | 12<br>10         | sec<br>sec            |            |
|                           |                                     |                        |                   |                |              |              |                        |           |                       |                       |                     |            |                                      |                       |                  |                       |            |
|                           |                                     |                        |                   |                |              |              |                        |           |                       |                       |                     |            |                                      |                       |                  |                       |            |
|                           |                                     |                        |                   |                |              |              |                        |           |                       |                       |                     |            |                                      |                       |                  |                       |            |
|                           |                                     |                        |                   |                |              |              |                        |           |                       |                       |                     |            |                                      |                       |                  |                       |            |
| AM Traffic Flow (pcu/h    |                                     |                        |                   | DM Troffic     | Flow (pcu/hr |              |                        |           |                       |                       | l                   |            |                                      |                       | Note:            |                       |            |
| Aw traffic flow (peari    | " <sup>"</sup> 291 <del>• • •</del> | → 195                  | N                 | r wi franci    | now (pea/m   | 272          | $ \rightarrow $        | 216       | N                     |                       | 00(W–3.25           | •          | S=2080+10                            | . ,                   |                  | on Improv             | /ement     |
|                           | ŧ                                   |                        | $\langle \rangle$ |                |              | 212          | ŧ                      | 210       | $\langle \rangle$     | S <sub>M</sub> =S÷(1+ | 1.5f/r)             | s          | 6 <sub>M</sub> =(S−230) <sup>·</sup> | ÷(1+1.5f/r)           |                  | by Other              |            |
|                           | 35<br>• 785                         | 3                      | `                 | _              | <b>,</b>     | 654          | 237                    |           | 1                     |                       |                     | Peak       |                                      | Peak                  |                  | Peak, St              |            |
|                           | 100                                 |                        |                   |                |              | 004          |                        |           |                       |                       | 2+4+5               |            | 2+3+5                                |                       |                  | e : 2>4>§             |            |
|                           | 8                                   | 65 +                   | _                 |                |              |              | 1146                   | <b>↓</b>  | _                     | Sum y                 | 0.641<br>15         |            | 0.622<br>20                          |                       |                  | Peak, St<br>e : 2>3>{ |            |
|                           | 709                                 | 577                    |                   |                |              | 534          |                        | ↓<br>405  |                       | L (s)<br>C (s)        | 118                 |            | 108                                  |                       |                  |                       |            |
| 157                       | +                                   | 011                    |                   |                | 288          | <b>↑</b>     | 319                    | 100       |                       | practical y           | 0.786               |            | 0.733                                |                       |                  |                       |            |
| 101                       |                                     |                        |                   | 200            |              | 010          |                        |           | R.C. (%)              | 23%                   |                     | 18%        |                                      |                       |                  |                       |            |
| 1                         |                                     | 2                      |                   |                |              | 3            |                        |           |                       | 4                     |                     |            |                                      | 5                     |                  |                       |            |
| A1                        |                                     | A1 —                   |                   | ;              |              |              |                        | D2 D1     |                       |                       | D4 D3               |            |                                      | † † r                 | →                |                       |            |
| n4                        | -                                   | A2 -                   |                   | -              |              |              |                        |           |                       |                       |                     |            |                                      |                       |                  |                       |            |
| <b>↓</b>                  | C3                                  | 3                      | $\leftarrow$      |                | C3<br>C2     |              | 4-]                    | ţ         |                       |                       | +↓                  | ţ          |                                      | B3 B4 B5              |                  |                       |            |
| Fp. <del>,</del> ∢Ep      | Fpr Ep C1 Fpr Ep                    |                        |                   |                |              |              |                        | Gp        |                       | Fp▼                   |                     |            |                                      |                       |                  | ţ                     | C1         |
| AM                        | 1/0                                 | G =                    |                   | -              | I/G =        | <u> </u>     |                        | -         | I/G =                 | 5                     |                     |            | I/G =                                | B1 B2 B               | 3                | I/G =                 | 3          |
| DM                        |                                     | <u> </u>               |                   |                | 1/2          | 7            |                        |           | 1/0                   | 7                     |                     |            | 1/0                                  | 6                     |                  | 10                    | 2          |
| PM                        | 1/0                                 | G =                    |                   |                | I/G =        | 1            |                        |           | I/G =                 | 1                     |                     |            | I/G =                                | б                     |                  | I/G =                 | 3          |
|                           |                                     |                        |                   |                |              |              |                        |           |                       |                       |                     |            |                                      |                       |                  |                       |            |

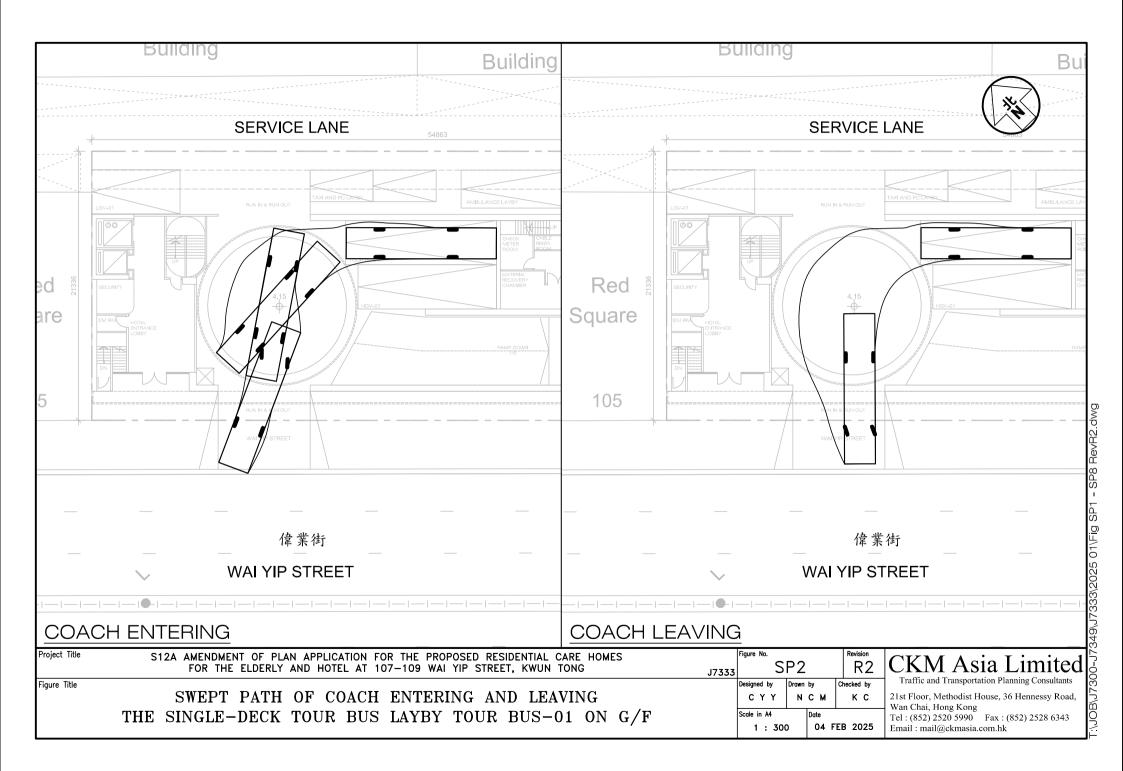
|                           |                 |                     |             |            |              | •            |                     |            |              |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                 |                 |            |
|---------------------------|-----------------|---------------------|-------------|------------|--------------|--------------|---------------------|------------|--------------|-------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|-----------------|-----------------|------------|
| Junction:                 |                 | Road / Lai Yip      | Street      |            |              |              |                     |            |              |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | -            | Job Nu          | mber:           |            |
| Scenario:<br>Design Year: |                 | Condition<br>Design | ed By:      |            |              |              |                     | Checke     | d By:        |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Date:        | 5 Fe            | P.<br>ebruary 2 | 33<br>2025 |
|                           | Approach        |                     | Phase       | Stage      | Width (m)    | Radius (m)   | % Up-hill           | Turning %  | Sat. Flow    | AM Peak<br>Flow         | y value        | Critical y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Turning %             | Sat. Flow    | PM Peak<br>Flow | y value         | Critical y |
| Liei Dum Deed             |                 | 1.7                 |             | 4          |              |              | Gradient            | 100        | (pcu/hr)     | (pcu/hr)                |                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                   | (pcu/hr)     | (pcu/hr)        |                 | 0.007      |
| Hoi Bun Road              | EB              | LT<br>SA            | A1<br>A2    | 1<br>1     | 3.30<br>3.30 | 15.0         |                     | 100        | 1768<br>2085 | 160<br>129              | 0.090          | 0.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                   | 1768<br>2085 | 154<br>151      | 0.087           | 0.087      |
|                           |                 |                     |             |            | 0.00         |              |                     |            | 2000         | .20                     | 0.002          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 2000         |                 | 0.012           |            |
| Hoi Bun Road              | WB              | SA                  | B1          | 1,2        | 3.30         |              |                     |            | 1945         | 329                     | 0.169          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 1945         | 234             | 0.120           |            |
|                           |                 | RT                  | B2          | 2          | 3.30         | 20.0         |                     | 100        | 1940         | 211                     | 0.109          | 0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                   | 1940         | 254             | 0.131           | 0.131      |
|                           |                 |                     |             |            |              |              |                     |            |              |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                 |                 |            |
| Lai Yip Street            | SB              | LT<br>RT            | C1<br>C2    | 3<br>3     | 3.30<br>3.30 | 18.0<br>25.0 |                     | 100<br>100 | 1795<br>1967 | 269<br>264              | 0.150<br>0.134 | 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100<br>100            | 1795<br>1967 | 117<br>212      | 0.065           |            |
|                           |                 | RT                  | C2          | 3          | 3.30         | 22.0         |                     | 100        | 1967         | 264                     | 0.134          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                   | 1967         | 212             | 0.108           | 0.108      |
|                           |                 |                     | 00          |            | 0.00         | 22.0         |                     | 100        | 1302         | 201                     | 0.104          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                   | 1992         | 210             | 0.100           | 0.100      |
|                           |                 |                     |             |            |              |              |                     |            |              |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                 |                 |            |
|                           |                 |                     |             |            |              |              |                     |            |              |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                 |                 |            |
|                           |                 |                     |             |            |              |              |                     |            |              |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                 |                 |            |
|                           |                 |                     |             |            |              |              |                     |            |              |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                 |                 |            |
|                           |                 |                     |             |            |              |              |                     |            |              |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                 |                 |            |
| pedestrian pha            | ise             |                     | Dp          | 1,2,4      |              | min c        | rossing             | time =     | 12           | sec                     | GM +           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sec F                 | GM =         | 21              | sec             |            |
|                           |                 |                     | Ep          | 3,4        |              | min c        | rossing             | time =     | 7            | sec                     | GM +           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sec F                 | GM =         | 13              | sec             |            |
|                           |                 |                     | Fp          | 4          |              | min c        | rossing             | time =     | 7            | sec                     | GM +           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sec F                 | GM =         | 14              | sec             |            |
|                           |                 |                     |             |            |              |              |                     |            |              |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                 |                 |            |
|                           |                 |                     |             |            |              |              |                     |            |              |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                 |                 |            |
|                           |                 |                     |             |            |              |              |                     |            |              |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                 |                 |            |
| AM Traffic Flow (pcu/hr   | r)              |                     | N           | PM Traffic | Flow (pcu/hr | )            |                     |            | N            | S=1940+1                | 00(W-3.25      | ) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S=2080+10             | 0(W-3.25)    | Note:           |                 |            |
|                           |                 | 1                   | 5           |            |              |              |                     |            | 5            | S <sub>M</sub> =S÷(1+   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sub>M</sub> =(S-230) | ÷(1+1.5f/r)  |                 |                 |            |
|                           |                 |                     | $\setminus$ |            |              |              |                     |            | $\backslash$ |                         | AM             | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PM                    | Peak         |                 |                 |            |
|                           | 525             | 269                 |             |            |              | 422          |                     | 117        |              |                         | 1+2+3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1+2+3                 |              |                 |                 |            |
| 100                       |                 |                     |             |            | 454          |              |                     |            |              | Sum y                   | 0.349          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.326                 |              |                 |                 |            |
| 160<br>1                  | 100             | 211                 |             |            | 154<br>1     |              |                     | 254        |              | L (s)                   | 35             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                    |              |                 |                 |            |
| <b>_</b>                  | 129             | 329                 |             | -          | >            | 151          | 234 🗲               | 1          |              | C (s)                   | 118<br>0.633   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108<br>0.608          |              |                 |                 |            |
|                           |                 | 529                 |             |            |              |              | 204                 |            |              | practical y<br>R.C. (%) | 81%            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87%                   |              |                 |                 |            |
| 1                         |                 | 2                   |             |            |              | 3            |                     |            |              | 4                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                 |                 |            |
|                           | <b>↓▶</b><br>Dp |                     |             | ∎<br>Dp    |              | ۹            | <b>&gt;</b><br>Ep ← | C3 C2 C1   | *            | <b>4</b> …              | Ep             | den no de la constante de la |                       |              |                 |                 |            |
|                           | B1 <b></b> €    | _                   |             | B2<br>B1◀  | _            |              |                     |            |              |                         |                | Fp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |              |                 |                 |            |
| AM G =                    | :               | I/G = 8             | G =         |            | I/G =        | 5            | G =                 |            | I/G =        | 8                       | G =            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I/G =                 | 3            | G =             |                 |            |
| G =                       | :               | I/G =               | G =         |            | I/G =        |              | G =                 |            | I/G =        |                         | G =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I/G =                 |              | G =             |                 |            |
| PM G =                    | :               | I/G = 8             | G =         |            | I/G =        | 5            | G =                 |            | I/G =        | 8                       | G =            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I/G =                 | 3            | G =             |                 |            |
|                           | :               |                     |             |            |              |              |                     |            |              |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                 |                 |            |

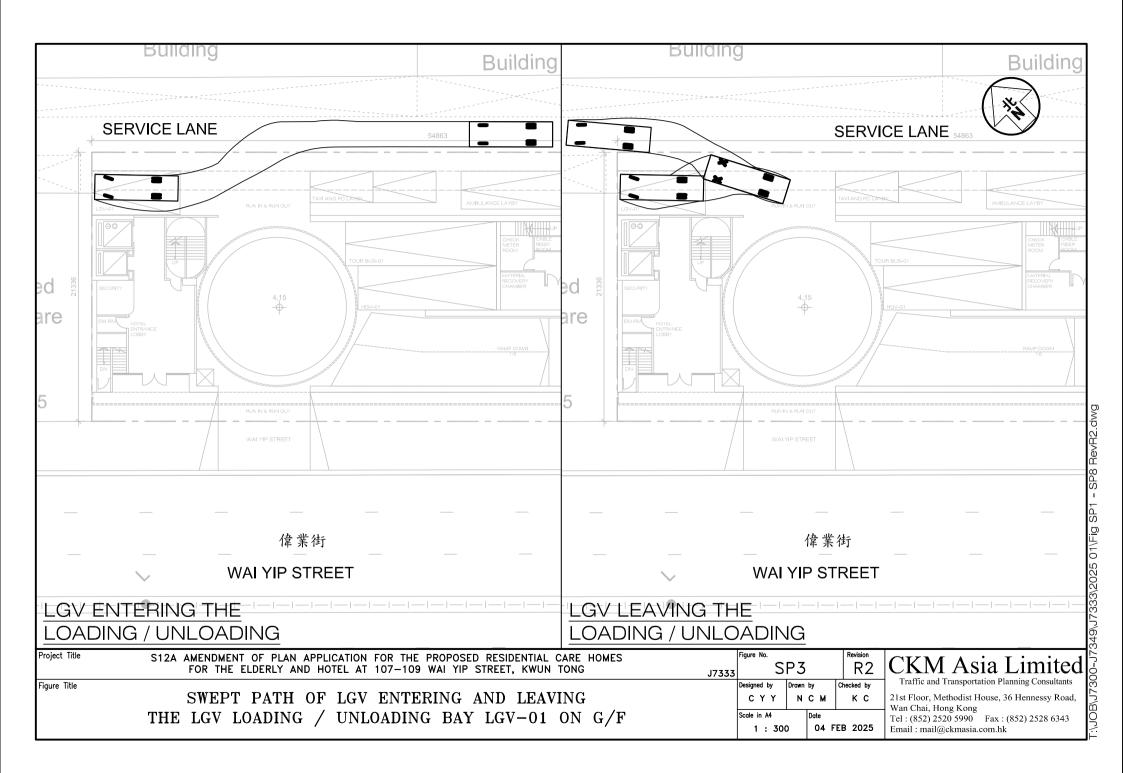
|                        |             |               |              |             |               | 9            |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|------------------------|-------------|---------------|--------------|-------------|---------------|--------------|-----------------------|--------------|-------------|-----------------------|--------------|------------|-------------------------|--------------|-----------------|----------------------|------------|
| Junction:              |             | oad / Lai Yip |              |             |               |              |                       |              |             |                       |              |            |                         | -            | Job Nu          |                      | J7333      |
| Scenario:              |             | e Proposed I  |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      | 34         |
| Design Year:           | 2032        | Design        | ed By:       |             |               |              |                       | Checke       | d By:       |                       |              |            | -                       | Date:        | 5 F             | ebruary 2            | 2025       |
|                        | Approach    |               | Phase        | Stage       | Width (m)     | Radius (m)   | % Up-hill             | Turning %    | Sat. Flow   | AM Peak<br>Flow       | y value      | Critical y | Turning %               | Sat. Flow    | PM Peak<br>Flow | y value              | Critical y |
|                        |             |               | Phase        | Slage       |               | Radius (III) | % Op-fill<br>Gradient | running %    | (pcu/hr)    | (pcu/hr)              |              |            | ruming %                | (pcu/hr)     | (pcu/hr)        |                      |            |
| Hoi Bun Road           | EB          | LT*           | A1           | 1           | 3.65          | 15.0         |                       | 100          | 1800        | 250                   | 0.139        | 0.139      | 100                     | 1800         | 239             | 0.133                | 0.133      |
|                        |             | SA*           | A2           | 1           | 3.65          |              |                       |              | 2120        | 266                   | 0.125        |            |                         | 2120         | 250             | 0.118                |            |
| Hoi Bun Road           | WB          | SA            | B1           | 1,2         | 3.30          |              |                       |              | 1945        | 428                   | 0.220        |            |                         | 1945         | 401             | 0.206                |            |
|                        |             | RT            | B2           | 2           | 3.30          | 20.0         |                       | 100          | 1940        | 331                   | 0.171        | 0.171      | 100                     | 1940         | 341             | 0.176                | 0.176      |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
| Lai Yip Street         | SB          | LT            | C1           | 3           | 3.30          | 18.0         |                       | 100          | 1795        | 365                   | 0.203        |            | 100                     | 1795         | 307             | 0.171                |            |
|                        |             | RT            | C2           | 3           | 3.30          | 25.0         |                       | 100          | 1967        | 422                   | 0.215        | 0.215      | 100                     | 1967         | 363             | 0.185                | 0.185      |
|                        |             | RT            | C3           | 3           | 3.30          | 22.0         |                       | 100          | 1952        | 419                   | 0.215        |            | 100                     | 1952         | 361             | 0.185                |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              | _           |                       |              |            |                         |              |                 |                      |            |
| pedestrian pha         | ase*        |               | Fp           | 4           |               |              | rossing               |              | 7           |                       | GM +         | 7          |                         | GM =         | 14              | sec                  |            |
|                        |             |               | Gp<br>Hp     | 4           |               |              | rossing rossing       |              | 8<br>10     |                       | GM +<br>GM + | 8<br>9     |                         | GM =<br>GM = | 16<br>19        | sec                  |            |
|                        |             |               | пр           | 4           |               |              | USSING                | ume –        | 10          | Sec                   |              | 9          | Secr                    | - Givi –     | 19              | sec                  |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              |                 |                      |            |
| AM Traffic Flow (pcu/h | r)          |               | N            | PM Traffic  | Flow (pcu/hr) | 1            |                       |              | N           | S=1940+1              | 00(W–3.25    | ) :        | S=2080+10               | 0(W-3.25)    | Note:           |                      |            |
|                        |             | 1             | 5            |             |               |              |                       |              | 5           | S <sub>M</sub> =S÷(1+ | 1.5f/r)      | s          | 6 <sub>M</sub> =(S−230) | ÷(1+1.5f/r)  |                 |                      |            |
|                        |             |               | $\mathbf{X}$ |             |               |              |                       |              | $\setminus$ |                       | AM           | Peak       | PM                      | Peak         |                 | ement S<br>er Projec |            |
|                        | 841         | 365           |              |             |               | 724          | ↔                     | 307          |             |                       | 1+2+3        |            | 1+2+3                   |              | -               | -                    |            |
|                        |             |               |              |             |               |              |                       |              |             | Sum y                 | 0.524        |            | 0.493                   |              |                 |                      |            |
| 250<br>↑               |             | 224           |              |             | 239<br>†      |              |                       | 244          |             | L (s)                 | 35           |            | 35                      |              |                 |                      |            |
|                        | 266         | 331<br>1      |              | -           | →             | 250          |                       | 341<br>1     |             | C (s)                 | 118          |            | 108                     |              |                 |                      |            |
|                        | 428         | 3 ← └──       |              |             |               |              | 401 🗲                 |              |             | practical y           | 0.633        |            | 0.608                   |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             | R.C. (%)              | 21%          |            | 23%                     |              |                 |                      |            |
| 1                      |             | 2             |              |             |               | 3            |                       |              |             | 4                     |              |            |                         |              |                 |                      |            |
| <b>1</b>               |             |               |              |             |               |              | +                     | L L C3 C2 C1 | *           |                       | Hp           | •<br>•     |                         |              |                 |                      |            |
| A1                     |             |               |              |             |               |              |                       | 03 02 01     |             |                       |              |            |                         |              |                 |                      |            |
|                        |             |               |              | в2 Ĺ        |               |              |                       |              |             |                       | Gp           | Fp         |                         |              |                 |                      |            |
|                        | B1 <b>←</b> |               |              | B1 <b>∢</b> |               |              |                       |              |             | ¥                     |              | ¥          |                         |              |                 |                      |            |
|                        |             |               |              |             |               |              |                       |              |             |                       |              |            |                         |              | -               |                      |            |
| AM G =                 |             | I/G = 8       | G =<br>G =   |             | I/G =         | 5            | G =                   |              | I/G =       | 8                     | G =          | 14         | I/G =                   | 3            | G =<br>G =      |                      |            |
| G =<br>PM G =          |             | I/G = 1/G = 8 | G =          |             | I/G =         | 5            | G =<br>G =            |              | I/G =       | 8                     | G =<br>G =   | 14         | I/G =                   | 3            | G =             |                      |            |
| PM G =<br>G =          |             | I/G = 8       | G =          |             | I/G =         | 5            | G =                   |              | I/G =       | 5                     | G =          |            | I/G =                   | 5            | G =             |                      |            |
| 6 =                    | -           |               | 6 -          |             | i/G =         |              | 62                    |              | 1/G =       |                       | 6=           |            | 1/G =                   |              | G =             |                      |            |

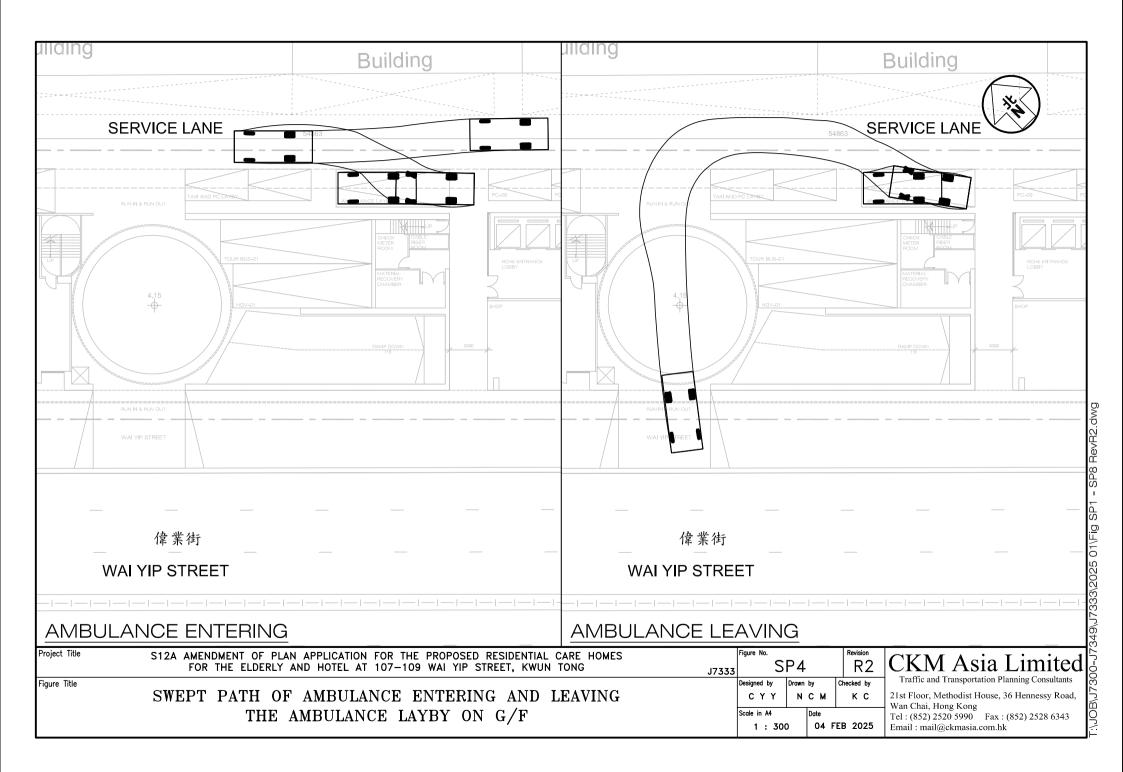
|                        |              |             |        |                  |               | 0          | June      |           | ,            |                       |             |            |                         |             |                 |               |            |
|------------------------|--------------|-------------|--------|------------------|---------------|------------|-----------|-----------|--------------|-----------------------|-------------|------------|-------------------------|-------------|-----------------|---------------|------------|
| Junction:              | Hoi Bun Roa  | d / Lai Yip | Street |                  |               |            |           |           |              |                       |             |            |                         | -           | Job Nu          | mber:         |            |
| Scenario:              | With the Pro |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               | 35         |
| Design Year:           | 2032         | Designe     | ed By: |                  |               |            |           | Checke    | d By:        |                       |             |            | -                       | Date:       | 5 Fe            | ebruary 2     | 2025       |
|                        | Approach     |             | Phase  | Stage            | Width (m)     | Radius (m) | % Up-hill | Turning % | Sat. Flow    | AM Peak<br>Flow       | y value     | Critical y | Turning %               | Sat. Flow   | PM Peak<br>Flow | y value       | Critical y |
|                        |              |             |        | -                |               |            | Gradient  |           | (pcu/hr)     | (pcu/hr)              |             | -          |                         | (pcu/hr)    | (pcu/hr)        |               |            |
| Hoi Bun Road           | EB           | LT*         | A1     | 1                | 3.65          | 15.0       |           | 100       | 1800         | 250                   | 0.139       | 0.139      | 100                     | 1800        | 239             |               | 0.133      |
|                        |              | SA*         | A2     | 1                | 3.65          |            |           |           | 2120         | 266                   | 0.125       |            |                         | 2120        | 250             | 0.118         |            |
| Hoi Bun Road           | WB           | SA          | B1     | 1,2              | 3.30          |            |           |           | 1945         | 429                   | 0.221       |            |                         | 1945        | 401             | 0.206         |            |
|                        |              | RT          | B2     | 2                | 3.30          | 20.0       |           | 100       | 1940         | 331                   | 0.171       | 0.171      | 100                     | 1940        | 341             | 0.176         | 0.176      |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
| Lai Yip Street         | SB           | LT          | C1     | 3                | 3.30          | 18.0       |           | 100       | 1795         | 365                   | 0.203       |            | 100                     | 1795        | 307             | 0.171         |            |
|                        |              | RT          | C2     | 3                | 3.30          | 25.0       |           | 100       | 1967         | 423                   | 0.215       | 0.215      | 100                     | 1967        | 364             | 0.185         | 0.185      |
|                        |              | RT          | C3     | 3                | 3.30          | 22.0       |           | 100       | 1952         | 420                   | 0.215       |            | 100                     | 1952        | 362             | 0.185         |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
| pedestrian pha         | ase*         |             | Fp     | 4                |               | min c      | rossing   | time =    | 7            | sec                   | GM +        | 7          | sec F                   | GM =        | 14              | sec           |            |
| <u>r</u>               |              |             | Gp     | 4                |               |            | rossing   |           | 8            |                       | GM +        | 8          |                         | GM =        | 16              | sec           |            |
|                        |              |             | Нр     | 4                |               | min c      | rossing   | time =    | 10           | sec                   | GM +        | 9          | sec F                   | GM =        | 19              | sec           |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              |                       |             |            |                         |             |                 |               |            |
| AM Traffic Flow (pcu/h | r)           |             | N      | PM Traffic I     | Flow (pcu/hr) |            |           |           | N            |                       | 00(W–3.25   |            | S=2080+10               |             | Note:           |               |            |
|                        | 1            |             | `\     |                  |               |            |           |           | $\mathbf{X}$ | S <sub>M</sub> =S÷(1+ | 1.5f/r)     | S          | 6 <sub>M</sub> =(S−230) | ÷(1+1.5f/r) | *Junction       | on<br>ement S | cheme      |
|                        | 843          | → 365       | `      |                  |               | 726        | ₅⊥₊       | 307       | `            |                       |             | Peak       |                         | Peak        | by Othe         | er Projec     | ct         |
|                        | 0.0          |             |        |                  |               | . 20       |           |           |              |                       | 1+2+3       |            | 1+2+3                   |             |                 |               |            |
| 250                    |              |             |        |                  | 239           |            |           |           |              | Sum y                 | 0.525<br>35 |            | 0.494<br>35             |             |                 |               |            |
|                        | 266          | 331         |        | -                | 1             | 250        |           | 341       |              | L (s)<br>C (s)        | 118         |            | 108                     |             |                 |               |            |
|                        | 429          | <b>↓</b>    |        |                  |               |            | 401 🗕     | <u> </u>  |              | practical y           | 0.633       |            | 0.608                   |             |                 |               |            |
|                        | -            |             |        |                  |               |            | -         |           |              | R.C. (%)              | 21%         |            | 23%                     |             |                 |               |            |
| 1                      |              | 2           |        |                  |               | 3          |           |           |              | 4                     |             |            |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            | •         | J↓L       | •            | ۹                     |             | ••••       |                         |             |                 |               |            |
| A1                     |              |             |        |                  |               |            |           | C3 C2 C1  |              | Ť                     | Нр          | 1          |                         |             |                 |               |            |
| ,                      |              |             |        | +                |               |            |           |           |              |                       | Gp          | Fp         |                         |             |                 |               |            |
|                        | B1 <b>←</b>  |             |        | B2 └──<br>B1◀─── | _             |            |           |           |              | Ļ                     | ·           | ,          |                         |             |                 |               |            |
|                        |              |             |        |                  |               |            |           |           |              | •                     |             | Ť          |                         |             |                 |               |            |
| AM G =                 | · I/G        | G= 8        | G =    |                  | I/G =         | 5          | G =       |           | I/G =        | 8                     | G =         | 14         | I/G =                   | 3           | G =             |               |            |
| G =                    | · //0        | G =         | G =    |                  | I/G =         |            | G =       |           | I/G =        |                       | G =         |            | I/G =                   |             | G =             |               |            |
| PM G =                 |              | G = 8       | G =    |                  | I/G =         | 5          | G =       |           | I/G =        | 8                     | G =         | 14         | I/G =                   | 3           | G =             |               |            |
| G =                    | · I/G        | G =         | G =    |                  | I/G =         |            | G =       |           | I/G =        |                       | G =         |            | I/G =                   |             | G =             |               |            |

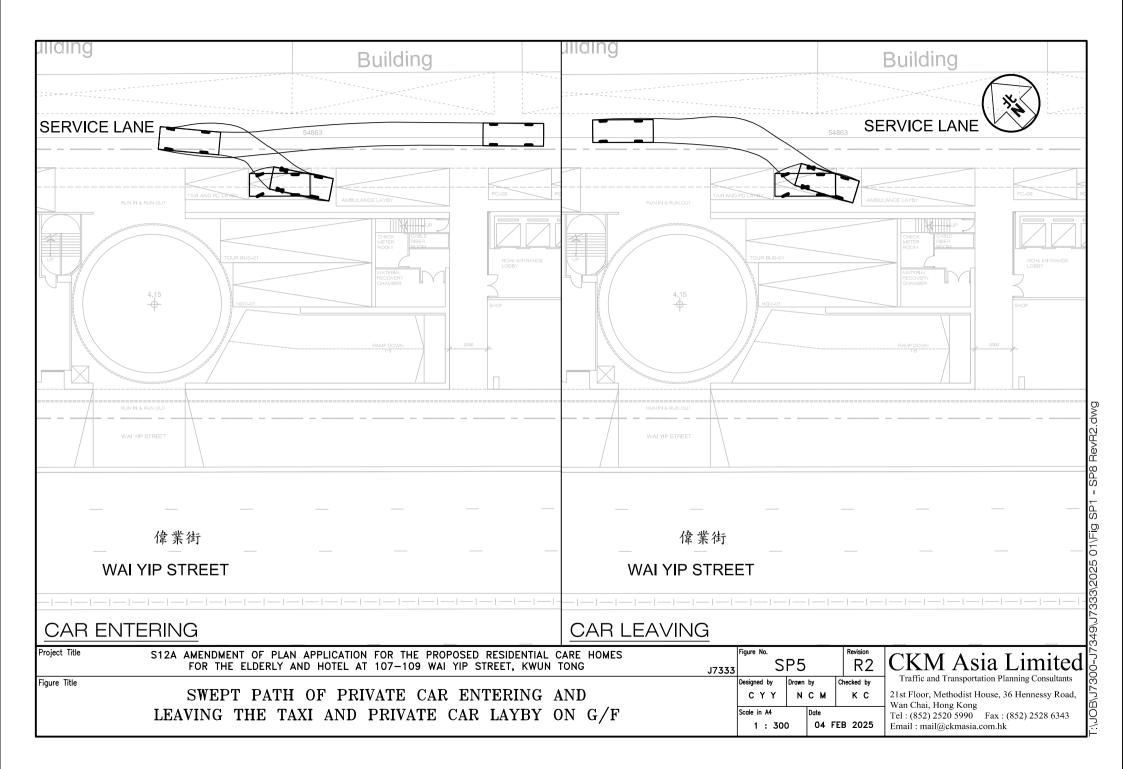
|                           |                       |             |             |                     | _             | 5          | Junci       | -             | ,                |                       |            |                  |           |                     |                   |                      |            |
|---------------------------|-----------------------|-------------|-------------|---------------------|---------------|------------|-------------|---------------|------------------|-----------------------|------------|------------------|-----------|---------------------|-------------------|----------------------|------------|
| Junction:                 | Hoi Bun Ro            |             |             |                     |               |            |             |               |                  |                       |            |                  |           | -                   | Job Nu            | mber:                |            |
| Scenario:<br>Design Year: | Sensitivity 7<br>2032 |             |             |                     | 00-room       |            |             | Checke        | d By:            |                       |            |                  | <u> </u>  | Date:               | 5 Fe              | P.<br>ebruary        | 36<br>2025 |
|                           | Approach              |             | Phase       | Stage               | Width (m)     | Radius (m) |             | Turning %     | Sat. Flow        | AM Peak<br>Flow       | y value    | Critical y       | Turning % |                     | PM Peak<br>Flow   | y value              | Critical y |
| Hoi Bun Road              | ED                    | LT*         | A1          | 1                   | 3.65          | 15.0       | Gradient    | 100           | (pcu/hr)<br>1800 | (pcu/hr)<br>250       | 0.139      | 0.139            | 100       | (pcu/hr)<br>1800    | (pcu/hr)<br>239   | 0 122                | 0.133      |
| HOI BUIL ROAU             | ED                    | SA*         | A1<br>A2    | 1                   | 3.65          | 15.0       |             | 100           | 2120             | 266                   | 0.139      | 0.139            | 100       | 2120                | 250               | 0.133                | 0.133      |
| Hoi Bun Road              | WB                    | SA          | B1          | 1,2                 | 3.30          |            |             |               | 1945             | 429                   | 0.221      |                  |           | 1945                | 401               | 0.206                |            |
|                           | 110                   | RT          | B2          | 2                   | 3.30          | 20.0       |             | 100           | 1940             | 331                   | 0.171      | 0.171            | 100       | 1940                | 341               |                      | 0.176      |
| Lai Yip Street            | SB                    | LT          | C1          | 3                   | 3.30          | 18.0       |             | 100           | 1795             | 365                   | 0.203      |                  | 100       | 1795                | 307               | 0.171                |            |
|                           |                       | RT          | C2          | 3                   | 3.30          | 25.0       |             | 100           | 1967             | 423                   | 0.215      | 0.215            | 100       | 1967                | 364               |                      | 0.185      |
|                           |                       | RT          | C3          | 3                   | 3.30          | 22.0       |             | 100           | 1952             | 420                   | 0.215      |                  | 100       | 1952                | 362               | 0.185                |            |
|                           |                       |             |             |                     |               |            |             |               |                  |                       |            |                  |           |                     |                   |                      |            |
|                           |                       |             |             |                     |               |            |             |               |                  |                       |            |                  |           |                     |                   |                      |            |
|                           |                       |             |             |                     |               |            |             |               |                  |                       |            |                  |           |                     |                   |                      |            |
|                           |                       |             |             |                     |               |            |             |               |                  |                       |            |                  |           |                     |                   |                      |            |
|                           |                       |             |             |                     |               |            |             |               |                  |                       |            |                  |           |                     |                   |                      |            |
|                           |                       |             |             |                     |               |            |             |               |                  |                       |            |                  |           |                     |                   |                      |            |
| pedestrian pha            | ase*                  |             | Fp          | 4                   |               | min c      | rossing     | time =        | 7                | Sec                   | GM +       | 7                | sec F     | GM =                | 14                | sec                  |            |
| podooundin pric           |                       |             | Gp          | 4                   |               |            | rossing     |               | 8                |                       | GM +       | 8                |           | GM =                | 16                | sec                  |            |
|                           |                       |             | Нр          | 4                   |               | min c      | rossing     | time =        | 10               | sec                   | GM +       | 9                | sec F     | GM =                | 19                | sec                  |            |
|                           |                       |             |             |                     |               |            |             |               |                  |                       |            |                  |           |                     |                   |                      |            |
|                           |                       |             |             |                     |               |            |             |               |                  |                       |            |                  |           |                     |                   |                      |            |
|                           |                       |             |             |                     |               |            |             |               |                  |                       |            |                  |           |                     |                   |                      |            |
| AM Traffic Flow (pcu/h    | r)                    |             | N<br>N      | PM Traffic          | Flow (pcu/hr) |            |             |               | N<br>N           |                       | 00(W–3.25  |                  | S=2080+10 |                     | Note:<br>*Junctio | 00                   |            |
|                           |                       |             | $\setminus$ |                     |               |            |             |               | $\setminus$      | S <sub>M</sub> =S÷(1+ |            | <b>o</b><br>Peak |           | ÷(1+1.5f/r)<br>Peak | Improv            | ement S<br>er Projec |            |
|                           | 843 🕇                 | 365         |             |                     |               | 726        | <b>←</b> ⊥→ | 307           |                  |                       | 1+2+3      |                  | 1+2+3     |                     | -,                | ,                    |            |
| 250                       |                       |             |             |                     | 239           |            |             |               |                  | Sum y                 | 0.525      |                  | 0.494     |                     |                   |                      |            |
| 230                       | 266                   | 331         |             |                     | t             | 250        |             | 341           |                  | L (s)                 | 35<br>118  |                  | 35<br>108 |                     |                   |                      |            |
|                           | 429                   |             |             |                     |               | 200        | 401 🗲       | <u> </u>      |                  | C (s)<br>practical y  | 0.633      |                  | 0.608     |                     |                   |                      |            |
|                           | 120                   |             |             |                     |               |            | 101         |               |                  | R.C. (%)              | 21%        |                  | 23%       |                     |                   |                      |            |
| 1                         |                       | 2           |             |                     |               | 3          |             |               |                  | 4                     |            |                  |           |                     |                   |                      |            |
| <b>1</b> A1               |                       |             |             |                     |               |            | +           | L<br>C3 C2 C1 | *                |                       | Hp         | <b>†</b>         |           |                     |                   |                      |            |
| ▶ A2                      |                       |             |             | +                   |               |            |             |               |                  |                       | Gp         | Fp               |           |                     |                   |                      |            |
|                           | B1 <b>←</b>           |             |             | B2 └<br>B1 <b>∢</b> |               |            |             |               |                  | ¥                     |            | ţ                |           |                     |                   |                      |            |
| AM G =                    | : 1                   | /G = 8      | G =         |                     | I/G =         | 5          | G =         |               | I/G =            | 8                     | G =        | 14               | I/G =     | 3                   | G =               |                      |            |
| G =                       |                       | /G = /G = 8 | G =<br>G =  |                     | I/G =         | 5          | G =<br>G =  |               | I/G =            | 8                     | G =<br>G = | 14               | I/G =     | 3                   | G =<br>G =        |                      |            |
| G =                       |                       | /G = 0      | G =         |                     | I/G =         |            | G =         |               | I/G =            |                       | G =        |                  | I/G =     |                     | G =               |                      |            |
|                           |                       |             |             |                     |               |            |             |               |                  |                       |            |                  |           |                     |                   |                      |            |

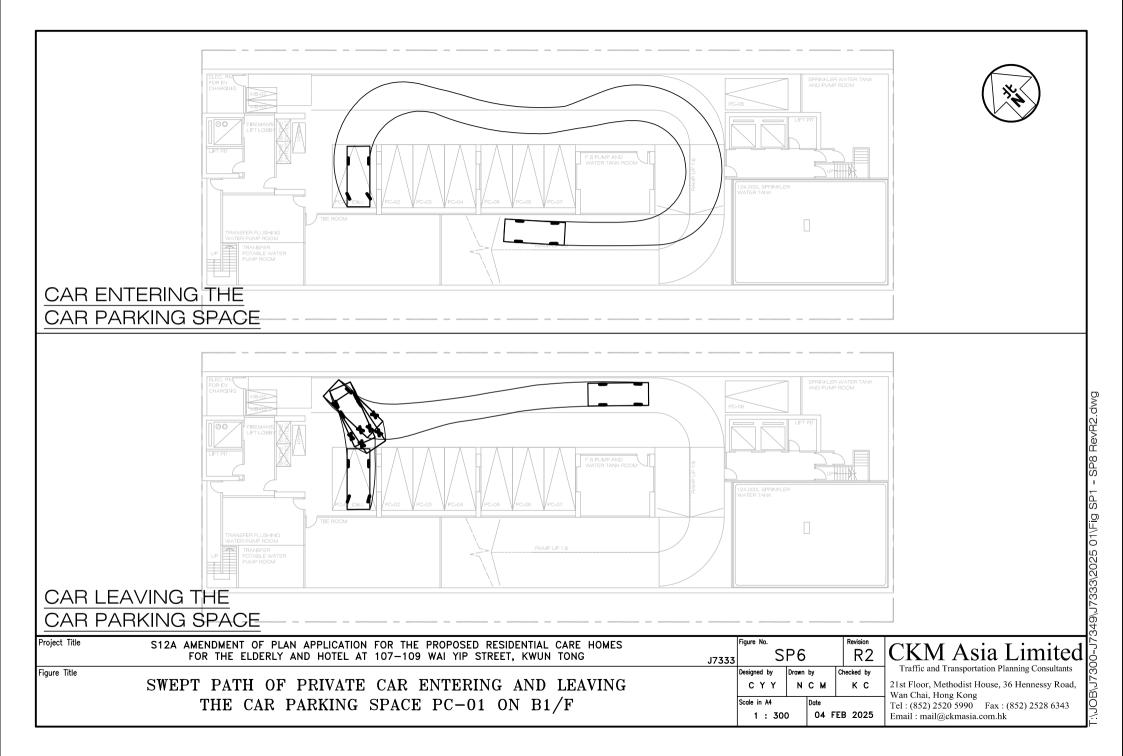

|                         |           |                  |        |              |               | •          |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|-------------------------|-----------|------------------|--------|--------------|---------------|------------|-----------------------|-----------|-----------------------|-----------------------|-----------|------------|------------------------|-----------------------|------------------|-------------------------|------------|
| Junction:               | Lai Yip S | Street / Hung To | Road   |              |               |            |                       |           |                       |                       |           |            |                        |                       | Job Nu           | mber:                   | J7333      |
| Scenario:               | Existing  | Condition        |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  | Ρ.                      | 37         |
| Design Year:            | 2024      | Designe          | ed By: |              |               |            | . –                   | Checke    | d By:                 |                       |           |            |                        | Date:                 | 5 Fe             | ebruary 2               | 2025       |
|                         |           |                  |        |              |               |            |                       |           |                       | AM Peak               |           |            |                        |                       | PM Peak          |                         |            |
|                         | Approach  |                  | Phase  | Stage        | Width (m)     | Radius (m) | % Up-hill<br>Gradient | Turning % | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr)      | y value   | Critical y | Turning %              | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr) | y value                 | Critical y |
| Lai Yip Street S        | SB        | SA               | A1     | 1            | 3.50          |            |                       |           | 1965                  | 330                   | 0.168     | 0.168      |                        | 1965                  | 183              | 0.093                   |            |
|                         |           | SA               | A2     | 1            | 3.50          |            |                       |           | 2105                  | 354                   | 0.168     |            |                        | 2105                  | 196              | 0.093                   |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
| Lai Yip Street I        | NB        | SA               | B1     | 1            | 3.50          |            |                       |           | 1965                  | 314                   | 0.160     |            |                        | 1965                  | 246              | 0.125                   | 0.125      |
|                         |           | SA               | B2     | 1            | 3.50          |            |                       |           | 2105                  | 337                   | 0.160     |            |                        | 2105                  | 264              | 0.125                   |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
| Hung To Road            | IWB       | LT               | C1     | 2            | 3.50          | 15.0       |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           | LT+RT            | C2*    | 2            | 3.50          | 18.0       |                       | 100       | 1943                  | 507                   | 0.261     | 0.261      | 100                    | 1943                  | 528              | 0.272                   | 0.272      |
|                         |           | RT               | C3     | 2            | 3.50          | 25.0       |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
| pedestrian pha          | ase       |                  | Dp     | 1            |               | min c      | rossing               | time =    | 7                     | sec                   | GM +      | 16         | sec F                  | GM =                  | 23               | sec                     |            |
|                         |           |                  | •      |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
| AM Traffic Flow (pcu/hr | r)        |                  | N      | PM Traffic I | Flow (pcu/hr) |            |                       |           | Ν                     | S=1940+1              | 00(W–3.25 | ) :        | 5=2080+10              | 0(W–3.25)             | Note:            |                         |            |
|                         |           |                  | 7      |              |               |            |                       |           | 7                     | S <sub>M</sub> =S÷(1+ | 1.5f/r)   | s          | <sub>M</sub> =(S−230)· | ÷(1+1.5f/r)           |                  | that phas<br>are blocke |            |
|                         | ↓<br>684  |                  |        |              |               | ↓<br>379   |                       |           |                       |                       | AM        | Peak       | PMI                    | Peak                  | on-street        | parking a               | activities |
|                         |           | 305              |        |              |               |            |                       | 264       |                       |                       | 1+2       |            | 1+2                    |                       | along Hu         | ing To Ro               | ad         |
|                         |           | t                |        |              |               |            |                       | t         |                       | Sum y                 | 0.429     |            | 0.397                  |                       |                  |                         |            |
| 651                     |           | ţ                |        |              | 510           |            |                       | t         |                       | L (s)                 | 14        |            | 11                     |                       |                  |                         |            |
| t t                     |           | 202              |        |              | Î             |            |                       | 264       |                       | C (s)                 | 120       |            | 108                    |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       | practical y           | 0.795     |            | 0.808                  |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       | R.C. (%)              | 85%       |            | 104%                   |                       |                  |                         |            |
| 1                       |           | 2                |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        | *            |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
| ★<br>A2                 | 2 A1      | Dp               |        | ↓<br>+       | — C3<br>_ C2  |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
| B1 B2                   | ¥         | 5P               |        |              | — 02<br>— C1  |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
| 1 1                     |           |                  |        | +            |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
|                         |           |                  |        |              |               |            |                       |           |                       |                       |           |            |                        |                       |                  |                         |            |
| AM G=                   | :         | I/G = 10         | G =    |              | I/G =         | 6          | G =                   |           | I/G =                 |                       | G =       |            | I/G =                  |                       | G =              |                         |            |
| G =                     |           | I/G =            | G =    |              | I/G =         |            | G =                   |           | I/G =                 |                       | G =       |            | I/G =                  |                       | G =              |                         |            |
| PM G=                   |           | I/G = 6          | G =    |              | I/G =         | 7          | G =                   |           | I/G =                 |                       | G =       |            | I/G =                  |                       | G =              |                         |            |
| G =                     | :         | I/G =            | G =    |              | I/G =         |            | G =                   |           | I/G =                 |                       | G =       |            | I/G =                  |                       | G =              |                         |            |
| -                       |           |                  | -      |              |               |            | -                     |           |                       |                       | -         |            |                        |                       | -                |                         |            |

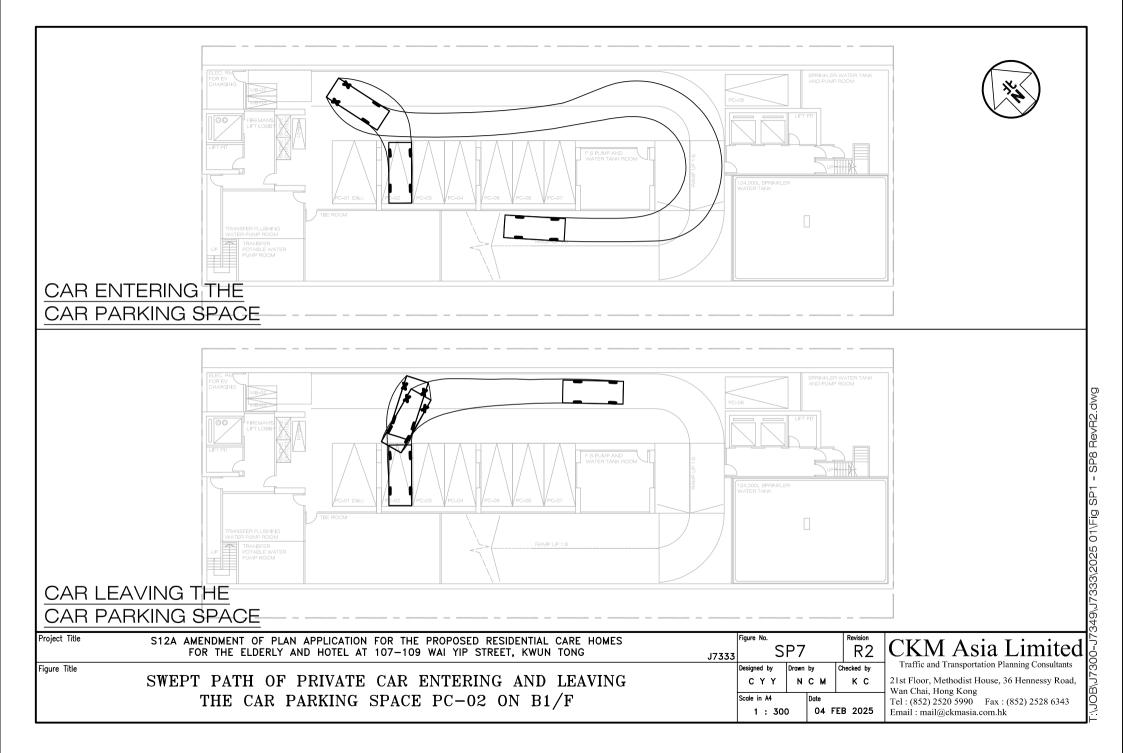

|                           |          |                           |        |            |               | gilai (    |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|---------------------------|----------|---------------------------|--------|------------|---------------|------------|-----------------------|-----------|-----------------------|-----------------------------------|-----------|------------|-----------|------------------|-----------------|-------------------------|------------|
| Junction:                 |          | Street / Hung To          |        |            |               |            |                       |           |                       |                                   |           |            |           | -                | Job Nu          | mber:                   |            |
| Scenario:<br>Design Year: |          | the Proposed D<br>Designe |        |            |               |            |                       | Checke    | d By:                 |                                   |           |            |           | Date:            | 5 Fe            | P.<br>bruary            | 38<br>2025 |
|                           |          | _                         | -      |            |               |            |                       |           | -                     |                                   |           |            |           |                  |                 |                         |            |
|                           | Approach |                           | Phase  | Stage      | Width (m)     | Radius (m) | % Up-hill<br>Gradient | Turning % | Sat. Flow<br>(pcu/hr) | AM Peak<br>Flow                   | y value   | Critical y | Turning % |                  | PM Peak<br>Flow | y value                 | Critical y |
| Lai Yip Street            | SB       | SA                        | A1     | 1          | 3.50          |            | Gradient              |           | (pcu/nr)<br>1965      | (pcu/hr)<br>448                   | 0 228     | 0.228      |           | (pcu/hr)<br>1965 | (pcu/hr)<br>309 | 0.157                   |            |
| 20. 1. p 0 001            |          | SA                        | A2     | 1          | 3.50          |            |                       |           | 2105                  | 480                               | 0.228     | 0.220      |           | 2105             | 331             | 0.157                   |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
| Lai Yip Street            | NB       | SA                        | B1     | 1          | 3.50          |            |                       |           | 1965                  | 402                               | 0.205     |            |           | 1965             | 373             | 0.190                   | 0.190      |
|                           |          | SA                        | B2     | 1          | 3.50          |            |                       |           | 2105                  | 430                               | 0.204     |            |           | 2105             | 400             | 0.190                   |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
| Hung To Road              | WB       | LT                        | C1     | 2          | 3.50          | 15.0       |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          | LT+RT                     | C2*    | 2          | 3.50          | 18.0       |                       | 100       | 1943                  | 716                               | 0.369     | 0.369      | 100       | 1943             | 742             | 0.382                   | 0.382      |
|                           |          | RT                        | C3     | 2          | 3.50          | 25.0       |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
| pedestrian pha            | ase      |                           | Dp     | 1          |               | min c      | rossing               | time =    | 7                     | sec                               | GM +      | 16         | sec F     | GM =             | 23              | sec                     |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
| AM Traffic Flow (pcu/h    | ır)      |                           |        | PM Traffic | Flow (pcu/hr) |            |                       |           |                       |                                   |           |            |           |                  | Note:           |                         |            |
|                           |          |                           | N<br>A |            |               |            |                       |           | N<br>K                | S=1940+1<br>S <sub>M</sub> =S÷(1+ | 00(W-3.25 |            | S=2080+10 | ÷(1+1.5f/r)      | Assume          | that phas               | es C1      |
|                           | Ļ        |                           |        |            |               | Ļ          |                       |           |                       | 3 <sub>M</sub> =3÷(1+             |           |            |           |                  | anu Co a        | are blocke<br>t parking | a une io   |
|                           | 928      | 369                       | ``     |            |               | 640        |                       | 365       | ``                    |                                   | AM<br>1+2 | Peak       | PM<br>1+2 | Peak             |                 | ing To Ro               |            |
|                           |          | 309<br><b>↑</b>           |        |            |               |            |                       | 305<br>↑  |                       | Cum 1                             | 0.597     |            | 0.572     |                  |                 |                         |            |
| 832                       |          | ↓                         |        |            | 773           |            |                       | ↓         |                       | Sum y<br>L (s)                    | 14        |            | 11        |                  |                 |                         |            |
| 1                         |          | 347                       |        |            | 1             |            |                       | 377       |                       | C (s)                             | 120       |            | 108       |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       | practical y                       | 0.795     |            | 0.808     |                  |                 |                         |            |
| -                         |          |                           |        |            | I             |            |                       |           |                       | R.C. (%)                          | 33%       |            | 41%       |                  |                 |                         |            |
| 1                         |          | 2                         |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
| A                         | 2 A1 ∳   | )n                        |        |            | C3<br>C2      |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
| B1 B2                     | ∎<br>T   | φ.                        |        |            | — C1          |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
| Î Î                       |          |                           |        | +          |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |
| AM G=                     |          | I/G = 10                  | G =    |            | I/G =         | 6          | G =                   |           | I/G =                 |                                   | G =       |            | I/G =     |                  | G =             |                         |            |
| G =                       |          | I/G =                     | G =    |            | I/G =         |            | G =                   |           | I/G =                 |                                   | G =       |            | I/G =     |                  | G =             |                         |            |
| PM G=                     | -        | I/G = 6                   | G =    |            | I/G =         | 7          | G =                   |           | I/G =                 |                                   | G =       |            | I/G =     |                  | G =             |                         |            |
| G =                       | :        | I/G =                     | G =    |            | I/G =         |            | G =                   |           | I/G =                 |                                   | G =       |            | I/G =     |                  | G =             |                         |            |
|                           |          |                           |        |            |               |            |                       |           |                       |                                   |           |            |           |                  |                 |                         |            |


|                        |          |                |        |            | -             | J          |                       |           | , j -                 |                                   |           |            |                                      |                       |                  |                           |            |
|------------------------|----------|----------------|--------|------------|---------------|------------|-----------------------|-----------|-----------------------|-----------------------------------|-----------|------------|--------------------------------------|-----------------------|------------------|---------------------------|------------|
| Junction:              |          | reet / Hung To |        |            |               |            |                       |           |                       |                                   |           |            |                                      | -                     | Job Nu           | mber:                     | J7333      |
| Scenario:              |          | Proposed Dev   |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           | 39         |
| Design Year:           | 2032     | Designe        | ed By: |            |               |            |                       | Checke    | d By:                 |                                   |           |            | -                                    | Date:                 | 5 Fe             | ebruary                   | 2025       |
|                        |          |                |        |            |               |            |                       |           |                       | AM Peak                           |           |            |                                      |                       | PM Peak          |                           |            |
|                        | Approach |                | Phase  | Stage      | Width (m)     | Radius (m) | % Up-hill<br>Gradient | Turning % | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr)                  | y value   | Critical y | Turning %                            | Sat. Flow<br>(pcu/hr) | Flow<br>(pcu/hr) | y value                   | Critical y |
| Lai Yip Street :       | SB       | SA             | A1     | 1          | 3.50          |            |                       |           | 1965                  | 449                               | 0.228     | 0.229      |                                      | 1965                  | 310              | 0.158                     |            |
|                        |          | SA             | A2     | 1          | 3.50          |            |                       |           | 2105                  | 481                               | 0.229     |            |                                      | 2105                  | 332              | 0.158                     |            |
| Lai Yip Street I       | NB       | SA             | B1     | 1          | 3.50          |            |                       |           | 1965                  | 403                               | 0.205     |            |                                      | 1965                  | 375              | 0.191                     | 0.191      |
|                        |          | SA             | B2     | 1          | 3.50          |            |                       |           | 2105                  | 431                               | 0.205     |            |                                      | 2105                  | 401              | 0.190                     |            |
| Hung To Road           | WB       | LT             | C1     | 2          | 3.50          | 15.0       |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
| 0                      |          | LT+RT          | C2*    | 2          | 3.50          | 18.0       |                       | 100       | 1943                  | 716                               | 0.369     | 0.369      | 100                                  | 1943                  | 742              | 0.382                     | 0.382      |
|                        |          | RT             | C3     | 2          | 3.50          | 25.0       |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
| pedestrian pha         |          |                | Dp     | 1          |               | min o      | rossing               | timo -    | 7                     |                                   | GM +      | 16         | 000 F                                | GM =                  | 23               |                           |            |
| pedesthan pha          | 450      |                | υр     | 1          |               |            | lossing               | ume –     | 1                     | Sec                               |           | 10         | Sec F                                | Givi –                | 23               | sec                       |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
| AM Traffic Flow (pcu/h | r)       |                |        | PM Traffic | Flow (pcu/hr) |            |                       |           |                       |                                   |           |            |                                      |                       | Note:            |                           |            |
|                        |          |                | N<br>A |            |               |            |                       |           | N<br>K                | S=1940+1<br>S <sub>M</sub> =S÷(1+ | 00(W-3.25 |            | S=2080+10<br>S <sub>M</sub> =(S-230) |                       |                  | that phas                 | es C1      |
|                        | ↓<br>930 |                |        |            |               | ↓<br>642   |                       |           | $\setminus$           |                                   |           | Peak       |                                      |                       |                  | are blocke<br>t parking a | u uue it   |
|                        | 000      | 369            |        |            |               | 012        |                       | 365       |                       |                                   | 1+2       | Call       | 1+2                                  | Call                  | along Hu         | ing To Ro                 | ad         |
|                        |          | t              |        |            |               |            |                       | t         |                       | Sum y                             | 0.597     |            | 0.573                                |                       |                  |                           |            |
| 834                    |          | ŧ              |        |            | 776           |            |                       | ŧ         |                       | L (s)                             | 14        |            | 11                                   |                       |                  |                           |            |
| Î                      |          | 347            |        |            | Î             |            |                       | 377       |                       | C (s)                             | 120       |            | 108                                  |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       | practical y                       | 0.795     |            | 0.808                                |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       | R.C. (%)                          | 33%       |            | 41%                                  |                       |                  |                           |            |
| 1                      |          | 2              |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        | 2 A1     |                |        | t          | — C3          |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
| ~                      | Dp       |                |        | ţ—         | C2            |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
| B1 B2<br>↑ ↑           | ·        |                |        | Ļ          | — C1          |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
|                        |          |                |        |            |               |            |                       |           |                       |                                   |           |            |                                      |                       |                  |                           |            |
| AM G =                 | :        | I/G = 10       | G =    |            | I/G =         | 6          | G =                   |           | I/G =                 |                                   | G =       |            | I/G =                                | 1                     | G =              |                           |            |
| G =                    | :        | I/G =          | G =    |            | I/G =         |            | G =                   |           | I/G =                 |                                   | G =       |            | I/G =                                |                       | G =              |                           |            |
| PM G =                 | -        | I/G = 6        | G =    |            | I/G =         | 7          | G =                   |           | I/G =                 |                                   | G =       |            | I/G =                                |                       | G =              |                           |            |
| G =                    | :        | I/G =          | G =    |            | I/G =         |            | G =                   |           | I/G =                 |                                   | G =       |            | I/G =                                |                       | G =              |                           |            |


|                        |          |                                   |             |            | 0.            | ignal .    | ounot    |           | naryc            |                                   |                      |            |                        |                  |                      |                           |                    |
|------------------------|----------|-----------------------------------|-------------|------------|---------------|------------|----------|-----------|------------------|-----------------------------------|----------------------|------------|------------------------|------------------|----------------------|---------------------------|--------------------|
| Junction:<br>Scenario: |          | reet / Hung To<br>/ Test ( 644-bo |             | E and 2    | 00 room       |            |          |           |                  |                                   |                      |            |                        | •                | Job Nu               | mber:                     | <u>J7333</u><br>40 |
| Design Year:           |          | Designe                           |             |            |               |            |          | Checke    | d By:            |                                   |                      |            |                        | Date:            | 5 F                  | ebruary 2                 |                    |
|                        | Approach |                                   | Phase       | Stage      | Width (m)     | Radius (m) |          | Turning % | Sat. Flow        | AM Peak<br>Flow                   | y value              | Critical y | Turning %              | Sat. Flow        | PM Peak<br>Flow      | y value                   | Critical           |
| Lai Yip Street         | SB       | SA                                | A1          | 1          | 3.50          |            | Gradient |           | (pcu/hr)<br>1965 | (pcu/hr)<br>449                   | 0.228                | 0.229      |                        | (pcu/hr)<br>1965 | (pcu/hr)<br>310      | 0.158                     |                    |
|                        |          | SA                                | A2          | 1          | 3.50          |            |          |           | 2105             | 481                               | 0.229                | 0.220      |                        | 2105             | 332                  | 0.158                     |                    |
| Lai Yip Street         | NB       | SA                                | B1          | 1          | 3.50          |            |          |           | 1965             | 403                               | 0.205                |            |                        | 1965             | 375                  | 0.191                     | 0.191              |
|                        |          | SA                                | B2          | 1          | 3.50          |            |          |           | 2105             | 431                               | 0.205                |            |                        | 2105             | 401                  | 0.190                     |                    |
| Hung To Road           | WB       | LT                                | C1          | 2          | 3.50          | 15.0       |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
|                        |          | LT+RT                             |             | 2          | 3.50          | 18.0       |          | 100       | 1943             | 716                               | 0.369                | 0.369      | 100                    | 1943             | 742                  | 0.382                     | 0.382              |
|                        |          | RT                                | C3          | 2          | 3.50          | 25.0       |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
|                        |          |                                   |             |            |               |            |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
|                        |          |                                   |             |            |               |            |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
|                        |          |                                   |             |            |               |            |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
|                        |          |                                   |             |            |               |            |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
|                        |          |                                   |             |            |               |            |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
| pedestrian pha         | ase      |                                   | Dp          | 1          |               | min c      | rossing  | time =    | 7                | Sec                               | GM +                 | 16         | sec F                  | GM =             | 23                   | sec                       |                    |
|                        |          |                                   |             | •          |               |            |          |           |                  |                                   |                      | 10         | 0001                   |                  | 20                   |                           |                    |
|                        |          |                                   |             |            |               |            |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
|                        |          |                                   |             |            |               |            |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
|                        |          |                                   |             |            |               |            |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
|                        |          |                                   |             |            |               |            |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
| AM Traffic Flow (pcu/h | ır)      |                                   | Аz          | PM Traffic | Flow (pcu/hr) |            |          |           | N<br>K           | S=1940+1<br>S <sub>M</sub> =S÷(1+ | 00(W–3.25<br>1.5f/r) |            | S=2080+10<br>m=(S-230) |                  |                      | that phas                 |                    |
|                        | ↓<br>930 |                                   | $\setminus$ |            |               | ↓<br>642   |          |           | $\setminus$      |                                   |                      | Peak       |                        | -                | and C3 a<br>on-stree | are blocke<br>t parking a | activities         |
|                        |          | 369                               |             |            |               |            |          | 365       |                  |                                   | 1+2                  |            | 1+2                    |                  | along Hi             | ung To Ro                 | bad                |
|                        |          | <u>†</u>                          |             |            |               |            |          | <b>İ</b>  |                  | Sum y                             | 0.597                |            | 0.573                  |                  |                      |                           |                    |
| 834<br>†               |          | <b>*</b><br>347                   |             |            | 776<br>†      |            |          | 377       |                  | L (s)                             | 14                   |            | 11                     |                  |                      |                           |                    |
|                        |          |                                   |             |            |               |            |          |           |                  | C (s)<br>practical y              | 120<br>0.795         |            | 108<br>0.808           |                  |                      |                           |                    |
| ļ                      |          |                                   |             |            |               |            |          |           |                  | R.C. (%)                          | 33%                  |            | 41%                    |                  |                      |                           |                    |
| 1                      |          | 2                                 |             |            |               |            |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
| A                      | 2 A1     | ,                                 |             | t          | — C3<br>— C2  |            |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
| B1 B2                  | ÷        |                                   |             | ţ          | — C1          |            |          |           |                  |                                   |                      |            |                        |                  |                      |                           |                    |
| AM G =                 |          | I/G = 10                          | G =         |            | I/G =         | 6          | G =      |           | I/G =            | <u> </u>                          | G =                  |            | I/G =                  |                  | G =                  |                           |                    |
| G =                    |          | I/G =                             | G =         |            | I/G =         | -          | G =      |           | I/G =            |                                   | G =                  |            | I/G =                  |                  | G =                  |                           |                    |
| PM G=                  | -        | I/G = 6                           | G =         |            | I/G =         | 1          | G =      |           | I/G =            |                                   | G =                  |            | I/G =                  |                  | G =                  |                           |                    |


Appendix 2 – Swept Path Analysis

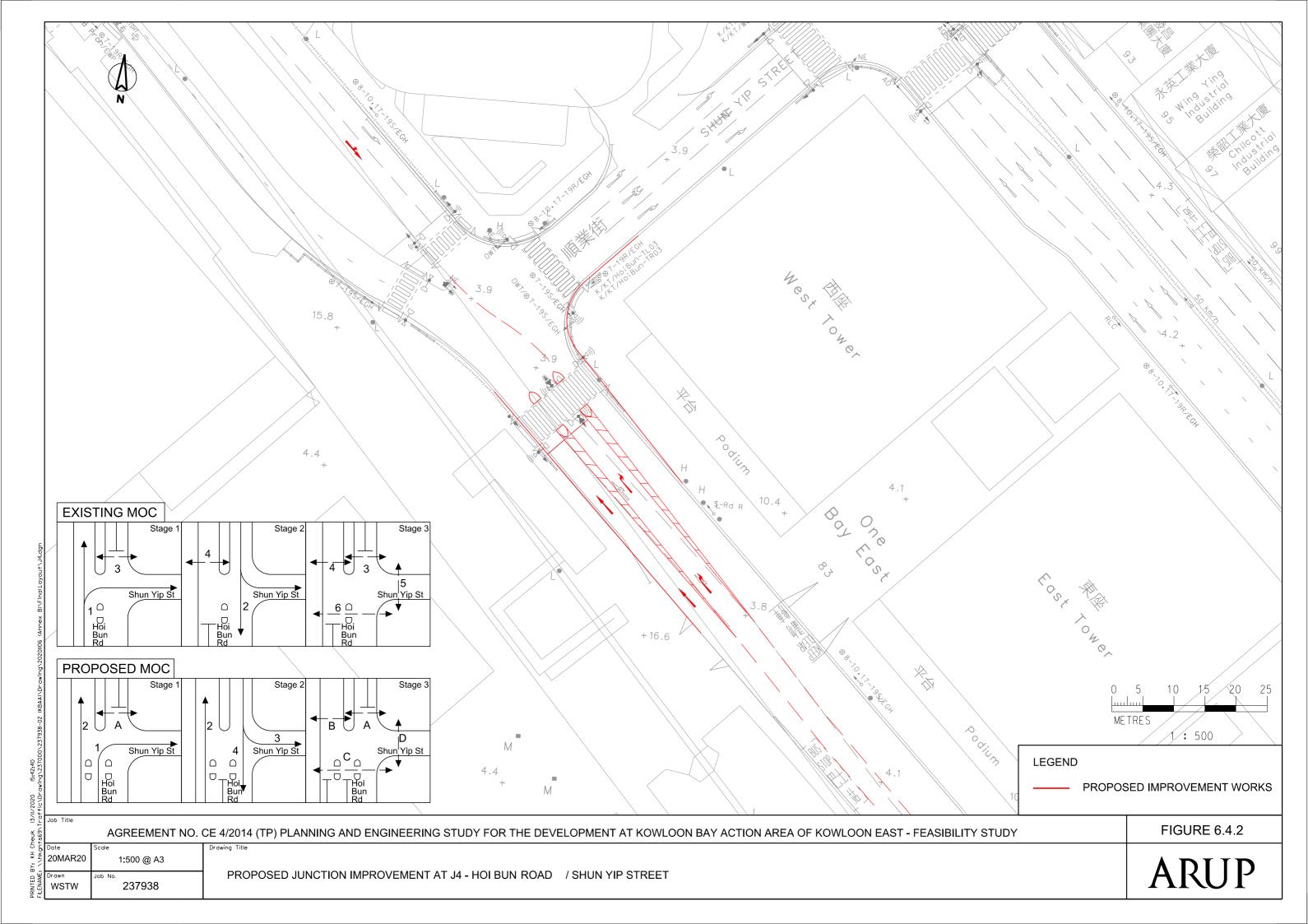


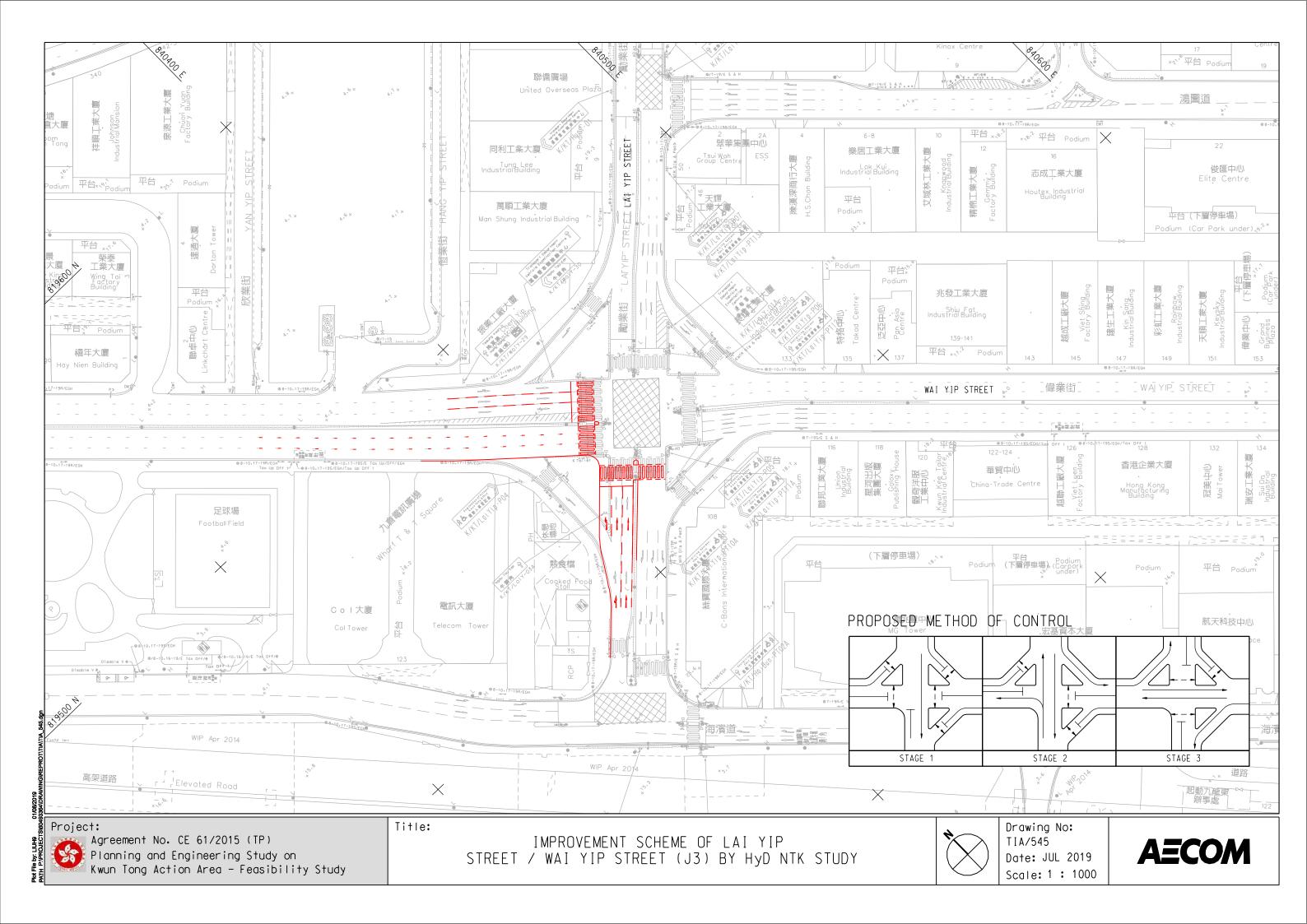



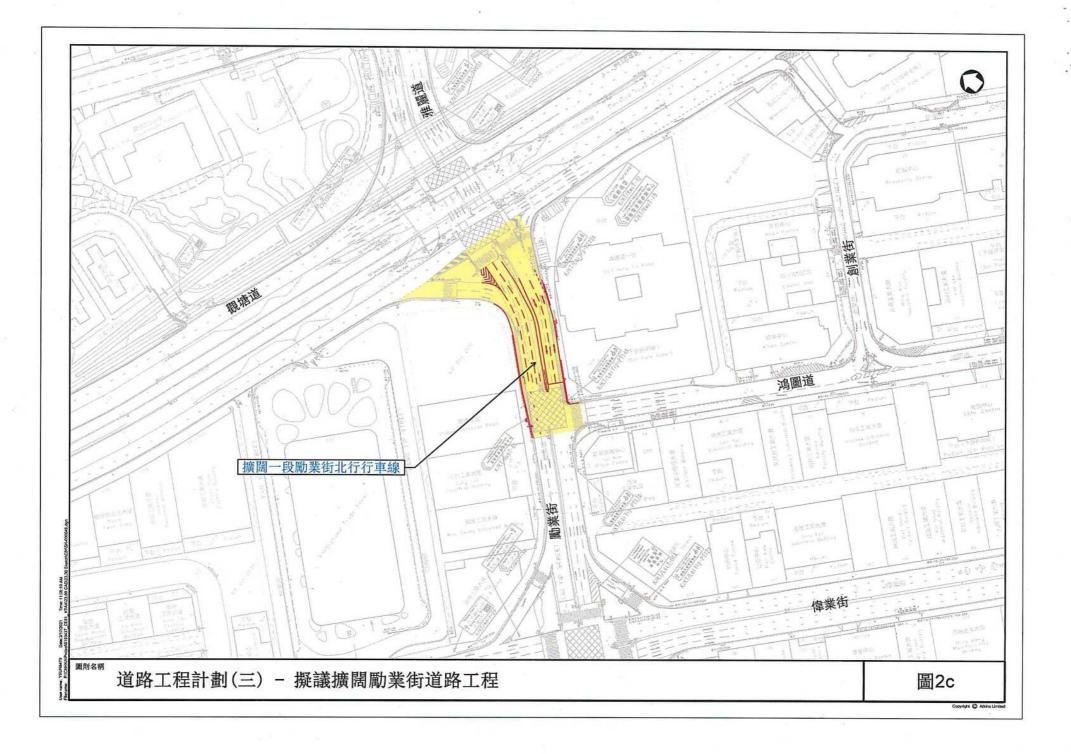







JOB\J7300-J7349\J7333\2025 01\Fig SP1 - SP8 RevR2.dwg

Appendix 3 – Planned Developments in the Vicinity of the Proposed Redevelopment







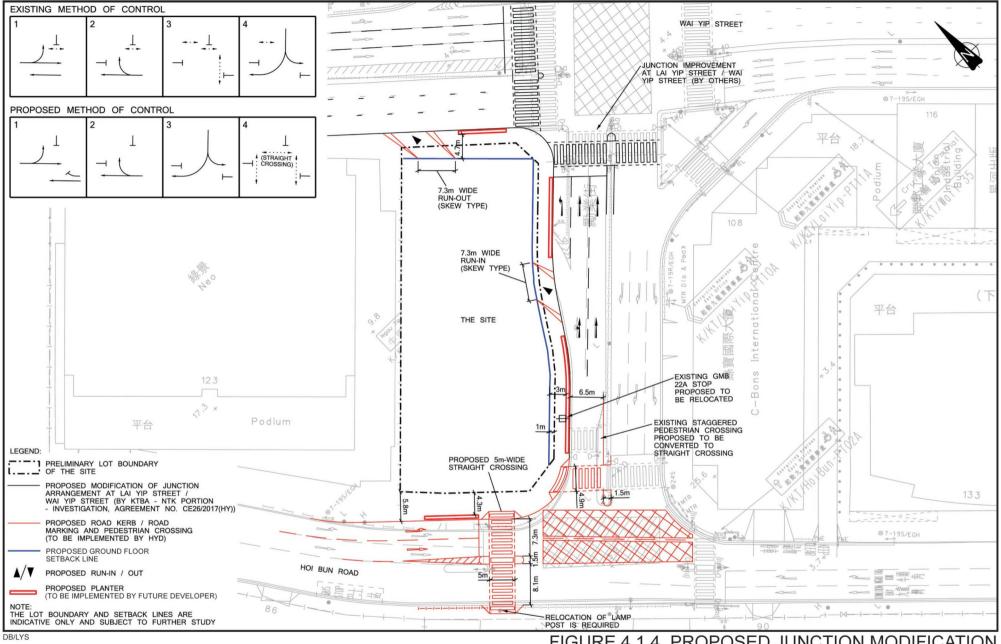



FIGURE 4.1.4 PROPOSED JUNCTION MODIFICATION

| 參考編號               | 繪圖      |
|--------------------|---------|
| REFERENCE №.       | DRAWING |
| M/K14S/23/35       | 5b      |
| 101/11/14/07/20/00 | 50      |