Proposed Rezoning of the Site from "OU(B)" to "OU(Residential Care Home for the Elderly and Hotel)" for a Proposed Composite Development with Residential Care Homes for the Elderly and Hotel at Nos. 107 – 109 Wai Yip Street, Kwun Tong S12A Amendment of Plan Application

Appendix 3

Traffic Impact Assessment

Traffic Impact Assessment Final Report December 2024

Prepared by: CKM Asia Limited

CONTENTS

CHAPTER		
1.0	INTRODUCTION Background Scope of the Assessment Contents of the Report	1
2.0	THE EXISTING SITUATION The Subject Site Traffic Survey Adjustment of the traffic flows obtained from the traffic survey Operational Performance of the Surveyed Junctions Pedestrian Facilities Availability of Public Transport Facilities	2
3.0	THE PROPOSED DEVELOPMENT Development Parameters Provision of Internal Transport Facilities Reasons for Deviation from the HKPSG Maximum Recommendation for Hotel within the Proposed Development Layout Plans Swept Path Analysis Traffic Management Plan	7
4.0	 TRAFFIC IMPACT Design Year Traffic Forecast Estimated Traffic Growth Rate from 2031 to 2032 Planned Developments in the Vicinity of the Proposed Development Traffic Generated by the Proposed Development Comparison of Traffic Generation between the Approved S16 Scheme and the Proposed Development Planned Junction Improvement Schemes 2032 Traffic Flows 2032 Junction Operational Performance 	12

CONTENTS (Continued)

CHAPTER					
PEDESTRIAN ASSESSMENT Surveyed Pedestrian Locations Existing Pedestrian Flows Estimated growth from 2024 to 2032 Pedestrian Generated by the Proposed Development Year 2032 Pedestrian Flows Level-Of-Service ("LOS") Assessment	17				
SENSITIVITY TEST Permitted Maximum Number of Beds for RCHE Traffic Impact for the Sensitivity Test Pedestrian Impact for the Sensitivity Test	20				
CONCLUSION FIGURES Appendix 1 – Calculation Appendix 2 – Swept Path Analysis Appendix 3 – Planned Junction Improvement Schemes	23				
	PEDESTRIAN ASSESSMENT Surveyed Pedestrian Locations Existing Pedestrian Flows Estimated growth from 2024 to 2032 Pedestrian Generated by the Proposed Development Year 2032 Pedestrian Flows Level-Of-Service ("LOS") Assessment SENSITIVITY TEST Permitted Maximum Number of Beds for RCHE Traffic Impact for the Sensitivity Test Pedestrian Impact for the Sensitivity Test CONCLUSION FIGURES Appendix 1 – Calculation Appendix 2 – Swept Path Analysis				

TABLES

- 2.1 Existing junction operational performance
- 2.2 Franchised bus and GMB services operating close to the subject site
- 3.1 Details of provision of internal transport facilities for RCHE within the Proposed Development
- 3.2 Details of RCHEs surveyed
- 3.3 Survey results of the 2 surveyed RCHEs
- 3.4 Comparison of the HKPSG recommendations and proposed internal transport facilities for Hotel within the Proposed Development
- 3.5 Internal transport facilities provided for the Proposed Development
- 3.6 Goods vehicle trip generation for Hotel within the Proposed Development
- 4.1 2019-based TPEDM data produced by Planning Department for Kwun Tong district
- 4.2 Planned developments in the vicinity of the Proposed Development
- 4.3 Traffic generation of the Proposed Development
- 4.4 Comparison of Traffic Generation between the Approved S16 Scheme and The Proposed Development
- 4.5 Planned traffic improvement schemes in the vicinity of the Proposed Development
- 4.6 2032 junction operational performance
- 5.1 Surveyed pedestrian locations
- 5.2 In-house pedestrian generation rates
- 5.3 Pedestrian generated by the Proposed Development
- 5.4 Extract of exhibit 18-3 of the HCM 2000

TABLES (Continued)

- 5.5 Effective width of surveyed footpaths
- 5.6 Year 2032 LOS of footpath without and with the Proposed Development
- 5.7 Year 2032 LOS of pedestrian crossing waiting areas without and with the Proposed Development
- 6.1 Comparison of traffic generation
- 6.2 Comparison of 2032 junction operational performance
- 6.3 Comparison of pedestrian generation
- 6.4 Sensitivity test for Year 2032 LOS of footpath with the Proposed Development
- 6.5 Sensitivity test for Year 2032 pedestrian crossing waiting areas with the Proposed Development

FIGURES

- 1.1 Location of subject site
- 2.1 Location of the surveyed junctions
- 2.2 Layout of Junction of Hoi Bun Road / Shun Yip Street
- 2.3 Layout of junction of Wai Yip Street / Shun Yip Street
- 2.4 Layout of junction of Tai Yip Street / Service Lane
- 2.5 Layout of junction of Hong Tak Road / Tai Yip Street
- 2.6 Layout of junction of Tai Yip Street / Tai Yip Lane
- 2.7 Layout of junction of Kwun Tong Road / Hong Tak Road
- 2.8 Layout of junction of Wai Yip Street / Lai Yip Street
- 2.9 Layout of junction of Kwun Tong Road / Lai Yip Street
- 2.10 Layout of junction of Hoi Bun Road / Lai Yip Street
- 2.11 Layout of junction of Lai Yip Street / Hung To Road
- 2.12 Adjusted 2024 peak hour traffic flows
- 2.13 The public transport services provided in the vicinity of the subject site
- 3.1 G/F layout plan
- 3.2 B1/F layout plan
- 4.1 Year 2032 peak hour traffic flows without the Proposed Development
- 4.2 Year 2032 peak hour traffic flows with the Proposed Development

FIGURES (Continued)

- 4.3 The ingress / egress route for traffic generated by the Proposed Development (via Wai Yip Street)
- 4.4 The ingress / egress route for traffic generated by the Proposed Development (via the Service Lane)
- 5.1 Observed existing pedestrian flows
- 5.2 Year 2032 pedestrian flows without the Proposed Development
- 5.3 Year 2032 pedestrian flows with the Proposed Development
- 6.1 Sensitivity test 2032 peak hour traffic flows with the Proposed Development
- 6.2 The ingress / egress route of sensitivity test for traffic generated by the Proposed Development (via Wai Yip Street)
- 6.3 The ingress / egress route of sensitivity test for traffic generated by the Proposed Development (via the Service Lane)
- 6.4 Sensitivity test 2032 pedestrian flows with the Proposed Development

1.0 INTRODUCTION

Background

- 1.1 The Subject Site is located at Nos. 107 109 Wai Yip Street in Kwun Tong, which is now vacant. **Figure 1.1** shows the location of the Subject Site.
- 1.2 On 29th May 2020, the Town Planning Board ("TPB") approved the S16 Planning Application for Office, Shop and Services & Eating Place Uses at 107-109 Wai Yip Street (TPB ref: A/K14/780) ("Approved S16 Scheme"). The Applicant has the intention to rezone the Subject Site and construct residential care home for the elderly ("RCHE") and a hotel (together known as "Proposed Development").
- 1.3 CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Applicant, to conduct a traffic impact assessment ("TIA") in support of Proposed Development. This report describes the traffic study undertaken.

Scope of the Assessment

- 1.4 The main objectives of this TIA are as follows:
 - To assess the existing traffic issues in the vicinity of the subject site;
 - To quantify the traffic and pedestrians generated by the Proposed Development; and
 - To examine the traffic and pedestrian impact on the local road network in the vicinity of the subject site.

Contents of the Report

1.5 After this introduction, the remaining chapters contain the following:

Chapter Two	-	describes the existing situation;
Chapter Three	-	outlines the development proposal;
Chapter Four	-	presents the traffic impact analysis; and
Chapter Five	-	summarises the overall conclusion.

2.0 THE EXISTING SITUATION

The Subject Site

2.1 The Subject Site fronts onto Wai Yip Street to the south, and is bounded by a service lane to the north. The section of Wai Yip Street fronting the Subject Site is a dual carriageway 3-lane road.

Traffic Survey

- 2.2 To quantify the traffic flows at the junctions chosen for the capacity analysis, manual classified counts were conducted on Friday, 15th March 2024 during the AM and PM peak periods. The locations of the surveyed junctions are presented in **Figure 2.1** and their layout is shown in **Figures 2.2 to 2.11**.
- 2.3 The surveyed junctions include the following:
 - J1: Hoi Bun Road / Shun Yip Street;
 - J2: Wai Yip Street / Shun Yip Street;
 - J3: Tai Yip Street / Service Lane;
 - J4: Hong Tak Road / Tai Yip Street;
 - J5: Tai Yip Street / Tai Yip Lane;
 - J6: Kwun Tong Road / Hong Tak Road;
 - J7: Wai Yip Street / Lai Yip Street;
 - J8: Kwun Tong Road / Lai Yip Street;
 - J9: Hoi Bun Road / Lai Yip Street and;
 - J10: Lai Yip Street / Hung To Road
- 2.4 The counts were classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. From the survey, the AM and PM peak hours were found to be between 0845 0945 and 1730 1830 hours respectively.

Adjustment of the traffic flows obtained from the traffic survey

- 2.5 The traffic flows obtained from the traffic surveys conducted in March 2024 were reviewed against the traffic flows of the Traffic Impact Assessment of other approved planning applications and found to be of similar order. Nevertheless, adjustment of the traffic flows obtained from the traffic survey is made based on the Annual Average Daily Traffic ("AADT") of Annual Traffic Census ("ATC") station 3020 Wai Yip Street (from Lai Yip Street to Hoi Yuen Road), in order to produce adjusted annual average traffic flows.
- 2.6 In view that the AADT is only available up to 2022, and the AADT for 2019 to 2022, are not considered due to the impact of the social events in 2019, and COVID-19 pandemic in 2020 2022, reference is made to 2018 AADT. The March 2018 AADT is around 2% lower than the average for 2018, and is shown in Photo A below.

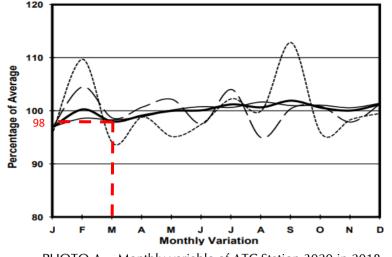


PHOTO A Monthly variable of ATC Station 3020 in 2018

2.7 Based on the above, a factor of 1.02 (i.e., (1 + 2%) = 1.02) is applied to the 2024 traffic flows, and the adjusted peak hour traffic flows are presented in **Figure 2.12**.

Operational Performance of the Surveyed Junctions

2.8 The existing operational performance of the surveyed junctions is calculated based on the observed traffic counts and the analysis is undertaken using the methods outlined in Volume 2 of Transport Planning and Design Manual ("TPDM"). The existing operational performance of the surveyed junctions are summarised in **Table 2.1** and the detailed calculations are found in **Appendix 1**.

Ref	Junction	Type of Junction	Parameter ⁽¹⁾	AM Peak	PM Peak
J1	Hoi Bun Road / Shun Yip Street	Signal	RC	56%	43%
J2	Wai Yip Street / Shun Yip Street	Signal	RC	66%	62%
J3	Tai Yip Street / Service Lane	Priority	RFC	0.016	0.010
J4	Hong Tak Road / Tai Yip Street	Priority	RFC	0.226	0.181
J5	Tai Yip Street / Tai Yip Lane	Priority	RFC	0.058	0.025
J6	Kwun Tong Road / Hong Tak Road	Priority	RFC	0.365	0.454
J7	Wai Yip Street / Lai Yip Street	Signal	RC	69%	87%
J8	Kwun Tong Road / Lai Yip Street	Signal	RC	58%	43%
J9	Hoi Bun Road / Lai Yip Street	Signal	RC	81%	87%
J10	Lai Yip Street / Hung To Road ⁽²⁾	Signal	RC	85%	104%

TABLE 2.1 EXISTING JUNCTION OPERATIONAL PERFORMANCE

Notes: ⁽¹⁾ RC – Reserve Capacity RFC – Ratio of Flow to Capacity ⁽²⁾ Kerbside on-street activities are reflected in the junction performance

2.9 The results in **Table 2.1** indicate that the junctions now operate with capacities during the AM and PM peak hours.

Pedestrian Facilities

2.10 There are good pedestrian facilities provided in the vicinity of the Subject Site, including footpaths, and at-grade pedestrian crossings are provided at the signalised road junctions.

Availability of Public Transport Facilities

2.11 The Subject Site is well-served by various types of public transport services, including road-based franchised bus and public light bus. These services operate

along Kwun Tong Road and Wai Yip Street within 500m or about 10 minutes' walk away.

- 2.12 The Subject Site is located closest to the Ngau Tau Kok MTR Station and the nearest entrance is at Lai Yip Street, which is some 500 metres or 10 minutes' walk away.
- 2.13 Details of the road-based public transport services operating in the vicinity of the Subject Site are shown in **Figure 2.13** and **Table 2.2**.

TABLE 2.2FRANCHISED BUS AND GMB SERVICES OPERATING CLOSE TO
THE SUBJECT SITE

Route	Routing	Frequency (minutes)
KMB 1A	Sau Mau Ping (Central) – Star Ferry	5 – 15
KMB 3D	Tsz Wan Shan (Central) – Kwun Tong (Yue Man Square)	4 – 16
KMB 5R	Kai Tak Cruise Terminal – Kwun Tong (apm) (Circular)	30
KMB 6P	Cheung Sha Wan (So Uk Estate) – Lei Yue Mun Estate	AM, PM Peak
KMB 11B	Kwun Tong (Tsui Ping Road) – Kowloon City Ferry	10 – 25
KMB 11C	Chuk Yuen Estate – Sau Mau Ping (Upper)	15 – 25
KMB 11D	Lok Fu – Kwun Tong Ferry	15 – 30
KMB 13D	Po Tat – Island Harbourview	15 – 25
KMB 13M	Kwun Tong (Elegance Road) – Po Tat (Circular)	15 – 30
KMB 14	Lei Yue Mun Estate – China Ferry Terminal	12 – 25
KMB 14B	Ngau Tau Kok – Lam Tin (Kwong Tin Estate)	15 – 25
KMB 14X	Yau Tong (Shung Tak Wai) – Tsim Sha Tsui (Circular)	15 – 30
KMB 15	Ping Tin – Hung Hom (Hung Luen Road)	12 – 20
KMB 15A	Ping Tin – Tsz Wan Shan (North)	20 - 30
KMB 15X	Lam Tin (Kwong Tin Estate) – Hung Hom Station	AM, PM Peak
KMB 16	Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)	8 – 20
KMB 16P	Kwun Tong Ferry – Mong Kok (Park Avenue)	AM, PM Peak
KMB 17	Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)	5 – 20
KMB 23M	Lok Wah – Shun Lee (Circular)	12 - 20
KMB 28B	Choi Fook – Kai Tak (Kai Ching Estate)	15 - 25
KMB 28S	Kwun Tong (Yue Mun Square) – Lok Wah	AM Peak
KMB 33	Tsuen Wan West Station – Yau Tong	15 – 30
KMB 33B	Tsuen Wan West Station – Yau Tong	20 - 25
KMB 38	Kwai Shing (East) – Ping Tin	5 - 20
KMB 38P	Kwai Shing (Central) – Ping Tin	AM Peak
KMB 40	Tsuen Wan (Belvedere Garden) – Laguna City	12 – 25
KMB 40A	Ping Tin – Kwai Hing Station	AM, PM Peak
KMB 40R	Kwai Chung Estate – Ping Tin	AM Peak
KMB 40D	Kwun Tong Ferry – Tsuen Wan (Shek Wai Kok)	AM, PM Peak
KMB 401 KMB 42C	Tsing Yi (Cheung Hang Estate) – Lam Tin Station	5 – 15
KMB 42C KMB 49	Ching Fu Court – Tseung Kwan O Industrial Estate	AM, PM Peak
KMB 62P	Tuen Mun Central – Lei Yue Mun Estate	8 – 25
KMB 62X	Tuen Mun Central – Lei Yue Mun Estate	8 - 25
KMB 69C	Tin Yan Estate – Kwun Tong Ferry	
	<u> </u>	AM, PM Peak AM Peak
KMB 74C KMB 74D	Kau Lung Hang – Kwun Tong Ferry	
KMB 74D KMB 74E	Kau Lung Hang – Kwun Tong Ferry	25 - 60
KMB 74E KMB 74F	Tai Mei Tuk – Kwun Tong Ferry	AM, PM Peak
	Kwun Tong Ferry – Education University of Hong Kong	AM Peak
KMB 74P	Kwun Tong Ferry – Tai Po Central	AM Peak
KMB 74X	Tai Po Central – Kwun Tong Ferry	3 - 15
KMB 80	Mei Lam – Kwun Tong Ferry	5 – 20
KMB 80A	Mei Lam – Kwun Tung Ferry	AM Peak
KMB 80P	Hin Keng – Kwun Tong Ferry	AM Peak

Route	Routing	Frequency (minutes)
KMB 80X	Chun Shek – Kwun Tong Ferry	8 – 25
KMB 83A	Shui Chuen O – Kwun Tong Ferry	AM Peak
KMB 83X	Shui Chuen O – Kwun Tong Ferry	8 - 30
KMB 88X	Fo Tan Chung Yeung Estate – Ping Tin (Circular)	20 - 30
KMB 89	Lek Yuen – Kwun Tong Station	8 - 20
KMB 89B	Shatin Wai – Kwun Tong Station	10 – 25
KMB 89C	Heng On – Kwun Tong (Tsui Ping Road)	12 – 30
KMB 89D	Wu Kai Sha Station – Lam Tin Station	3 – 20
KMB 89P	Ma On Shan Town Centre – Lam Tin Station Bus Terminus	AM Peak
KMB 89X	Shatin Station – Kwun Tong (Tsui Ping Road)	7 – 20
KMB 93K	Po Lam – Mong Kok East Station	15 – 30
KMB 95M	Tsui Lam – Kwun Tong Road (Elegance Road)	20 - 30
KMB 98	Tseung Kwan O Industrial Estate – Ngau Tau Kok Station (Circular)	15 – 20
KMB 98A	Hang Hau (North) (Tseung Kwan O Hospital) – Ngau Tau Kok Station (Circular)	8 – 20
KMB 98B	Hang Hau (North) (Tseung Kwan O Hospital) – Kwun Tong Station	AM Peak
KMB 213B	On Tai – Ting Fu Street (Circular)	AM Peak
KMB 2152	Lam Tin (Kwong Tin Estate) – Kowloon Station	5 - 20
KMB 234C	Sham Tseng – Kwun Tong Station	AM, PM Peak
KMB 234D	Tsing Lung Tau – Kwun Tong Station	AM, PM Peak
KMB 252X	Handsome Court – Lam Tin Station	AM, PM Peak
KMB 258A	Hung Shui Kiu (Hung Fuk Estate) – Lam Tin Station	AM Peak
KMB 258D	Tuen Mun (Po Tin Estate) – Lam Tin Station	5 – 20
KMB 258P	Hung Shui Kiu (Hung Fuk Estate) – Lam Tin Station	AM, PM Peak
KMB 258S	Tuen Mun (Shan King Estate) – Lam Tin Station	AM Peak
KMB 258X	Tuen Mun (Po Tin Estate) – Kwun Tong Ferry	AM, PM Peak
KMB 259D	Tuen Mun (Lung Mun Oasis) – Lei Yue Mun Estate	7 – 25
KMB 259Z	Lung Mun Oasis – Kwun Tong Ferry	AM, PM Peak
KMB 267X	Tuen Mun (Siu Hong Court) – Lam Tin Station	AM, PM Peak
KMB 268A	Long Ping Estate – Kwun Tong Ferry	AM, PM Peak
KMB 268C	Long Ping Station – Kwun Tong Ferry	5 – 20
KMB 268P	Ma Wang Road (Shan Shui House) – Kwun Tong Ferry Kwun Tong Ferry – Long Ping Station	AM, PM Peak
KMB 269C	Tin Shui Wai Town Centre – Kwun Tong Ferry	5 – 20
KMB 269S	Tin Shui Wai Town Centre – Kwun Tong Ferry	AM, PM Peak
KMB 274X	Kwun Tong Ferry – Tai Po Central	PM Peak
KMB 274X KMB 277A	Sha Tau Kok – Lam Tin Station	AM, PM Peak
KMB 277A KMB 277E	Lam Tin Station – Sheung Shui (Tin Ping)	
	Sheung Shui (Tin Ping) – Lam Tin Station	15 - 30
KMB 277P		AM, PM Peak
KMB 277X	Fanling (Luen Wo Hui) – Lam Tin Station	5 - 30
KMB 296A	Sheung Tak – Ngau Tau Kok Station (Circular)	7 – 15
KMB 296C	Sheung Tak – Cheung Sha Wan (Hoi Ying Estate)	15 - 30
KMB N3D	Kwun Tong (Yue Man Square) – Tsz Wan Shan (Central)	Overnight
KMB N293	Sheung Yak – Mong Kok East Station	Overnight
KMB T74	Tai Po (Tai Wo) – Kwun Tong Ferry	AM Peak
KMB T277	Sheung Shui – Lam Tin Station	AM, PM Peak
KMB W2	Jordan (West Kowloon Station) – Kwun Tong (Circular)	30 - 60
KMB X42C	Tsing Yi (Cheung Hang Estate) – Yau Tong	7-30
KMB X42P	Tsing Yi (Cheung On Estate) – Lam Tin Station	AM Peak
KMB X89D	Nai Chung – Kwun Tong Ferry	AM, PM Peak
KMB/CTB 101	Kwun Tong (Yue Man Square) – Kennedy Town	3 - 20
KMB/CTB 101X KMB/CTB 606	Kwun Tong (Yue Man Square) – Kennedy Town Siu Sai Wan (Island Resort) – Choi Wan (Fung Shing Street)	AM, PM Peak 20 – 25
KMB/CTB 606A	Shau Kei Wan (Yiu Tung Estate) – Choi Wan (Fung Shing Street)	AM Peak

Route	Routing	Frequency (minutes)
KMB/CTB 606X	Siu Sai Wan (Island Resort) – Kowloon Bay	AM, PM Peak
KMB/CTB 619	Shun Lee – Central (Macau Ferry)	4 - 25
KMB/CTB 619P	Shun Lee – Central (Macau Ferry)	AM Peak
KMB/CTB 641	Kai Tak (Kai Ching Estate) – Central (Macau Ferry)	AM, PM Peak
KMB/CTB 671	Diamond Hill Station – Ap Lei Chau Lee Lok Street	15 – 45
KMB/CTB 671X	Ap Lei Chau Lee Lok Street – Diamond Hill Station	AM Peak
KMB/CTB N619	Shun Lee – Central (Macau Ferry)	Overnight
CTB 55	Ching Tin and Wo Tin – Kwun Tong Ferry Pier	AM, PM Peak
CTB 61R	Lam Tin Station – City One Shatin	12 – 20
CTB 78C	Queen's Hill Fanling – Kai Tak	AM, PM Peak
CTB 78P	Queen's Hill Fanling – Kwun Tong	AM Peak
CTB 78X	Queen's Hill Fanling – Kai Tak	30 - 60
CTB 796S	Tseung Kwan O Station – Ngau Tau Kok Station (Circular)	Overnight
CTB 797	Lohas Park – Kowloon Bay (Circular)	15 – 20
CTB A22	Lam Tin Station – Airport	15 – 40
CTB A29	Tseung Kwan O (Po Lam) – Airport / HZMB Hong Kong Port	20 - 60
CTB E22	Lam Tin (North) – AsiaWorld-Expo	8 - 20
CTB E22A	Tseung Kwan O (Hong Sing Garden) – AsiaWorld-Expo	25 - 30
CTB E22C	Tiu Keng Leng Station – Aircraft Maintenance Area	AM, PM Peak
CTB E22S	Tung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)	AM, PM Peak
CTB E22X	Yau Tong – AsiaWorld-Expo	AM, PM Peak
CTB N29	Tseung Kwan O (Hong Sing Garden) – Tung Chung Station	Overnight
CTB NA29	Tseung Kwan O (Po Lam) – Airport / HZMB Hong Kong Port	Overnight
GMB 22A	Lok Wah Estate – Cheung Yip Street / Kwun Tong Ferry Pier (Circular)	20
GMB 35	Choi Ha Estate – Hong Lee Court	5 – 7
GMB 36A	Crocodile Hill (Hong Lee Court) To Yue Man Square Public Transport Interchange (Circular)	4 – 5
GMB 56	Richland Gardens – Kwun Tong (Shung Yan St)	10 20
GMB 62S	Kwong Tin Estate – Tsim Sha Tsui (Haiphong Road)	Overnight
GMB 68	Choi Wan Estate – Kowloon Bay (Enterprise Square)	8 12
GMB 86	Kai Tak Cruise Terminal – Telford Gardens	8 20
GMB 90A	Yau Lai Estate – HK Children's Hospital	20
GMB 90B	Sau Mau Ping Estate Phase 5 – HK Children's Hospital	15 – 20
GMB 102	Hang Hau Station – San Po Kong (Hong Keung Street)	2 – 15
GMB 102B	Hang Hau (Yuk Ming Court) – Choi Hung	12 – 20
GMB 102S	Hang Hau Station – San Po Kong (Hong Keung Street)	Overnight
GMB 104	The HK University of Science and Technology – Ngau Tau Kok Station	12 – 25
GMB 106	Tseung Kwan O (Po Lam) – Kowloon Bay (Enterprise Square)	7 – 25
GMB 501S	Sheung Shui Station – Kwun Tong (Yue Man Square)	Overnight

3.0 THE PROPOSED DEVELOPMENT

Development Parameters

3.1 The Proposed Development has a RCHE with (i) no less than 302, but not more than 557 beds ("RCHE within the Proposed Development"), and (ii) a Hotel with 200 guest rooms ("Hotel within the Proposed Development").

Provision of Internal Transport Facilities

(a) RCHE within the Proposed Development

- 3.2 The HKPSG has no recommendation on the provision of internal transport facilities for RCHE, hence, the parking provision for the RCHE within the Proposed Development, is provided based on the operational needs and also with reference to similar type RCHE in Kwun Tong.
- 3.3 The details of the provision of internal transport facilities for RCHE within the Proposed Development are shown in **Table 3.1**.

TABLE 3.1DETAILS OF PROVISION OF INTERNAL TRANSPORT FACILITIES
FOR RCHE WITHIN THE PROPOSED DEVELOPMENT

<u>Item</u>	Proposed Provision			
Car Parking	8 nos. car parking spaces provided based on operational needs:			
Space	(i) 5 parking spaces @ 5m (L) x 2.5m (W) x 2.4m (H) for senio management staff of RCHE;			
	(ii) 3 parking spaces for RCHE visitors, including			
	- 2 nos. @ 5m (L) x 2.5m (W) x 2.4m (H) ; and			
	- 1 no accessible car parking space @ 5m (L) x 3.5m (W) x 2.4m (H)			
Loading /	<u>1 no.</u> Heavy Goods Vehicles loading / unloading bay @ 11.0m (L) x 3.5m			
Unloading Bay	(W) x 4.7m (H) are provided for shared use, i.e., for RCHE and hotel use			
Ambulance lay-by	1 no. ambulance lay-by @ 9.0m (L) x 3.0m (W) x 3.6m (H) shared use by			
	ambulance and mini-coach is provided based on the operational needs.			

- 3.4 **Table 3.1** shows the provision of 8 car parking spaces and 1 ambulance lay-by. In addition, 1 HGV loading/unloading bay is also provided which is for shared used with the Hotel within the Proposed Development.
- 3.5 Most RCHEs in Hong Kong are located within buildings where there are other uses, and access to the RCHE is shared with other uses. Therefore, it is not possible to distinguish traffic generated by the RCHE from other uses for these type of RCHEs, i.e., those located within in a multi-use building. Nevertheless, several RCHEs located in a single use building were identified for the conduct of traffic surveys, and the surveyed RCHEs have similar characteristic as the Proposed Development, in terms of: (i) location; (ii) scale; (iii) accessibility to Public Transport Services, and (iv) availability of internal transport facilities.
- 3.6 The utilisation surveys were conducted from 0800 1959 hours on a weekday. Details of the surveyed RCHE are given in **Table 3.2**, and the survey results are presented in **Table 3.3**.

TABLE 3.2 DETAILS OF RCHES SURVEYED					
Location of Elderly Home	No. of Beds	Accessibility to Public Transport Services	Car Park		
(A) 8 Kung Lok Road, Kwun Tong	266	Access to public transport services from this RCHE is convenient with numerous bus and GMB routes operate in the vicinity. The nearest MTR Ngau Tau Kok Station is located within 500m from this RCHE.	Yes		
(B) 88 Kung Lok Road, Kwun Tong	226	Access to public transport services from this RCHE is convenient with numerous bus and GMB routes operate in the vicinity. The nearest MTR Ngau Tau Kok Station is located within 500m from this elderly home.	Yes		

TABLE 3.3 SURVEY RESULTS OF THE 2 SURVEYED RCHES

(hours)	Private car and taxi	Light goods vehicle ⁽¹⁾	ber of Vehicles Observ Medium / heavy goods vehicle	Mini coach	Ambulance
(A) 8 Kung Lok				1	1
0800 – 0859	1	0	0	0	0
0900 – 0959	0	1	0	0	0
1000 – 1059	0	0	0	1	0
1100 – 1159	0	0	0	0	0
1200 – 1259	0	1	0	0	0
1300 – 1359	0	1	0	0	0
1400 – 1459	0	0	0	1	0
1500 – 1559	0	0	0	0	1
1600 – 1659	0	0	0	1	0
1700 – 1759	0	0	0	1	0
1800 – 1859	1	0	0	0	0
1900 – 1959	0	0	0	0	0
Maximum	1	1	0	1	1
Maximum		<u> </u>	<u>•</u>		-
(0800 – 1959)	÷	÷	<u>•</u>	<u> </u>	÷
	_	_	_	÷	-
(0800 - 1959)	_	_	_	0	<u> </u>
(0800 – 1959) (B) 88 Kung Lok 0800 – 0859	Road, Kwun	– Fong (226 beds)	_	_
(0800 - 1959) (B) 88 Kung Lok 0800 - 0859 0900 - 0959	Road, Kwun	- Fong (226 beds)	0	0
(0800 - 1959) (B) 88 Kung Lol 0800 - 0859 0900 - 0959 1000 - 1059	- c Road, Kwun 0 0	- Fong (226 beds 0 1) 0 0	 0	 0
(0800 - 1959) (B) 88 Kung Lol 0800 - 0859 0900 - 0959 1000 - 1059 1100 - 1159	- CRoad, Kwun 0 0 0	- Fong (226 beds 0 1 0) 0 0 0	0 0 1	0 0 0
(0800 - 1959) (B) 88 Kung Lol 0800 - 0859 0900 - 0959 1000 - 1059 1100 - 1159 1200 - 1259	- c Road, Kwun 0 0 0 0	Fong (226 beds 0 1 0 0) 0 0 0 0	0 0 1 1	0 0 0 0
(0800 – 1959) (B) 88 Kung Lok	C Road, Kwun 0 0 0 0 0 0	Fong (226 beds 0 1 0 0 1) 0 0 0 0 0 0	0 0 1 1 0	0 0 0 0 0
(0800 - 1959) (B) 88 Kung Lol 0800 - 0859 0900 - 0959 1000 - 1059 1100 - 1159 1200 - 1259 1300 - 1359 1400 - 1459	Road, Kwun 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fong (226 beds 0 1 0 0 0 1 0) 0 0 0 0 0 0 0	0 0 1 1 0 1	0 0 0 0 0 0
(0800 - 1959) (B) 88 Kung Lol 0800 - 0859 0900 - 0959 1000 - 1059 1100 - 1159 1200 - 1259 1300 - 1359 1400 - 1459 1500 - 1559	- c Road, Kwun 0 0 0 0 0 0 1	Fong (226 beds 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0) 0 0 0 0 0 0 0 0	0 0 1 1 0 1 0	0 0 0 0 0 0 0 0
(0800 - 1959) (B) 88 Kung Lol 0800 - 0859 0900 - 0959 1000 - 1059 1100 - 1159 1200 - 1259 1300 - 1359 1400 - 1459 1500 - 1559 1600 - 1659	- x Road, Kwun 0 0 0 0 0 1 1	Fong (226 beds 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0) 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 1 0 0	0 0 0 0 0 0 0 0 0
(0800 - 1959) (B) 88 Kung Lol 0800 - 0859 0900 - 0959 1000 - 1059 1100 - 1159 1200 - 1259 1300 - 1359 1400 - 1459 1500 - 1559 1600 - 1659 1700 - 1759	- a Road, Kwun 0 0 0 0 0 0 1 1 1 1	Fong (226 beds 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0) 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
(0800 - 1959) (B) 88 Kung Lol 0800 - 0859 0900 - 0959 1000 - 1059 1100 - 1159 1200 - 1259 1300 - 1359	- c Road, Kwun 0 0 0 0 0 1 1 1 1 1	Fong (226 beds 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0) 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0

Note: ⁽¹⁾ including goods van, light goods vehicle

- 3.7 **Table 3.3** shows the number of vehicles observed within the same hour but these vehicles are not present at the same time. For example, at Location (A) 8 Kung Lok Road, Kwun Tong, during the period 0800 0859 hours, the Private car and taxi were not observed at the same time as the Light goods vehicle.
- **3.8 Table 3.3** also shows the following:

(i) Private car parking spaces

- **3.9** The maximum number of Private car and taxi observed at both surveyed RCHEs at the same time was 1. Based on this rate, the 557-bed RCHE within the Proposed Development is estimated to generate a maximum of 3 vehicles at the same time only. *[Calculation: 1 vehicle / 226 beds x 557 beds = 2.46, say, 3]*
- **3.10** Taxis stop momentarily to pick-up and drop-off. Therefore, taxis can use the private car parking spaces PC-09 or PC-10 on G/F as shown in **Figure 3.1**.
- 3.11 Hence, the provision of 8 car parking spaces is more than sufficient to serve the RCHE within the Proposed Development.

(ii) Goods Vehicle Loading / Unloading Bay

3.12 As shown in **Table 3.3**, no more than 1 goods vehicle was observed at any one time. Hence, the provision of 1 HGV loading/unloading bay for shared use by RCHE and Hotel is sufficient to serve the RCHE within the Proposed Development.

(iii) Layby for shared use by ambulance and mini-coach

3.13 As shown in **Table 3.3**, ambulance and mini-coach did not arrive at the same time. Hence, the ambulance layby is sufficient to serve the RCHE within the Proposed Development.

(b) Hotel within the Proposed Development

3.14 The internal transport facilities for Hotel within the Proposed Development are provided in accordance to the recommendations of the HKPSG, and are presented in **Table 3.4**.

TABLE 3.4COMPARISON OF THE HKPSG RECOMMENDATIONS AND
PROPOSED INTERNAL TRANSPORT FACILITIES FOR HOTEL
WITHIN THE PROPOSED DEVELOPMENT

HKPSG Recommendation for a Hotel with 200 guest rooms	Proposed Provision				
Car Parking Space					
1 car parking space per 100 rooms.	<u>2 nos.</u> @ 5m (L) x 2.5m (W) x 2.4m (H)				
200/100 = 2 nos.	= HKPSG recommendation				
Motorcycle Parking Space					
5 to 10% of the total provision for private cars	<u>1 no.</u> @ 2.4m (L) x 1m (W) x 2.4m (H)				
Minimum = 2 x 5% = 0.1, say 1 no.	= HKPSG recommendation				
Maximum = 2 x 10% = 0.2, say 1 no.					
Taxi and Private Car Layby					
Minimum 2 lay-by for taxi and private cars for	<u>2 nos.</u> @ 5m (L) x 2.5m (W) x 2.4m (H)				
≤ 299 rooms <u>= 2 nos.</u>	= HKPSG recommendation				
Single-Deck Tour Bus Layby					
Minimum 1 lay-by for single-deck tour buses for ≤	<u>1 no.</u> @ 12m (L) x 3.5m (W) x 3.8m (H)				
299 rooms <u>= 1 no.</u>	= HKPSG recommendation				

Г

HKPSG Recommendation for a Hotel with 200 guest rooms	Proposed Provision
Goods Vehicle Loading / Unloading Bay	
0.5 - 1 goods vehicle bay per 100 rooms	1 no. @ 7m (L) x 3.5m (W) x 3.6m (H)
Minimum = $200 / 100 \times 0.5 = 1$ no.	for Light Goods Vehicles
Maximum = 200 / 100 x 1 = 2 nos.	= HKPSG recommendation

3.15 With reference to **Tables 3.1** and **3.4**, the internal transport facilities provided are summarised in **Table 3.5**.

TABLE 3.5	INTERNAL	TRANSPORT	FACILITIES	PROVIDED	FOR	THE
	PROPOSED	DEVELOPMEN	IT			

ltem	Use	Proposed Provision
Car Parking Space	RCHE	8
	Hotel	2
	Total	<u>10</u>
Ambulance Parking Space	RCHE	1
Motorcycle Parking Space	Hotel	1
Taxi and Private Car Layby	Hotel	2
Single-Deck Tour Bus Layby	Hotel	1
LGV Goods Vehicle Loading / Unloading Bay	Hotel	1
HGV Goods Vehicle Loading / Unloading	Shared use by RCHE	1
Bay	and Hotel	
	Total	2

<u>Reasons for Deviation from the HKPSG Maximum Recommendation for Hotel</u> within the Proposed Development

(a) Site Constraint

- 3.16 The only internal transport facility for the Hotel within the Proposed Development, which deviates from the HKPSG maximum recommendation is the provision of 1 goods vehicles loading / unloading bay, instead of 2. However, a second goods vehicle loading / unloading bay is provided which is for shared use with the RCHE within the Proposed Development.
- 3.17 The provision of an additional goods vehicle loading / unloading bay on the ground floor was considered, but not found to be possible due to:

(1) The Outline Development Plan no. D/K14A/1H require setback along Wai Yip Street of 2.3m, and (ii) 1.5m setback and 1.5m non-building area along the service lane and;

(2) With the above setback requirements, the length of the subject site (i.e. measured from Wai Yip Street to the service lane) which is only 21.3m is further reduced to only 17.5m (reduction of length of 17.8%, which is substantial).

3.18 After accommodating the essential facilities such as, structural columns, staircases, escalators, lift lobby and vehicle ramp to the basement car park, etc, the provision of another goods vehicle loading / unloading bay is not possible. The Authorised Person has used his utmost effort to ensure the layout is arranged and utilised in good order.

(b) Limited Goods Vehicles Generated

3.19 Goods vehicles generated are mostly related to room cleaning services, deliveries of toiletry and beverages. The expected goods vehicle trip generated for the Hotel within the Proposed Development is summarised in **Table 3.6**.

TABLE 3.6GOODS VEHICLE TRIP GENERATION FOR HOTEL WITHIN THE
PROPOSED DEVELOPMENT

ltem	Activity	Expected goods vehicles generated
Room cleaning service	Replenish cleaning material	4 trips per month
Toiletry	Restock toiletries, eg, shampoo, lotion, etc.	1 trip per month
Beverages	Deliver distilled water	8 trips per month
	Total goods vehicle trips =	13 trips per month

3.20 Table 3.6 shows that the Hotel within the Proposed Development is expected to generate 13 goods vehicle trips per month, or 1 vehicle trip every 2.3 days, which is low. Hence, the provision of 1 LGV goods vehicle loading/unloading bay and 1 HGV loading/unloading bay which is for shared use by RCHE and Hotel, is sufficient to serve the loading / unloading activities of the Hotel.

Layout Plans

- 3.21 The carpark layout plans for G/F and B1/F are found in **Figures 3.1 3.2**. Similar to the Approved S16 Planning Application (TPB ref: A/K14/809), two vehicular access points are provided for the Proposed Development, and these are located at:
 - (i) The service lane at the northern side of the Proposed Development
 - (ii) Wai Yip Street

Swept Path Analysis

3.22 The CAD-based swept path analysis program, Autodesk Vehicle Tracking, was used to check the ease of vehicle manoeuvring, and the swept path drawings of vehicle manoeuvring on the parking levels are found in in Appendix 2. Vehicles are found to have no manoeuvring problems and all vehicles could enter and leave the spaces with ease.

Traffic Management Plan

- 3.23 Loading / unloading related to goods deliveries will be undertaken during the non-peak hours. The Management Office will ensure good maintenance of the turntable and should there the turntable fail to operate, the Management Office will immediately contact the turntable maintenance company to repair.
- **3.24** If necessary, the Management Office will stagger the delivery of goods so that only 1 goods vehicle will be present at the same time.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Development is expected to be completed by 2029, and the design year adopted for the capacity analysis is 2032, i.e. *3 years after the completion of the development*.

Traffic Forecast

4.2 The 2032 traffic flows used for the junction analysis are produced with reference to the (i) 2031 traffic flows from the Base District Traffic Model ("BDTM"); (ii) estimated traffic growth from 2031 to 2032; (iii) the planned developments in the vicinity of the Proposed Development, and (iv) additional traffic generated by the Proposed Development.

Estimated Traffic Growth Rate from 2031 to 2032

4.3 Reference is made to the 2019 – based Territorial Population and Employment Data Matrix ("TPEDM") data produced by Planning Department for Kwun Tong District, which are for 2019, 2026 and 2031 and are presented in **Table 4.1**.

TABLE 4.1	2019-BASED	TPEDM	DATA	PRODUCED	ΒY	Planning
_	DEPARTMEN	f for KW	UN TON	IG DISTRICT		_

Item	TPEDM Estimation / Projection					
	2019	2026	2031			
Population	693,900	769,400	741,300			
Employment	395,350	410,550	408,250			
Total	1,089,250	1,179,950	<u>1,149,550</u>			
Average Growth%	From 2019 to 2026: +1.15% From 2019 to 2031: +0.45%	From 2026 to 2031: -0.52%	N/A			

4.4 **Table 4.1** shows that the highest average annual growth rate is 1.15%. In view that there is no estimation beyond 2031 and to err on the high side, the growth rate of 1.15% per annum is adopted for the traffic growth between 2031 and 2032.

Planned Developments in the Vicinity of the Proposed Development

4.5 The planned developments included in the 2032 reference traffic flows are presented in **Table 4.2**.

Site	Planning Application No. / Plan No.	Address
1	A/K14/763	350 Kwun Tong Road
2	A/K14/766	41 King Yip Street
3	A/K14/771	32 Hung To Road
4	A/K14/773	82 Hung To Road
5	A/K14/774	7 Lai Yip Street
6	A/K14/775	132 Wai Yip Street
7	A/K14/777	71 How Ming Street
8	A/K14/778	203 Wai Yip Street
9	A/K14/782	4 Tai Yip Street
10	A/K14/787	33 Hung To Road
11	A/K14/796	28A Hung To Road

Site	Planning Application No. / Plan No.	Address
12	A/K14/804	334 -336 and 338 Kwun Tong Road
13	A/K14/806	11 Lai Yip Street
14	A/K14/807	Kun Tong Inland Lots 1 S.A , 1 RP, 3 and 15
15	A/K14/808	201 Wai Yip Street
16	A/K14/809	1 Tai Yip Street and 111 Wai Yip Street
17	A/K14/810	5 Lai Yip Street
18	A/K14/820	73 – 75 Hung To Road
19	A/K14/822	25 Tai Yip Street, Kwun Tong
20	S/K14S/URA1/3 Urban Renewal	Areas 4 and 5 of Kwun Tong Town Centre
	Authority's (URA) latest 'Vertical City'	
	scheme of a mixed use development	
21	N/A	EKEO Lai Yip Street Development
22	N/A	Kwun Tong Action Area
23	N/A	Kowloon Bay Action Area

- 4.6 The infrastructure and road network included in the BDTM are as follows:
 - Kai Tak Development
 - Tseung Kwan O Lam Tin Tunnel
 - Central Kowloon Route
 - Trunk Road T2 between Central Kowloon Route and Tseung Kwan O Lam Tin Tunnel

Traffic Generated by the Proposed Development

- 4.7 In view that the TPDM does not provide trip generation rates for RCHE, the traffic generation associated with the RCHE is estimated based in-house trip generation rates. The surveyed RCHE are:
 - (i) 266-bed RCHE known as Buddhist Sum Ma Shui Ying Care & Attention Home for the Elderly at 8 Kung Lok Road, Kwun Tong
 - (ii) 110-bed known as Little Sisters of the Poor St. Mary's Home for the Aged at 2 Welfare Road, Wong Chuk Hang
- 4.8 As for Hotel, reference is also made to in-house trip generation rates because the hotels are of similar class, number of hotel rooms and traffic characteristics, i.e. proximity to the MTR and road-based public transport services to the Hotel within the Proposed Development. The surveyed hotels are:
 - (i) 254-room Nina Hotel Kowloon East at 38 Chong Yip St, Kwun Tong
 - (ii) 298-room Tuen Mun Pentahotel at 6 Tsun Wen Road, Tuen Mun
- 4.9 To be conservative, it is assumed that the RCHE has 557 beds. The adopted trip generation rates and the calculated traffic generation associated with the Proposed Development are presented in **Table 4.3**.

TABLE 4.3 TRAFFIC GENERATION OF THE PROPOSED DEVELOPMENT						
Item	AN	1 Peak Ho	our	PN	1 Peak Ho	our
	In	Out	2-way	In	Out	2-way
Trip Generation Rates for RCHE (pcu/hour/bed)						
In-house trip generation for RCHE	0.0188	0.0182	NA	0.0273	0.0182	NA
Trip Generation Rates for hotel (pcu/hour/guest room)						
In-house trip generation for hotel	0.0591	0.0433	NA	0.0512	0.0472	NA
Traffic Generation of Proposed Development (pcu/hour)						
RCHE: 557 beds [a]	11	11	22	16	11	27
Hotel: 200 guest rooms [b]	12	9	21	11	10	21
Total [a] + [b]	<u>23</u>	<u>20</u>	<u>43</u>	27	<u>21</u>	<u>48</u>

4.10 **Table 4.3** shows the Proposed Development generates 43 and 48 more pcu (2-way) during the AM and PM peak hours respectively.

Comparison of Traffic Generation between the Approved S16 Scheme and the Proposed Development

4.11 The Approved S16 Scheme is a commercial building with 16,656.323m² Office and 200m² GFA. The traffic generated by this Approved S16 Scheme is compared with the Proposed Development and is presented in **Table 4.4**.

TABLE 4.4COMPARISON OF TRAFFIC GENERATION BETWEEN THE
APPROVED \$16 SCHEME AND THE PROPOSED DEVELOPMENT

Scheme	AN	Traffi A Peak Ho	ic Genera our		hour) A Peak Ho	our
	In	Out	2-way	In	Out	2-way
Approved S16 Planning Application (TPB ref: A/K14/780) [A]	42	30	72	21	28	49
Proposed Development [B]	23	20	43	27	21	48
Difference [B] – [A]	<u>-19</u>	-10	-29	6	-7	-1

4.12 **Table 4.4** shows that compared with the Approved S16 Scheme, the Proposed Development generates 29 pcu and 1 pcu (2-way) less during the AM and PM peak hours, respectively. It can be concluded from traffic generation aspect that compared with the Approved S16 Scheme, <u>the Proposed Development is a better-off scheme</u>.

Planned Junction Improvement Schemes

4.13 The planned junction improvement schemes found in the vicinity of the Subject Site are summarized in **Table 4.5** and shown in **Appendix 3**.

TABLE 4.5 PLANNED TRAFFIC IMPROVEMENT SCHEMES IN THE VICINITY OF THE PROPOSED DEVELOPMENT

	Junction			Estimated Completion Year ⁽¹⁾
J1	Hoi Bun Road / Shun Yip Street	The road markings are changed at Shun Yip Street Westbound and Eastbound		Before 2032

	Junction	Description of Work	The Project Proponent s	Estimated Completion Year ⁽¹⁾
J7	Wai Yip Street / Lai Yip Street	The road alignment is adjusted at Lai Yip Street Northbound	,	
J8	Kwun Tong Road / Lai Yip Street	The road alignment is adjusted at Lai Yip Street Northbound	Ũ	
J9	Hoi Bun Road / Lai Yip Street	A new pedestrian crossing across Hoi Bun Road Eastbound is added and existing staggered pedestrian crossing at Lai Yip Street to be converted to straight crossing	the Lai Yip Street site	

2032 Traffic Flows

4.14 Year 2032 traffic flows for the following cases are derived:

2032 without the Proposed Development [A]	= 2031 traffic flows derived with reference to BDTM + estimated total growth from 2031 to 2032 + Traffic generated by the planned developments in the vicinity of the Proposed Development
2032 with the Proposed Development [B]	= [A] + traffic generated by the Proposed Development (Table 4.3)

4.15 The 2032 peak hour traffic flows for the cases without and with the Proposed Development, are shown in **Figures 4.1 - 4.2**, respectively. The ingress/egress vehicular routings to/from the Proposed Development via Wai Yip Street and the service lane at the northern side of the Proposed Development are shown in **Figures 4.3 - 4.4**.

2032 Junction Operational Performance

4.16 Year 2032 capacity analysis for the cases without and with the Proposed Development are summarized in **Table 4.6** and detailed calculations are found in the **Appendix 1**.

Ref.	Junction	Type of Junction / Parameter ⁽¹⁾	Without the Proposed Development		With the Proposed Development	
			AM	PM	AM	PM
			Peak	Peak	Peak	Peak
J1	Hoi Bun Road / Shun Yip Street ⁽³⁾	Signal / RC	22%	17%	22%	17%
J2	Wai Yip Street / Shun Yip Street	Signal / RC	21%	19%	20%	18%
J3	Tai Yip Street / Service Lane	Priority / RFC	0.044	0.036	0.054	0.046
J4	Hong Tak Road / Tai Yip Street	Priority / RFC	0.384	0.294	0.404	0.322
J5	Tai Yip Street / Tai Yip Lane	Priority / RFC	0.135	0.117	0.135	0.117
J6	Kwun Tong Road / Hong Tak Road	Priority / RFC	0.655	0.743	0.670	0.765
J7	Wai Yip Street / Lai Yip Street ⁽³⁾	Signal / RC	26%	35%	26%	35%
J8	Kwun Tong Road / Lai Yip Street ⁽³⁾	Signal / RC	23%	18%	23%	18%

TABLE 4.62032 JUNCTION OPERATIONAL PERFORMANCE

Ref.	Junction	Type of Junction / Parameter ⁽¹⁾	Without the Proposed Development		With the Proposed Development	
			AM Peak	PM Peak	AM Peak	PM Peak
J9	Hoi Bun Road / Lai Yip Street ⁽³⁾	Signal / RC	21%	23%	21%	23%
J10	Lai Yip Street / Hung To Road ⁽²⁾	Signal / RC	33%	41%	33%	41%

Notes: ⁽¹⁾ RC – reserve capacity RFC – Ratio of Flow to Capacity

⁽²⁾ Kerbside on-street activities are reflected in the junction performance

⁽³⁾ Junction Improvement Scheme has been incorporated in the assessment

4.17 **Table 4.6** shows that the junctions operate with capacities during the AM and PM peak hours for the cases without and with the Proposed Development.

5.0 PEDESTRIAN ASSESSMENT

Surveyed Pedestrian Locations

5.1 In order to quantify the existing pedestrian flows, pedestrian counts were conducted at the footpaths and waiting area of pedestrian crossing shown in **Figure 5.1** during the AM and PM peak periods. The survey locations are summarized in **Table 5.1**.

TABLE 5.1 SURVEYED PEDESTRIAN LOCATIONS

Ref.	Location					
	Footpath					
1	Northern footpath of Wai Yip Street between Shun Yip Lane and Tai Yip Street (Eastern side)					
2	Northern footpath of Wai Yip Street between Shun Yip Lane and Tai Yip Street (Western side)					
3	Shun Yip Lane between Wai Yip Street and Service Lane					
	Waiting area of pedestrian crossing					
W1	Western pedestrian crossing of Wai Yip Street / Shun Yip Street					
W2	Eastern pedestrian crossing of Wai Yip Street / Shun Yip Street					

Existing Pedestrian Flows

5.2 The existing peak 15-minute 2-way pedestrian flows are also presented in **Figure 5.1**.

Estimated growth from 2024 to 2032

5.3 The 2032 reference pedestrian flows are estimated with the reference of the existing pedestrian flows and a growth rate of 1.15% per annum which is derived from the latest TPEDM data.

Pedestrian Generated by the Proposed Development

5.4 The pedestrian generations associated with the RCHE and Hotel within the Proposed Development, are estimated based on in-house pedestrian rates. The in-house pedestrian rates are presented in **Table 5.2**, and the estimated pedestrian generation of Proposed Development is found in **Table 5.3**.

Use	Pedestrian Generation Rates (pedestrian / 15 min / 100m²)						
	AM	Peak	PM Peak				
	In	Out	In	Out			
RCHE ⁽¹⁾	0.049	0.004	0.011	0.034			
Hotel ⁽²⁾	0.053	0.173	0.156	0.177			

TABLE 5.2IN-HOUSE PEDESTRIAN GENERATION RATES

⁽¹⁾ 266-bed RCHE known as Buddhist Sum Ma Shui Ying Care & Attention Home for the Elderly at 8 Kung Lok Road, Kwun Tong

⁽²⁾ 254-room Nina Hotel Kowloon East at 38 Chong Yip St, Kwun Tong

TABLE 5.3PEDESTRIAN GENERATED BY THE PROPOSED DEVELOPMENT

Use	GFA (m ²)	Pedestrian Generation (pedestrian / 15 min)				
		AM	Peak	PM Peak		
		In Out		In	Out	
RCHE	557 beds	28	3	7	19	

г

Use	GFA (m ²)	Pedestrian Generation (pedestrian / 15 min)				
		AM	Peak	PM Peak		
		In	Out	In	Out	
Hotel	200 rooms	11	35	32	36	
<u>Total</u>		<u>39</u>	<u>38</u>	<u>39</u>	55	

Year 2032 Pedestrian Flows

5.5 The 2032 pedestrian flow with and without the Proposed Development are derived using the following method:

Without the	 = 2024 observed pedestrian flows + growth from 2024
Proposed	to 2032 + pedestrian generated by the planned
Development [a]	developments in the vicinity of the Subject Site
With the Proposed	[a] + pedestrian generated by the Proposed
Development [b]	= Development

5.6 The 2032 pedestrian flows without and with the Proposed Development are presented in **Figures 5.2 and 5.3**.

Level-Of-Service ("LOS") Assessment

5.7 The pedestrian assessment method adopted is referenced to Exhibit 18-3 of Chapter 18 of the Highway Capacity Manual ("HCM") 2000 and the extract of Exhibit 18-3 is summarised in **Table 5.4**.

LOS	Space (m²/p)	Flow Rate (p/min/m)
А	> 5.6	≤ 16
В	> 3.7-5.6	>16-23
С	>2.2-3.7	>23-33
D	>1.4-2.2	> 33-49
E	>0.75-1.4	>49-75
F	≤ 0.75	variable

TABLE 5.4EXTRACT OF EXHIBIT 18-3 OF THE HCM 2000

(a) LOS of the Footpaths

5.8 The effective width of the surveyed footpaths and the year 2032 LOS without and with the Proposed Development are presented in **Table 5.5 and 5.6**.

TABLE 5.5EFFECTIVE WIDTH OF SURVEYED FOOTPATHS

Ref	Footpath width (m)	Effective width (m) ⁽¹⁾
1	3.5	2.5
2	2.7	1.7
3	9.8	8.8

Note:⁽¹⁾ The effective width does not include 0.5m dead zone on both sides, i.e. 1m

TABLE 5.6YEAR 2032 LOS OF FOOTPATH WITHOUT AND WITH THE
PROPOSED DEVELOPMENT

Ref.	Peak Period	Year 2032 without the Proposed Development				with the Propos evelopment	ed
		Flow	Rate ⁽¹⁾	LOS	Flow	Rate ⁽¹⁾	LOS
		(Ped/15 min)	(Ped/min/m)		(Ped/15 min)	(Ped/ min/m)	
1	AM	350	9.3	А	369	9.8	A
	PM	317	8.5	А	340	9.1	А
2	AM	467	18.3	В	516	20.2	В
	PM	336	13.2	A	395	15.5	А
3	AM	969	7.3	А	1008	7.6	А
	PM	593	4.5	А	640	4.8	А

Note: ⁽¹⁾ pedestrian flow rate = pedestrian flow \div 15 minutes \div effective width

5.9 **Table 5.6** shows that the footpaths achieve LOS A and B during AM and PM peak for the 2032 cases without and with the Proposed Development.

(b) Waiting area of the Pedestrian Crossing

5.10 The year 2032 LOS of pedestrian crossing waiting areas without and with the Proposed Development are presented in **Table 5.7**.

TABLE 5.7YEAR 2032 LOS OF PEDESTRIAN CROSSING WAITING AREAS
WITHOUT AND WITH THE PROPOSED DEVELOPMENT

Ref	Area (m²)	Pedestria waiting area	e No. of ans at the a (ped/signal cle)		an Space ped)	LC	DS		
		AM	PM	AM	PM	AM	PM		
			Without the	e Proposed De	velopment				
W1	150	47	11	3.2	13.6	С	А		
W2	63	24	4	2.6	15.8	С	А		
	With the Proposed Development								
W1	150	48	12	3.1	12.5	C	А		
W2	63	25	5	2.5	12.6	C	А		

- 5.11 **Table 5.7** shows that the pedestrian crossing waiting areas achieve LOS A and C during AM and PM peak for the 2032 cases without and with the Proposed Development.
- 5.12 It is noted that "In general, LOS C is desirable for most design at streets with dominant 'living' pedestrian activities". Since the LOS in **Tables 5.6 and 5.7** are A to C, it can be concluded that the Proposed Development will have no adverse impact to the footpaths and pedestrian crossing waiting areas in the vicinity.

6.0 SENSITIVITY TEST

Permitted Maximum Number of Beds for RCHE

- 6.1 Although the proposed maximum number of beds for RCHE is 557, based on the RCHE GFA and the minimum area of floor space per resident as per Code of Practice for Residential Care Homes (Elderly Persons) issued by Social Welfare Department, a total of 644 beds could be provided. Hence, a sensitivity test is undertaken for the RCHE with 644 beds and the hotel with 200 rooms.
- 6.2 As stated in paragraph 3.16 3.18, due to site constraints, the Authorised Person has used his utmost effort to ensure the layout is arranged and utilised in good order. Internal transport facilities will remain unchanged as the scheme with 557-bed RCHE and 200-room Hotel.

Traffic Impact for the Sensitivity Test

(a) Comparison of Traffic Generation

6.3 The comparison of traffic generated by the scheme with a 557-bed RCHE and 200-room Hotel, and the scheme with 644-bed RCHE and 200-room Hotel, is presented in **Table 6.1**.

Item	ļ	AM Peak Ho	ur	PM Peak Hour				
	In	Out	2-way	In	Out	2-way		
RCHE: 557 beds	11	11	22	16	11	27		
Hotel: 200 guest rooms	12	9	21	11	10	21		
Total [A]	<u>23</u>	<u>20</u>	<u>43</u>	<u>27</u>	<u>21</u>	<u>48</u>		
RCHE: 644 beds	13	12	25	18	12	30		
Hotel: 200 guest rooms	12	9	21	11	10	21		
Total [B]	25	<u>21</u>	<u>46</u>	<u>29</u>	22	<u>51</u>		
Difference in Traffic Generation (pcu/hour)								
[B] – [A]	+2	+1	+3	+2	+1	+3		

TABLE 6.1COMPARISON OF TRAFFIC GENERATION

6.4 **Table 6.1** shows that compared with the scheme with 557-bed RCHE and 200room Hotel, the scheme with 644-bed RCHE and 200-room Hotel, generates 3 pcu / hour (2-way) more in both AM and PM peak hours, which is negligible.

(b) 2032 Traffic Flows

6.5 The sensitivity test 2032 peak hour traffic flows for the cases with the Proposed Development are shown in **Figure 6.1**. The ingress/egress vehicular routings to/from the Proposed Development via Wai Yip Street and the service lane at the northern side of the Proposed Development are shown in **Figures 6.2 - 6.3**.

(c) 2032 Junction Operational Performance

6.6 The comparison of junction capacity analysis for the scheme with 557-bed RCHE and 200-room Hotel, and the scheme with 644-bed RCHE and 200-room Hotel, is found in **Table 6.2** and detailed calculations of the scheme with 644-bed RCHE and 200-room Hotel are found in the **Appendix 1**.

TABLE 6.2 OF 2032 **IUNCTION OPERATIONAL COMPARISON** PERFORMANCE

	I LIN	FORMANC	. L		-			
Ref.	Junction	Type of Junction / Parameter ⁽¹⁾	With the Proposed Development (557-bed RCHE and 200-room Hotel) [A]		With the Proposed Development (644-bed RCHE and 200-room Hotel) [B]		Difference [B] – [A]	
			AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
J1	Hoi Bun Road / Shun Yip Street ⁽³⁾	Signal / RC	22%	17%	22%	17%	0%	0%
J2	Wai Yip Street / Shun Yip Street	Signal / RC	20%	18%	20%	17%	0%	-1%
J3	Tai Yip Street / Service Lane	Priority / RFC	0.054	0.046	0.054	0.047	0.000	0.001
J4	Hong Tak Road / Tai Yip Street	Priority / RFC	0.404	0.322	0.406	0.322	0.002	0.000
J5	Tai Yip Street / Tai Yip Lane	Priority / RFC	0.135	0.117	0.135	0.117	0.000	0.000
J6	Kwun Tong Road / Hong Tak Road	Priority / RFC	0.670	0.765	0.672	0.765	0.002	0.000
J7	Wai Yip Street / Lai Yip Street ⁽³⁾	Signal / RC	26%	35%	26%	35%	0%	0%
J8	Kwun Tong Road / Lai Yip Street ⁽³⁾	Signal / RC	23%	18%	23%	18%	0%	0%
J 9	Hoi Bun Road / Lai Yip Street ⁽³⁾	Signal / RC	21%	23%	21%	23%	0%	0%
J10	Lai Yip Street / Hung To Road ⁽²⁾	Signal / RC	33%	41%	33%	41%	0%	0%

⁽¹⁾ RC – reserve capacity RFC - Ratio of Flow to Capacity Notes:

⁽²⁾ Kerbside on-street activities are reflected in the junction performance

⁽³⁾ Junction Improvement Scheme has been incorporated in the assessment

6.7 **Table 6.2** shows there is negligible difference in the junction capacity between the 2 schemes. Hence, the impact of the scheme with a 644-bed RCHE and a 200-room Hotel, is negligible.

Pedestrian Impact for the Sensitivity Test

(a) Comparison of Pedestrian Generation

The comparison of pedestrian generated by the scheme with a 557-bed RCHE 6.8 and 200-room Hotel, and the scheme with 644-bed RCHE and 200-room Hotel, is presented in Table 6.3.

Item	AM Peak Hour			PM Peak Hour		
	In	Out	2-way	In	Out	2-way
RCHE: 557 beds	28	3	31	7	19	26
Hotel: 200 guest rooms	11	35	46	32	36	68
Total [A]	<u>39</u>	38	77	39	55	94
RCHE: 644 beds	32	3	35	8	22	30
Hotel: 200 guest rooms	11	35	46	32	36	68
Total [B]	43	38	81	40	58	98
Difference in Traffic Generation (pcu/hour)						
[B] – [A]	+4	+0	+4	+1	+3	+4

TABLE 6.3 COMPARISON OF PEDESTRIAN GENERATION

(b) 2032 Pedestrian Flows

6.9 The sensitivity test 2032 pedestrian flows with the Proposed Development is presented in **Figure 6.4**.

(c) LOS of the Footpaths

6.10 The sensitivity test year 2032 LOS with the Proposed Development is presented in **Table 6.4**.

TABLE 6.4SENSITIVITY TEST FOR YEAR 2032 LOS OF FOOTPATH WITH
THE PROPOSED DEVELOPMENT

Ref.	Peak Period	Year 2032 with the Proposed Development (644-bed RCHE and 200-room Hotel)				
		Flow (Ped/15 min)	Rate ⁽¹⁾ (Ped/ min/m)	LOS		
1	AM	370	9.9	А		
	PM	341	9.1	А		
2	AM	518	20.3	В		
	PM	398	15.6	А		
3	AM	1010	7.7	А		
	PM	642	4.9	А		

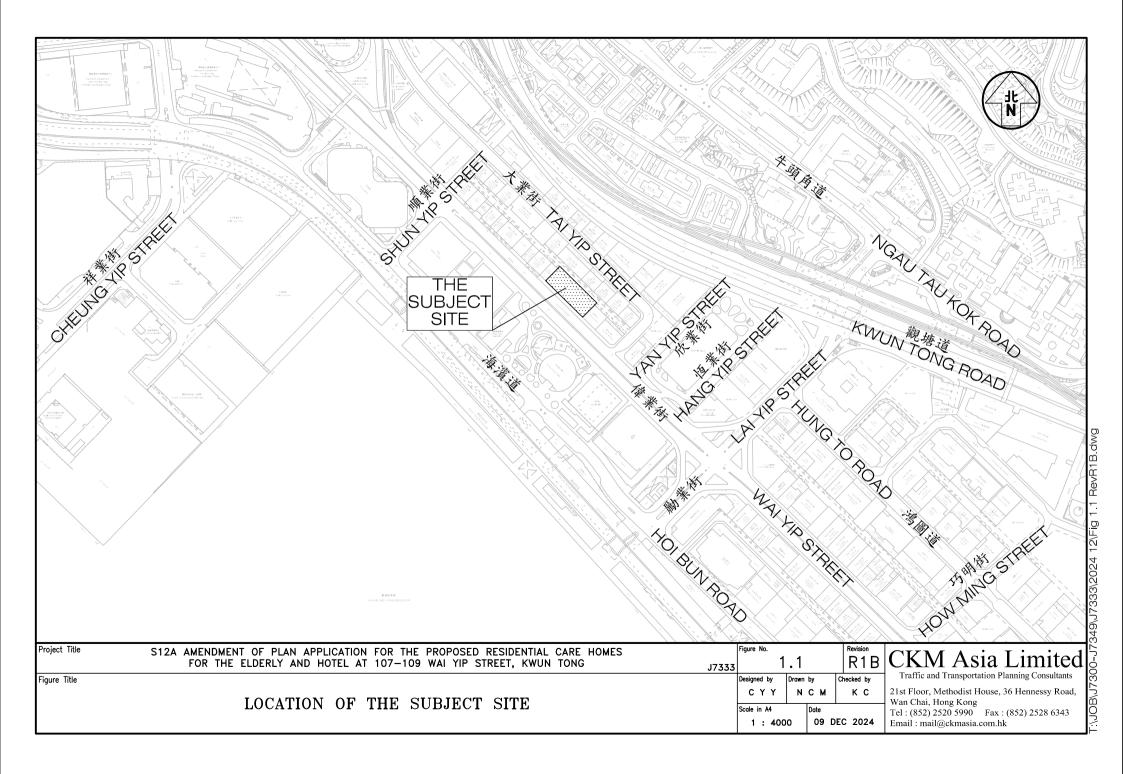
Note: ⁽¹⁾ pedestrian flow rate = pedestrian flow \div 15 minutes \div effective width

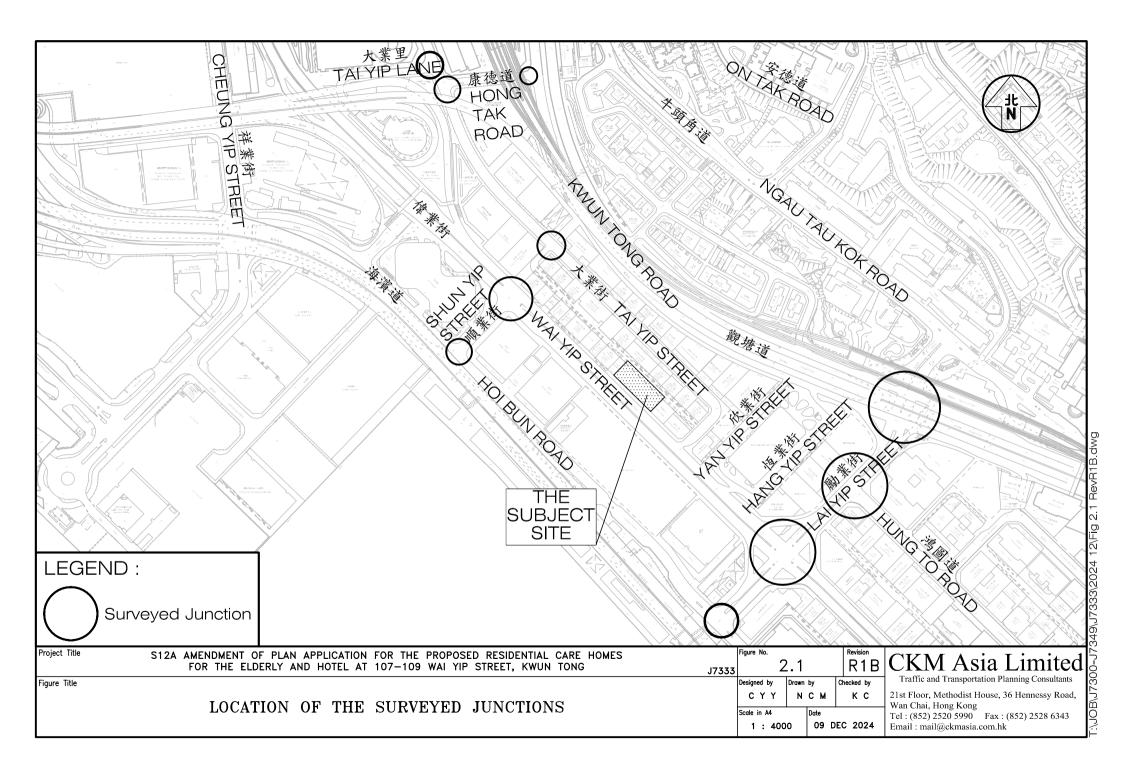
6.11 **Table 6.4** shows that the footpaths still achieve LOS A and B during AM and PM peak for the sensitivity test.

(d) Waiting Area of the Pedestrian Crossing

6.12 The sensitivity test for year 2032 pedestrian crossing waiting areas with the Proposed Development is presented in **Table 6.5**.

TABLE 6.5SENSITIVITY TEST FOR YEAR 2032 PEDESTRIAN CROSSING
WAITING AREAS WITH THE PROPOSED DEVELOPMENT

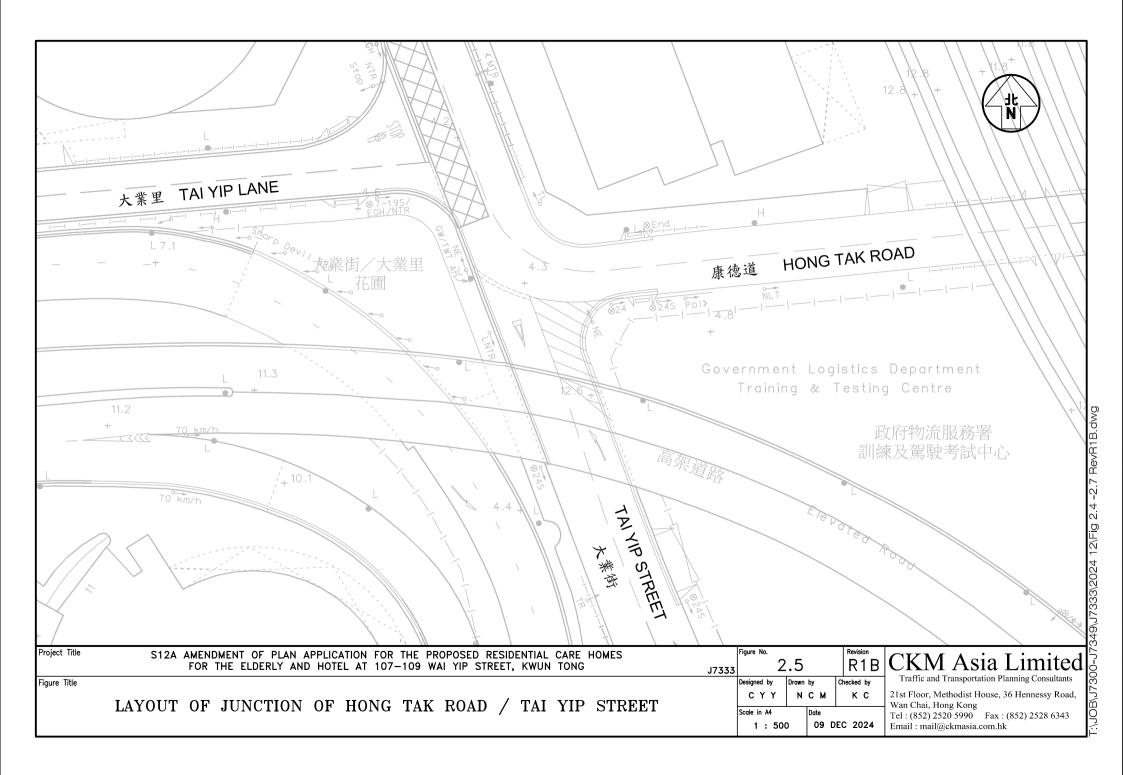

Ref	Area (m²)	Average Pedestrians at area (ped/sig	the waiting	Pedestrian Space (m ² /ped)		LOS	
		AM	PM	AM	PM	AM	PM
With the Proposed Development (644-bed RCHE and 200-room Hotel)							
W1	150	48	12	3.1	12.5	С	A
W2	63	25	5	2.5	12.6	С	А

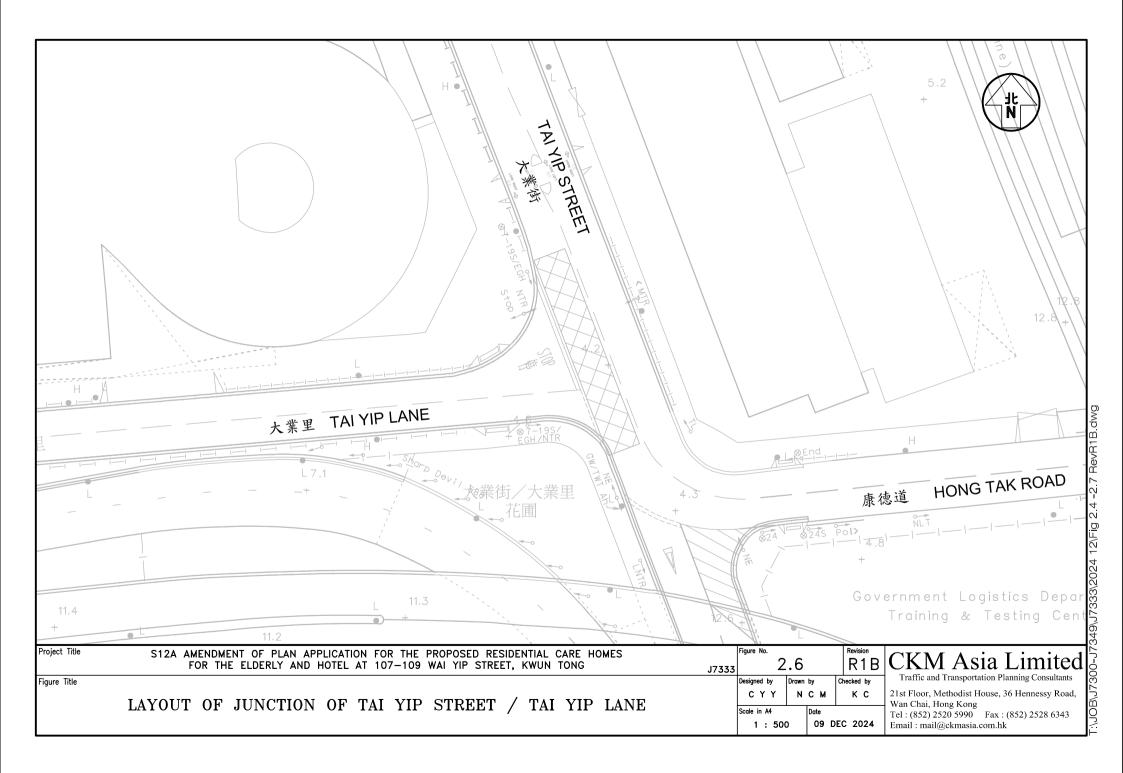

- 6.13 **Table 6.5** shows that the pedestrian crossing waiting areas still achieve LOS A and C during AM and PM peak for the sensitivity test.
- 6.14 Since the LOS in **Tables 6.4 and 6.5** are A to C, it can be concluded that the sensitivity test found no adverse impact to the footpaths and pedestrian crossing waiting areas in the vicinity.

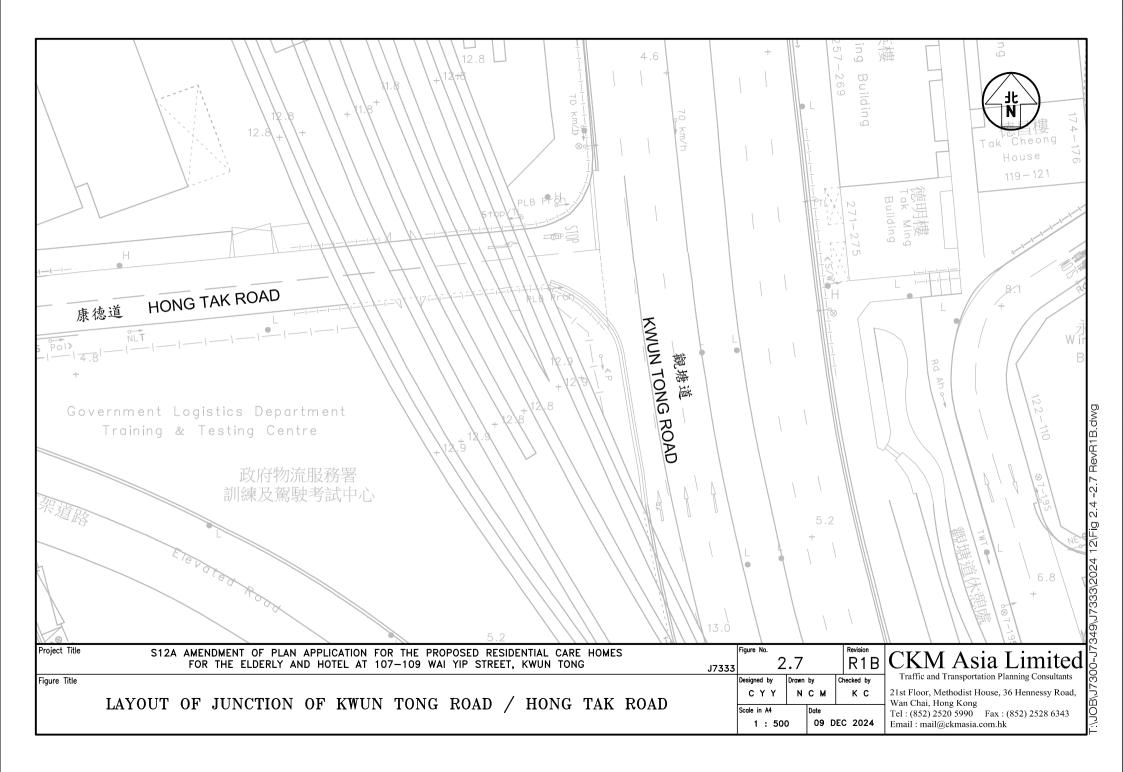
7.0 CONCLUSION

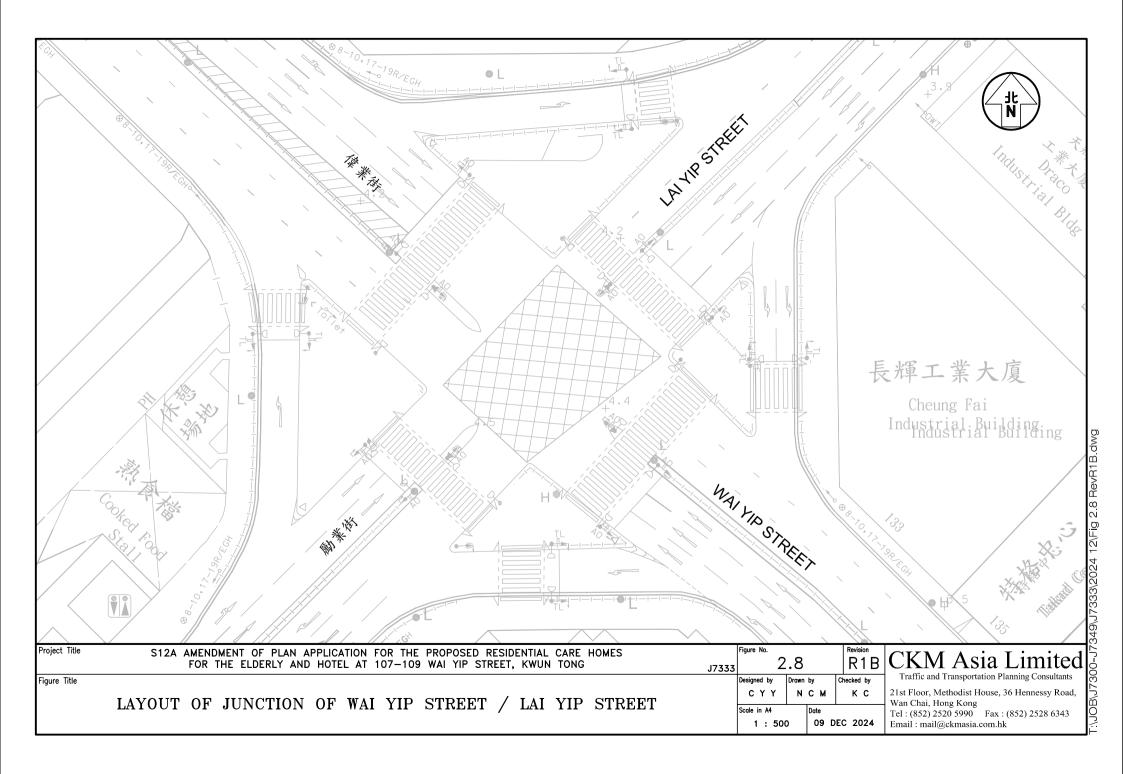
- 7.1 The Subject Site is located at Nos. 107 109 Wai Yip Street in Kwun Tong. On 29th May 2020, the TPB approved the S16 Planning Application (TPB ref: A/K14/780) for Office, Shop and Services & Eating Place Uses at the Subject Site.
- 7.2 Subsequent to the approved S16 Scheme, the Applicant has the intention to rezone the Subject Site and construct a building which comprises of a RCHE with (i) no less than 302, but not more than 557 beds and (ii) hotel with 200 rooms.
- 7.3 Manual classified counts were conducted at the junctions located in the vicinity of the Subject Site in order to establish the peak hour traffic flows. Currently, the surveyed junctions operate with capacities during the AM and PM peak hours.
- 7.4 Similar to the Approved S16 Scheme, two vehicular access points are provided for the Proposed Development, including, (i) the service lane at the northern side of the Proposed Development, and (ii) Wai Yip Street. Compared to the Approved S16 Scheme, the Proposed Development is expected to generate less traffic during the AM and PM peak hours.
- 7.5 The internal transport facilities provided for RCHE within the Proposed Development are based on the operational needs and also with reference to similar type RCHE in Kwun Tong. Those for the Hotel within the Proposed Development are provided with reference to the recommendation of the HKPSG. Swept path analysis was conducted to ensure that all vehicles could enter and leave the development and the spaces provided with ease.
- 7.6 The Proposed Development is expected to be completed by 2029, and the junction capacity analysis is undertaken for year 2032. For the design year 2032, the junctions analysed are expected to operate with capacities during the peak hours for the case without and with Proposed Development.
- 7.7 The pedestrian assessment conducted found that the surveyed footpaths and waiting area of the pedestrian crossing would operate with LOS A to C in 2032 for the cases without and with the Proposed Development. Hence, it is concluded that the Proposed Development has <u>no</u> adverse impact to the footpaths and pedestrian crossing in the vicinity.
- 7.8 A sensitivity test for the scheme with 644-bed RCHE and 200-room Hotel is undertaken and found to have no adverse traffic and pedestrian impact.
- 7.9 It is concluded that the Proposed Development will result in <u>no</u> adverse traffic impact to the surrounding road network.

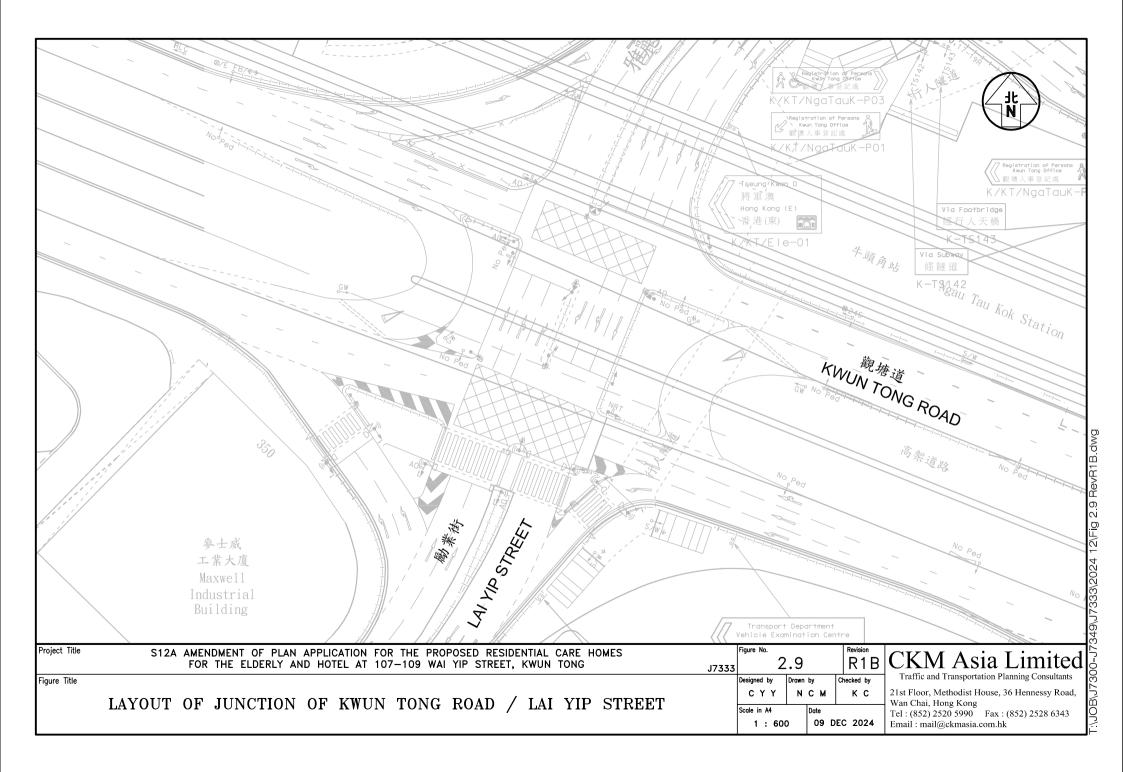
Figures

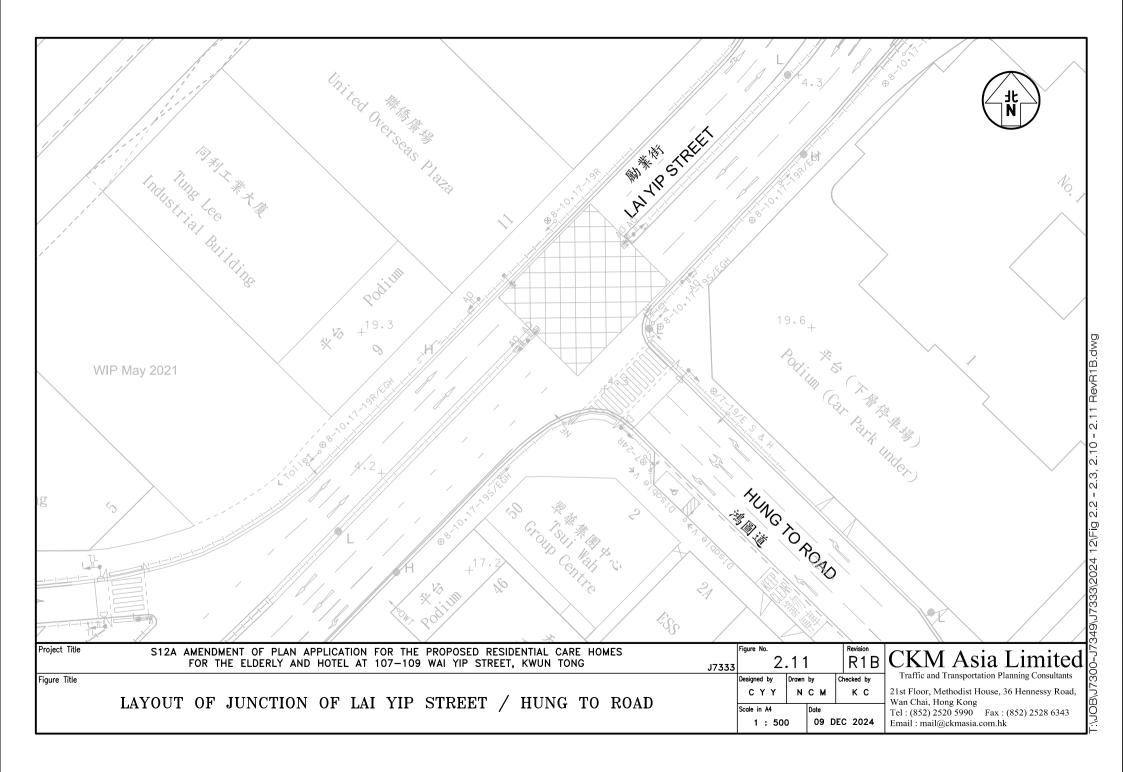


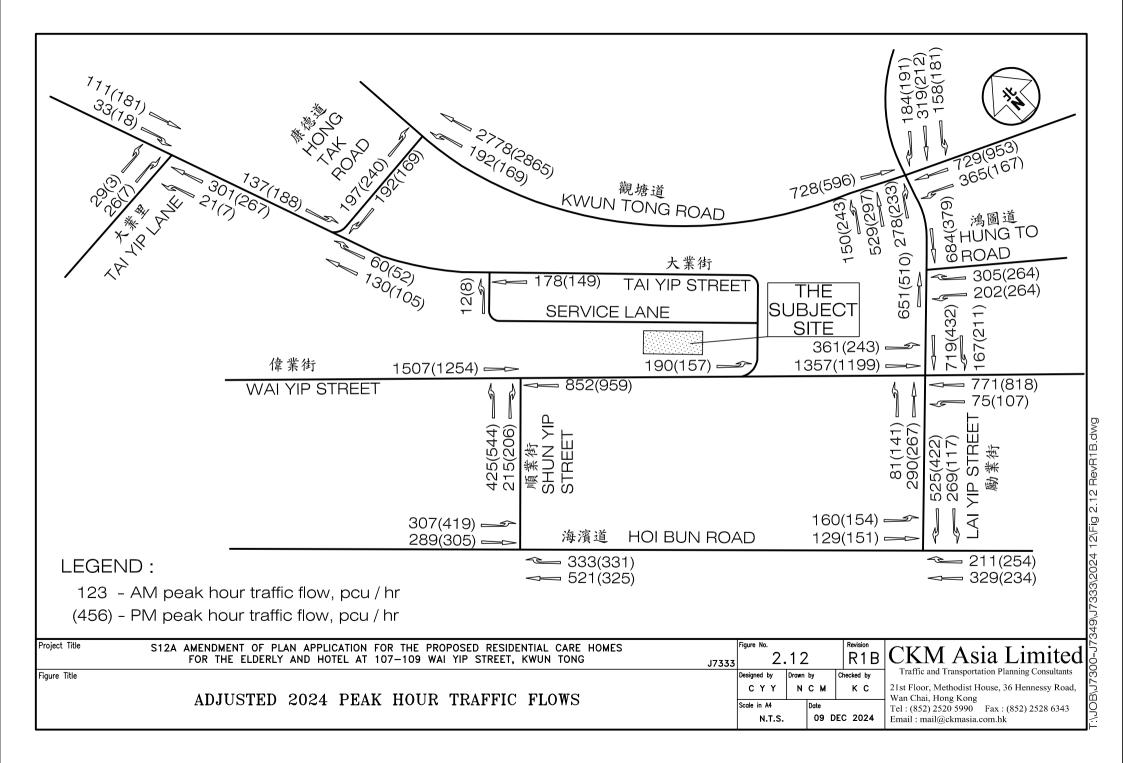


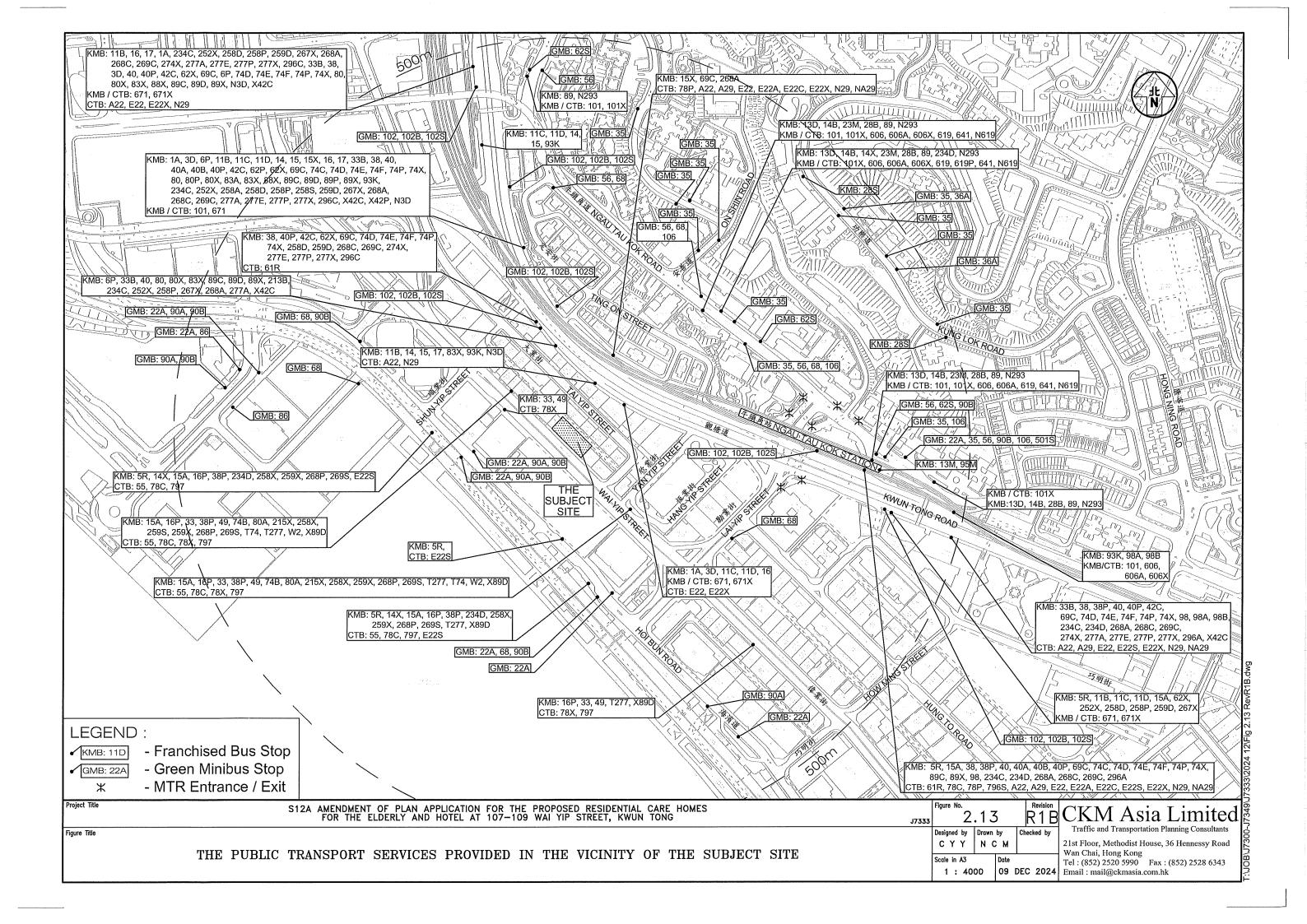

	NATHER L
	Mest Romer
**************************************	RevR1B.dwg
	н н 10.4 + 4.1 + На 5.2 - 5.3, 2.10 - 2.11
Project Title S12A AMENDMENT OF PLAN APPLICATION FOR THE PROPOSED RESIDENTIAL CARE HOMES	H 10.4 + C
FOR THE ELDERLY AND HOTEL AT 107–109 WAI YIP STREET, KWUN TONG J733: Figure Title LAYOUT OF JUNCTION OF HOI BUN ROAD / SHUN YIP STREET	Pigure No. Pigure No. 3 2.2 R1B R1B Designed by Drown by C Y Y N C M K C Scole in M 1 : 500 Og DEC 2024 CKM Asia Limited Traffic and Transportation Planning Consultants 21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong Tel : (852) 2520 5990 Fax : (852) 2528 6343 Email : mail@ckmasia.com.hk

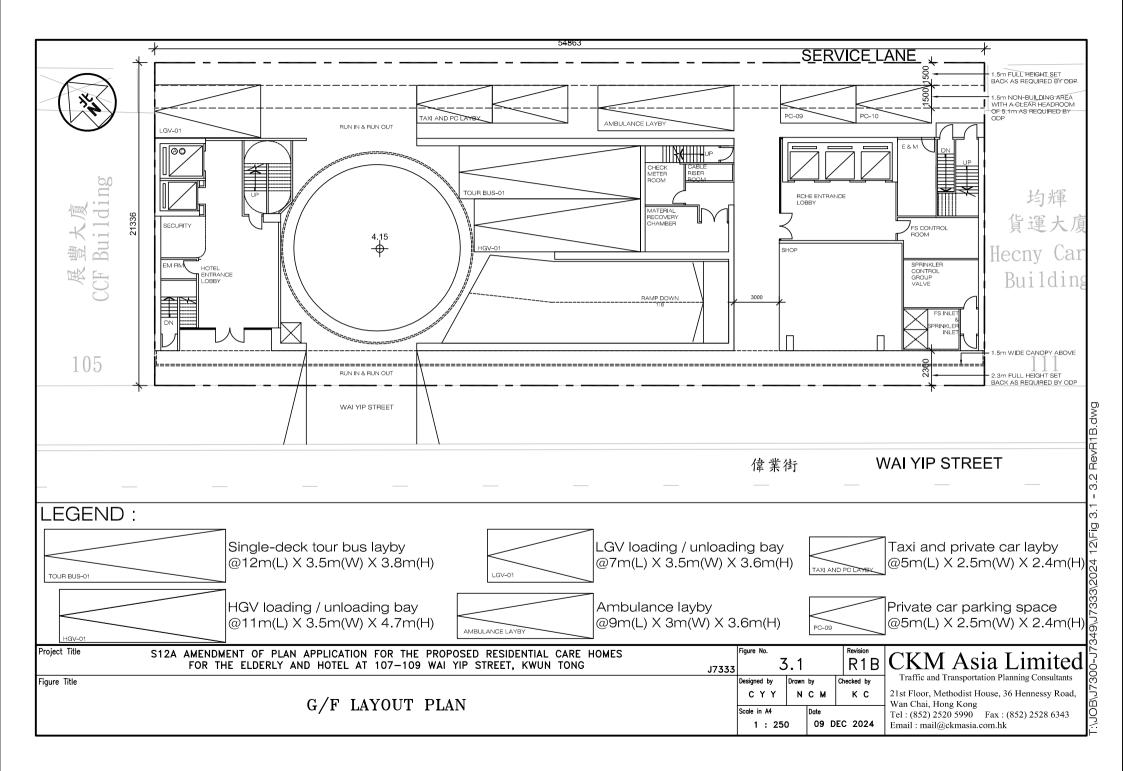

Project Title S12A AMENDMENT OF PLAN APPLICATION FOR THE PROPOSED RESIDENTIAL CARE HOMES FOR THE ELDERLY AND HOTEL AT 107-109 WAI YIP STREET, KWUN TONG J733	^{Figure No.} 2.3 R ^{revision} RTB CKM Asia Limited
Figure Title LAYOUT OF JUNCTION OF WAI YIP STREET / SHUN YIP STREET	Designed by C Y Y Drawn by N C M Checked by K C Traffic and Transportation Planning Consultants Scale in A4 Date 21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong Tel : (852) 2520 5990 Fax : (852) 2528 6343 Email : mail@ckmasia.com.hk


e ilding	3.3+	HAR ROAD
	316-318 316-318 Pactory Building +17.4	
	17.4 X X X X X X X X X X X X X	349\J7333\2024 12\Fig 2.4 -2.7 RevR1B.dwg
Project Title S12A AMENDMENT OF PLAN APPLICATION FOR THE PROPOSED RESIDENTIAL CARE HOMES FOR THE ELDERLY AND HOTEL AT 107-109 WAI YIP STREET, KWUN TONG J7333	Figure No. Revision R1B	CKM Asia Limited
Figure Title LAYOUT OF JUNCTION OF TAI YIP STREET / SERVICE LANE	Designed by C Y Y Drawn N C M Checked by K C Scale in A4 Date 1 : 500 09 DEC 2024	Traffic and Transportation Planning Consultants 21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong Tel : (852) 2520 5990 Fax : (852) 2528 6343 Email : mail@ckmasia.com.hk

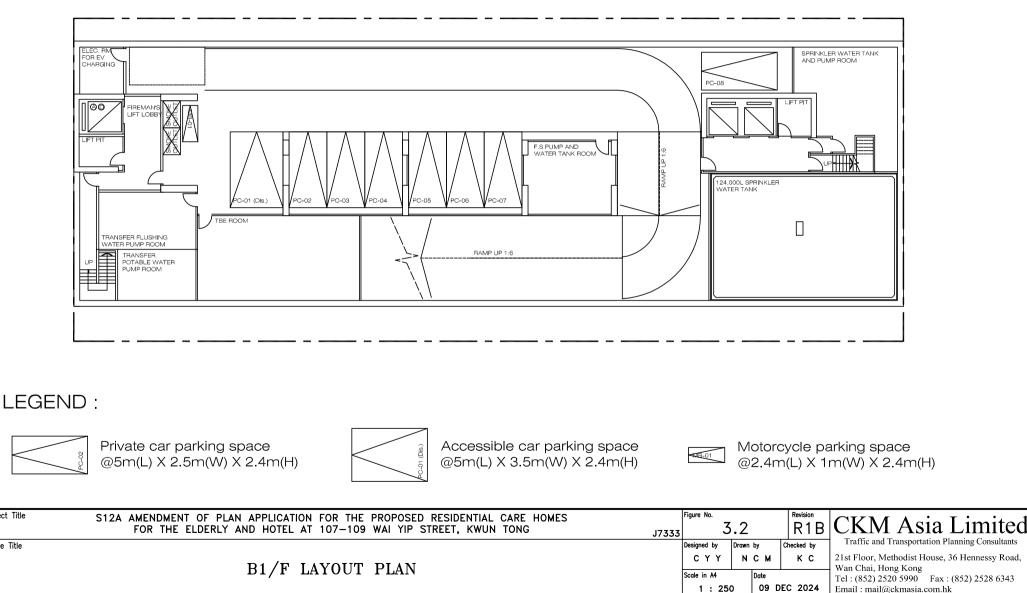


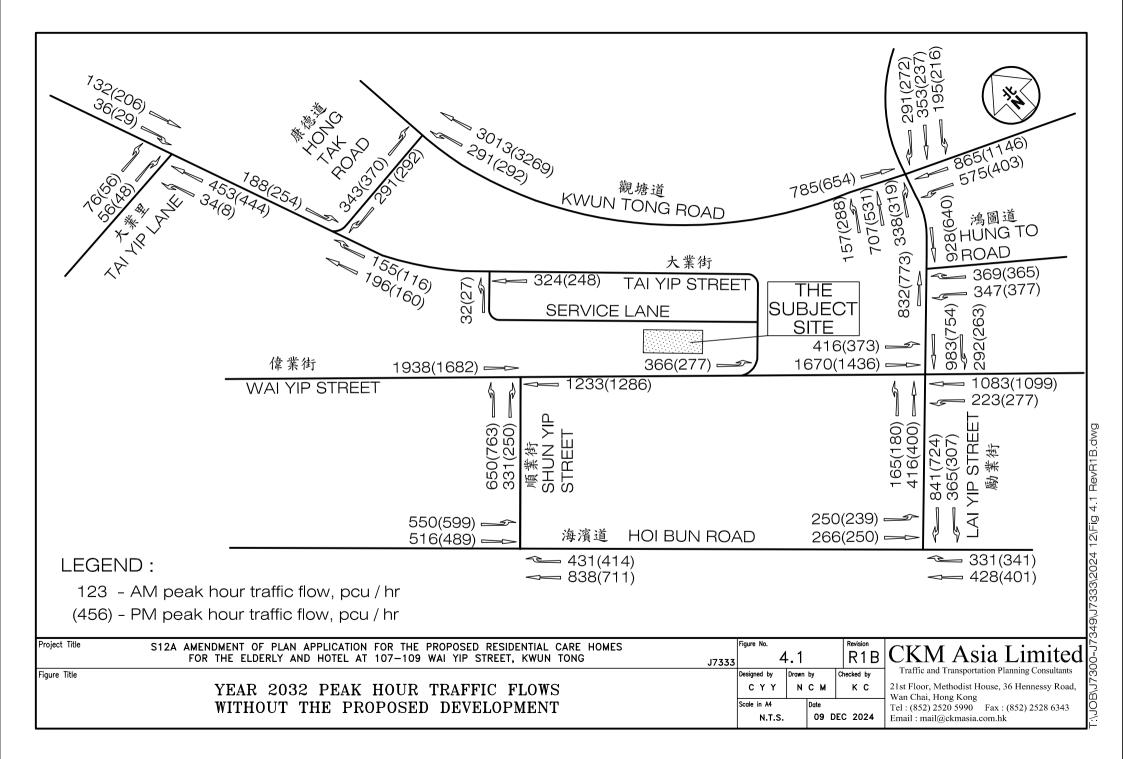


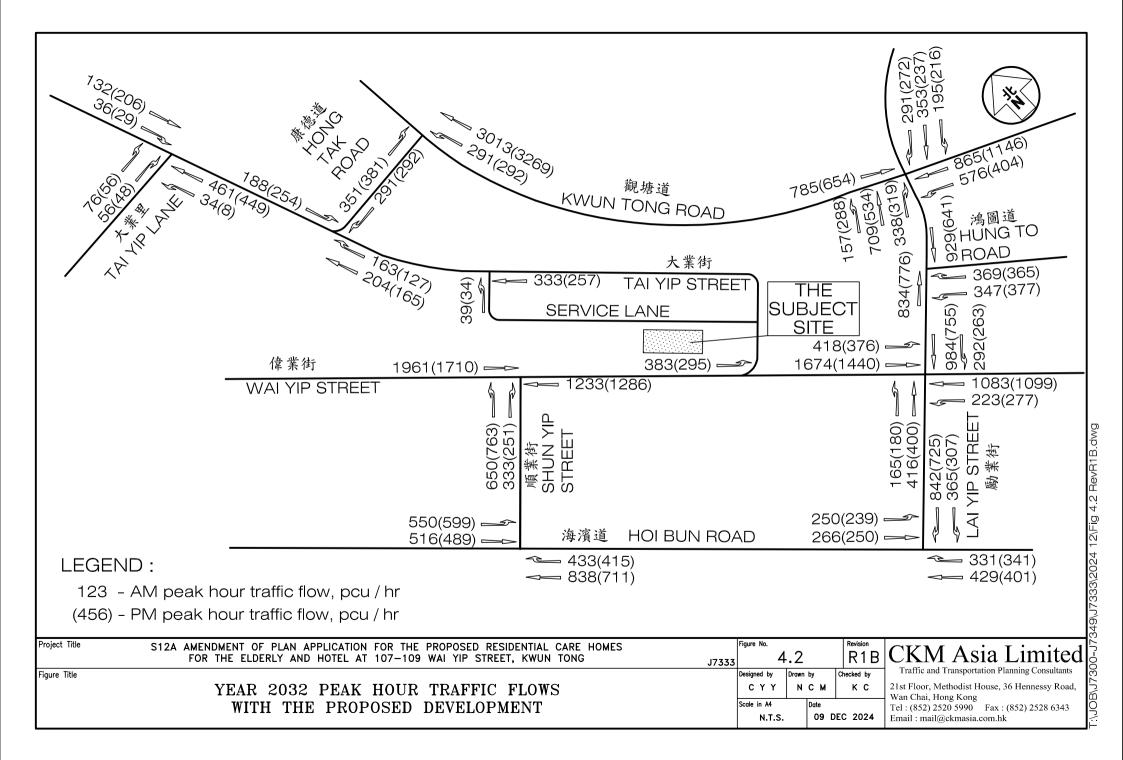




	и и и и и и и и и и и и и и
Project Title S12A AMENDMENT OF PLAN APPLICATION FOR THE PROPOSED RESIDENTIAL CARE HOMES FOR THE ELDERLY AND HOTEL AT 107-109 WAI YIP STREET, KWUN TONG Figure Title LAYOUT OF JUNCTION OF HOI BUN ROAD / LAI YIP STREET	Figure No. 2 10 Revision CKM A sig Limited







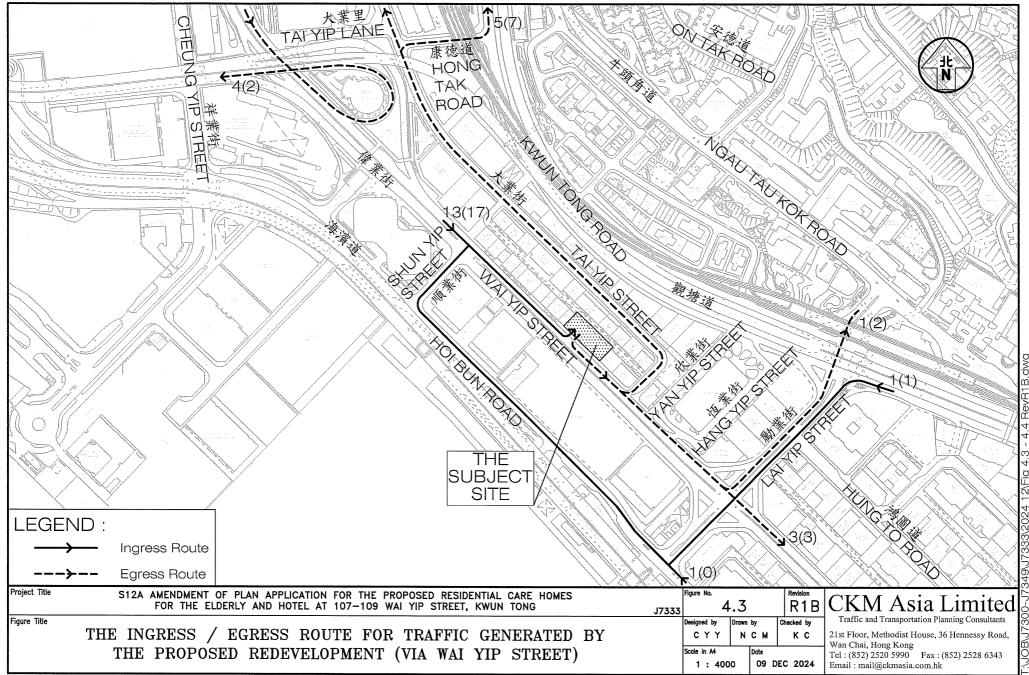
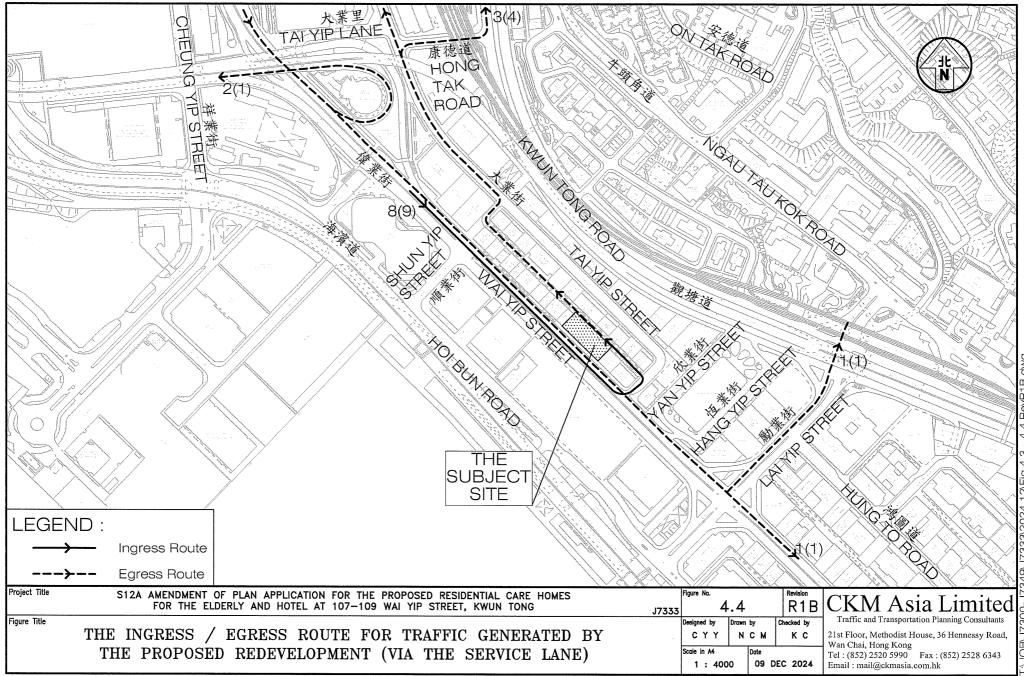
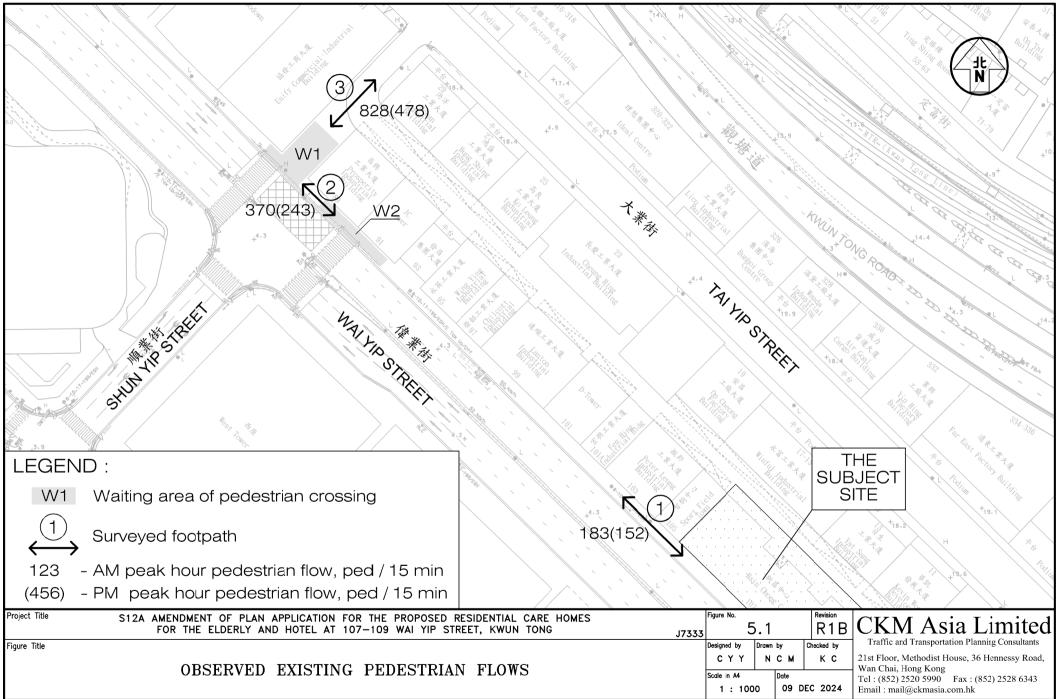
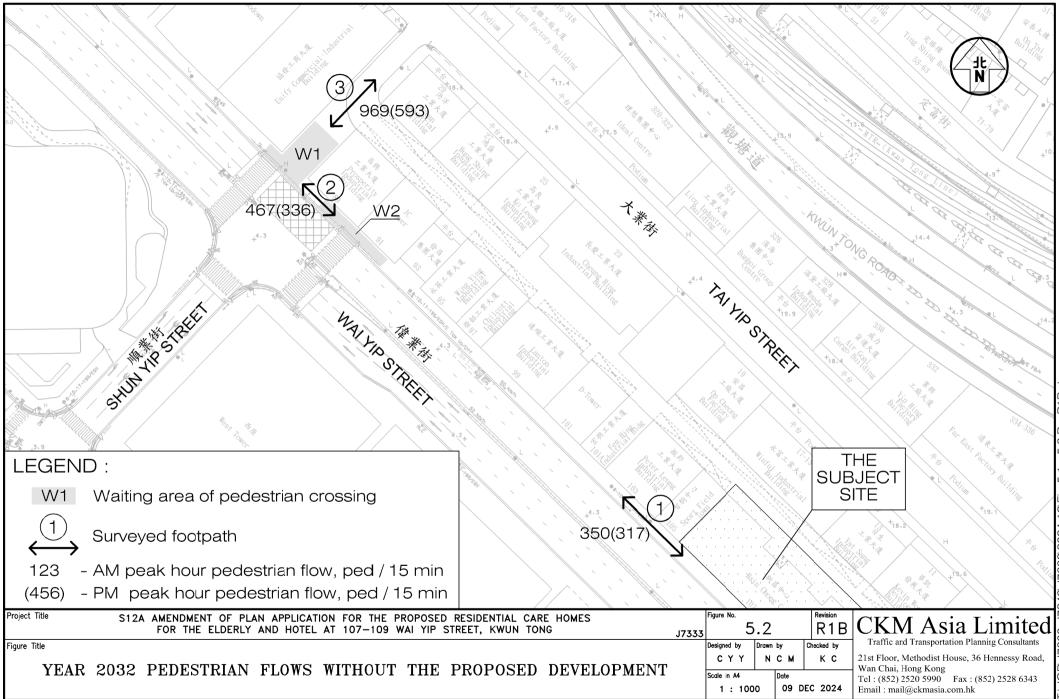

Project Title

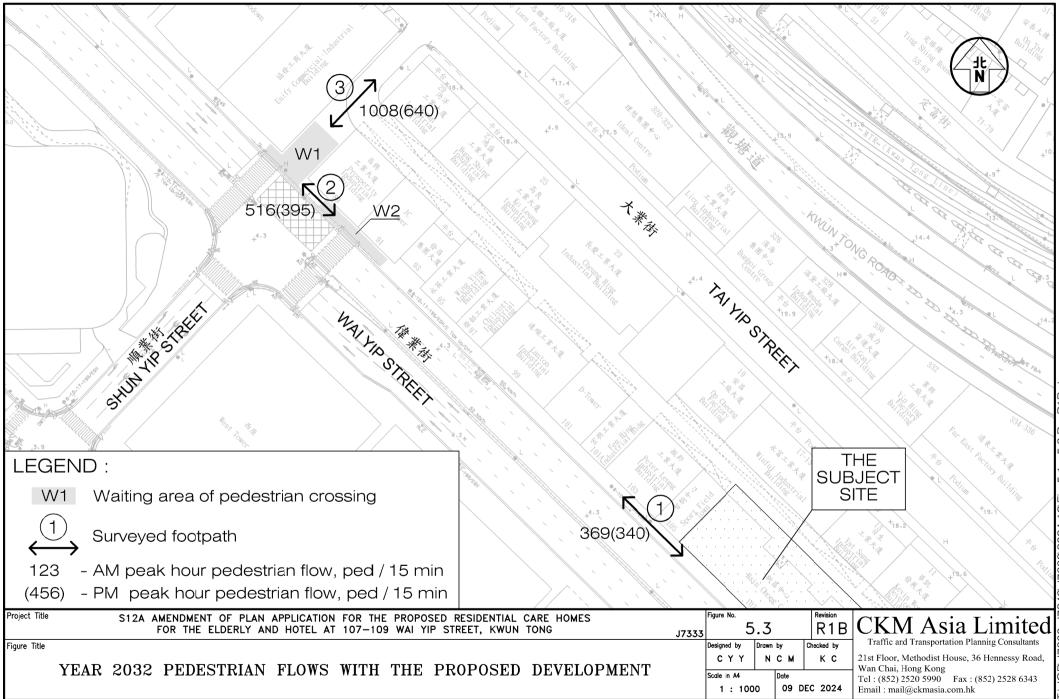
Figure Title

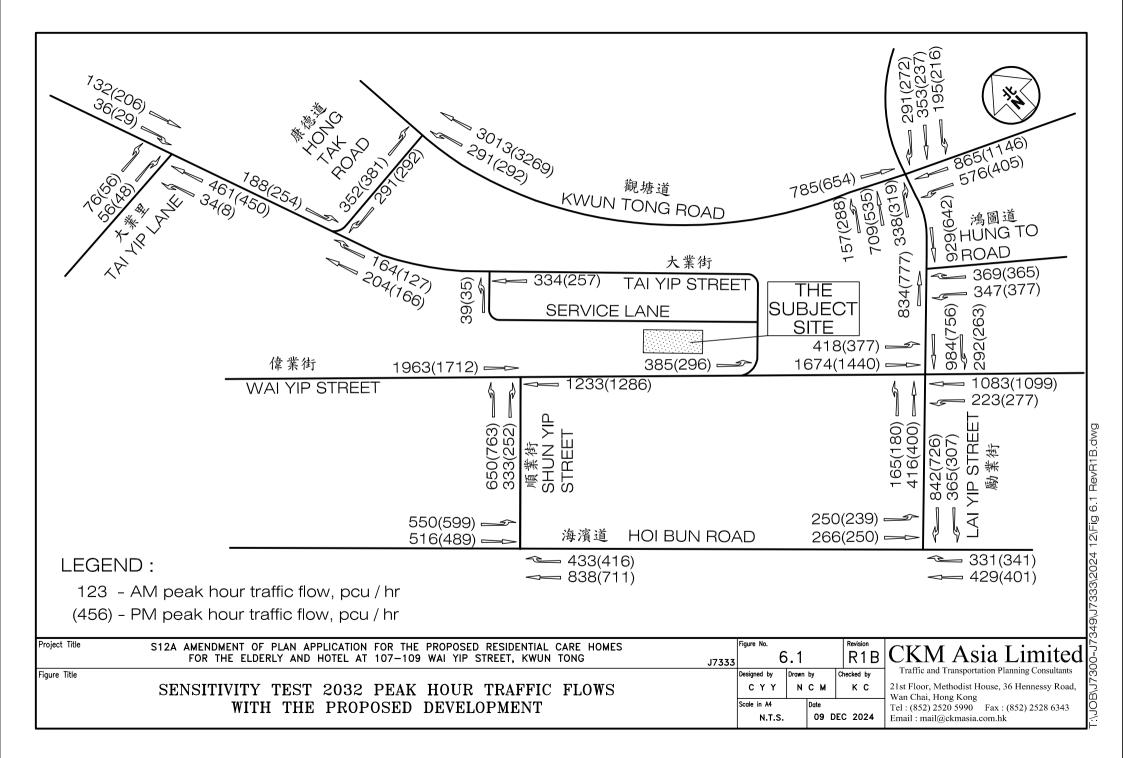


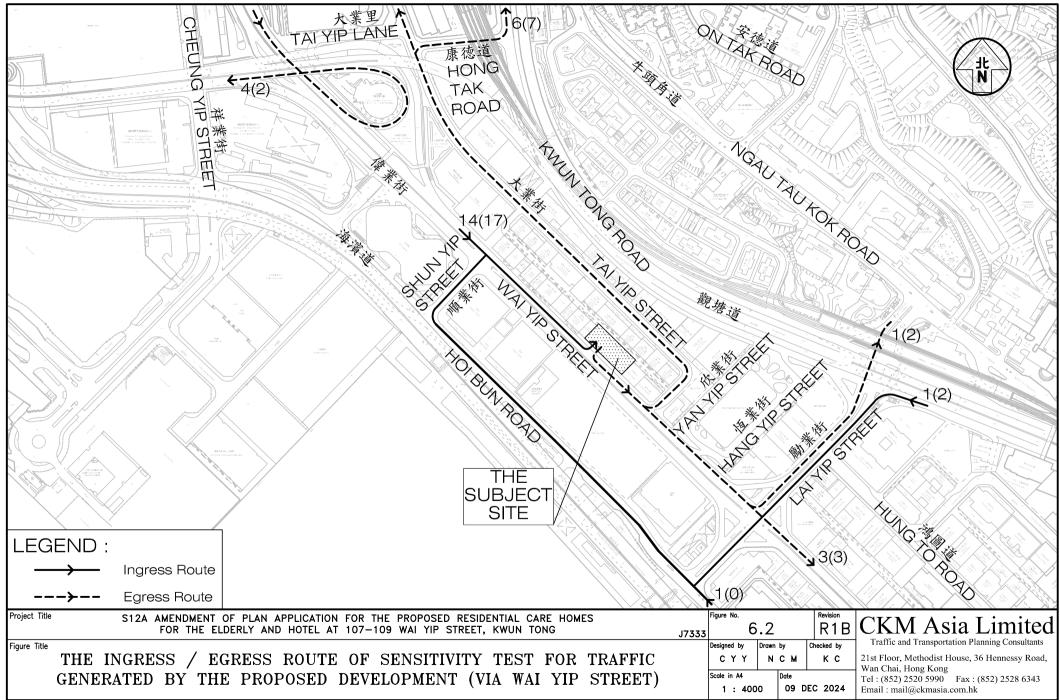




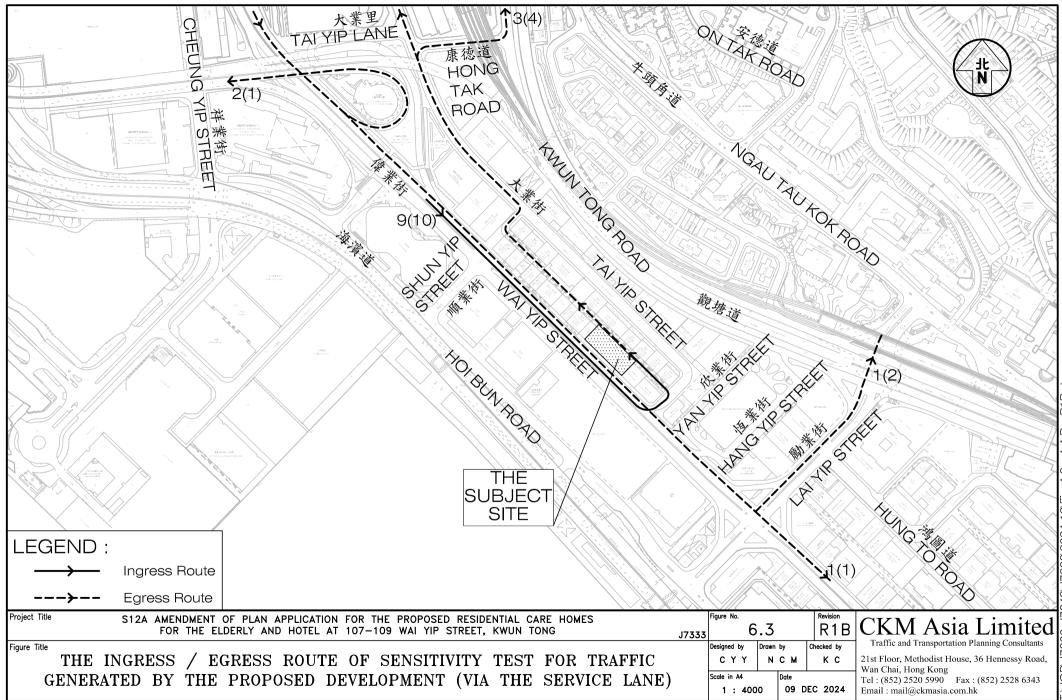
RevR1B.dwc 4 4.3 2\Fig 49\J7333\2024



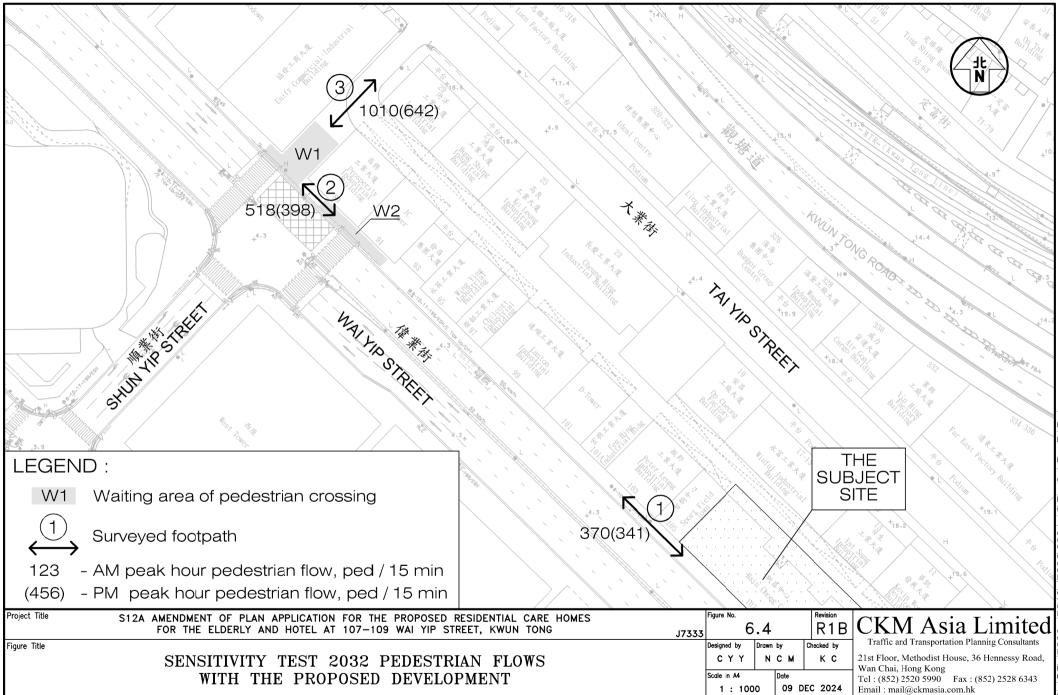

JOB\J7300-J7349\J7333\2024 12\Fig 5.1 - 5.3 RevR1B.dwg



:\JOB\J7300-J7349\J7333\2024 12\Fig 5.1 - 5.3 RevR1B.dwg



\JOB\J7300-J7349\J7333\2024 12\Fig 5.1 - 5.3 RevR1B.dwg

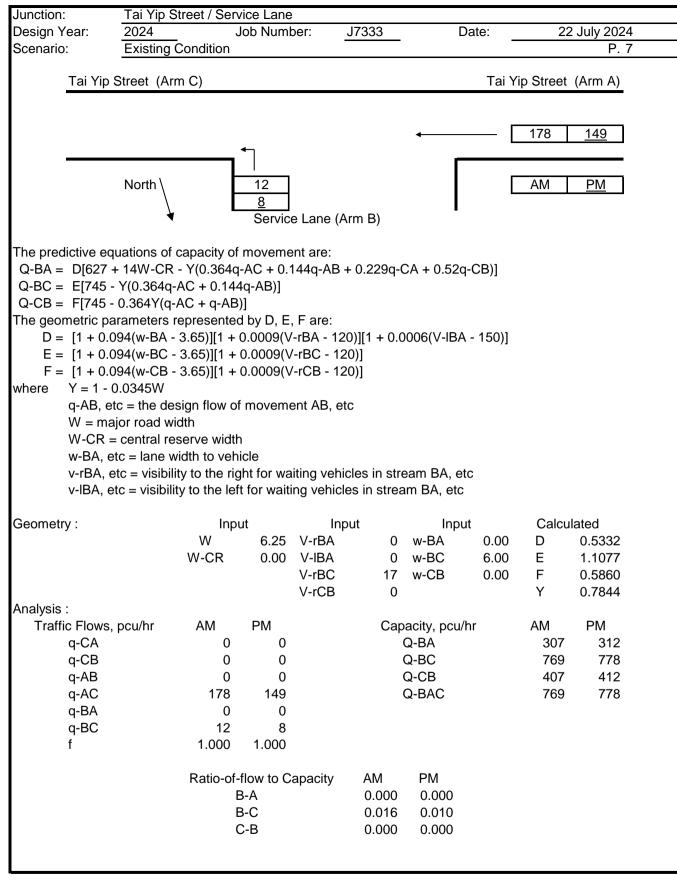


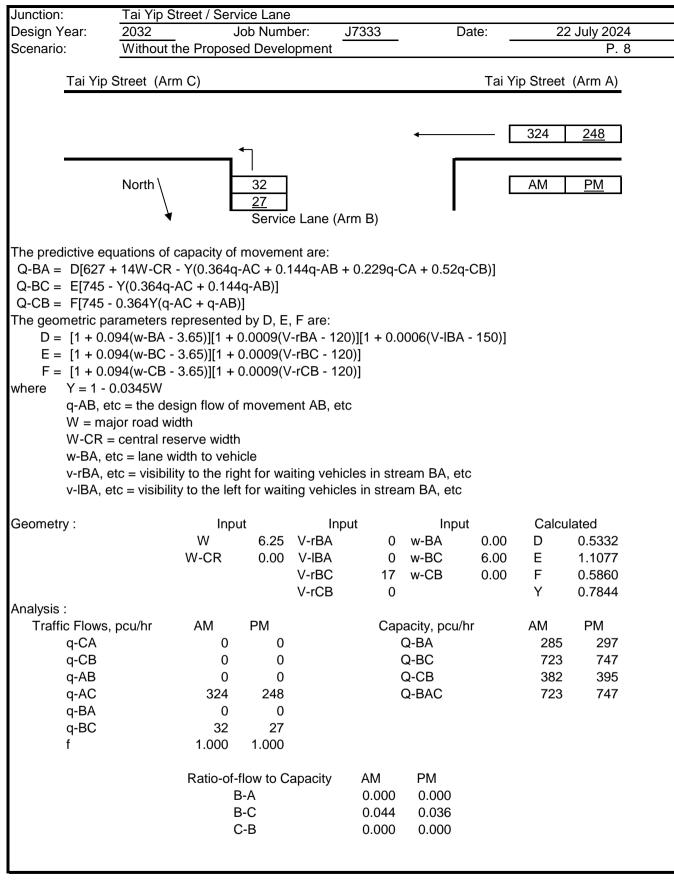
3\J7300-J7349\J7333\2024 12\Fig 4.3 - 4.4 RevR1B.dwg

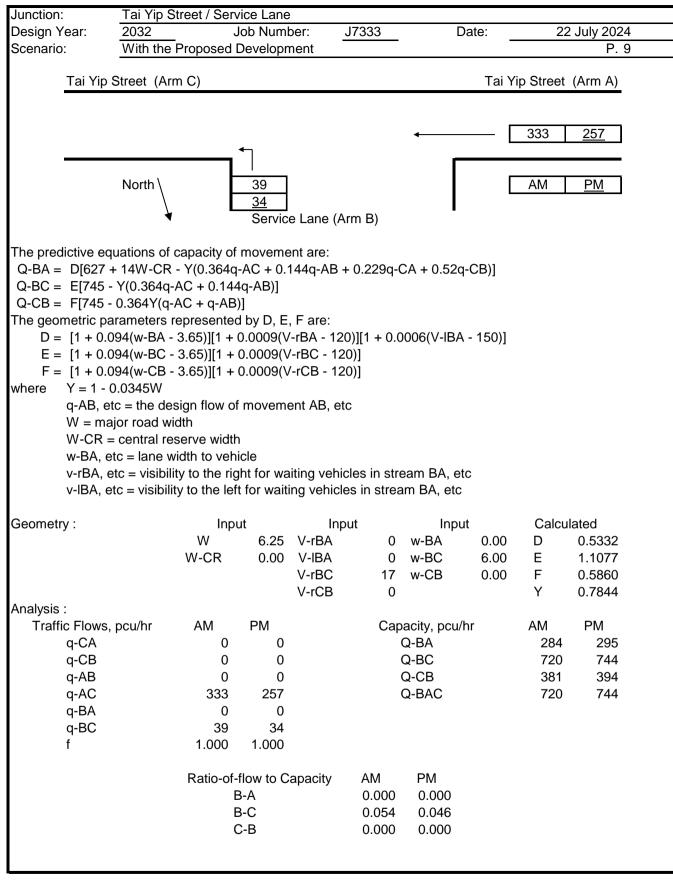
,JOB\J7300-J7349\J7333\2024 12\Fig 4.3 - 4.4 RevR1B.dwg

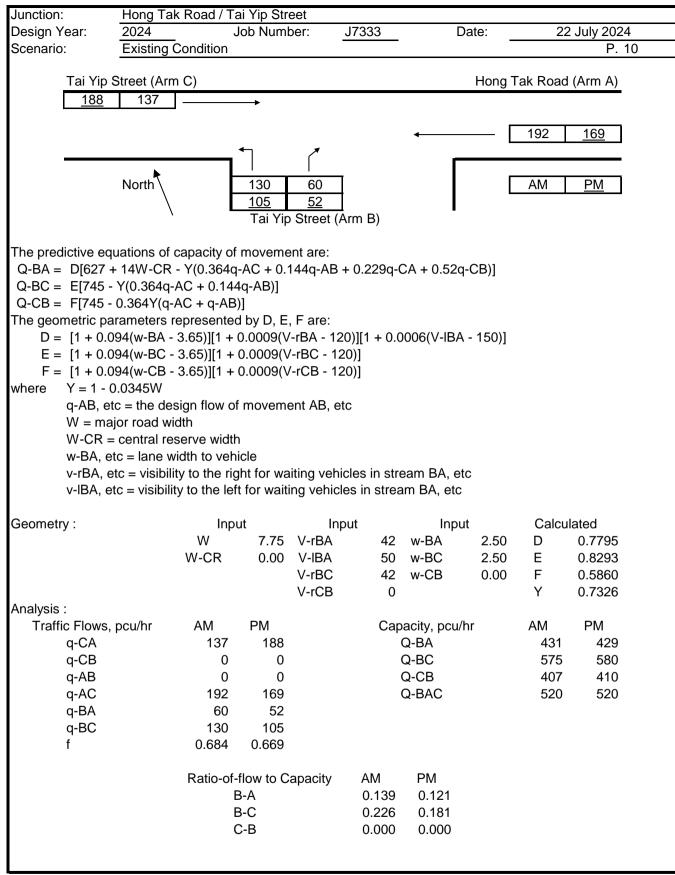
Appendix 1 – Calculation

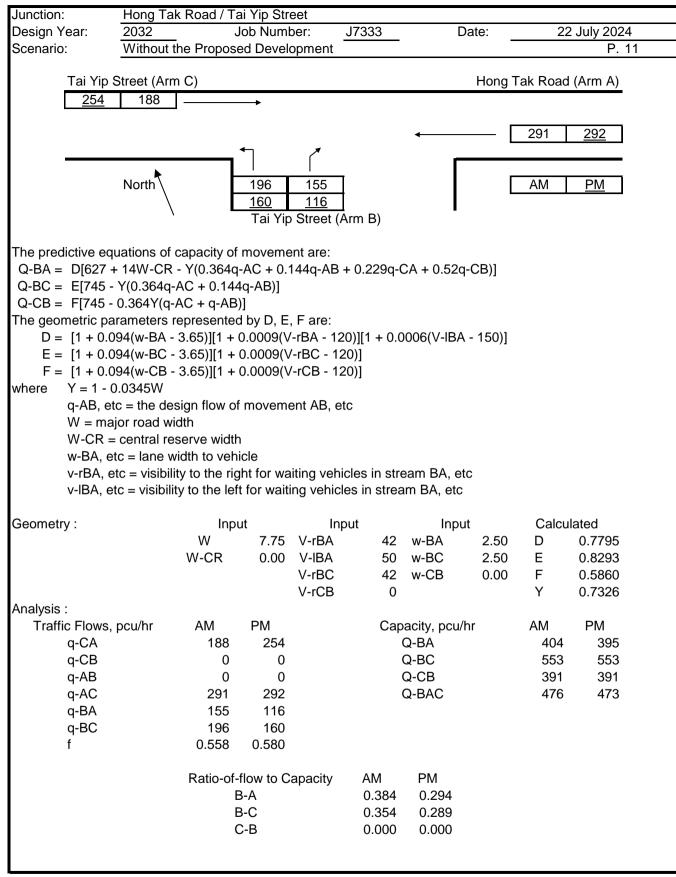
Junction: Scenario:	Hoi Bun R Existing C															Job Number: P.		
Design Year:	2024	Designe	ed By:					Checke	ed By:				-	Date:	22	2 July 20)24	
										AM Peak	•				PM Peak			
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	
Hoi Bun Road	WB	SA	A1	1	3.50				1965	422	0.215	0.215		1965	326	0.166	0.166	
		SA+RT	A2	1	3.50	25.0		77	2012	432	0.215		100	1986	330	0.166		
Hoi Bun Road	EB	LT	B1	2	3.50	15.0		100	1786	307	0.172	0.172	100	1786	419	0.235	0.235	
		SA	B2	2	3.50				2105	289	0.137			2105	305	0.145		
pedestrian pha	ase		Ср	1,3			rossing		7		GM +	7		GM =	14	sec		
			Dp	2,3			rossing		6		GM +	6		GM =	12	sec		
			Ep	3		min c	rossing	time =	11	sec	GM +	12		GM =	23	sec		
			Fp	3		min c	rossing	time =	8	sec	GM +	6	sec F	GM =	14	sec		
AM Traffic Flow (pcu/h	r)		N	PM Traffic I	Flow (pcu/hr)				N	S=1940+1	00(W-3.25) :	S=2080+10	0(W-3.25)	Note:			
307					419				R	S _M =S÷(1+	1.5f/r)	s	6 _M =(S−230)	÷(1+1.5f/r)				
307 ↑			\backslash		415 1				\backslash									
,	289		•		→	305			•			Peak		Peak				
		333						331		<u>├</u>	1+2		1+2		1			
		521					325	Ļ		Sum y	0.387		0.401					
		<u>.</u>					525			L (s)	39		39		ł			
										C (s)	118		108					
										practical y	0.603		0.575					
										R.C. (%)	56%		43%					
1		2				3		Ep										
Cp		в1	Ì				Cp 4	****										
· +		B2	→				°∳ .≱		Fp									
	t	Dp	\				Dp	l										
		A2	4				•	•										
AM G =		I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =			
G =		I/G = 8	G =			5	G =	20		-	G =		I/G =		G =			
G =			G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =			
PM G = G =		I/G = 8				5		20		~								
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =			

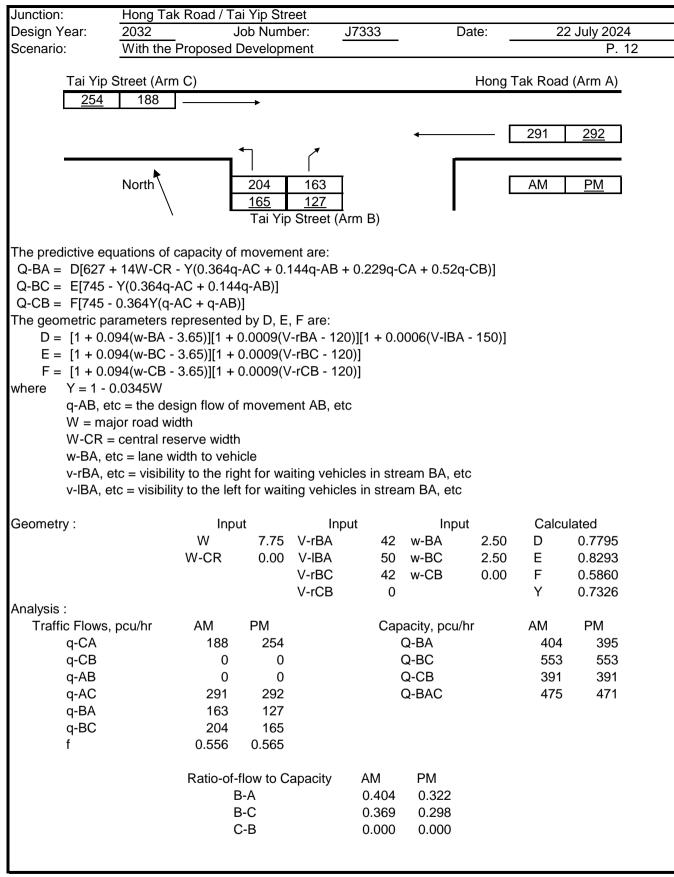

Junction: Scenario:		toad / Shun Y ne Proposed D													Job Nu	mber: P.	
Design Year:	-	Designe						Checke	ed By:	-			-	Date:	22	2 July 20	
									•	AM Peak	•				PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Hoi Bun Road	WB	SA	A1	1,2	3.50				1965	838	0.426			1965	711	0.362	
		RT	A2	1	3.50	25.0		100	1986	431	0.217	0.217	100	1986	414	0.208	0.208
Hoi Bun Road	FB	LT	B1	2	3.50	15.0		100	1786	491	0 275	0.275	100	1786	503	0.282	0.282
Her Burrieud	20	SA+LT	B2	2	3.50	20.0		10	2089	575	0.275	0.210	16	2080	585	0.281	0.202
		5ATL1	DZ	2	3.30	20.0		10	2009	575	0.275		10	2000	303	0.201	
										İ							
pedestrian pha	ase		Ср	1,3		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
·			Dp	3			rossing		6		GM +	6		GM =	12	sec	
			Ep	3			rossing		11		GM +	12		GM =	23	sec	
			Fp	3					8		GM +	6		GM =	14		
			гр	3		THIT C	rossing		0	Sec		0	SECT		14	sec	
										1							
AM Traffic Flow (pcu/h	r)		NI	PM Traffic	Flow (pcu/hr)				N	S=1940+1	00(W-3.25	i) :	S=2080+10	0(W-3.25)	Note:		
550			N K		500					S _M =S÷(1+			6 _M =(S−230)		Junction	Improver	nent
550 ♠			\backslash		599 ♠				\backslash	0M=0÷(1†	1.50,77		M-(0-200)	.(1.1.001)	Scheme	by Other	Project
,	·		`						`		AM	Peak	PM	Peak			
	516	404				489		A 4 4			1+2		1+2				
		431 1						414 1		Sum y	0.492		0.490				
		838 -					711	┥		L (s)	39		39				
										C (s)	118		108				
										practical y	0.603		0.575				
										R.C. (%)	22%		17%				
1		2				3				- ()							
		2				3		Ep .									
Cp		B1	l				Ср										
•		B2	→				ł		Fp								
	•						Dp										
	ـــــــــــــــــــــــــــــــــــــ	— A2 — A1		-	—— A1		•	•									
				-	— A1												
L			-				_							1			
AM G =		I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =	:	I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =		
G =	:	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

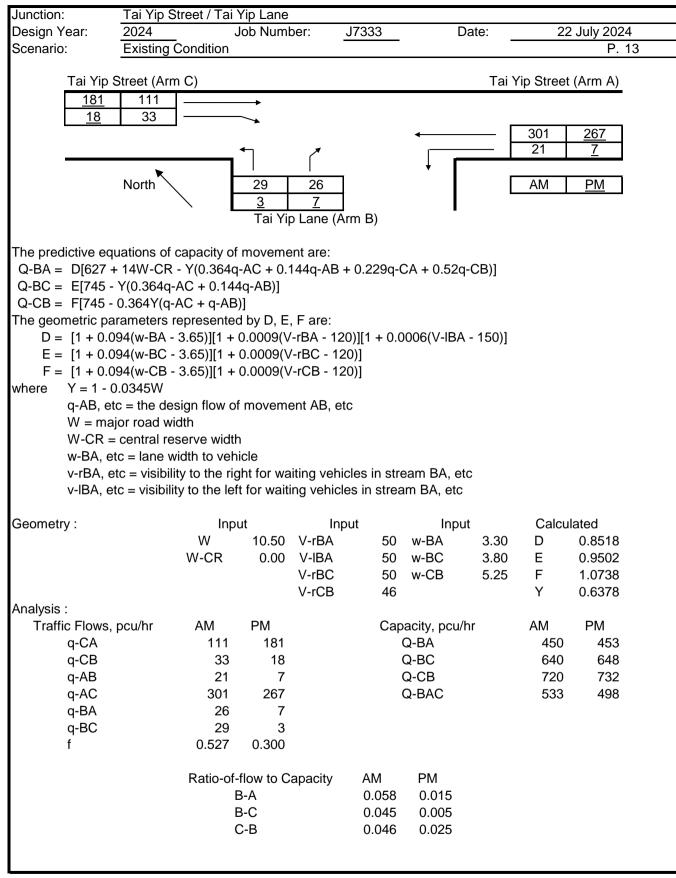

Junction: Scenario:		Road / Shun Y Proposed Dev												-	Job Nu	mber: P.	
Design Year:		Designe						Checke	ed By:				-	Date:	22 July 2024		
										AM Peak		-			PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Hoi Bun Road	WB	SA	A1	1,2	3.50				1965	838	0.426			1965	711	0.362	
		RT	A2	1	3.50	25.0		100	1986	433		0.218	100	1986	415		0.209
					0.00	2010					0.2.10	0.2.10				0.200	0.200
	FD	1 7		0	0.50	45.0		400	4700	404	0.075	0.075	400	4700	500	0.000	0.000
Hoi Bun Road	EB	LT	B1	2	3.50	15.0		100	1786	491	0.275	0.275	100	1786	503	0.282	0.282
		SA+LT	B2	2	3.50	20.0		10	2089	575	0.275		16	2080	585	0.281	
L																	
pedestrian pha	ase		Ср	1,3		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
			Dp	3		min c	rossing	time =	6	sec	GM +	6	sec F	GM =	12	sec	
			Ep	3			rossing		11		GM +	12		GM =	23	sec	
			 Fp	3			rossing		8		GM +	6		GM =	14	sec	
			ιp	5		minto	IUSSING		0	360 1		0	3601		14	360	
AM Traffic Flow (pcu/h	r)			PM Traffic	Flow (pcu/hr)					S-1040+1	00(W-3.25		S=2080+10	0/14-3 25)	Note:		
			N K						N						Junction	Improver	nent
550			\sim		599				· \	S _M =S÷(1+	1.5t/r)	5	6 _M =(S–230)	÷(1+1.5f/r)		by Other	
Î Î.			~		Í.				`		AM	Peak	PM	Peak			
,	516					489					1+2		1+2				
		433 †						415 1		Sum y	0.493		0.491				
		838 -					711	┥┻		L (s)	39		39				
										C (s)	118		108				
													0.575				
										practical y	0.603						
										R.C. (%)	22%		17%				
1		2				3		En									
Cp		D1	1				. 1	Ep									
Cp ▼		B2	→				Cp										
							Do		Fp								
	t	— A2					Dp 🖣	¥									
		— A1			—— A1												
AM G =		I/G = 8	G =	_	I/G =	8	G =	23	I/G =	2	G =	_	I/G =	_	G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =		
						5		20		4							
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

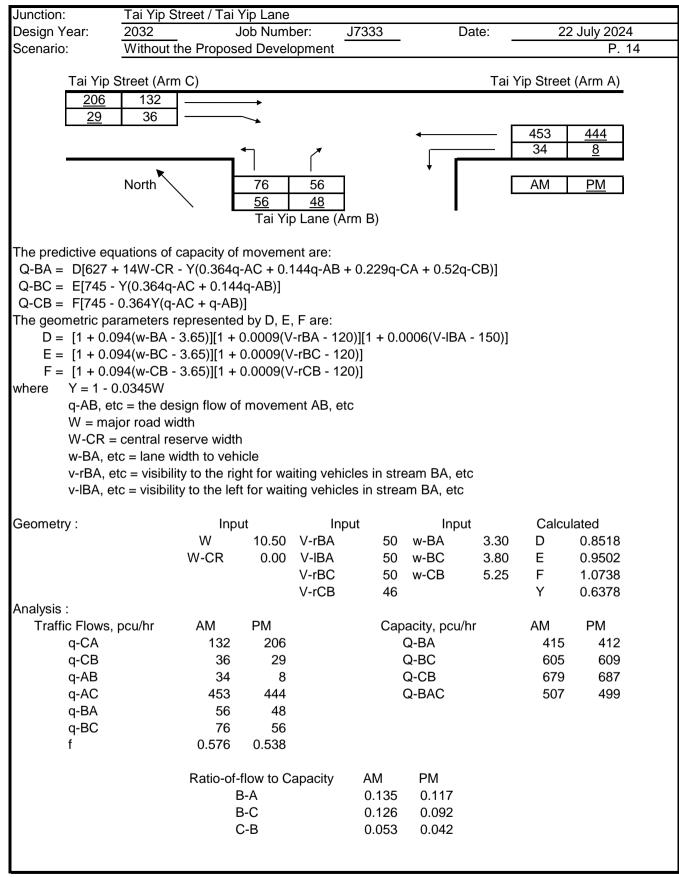

						9												
Junction:	Wai Yip Stre	eet / Shun Y	/ip Stree	et											Job Nu	mber:	J7333	
Scenario:	Existing Cor		a d Dun					Charles						Datas	P. 4			
Design Year:	2024	Designe	ea By:				-	Спеске	а ву:				Date:	22 July 2024				
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y	
Mai Vin Street		64	A 1	1	2.50		Gradient		(pcu/hr)	(pcu/hr)	0.244	0.244		(pcu/hr) 1965	(pcu/hr)	0.203		
Wai Yip Street		SA SA	A1 A2	1	3.50 3.50				1965 2105	480 514	0.244	0.244		2105	399 427		0.203	
		SA	A3	1	3.50				2105	513	0.244			2105	428	0.203	0.200	
Wai Yip Street	WB	SA	B1	1	3.50				1965	271	0.138			1965	305	0.155		
		SA	B2	1	3.50				2105	290	0.138			2105	327	0.155		
		SA	B3	1	3.50				2105	291	0.138			2105	327	0.155		
	(1)5				0.50	45.0		400	1700	0.05		0.445	400	1700				
Shun Yip Stree	et NB		C1	3	3.50	15.0		100	1786	205	0.115	0.115	100	1786	261		0.146	
		LT+RT RT	C2 C3	3	3.50 3.50	18.0 25.0		100 100	1943 1854	222 213	0.114		100 100	1943 1854	283 206	0.146 0.111		
			00	5	3.30	20.0		100	1004	210	0.115		100	1004	200	0.111		
pedestrian pha			Dp	1,2		min c	rossing	time –	8	Sec (GM +	11	sec F	GM –	19	sec		
podootnan prio			Ep	2			rossing		12		GM +	9	sec F		21	sec		
			Fp	2			rossing		13		GM +	12	sec F		25	sec		
AM Traffic Flow (pcu/h	r)		ЪЧ	PM Traffic	Flow (pcu/hr))			N	S=1940+1	00(W–3.25) :	S=2080+10	0(W–3.25)	Note:			
			Ϋ́,						- A	S _M =S÷(1+	1.5f/r)	s	_M =(S–230)	÷(1+1.5f/r)				
	1507		١			1254			١		AM	Peak	PM	Peak				
											1+3		1+3					
	8	352 +					959			Sum y	0.359		0.349					
425	←→ 215				544 •	⊢	206			L (s)	40 118		40 108					
425	215				544		200			C (s) practical y	0.595		0.567					
										R.C. (%)	66%		62%					
1		2				3												
A1																		
A2		Ī	Fn	1	En													
A3	•	вз	Fp		Ep													
	•	B2 B1			,		T											
 Dp	····· >		∢ Dp	···•		C1	C2 C3											
AM G =	1/	G = 7	G =	25	I/G =		G =		I/G =	2	G =		I/G =		G =			
G =	I/	'G =	G =		I/G =		G =		I/G =		G =		I/G =		G =			
PM G =		G = 7	G =	25	I/G =	8	G =		1/0	2	0		I/G =		G =			
- WI 0 -	1/	6 = 7	0-	20	1/0 =	0	0=		I/G =	2	G =		1/0 =		6=			

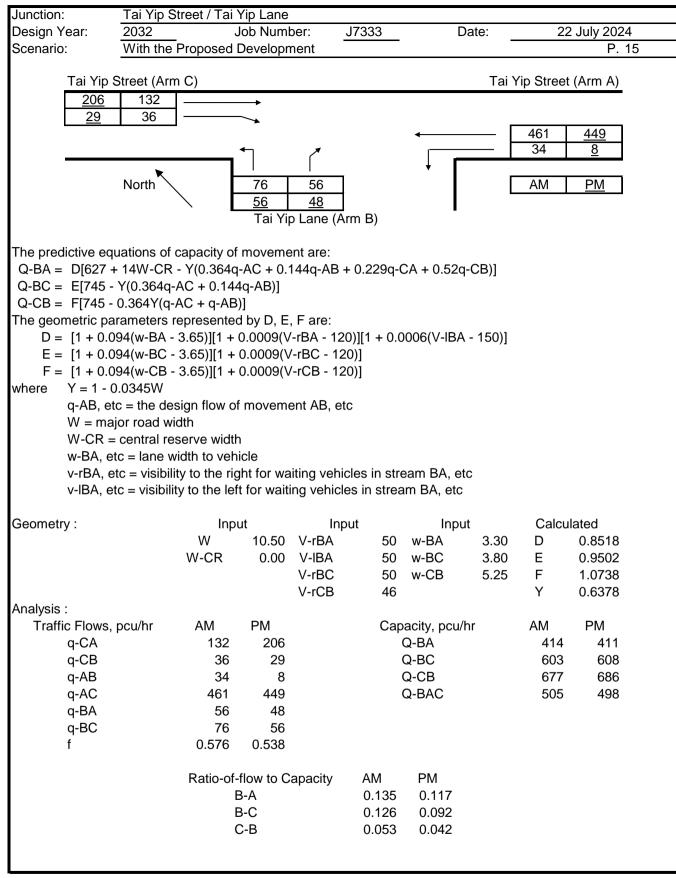

					-	iynai .			, ·										
Junction:	Wai Yip Str	Yip Street / Shun Yip Street														Job Number: J733			
Scenario:		Proposed E													P. 5 22 July 2024				
Design Year:	2032	Designe	ed By:				-	Checke	d By:					Date:	22	2 July 20	24		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y		
			Flase	Slage	width (m)	Radius (III)	Gradient	running %	(pcu/hr)	(pcu/hr)	y value	Childan y	ruming %	(pcu/hr)	(pcu/hr)	y value	Childany		
Wai Yip Street	EB	SA	A1	1	3.50				1965	617	0.314			1965	535	0.272			
		SA	A2	1	3.50				2105	661	0.314	0.314		2105	573	0.272			
		SA	A3	1	3.50				2105	660	0.314			2105	574	0.273	0.273		
Wai Yip Street	+ \W/B	SA	B1	1	3.50				1965	392	0.199			1965	409	0.208			
wai rip Street	WD	SA	B2	1	3.50				2105	420	0.200			2105	438	0.208			
		SA	B3	1	3.50				2105	421	0.200			2105	439	0.209			
Shun Yip Stree	et NB	LT	C1	3	3.50	15.0		100	1786	314	0.176	0.176	100	1786	365	0.204			
		LT+RT	C2	3	3.50	18.0		100	1943	341	0.176		100	1943	398	0.205	0.205		
		RT	C3	3	3.50	25.0		100	1854	326	0.176		100	1854	250	0.135			
																<u> </u>			
pedestrian pha	ise		Dp	1,2		min c	rossing	time =	8	sec	GM +	11	sec F	GM =	19	sec			
podootnan ph			Ep	2			rossing		12		GM +	9		GM =	21	sec			
			Fp	2			rossing		13		GM +	12		GM =	25	sec			
AM Traffic Flow (pcu/h	r)		Ν	PM Traffic	Flow (pcu/hr))			N	S=1940+1	00(W–3.25) :	S=2080+10	0(W–3.25)	Note:				
			ſ						ſ	S _M =S÷(1+	1.5f/r)	s	_M =(S−230)	÷(1+1.5f/r)					
	▶ 1938		\			1682			\		AM	Peak	PM	Peak					
											1+3		1+3						
		000 4					1000			Sum y	0.490		0.478						
	12	233 🛀					1286	•		L (s)	40		40						
650	€ 331				763 •		250			C (s)	118		108						
										practical y	0.595		0.567						
	I					l				R.C. (%)	21%		19%						
1		2				3													
A1		≜		4	•														
A3			Fp		Ep														
		- B3 - B2				≁	⁴┯╸┌╸												
4	•	- B1 +	4		,														
D			Dp				C2 C3												
AM G =		/G = 7	G =	25	I/G =		G =		I/G =	2	G =		I/G =		G =				
G =		/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =				
PM G =		/G = 7	G =		I/G =		G =		I/G =	2	G =		I/G =		G =				
G =	: I	/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =				

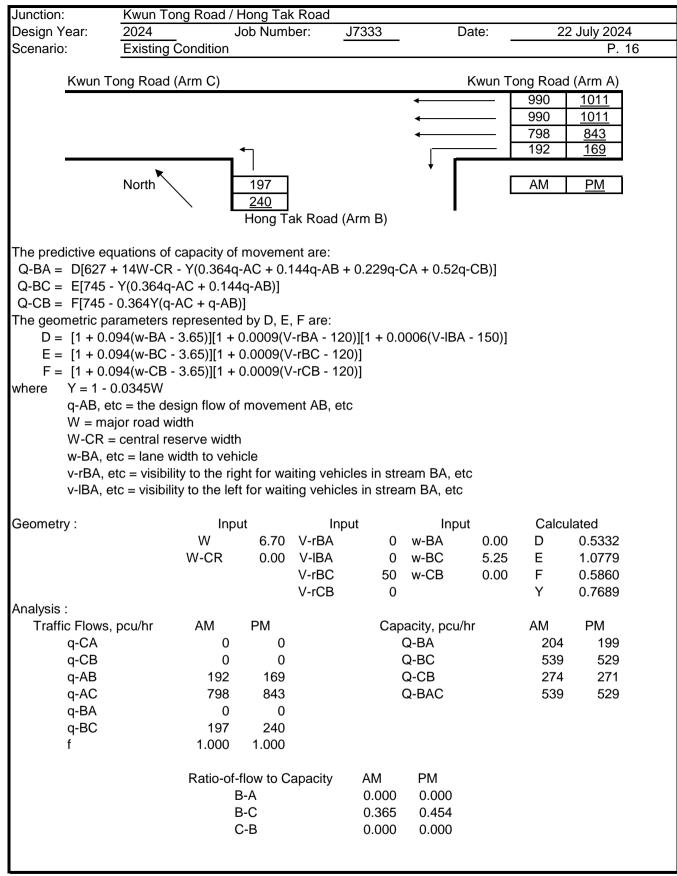

					0													
Junction:	Wai Yip Stree													_	Job Nu	mber:		
Scenario:			Designed By: Checked By: Date:											Deti	P. 6			
Design Year:	2032	Designe	Designed by Unetweed by										-	Date:		22 July 2024		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y	
				-		rtaulus (III)	Gradient	Turning 70	(pcu/hr)	(pcu/hr)		-	running //	(pcu/hr)	(pcu/hr)		Ontical y	
Wai Yip Street	t EB	SA	A1	1	3.50				1965	624	0.318	0.318		1965	544	0.277		
		SA	A2	1	3.50				2105	668	0.317			2105	583	0.277	0.277	
		SA	A3	1	3.50				2105	669	0.318			2105	583	0.277		
Wai Yip Street	t WB	SA	B1	1	3.50				1965	392	0.199			1965	409	0.208		
		SA	B2	1	3.50				2105	420	0.200			2105	438	0.208		
		SA	B3	1	3.50				2105	421	0.200			2105	439	0.209		
Shun Yip Stree	et NB	LT	C1	3	3.50	15.0		100	1786	314	0.176		100	1786	365	0.204		
		LT+RT	C2	3	3.50	18.0		100	1943	343	0.177	0.177	100	1943	398	0.205	0.205	
		RT	C3	3	3.50	25.0		100	1854	326	0.176		100	1854	251	0.135		
pedestrian pha	ase		Dp	1,2		min c	rossing	time =	8	sec	GM +	11	sec F	GM =	19	sec		
			Ep	2		min c	rossing	time =	12	sec	GM +	9	sec F	GM =	21	sec		
			Fp	2		min c	rossing	time =	13	sec	GM +	12	sec F	GM =	25	sec		
AM Traffic Flow (pcu/h				DM Troffic	Flow (pcu/hr)										Note:			
AW TRAILE Flow (peuri	")		N≮	r wi maine	riow (pcu/iii)				N≮		00(W–3.25		S=2080+10		NUCC.			
			·\)	S _M =S÷(1+	1.5f/r)	S	S _M =(S–230)	÷(1+1.5f/r)				
	→ 1961		١			1710			١			Peak		Peak				
											1+3		1+3					
										Sum y	0.494		0.482					
	123	33 🛶					1286	•			40							
650		33 ←			763 ◄	⊢ , →		•		L (s)	40		40					
650		33 •			763 ◄		1286 251			C (s)	118		108					
650		33 ←			763 ◄			•										
650		2			763 ◄	3		•		C (s) practical y	118 0.595		108 0.567					
1					763 ◄					C (s) practical y	118 0.595		108 0.567					
650		2								C (s) practical y	118 0.595		108 0.567					
1	333	2	Fp		763 <					C (s) practical y	118 0.595		108 0.567					
1	333	2 B3 B2								C (s) practical y	118 0.595		108 0.567					
1 A1	333	2 B3	Fp Tp			3	251			C (s) practical y	118 0.595		108 0.567					
1 A1→ A2→ A3 D ₁		2 B3 B2	4			3 • • • • • • • • • • • • • • • • • • •				C (s) practical y R.C. (%)	118 0.595		108 0.567		G =			
1 A1→ A2→ A3 D ₁	333 333 1/G	2 B3 B2 B1 = 7	∢ Dp		Ep	3 • • • • • • • • • • • • • • • • • • •	251		I/G = I/G =	C (s) practical y R.C. (%)	118 0.595 20%		108 0.567 18%		G = G =			
1 A1 A2 A3 A3 AM G =	333 333	2 B3 B2 B1 = 7	∢ Dp G =	25	Ep ,	3 C1 8	251			C (s) practical y R.C. (%)	118 0.595 20% G =		108 0.567 18%					

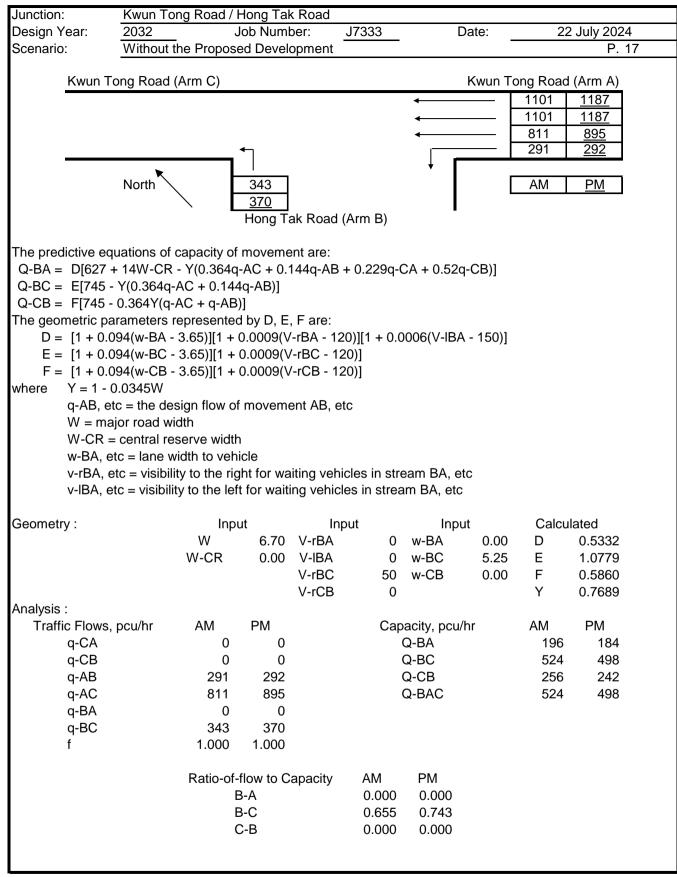


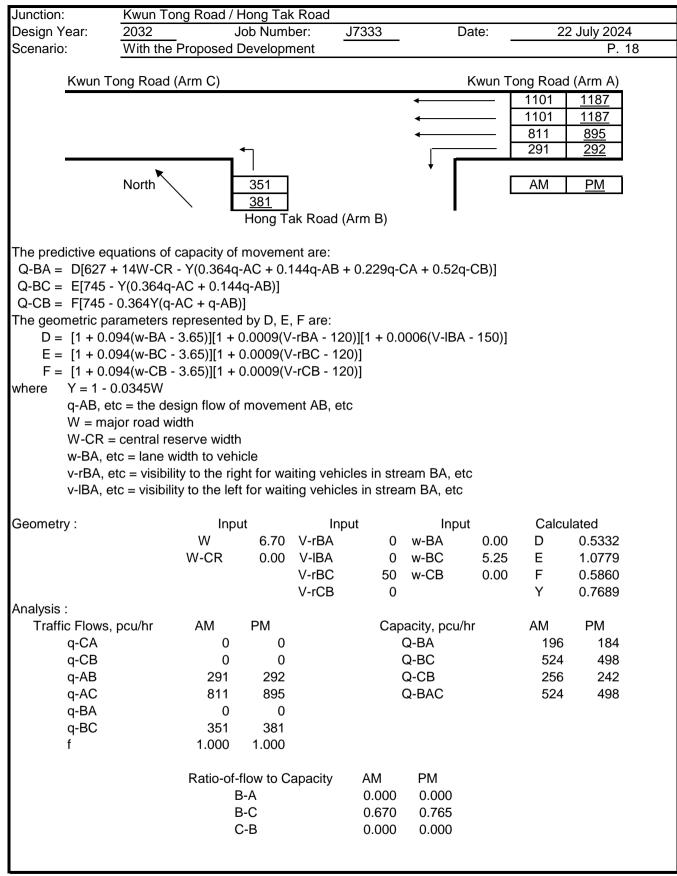












						0			,								
Junction:	Wai Yip Sti	reet / Lai Yip	Street											-	Job Nu	mber:	J7333
Scenario: Design Year:	Existing Co		od Pur					Checke	d Dvr					Date:	21	P. 2 July 20	19
Design rear.	2024	Designe	ей Бу.					Checke	и Бу.					Date.		2 July 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical y
Wai Yip Street	t WB*	LT	A1	3	2.80	20.0		100	1763	75	0.043		100	1763	107	0.061	
		SA	A2	3	2.80				2035	386	0.190			2035	409	0.201	
		SA	A3	3	2.80				2035	385	0.189			2035	409	0.201	
Lai Yip Street	SB	LT	B1	2	3.10	20.0		100	1971	167	0.085		100	1991	211	0.106	0.106
		SA	B2	1,2	3.10				2185	370	0.169	0.169		2198	223	0.101	
		SA	B3	1,2	3.10				2065	349	0.169			2065	209	0.101	
Mai Vin Strad		64.1 T	C1	2	2.20	20.0		62	2007	575	0.074		50	2142	489	0.000	0.000
Wai Yip Street		SA+LT SA	C1 C2	3	3.30 3.30	20.0		63	2097 2085	575 572	0.274	0.274	50	2085	469	0.228	0.229
		SA	C3	3	3.30				2085	571	0.274	0.274		2085	470	0.229	
Lai Yip Street	NB	SA+LT	D1	1,2	3.80	20.0		44	2111	184	0.087		70	2095	202	0.096	
		SA	D2	1,2	3.80				2135	187	0.088			2135	206	0.096	
pedestrian pha	ase		Ep	3		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
			Fp	1,2			rossing		7		GM +	11		GM =	18	sec	
			Gp Hp	1,2 1,3			rossing rossing		5 5		GM + GM +	10 7		GM = GM =	15 12	sec sec	
			lp	3			rossing		5		GM +	7		GM =	12	sec	
AM Traffic Flow (pcu/h	-1			DM T # -											Nata		
Aivi Tranic Flow (pcu/n	")		N	PWITAIIIC	Flow (pcu/hr)			~	N		00(W–3.25		S=2080+10		Note:	orary Tr	offic
	Γ	→ 167	1					211	Ĩ,	S _M =S÷(1+				÷(1+1.5f/r)	Arrang	ement is	
361 ♠	719	9	Ň		243 ↑		432		`		AM 2+3	Peak 1,2+3	PM 2+3	Peak 1,2+3	facilitie	s at the	junction
	1357				⊥→	1199				Sum y	0.359	0.444	0.335				
	290	771 -	_			267	818	•	-	L (s)	33	20	33	20			
81	1 +	* 75			141			↓ 107		C (s)	120	120	108	108			
										practical y	0.653	0.750	0.625	0.733			
	I									R.C. (%)	82%	69%	87%	122%			
Gp Fp D1 D2	B3 B2	2 Hp Gp Fp		B3 B2 B ↓ ↓ ↓ Fp ↓	1 → Gp [*]	3 C1 C2 C3			Hp A3 A2 A1								
		I/G = 2	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G = G =		I/G = 2 I/G =	G = G =		I/G = I/G =		G = G =		I/G = I/G =		G = G =		I/G =		G = G =		
5-			0-				0-			~	0-		., 5 =		0-		

					0	gnar	ounot		naryc								
Junction:	Wai Yip Stre	eet / Lai Yip	Street												Job Nu	mber:	J7333
Scenario:	Without the																20
Design Year:	2032	Designe	ed By:					Checke	d By:					Date:	22	2 July 20)24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
				Otage			Gradient	runnig //	(pcu/hr)	(pcu/hr)		Onucar y		(pcu/hr)	(pcu/hr)		Ontical y
Wai Yip Stree	t WB	SA+LT	A1	3	2.80	20.0		53	1943	422	0.217		62	1944	445	0.229	
		SA	A2	3	2.80				2035	442	0.217			2035	466	0.229	
		SA	A3	3	2.80				2035	442	0.217			2035	465	0.229	
Lai Yip Street	SB	LT	B1	2	3.10	20.0		100	1971	292	0.148		100	1991	263	0.132	0.138
		SA	B2	1,2	3.10				2185	505	0.231			2198	389	0.177	
		SA	B3	1,2	3.10				2065	478	0.231			2065	365	0.177	
Wai Yip Stree	t EB	SA+LT	C1	3	3.30	20.0		60	2101	699	0.333	0.333	61	2127	611	0.287	0.287
		SA	C2	3	3.30				2085	694	0.333			2085	599	0.287	
		SA	C3	3	3.30				2085	693	0.332			2085	599	0.287	
Lai Yip Street	NB	SA+LT	D1	2	3.80	15.0		58	2066	286	0.138	0.148	63	2077	286	0.138	
		SA	D2	2	3.80				2135	295	0.138			2135	294	0.138	
pedestrian pha	ase		Ep	3		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
			Fp	1		min c	rossing	time =	7	sec	GM +	11	sec F	GM =	18	sec	
			Gp	1,2			rossing		5	sec	GM +	10	sec F	GM =	15	sec	
			Нр	1,3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
AM Traffic Flow (pcu/r	nr) .			PM Traffic	Flow (pcu/hr)										Note:		
u	<i>′</i>	202	N		,			262	N		00(W-3.25		S=2080+10 _M =(S-230)			Improver	nent
		292	ĺ\					263	ĺ\	S _M =S÷(1+						by Other	
416 ▲	983		`		373 ▲		754		Ň		AM 2+3	Peak		Peak			
	1670				⊥.,	1436				Sum y	0.481	^{1,2+3}	²⁺³	1,2+3 0.464			
	416 10)83 🛶 📊	-			400	1099	▲	_	L (s)	39	10	39	10			
16	5 🚽	↓ 223			180	1		¥ 277		C (s)	120	120	108	108			
-	-									practical y	0.608	0.825	0.575	0.817			
	Ι					I				R.C. (%)	26%	46%	35%	76%			
1	B3 B2	2		B3 B2 B	1	3											
►. Gp ⁱ 4	A H	Gp	4					Ep	▲								
Fp	↓↓ <u>†</u> '"	, ,		↓ ↓ _↑ L	→	C1	→		Πp								
¥	Fp .		<u>†</u> †	Fp 🔻	•••	C3	→	↓	—— A3 —— A2								
	Gp 🔺		•		Gp [™]		Ęp	·····•	↓ A1								
			 D1 D2														
AM G =	= 18 l/	G = 5	G =		I/G =	12	G =		I/G =	6	G =		I/G =		G =		
	- 10 1/																
G =		'G =	G =		I/G =	6	G =		I/G =	6	G =		I/G =		G =		
G =	= 1/	G = G = 5	G = G =		I/G =		G = G =		I/G =		G = G =		I/G =		G = G =		

						9	-										
Junction:	Wai Yip St	reet / Lai Yip	Street												Job Nu	mber:	J7333
Scenario:		roposed Dev															21
Design Year:	2032	Designe	ed By:					Checke	d By:				•	Date:	22	2 July 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
				Olage			Gradient	Turning 70	(pcu/hr)	(pcu/hr)	1	Onucar y		(pcu/hr)	(pcu/hr)		Ontical y
Wai Yip Street	t WB	SA+LT	A1	3	2.80	20.0		53	1943	422	0.217		62	1944	445	0.229	
		SA	A2	3	2.80				2035	442	0.217			2035	466	0.229	
		SA	A3	3	2.80				2035	442	0.217			2035	465	0.229	
Lai Yip Street	SB	LT	B1	2	3.10	20.0		100	1971	292	0.148		100	1991	263	0.132	0.138
		SA	B2	1,2	3.10				2185	506	0.232			2198	389	0.177	
		SA	B3	1,2	3.10				2065	478	0.231			2065	366	0.177	
Wai Yip Stree	t EB	SA+LT	C1	3	3.30	20.0		60	2101	701	0.334		61	2127	613	0.288	0.289
		SA	C2	3	3.30				2085	696	0.334	0.334		2085	601	0.288	
		SA	C3	3	3.30				2085	695	0.333			2085	602	0.289	
Lai Yip Street	NB	SA+LT	D1	2	3.80	15.0		58	2066	286	0.138	0.148	63	2077	286	0.138	
		SA	D2	2	3.80				2135	295	0.138			2135	294	0.138	
pedestrian pha	ase		Ep	3		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
			Fp	1		min c	rossing	time =	7	sec	GM +	11	sec F	GM =	18	sec	
			Gp	1,2		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
			Нр	1,3		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
	- ch			DM T #											Mater		
AM Traffic Flow (pcu/h	ır)		N	PM Traffic	Flow (pcu/hr)				N		00(W–3.25		S=2080+10	. ,	Note:	Improver	nont
		→ 292	\langle				-	263	\langle	S _M =S÷(1+	1.5f/r)	S	_M =(S–230)	÷(1+1.5f/r)		Improver by Other	
418	★ 984	4	١		376		♦ 755		١			Peak		Peak			
	1674				⊥.,	1440	100				2+3	1,2+3	2+3	1,2+3			
		083 -	_			400	1099	←	_	Sum y	0.482	0.565	0.426	0.466			
165	1	↓ 223			180	Ť		277		L (s)	39 120	10 120	39 108	10 108			
100		220			100			211		C (s) practical y	0.608	0.825	0.575	0.817			
						I				R.C. (%)	26%	46%	35%	75%			
1	B3 B2	2		B3 B2 B	1	3											
Gnit		.▼ N. Hp Gp	4					Ep									
Fp		Нр Ор		↓↓↓	→	C1	1	>	▲' Нр								
¥	Fp		+ +	Fp 💐		C2 C3	→ →	+	—— A3								
	Gp	•	•		 Gp ^{*▲}		Ep		A2 A1								
			D1 D2				4	•	•								
AM G =	= 18	I/G = 5	G =		I/G =	12	G =		I/G =	6	G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
		I/G = 5	G =		I/G =		G =		I/G =		G =		I/G =	-	G =	-	
G =	-	I/G =	G =		I/G =	6	G =		I/G =	6	G =		I/G =		G =		

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
Account Page Watt m Base Watt m Base Tang S Base <	P. 22 2024	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Critica
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Childa
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	34 0	0.18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $)1 0	0.10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	57	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c } \hline Gp & 2,3 & min \ crossing \ time \ = & 5 & sec \ GM \ + & 5 & sec \ FGM \ = & 10 & 10 & 10 & 10 & 10 & 10 & 10 & $	2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $;	
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & $		
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & $		
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $		
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $		_
$ \xrightarrow{319} \xrightarrow{212} \xrightarrow{4} \xrightarrow{596} \xrightarrow{596} \xrightarrow{297} \xrightarrow{167} \xrightarrow{293} \xrightarrow{529} \xrightarrow{365} \xrightarrow{297} \xrightarrow{167} \xrightarrow{297} \xrightarrow{167} \xrightarrow{297} \xrightarrow{167} \xrightarrow{20} \xrightarrow{118} \xrightarrow{108} $	Stage	1e
$ \xrightarrow{\text{AM Feak}} 728 \xrightarrow{\text{Fin Feak}} 296 \xrightarrow{\text{Fin Feak}} 21 \text{ In PM Peak} \\ \xrightarrow{\text{2}44+5} 22+3+5 \xrightarrow{\text{2}4+5} 22+3} \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3} \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3} \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3} \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3} \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3} \xrightarrow{\text{2}4+5} 22+3} \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3} \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3} \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3} \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3} \xrightarrow{\text{2}4+5} 22+3} \xrightarrow{\text{2}4+5} 22+3 \xrightarrow{\text{2}4+5} 22+3}	1>5>2	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$150 \leftrightarrow 278$ $243 \leftrightarrow 233$ $practical y 0.786$ 0.733 $R.C. (\%) 58\%$ 43% $1 \rightarrow 4$ $2 \rightarrow$		
$1 \\ A1 \longrightarrow A$		
$\begin{array}{c c} 1 \\ A1 \longrightarrow \end{array} \begin{array}{c} 2 \\ A1 \longrightarrow \end{array} \begin{array}{c} 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		
$A1 \longrightarrow A1 \longrightarrow$	_	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
		- C1
AM 1/G = 1/G = 1/G = 5 1/G = 10 1/	G= 3	3
PM I/G= I/G=7 I/G=7 I/G=6 I		
PM 1/G = 1/G = 7 1/G = 7 1/G = 6 1.	G = 3	,

						0											
Junction:		g Road / Lai `												-	Job Nu	mber:	J7333
Scenario:		e Proposed D															23
Design Year:	2032	Designe	ed By:					Checke	d By:				-	Date:	22	2 July 20	24
				_						AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Kwun Tong Ro	ad EB	SA	A1	1,2	3.20				1935	379	0.196			1935	316	0.163	
		SA	A2	1,2	3.20				2075	406	0.196			2075	338	0.163	
Lai Yip Street	NB	LT	B1	5	3.30	30.0		100	2035	157	0.077		100	2052	288	0.140	
		SA	B2	5	3.30				2085	523	0.251			2085	425	0.204	
		SA	B3	5	3.30				2085	522	0.250			2085	425	0.204	
		0.1	D 4	_	0.50				0405	050	0.474			0405	00.4	0.4.40	
Elegance Road	a NB	SA	B4	5	3.50	40.0		2	2105	359	0.171		40	2105	294	0.140	
		SA+RT	B5	5	3.50	18.0		3	2100	359	0.171		18	2074	289	0.139	
		RT	B6	5	3.50	15.0		100	1914	327	0.171		100	1914	267	0.139	
Kwun Tong Ro	ad WR	LT	C1	1,5	3.30	15.0		100	1768	575	0 325	0.325	100	1768	403	0.228	0.228
		SA	C1 C2	1,5	3.50	13.0		100	2105	433	0.325		100	2105	403 573	0.228	0.228
		SA	C3	1,2	3.50				2105	432	0.200	0.200		2105	573	0.272	0.212
		04	00	1,2	5.50				2100	-+52	0.200			2100	515	0.212	
Elegance Road	d SB	LT	D1	3,4	3.50	15.0		100	1786	195	0.109	0.109	100	1786	216	0.121	0.121
		SA	D2	3,4	3.50				2105	224	0.106			2105	178	0.085	
		SA+RT	D3	3,4	3.50	18.0		40	2037	217	0.107		65	1997	169	0.085	
		RT	D4	3,4	3.50	15.0		100	1914	203	0.106		100	1914	162	0.085	
				- 1										-			
pedestrian pha	ise		Ep	1,2		min c	rossing	time =	12	sec	GM +	10	sec F	GM =	22	sec	
			Fp	1,2,3,4		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
			Gp	2,3		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
AM Traffic Flow (pcu/hr	r)		N	PM Traffic I	low (pcu/hr)				N	S=1940+1	00(W–3.25) :	S=2080+10	0(W–3.25)	Note:		
	291 🔶	195	7			272		216	7	S _M =S÷(1+	1.5f/r)	s	6 _M =(S–230)	÷(1+1.5f/r)	1) Juncti	on Improv by Other	vement Project
	3	5 3	\				237		\		AM	Peak	PM	Peak			
	785			-		654					2+4+5		2+3+5			Peak, Sta e : 2>4>5	
										Sum y	0.640		0.621		3) In PM	Peak, Sta	ade
		865 🗕	-				1146	-	_	L (s)	15		20			e : 2>3>5	
	707	\$ 575				531		* 403		C (s)	118		108				
157	′⊶ 🕇 → 338	3			288	⊶∔→	319			practical y	0.786		0.733				
										R.C. (%)	23%		18%				
1		2				3				4				5			
A1		A1					D4 D3				D4 D3			+ + r	→		
A2		A2															
		23 22			C3 C2		`⊷∔	Ļ			`←	Ļ		B3 B4 B5			
Ep Ep		2 21	Ep	Gp	62	Fn 🖛		Gp		Fr -				⁴┐↑↑		\mathbf{I}	— C1
Fp., ∢	• •	FP -	••••••	• •		Fp .₹		×		Fp♥				B1 B2 B	3	•	
AM		I/G =			I/G =				I/G =	5			I/G =		5	I/G =	3
										-							-
PM	I	I/G =			I/G =	7			I/G =	7			I/G =	6		I/G =	3

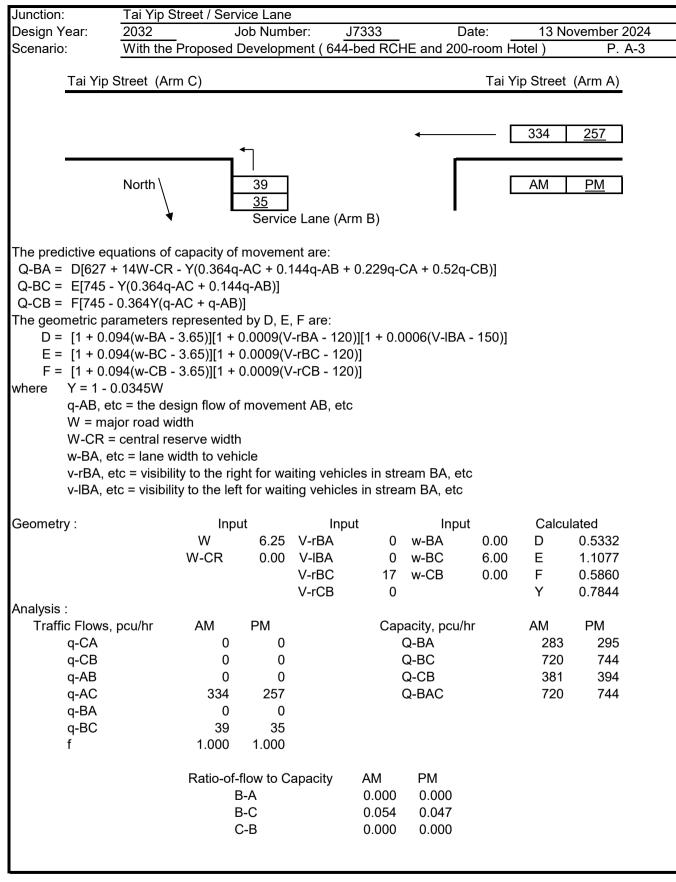
						-											
Junction:	Kwun Tong F	Road / Lai `	Yip Stre	et										-	Job Nu	mber:	J7333
Scenario:	With the Pro																24
Design Year:	2032	Designe	ed By:				•	Checke	d By:				-	Date:	22	2 July 20	24
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Kwun Tong Ro	ad EB	SA	A1	1,2	3.20				1935	379	0.196			1935	316	0.163	
		SA	A2	1,2	3.20				2075	406	0.196			2075	338	0.163	
Lai Yip Street I	NB	LT	B1	5	3.30	30.0		100	2035	157	0.077		100	2052	288	0.140	
		SA	B2	5	3.30				2085	524	0.251			2085	427	0.205	
		SA	B3	5	3.30				2085	523	0.251			2085	426	0.204	
		64	D4	F	2 50				2105	260	0.171			2105	295	0.140	
Elegance Road	INB	SA SA+RT	B4 B5	5 5	3.50 3.50	18.0		3	2105	360 359	0.171		18	2105	295 290	0.140	
		RT	во В6	5	3.50	15.0		3 100	1914	328	0.171		100	1914	290	0.140	
		N1	DU	5	3.50	13.0		100	1914	520	0.171		100	1914	200	0.140	
Kwun Tong Ro	ad WB	LT	C1	1,5	3.30	15.0		100	1768	576	0.326	0.326	100	1768	404	0.229	0.229
		SA	C2	1,3	3.50	10.0		100	2105	433	0.206		100	2105	573	0.223	0.272
		SA	C3	1,2	3.50	1	1		2105	432	0.205			2105	573	0.272	
				,=													
Elegance Road	d SB	LT	D1	3,4	3.50	15.0		100	1786	195	0.109	0.109	100	1786	216	0.121	0.121
		SA	D2	3,4	3.50				2105	224	0.106			2105	178	0.085	
		SA+RT	D3	3,4	3.50	18.0		40	2037	217	0.107		65	1997	169	0.085	
		RT	D4	3,4	3.50	15.0		100	1914	203	0.106		100	1914	162	0.085	
pedestrian pha	se		Ep	1,2		min c	rossing	time =	12	sec	GM +	10	sec F	GM =	22	sec	
			Fp	1,2,3,4		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
			Gp	2,3		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
AM Traffic Flow (pcu/hr			Ν	PM Traffic I	low (pcu/hr)				Ν	S=1940+1	00(W–3.25			0(W–3.25)	Note:		
	291	→ 195	1			272	ŧ	216	1	S _M =S÷(1+	1.5f/r)	s	6 _M =(S–230)	÷(1+1.5f/r)	1) Juncti Scheme	by Other	Project
	353	3	١				237		١		AM	Peak	PM	Peak	2) In AM	Peak, St	age
\longrightarrow	785			_		654					2+4+5		2+3+5		Sequend	ce : 2>4>5	5>2
		05 4	_				4440		_	Sum y	0.641		0.622			Peak, St ce : 2>3>5	
		65					1146	ŧ		L (s)	15		20		ooquone	. 27070	/~ L
	709 1 000	576				534 1		404		C (s)	118		108				
157	338				288		319			practical y	0.786		0.733				
										R.C. (%)	23%		18%	-			
1		2				3	D4 D3	D2 D1		4	D4 D3	D2 D1		5			
A1 A2		A1 — A2 —		$ \rightarrow $										141	→		
←	Сз		•		— _{C3}		⊷↓				⊷↓			B3 B4 B5			
	C2 C2 C1		←		- C2		+	•			+	•		+ ↑ ↑ ↑			— _{C1}
Fp., ∢Ep	↓ CI	Fp, √ ▲	Ep	Gp		Fp▼		Gp ▶.		Fp▼						ŧ	51
*		*		4		-		4		-				B1 B2 B	3		
AM	I/G) =			I/G =				I/G =	5			I/G =	10		I/G =	3
PM	I/G) =			I/G =	7			I/G =	7			I/G =	6		I/G =	3

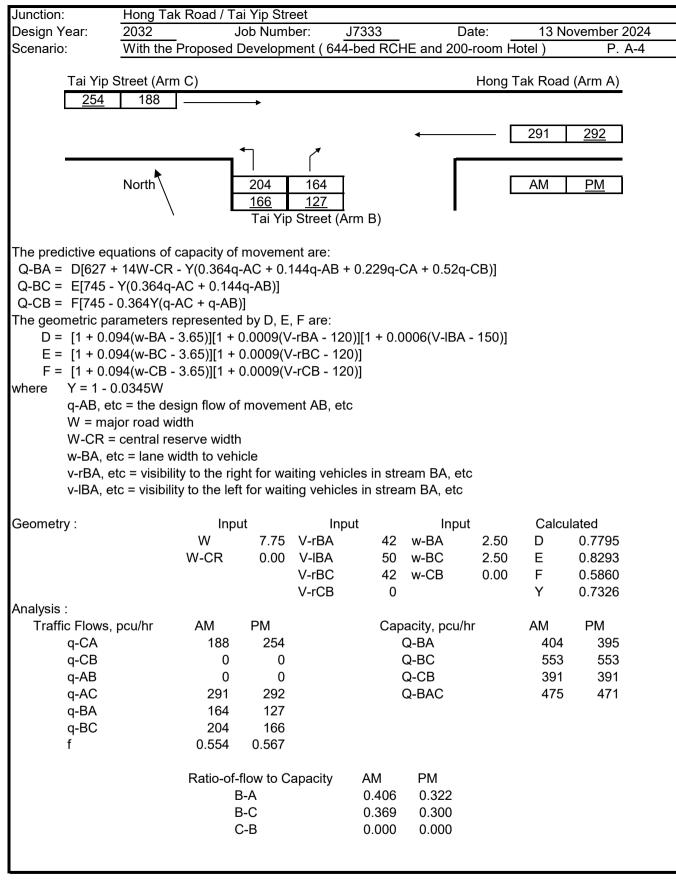
						<u> </u>	Janot		,								
Junction:	Hoi Bun Ro	ad / Lai Yip	Street												Job Nu	mber:	J7333
Scenario:	Existing Co	ndition														Ρ.	25
Design Year:	2024	Design	ed By:					Checke	d By:					Date:	22	2 July 20	24
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Hoi Bun Road	EB	LT	A1	1	3.30	15.0		100	1768	160	0.090	0.090	100	1768	154	0.087	0.087
		SA	A2	1	3.30				2085	129	0.062			2085	151	0.072	
Hoi Bun Road	WB	SA	B1	1,2	3.30				1945	329	0.169			1945	234	0.120	
		RT	B2	2	3.30	20.0		100	1940	211	0.109	0.109	100	1940	254	0.131	0.131
Lai Yip Street	SB	LT	C1	3	3.30	18.0		100	1795	269	0.150	0.150	100	1795	117	0.065	
		RT	C2	3	3.30	25.0		100	1967	264	0.134		100	1967	212	0.108	
		RT	C3	3	3.30	22.0		100	1952	261	0.134		100	1952	210	0.108	0.108
							-	-									
pedestrian pha	ise		Dp	1,2,4		min c	rossing t	time =	12	sec (GM +	9	sec F	GM =	21	sec	
			Ep	3,4		min c	rossing t	time =	7	sec	GM +	6	sec F	GM =	13	sec	
			Fp	4		min c	rossing t	time =	7	sec (GM +	7	sec F	GM =	14	sec	
				DU 7 //											h		
AM Traffic Flow (pcu/h	r)		N	PM Traffic I	low (pcu/hr)				N N	S=1940+1	00(W–3.25) 5	5=2080+10	0(W–3.25)	Note:		
			$\langle $						\mathbf{X}	S _M =S÷(1+	1.5f/r)	s	_M =(S–230) ⁻	÷(1+1.5f/r)			
	525 🗲		`			422	\downarrow	117	`		AM	Peak	PM	Peak			
	525	269				422		117			1+2+3		1+2+3				
160					154					Sum y	0.349		0.326				
100	100	211			134	454		254		L (s)	35		35				
	129 329	1		_		151	234 🗲	<u>†</u>		C (s)	118 0.633		108 0.608				
	328	,					234			practical y R.C. (%)	81%		87%				
1		2				3				A.C. (76)	0170		0170				
1	∢····· ►	Z		·····•		-				•		¢Þ					
1	Dp			Dp			Ep 🗲	」 ↓ ↓ ↓ C3 C2 C1	•		Ep	Dp 🛉					
▶ A2																	
				в2 Ĺ								Fp					
	B1 ←			B1 ←								¥					
		I				_											
AM G =		I/G = 8	G =		I/G =	5	G =		I/G =	8	G =	14	I/G =	3	G =		
G =		/G =	G =		I/G =	5	G =		I/G =	0	G =	4.4	I/G =	2	G =		
PM G=		/G = 8	G =		I/G =	5	G =		I/G =	ö	G =	14	I/G =	3	G =		
G =	l	/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

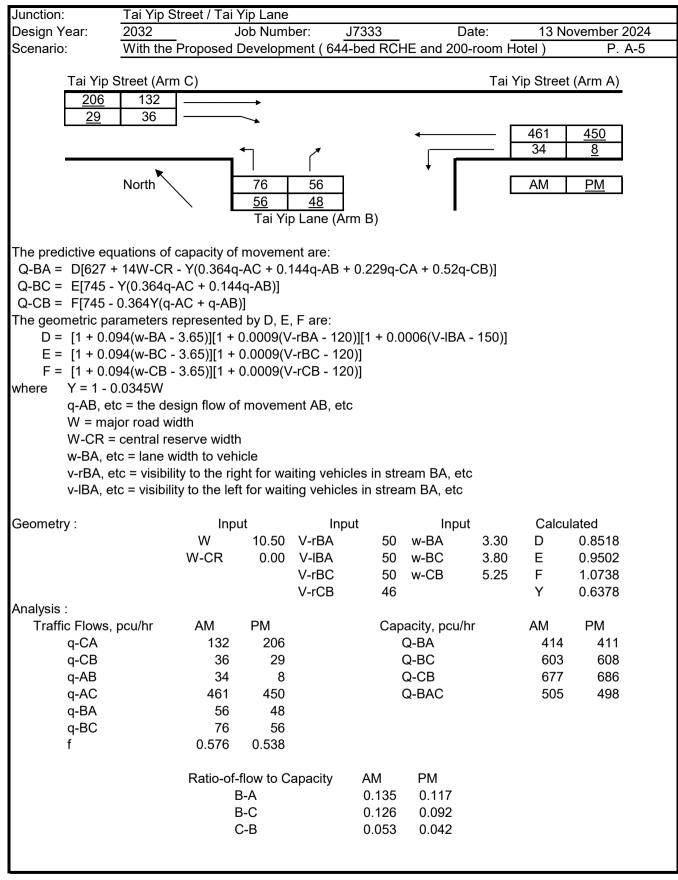
					_	5			,								
Junction:		oad / Lai Yip													Job Nu	mber:	J7333
Scenario:	-	e Proposed I						<u> </u>									26
Design Year:	2032	Design	ed By:					Checke	d By:				•	Date:	22	2 July 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
		1 7+		-			Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Hoi Bun Road	EB	LT* SA*	A1 A2	1 1	3.65 3.65	15.0		100	1800 2120	250 266	0.139	0.139	100	1800 2120	239 250	0.133	0.133
		54	<u> 72</u>	- 1	3.05				2120	200	0.125			2120	230	0.110	
Hoi Bun Road	WB	SA	B1	1,2	3.30				1945	428	0.220			1945	401	0.206	
		RT	B2	2	3.30	20.0		100	1940	331	0.171	0.171	100	1940	341	0.176	0.176
Lai Yip Street	SB	LT	C1	3	3.30	18.0		100	1795	365	0.203		100	1795	307	0.171	
		RT	C2	3	3.30	25.0		100	1967	422	0.215	0.215	100	1967	363	0.185	0.185
		RT	C3	3	3.30	22.0		100	1952	419	0.215		100	1952	361	0.185	
pedestrian pha	ase*		Fp	4		min ci	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
			Gp	4		min ci	rossing	time =	8	sec	GM +	8	sec F	GM =	16	sec	
			Нр	4		min c	rossing	time =	10	sec	GM +	9	sec F	GM =	19	sec	
AM Traffic Flow (pcu/h	r)			PM Traffic	Flow (pcu/hr)										Note:		
u u u	,		κ Ν		,				κ Ν	S=1940+1 S _M =S÷(1+	00(W-3.25		S=2080+10	0(W–3.25) ÷(1+1.5f/r)		on	
			\backslash						\backslash	3 <u>M</u> =3÷(1+				. ,	Improv	ement S	
	841 ←	⊥, ₃₆₅				724	مله	307			AM 1+2+3	Peak	PM 1+2+3	Peak	by Othe	er Projec	π
										Sum y	0.524		0.493				
250					239					L (s)	35		35				
	266	331 ∱		_		250		341 ∱		C (s)	118		108				
	428	8 ◀—└──					401 🗲			practical y	0.633		0.608				
										R.C. (%)	21%		23%				
1		2				3				4							
<u>†</u>							+	┙┛└	•	∢	Hp	·····•► +					
A1								C3 C2 C1		Ī							
				в2 🕇							Gp	Fp					
	B1 ←			B1 ←						¥		¥					
		1				-								<u> </u>			
AM G = G =		I/G = 8 I/G =	G = G =		I/G = I/G =	5	G = G =		I/G = I/G =	8	G = G =	14	I/G = I/G =	3	G = G =		
G = PM G =		I/G = 8	G =		I/G =	5	G =		I/G =	8	G =	14	I/G =	3	G =		
G =		I/G =	G =		I/G =	-	G =		I/G =	-	G =		I/G =	-	G =		
0-																	

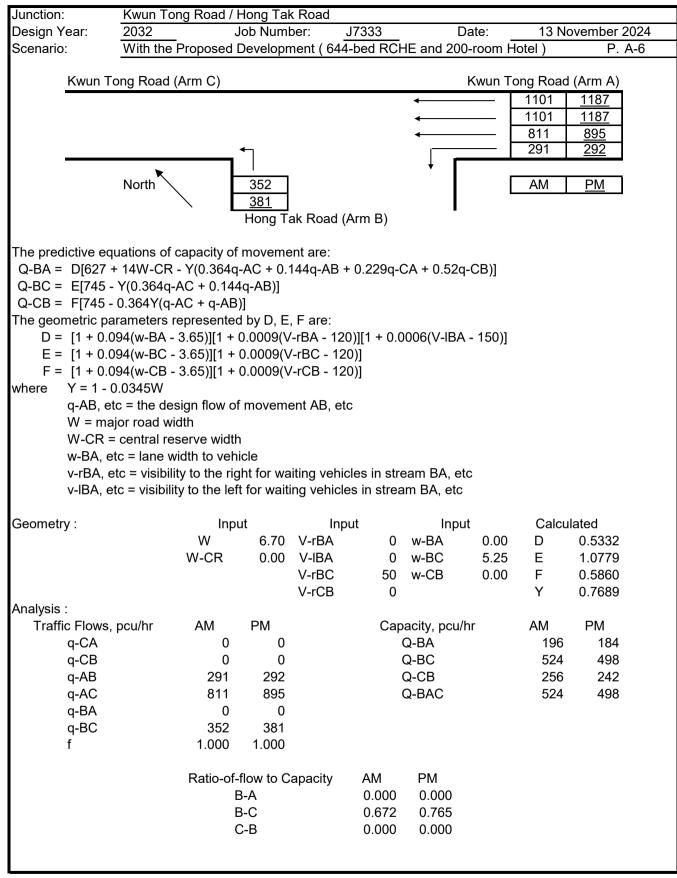
						0	Junci		,								
Junction:	Hoi Bun Roa	ad / Lai Yip	Street												Job Nu		J7333
Scenario: Design Year:	With the Pro 2032							Checke	d Bv:					Date:	22	P. 2 July 20	27
boolgin roun.	2002	Doolgin	ou by.					Choole	a by.					Dato.		_ 001y 20	21
	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Hoi Bun Road	EB	LT*	A1	1	3.65	15.0	Gradient	100	(pcu/hr) 1800	(pcu/hr) 250	0.139	0.139	100	(pcu/hr) 1800	(pcu/hr) 239	0 133	0.133
		SA*	A2	1	3.65	10.0		100	2120	266	0.125	0.105	100	2120	250	0.133	0.155
		-															
Hoi Bun Road	WB	SA	B1	1,2	3.30				1945	429	0.221			1945	401	0.206	
		RT	B2	2	3.30	20.0		100	1940	331	0.171	0.171	100	1940	341	0.176	0.176
Lai Yip Street	SB	LT	C1	3	3.30	18.0		100	1795	365	0.203		100	1795	307		0.185
		RT	C2	3	3.30	25.0		100	1967	423	0.215	0.215	100	1967	364	0.185	
		RT	C3	3	3.30	22.0		100	1952	419	0.215		100	1952	361	0.185	
pedestrian pha	ise*		Fp	4		min c	rossing	time =	7	Sec	GM +	7	sec F	GM =	14	sec	
podootnan pho			Gp	4			rossing		8		GM +	8	sec F		16	sec	
			Нp	4			rossing		10		GM +	9		GM =	19	sec	
AM Traffic Flow (pcu/h	r)		7 Z	PM Traffic	Flow (pcu/hr)				7 Z	S=1940+1	00(W–3.25) :	5=2080+10	0(W–3.25)	Note:		
			$\langle $						$\langle $	S _M =S÷(1+	1.5f/r)	s	_M =(S-230)	÷(1+1.5f/r)	*Juncti Improv	on ement S	cheme
	842	→ ₃₆₅	`			725	₊ـ	307	`			Peak		Peak		er Projec	
	042	505				125		507			1+2+3		1+2+3				
250					239					Sum y	0.525 35		0.494 35				
	266	331		_		250		341		L (s) C (s)	118		108				
	429	↓				200	401 🗲	<u> </u>		practical y	0.633		0.608				
										R.C. (%)	21%		23%				
1		2				3				4							
										••••		•••••					
A1								C3 C2 C1	-	Ť	Нр	Î					
				•							Gp	Fp					
	B1 ←			B2 └── B1 ◀───	_					Ļ	-1	,					
										•		•					
AM G =	: 1/0	G = 8	G =		I/G =	5	G =		I/G =	8	G =	14	I/G =	3	G =		
G =	= I/C	G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =	: I/C	G = 8	G =		I/G =	5	G =		I/G =	8	G =	14	I/G =	3	G =		
G =	= I/O	G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

						J											
Junction:	Lai Yip S	Street / Hung To	Road												Job Nu	mber:	J7333
Scenario:	Existing	Condition														Ρ.	28
Design Year:	2024	Designe	ed By:				-	Checke	d By:					Date:	22	2 July 20)24
					1		1			AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Lai Yip Street	SB	SA	A1	1	3.50				1965	330	0.168	0.168		1965	183	0.093	
		SA	A2	1	3.50				2105	354	0.168			2105	196	0.093	
Lai Yip Street	NB	SA	B1	1	3.50				1965	314	0.160			1965	246	0.125	0.125
		SA	B2	1	3.50				2105	337	0.160			2105	264	0.125	
Hung To Road	dWB	LT	C1	2	3.50	15.0											
		LT+RT	C2*	2	3.50	18.0		100	1943	507	0.261	0.261	100	1943	528	0.272	0.272
		RT	C3	2	3.50	25.0											
pedestrian pha	ase		Dp	1		min c	rossing	time =	7	sec	GM +	16	sec F	GM =	23	sec	
podootiidii pii							loconig									000	
AM Traffic Flow (pcu/r	ar)			PM Traffic	Flow (pcu/hr)										Note:		
And thank thow (pear	", 		Ν	i wi mame	now (pourin)				N		00(W-3.25		S=2080+10			*	aa C1
	ļ		1			ļ			1	S _M =S÷(1+	1.5f/r)	S	_M =(S–230)	÷(1+1.5f/r)	and C3 a	that phas are blocke	ed due to
	684		١			379			١		AM	Peak	PM	Peak		t parking a Ing To Ro	
		305						264			1+2		1+2		Ť	•	
		ţ						İ		Sum y	0.429		0.397				
651		*			510			*		L (s)	14		11				
l Î		202			Ī			264		C (s)	120		108				
										practical y	0.795		0.808				
										R.C. (%)	85%		104%				
1		2															
A	¢ ♦ 2 A1 ▲	Dp		⊺ +	C3 C2												
	¥ L	Ψ		F	C2 C1												
D1 D0				ŧ													
B1 B2 ↑ ↑						1				1							
B1 B2 ↑																	
<u> </u>			-		1/2	â											
AM G:		I/G = 10	G =		I/G =	6	G =		I/G =		G =		I/G =		G =		
AM G=	-	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
AM G:	=																

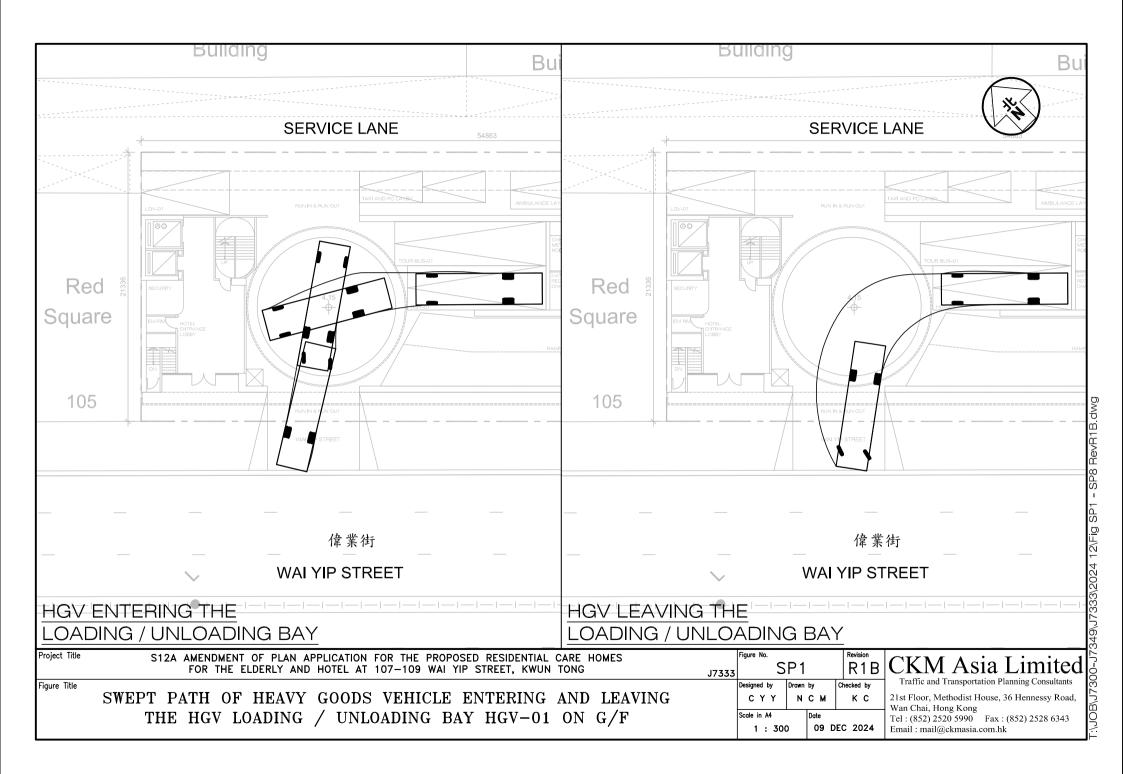

					-	ynai .											
Junction:	-	treet / Hung To													Job Nu	mber:	-
Scenario: Design Year:		the Proposed E Designe						Checke	d By:				_	Date:	22	P. 2 July 20	29 24
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Lai Yip Street	SB	SA	A1	1	3.50				1965	448	0.228	0.228		1965	309	0.157	
		SA	A2	1	3.50				2105	480	0.228			2105	331	0.157	
Lai Yip Street	NB	SA	B1	1	3.50				1965	402	0.205			1965	373	0.190	0.190
		SA	B2	1	3.50				2105	430	0.204			2105	400	0.190	
Hung To Road	dWB	LT	C1	2	3.50	15.0											
		LT+RT	C2*	2	3.50	18.0		100	1943	716	0.369	0.369	100	1943	742	0.382	0.382
		RT	C3	2	3.50	25.0											
												10					
pedestrian pha	ase		Dp	1		min c	rossing	time =	7	sec	GM +	16	sec F	GM =	23	Sec	
AM Traffic Flow (pcu/h				DM T #'	Flow (pcu/hr)										Neter		
Aivi france Flow (peu/n	") 		N K		riow (pcu/iii)					S=1940+1 S _M =S÷(1+	00(W–3.25 1.5f/r)	•	S=2080+10 _M =(S-230)	` '		that phas	
	↓ 928		\setminus			↓ 640			\setminus	CM−C.(Peak		Peak	on-stree	are blocke t parking a	activities
		369						365			1+2		1+2		along Hu	ung To Ro	ad
		t						†		Sum y	0.597		0.572				
832 •		★ 347			773			* 377		L (s)	14		11				
		547						511		C (s)	120		108				
I					ļ					practical y R.C. (%)	0.795 33%		0.808 41%				
1		2															
A	2 A1			t	— _{C3}												
B1 B2	↓ ▼	φ		↓ └	C2 C1												
				*													
AM G =	=	I/G = 10	G =		I/G =	6	G =		I/G =	I	G =		I/G =	<u> </u>	G =		
G =		I/G =	G =		I/G =	7	G =		I/G =		G =		I/G =		G =		
PM G = G =		I/G = 6 I/G =	G = G =		I/G = I/G =	7	G = G =		I/G = I/G =		G = G =		I/G = I/G =		G = G =		
0			0 4				0 -				0 -				0 =		

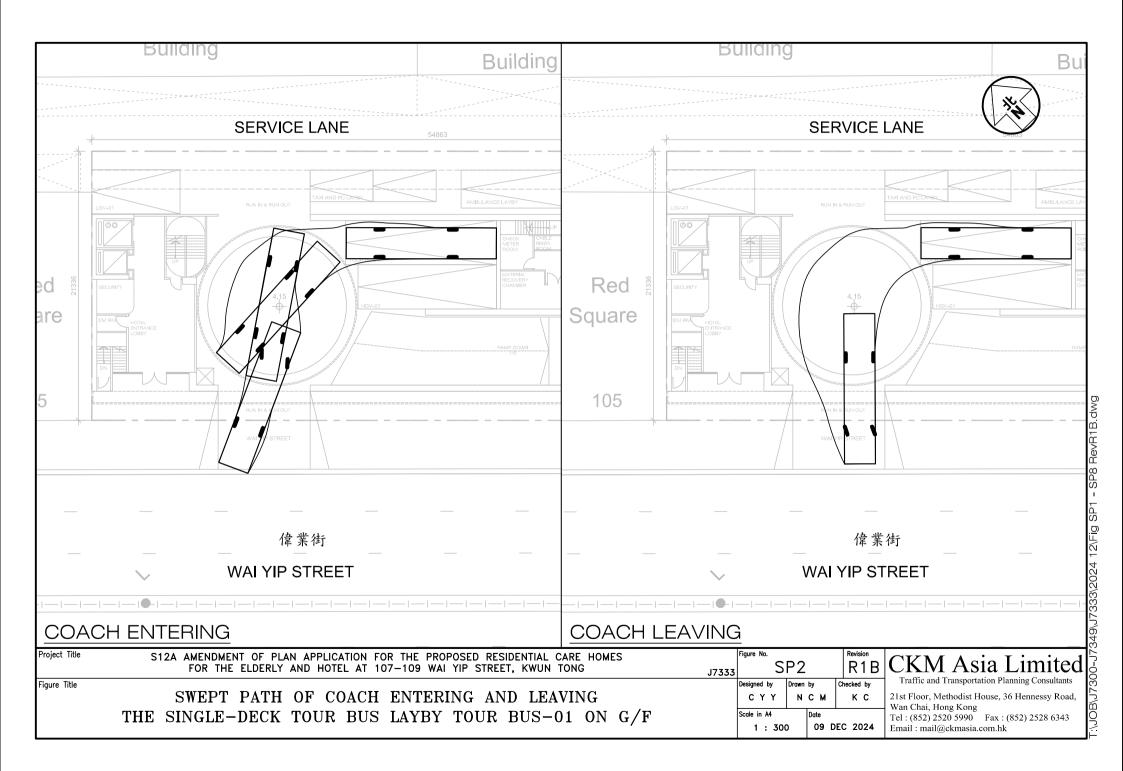

									-								
Junction:		reet / Hung To													Job Nu	mber:	-
Scenario:		Proposed Dev												Data			30
Design Year:	2032	Designe	ed By:				-	Checke	d By:				-	Date:	22	2 July 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
						riduido (iii)	Gradient	runnig ,o	(pcu/hr)	(pcu/hr)			ranning ,o	(pcu/hr)	(pcu/hr)		ontiour y
Lai Yip Street	SB	SA	A1	1	3.50				1965	449	0.228	0.228		1965	309	0.157	
		SA	A2	1	3.50				2105	480	0.228			2105	332	0.158	
Lai Yip Street	NB	SA	B1	1	3.50				1965	403	0.205			1965	375	0.191	0.191
		SA	B2	1	3.50				2105	431	0.205			2105	401	0.190	0.131
		0,1	22		0.00				2.00	101	0.200			2.00		01100	
Hung To Road	d WB	LT	C1	2	3.50	15.0											
		LT+RT	C2*	2	3.50	18.0		100	1943	716	0.369	0.369	100	1943	742	0.382	0.382
		RT	C3	2	3.50	25.0											
pedestrian pha	ase		Dp	1		min c	rossing	time =	7	sec	GM +	16	sec F	GM =	23	sec	
podootnan prie							locomg			000							
AM Traffic Flow (pcu/h	nr)		N	PM Traffic	Flow (pcu/hr)				N	S=1940+1	00(W–3.25) :	S=2080+10	0(W-3.25)	Note:		
			5						7	S _M =S÷(1+	1.5f/r)	s	6 _M =(S−230)	÷(1+1.5f/r)		that phas	
	↓ 929		\setminus			↓ 641			\setminus		AM	Peak	PM	Peak	on-stree	are blocke t parking a	activities
		369						365			1+2		1+2		along Hu	ung To Ro	ad
		t						t		Sum y	0.597		0.573				
834		¥			776			ŧ		L (s)	14		11				
ı Î		347			Î			377		C (s)	120		108				
										practical y	0.795		0.808				
										R.C. (%)	33%		41%				
		2															
1																	
1	ļļ			Ť													
1 A	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓			t	C3 C2												
1 A B1 B2	A2 A1 ↓ Dp																
	N2 A1			ţ ↓ ↓	C2												
	k2 A1 ▲ Dp				C2												
	j Dp	I/G = 10	G =		C2	6	G =		I/G =		G =		I/G =		G =		
B1 B2 ↑ ↑	μ Φρ ψ		G = G =		C2 C1	6	G = G =		I/G = I/G =		G = G =		I/G = I/G =		G = G =		
B1 B2 ↑ ↑ AM G =	= =	I/G = 10			C2 C1 I/G =												

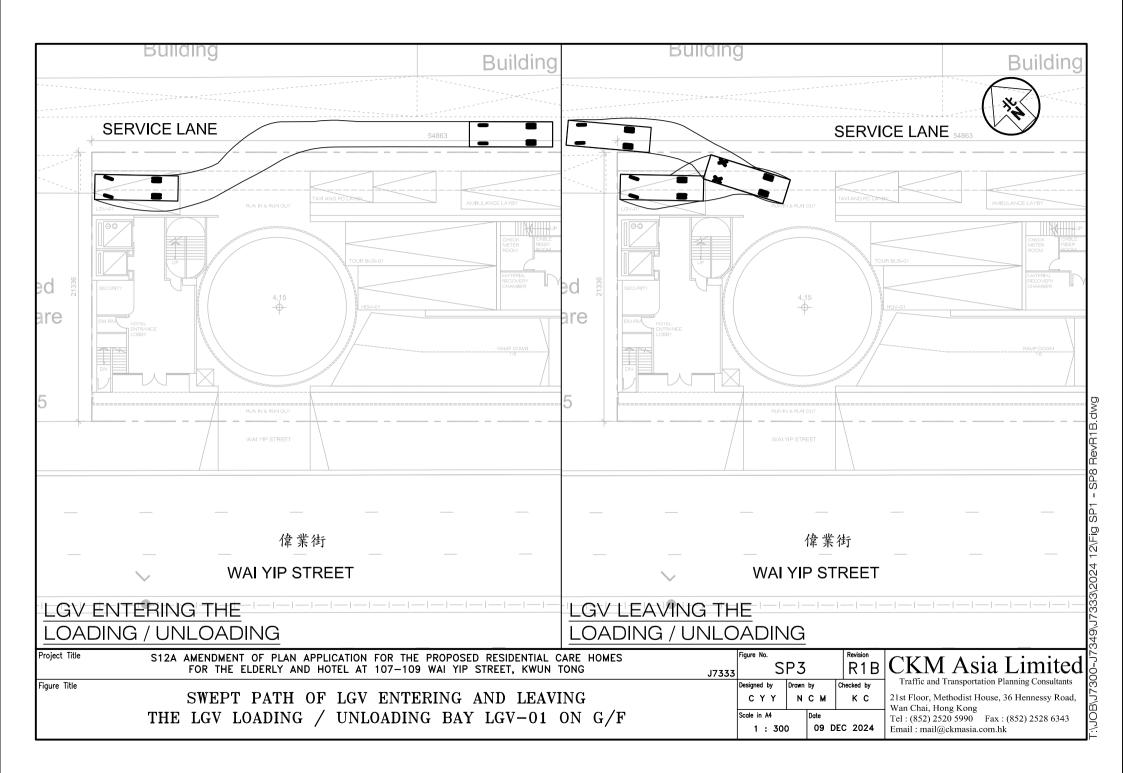

Sensitivity Test (644-bed RCHE and 200-room Hotel)

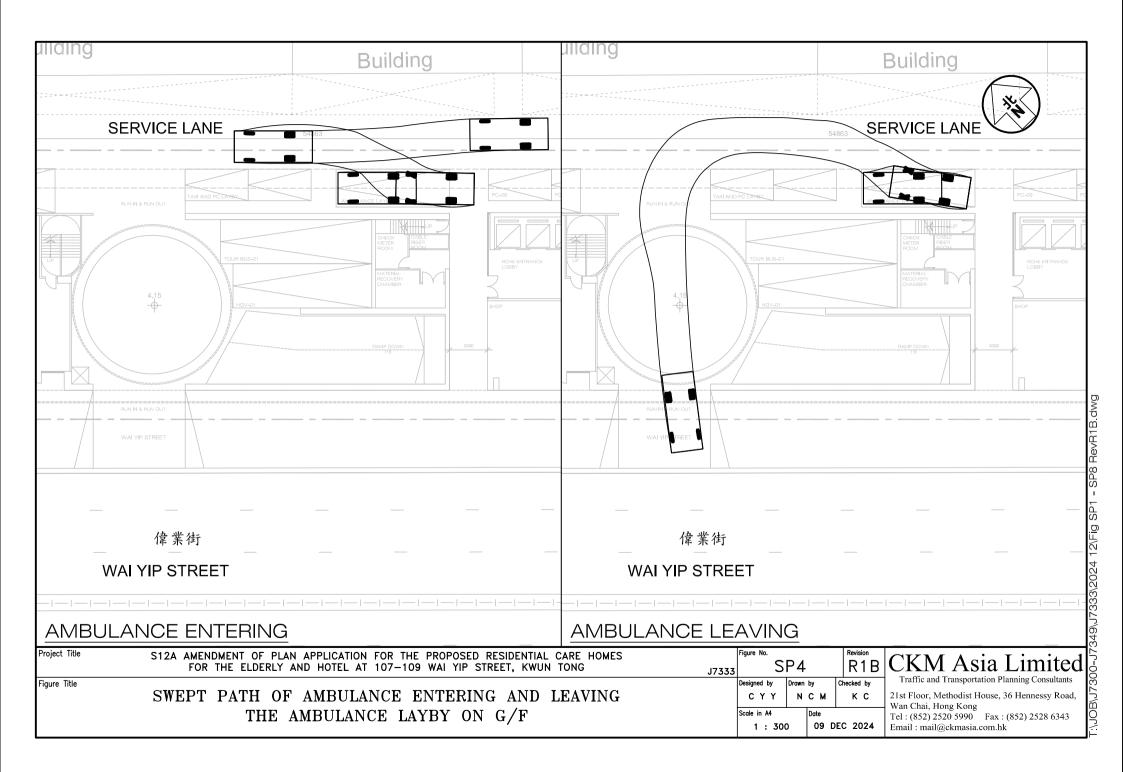

Junction:		Road / Shun Yi												-	Job Nu	imber:	
Scenario:		Proposed Deve															A-1
Design Year:	2032	Designe	d By:				-	Checke	∍d By:				-	Date:	13 No	ovember	: 2024
				. 		. 				AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)		y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Hoi Bun Road	WB	SA	A1	1,2	3.50		Ordari		1965	838	0.426			1965	711	0.362	
The Bull Rock		RT	A2	1	3.50	25.0		100	1986	433	1	0.218	100	1986	416	0.209	
					0.00	20.0		100	1000		0.2.0	0.2.0	100	1000		0.200	0.200
Hoi Bun Road	<u>г.</u> р	LT	B1	2	3.50	15.0	\vdash	100	1786	491	0.275	0.275	100	1786	503	0.282	0.282
HUI DUIT NUAU	ED						├ ───'	1									
		SA+LT	B2	2	3.50	20.0	<u> </u> '	10	2089	575	0.275	'	16	2080	585	0.281	
				┝───		<u> '</u>	<u> '</u>	 '	<u> '</u>		├──	'	╂───	├ ───'	├───	├───	
				├───	──	'	 '	 '	 '	├ ───'	──	'	──	<u> '</u>			──
				├───		'	 '	 '	 '	├ ───'	├───	'	──	 '	──	──	
			!	├───	──	'	 '	 '	'	├ ───'	──	'	──	'	──	──	
			!	──	──	'	 '	 '	 '	 '	──	'		 '	──	──	──
			!	──	<u> </u>	'	└── '	 '	 '	 '	—	'		 '			
			!	──		'	 '	 '	 '	↓ '		'		 '			
ļ			!	 		ļ'	 '	 '	 '	 '	└──	ļ'		 '			<u> </u>
			!	 	_	ļ'	 '	 '	 '	'ــــــــــــــــــــــــــــــــــــ	<u> </u>	ا ا		ļ'	<u> </u>	<u> </u>	<u> </u>
			!	Ļ	<u> </u>	ļ'	 '	 '	 '	<u> </u> '	\vdash	ļ'		<u> </u>			<u> </u>
				<u> </u>			<u> </u>		<u> </u>								<u> </u>
				<u> </u>				<u> </u> '									
			I	Í													
				「 <u> </u>	<u> </u>	<u> </u>	<u> </u>	ſ'	<u> </u>	「 <u> </u>			<u> </u>				
pedestrian pha	ase		Ср	1,3		min c	rossing	time =	7	sec	GM +	7	sec F	-GM =	14	sec	
гг			Dp	3			rossing		6		GM +	6		=GM =	12	sec	
			Ep	3			rossing		11		GM +	12		=GM =	23	sec	
			Fp	3			rossing		8		GM +	6		=GM =	14	sec	1
			<u> </u>			Thirty.	Coonig							0.01		000	
				<u> </u>					\vdash	<u> </u>							
				<u> </u>					┝───┘					I			
				<u> </u>					├ ──'								
					<u> </u>					<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>
AM Traffic Flow (pcu/hr)		Ν	PM Traffic i	Flow (pcu/hr))			Ν	S=1940+1	100(W–3.25	i) :	S=2080+10	0(W-3.25)			
550		I		1	599				$\overline{\ }$	S _M =S÷(1+'	1.5f/r)	5	S _M =(S-230)	÷(1+1.5f/r)		Improven by Other	
l ↑			\mathbf{X}		Ť				\mathbf{X}		AM	Peak	PM	Peak	00	5, 2.	1.0,-
	516		ļ	—	_ _>	489			I	'	1+2		1+2	<u> </u>	1		
		433 4	ļ	1				416	I	Sum y	0.493		0.491	·			
		838 ◀	ļ				711	ℯᆜ	I	L (s)	39		39				
			ļ	1					I	C (s)	118		108				
			ļ	1					I	practical y	0.603		0.575				
			ļ	1					ł	R.C. (%)	22%		17%				
4				<u> </u>		3				1.0. (,		<u> </u>		<u> </u>	<u> </u>		
1		2	•			3	▲	Ep	I								
Ср		B1	l				Ср	Ĩ	I								
•		B2	→				₹ A		Fp								
	t						Dp	ţ	, ,								
	-	— A2 — A1		←	—— A1	1			I								
AM G =	:	I/G = 8	G =	_	I/G =	8	G =	23	I/G =	2	G =	_	I/G =	_	G =	_	_
G =	:	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 8	G =		I/G =		G =		I/G =	2	G =		I/G =		G =		
G =	:	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

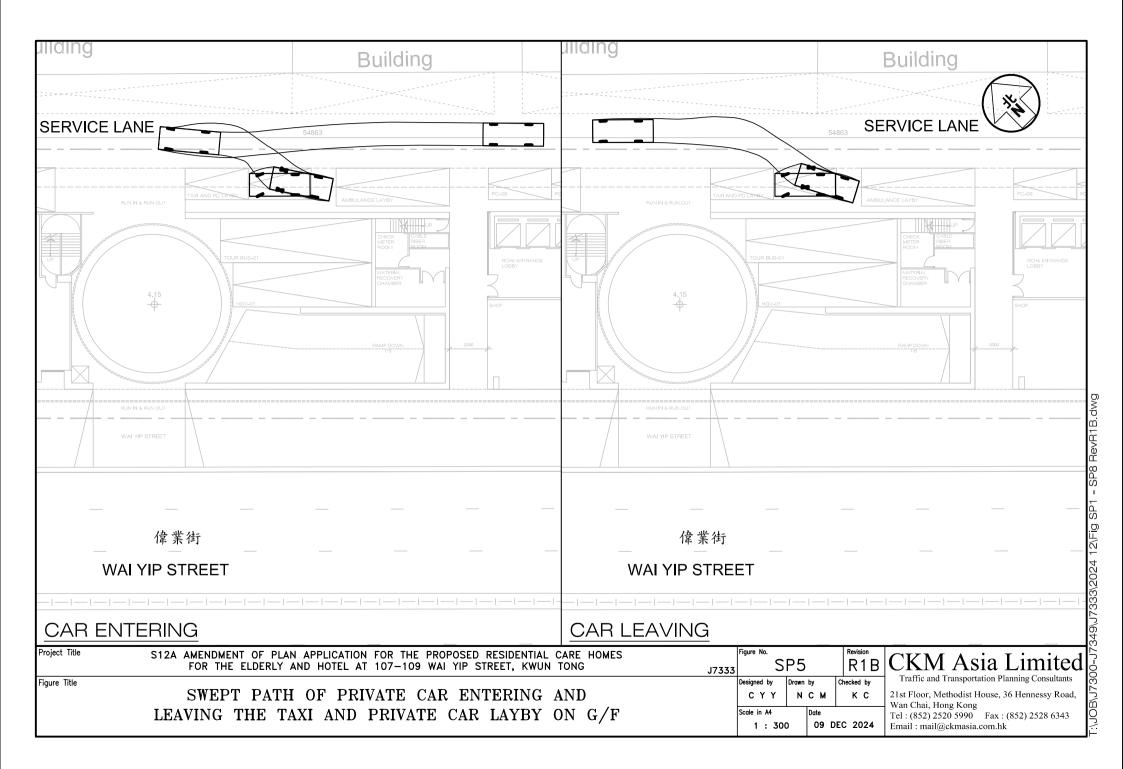
						gnar	ounot		naryc								
Junction: Scenario:	Wai Yip Stre With the Pro				hed RC	HE and	200-roo	m Hotel)					-	Job Nu		J7333 A-2
Design Year:	2032							Checke					<u>.</u>	Date:	13 N	ovembei	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
				-			Gradient	·	(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		,
Wai Yip Street	EB	SA SA	A1 A2	1	3.50 3.50				1965 2105	625 669	0.318	0.318		1965 2105	545 584	0.277	0.277
		SA	A2 A3	1	3.50				2105	669	0.318			2105	583	0.277	0.277
		ÖN	7.0		0.00				2100	000	0.010			2100	000	0.211	
Wai Yip Street	WB	SA	B1	1	3.50				1965	392	0.199			1965	409	0.208	
		SA	B2	1	3.50				2105	420	0.200			2105	438	0.208	
		SA	B3	1	3.50				2105	421	0.200			2105	439	0.209	
Shun Yip Stree	et NB	LT	C1	3	3.50	15.0		100	1786	314	0.176	0.477	100	1786	365	0.204	
		LT+RT RT	C2 C3	3 3	3.50 3.50	18.0 25.0		100 100	1943 1854	343 326	0.177 0.176	0.177	100 100	1943 1854	398 252	0.205	0.205
		RI .	03	3	3.50	20.0		100	1004	320	0.170		100	1004	202	0.130	
pedestrian pha	250		Dp	1,2		min c	rossing	timo -	8	500	GM +	11	soc F	GM =	19	500	
pedestrian pria	150		Ep	2			rossing		12		GM +	9		GM =	21	sec sec	
			– – P Fp	2			rossing		13		GM +	12		GM =	25	sec	
											-			-			
AM Traffic Flow (pcu/h	r)		Ņ	PM Traffic	Flow (pcu/hr))			Ņ	S=1940+1	00(W–3.25) :	S=2080+10	0(W-3.25)	Note:		
			Ţ						\uparrow	S _M =S÷(1+	1.5f/r)	s	_M =(S-230)	÷(1+1.5f/r)			
	▶ 1963		\			1712			\		AM	Peak	PM	Peak			
											1+3		1+3				
	10	33 🗕 🗕					1286	•		Sum y	0.495		0.482				
		00								L (s)	40		40				
650	333				763 ◄	$ \rightarrow $	252			C (s)	118		108				
										practical y R.C. (%)	0.595		0.567 17%				
1		2								R.C. (%)	2070		17 /0				
1		2				3											
A1		1		ſ	•												
A3	←	В3	Fp		Ep												
		B2				•	┭┮										
∢ Dj		B1	∢ Dp	··· >	,		C2 C3										
		G= 7	G =	25	I/G =		G =		I/G =	2	G =		I/G =	I	G =		
				-		-									G =		
G =	I/C	G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G = PM G =		G = G = 7	G = G =	25	I/G =	8	G =		I/G =	2	G = G =		I/G =		G =		

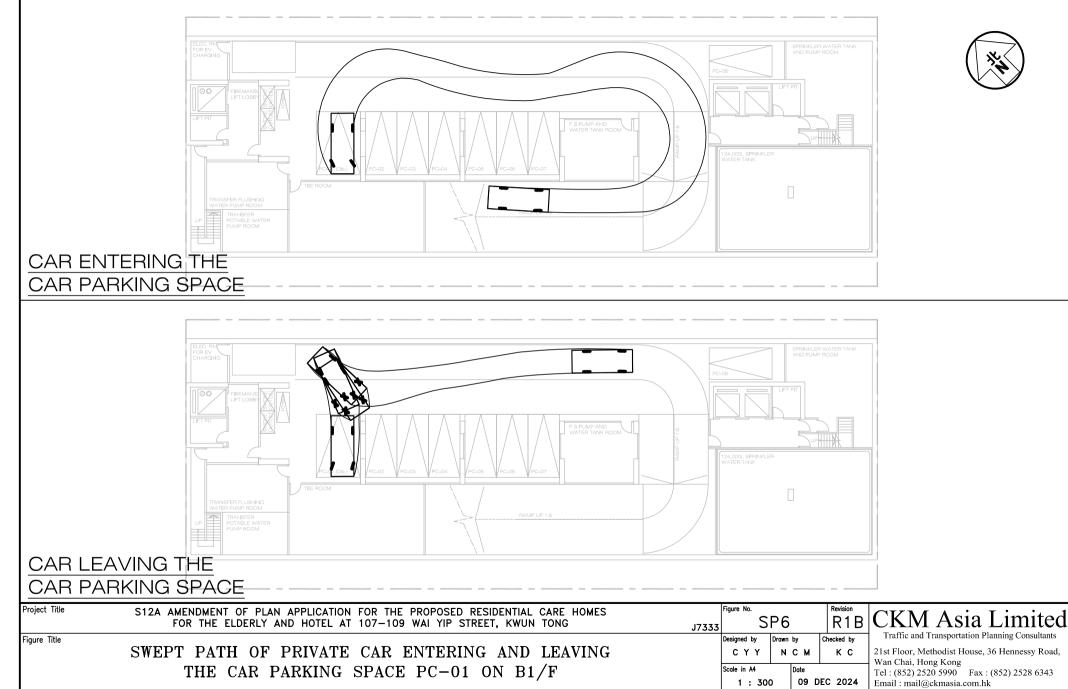

					0	9											
Junction:	Wai Yip Str	reet / Lai Yip	Street												Job Nu	mber:	J7333
Scenario:	-	oposed Dev															A-7
Design Year:	2032	Designe	ed By:					Checke	d By:					Date:	13 N	ovember	r 2024
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
			Thase	otage	widar (iii)	rtadida (iii)	Gradient	runnig //	(pcu/hr)	(pcu/hr)	y value	Ontroal y	runnig //	(pcu/hr)	(pcu/hr)	yvalue	Ontroal y
Wai Yip Stree	t WB	SA+LT	A1	3	2.80	20.0		53	1943	422	0.217		62	1944	445	0.229	
		SA	A2	3	2.80				2035	442	0.217			2035	466	0.229	
		SA	A3	3	2.80				2035	442	0.217			2035	465	0.229	
Lai Yip Street	SB	LT	B1	2	3.10	20.0		100	1971	292	0.148		100	1991	263	0 132	0.138
Lai rip otreet	00	SA	B2	1,2	3.10	20.0		100	2185	506	0.232		100	2198	390	0.132	0.100
		SA	B3	1,2	3.10				2065	478	0.231			2065	366	0.177	
Wai Yip Stree	t EB	SA+LT	C1	3	3.30	20.0		60	2101	701	0.334		61	2127	614	0.289	0.289
		SA	C2	3	3.30				2085	696	0.334	0.334		2085	602	0.289	
		SA	C3	3	3.30				2085	695	0.333			2085	601	0.288	
Lai Yip Street	NB	SA+LT	D1	2	3.80	15.0		58	2066	286	0.138	0.148	63	2077	286	0.138	
		SA	D2	2	3.80				2135	295	0.138			2135	294	0.138	
nodoctrian phy	200		En	3		min o	roccing	timo -	11		GM +	10	sec F	CM-	21		
pedestrian pha	456		Ep Fp	1			rossing rossing		<u>11</u> 7		GM +	10 11		GM =	18	sec sec	
			Gp	1,2			rossing		5		GM +	10	sec F		15	sec	
			Hp	1,3			rossing		5		GM +	7		GM =	12	sec	
				· · ·													
AM Traffic Flow (pcu/h	nr)		N	PM Traffic	Flow (pcu/hr)	1	1		N	S=1940+1	00(W-3.25) 5	S=2080+10	0(W-3.25)	Note:		
		► 292	5				→	263	7	S _M =S÷(1+	1.5f/r)	s	_M =(S–230)	÷(1+1.5f/r)		Improven	
418	Ļ		\setminus		377		Ļ		\setminus		AM	Peak	PM	Peak	Scheme	by Other	Project
t	984	Ļ			t		756				2+3	1,2+3	2+3	1,2+3			
	1674				_ _	1440				Sum y	0.482	0.565	0.426	0.466			
	416 ¹	083 -	-			400	1099	←	-	L (s)	39	10	39	10			
16	5 🛶	223			180	•		277		C (s)	120	120	108	108			
										practical y	0.608	0.825	0.575	0.817			
	•					•				R.C. (%)	26%	46%	35%	75%			
1	B3 B2	2		B3 B2 B	1	3											
Gp ▲	A	▼ Gp	4				↑	Ep	▲								
Fp	+ + †			+ ↓ ▲ └	→	C1 C2	<u>→</u>		·								
÷	Fp		<u>†</u> †	Fp 🕇	••••	C3	→	+ +	A3 A2								
	Gp				Gp▲		_ Ep	·····•	A1								
			D1 D2														
AM G =	= 18	/G = 5	G =		I/G =	12	G =		I/G =	6	G =		I/G =		G =		
G =	= !	/G =	G =		I/G =	6	G =		I/G =	6	G =		I/G =		G =		
PM G=	= 18	/G = 5	G =		I/G =	12	G =		I/G =	6	G =		I/G =		G =		

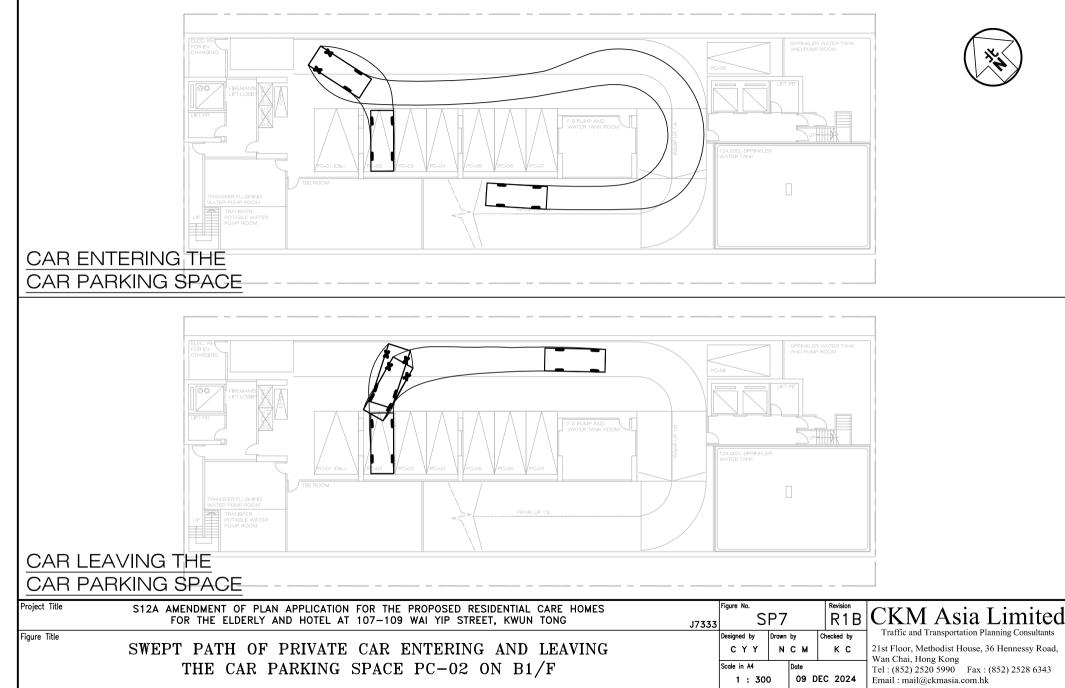

					0	gilai	ounce		naryc								
Junction:	Kwun Tong Ro	oad / Lai `	Yip Stre	et											Job Nu	mber:	J7333
Scenario:	With the Prop																A-8
Design Year:	2032	Designe	ed By:					Checke	d By:					Date:	13 No	ovember	r 2024
	Annuar		Dharas	01		Dealine (m)	0() I= 1:11	Turning %	0-4 5	AM Peak		Oritization	Turnin a O(0-4 5	PM Peak		Quiti a sta
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Kwun Tong Ro	ad EB	SA	A1	1,2	3.20				1935	379	0.196			1935	316	0.163	
		SA	A2	1,2	3.20				2075	406	0.196			2075	338	0.163	
				_				100	0005	4.53	0.077		400	0050			
Lai Yip Street N	NB	LT	B1	5 5	3.30 3.30	30.0		100	2035 2085	157 524	0.077		100	2052 2085	288 427	0.140	
		SA SA	B2 B3	5	3.30				2085	524	0.251 0.251			2085	427	0.205	
		UA	00	5	0.00				2000	525	0.201			2005	721	0.200	
Elegance Road	INB	SA	B4	5	3.50				2105	360	0.171			2105	295	0.140	
		SA+RT	B5	5	3.50	18.0		3	2100	359	0.171		18	2074	291	0.140	
		RT	B6	5	3.50	15.0		100	1914	328	0.171		100	1914	268	0.140	
Kwun Tong Ro	ad WB	LT	C1	1,5	3.30	15.0		100	1768	576	0.326	0.326	100	1768	405	0.229	0.229
		SA	C2	1,2	3.50				2105	433	0.206	0.206		2105	573	0.272	0.272
		SA	C3	1,2	3.50				2105	432	0.205			2105	573	0.272	
Elegance Road	I SB	LT	D1	3,4	3.50	15.0		100	1786	195		0.109	100	1786	216	0.121	0.121
		SA	D2	3,4	3.50				2105	224	0.106			2105	178	0.085	
		SA+RT		3,4	3.50	18.0		41	2035	216	0.106		65	1997	169	0.085	
		RT	D4	3,4	3.50	15.0		100	1914	204	0.107		100	1914	162	0.085	
pedestrian pha	so.		Ep	1,2		min.c	rossing	time -	12	600	GM +	10	sec F	CM -	22	500	
pedesthan pha	56			1,2,3,4			rossing		5		GM +	7		GM =	12	sec sec	
			Gp	2,3			rossing		5		GM +	5		GM =	10	sec	
			p	2,0			l		Ū					0			
AM Traffic Flow (pcu/hr)		N	PM Traffic I	Flow (pcu/hr	1	1		N	S=1940+1	00(W–3.25) :	S=2080+10	0(W–3.25)	Note:		
	291 -	→ 195	7			272	← →	216	7	S _M =S÷(1+	1.5f/r)	s	_M =(S–230)	÷(1+1.5f/r)		on Improv	
	353		\setminus				237				AM	Peak	PM	Peak		by Other	
	785			-		654					2+4+5		2+3+5			Peak, Sta e : 2>4>5	
										Sum y	0.641		0.622		3) In PM	Peak, Sta	age
	86	5	_				1146	↓	-	L (s)	15		20		Sequenc	e : 2>3>5	5>2
	709	576				535		405		C (s)	118		108				
157	← → 338				288	← →	319			practical y	0.786		0.733				
	I					I				R.C. (%)	23%		18%				
1		2				3	D4 D3	D2 D1		4	D4 D3	D2 D1		5			
A1 A2	→	A1 A2		;										† t ₊í	→		
-			-				₊				₊	1					
↓	C3 C2		-		— C3 C2		ţ	ŧ			ţ	ŧ		B3 B4 B5 ←┐ ♠ ♠			—
Fp, ∢ ∢Ep	C1	Fp	Ep	Gp		Fp .▼		Gp ♥.		Fp						ţ	C1
* ***		*		×		₩.		·* X		*				B1 B2 B	3		
AM	I/G =	=			I/G =				I/G =	5			I/G =	10		I/G =	3
PM	1/0				I/G =	7				-			I/G =	6		1/0	3
	I/G =	=			1/6 -	1			I/G =	/			1/G =	0		I/G =	0

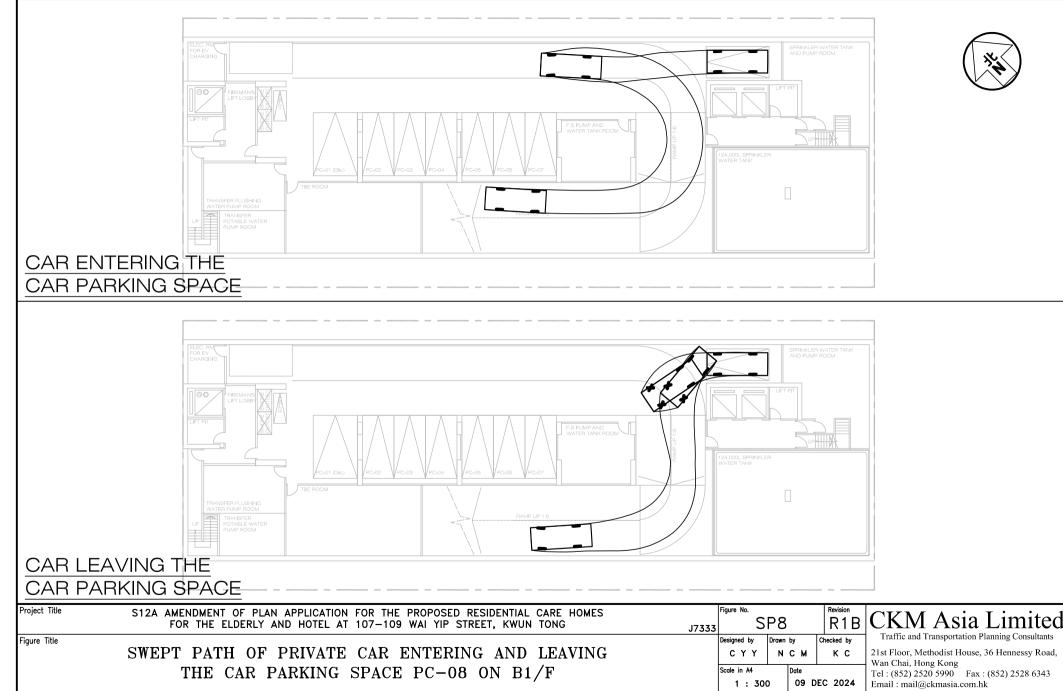

						0			,								
Junction:	Hoi Bun Roa	d / Lai Yip	Street											-	Job Nu	mber:	-
Scenario:	With the Pro																A-9
Design Year:	2032	Designe	ed By:					Checke	d By:				-	Date:	13 N	ovembei	2024
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
				-			Gradient	-	(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Hoi Bun Road	EB	LT*	A1	1	3.65	15.0		100	1800	250	0.139	0.139	100	1800	239		0.133
		SA*	A2	1	3.65				2120	266	0.125			2120	250	0.118	
Hoi Bun Road	WB	SA	B1	1,2	3.30				1945	429	0.221			1945	401	0.206	
		RT	B2	2	3.30	20.0		100	1940	331	0.171	0.171	100	1940	341	0.176	0.176
Lai Yip Street	SB	LT	C1	3	3.30	18.0		100	1795	365	0.203		100	1795	307		0.185
		RT	C2	3	3.30	25.0		100	1967	423	0.215	0.215	100	1967	364	0.185	
		RT	C3	3	3.30	22.0		100	1952	419	0.215		100	1952	362	0.185	
pedestrian pha	ase*		Fp	4		min c	rossing	ime =	7	sec	GM +	7	sec F	GM =	14	sec	
<u>r</u>			Gp	4			rossing		8		GM +	8		GM =	16	sec	
			Нр	4		min c	rossing	time =	10	sec	GM +	9	sec F	GM =	19	sec	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)				N K		00(W–3.25		S=2080+10		Note:		
	1		\mathbf{X}						\mathbf{X}	S _M =S÷(1+	1.5f/r)	S	S _M =(S–230)	÷(1+1.5f/r)	*Juncti Improv	on ement S	cheme
	842	→ 365	`			726	₅⊥₊	307	`			Peak		Peak	by Othe	er Projec	ct
	0.1	000				. 20					1+2+3		1+2+3				
250					239					Sum y	0.525 35		0.494 35				
	266	331		-	1	250		341		L (s) C (s)	118		108				
	429	↓					401 🗕	1		practical y	0.633		0.608				
										R.C. (%)	21%		23%				
1		2				3				4							
							•	J↓L	•		Цъ	••••					
A1								C3 C2 C1	-	Ť	Нр	1					
,				+							Gp	Fp					
	B1 ←			B2 └── B1◀───	_					Ļ	·	,					
										•		Ť					
AM G =	· I/G	G= 8	G =		I/G =	5	G =		I/G =	8	G =	14	I/G =	3	G =		
G =	· //0	G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		G = 8	G =		I/G =	5	G =		I/G =	8	G =	14	I/G =	3	G =		
G =	: I/G	G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		


					-	J											
Junction:		reet / Hung To												-	Job Nu	mber:	J7333
Scenario:		Proposed Dev															A-10
Design Year:	2032	Designe	ed By:					Checke	d By:				-	Date:	13 No	ovember	2024
										AM Peak		-		-	PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Lai Yip Street	SB	SA	A1	1	3.50				1965	449	0.228	0.228		1965	310	0.158	
		SA	A2	1	3.50				2105	480	0.228			2105	332	0.158	
Lai Yip Street	NB	SA	B1	1	3.50				1965	403	0.205			1965	375	0.191	0.191
I		SA	B2	1	3.50				2105	431	0.205			2105	402	0.191	
					0.50	15.0											
Hung To Road	1 WB	LT LT+RT	C1 C2*	2	3.50 3.50	15.0 18.0		100	1943	716	0.369	0.369	100	1943	742	0.382	0.382
		RT	C3	2	3.50	25.0		100	1010		0.000	0.000		1010	=	0.002	0.002
pedestrian pha	ase		Dp	1		min c	rossing	time =	7	sec	GM +	16	sec F	GM =	23	sec	
AM Traffic Flow (pcu/h	-l			DM T#	Flow (pcu/hr)										Neter		
AM Tranic Flow (pcu/n	") 		N	PWITTAIL	riow (pcu/iii)				N A		00(W-3.25		S=2080+10 S _M =(S–230)		Note: Assume	that phas	es C1
	Ļ								Ĩ\	S _M =S÷(1+						are blocke t parking a	u uue io
	929	369				642		365	-		AM 1+2	Peak	PM 1+2	Peak		ing To Ro	
		t						t		Sum y	0.597		0.573				
834		ł			777			ł		L (s)	14		11				
1		347			Î			377		C (s)	120		108				
										practical y	0.795		0.808				
										R.C. (%)	33%		41%				
1		2															
ļ	2 A1			t_	— C3												
A.	Dp			ŧ	C2												
B1 B2 ↑ ↑	•			Ł	— C1												
AM G =	:	I/G = 10	G =		I/G =	6	G =		I/G =		G =		I/G =	1	G =		
G =	:	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =	-	I/G = 6	G =		I/G =	7	G =		I/G =		G =		I/G =		G =		
G =	:	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

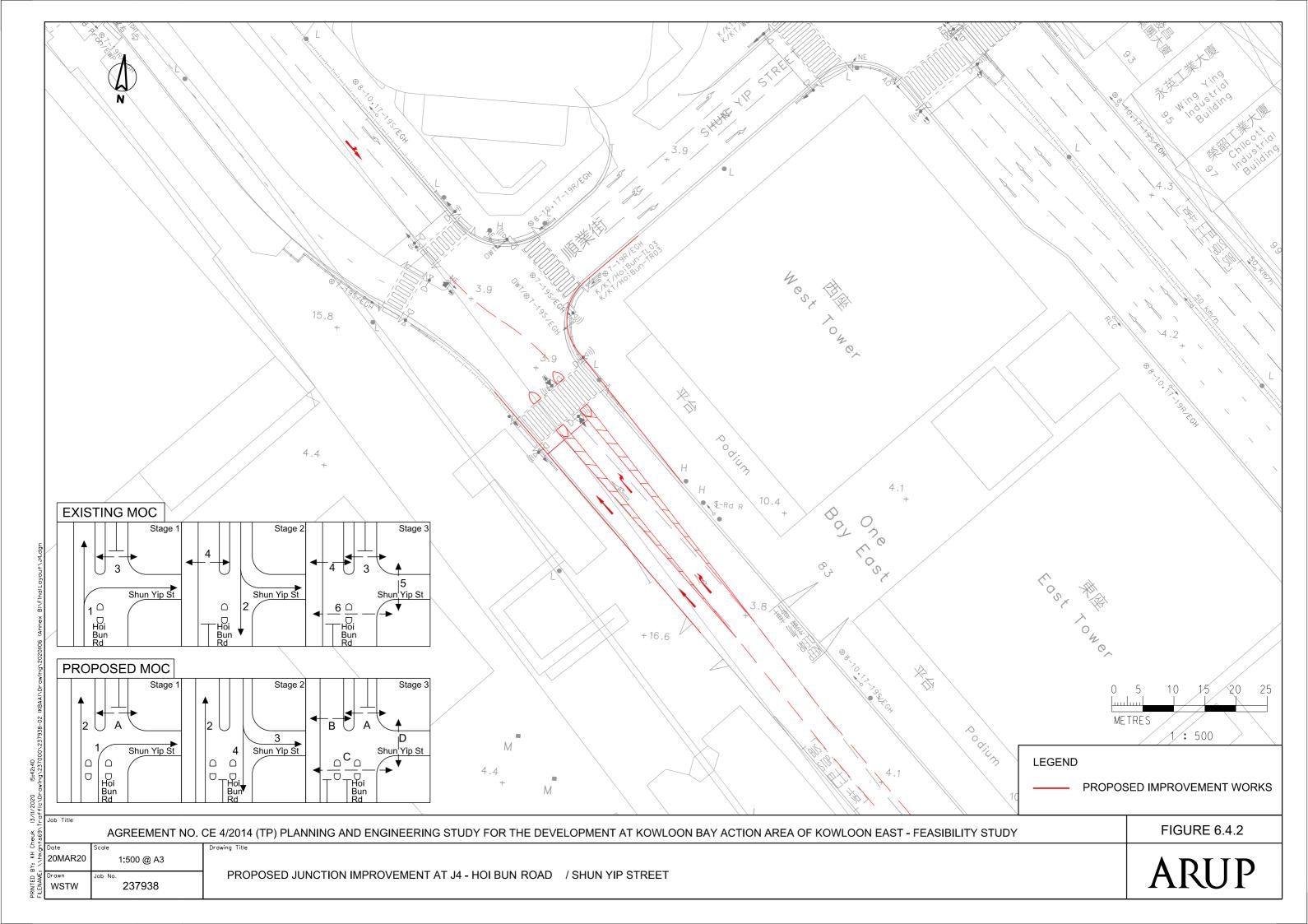

Appendix 2 – Swept Path Analysis

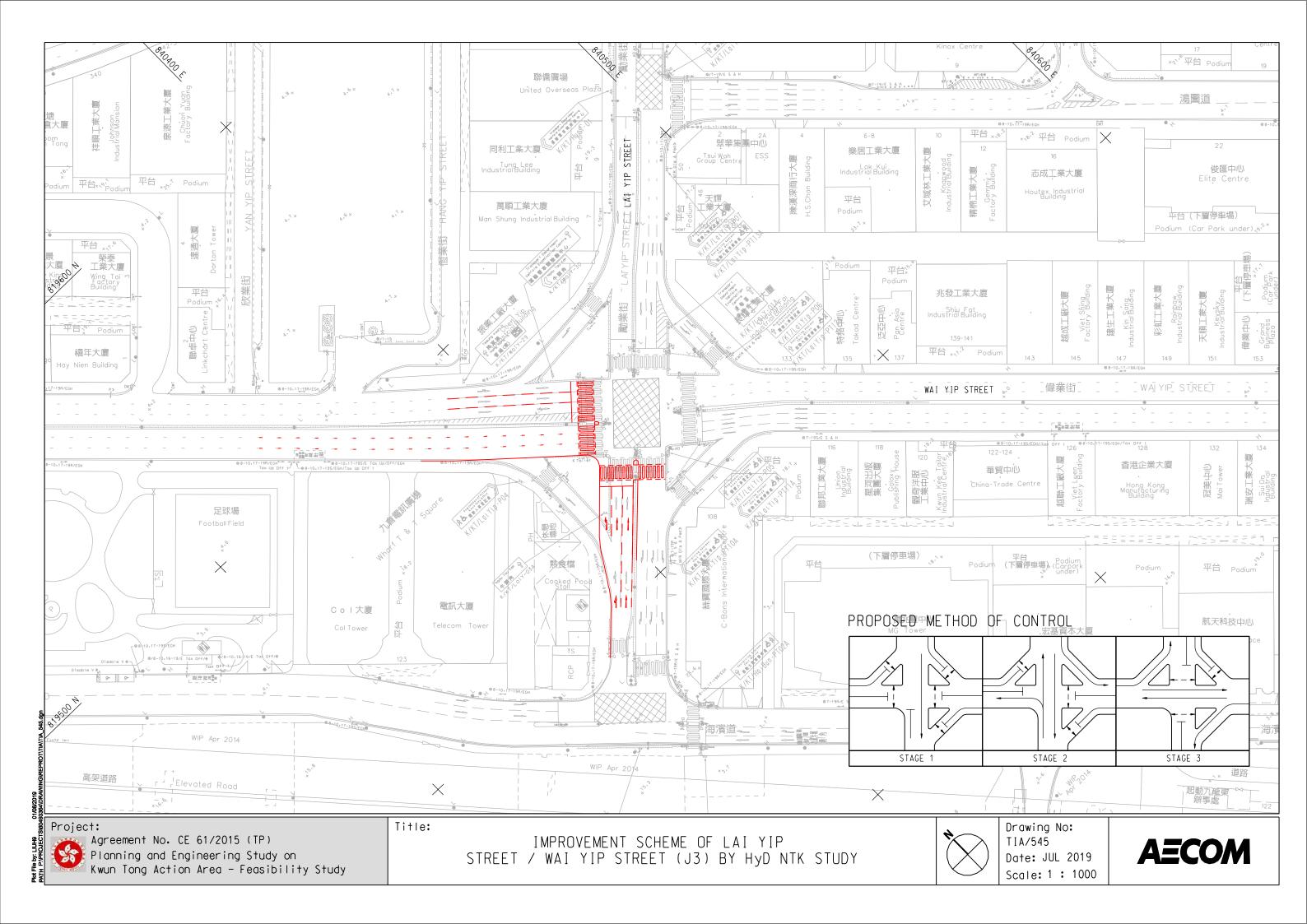


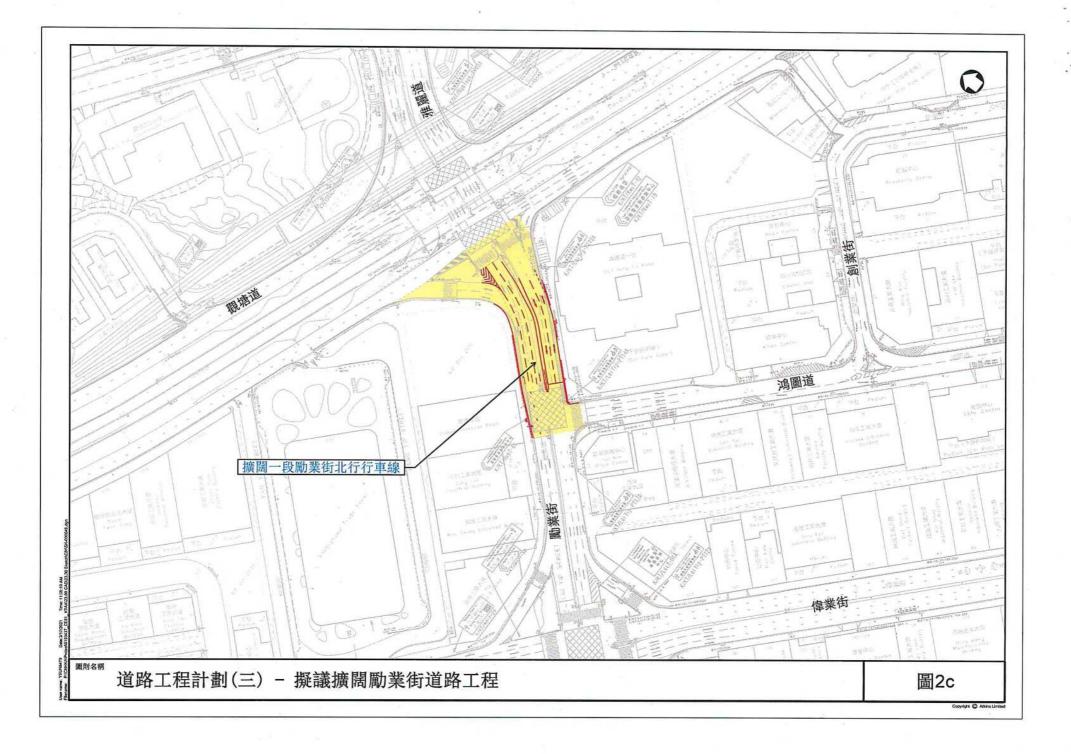




\JOB\J7300-J7349\J7333\2024 12\Fig SP1 - SP8 RevR1B.dwg




JOB/J7300-J7349/J7333/2024 12/Fig SP1 - SP8 RevR1B.dwg



JOB\J7300-J7349\J7333\2024 12\Fig SP1 - SP8 RevR1B.dwg

Appendix 3 – Planned Developments in the Vicinity of the Proposed Redevelopment

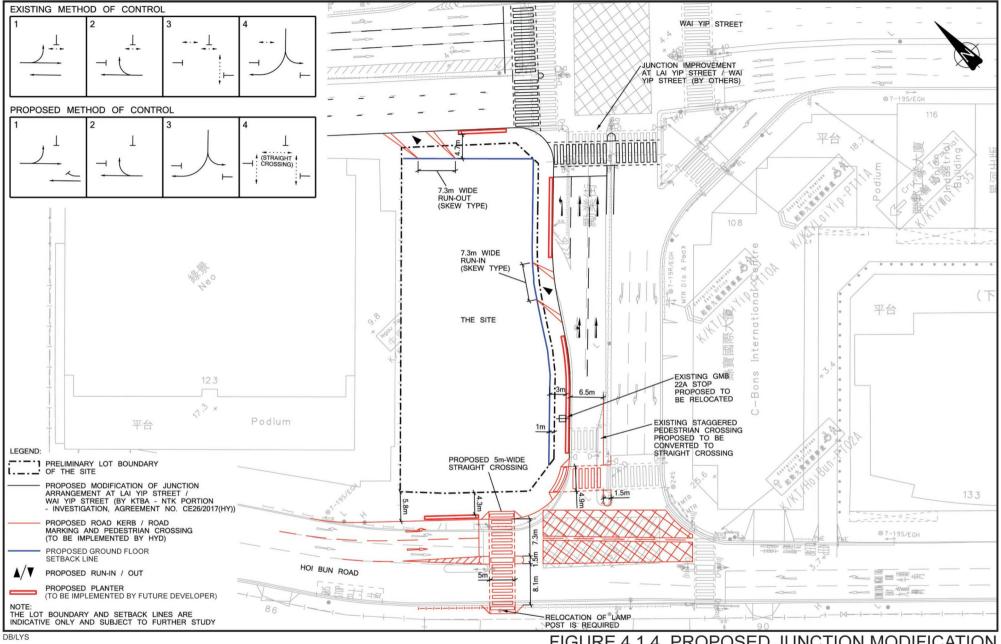


FIGURE 4.1.4 PROPOSED JUNCTION MODIFICATION

參考編號	繪圖
REFERENCE №.	DRAWING
M/K14S/23/35	5b
101/11/14/07/20/00	50