Section 12A Rezoning Application - Request for Amendment to the approved Lung Yeuk Tau and Kwan Tei
South Outline Zoning Plan No. S/NE-LYT/19 from "Residential (Group C)" Zone and "Agriculture" Zone to
"Residential (Group A) 2" Zone at Various Lots in D.D. 83 and Adjoining Government Land, Lung Yeuk Tau,
New Territories (Y/NE-LYT/16)

Ref.: ADCL/PLG-10248/L007

Enclosure | 3

Revised Traffic Impact Assessment

Revised Traffic Impact Assessment Final Report

8th November, 2023

Prepared by: CKM Asia Limited

Prepared for: Carlton Woodcraft Manufacturing Limited c/o Aikon Development Consultancy Limited

CONTENTS

<u>C</u>	<u>HAPTER</u>	PAGE
1.	INTRODUCTION Background Structure of Report	1
2.	EXISTING SITUATION The Subject Site The Road Network Pedestrian and Cycling Facilities Existing Traffic Flows Performance of the Surveyed Junctions Performance of the Surveyed Road Links Historic Traffic Growth Existing Pedestrian Flows Performance of the Pedestrian Facilities Population Projection Existing Public Transport Services Occupancy Survey of Existing Public Transport Services	2
3.	THE PROPOSED DEVELOPMENT Proposed Development Proposed Internal Transport Facilities Internal Transport Layout Proposed Vehicular Access	10
4.	TRAFFIC IMPACT Design Year Traffic Generation of the Proposed Development Traffic Forecasting Other Known Planned / Committed Major Developments in the Vicinity Future Road Network 2034 Traffic Flows 2034 Junction Capacity Analysis 2034 Road Link Capacity Analysis Mode of Transport and Pedestrian Generation of the Proposed Development Review on Public Transport Services Pedestrian Forecasting 2034 Pedestrian Facilities Operational Performance	13
5.	SUMMARY	25

Appendix A – Junction Analysis

TABLES

N	ш	M	R	F	R
17	-	/ V I	v	ᆫ	1

2.1	Existing Junction Performance
2.2	Existing P/Df of Surveyed Road Links
2.3	Historic Traffic information from the ATC
2.4	Existing Operational Performances of Surveyed Footpaths
2.5	Existing Operational Performances of Signalised Crossing
2.6	Projected Population and Employment for Northeast New Territories
2.7	Road-Based Public Transport Services Operating within 500m of the Subject Site
2.8	Results of Peak Hour Occupancy Survey for Local Services to/from Fanling / Sheung Shui
2.9	Results of Peak Hour Occupancy Survey for Regional Services to/from Urban Area
2.10	Operational Performance of MTR East Rail Line
3.1	Parameters of the Proposed Development
3.2	Comparison of Internal Transport Facilities for Residential Use
3.3	Comparison of Internal Transport Facilities for Retail Use
3.4	Overall Provision of Internal Transport Facilities
4.1	Trip Rates adopted from TPDM
4.2	Traffic Generation for the Proposed Development
<mark>4.3</mark>	Results of Trip Generation Survey and Comparisons with The TPDM Trip Rates
<mark>4.4</mark>	List of Other Known Planned / Committed Major Developments
<mark>4.5</mark>	Planned Traffic Improvement Works within the AOI

TABLES

NUM	<u>BER</u>
<mark>4.6</mark>	2034 Junction Performance
<mark>4.7</mark>	2034 P/Df of Road Links
4.8	Estimated Passenger Demand on Public Transport and Pedestrian Generation Associated with the Proposed Development
<mark>4.9</mark>	Analysis for the Proposed Feeder Service to/From MTR Station
<mark>4.10</mark>	Analysis on Passenger Queuing Area at Bus Terminus within the Proposed Development for Proposed Feeder Service to MTR Station
<mark>4.11</mark>	Analysis on Local Road-Based Public Transport Services to/from Fanling / Sheung Shui
<mark>4.12</mark>	Analysis on Passenger Queuing Area at Existing Bus Stop for Local Road-Based Public Transport Services to Fanling / Sheung Shui
<mark>4.13</mark>	Analysis on Regional Road-Based Public Transport Services to/From Urban Area
<mark>4.14</mark>	Analysis on Passenger Queuing Area at Existing Bus Stop for Regional Road-Based Public Transport Services to Urban Area
<mark>4.15</mark>	Year 2034 Operational Performances of Footpath
4.16	Year 2034 Operational Performances of Signalised Crossing

FIGURES

NUMBER

3.3

1.1	Location of the Subject Site
2.1	Location of the Surveyed Junctions and Road Links
2.2	Existing Layout - Junction of Sha Tau Kok Road / Lau Shui Heung Road (J01)
2.3	Existing Layout - Junction of Sha Tau Kok Road / Lung Ma Road (J02)
2.4	Existing Layout - Junction of Sha Tau Kok Road / Ma Sik Road (J03)
2.5	Existing Layout - Junction of Sha Tau Kok Road / Jockey Club Road (J04)
2.6	Existing Layout - Junction of So Kwun Po Road / Jockey Club Road / Ma Sik Road (J05)
2.7	Existing Layout – Roundabout of So Kwun Po Road Interchange (J06)
2.8	Existing Layout – Junction of Jockey Club Road / Lok Yip Road / San Wan Road (J07)
2.9	Existing Layout – Junction of Fanling Station Road / San Wan Road (J08)
2.10	Existing Layout – Roundabout of Sha Tau Kok Road / San Wan Road (J09)
2.11	Existing Peak Hour Traffic Flows
2.12	Location of the Surveyed Pedestrian Facilities
2.13	Public Transport Services operating within 500m radius of the Subject Site
3.1	Proposed Internal Transport Layout - Ground Floor
3.2	Proposed Internal Transport Layout – Basement Floors

Proposed Vehicular Access at Sha Tau Kok Road – Lung Yeuk Tau

FIGURES

- 4.1 Locations of Other Known Planned / Committed Major Developments and the Future Road Network in the vicinity of the Subject Site
- 4.2 2034 Traffic Flows Without the Proposed Development
- 4.3 2034 Traffic Flows With the Proposed Development
- 4.4 Proposed Internal Transport Layout Details of Proposed Bus Terminus and Associated Swept Path Analyses

1.0 INTRODUCTION

Background

- The Subject Site is located at Various Lots, i.e. Lot Nos. 755, 756, 782 S.A, 789 S.A, 789 RP, 790 S.A ss.1, 790 S.A RP, 791 S.A ss.1, 791 S.A ss.2, 791 S.A ss.2, 791 S.A ss.3, 791 S.A RP, 791 RP, 792 S.A RP, 792 RP, 793, 794 S.A, 794 RP, 800 S.A RP, 801 S.A, 803 RP, 835 S.B ss.1 S.A, 835 S.B ss.1 RP, 836 S.A, 836 RP, 837, 838 S.A, 838 RP, 839, 840, 841 S.A, 841 S.B, 841 RP, 842 S.A, 842 S.B, 842 RP, 843, 844 S.A, 844 RP and 854, in D.D. 83 and Adjoining Government Land, in Lung Yeuk Tau, Fanling, New Territories. Figure 1.1 shows the location of the Subject Site.
- 1.2 At present, the Subject Site is occupied by several open storages, which are accessed from either Sha Tau Kok Road Lung Yeuk Tau or Hai Wing Road / Dao Yang Road.
- 1.3 The Owner intends to develop the Subject Site into a development with 5 residential blocks comprising of 3,305 flats with average flat size of 44m² GFA, and 5,610 m² retail GFA (hereinafter "the Proposed Development").
- 1.4 Against this background, CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned to conduct a Traffic Impact Assessment ("TIA") for the Proposed Development for the Section 12A Rezoning Application from "Residential (Group C)" zone and "Agriculture" zone to "Residential (Group A)2". This revised TIA report has incorporated the comments provided by Transport Department in May and September 2023 on the earlier submitted TIA reports.

Structure of Report

- 1.5 The report is structured as follows:
 - Chapter 1 Gives the background of the project;
 - Chapter 2 Describes the existing situation;
 - Chapter 3 Provides details on the Proposed Development, and presents the internal transport facilities provided;
 - Chapter 4 Describes the traffic impact analysis; and
 - Chapter 5 Gives the overall conclusion.

2.0 EXISTING SITUATION

The Subject Site

2.1 The Subject Site is located in Ma Liu Shui San Tsuen, Lung Yeuk Tau in Fanling, New Territories. Its site area is approximately 22,500m², and is now being occupied by several open storage areas. Access to the Subject Site is from either Sha Tau Kok Road – Lung Yeuk Tau, or Dao Yang Road / Hai Wing Road.

The Road Network

- Sha Tau Kok Road Lung Yeuk Tau is a Rural Road which runs between San Wan Road, Fanling in the west and Ping Che Road in the east. East of Ping Che Road, Sha Tau Kok Road continues towards Sha Tau Kok and the Sha Tau Kok Boundary Control Point. The Sha Tau Kok Interchange with Heung Yuen Wai Highway is located 3km to the east. In the vicinity of the Subject Site between Lau Shui Heung Road and Jockey Club Road, Sha Tau Kok Road Lung Yeuk Tau is of dual-2 carriageway standard.
- 2.3 **Jockey Club Road** is a Primary Distributor running between Man Kam To Road to the north and Pak Wo Road to the south, where it connects with the Wo Hop Shek Interchange of Fanling Highway. It is of a dual-2 carriageway standard.
- 2.4 **So Kwun Po Road** is a Primary Distributor running between Pak Wo Road and Jockey Club Road. It connects with Fanling Highway via the So Kwun Po Interchange. So Kwun Po Road is generally of a dual-2/3 carriageway standard. To the east of Jockey Club Road, it continues as **Ma Sik Road** towards Luen Wo Hui and intersects with Sha Tau Kok Road Lung Yeuk Tau.

Pedestrian and Cycling Facilities

- 2.5 Footpaths and at-grade signalized pedestrian crossings are provided along Sha Tau Kok Road Lung Yeuk Tau in the vicinity of the Subject Site. A footbridge is also provided at the Sha Tau Kok Road / Lung Ma Road Roundabout.
- 2.6 Cycle track is provided west of Lung Ma Road along the south side of Sha Tau Kok Road Lung Yeuk Tau, i.e. westbound side towards Fanling.

Existing Traffic Flows

- 2.7 To quantify the existing traffic flows in the vicinity, updated manual classified counts were conducted on weekdays, i.e. Thursday, 11th May 2023 and Friday, 12th May 2023, during the AM peak period between 0700 and 0900 hours, and during the PM peak periods between 1700 and 1900 hours at the following junctions:
 - J01 Junction of Sha Tau Kok Road / Lau Shui Heung Road
 - J02 Junction of Sha Tau Kok Road / Lung Ma Road
 - J03 Junction of Sha Tau Kok Road / Ma Sik Road
 - J04 Junction of Sha Tau Kok Road / Jockey Club Road
 - 105 Junction of So Kwun Po Road / Jockey Club Road / Ma Sik Road
 - 106 Roundabout of So Kwun Po Interchange
 - J07 Junction of Jockey Club Road / Lok Yip Road / San Wan Road
 - 108 Junction of Fanling Station Road / San Wan Road
 - J09 Roundabout of Sha Tau Kok Road / San Wan Road

- 2.8 **Figure 2.1** shows the Area of Influence ("AOI") and the locations of the surveyed junctions; whereas **Figures 2.2 2.10** show their existing layouts.
- 2.9 The traffic counts are classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. The AM and PM peak hours identified from the surveys are found to be between 0800 and 0900 and 1800 1900 hours respectively, and the traffic flows in are shown in **Figure 2.11**.
- 2.10 The results from the above surveys are adopted in this revised TIA report.

Performance of the Surveyed Junctions

2.11 The existing performance of the surveyed junctions is calculated based on the observed traffic flows, and the analyses were undertaken using the methods outlined in Volume 2 of Transport Planning and Design Manual ("TPDM"). **Table 2.1** summarises the analysis results and the detailed calculations are found in **Appendix A**.

TABLE 2.1 EXISTING JUNCTION PERFORMANCE

Ref.	Junctions	Type of Junction	Parameter	AM Peak Hour	PM Peak Hour
J01	Sha Tau Kok Road / Lau Shui Heung Road	Roundabout	RFC	0.406	0.446
J02	Sha Tau Kok Road / Lung Ma Road	Roundabout	RFC	0.500	0.572
J03	Sha Tau Kok Road / Ma Sik Road	Signal	RC	74%	62%
J04	Sha Tau Kok Road / Jockey Club Road	Roundabout	RFC	0.528	0.474
J05	So Kwun Po Road / Jockey Club Road / Ma Sik Road	Signal	RC	34%	51%
J06	So Kwun Po Interchange	Roundabout	RFC	0.849	0.849
J07	Jockey Club Road / Lok Yip Road / San Wan Road	Signal	RFC	57%	61%
J08	Fanling Station Road / San Wan Road	Signal	RFC	54%	54%
J09	Sha Tau Kok Road / San Wan Road	Roundabout	RFC	0.476	0.514

Note: RFC - Ratio of Flow to Capacity RC - F

RC – Reserve Capacity

2.12 The above results indicate the surveyed junctions operate with capacities.

Performance of the Surveyed Road Links

2.13 The existing performance, in terms of Peak Hourly Flows / Design Flow Ratio ("P/Df") of the surveyed road links shown in **Figure 2.1**, is calculated based on the observed traffic flows, and the analysis results are summarized in **Table 2.2**.

TABLE 2.2 EXISTING P/Df OF SURVEYED ROAD LINKS

Ref.			Туре	Config.	Design	Peak Hou			
	Link	From	То	(Note 1)		Flow	Design Flow Ratio (P/Df)		
						(pcu/hr)	AM Peak	PM Peak	
							Hour	Hour	
L01	Sha Tau	Lung Ma Road	Lau Shui Heung	RR	Dual-2	3,400	0.280	0.307	
	Kok Road		Road						
L02	Sha Tau	Lau Shui Heung	Lung Ma Road	RR	Dual-2	3,400	0.311	0.354	
	Kok Road	Road							
L03	Sha Tau	Ma Sik Road	Lung Ma Road		Dual-2	3,400	0.411	0.396	
	Kok Road								

(Note 1)

RR – Rural Road Config. Configuration DD – District Distributor

PD - Primary Distributor

TABLE 2.2 EXISTING P/Df OF SURVEYED ROAD LINKS (CONT'D)

Ref.			Type	Config.	Design Flow	Peak Hour Flows / Design Flow Ratio (P/Df)		
						(pcu/hr)	AM Peak Hour	PM Peak Hour
L04	Sha Tau Kok Road	Lung Ma Road	Ma Sik Road	RR	Dual-2	3,400	0.575	0.598
L05	Sha Tau Kok Road	Jockey Club Road	Ma Sik Road	RR	Dual-2	3,400	0.413	0.430
L06	Sha Tau Kok Road	Ma Sik Road	Jockey Club Road	RR	Dual-2	3,400	0.363	0.320
L07	Ma Sik Road	Jockey Club Road	Sha Tau Kok Road	DD	Dual-2	3,050	0.364	0.350
L08	Ma Sik Road	Sha Tau Kok Road	Jockey Club Road	DD	Dual-2	3,050	0.340	0.285
L09	Jockey Club Road	Ma Sik Road / So Kwun Po Road	Sha Tau Kok Road	PD	Dual-2	3,400	0.155	0.136
L10	Jockey Club Road	Sha Tau Kok Road	Ma Sik Road / So Kwun Po Road	PD	Dual-2	3,400	0.168	0.140
L11	So Kwun Po Road	Jockey Club Road	So Kwun Po Interchange	PD	Dual-2	3,400	0.368	0.296
L12	So Kwun Po Road	So Kwun Po Interchange	Jockey Club Road	PD	Dual-2	3,400	0.439	0.448
L13	Jockey Club Road	Sha Tau Kok Road	Lok Yip Street / San Wan Road	PD	Dual-2	3,400	0.114	0.135
L14	Jockey Club Road	Lok Yip Street / San Wan Road	Sha Tau Kok Road	PD	Dual-2	3,400	0.217	0.206
L15	San Wan Road	Fanling Station Road	Lok Yip Street / San Wan Road	DD	Dual-2	3,050	0.158	0.130
L16	San Wan Road	Lok Yip Street / San Wan Road	Fanling Station Road	DD	Dual-2	3,050	0.189	0.203

(Note 1): RR – Rural Road Config. Configuration DD - District Distributor

PD - Primary Distributor

2.14 The above results indicate the surveyed road links operate with capacities.

Historic Traffic Growth

The annual average daily traffic ("AADT") of roads located in the vicinity of the Subject Site was obtained from the Annual Traffic Census ("ATC") published by Transport Department, and **Table 2.3** summarises the AADT between 2015 and 2021, i.e. the latest 7 years.

IADLL 2.3 I	113 I OKIC	TRAITIC	INI ONW	AHONIN	COM THE	AIC	
Station	5453	5824	5622	5623	5660	5860	Overall
Road		l .	Sha Tau	Kok Road	l .		1
From	Jockey	Jockey	Lok Yip	Luen	On Kui	Ping Che]
	Club	Club	Road	Shing	Street	Road	
	Road	Road		Street			
То	San Wan	Lok Yip	Luen	On Kui	Ping Che	Shun Lung]
	Road	Road	Shing St	Street	Road	Street	
Year		Av	verage Annı	Jal Daily Tra	affic ("AADI	Γ″)	
2015	18,750	29,240*	17,300*	17,780	30,380	6,320*	113,450
2016	19,530*	29,270	21,540	20,840	33,580	6,550	124,760
2017	19,230*	27,180	21,390*	20,700*	33,050*	6,460	121,550
2018	19,700*	28,050*	22,070*	21,350*	33,870*	6,620	125,040
2019	20,320	29,170*	22,950*	22,200	33,630*	6,570*	128,270
2020	17,680	27,760*	18,260	17,080	23,740	6,300*	104,520
2021	18,380*	30,230	19,410	18,530	22,980	5,970	109,530
Average Annual Growth (2015 – 2019)	2.0%	-0.1%	7.3%	5. <i>7</i> %	2.6%	3.1%	3.1%

TABLE 2.3 HISTORIC TRAFFIC INFORMATION FROM THE ATC

Note: * - Estimated by Growth Factor

- 2.16 It should be noted that AADT for 2020 and 2021 are presented for <u>reference</u> <u>only</u>, which have been excluded due to the impact of the COVID-19 pandemic.
- 2.17 **Table 2.3** shows that the overall traffic growth in the vicinity of the Subject Site is 3.1% per annum between 2015 and 2019.

Existing Pedestrian Flows

- 2.18 Pedestrian counts were conducted at footpaths and the signalised crossing on Sha Tau Kok Road Lung Yeuk Tau between the Subject Site and the nearby bus stops, namely San Wai Barracks, during the AM peak period between 0700 and 0900 hours, and during the PM peak periods between 1700 and 1900 hours on Friday, 12th May 2023. **Figure 2.12** shows the surveyed locations.
- 2.19 The AM and PM peak hours identified from the surveys are found to be between 0745 and 0845, and 1800 1900 hours respectively.

Performance of the Pedestrian Facilities

2.20 Based on the surveyed pedestrian flows, the peak hour operational performance of the surveyed footpaths in terms on Levels of Service ("LOS"), and the surveyed signalised crossing in terms on volume-to-capacity ("v/c") ratios are calculated, and summarised in **Tables 2.4 and 2.5** respectively.

TABLE 2.4 EXISTING OPERATIONAL PERFORMANCES OF SURVEYED FOOTPATHS

Section		Measured Width Effective			/ Flow I /hr)	2-Way Flow Rate (ped/m/min) [LOS]	
		(m) (m	(m)	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
FP01	Sha Tau Kok Road – Southern Footpath	4.5m	4.0m	10	30	0.1 [A]	0.2 [A]
FP02	Sha Tau Kok Road – Southern Footpath	4.5m	4.0m	17	27	0.1 [A]	0.2 [A]
FP03	Sha Tau Kok Road – Northern Footpath	1.5m	1.0m	21	36	0.4 [A]	0.6 [A]

FP01 - Sha Tau Kok Road - Southern footpath between San Wai Barrack Bus Stop and Signalised Crossing

FP02 - Sha Tau Kok Road - Southern footpath between Subject Site and Signalised Crossing

FP03 - Sha Tau Kok Road - Northern footpath between San Wai Barrack Bus Stop and Signalised Crossing

TABLE 2.5 EXISTING OPERATIONAL PERFORMANCES OF SIGNALISED CROSSING

Pedestrian Crossing	Width (m)	Type / Capacity (ped/hour)	Capacity (ped/hour) ar (ped/hour) AM Peak Hour	
XING01 Sha Tau Kok Road	5m	Signalised / 3,800 (Note 1)	11 [0.003]	13 [0.003]

XING01 - Signalised Crossing at Sha Tau Kok Road - Lung Yeuk Tau near San Wai Barrack

Note 1: Calculated based on TPDM Vol. 4 Chapter 3 with an assumption of a 65-second cycle including 26 seconds pedestrian green + flashing green time.

2.21 **Tables 2.4 and 2.5** show the surveyed pedestrian facilities operate with capacity.

Population Projection

2.22 Reference is made to the latest "2019-based Territorial Population and Employment Data Matrix" for Northeast New Territories published by the Planning Department, and the detail is presented in **Table 2.6**.

TABLE 2.6 PROJECTED POPULATION AND EMPLOYMENT FOR NORTHEAST NEW TERRITORIES

Item		Year	Average Annual Growth		
	2019	2026	2031	2019 - 2026	2026 - 2031
Population	1,316,700	1,431,950	1,547,650	+1.2%	+1.6%
Employment	421,000	411,500	438,000	-0.3%	+1.3%
Total	1,737,700	1,843,450	1,985,650	+0.9%	+1.5%

Table 2.6 shows that the total population and employment in the Northeast New Territories is projected to increase by 0.9% per annum from 2019 to 2026, and 1.5% per annum from 2026 to 2031.

Existing Public Transport Services

2.24 At present, multiple franchised bus and green minibus ("GMB") routes are available within 500m-radius from the Subject Site, and the details are presented in **Table 2.7** and **Figure 2.13**.

ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING TABLE 2.7 WITHIN 500M OF THE SUBJECT SITE

	WITHIN SOOM OF THE SOBJECT SITE	
Route	Routing	Frequency (minutes)
KMB 78A	Queen's Hill ↔ Fanling Station (Circular)	6 - 30
KMB 78B	Queen's Hill → Sheung Shui (Choi Yuen)	5 trips per day (1)(4)
	Sheung Shui (Choi Yuen) → Queen's Hill	3 trips per day (2)(4)
KMB 78K	Sheung Shui / Sheung Shui (Tai Ping) ↔ Sha Tau Kok	10 - 30
	Sha Tau Kok → Wah Ming	5 - 12 (1)(4)
KMB 79K	Sheung Shui ↔ Ta Kwu Ling (Tsung Yuen Ha)	15 - 30
KMB 277A	Sha Tau Kok → Lam Tin Station	60 (5)
	Lam Tin Station → Sha Tau Kok	60 (6)
KMB 278A	Queen's Hill ↔ Tsuen Wan (Nina Tower)	15 – 40
KMB N78	Sheung Shui → Sha Tau Kok	4 trips per day (3)
	Sha Tau Kok → Sheung Shui	4 trips per day (3)
CTB 56A	Queen's Hill Estate → Tuen Mun (Ching Tin and Wo Tin)	1 trip per AM, and
		1 trip per PM (4)
	Tuen Mun (Ching Tin and Wo Tin) → Queen's Hill Estate	2 trips per AM, and
		1 trip per PM (4)
CTB 78C	Queen's Hill Estate ↔ Kai Tak	<mark>55 – 60 ⁽⁷⁾</mark>
CTB 78X	Queen's Hill Estate ↔ Kai Tak	20 - 60
CTB 79X	Queen's Hill Estate ↔ Cheung Sha Wan (Kom Tsun Street)	20 - 45
CTB 79P	Queen's Hill Estate → HSR West Kowloon Station	2 trips per day (1)(4)
	HSR West Kowloon Station → Queen's Hill Estate	2 trips per day (2)(4)
CTB 679	Queen's Hill Estate →Central (Hong Kong Station)	2 trips per AM (1)(4)
	Central (Hong Kong Station) → Queen's Hill Estate	1 trip per PM (2) (4)
CTB 979	Queen's Hill Estate → Central (Hong Kong Station)	1 trip per AM ⁽¹⁾
	Central (Hong Kong Station) → Queen's Hill Estate	1 trip per PM ⁽²⁾
GMB 52B	Fanling Station ↔ Hok Tau	8 - 25
GMB 52K	Fanling Station ↔ Ping Che	4 - 10
GMB 55K	Sheung Shui Station ↔ Sha Tau Kok	4 - 10
GMB 56B	Fanling Station ↔ Tan Chuk Hang	15 - 30
GMB 56K	Fanling Station ↔ Luk Keng	10 - 30
GMB 503	Queen's Hill ↔ North District Hospital	10 - 20
GMB 503K	Queen's Hill ↔ Sheung Shui Station	8 – 15
RMB	Sheung Shui (Fu Hing Street) ↔ Ping Che / Ping Yeung	-

Note: KMB – Kowloon Motor Bus CTB - Citybus

GMB - Green Minibus

(1) Morning peak hour service only (2) Afternoon peak hour service only (3) Overnight service only (4) No service on Saturdays, Sundays and public holidays

(5) Morning / Early Afternoon service only

(6) Evening service only

(7) Service on Saturdays, Sundays and public holidays only

Occupancy Survey of Existing Public Transport Services

Franchised Bus and Green Minibus

- 2.25 An occupancy survey of public transport services was conducted at the bus stops, namely the San Wai Barracks, at Sha Tau Kok Road – Lung Yeuk Tau on Friday, 12th May 2023 during the AM and PM peak periods between 0700 and 0900 hours, and 1700 and 1900 hours respectively. The San Wai Barracks bus stops are located some 200m west of the Subject Site, which are within short walking distance. The AM and PM peak hours identified from the surveys are found to be between 0700 and 0800, and 1800 - 1900 hours respectively.
- 2.26 In general, the carrying capacity of a double-decker bus is around 120 passengers per vehicle. However, to be conservative, a lower carrying capacity of 90 passengers per vehicle, i.e. 75% of the actual carrying capacity, is adopted.

2.27 **Table 2.8** summaries the results for local services to and from Fanling / Sheung Shui, and **Table 2.9** summaries the results for regional services to and from the urban area.

TABLE 2.8 RESULTS OF PEAK HOUR OCCUPANCY SURVEY FOR LOCAL SERVICES TO/FROM FANLING / SHEUNG SHUI

1	. JL	INVICES	OHROM	FAINLING / SHEC	714G 311G1			
Peak Hour	Route	Number of Trips Observed	Average Headway Observed (min)	Number of Passenger Observed (passenger/hour)	Total Hourly Capacity (passenger/hour) (Note 1)	Observed Occupancy	Surplus Capacity (passenger /hour)	
To Fanling / Sheung Shui								
AM	KMB 78K	<mark>14</mark>	<mark>4.5</mark>	869	1,260	<mark>69%</mark>	<mark>391</mark>	
	KMB 79K	4	<mark>15</mark>	<mark>294</mark>	360	<mark>82%</mark>	<mark>66</mark>	
	<i>GMB 52B</i>	<u>2</u>	<u>30</u>	<u>32</u>	<u>38</u>	<i>84%</i>	<u>6</u>	
	<i>GMB 52K</i>	<mark>26</mark>	<u>2.5</u>	<mark>414</mark>	<mark>494</mark>	<i>84%</i>	<mark>80</mark>	
	<i>GMB 55K</i>	<u>16</u>	4	<u>240</u>	<u> 304</u>	<i>79%</i>	<u>64</u>	
	<i>GMB 56B</i>	<u>3</u>	<u>20</u>	<u>50</u>	<u>57</u>	<mark>88%</mark>	7	
	<i>GMB 56K</i>	1	<u>60</u>	<u>16</u>	<u>19</u>	<i>84%</i>	<u>3</u>	
	OVERALL	KMB: 18	3.3	1,163	1,620	72%	45 <i>7</i>	
		GMB: 48	1.3	752	912	82%	160	
PM	KMB 78 K	3	<mark>20</mark>	<mark>196</mark>	<mark>270</mark>	<mark>73%</mark>	<mark>74</mark>	
	KMB 79K	1	<mark>60</mark>	<mark>90</mark>	90	<mark>100%</mark>	0	
	<i>GMB 52B</i>	<u>3</u>	<mark>20</mark>	<mark>44</mark>	<u>57</u>	<i>77%</i>	<u>13</u>	
	<i>GMB 52K</i>	<u>19</u>	<u>3</u>	<mark>295</mark>	<u>361</u>	<mark>82%</mark>	<mark>66</mark>	
	<i>GMB 55K</i>	<u>13</u>	<u>4.5</u>	<u> 197</u>	<u>247</u>	<mark>80%</mark>	<u>50</u>	
	<i>GMB 56B</i>	<u>3</u>	<mark>20</mark>	44	<u>57</u>	<u>77%</u>	<u>13</u>	
	<i>GMB 56K</i>	<mark>2</mark>	<u>30</u>	<mark>29</mark>	<u>38</u>	76%	9	
	OVERALL	KMB: 4	15	286	360	79%	74	
		GMB: 40	1.5	609	760	80%	151	
			Fro	m Fanling / Sheung S	hui			
AM	KMB 78K	2	30	104	180	<mark>58%</mark>	<mark>76</mark>	
7 (1) 1	KMB 79K	2	30	52	180	29%	128	
	<i>GMB 52B</i>	2	<u>30</u>	32 32	38	84%	6	
	GMB 52K	<u>29</u>	<u> </u>	481	551	87%	70	
	<i>GMB 55K</i>	14	<u>4.5</u>	232	266	87%	34	
	<i>GMB 56B</i>	4	1.5 1.5	34	76	45%	<u>42</u>	
	<i>GMB 56K</i>	2	<u>30</u>	29	38	76 %	9	
	OVERALL	KMB: 4	15	156	360	43%	204	
		GMB: 51	1.2	808	969	83%	161	
PM	KMB 78K	4	15	279	360	78%	81	
	KMB 79K	2	30	146	180	81%	34	
	<i>GMB 52B</i>	3	<u>20</u>	<u>50</u>	<u>57</u>	<mark>88%</mark>	7	
	<i>GMB 52K</i>	<u>15</u>	4	<u>270</u>	<mark>285</mark>	<mark>95%</mark>	<u>15</u>	
	<i>GMB 55K</i>	<u>15</u>	4	<mark>265</mark>	<mark>285</mark>	93%	<u>20</u>	
	<i>GMB 56B</i>	<u>3</u>	<u>20</u>	<u>54</u>	<u>57</u>	<u>95%</u>	<u>3</u>	
	<i>GMB 56K</i>	1	<u>60</u>	<u>16</u>	<u>19</u>	<mark>84%</mark>	<u>3</u>	
	OVERALL	KMB: 6	10	425	540	79%	115	
		GMB: 37	1.6	655	703	93%	48	
							•	

Note 1: According to the Annual Transport Digest 2022 published by Transport Department, the average capacity of a double-decker bus is around 120 passengers. To be conservative, a capacity of 90 passengers per double-decker bus is adopted. For GMB, a seating capacity of 19 passengers per vehicle is adopted.

TABLE 2.9 RESULTS OF PEAK HOUR OCCUPANCY SURVEY FOR REGIONAL SERVICES TO/FROM URABN AREA

Peak Hour	Route	Number of Trips Observed	Average Headway Observed (min)	Number of Passenger Observed (passenger/hour)	Total Hourly Capacity ⁽¹⁾ (passenger/hour)	Observed Occupancy	Surplus Capacity (passenger /hour)
				To Urban Area			
AM	277A	1	<mark>60</mark>	<mark>45</mark>	<mark>90</mark>	<mark>50%</mark>	<mark>45</mark>
	<mark>679</mark>	2	<mark>30</mark>	<mark>43</mark>	<mark>180</mark>	<mark>24%</mark>	<mark>137</mark>
	<mark>78X</mark>	2	<mark>30</mark>	<mark>105</mark>	<mark>180</mark>	<mark>58%</mark>	<mark>75</mark>
	<mark>79X</mark>	2	<mark>30</mark>	<mark>61</mark>	<mark>180</mark>	<mark>34%</mark>	<mark>119</mark>
	<mark>979</mark>	1	<mark>60</mark>	<mark>25</mark>	<mark>90</mark>	<mark>28%</mark>	<mark>65</mark>
	OVERALL	8	<i>7</i> .5	279	720	39%	441
PM	<mark>79X</mark>	1	<mark>60</mark>	<mark>10</mark>	<mark>90</mark>	<mark>11%</mark>	<mark>80</mark>
	OVERALL	1	60	10	90	11%	80
				From Urban Area			
AM	OVERALL		No inbour	nd service to Fanlir	ng during the AM	peak hour.	
PM	277A	<mark>1</mark>	<mark>60</mark>	<mark>34</mark>	<mark>90</mark>	<mark>38%</mark>	<mark>56</mark>
	<mark>78X</mark>	<mark>2</mark>	<mark>30</mark>	<mark>110</mark>	<mark>180</mark>	<mark>61%</mark>	<mark>70</mark>
	<mark>79X</mark>	<mark>3</mark>	<mark>20</mark>	<mark>191</mark>	<mark>270</mark>	<mark>71%</mark>	<mark>79</mark>
	OVERALL	6	10	335	540	62%	205

Note 1: According to the Annual Transport Digest 2022 published by Transport Department, the average capacity of a double-decker bus is around 120 passengers. To be conservative, a capacity of 90 passengers per double-decker bus is adopted. For GMB, a seating capacity of 19 passengers per vehicle is adopted.

- 2.28 **Table 2.8** shows the local services to and from Fanling / Sheung Shui is frequent, and the franchised bus services are some 43% to 79% utilized, whereas the GMB services are some 80% to 92% utilized.
- 2.29 **Table 2.9** shows the regional services to and from the urban area is no more than 62% utilized, and the service frequency is considerably lower.

MTR East Rail Line

2.30 Based on the information obtained from the Legislative Council, the operational performance for MTR East Rail Line in 2022 is summarized in **Table 2.10**.

TABLE 2.10 OPERATIONAL PERFORMANCE OF MTR EAST RAIL LINE

Item	Parameters
maximized [a]	82,500 passengers / hour
Existing carrying capacity [b]	62,500 passengers / hour (Note 1)
Current Patronage [c]	37,700 passengers / hour (Note 2)
Current Loading [c]/[b] {Critical Link}	60% {Tai Wai to Kowloon Tong}
Loading in comparison with the maximum carrying capacity [c]/[a]	46% {Tai Wai to Kowloon Tong}

Source: Reply Serial No. TLB168 for Question Serial No. 1237, Controlling Officer's Reply, Examination of Estimates of Expenditure 2023-24. Finance Committee. Legislative Council. 14 April 2023. https://www.legco.gov.hk/yr2023/english/fc/fc/wq/tlb-e.pdf

Note 1: According to the Reply Serial No. TLB168, existing service frequency has not yet increased to the maximum level and capacity as permitted by the signaling system.

Note 2: According to the Reply Serial No. TLB168, in view of the impact of COVID-2019, patronage shown is based on those months in 2022 when the pandemic situation was relatively eased.

2.31 **Table 2.10** shows that the MTR East Rail Line operates at 60% of its current capacity, or 46% of its maximum carrying capacity during the peak hour.

3.0 THE PROPOSED DEVELOPMENT

Proposed Development

3.1 **Table 3.1** summarises the parameters of the Proposed Development.

TABLE 3.1 PARAMETERS OF THE PROPOSED DEVELOPMENT

Use		Developme	nt Parameters	
Residential	Domestic Plot Ratio: Number of blocks: Total number of flats: Average Flat Size: Estimated Population:	6.5 5 3,305 44m ² GFA 9,915	Flat Mix: GFA ≤ 40 m ² 40 m ² $<$ GFA ≤ 70 m ²	2,991 units 314 units
Retail	5,610m ² GFA			

Proposed Internal Transport Facilities

Provision of Internal Transport Facilities for the Residential Flats

The internal transport facilities for the residential flats are provided based on the recommendation of the Hong Kong Planning Standards and Guidelines ("HKPSG"). **Table 3.2** compares the HKPSG recommendation and the proposed provision.

TABLE 3.2 COMPARISON OF INTERNAL TRANSPORT FACILITIES FOR RESIDENTIAL USE

	HKPSG Recommendation	Proposed Provision
	Private Car Parking Spaces	Troposed Frovision
(i)	Residential:	422 nos.
	Parking Requirement = GPS x R1 x R2 x R3	(=HKPSG Max., OK)
	Global Parking Standard (GPS):	(=TIKI 3G Max., OK)
	Min.: 1 space per 7 flats	
	Max.: 1 space per 4 flats	
	Demand Adjustment Ratio (R1):	
	• Flat Size $<40m^2$ = 0.5	
	• $40 < Flat Size \le 70 \text{ m}^2 = 1.2$	
	Accessibility Adjustment Ratio (R2):	
	Outside a 500m-radius of rail station = 1.0	
	Development Intensity Adjustment Ratio (R3)	
	• 5.0 < Domestic Plot Ratio ≤ 8.0 = 0.9	
	For Flat Size < 40m ² (2,991 flats)	
	Min.: $(2,991 / 7 \times 0.5 \times 1.0 \times 0.9) = 192.3$, say 193 nos.	
	Max.: $(2,991 / 4 \times 0.5 \times 1.0 \times 0.9) = 336.5$, say 337 nos.	
	For $40 < \text{Flat Size} \le 70 \text{ m}^2$: (314 flats)	
	Min.: $(314 / 7 \times 1.2 \times 1.0 \times 0.9) = 48.4$, say 49 nos.	
	Max.: $(314 / 4 \times 1.2 \times 1.0 \times 0.9) = 84.8$, say 85 nos.	
	<u>Overall</u>	
	Min.: $193 + 49 = 242 \text{ nos.}$	
	Max.: $337 + 85 = 422$ nos.	

TABLE 3.2 COMPARISON OF PROVISION ON INTERNAL TRANSPORT FACILITIES FOR RESIDENTIAL USE (CONT'D)

	HKPSG Recommendation	Proposed Provision
	Private Car Parking Spaces	
(ii)	Visitor Car Parking Spaces	25 nos.
	- 1 - 5 no. per residential block with more than 75 units,	
	or as determined by the Authority	(=HKPSG Max., OK)
	- At least 1 no. visitor car parking space shall be accessible	
	peaking space.	
	For 5 blocks with 3,305 flats:	
	Min.: $1 \times 5 = 5 \text{ nos.}$	
	Max.: $5 \times 5 = 25 \text{ nos.}$	
(iii)	(i) + (ii)	447 nos., including:
		- 442 nos. regular , and
	Min.: $242 + 5 = 247 \text{ nos.},$	- 5 nos. accessible
	(including 243 nos. regular, and 4 nos. accessible)	
	Max.: $422 + 25 = 447 \text{ nos.},$	(=HKPSG Max., OK)
	(including 442 nos. regular, and 5 nos. accessible)	
	Motorcycle Parking Spaces	
(iv)	At the rate of 1 motorcycle parking space per 100 - 150 flats	34 nos.
	Min.: $3,305 / 150 = 22.03$, say 23 nos.	(=HKPSG Max., OK)
	Max.: $3,305 / 100 = 33.05$, say 34 nos.	
	Goods Vehicle Loading / Unloading ("L/UL	") Bay
(v)	1 bay per residential block	5 nos. HGV
	For 5 residential blocks: $5 \times 1 = 5$ nos.	(=HKPSG, OK)
	Bicycle Parking Spaces	
(vi)	At the rate of 1 cycle parking space for every 30 flats	111 nos.
	smaller than 70m ² GFA for outside 2km radius of a rail	
	station.	(=HKPSG, OK)
	3,305 / 30 = 110.2, says 111 nos	

Provision of Internal Transport Facilities for Retail

3.4 The internal transport facilities for the retail use are provided based on the recommendation of the HKPSG, and **Table 3.3** compares the HKPSG recommendation and the proposed provision.

TABLE 3.3 COMPARISON OF INTERNAL TRANSPORT FACILITIES FOR RETAIL USE

		HKPSG Reco	mmendation	Proposed Provision
			Private Car Parking Sp	paces
(vii)	For <mark>5,6</mark>	10m² GFA		38 nos., including:
	Min.:	<mark>5,610</mark> / 300	= 18.7, say 19 nos.	- 37 nos. regular, and
	Max.: $\frac{5,610}{150} = 37.4$, say 38 nos.		- 1 no. accessible	
				(=HKPSG Max., OK)
			Motorcycle Parking Sp	paces
(viii)	At 5%	to 10% of car p	arking spaces provided	4 nos.
	Min.:	19 x 5%	= 1.0, say 1 nos.	
	Max.:	38 x 10%	= 3.8, say 4 nos.	(=HKPSG Max., OK)

TABLE 3.3 COMPARISON OF INTERNAL TRANSPORT FACILITIES FOR RETAIL USE (CONT'D)

	HKPSG Recommendation	Proposed Provision
	Goods Vehicle Loading / Unloading	("L/UL") Bay
(ix)	1 L/UL bay per 800 – 1,200 m ² GFA	7 nos., including:
	65% LGV and 35% HGV	- 3 nos. HGV, and
		- 4 nos. LGV
	For <mark>5,610</mark> m ² GFA:	
	Min.: $\frac{5,610}{1,200} = \frac{4.7}{1,200}$, say 5 nos.	(=HKPSG Max., OK)
	HGV: $5 \times 35\% = 1.8$, say 2 nos.	
	LGV: $5 - 2 = 3$ nos.	
	Max.: $\frac{5,610}{600} / 800 = \frac{7.0}{600}$, say 7 nos.	
	HGV: $7 \times 35\% = 2.45$, say 3 nos.	
	LGV: $7 - 3 = 4 \text{ nos.}$	

Overall Provision of Internal Transport

3.5 **Table 3.4** summarises the overall provision of internal transport, which meets the high-end recommendation of the HKPSG.

TABLE 3.4 OVERALL PROVISION OF INTERNAL TRANSPORT FACILITIES

Туре	Proposed Provision				
	Residential Retail			al	
Car Parking Spaces	442	37	479		
@ 5.0m (L) x 2.5m (W) x 2.4m (H)				485	
Accessible Car Parking Spaces	5	1	6 483		
@ 5.0m (L) x 3.5m (W) x 2.4m (H)					
Motorcycle Parking Spaces	34	4	38	3	
@ 2.4m (L) x 1.0m (W) x 2.4m (H)					
LGV Loading / Unloading Bays	-	4	4		
@ 7.0m (L) x 3.5m (W) x 3.6m (H)					
HGV Loading / Unloading Bays	5	3	8		
@ 11.0m (L) x 3.5m (W) x 4.7m (H)					
Bicycle Parking Spaces	111	-	11	1	
@ 1.65m (L) x 0.8m (W) or with parking racks					

Internal Transport Layout

The proposed internal transport layouts are shown in **Figures 3.1** and **3.2**.

Proposed Vehicular Access

The proposed vehicular access is located on Sha Tau Kok Road westbound, and is detailed in **Figure 3.3**. Visibility at the proposed vehicular access meets the requirements as stipulated in the TPDM.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Development is planned for completion by 2031. Hence, the design year adopted is 2034, i.e. 3 years after completion.

Traffic Generation of the Proposed Development

To estimate the traffic generation associated with the Proposed Development, the TPDM trip rates are adopted, and are summarized in **Table 4.1**.

TABLE 4.1 TRIP RATES ADOPTED FROM THE TPDM

ltem	AM Pea	ak Hour	PM Peak Hour		
	Generation	Attraction	Generation	Attraction	
Private Housing: High-Density / R(A) 60 m ² GFA (pcu/hour/flat)	0.0718	0.0425	0.0286	0.037	
Retail (pcu/100m ² GFA/hour)	0.2296	0.2434	0.3100	0.3563	

4.3 **Table 4.2** presents the traffic generation for the Proposed Development.

TABLE 4.2 TRAFFIC GENERATION FOR THE PROPOSED DEVELOPMENT

ltem	AM Peak Hour (pcu/hour)		PM Peak Hour (pcu/hour	
	Generation	Attraction	Generation	Attraction
Residential (3,305 flats)	238	141	95	123
Retail (5,610m ² GFA)	13	14	18	20
TOTAL	_ 251	155	113	143
	406 (2	2-Way)	256 (2	2-Way)

4.4 **Table 4.2** shows that the Proposed Development is expected to generate some 406 and 256 pcu (2-way) during the AM and PM peak hours respectively.

Justification for Adopting "Mean" Trip Rates from TPDM

- 4.5 Trip rates for "Private Housing" provided in the TPDM is only available for unit with average flat size 60m² or larger; whereas the average flat size for the Proposed Development is only 44m², which is 27% smaller.
- 4.6 Furthermore, a trip generation survey was carried out on Wednesday, 11th October, 2023, at an existing residential development, namely the Reach, located at 11 Shap Pat Heung Road, Yuen Long, NT, of which has characteristics similar to the Proposed Development, i.e. in terms of land use, number of flats, average flat size, and accessibility to public transport services.
- 4.7 **Table 4.3** presents the survey results and comparison of trip rates.

TABLE 4.3 RESULTS OF TRIP GENERATION SURVEY AND COMPARISON WITH THE TPDM TRIP RATES

ltem	AM Peak Hour				PM Pea	ı <mark>k Hour</mark>
	Generation	Attraction	Generation	Attraction		
The Reach (2,580 flats with average flat	$t size = 47m^2$	GFA)				
Number of Observed Trips (pcu/hour)	<mark>112</mark>	<mark>78</mark>	<mark>53</mark>	<mark>69</mark>		
Trip Rates (pcu/hour/flat)	<mark>0.0434</mark>	0.0302	0.0205	<mark>0.0267</mark>		
TPDM Private Housing: High-Density / R(A) @ 60 m ² GFA						
Trip Rates (pcu/hour/flat)	0.0718	0.0425	<mark>0.0286</mark>	0.0370		

4.8 **Table 4.3** shows that the trip rates derived from the survey at The Reach, which has similar flat size as the Proposed Development, are lower than the mean trip rates of the TPDM. Hence, it is opined the use of "mean" rates of TPDM for larger flat size would result in a more conservative, i.e. higher, traffic generation.

Traffic Forecasting

- 4.9 Year 2034 traffic flows used for the capacity analysis are derived based on the following:
 - (i) the 2023 existing traffic flow,
 - (ii) with reference to the 2026 traffic flows from the NTE1 Base District Traffic Model ("BDTM") which is produced by Transport Department,
 - (iii) the estimated traffic growths from 2026 to 2034,
 - (iv) the expected traffic generation associated with other known planned / committed major developments,
 - (v) the planned traffic improvement works to be carried by other projects, and
 - (vi) the expected traffic generation associated to the Proposed Development
- 4.10 The traffic growth from 2026 to 2034 are calculated using the following equations, with X_1 being the annual population growth of 1.1% per annum obtained from the "2019-based Territorial Population and Employment Data Matrix" published by Planning Department rates for 2026 2034.

2026 to 2034 traffic growth factor =
$$(1 + X_1)^8$$

4.11 The total growths were then applied to the trips ends of the 2026 NTE1 BDTM model to develop the 2034 traffic model which is used to produce the 2034 traffic flows.

Other Known Planned / Committed Major Developments in the Vicinity

4.12 Traffic generations associated with the other known planned / committed major developments located in the vicinity summarised in **Table 4.4** were considered and included in the 2034 traffic forecast. The locations of these other developments are shown in **Figure 4.1**.

TABLE 4.4 LIST OF OTHER KNOWN PLANNED / COMMITTED MAJOR DEVELOPMENTS

	DEVELOPMENTS		
Ref.	Developments	Development Para	
Α.	Fanling North New Development Area (including Proposed Minor Relaxation of Plot Ratio and Building Height approved under TPB No. A/KTN/54, A/FLN/28, & A/FLN/30) (1)	Public Housing: Private Housing: G/IC: Other non-domestic use kindergarten etc.): Primary and Secondary	129,657 m ² GFA
В.	Private Residential Development at Sheung Shui Town Lot 262,8 Ma Sik Road, Fanling, (namely "One Innovale") (2)	Private Housing:	1,576 flats
C.	Proposed Public Housing Development at Queen's Hill Extension (3)	Public Housing: G/IC	4,000 flats
D.	New Territories East Cultural Centre in Area 11, Sha Tau Kok Road – Lung Yeuk Tau, Fanling (4)	67,000 m ² CFA with 2,5 Public Vehicle Park	500 seats
E.	Public Housing Development at San Wan Road (5)	Public Housing: G/IC, Kindergarten, Prin Secondary School	450 flats nary School and
F.	Mixed Housing Development Project at Pak Wo Road (TPB No. A/FSS/254) (6) (9)	Public Housing: Subsidized Sale Flat: Elderly Housing: RCHE: Retail: Public Vehicle Park	510 flats 696 flats 261 flats 210 beds 6,500 m ² GFA
G.	Public Housing Development at Fanling Area 17 (7)	Public Housing: G/IC, Social Welfare Fac Community Hall, Retail	
H.	Subsidized Sale Flats at Jockey Club Road (6)(8)	Subsidized Sale Flat: Retail: Public Vehicle Park with	644 flats 3,000 m ² CFA
I.	Public Housing Development at Sheung Shui Areas 4 and 30 Site 1 & 2 (including Proposed Minor Relaxation of Plot Ratio and Building Height approved under TPB No. A/FSS/280) (8)(9)	Public Housing: Retail: G/IC Public Vehicle Park	3,644 flats 1,100 m ² CFA
J.	Public Housing Development at Po Shek Wu Road (8)	Public Housing: Retail: Kindergarten	1,800 flats 3,000 m ² CFA
K.	Proposed House and Social Welfare Facility (Residential Care Home for the Elderly) at Ma Sik Road, Fanling (TPB No. A/FSS/276) (9)	RCHE: 60 beds ⁽⁹⁾ Private Housing:	50 houses
L.	Proposed Social Welfare Facility (Residential Care Home for the Elderly) and Flat at Tin Ping Road, Sheung Shui (TPB No. A/FSS/279) (9)	RCHE: 143 beds Private Housing:	28 flats
М.	Proposed Minor Relaxation of Domestic PR Restriction for Permitted Residential Development with Commercial Uses at 1 Luen Fat Street, Fanling (TPB No. A/FSS/282) (9)	Private Housing: Commercial:	119 flats 161 m ² GFA
N.	Proposed Shop and Services (Showroom) and Office (Wholesale Conversion of an Existing Industrial Building) at 5 Lok Yip Road, Fanling (TPB No. A/FSS/283) (9)	Retail: 4,075 m ² GFA	

TABLE 4.4 LIST OF OTHER KNOWN PLANNED / COMMITTED MAJOR DEVELOPMENTS (CONT'D)

Ref.	Developments	Development Parameters (Approx.)
Ο.	Proposed Shop and Services, Eating Place	Retail: 2,392 m ² GFA
	and Other Uses at 33 On Lok Mun Street,	
	Fanling (TPB No. A/FSS/284) (9)	
P.	Public Housing Development at Ching	Private Housing: 620 flats
	Hiu Road (10)	G/IC, & Social Welfare Facilities
<mark>Q.</mark>	Public Housing Development at Fanling	Public Housing: 4,000 flats
	Area 48 (11)	Education, Social Welfare Facilities, and
		Retail

Source:

- (1) Rural and New Town Planning Committee ("RNTPC") Paper No. A/FLN/30
- (2) One Innovale. http://www.oneinnovale.com.hk
- (3) North Committees Meetings Discussion Paper 9/2022. "Proposed Public Housing Development at Queen's Hill Extension". Dated 15 May 2022. North District Council.
- (4) LC Paper No. CB(2)614/2022(01). Legislative Council.
- (5) Planning Brief. Hong Kong Housing Authority. https://www.pland.gov.hk/pland en/access/pec/planning brief/San%20Wan%20Road%20PB.pdf>
- (6) HKHS Annual Report 2022. Hong Kong Housing Society.
- (7) Paper 2/2023. "粉嶺第 17 區公營房屋發展計劃". Dated 16 January 2023. North District Council.
- (8) North Committees Meetings Discussion Paper 5/2019. "Public Housing Development Programmes at Sites 1 and 2 in Sheung Shui Areas 4 and 30, a Site to the North of Po Shek Wu Road and a Site on Jockey Club Road, Fanling, and Proposed Amendments to the Approved Fanling/Sheung Shui Outline Zoning Plan No. S/FSS/22." Dated 21 January 2019. North District Council.
- (9) Statutory Planning Portal 2. Town Planning Board.
- (10) Paper 4/2023. "上水清曉路公營房屋發展之工地平整及基礎設施工程." Dated 16 January 2023. North District Council.
- (11) LC Paper No. CB(1)158/2022(03). Legislative Council.

Future Road Network

4.13 Various traffic improvement works have been planned for implementation within the AOI, and the details are summarized in **Table 4.5**.

TABLE 4.5 PLANNED TRAFFIC IMPROVEMENT WORKS WITHIN THE AOI

Planned Traffic Improvements	Completion Year
	•
Fanling Bypass Eastern Section (1)	By 2025
Lung Yeuk Tau Interchange of the Fanling Bypass Eastern Section ⁽¹⁾	By 2025
Fanling Bypass Western Section (2)	By 2031
Improvement of So Kwun Po Interchange (3)	By 2030
Local improvements at various junction along Ma Sik Road, So Kwun Po	By 2031
Road, and Jockey Club Road (4)(5)	

- (1) Project Number 7747CL. "Advance Site Formation and Engineering Infrastructure Works at Kwu Tung North and Fanling North New Development Areas." Civil Engineering and Development Department. https://www.cedd.gov.hk/eng/our-projects/major-projects/index-id-36.html
- (2) Project Number 7835CL. "Remaining Phase of Site Formation and Engineering Infrastructure Works at Kwu Tung North and Fanling North New Development Area Detailed Design and Site Investigation" Civil Engineering and Development Department. https://www.cedd.gov.hk/eng/our-projects/major-projects/index-id-87.html
- (3) PP-616/2021 Improvement to So Kwun Po Interchange. Environmental Protection Department. https://www.epd.gov.hk/eia/register/profile/latest/esb338/esb338.pdf
- (4) A/FLN/30. "Proposed Minor Relaxation of PR and BH Restrictions for Permitted Public and Private Housing Developments; and Proposed Social Welfare Facilities, Shop and Services and Eating Place within Public Housing Developments." Town Planning Board.
- (5) Paper 2/2023. "粉嶺第 17 區公營房屋發展計劃". Dated 16 January 2023. North District Council.
- 4.14 The above listed traffic improvements will be implemented by 2031, i.e. prior to the completion of the Proposed Development and an overview of the road network adopted in the 2034 traffic model is also shown in **Figure 4.1**.

2034 Traffic Flows

4.15 Year 2034 traffic flows with the Proposed Development are derived as follows:

2034 Traffic Flows with the = 2034 Traffic Flows without the Proposed Proposed Development Development + Traffic Generated by the Proposed Development

4.16 **Figures 4.2 and 4.3** show the 2034 AM and PM peak hour traffic flows without and with the Proposed Development respectively.

2034 Junction Capacity Analysis

4.17 Year 2034 junction capacity analysis for the case without and with the Proposed Development are summarised in **Table 4.6** and detailed calculations are found in the **Appendix A**.

TABLE 4.6 2034 JUNCTION PERFORMANCE

Ref.	Junction	Type of Junction	Parameter	Without the Proposed Development		With the Proposed Development	
						AM Peak	
J01	Sha Tau Kok Road / Lau Shui Heung Road	Roundabout	RFC	Hour 0.453	Hour 0.514	Hour 0.519	Hour 0.578
J02	Sha Tau Kok Road / Lung Ma Road	Roundabout	RFC	0.606	0.649	0.734	0.705
J03	Sha Tau Kok Road / Ma Sik Road ^(Note 1)	Priority	RFC	0.638	0.632	0.652	0.638
J04	Sha Tau Kok Road / Jockey Club Road (Note 1)	Roundabout	RFC	0.686	0.623	0.713	0.624
	So Kwun Po Road / Jockey Club Road / Ma Sik Road (Note 1)	Signal	RC	21%	46%	20%	44%
J06	So Kwun Po Interchange (Note 1)	Roundabout	RFC	0.796	0.784	0.826	0.794
J07	Jockey Club Road / Lok Yip Road / San Wan Road	Signal	RFC	18%	25%	18%	25%
J08	Fanling Station Road / San Wan Road	Signal	RFC	18%	18%	18%	18%
J09	Sha Tau Kok Road / San Wan Road	Roundabout	RFC	0.580	0.599	0.593	0.603
J10	Lung Yeuk Tau Interchange (Note 1)	Roundabout	RFC	0.663	0.671	0.702	0.743
J11	Proposed Vehicular Access / Sha Tau Kok Road	Priority	RFC	n/a	n/a	0.372	0.176

Note 1: With planned traffic improvement works to be implemented by Others.

RFC - Ratio of Flow to Capacity RC - Reserve Capacity

4.18 **Table 4.6** shows that the junctions analyzed have capacity to accommodate the expected traffic growth to 2034, and the traffic generated by the Proposed Development.

2034 Road Link Capacity Analysis

4.19 Year 2034 road link capacity analysis for the cases without and with the Proposed Development are summarised in **Table 4.7**.

TABLE 4.7 2034 P/Df OF ROAD LINKS

Ref.	Road	Sect	tion	Туре	Design	ı	Peak Hou	rly Flows	/
	Link	From	То	(Note 1)	Flow	De	sign Flow	Ratio (P/	Df)
					(pcu/hr)	Prop	out the oosed opment	With Prop Develo	
						AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
L01	Sha Tau Kok Road	Lung Ma Road	Lau Shui Heung Road	RR	3,400	0.315	0.354	0.361	0.398
L02	Sha Tau Kok Road	Lau Shui Heung Road	Lung Ma Road	RR	3,400	0.352	0.381	0.426	0.414
L03	Sha Tau Kok Road	Ma Sik Road	Lung Ma Road	RR	3,400	0.505	0.472	0.547	0.512
L04	Sha Tau Kok Road	Lung Ma Road	Ma Sik Road	RR	3,400	0.724	0.658	0.795	0.687
L05	Sha Tau Kok Road	Jockey Club Road	Ma Sik Road	RR	3,400	0.421	0.438	0.421	0.438
L06	Sha Tau Kok Road	Ma Sik Road	Jockey Club Road	RR	3,400	0.457	0.398	0.477	0.406
L07	Ma Sik Road	Jockey Club Road	Sha Tau Kok Road	DD	3,050	0.482	0.479	0.493	0.494
L08	Ma Sik Road	Sha Tau Kok Road	Jockey Club Road	DD	3,050	0.479	0.354	0.479	0.354
L09	Jockey Club Road	Ma Sik Road / So Kwun Po Road	Sha Tau Kok Road	PD	3,400	0.198	0.167	0.198	0.167
L10	Jockey Club Road	Sha Tau Kok Road	Ma Sik Road / So Kwun Po Road	PD	3,400	0.227	0.192	0.228	0.193
L11	So Kwun Po Road	Jockey Club Road	So Kwun Po Interchange	PD	3,400	0.523	0.380	0.523	0.380
L12	So Kwun Po Road	So Kwun Po Interchange	Jockey Club Road	PD	3,400	0.569	0.588	0.577	0.599
L13	Jockey Club Road	Sha Tau Kok Road	Lok Yip Street / San Wan Road	PD	3,400	0.172	0.191	0.172	0.191
L14	Jockey Club Road	Lok Yip Street / San Wan Road	Sha Tau Kok Road	PD	3,400	0.265	0.222	0.265	0.222
L15	San Wan Road	Fanling Station Road	Lok Yip Street / San Wan Road	DD	3,050	0.184	0.159	0.184	0.159
L16	San Wan Road	Lok Yip Street / San Wan Road	Fanling Station Road	DD	3,050	0.229	0.238	0.229	0.238

4.20 **Table 4.7** shows that, the road links analyzed have capacity to accommodate the expected traffic growth to 2034 and the traffic generated by the Proposed Development will have no adverse negative impact to the surrounding road network.

Mode of Transport and Pedestrian Generation of the Proposed Development

4.21 Reference is made to the "Travel Characteristics Survey 2011 – Final Report" published by the Transport Department and the "Population Census 2021" published by the Census and Statistics Department. The passenger demand on public transport services and pedestrian generation associated with the Proposed Development are estimated and presented in Table 4.8.

TABLE 4.8 ESTIMATED PASSENGER DEMAND ON PUBLIC TRANSPORT AND PEDESTRIAN GENERATION ASSOCIATED WITH THE PROPOSED DEVELOPMENT

Item		Parameters			
Number of Peak Hour Mechanised Trips					
Estimated Population [a]	9,915				
Mechanised Trips Rate per Person [b] (1)		1.83			
Daily Trips generated by the Proposed Devel	opment	9,915 x 1.8	3 = 18,145		
[c] = [a]x[b]					
Percentage of Daily Trip during Peak Hours (²⁾ [d]	12%			
Peak Hour Trips (2-way) [e] = $[c]x[d]$		· · · · · · · · · · · · · · · · · · ·	2% = 2,178	1	
		AM Pea	k Hour	PM Pea	k Hour
		Generation	Attraction	Generation	Attraction
Peak Hour Trip Distribution (3) [f]		80%	20%	50%	50%
(Based on in-house survey data)					
Peak Hour Trip Generation / Attraction [g] = [e]x[f]	<mark>1,743</mark>	<mark>435</mark>	1,089	1,089
Passenger Demand on Main Mode of Transp	ort [g] v [h]				
r asseriger Demand on Main Mode of Transp	Percentage	AM Pea	ak Hour	PM Pea	k Hour
Main Mode of Transport	[h]	Generation	Attraction	Generation	Attraction
Private Car & Taxi	10% ⁽⁴⁾	<mark>175</mark>	<mark>44</mark>	<mark>109</mark>	<mark>109</mark>
Rail-based Public Transport (MTR) and	35% ⁽⁴⁾	<mark>611</mark>	<mark>153</mark>	<mark>382</mark>	<mark>382</mark>
Road-based Feeder Service					
Road-based Public Transport (Regional) [i]	20% ⁽⁴⁾	<mark>349</mark>	<mark>87</mark>	<mark>218</mark>	<mark>218</mark>
Road-based Public Transport (Local within	35% ⁽⁴⁾	<mark>611</mark>	<mark>153</mark>	<mark>382</mark>	<mark>382</mark>
North District) [j]					
Peak Hour Pedestrian Generation onto Footp	oath of Sha Ta				
Pedestrian Generation		<mark>960</mark>	<mark>240</mark>	<mark>600</mark>	<mark>600</mark>
			1,200 1,200		

- (1) Table 3.3, "Travel Characteristics Survey 2011 Final Report", Transport Department
- (2) Paragraph 3.3.7, "Travel Characteristics Survey 2011 Final Report", Transport Department
- (3) Based on CKM in-house database with surveys carried at various residential developments.
- (4) Combined Percentage from "Persons Attending Full-time Courses in Educational Institutions in Hong Kong by District Council District, Place of Study, Year and Main Mode of Transport to Place of Study" (Table B203), and "Working Population with Fixed Place of Work in Hong Kong by District Council District, Place of Work, Year and Main Mode of Transport to Place of Work" (Table C204) for North District. Population Census 2021, Census and Statistics Department.
- 4.22 New road-based feeder services to/from MTR Station are proposed within the Proposed Development; hence, the pedestrian generation of the Proposed Development onto footpath of Sha Tau Kok Road is estimated to be 1,200 pedestrian trips (2-way) during the AM and PM peak hour respectively.

Review on Public Transport Services

Road-Based Feeder Services to/from MTR Station

4.23 In view that new Kwu Tung Station and its public transport facilities are expected to commence service in 2027, which is before completion of the Proposed Development, a new feeder service route between the Proposed Development and the Kwu Tung Station is proposed. With reference to **Table 4.8**, the analysis of the proposed feeder service is summarized in **Table 4.9**.

TABLE 4.9 ANALYSIS FOR THE PROPOSED FEEDER SERVICE TO/FROM MTR STATION

 <mark>Item</mark>	Number of Passengers				
	AM Pea	<mark>ak Hour</mark>	PM Pea	<mark>ak Hour</mark>	
	<mark>To</mark>	From	<mark>To</mark>	From	
	MTR Station	MTR Station	MTR Station	MTR Station	
Passenger Demand associated with the	<mark>611</mark>	<mark>153</mark>	<mark>382</mark>	<mark>382</mark>	
Proposed Development [a]					
(From Table 4.8)					
Carrying Capacity of Double-Decker	<mark>90</mark>	<mark>90</mark>	<mark>90</mark>	<mark>90</mark>	
Bus (passengers/vehicle) [b]					
Number of Services Required	<mark>7</mark>	2	<mark>5</mark>	<mark>5</mark>	
(trips per hour) $[c] = [b] \div [a]$				_	
Headway (Minutes) $[d] = 60 \div [c]$	<mark>8.5</mark>	<mark>30</mark>	<mark>12</mark>	<mark>12</mark>	

Note 1: To be conservative, a capacity of 90 passengers per double-decker bus is adopted.

- 4.24 **Table 4.9** shows that during the AM peak hour, it is proposed to provide 7 services with 8.5-minute headway. Whereas, during the PM peak hour, it is proposed to provide 5 services with 12-minute headway.
- 4.25 **Figure 4.4** shows the Proposed Development provides a 26m long layby to serves as the bus terminus for this new feeder service and this proposed layby can accommodate 2 standing buses at the same time. Based on Table 2.7.6.1 in Volume 9 Chapter 2.7 of the TPDM, the proposed layby could serve the expected 7 trips during the AM peak hour and 5 trips during the PM peak hour. The internal transport layout is also designed to accommodate the manoeuvring of 12.8m buses, and swept path analyses are found in **Figure 4.4**.
- 4.26 **Table 4.10** presents the analyses on passenger queuing area at the bus terminus, which shows sufficient space to accommodate the expected passenger demand.

TABLE 4.10 ANALYSIS ON PASSENGER QUEUING AREA AT BUS TERMINUS WITHIN THE PROPOSED DEVELOPMENT FOR PROPOSED FEEDER SERVICE TO MTR STATION

<u>Item</u>	AM Peak Hour	PM Peak Hour	
Passenger Demand			
Passenger Demand associated with the Proposed Development (persons) (From Table 4.8) [a]	<mark>611</mark>	<mark>382</mark>	
Passenger Arrival Rate (persons/minute) [b] = [a] ÷ 60	10.2	<mark>6.4</mark>	
Service Headway (minutes) (From Table 4.9) [c]	<mark>8.5</mark>	<mark>12</mark>	
Number of Passengers arriving in between services [d] = [b]x[c]	<mark>87</mark>	<mark>77</mark>	
Queueing Capacity			
Size of Queueing Area (m ²) [e]	<mark>50</mark>		
Standing Capacity (persons / m ²) [f] (Note 1)	5 persons per 1.2m ²		
Queuing Capacity at Bus Terminus (persons) $[g] = [e] \div [f]$	<mark>208</mark>		
Comparison ([d] versus [g]	[d] < [g] = OK	[d] < [g] = OK	

Note 1: Volume 9 Chapter 2.7, TPDM

Local Road-Based Public Transport Services to/from North District

4.27 **Table 4.8** shows that demand on local road-based public transport services to/from other part of North District is required. At present, KMB 78K and 79K stop at the San Wai Barrick bus stop located within short walking distance from the Proposed Development, and at various bus-bus interchanges in Fanling / Sheung Shui, where passengers can transfer to and from other bus routes serving different parts of North District. Hence, it is proposed to strengthen the existing local bus services to fulfill the additional passenger demand, and the details are presented in **Table 4.11**.

TABLE 4.11 ANALYSIS ON LOCAL ROAD-BASED PUBLIC TRANSPORT SERVICES TO / FROM FANLING / SHEUNG SHUI

	AM Peak Hour		PM Pea	ı <mark>k Hour</mark>
	To Fanling/ Sheung Shui	From Fanling/ Sheung Shui	To Fanling/ Sheung Shui	From Fanling/ Sheung Shui
Existing Surplus Capacity [a] (From Table 2.8)	45 <i>7</i>	<mark>204</mark>	<mark>74</mark>	<mark>115</mark>
Passenger Demand associated with the Proposed Development [b] (From Table 4.8)	<mark>611</mark>	<mark>153</mark>	382	382
Surplus or Deficit [c] = [a]-[b]	<mark>-154</mark>	<u>+51</u>	<mark>-308</mark>	<mark>-267</mark>
Additional Services by Double Decker Buses required [d] = 90 ÷ [c]	2 nos.	Not Required	4 nos.	3 nos.

Note 1: To be conservative, a capacity of 90 passengers per double-decker bus is adopted.

- 4.28 **Table 4.11** shows it is proposed to provide 2 additional local services during the AM peak hour and 4 additional local services during the PM peak hour.
- 4.29 This existing bus stop towards Fanling / Sheung Shui has a layby length of around 26m which could accommodate 2 buses at the same time. Observation found passenger boarding / alighting at this stop is negligible at present. **Table 4.12** presents the analysis on passenger queuing area at the existing bus stop, which shows sufficient space to accommodate the expected passenger demand.

TABLE 4.12 ANALYSIS ON PASSENGER QUEUING AREA AT EXISTING BUS STOP FOR LOCAL ROAD-BASED PUBLIC TRANSPORT SERVICES TO FANLING / SHEUNG SHUI

<u>Item</u>	AM Peak Hour	PM Peak Hour
Passenger Demand		
Passenger Demand associated with the Proposed	<mark>611</mark>	<mark>382</mark>
Development (persons) (From Table 4.8) [a]		
Passenger Arrival Rate (persons/minute) [b] = [a] ÷ 60	10.2	<mark>6.4</mark>
Number of Bus Trips, i.e. Service Frequency	18 + 2 = 20	4 + 4 = 8
(Existing + Proposed) (From Tables 2.8 and 4.10) [c]		
Average Headway (minutes) $[d] = 60 \div [c]$	3	<mark>7.5</mark>
Number of Passengers arriving in between services [e] = [b]x[c]	<mark>31</mark>	<mark>48</mark>
Existing Passenger Demand observed in between services	<mark>10</mark>	<mark>10</mark>
(Approximate) [f]		
Total Passenger Demand in between services [g] = [e] + [f]	<mark>41</mark>	<mark>58</mark>

TABLE 4.12 ANALYSIS ON PASSENGER QUEUING AREA AT BUS STOP FOR LOCAL ROAD-BASED PUBLIC TRANSPORT SERVICES TO FANLING / SHEUNG SHUI (CONT'D)

<mark>ltem</mark>	AM Peak Hour	PM Peak Hour		
Queueing Capacity				
Size of Queueing Area (m ²) [h]	<mark>50</mark>			
Standing Capacity (persons / m ²) [i] (Note 1)	5 persons	per 1.2m²		
Queuing Capacity at Bus Terminus (persons) [j] = [h] ÷ [i]	2	08		
Comparison ([g] versus [j])	[g] < [j] = OK	[g] < [j] = OK		

Note 1: Volume 9 Chapter 2.7, TPDM

Regional Road-Based Public Transport Services to Urban Area

4.30 Existing regional services stop at the San Wai Barrick bus stop and at the bus-bus interchanges at Tsing Sha Highway, Tate's Cairn Tunnel, Western Harbour Crossing, and Eastern Harbour Crossing, where passengers can transfer to and from other bus routes serving the urban area across Kowloon and Hong Kong Island. Hence, it is proposed to strengthen the existing regional bus services to fulfill the additional passenger demand, and the details are presented in **Table 4.13**.

TABLE 4.13 ANALYSIS ON REGIONAL ROAD-BASED PUBLIC TRANSPORT SERVICES TO/FROM URBAN AREA

ltem et al. 1	AM Peak Hour		PM Peak Hour	
	To	From	To	From
	<mark>Urban Area</mark>	<mark>Urban Area</mark>	<mark>Urban Area</mark>	<mark>Urban Area</mark>
Existing Surplus Capacity [a]	<mark>441</mark>	<mark>n/a</mark>	<mark>80</mark>	<mark>205</mark>
(From Table 2.8)			,	
Passenger Demand associated with the	<mark>349</mark>	<mark>87</mark>	<mark>218</mark>	<mark>218</mark>
Proposed Development [b]		· · · ·		
(From Table 4.6)				
Surplus or Deficit [c] = [a]-[b]	+92	<mark>-87</mark>	<mark>-138</mark>	<mark>-13</mark>
Additional Services by Double Decker	Not	1 no.	2 nos.	1 no.
Buses required	required			

Note 1: To be conservative, a capacity of 90 passengers per double-decker bus is adopted.

- 4.31 **Table 4.13** shows it is proposed to provide 1 additional regional service during the AM peak hour, and 2 additional regional services during the PM peak hour.
- 4.32 This existing bus stop towards Sha Tau Kok to urban area has a layby length of around 26m which could accommodate 2 buses at the same time. Observation found passenger boarding / alighting at this stop is negligible. **Table 4.14** presents the analysis on passenger queuing area at the bus stop, which shows sufficient queuing space to accommodate the expected passenger demand.

TABLE 4.14 ANALYSIS ON QUEUING AREA AT BUS STOP FOR REGIONAL ROAD-BASED PUBLIC TRANSPORT SERVICES TO URBAN AREA

	AM Peak Hour	PM Peak Hour				
Passenger Demand						
Passenger Demand associated with the Proposed	349	218				
Development (persons) (From Table 4.8) [a]						
Passenger Arrival Rate (persons/minute) [b] = [a] \div 60	<mark>5.8</mark>	<mark>3.6</mark>				
Number of Bus Trips, i.e. Service Frequency	8 + 1 = 9	1 + 2 = 3				
(Existing + Proposed) (From Tables 2.9 and 4.13) [c]						
Average Headway (minutes) [d] = $60 \div [c]$	<mark>6.7</mark>	<mark>20</mark>				
Number of Passengers arriving in between services [e] = [b]x[c]	<mark>60</mark>	<mark>72</mark>				
Existing Passenger Demand observed in between services	<mark>20</mark>	<mark>20</mark>				
(Approximate) [f]						
Total Passenger Demand in between services [g] = [e] + [f]	<mark>80</mark>	<mark>92</mark>				
Queueing Capacity						
Size of Queueing Area (m ²) [h]	<mark>50</mark>	<mark>)</mark>				
Standing Capacity (persons / m ²) [i] (Note 1)	<mark>5 persons </mark>	oer 1.2m²				
Queuing Capacity at Bus Terminus (persons) [j] = [h] ÷ [i]	<mark>20</mark>	8				
Comparison ([g] versus [j])	[g] < [j] = OK	[g] < [j] = OK				

Note 1: Volume 9 Chapter 2.7, TPDM

4.33 With increasing population in the Queen's Hill area, it is noted that the regional road-based services have gradually been enhanced with extended operation hours, higher frequency and more routes. Hence, the provision on regional services to fulfill the passenger demand of the Proposed Development can be further reviewed in the future to suit the operational need.

Rail-Based Public Transport Services (MTR East Rail)

4.34 **Table 4.8** shows that the additional demand on rail-based public transport services, i.e. MTR East Rail, associated with the Proposed Development is no more than 611 passengers during the peak hour. As shown in **Table 2.10**, the MTR East Rail has a maximum carrying capacity of 82,500 passenger/hour/direction. Hence, the additional passenger demand is only 0.7% of the maximum carrying capacity [Calculation: 611 ÷ 82,500 = 0.7%], which is negligible and will not result in adverse impact on the MTR East Rail.

Railway Station in Queen's Hill Area

- 4.35 Development of the Northern Metropolis is under planning by the Government, and the Queen's Hill area falls within the North New Territories New Town. In connection, the Chief Executive's 2021 Policy Address announced a new railway, namely the Northern Link Eastern Extension, which includes a new railway station in the Queen's Hill area. Subsequently, the Chief Executive's 2023 Policy Address announced the railway station in Queen's Hill area is revised to be included in the Northeast New Territories Line, which will provide a north-south railway linking major development nodes from Heung Yuen Wai to Fanling Station of the East Rail line.
- 4.36 Hence, with completion of the above mentioned railway lines, including a new railway station in the Queen's Hill area, accessibility to public transport services for the Proposed Development, in particular railway services, will be enhanced.

Pedestrian Forecasting

4.37 Year 2034 AM and PM peak hour pedestrian flows are estimated based on the existing pedestrian flow, and the estimated pedestrian growth from 2023 to 2034. With reference to Table 2.6, a growth rate of 1.5% per annum is adopted to derive the 2034 pedestrian flows as follow:

2034 Pedestrian Flows without = Existing Pedestrian Flows + Estimated the Proposed Development [a] Pedestrian Growth to 2034

2034 Pedestrian Flows without = [a] + Pedestrian Generation associated with the Proposed Development the Proposed Development [Table 4.6]

2034 Pedestrian Facilities Operational Performance

4.38 Operational performance of the selected pedestrian facilities are calculated, and summarized in **Tables 4.15 and 4.16**.

TABLE 4.15 YEAR 2034 OPERATIONAL PERFORMANCES OF FOOTPATH

Section		Measured Width	Effective Width	2-Way Flow (ped/hr) / Flow Rate (ped/m/min) [LOS]				
		(m)	(m)		Vithout	2034 With		
				Proposed Development		Proposed		
						Development		
				AM PM		AM	PM PM	
				Peak Hour	<mark>Peak Hour</mark>	Peak Hour	Peak Hour	
FP01	Sha Tau Kok Road –	4.5m	4.0m	12	<mark>36</mark>	<mark>710</mark>	<mark>636</mark>	
	Southern Footpath			0.1 [A]	0.2 [A]	3.0 [A]	2.7 [A]	
FP02	Sha Tau Kok Road –	4.5m	4.0m	21	<mark>33</mark>	<mark>1,221</mark>	<mark>1,233</mark>	
	Southern Footpath			0.1 [A]	0.2 [A]	5.1 [A]	5.2 [A]	
FP03	Sha Tau Kok Road –	1.5m	1.0m	26	<mark>43</mark>	<mark>528</mark>	<mark>643</mark>	
	Northern Footpath			0.5 [A]	0.8 [A]	<mark>8.8 [A]</mark>	10.8 [A]	

FP01 - Sha Tau Kok Road - Southern footpath between San Wai Barrack Bus Stop and Signalised Crossing

FP02 - Sha Tau Kok Road – Southern footpath between Subject Site and Signalised Crossing

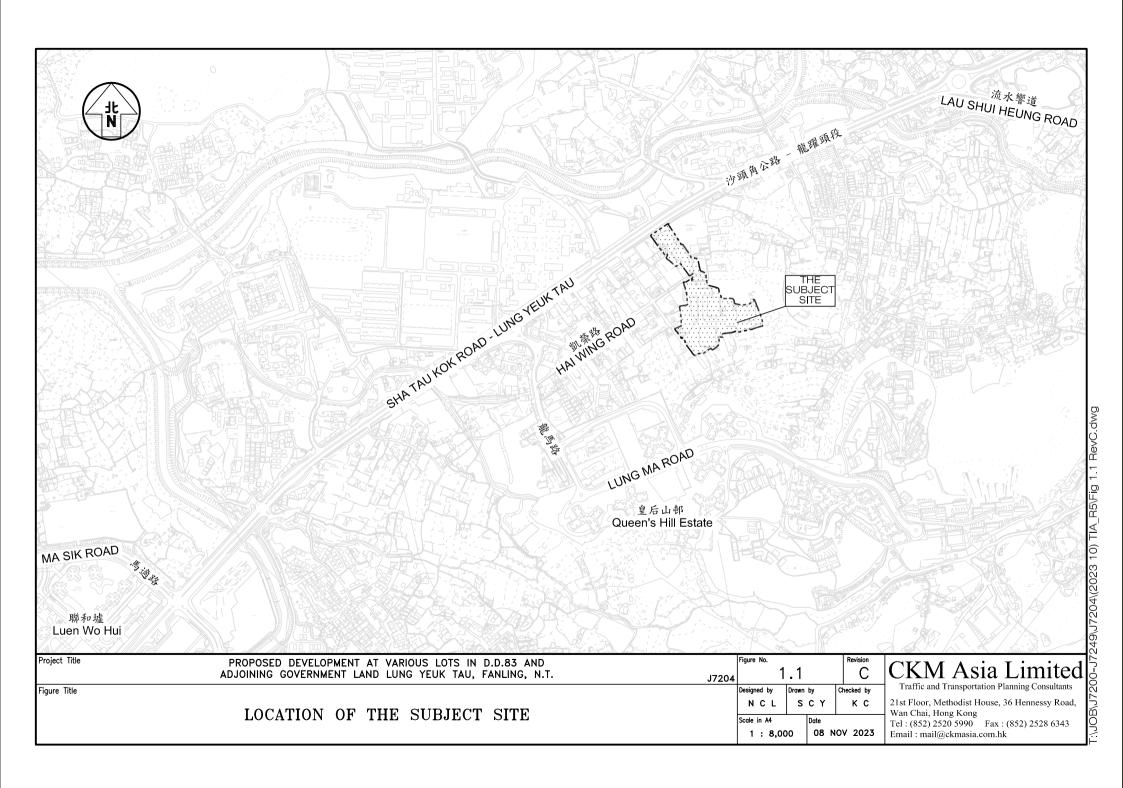
FP03 - Sha Tau Kok Road - Northern footpath between San Wai Barrack Bus Stop

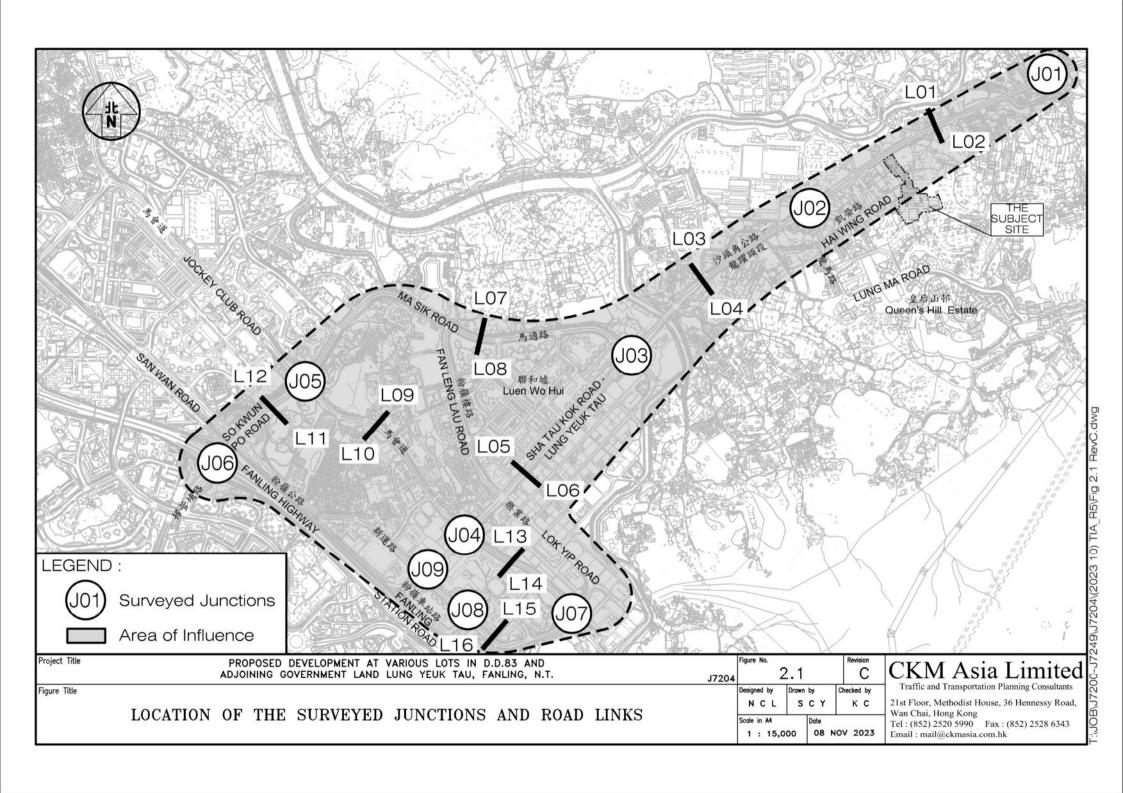
TABLE 4.16 YEAR 2034 OPERATIONAL PERFORMANCES OF SURVEYED SIGNALISED CROSSING

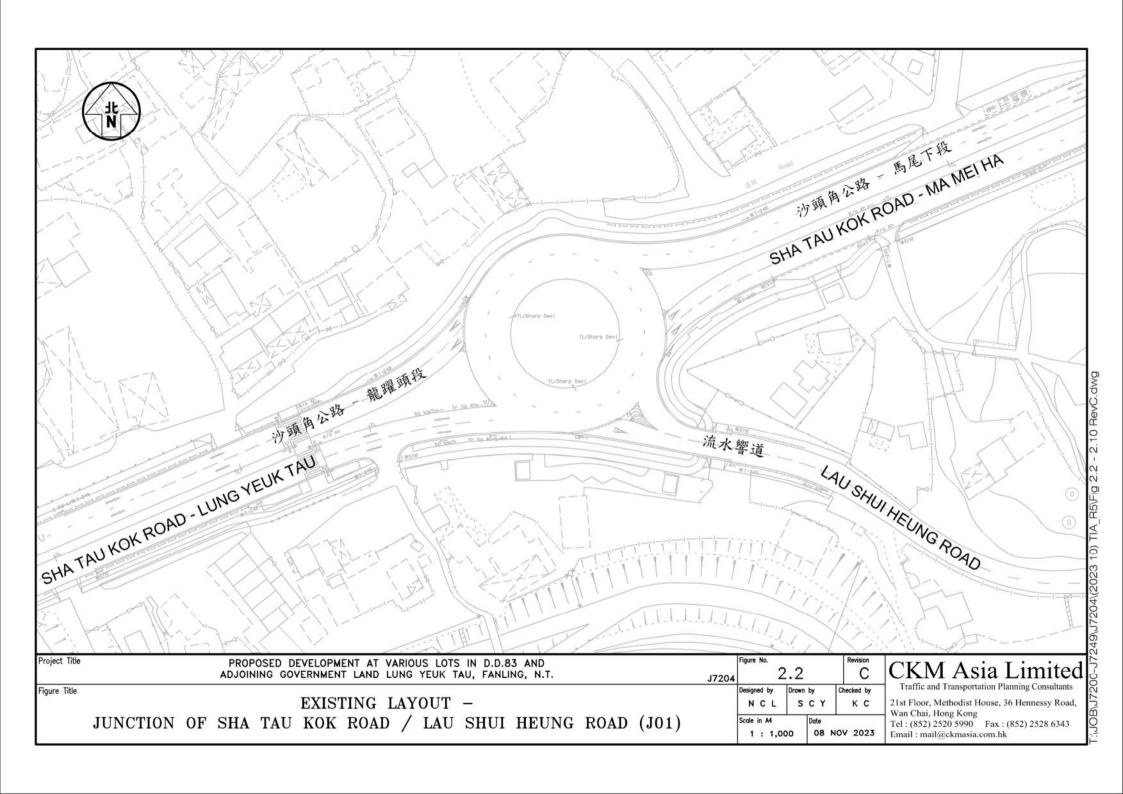
Pedestr Crossii		Width (m)	Type / Capacity	2-way Pedestrian Flow (ped/hour) [v/c Ratio]			
			(ped/hour)	2034 Without		2034 With	
				Proposed Development		Proposed Development	
				AM Peak	PM Peak	AM Peak	PM Peak
				Hour	Hour	Hour	Hour
XING01 Sh	a Tau	5m	Signalised /	<mark>14</mark>	<mark>16</mark>	<mark>516</mark>	<mark>616</mark>
Ko	k Road		3,800 (Note 1)	[0.004]	[0.004]	[0.136]	[0.162]

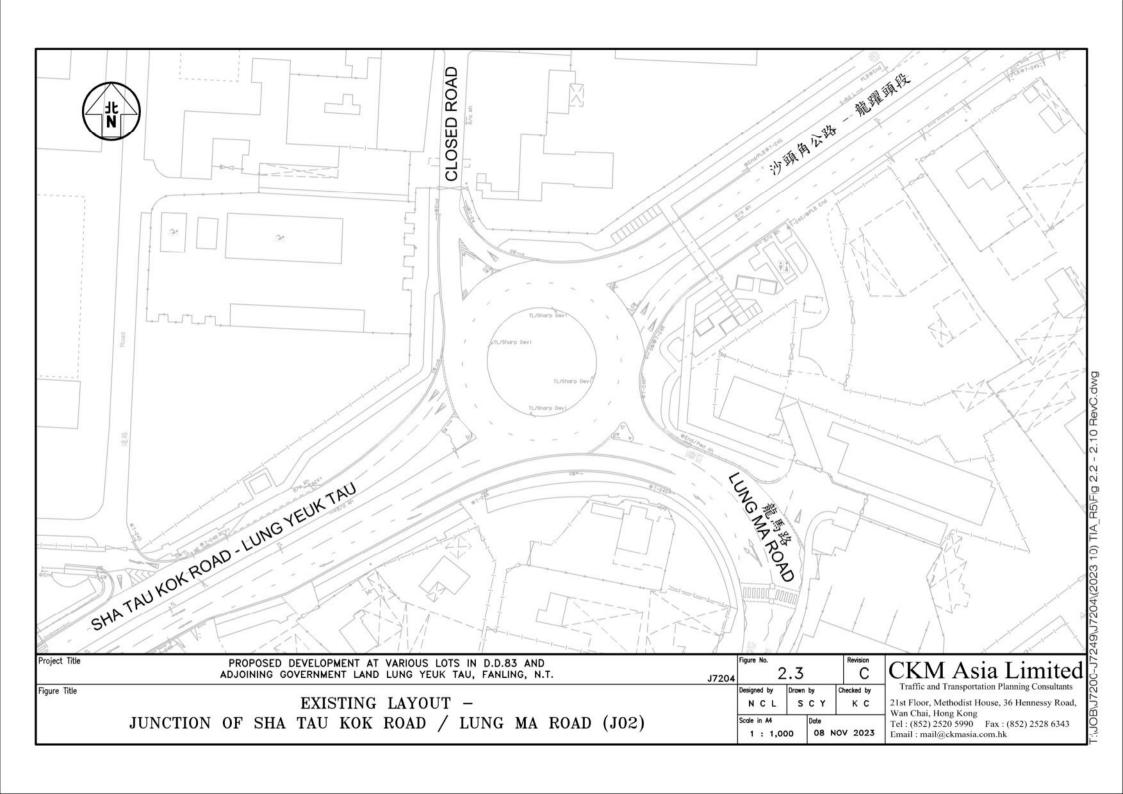
XING01 - Sha Tau Kok Road - Signalised Crossing

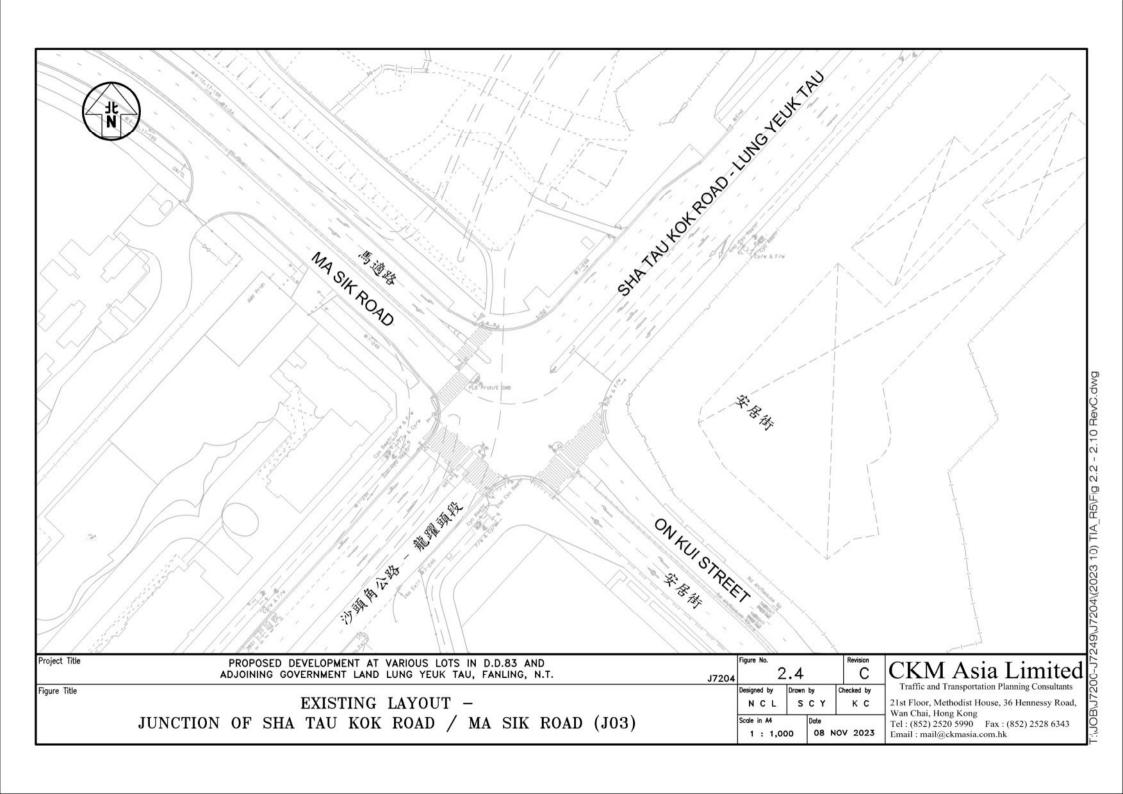
Note 1: Calculated based on TPDM Vol. 4 Chapter 3 with an assumption of a 65-second cycle including 26 seconds pedestrian green + flashing green time.

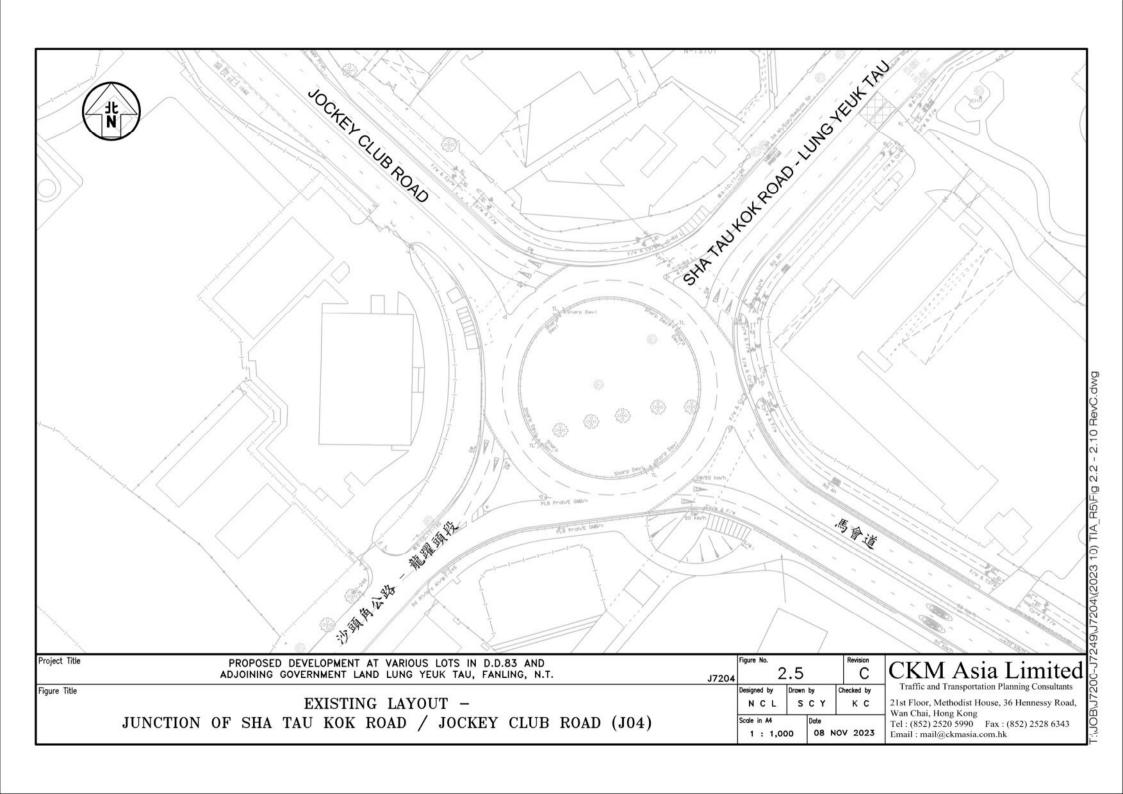

4.39 The above results indicate that pedestrian facilities assessed will operate with capacities during the AM and PM peak hour.

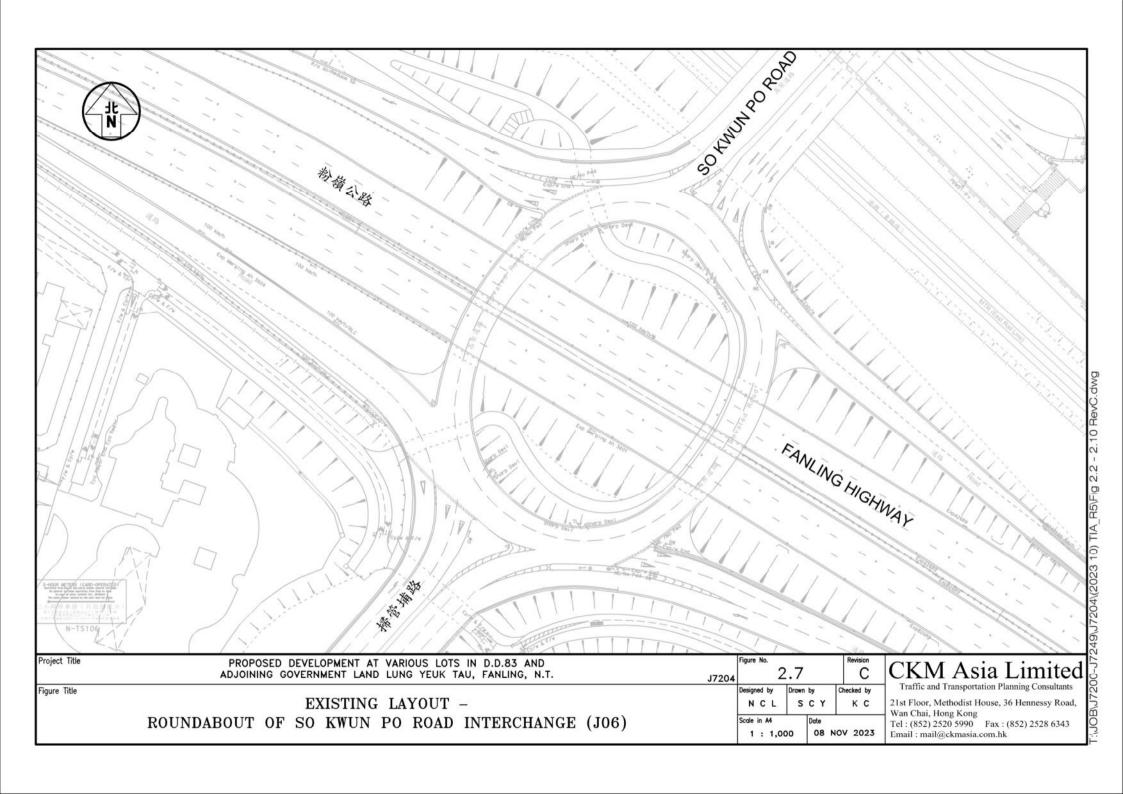

5.0 SUMMARY

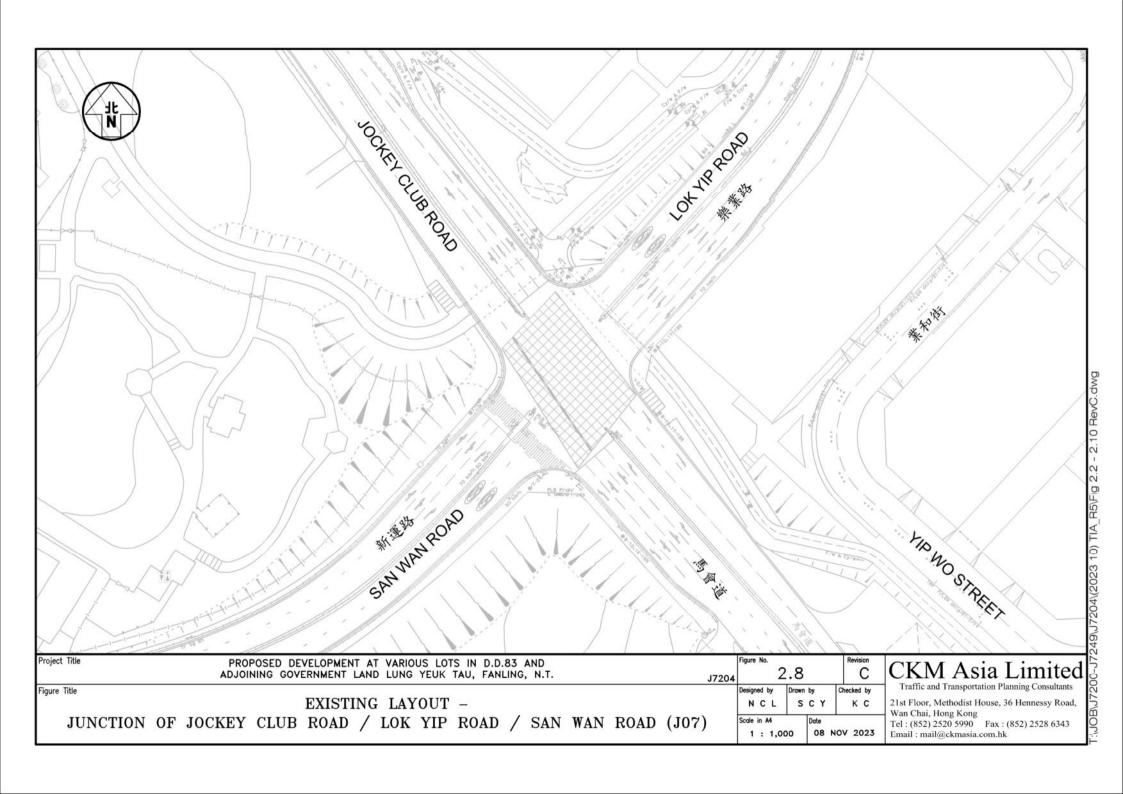

- 5.1 The Proposed Development in various lots in D.D. 83, Lung Yeuk Tau in Fanling has 5 residential blocks including 3,305 flats with average flat size of 44m² GFA, and 5,610 m² retail GFA.
- 5.2 The proposed internal transport facilities meet the high-end recommendation of the HKPSG, and include the following:
 - i) 479 car parking spaces @ 5.0m (L) x 2.5m (W) x Min. 2.4m (H),
 - ii) 6 accessible car parking spaces @ 5.0m (L) x 3.5m (W) x Min. 2.4 (H),
 - iii) 38 motorcycle parking spaces @ 2.4m (L) x 1.0m (W) x Min. 2.4m (H),
 - iv) 4 LGV loading / unloading bays @ 7.0m (L) x 3.5m (W) x Min. 3.6m (H),
 - v) 8 HGV loading / unloading bays @ 11.0m (L) x 3.5m (W) x Min. 4.7m (H),
 - vi) 111 bicycle parking spaces @ 1.65m (L) x 0.8m (W) or with parking rack.
- 5.3 Updated manual classified counts were conducted in May 2023 at selected junctions located in the AOI to establish the existing traffic flows during the AM and PM peak hours. The design year 2034 traffic flows were derived with reference to the BDTM, and have also taken into account the traffic generation and planned traffic improvement works associated with other known planned / committed major developments located in the vicinity.
- 5.4 Traffic generation for the Proposed Development is calculated based on the trip rates adopted from the TPDM, and is expected to generate some 406 and 256 pcu (2-way) during the AM and PM peak hours respectively.
- 5.5 The traffic analysis found that the surveyed junctions and road links analyzed currently operate with capacity. With the planned traffic improvement works to be implemented by others, the analyzed junction will have sufficient capacity to accommodate the expected traffic growth to 2034 and the traffic generated by the Proposed Development. Hence, traffic generated by the Proposed Development will result in no adverse impact to the surrounding road network.
- Passenger demand on local and regional road-based public transport services associated with the Proposed Development was estimated and the service enhancement and findings are as follows:
 - (i) A proposed railway feeder bus route operating between the Proposed Development and the Kwu Tung North Station;
 - (ii) For existing local services to/from Fanling / Sheung Shui by KMB 78K and 79K, it is proposed to provide 2 additional services during the AM peak hour, and 4 additional services during the PM peak hour;
 - (iii) For existing regional bus services to/from urban area, it is proposed to provide 1 additional service during the AM peak hour, and 2 additional services during the PM peak hour;
 - (iv) Sufficient passenger queuing areas are provided at the proposed bus terminus within the Proposed Development, and there are sufficient existing queueing areas at the San Wai Barrick bus stops on Sha Tau Kok Road; and
 - (v) The MTR East Rail has the capacity to accommodate the negligible additional demand generated by the Proposed Development.

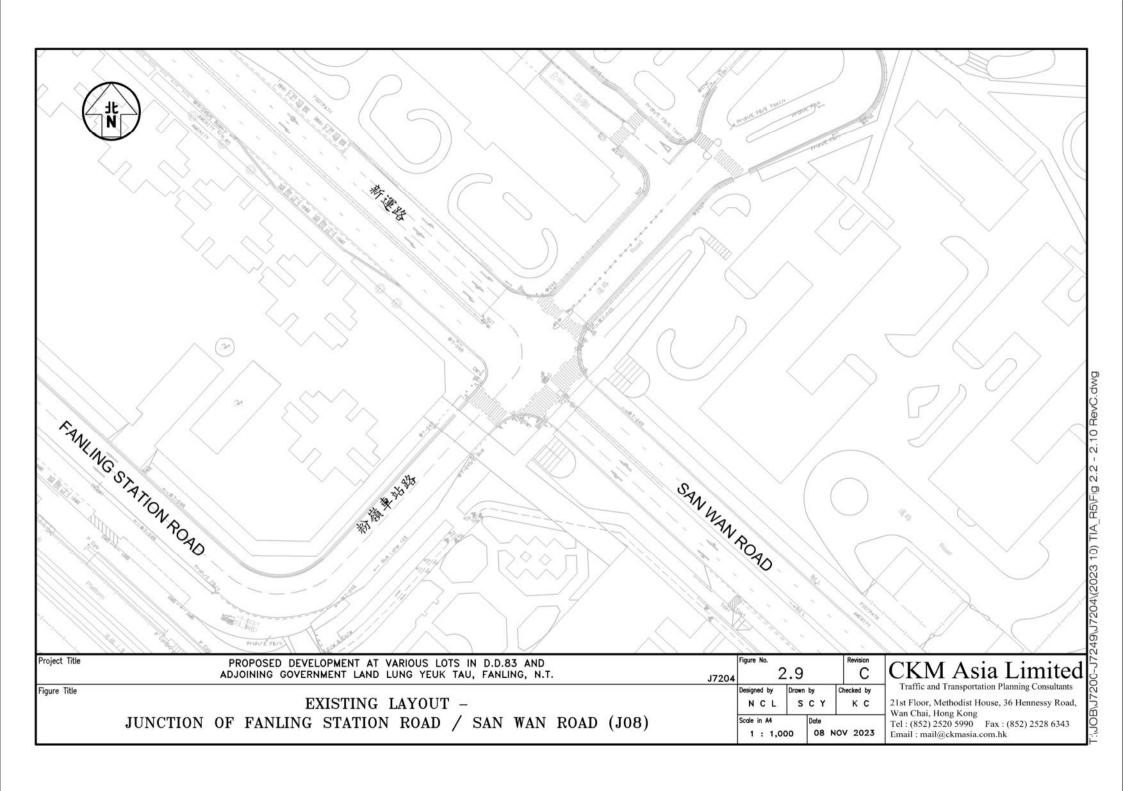

- 5.7 Analyses for nearby pedestrian facilities on Sha Tau Kok Road Lung Yeuk Tau were reviewed, and these facilities shall have capacity to accommodate the additional pedestrian flows associated with the Proposed Development during the AM and PM peak hour.
- 5.8 In view of the above, it is concluded that the Proposed Development is acceptable from traffic engineering viewpoint.

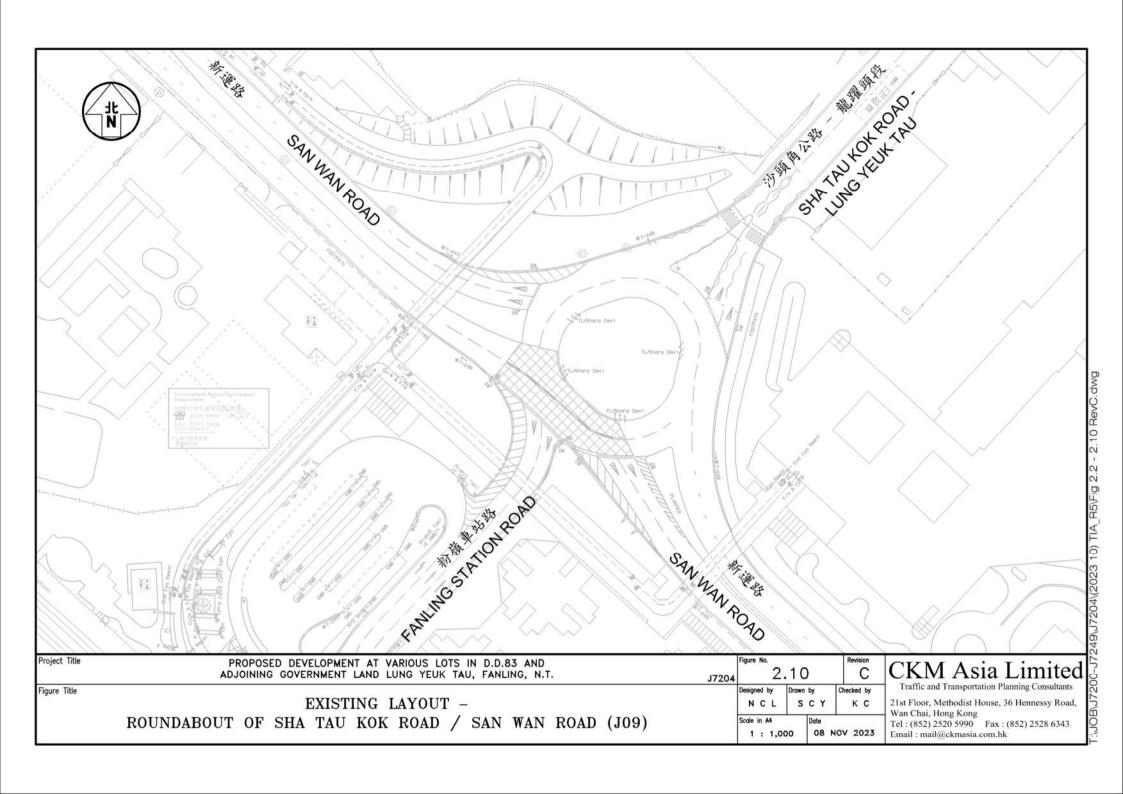


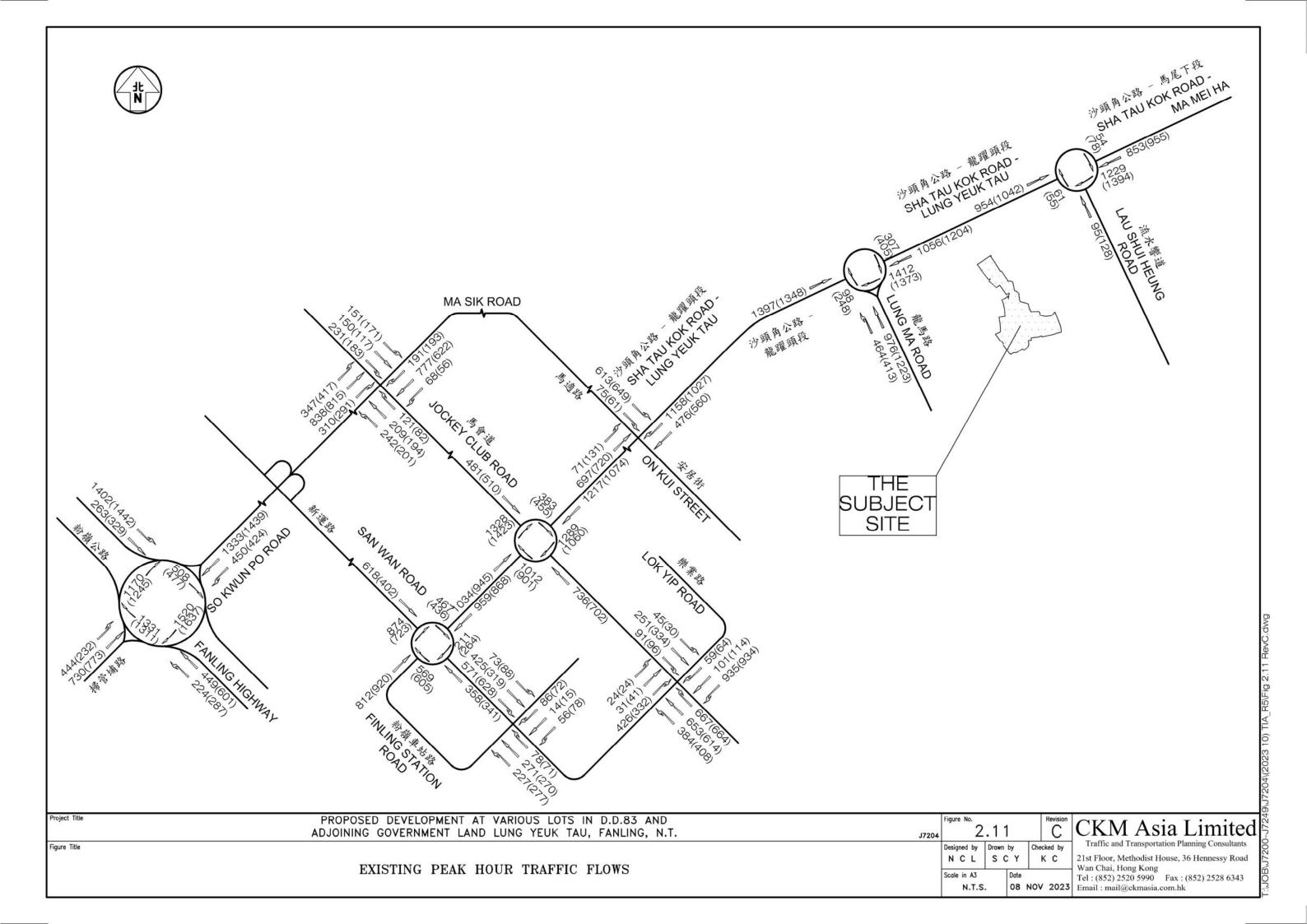


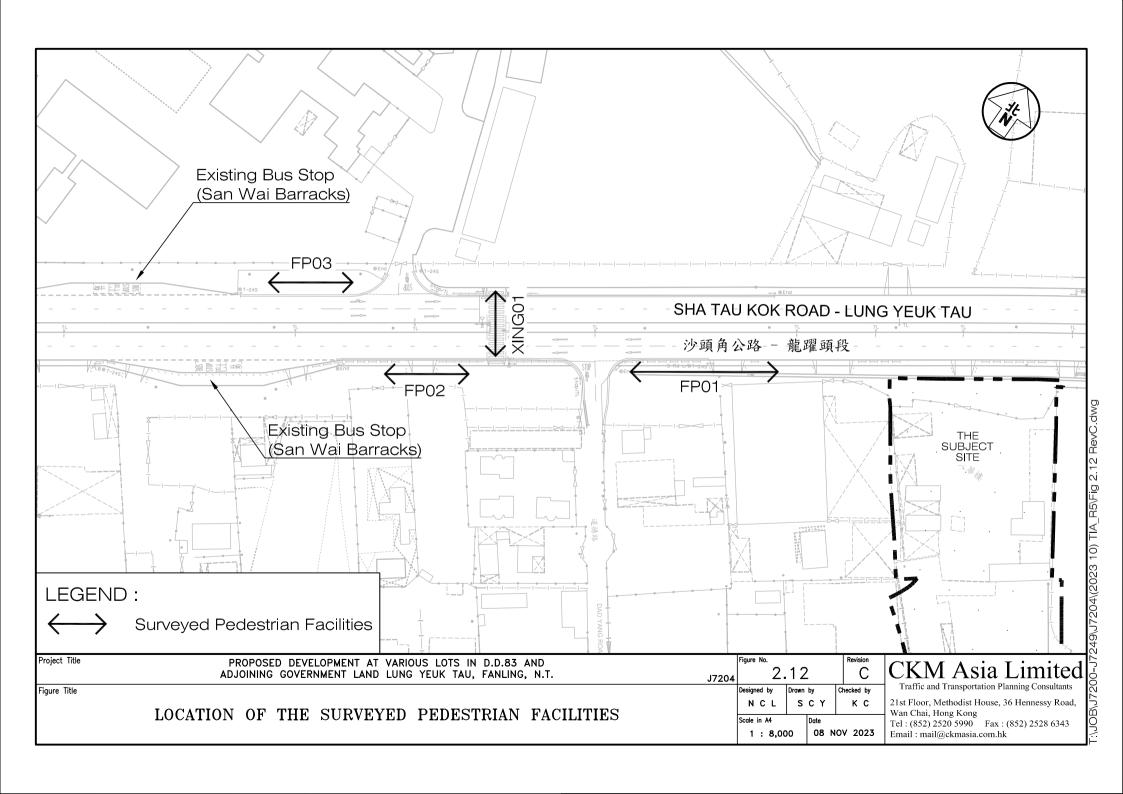


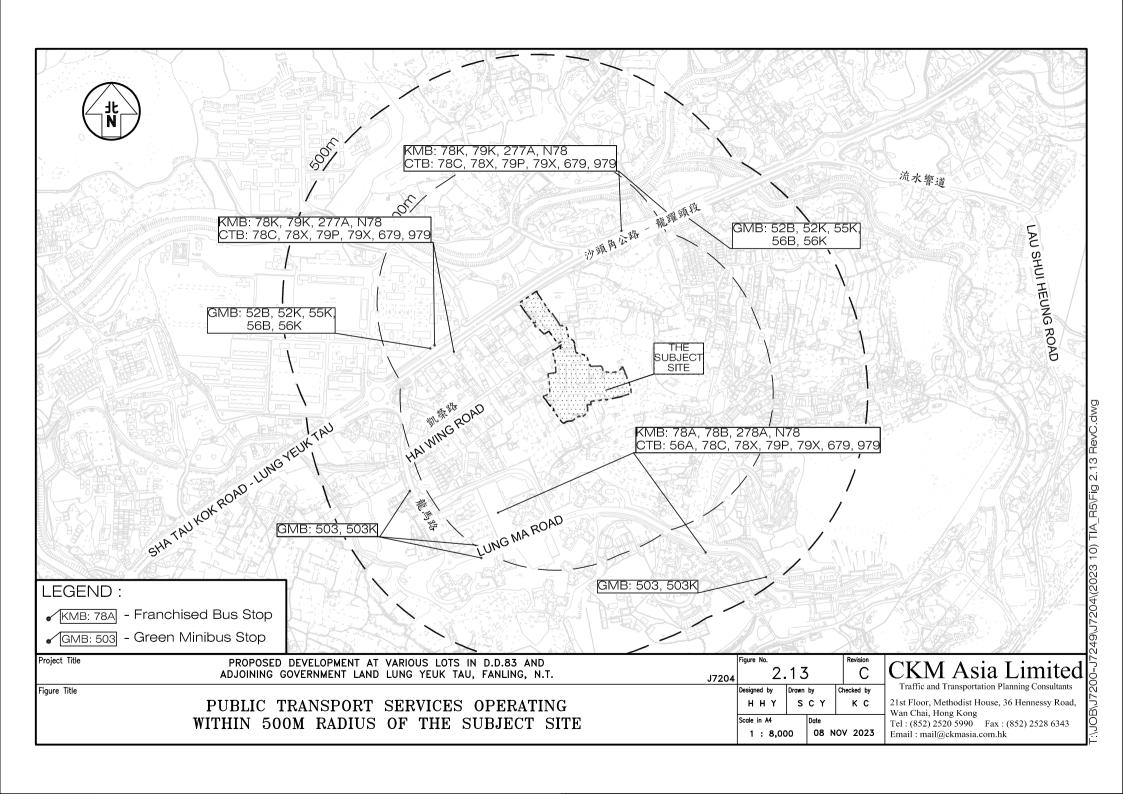


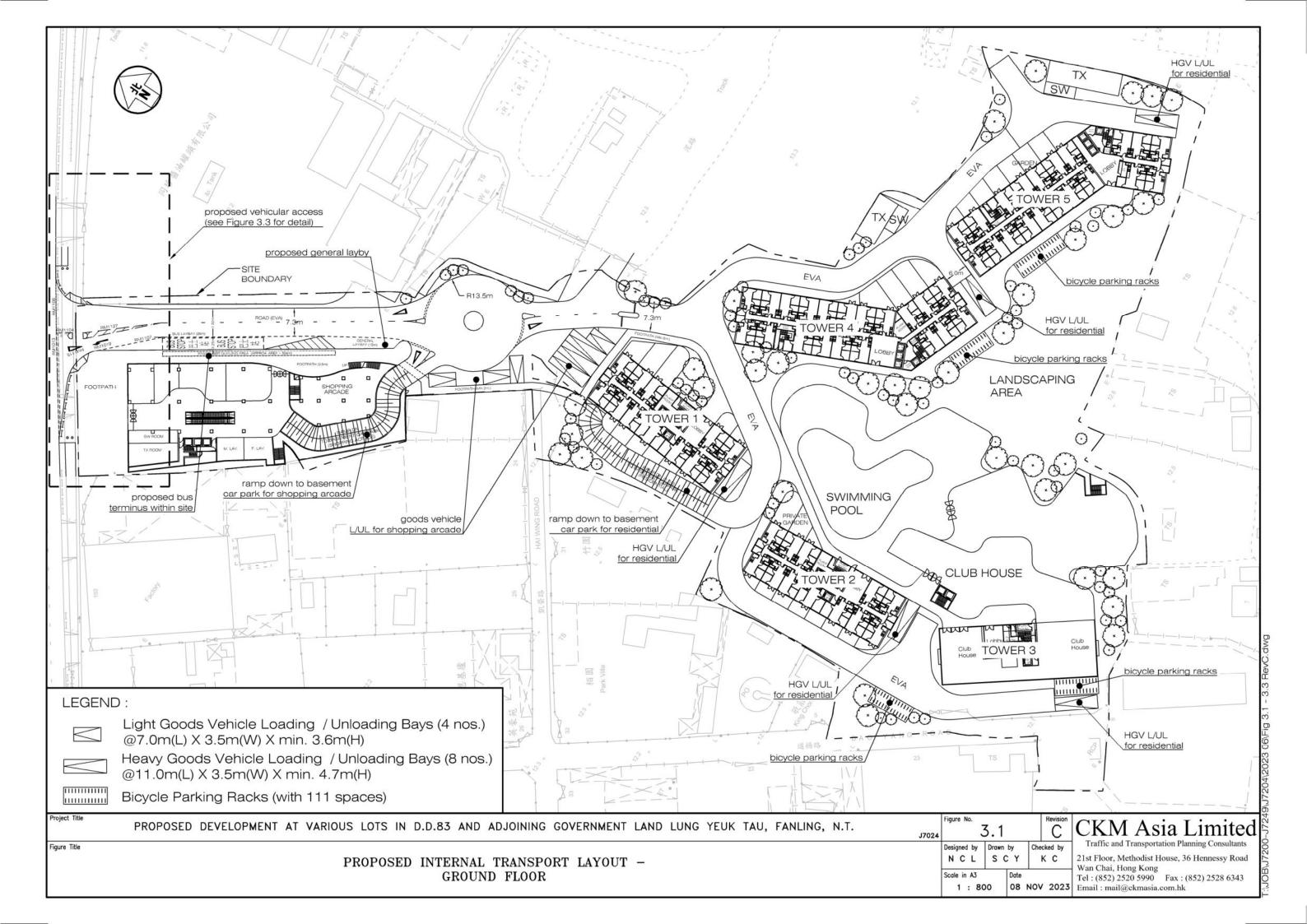


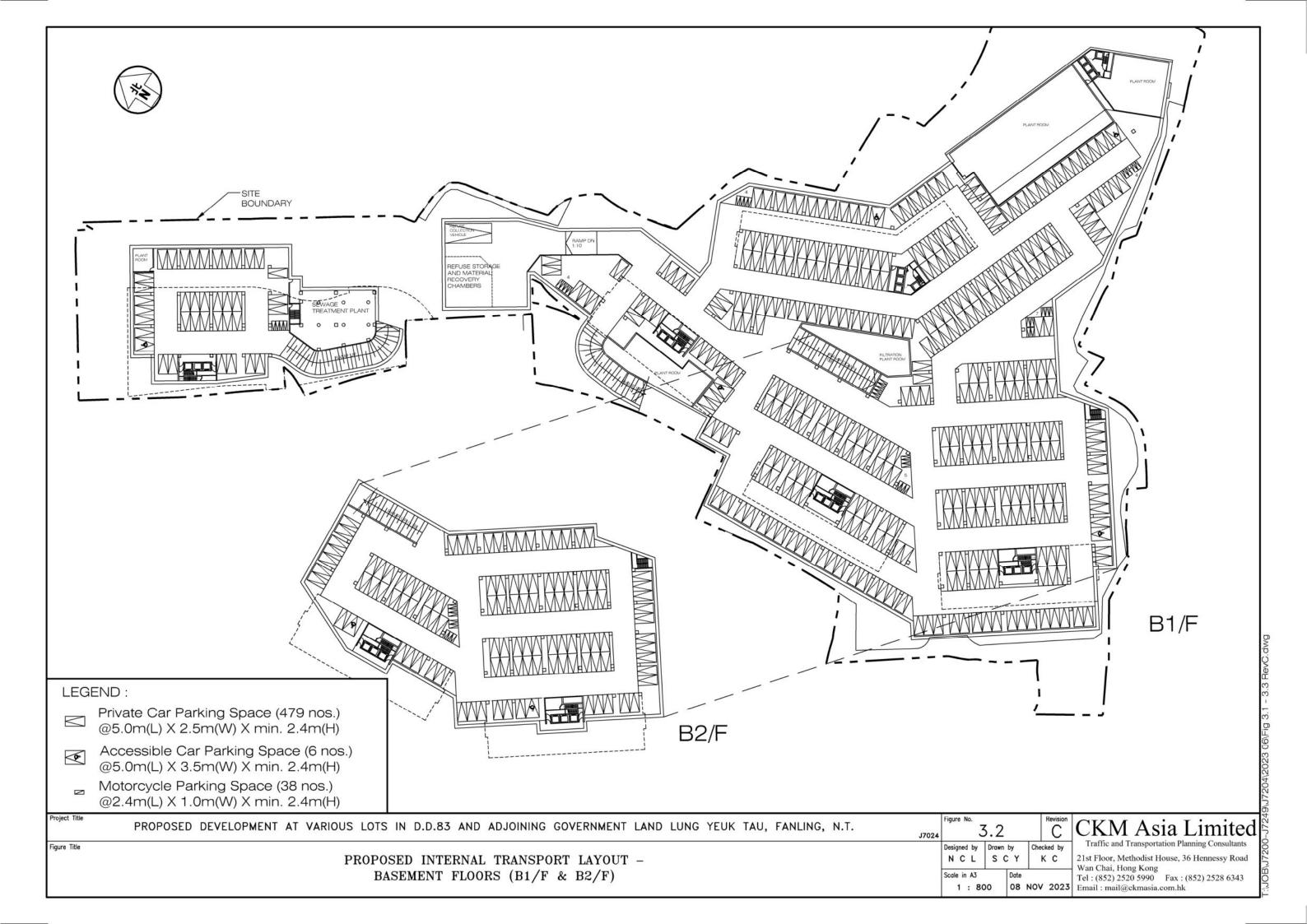


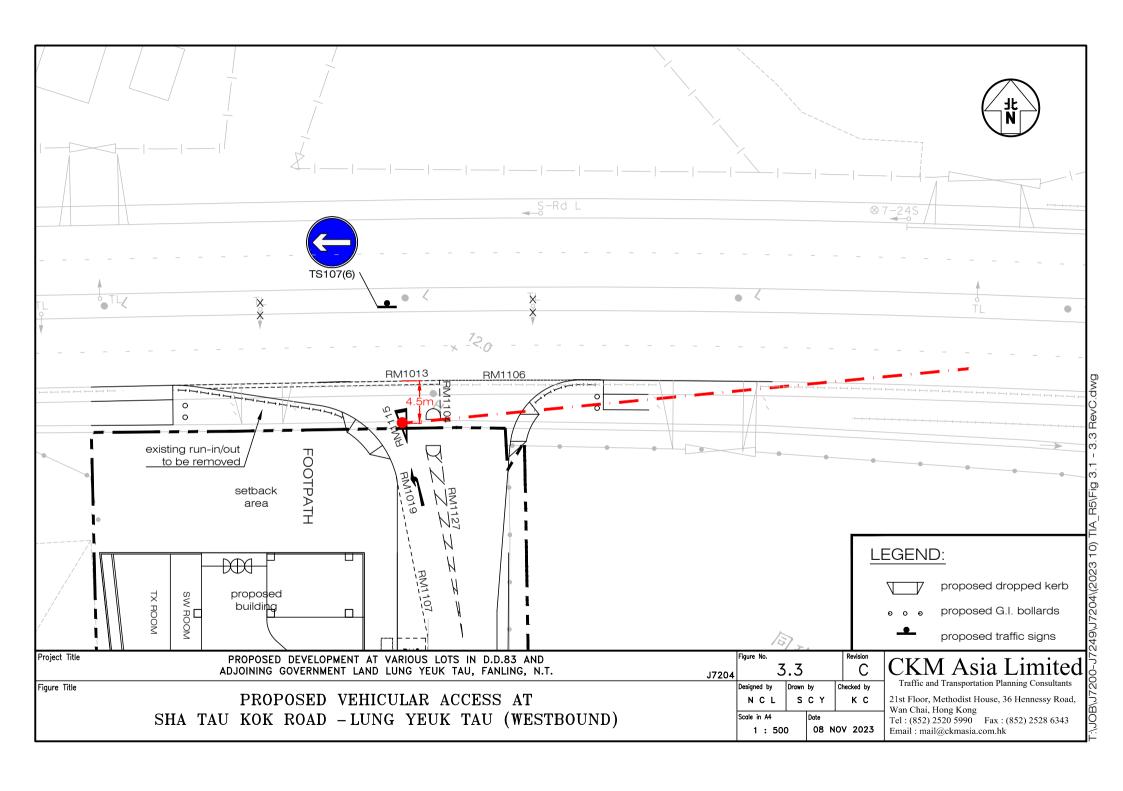


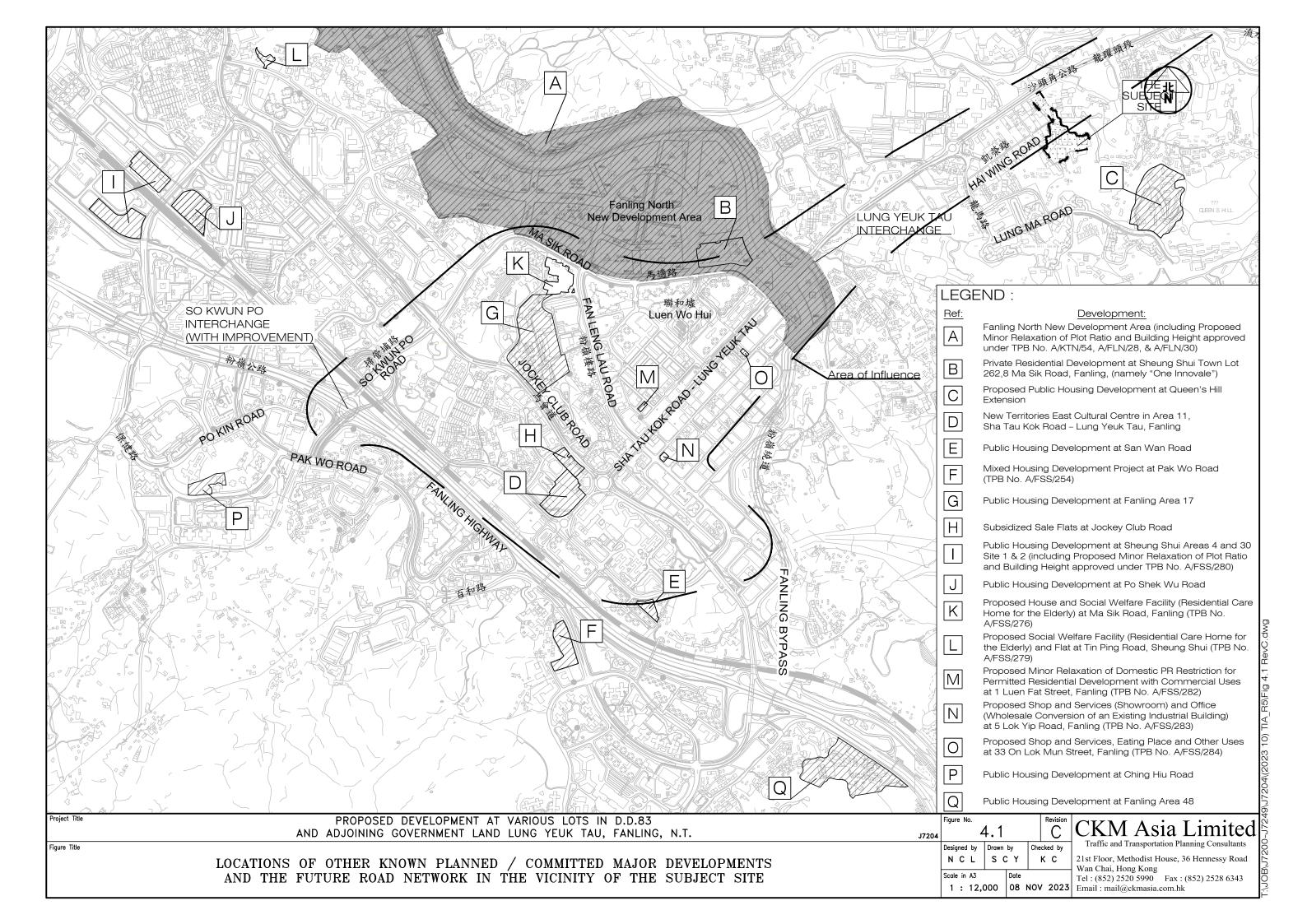


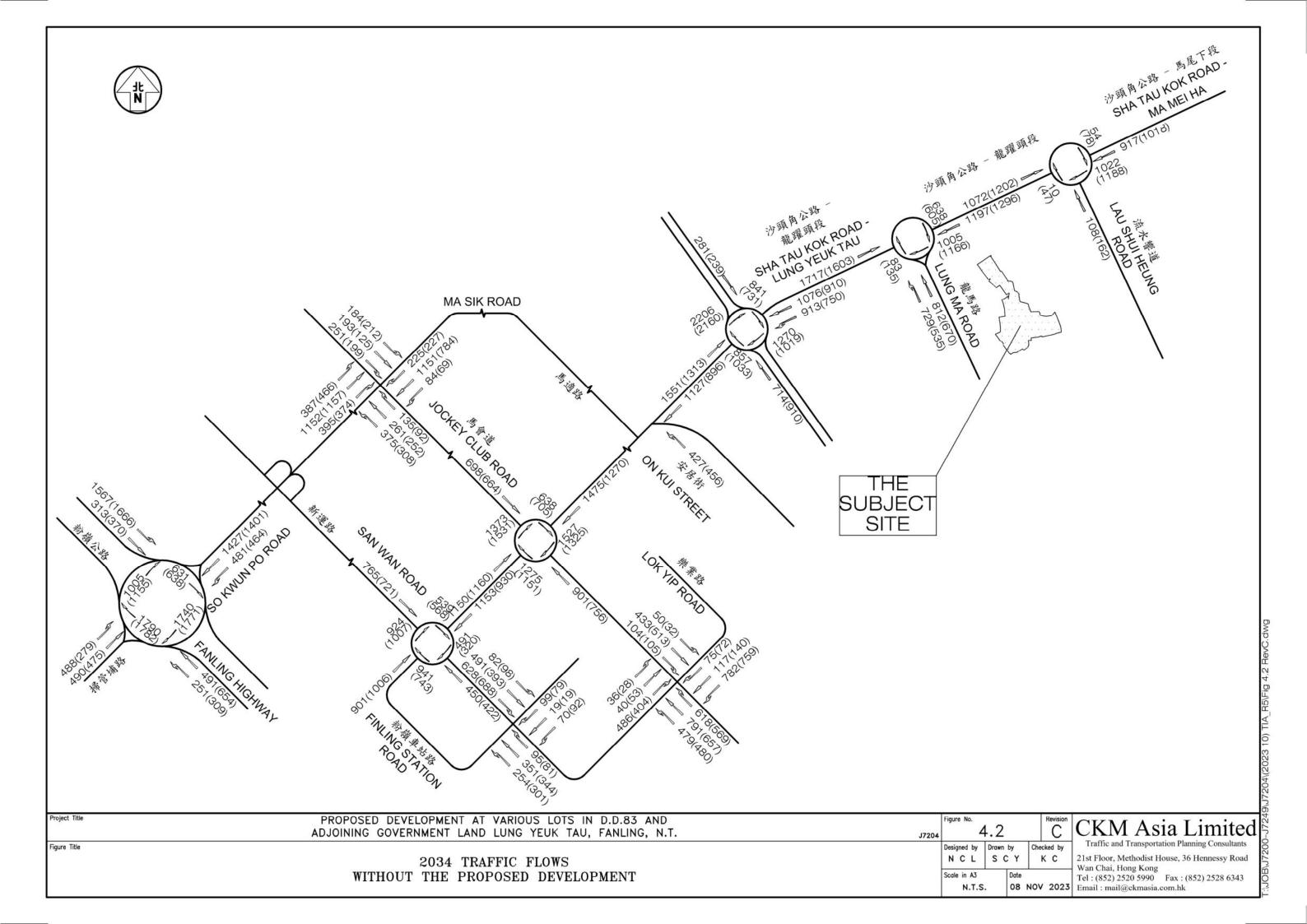


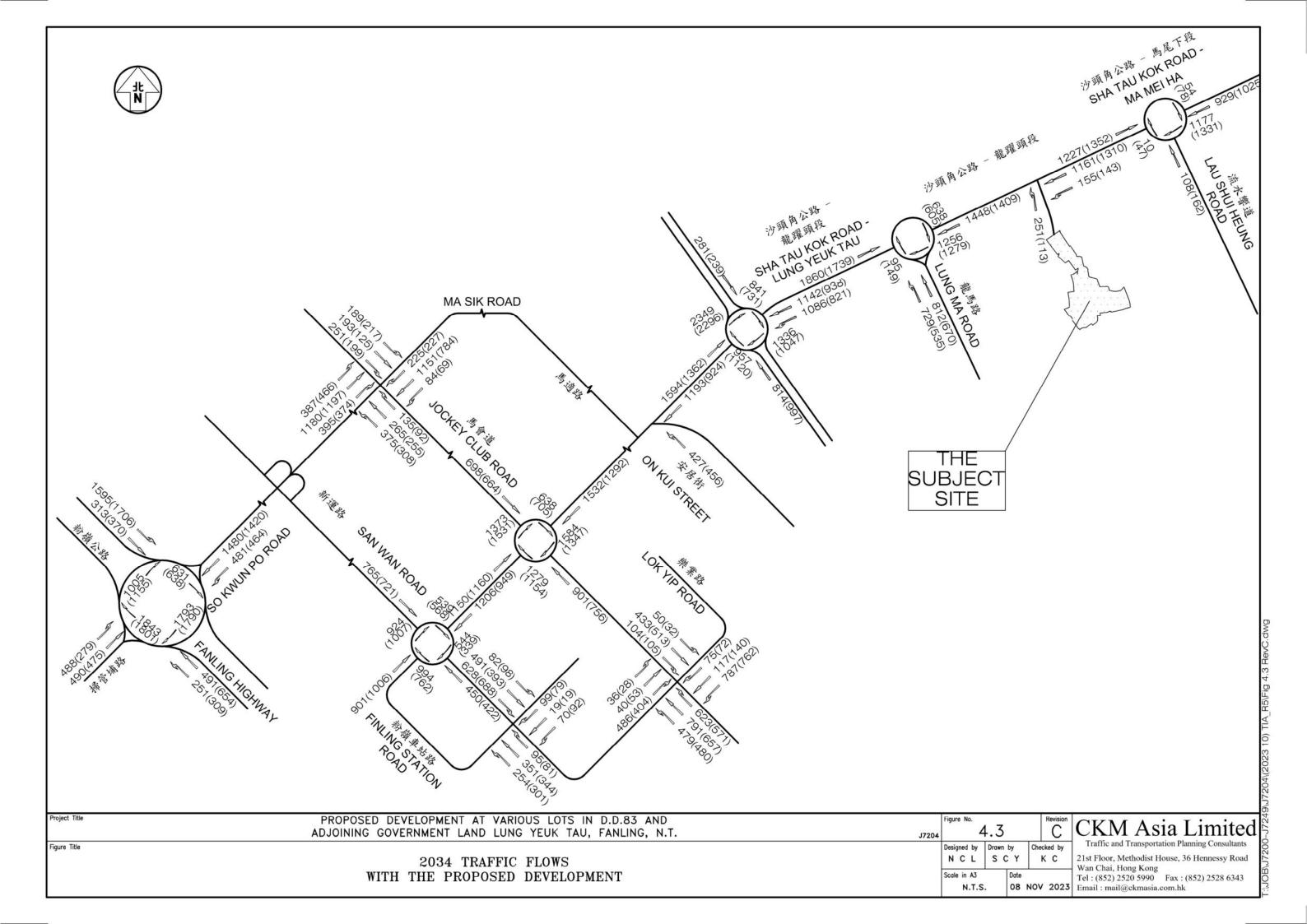


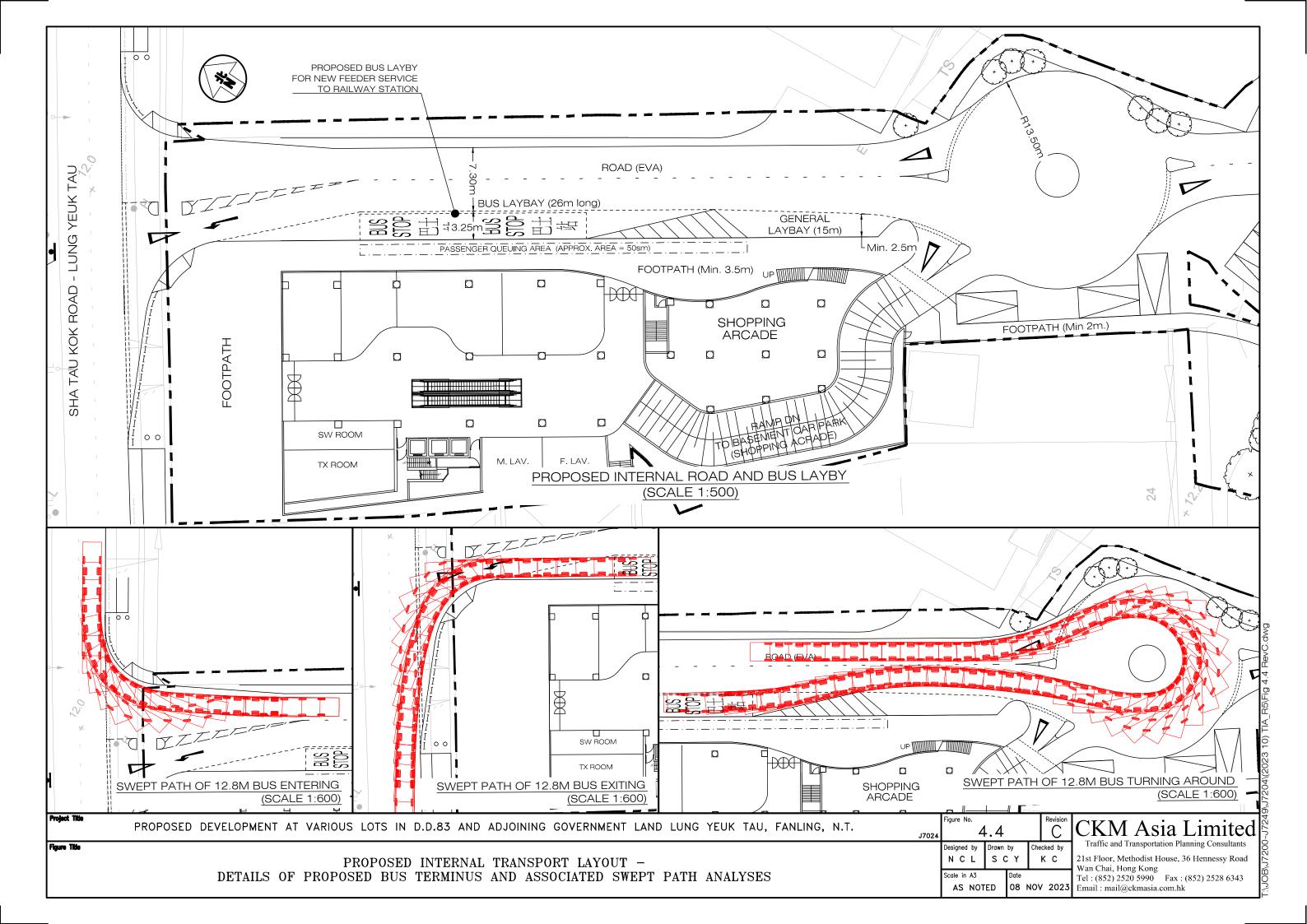












 Junction:
 Sha Tau Kok Road / Lau Shui Heung Road
 Job Number: J7204

 Scenario:
 Existing Condition
 J1 - P. 1

 Design Year:
 2023
 Designed By: NCL
 Checked By: WCH
 Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A		18	836						853	193
From B	34		61						95	918
From C	760	111	82						954	34
From D										
From E										
From F										
From G										
From H										
Total	794	128	979						1902	

PM Peak

Arm	To A	ТоВ	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	6	7	942						955	235
From B	40		89						128	1083
From C	807	100	135						1042	46
From D										
From E										
From F										
From G										
From H										
Total	853	108	1166						2126	

Legend

Arm	Road (in clockwise order)
Α	Sha Tau Kok Road - East
В	Lau Shui Heung Road
С	Sha Tau Kok Road - West
D	
E	
F	
G	
н	

Geometric Parameters

	o i aramote						
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	55.0	100.0	55	15	0.0
From B	6.0	3.5	100.0	50.0	55	25	0.1
From C	7.3	7.3	80.0	50.0	55	15	0.0
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q _c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow	1	RFC	
Arm	X ₂	M	t_D	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	7.300	0.607	1.311	1.083	2212	0.677	2254	2223	853	955	0.379	0.430
From B	5.655	0.607	1.311	1.056	1714	0.587	1241	1139	95	128	0.077	0.113
From C	7.300	0.607	1.311	1.089	2212	0.677	2383	2374	954	1042	0.400	0.439
From D												
From E												
From F												
From G												
From H												

 Junction:
 Sha Tau Kok Road / Lau Shui Heung Road
 Job Number: J7204

 Scenario:
 Without Proposed Development
 J1 - P. 2

 Design Year:
 2034
 Designed By: NCL
 Checked By: WCH
 Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	1	21	896						917	241
From B	9		99						108	1022
From C	831	117	125						1072	10
From D										
From E										
From F										
From G										
From H										
Total	841	137	1120						2098	

PM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	6	9	1002						1018	314
From B	40		122						162	1188
From C	888	136	179						1202	47
From D										
From E										
From F										
From G										
From H										
Total	935	145	1303						2383	

Legend

Arm	Road (in clockwise order)
Α	Sha Tau Kok Road - East
В	Lau Shui Heung Road
С	Sha Tau Kok Road - West
D	
E	
F	
G	
н	

Geometric Parameters

Ocomenia	c i arainett	,13					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	55.0	100.0	55	15	0.0
From B	6.0	3.5	100.0	50.0	55	25	0.1
From C	7.3	7.3	80.0	50.0	55	15	0.0
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q _c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	X ₃	М	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.607	1.311	1.083	2212	0.677	2219	2165	917	1018	0.413	0.470
From B	5.655	0.607	1.311	1.056	1714	0.587	1177	1074	108	162	0.092	0.151
From C	7.300	0.607	1.311	1.089	2212	0.677	2401	2374	1072	1202	0.447	0.507
From D												
From E												
From F												
From G												
From H												

 Junction:
 Sha Tau Kok Road / Lau Shui Heung Road
 Job Number: J7204

 Scenario:
 With Proposed Development
 J1 - P. 3

 Design Year:
 2034
 Designed By: NCL
 Checked By: WCH
 Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	1	21	908						929	384
From B	9		99						108	1177
From C	843	117	268						1227	10
From D										
From E										
From F										
From G										
From H										
Total	853	137	1275						2265	

PM Peak

Arm	To A	ТоВ	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	6	9	1009		•		•	•	1025	450
From B	40		122						162	1331
From C	902	136	315						1352	47
From D										
From E										
From F										
From G										
From H										
Total	949	145	1446						2540	

Legend

Arm	Road (in clockwise order)
Α	Sha Tau Kok Road - East
В	Lau Shui Heung Road
С	Sha Tau Kok Road - West
D	
E	
F	
G	
н	

Geometric Parameters

Geometric	c Paramete	Farailleters										
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S					
From A	7.3	7.3	55.0	100.0	55	15	0.0					
From B	6.0	3.5	100.0	50.0	55	25	0.1					
From C	7.3	7.3	80.0	50.0	55	15	0.0					
From D												
From E												
From F												
From G												
From H												

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q _c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
٧	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	X ₄	М	t_{D}	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.607	1.311	1.083	2212	0.677	2114	2065	929	1025	0.440	0.496
From B	5.655	0.607	1.311	1.056	1714	0.587	1081	985	108	162	0.100	0.165
From C	7.300	0.607	1.311	1.089	2212	0.677	2401	2374	1227	1352	0.511	0.570
From D												
From E												
From F												
From G												
From H												

 Junction:
 Sha Tau Kok Road / Lung Ma Road
 Job Number: J7204

 Scenario:
 Existing Condition
 J2 - P. 1

 Design Year:
 2023
 Designed By: NCL
 Checked By: WCH
 Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A		66	990						1056	452
From B	65								65	1028
From C	945	414	39						1397	65
From D										1461
From E										
From F										
From G										
From H										
Total	1009	480	1028					·	2517	

Free flow bypass from B to C = 464

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	То Н	Total	q _c
From A		87	1118						1204	461
From B	98								98	1205
From C	886	374	87						1348	98
From D										1446
From E										
From F										
From G										
From H										
Total	984	461	1205						2650	

Free flow bypass from B to C = 41

Legend

Arm	Road (in clockwise order)
Α	Sha Tau Kok Road - East
В	Lung Ma Road
С	Sha Tau Kok Road - West
D	San Wai Barracks
E	
F	
G	
lн	

Geometric Parameters

Geometri	c Paramete	ers					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.5	7.5	40.0	100.0	55	15	0.1
From B	4.0	3.7	70.0	15.0	55	10	0.0
From C	9.5	9.5	35.0	100.0	55	10	0.1
From D	5.5	4.5	20.0	10.0	55	10	0.2
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q _c	Circulating Flow across the Entry
К	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow			RFC	
Arm	x ₂	М	t_{D}	K	F	f _c	AM	PM	AM	PM	AM	PM	
From A	7.500	0.607	1.311	1.077	2273	0.688	2111	2104	1056	1204	0.500	0.572	
From B	3.976	0.607	1.311	1.104	1205	0.494	769	673	65	98	0.084	0.146	
From C	9.500	0.607	1.311	1.090	2879	0.799	3082	3053	1397	1348	0.453	0.441	
From D	5.258	0.607	1.311	1.069	1593	0.565	821	830	0	0	0.000	0.000	
From E													
From F													
From G													
From H													

 Junction:
 Sha Tau Kok Road / Lung Ma Road
 Job Number: J7204

 Scenario:
 Without Proposed Development
 J2 - P. 2

 Design Year:
 2034
 Designed By: NCL
 Checked By: WCH
 Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	1	192	1004						1197	638
From B	83								83	1005
From C	1079	638							1717	83
From D										1800
From E										
From F										
From G										
From H										
Total	1162	830	1004						2996	

Free flow bypass from B to C = 729

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	1	134	1162						1296	605
From B	135								135	1166
From C	998	602	3						1603	135
From D										1739
From E										
From F										
From G										
From H										
Total	1133	736	1165						3034	

Free flow bypass from B to C = 535

Legend

Arm	Road (in clockwise order)
Α	Sha Tau Kok Road - East
В	Lung Ma Road
С	Sha Tau Kok Road - West
D	San Wai Barracks
E	
F	
G	
I н	

Geometric Parameters

Ocomenia	o i ai ai ii ete	,13					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.5	7.5	40.0	100.0	55	15	0.0
From B	4.0	3.7	70.0	15.0	55	10	0.0
From C	9.5	9.5	35.0	100.0	55	10	0.0
From D	5.5	4.5	20.0	10.0	55	10	0.2
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q _c	Circulating Flow across the Entry
K	= 1-0.00347(∅-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
s	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow	,	RFC	
Arm	x ₃	М	t_D	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	7.500	0.607	1.311	1.077	2273	0.688	1974	1998	1197	1296	0.606	0.649
From B	3.976	0.607	1.311	1.104	1205	0.494	782	694	83	135	0.106	0.194
From C	9.500	0.607	1.311	1.090	2879	0.799	3066	3021	1717	1603	0.560	0.531
From D	5.258	0.607	1.311	1.069	1593	0.565	616	653	0	0	0.000	0.000
From E												
From F												
From G												
From H												

 Junction:
 Sha Tau Kok Road / Lung Ma Road
 Job Number: J7204

 Scenario:
 With Proposed Development
 J2 - P. 3

 Design Year:
 2034
 Designed By: NCL
 Checked By: WCH
 Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	13	192	1243						1448	638
From B	83								83	1256
From C	1222	638							1860	95
From D										1955
From E										
From F										
From G										
From H										
Total	1317	830	1243					·	3390	

Free flow bypass from B to C = 729

PM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	To H	Total	q _c
From A	15	134	1261						1409	605
From B	135								135	1279
From C	1134	602	3						1739	149
From D										1889
From E										
From F										
From G										
From H										
Total	1283	736	1264						3283	

Free flow bypass from B to C = 53

Legend

Arm	Road (in clockwise order)
Α	Sha Tau Kok Road - East
В	Lung Ma Road
С	Sha Tau Kok Road - West
D	San Wai Barracks
E	
F	
G	
lн	

Geometric Parameters

Geometri	c Paramete	ers					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.5	7.5	40.0	100.0	55	15	0.0
From B	4.0	3.7	70.0	15.0	55	10	0.0
From C	9.5	9.5	35.0	100.0	55	10	0.0
From D	5.5	4.5	20.0	10.0	55	10	0.2
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q _c	Circulating Flow across the Entry
К	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow	,	RFC	
Arm	X ₄	М	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.500	0.607	1.311	1.077	2273	0.688	1974	1998	1448	1409	0.734	0.705
From B	3.976	0.607	1.311	1.104	1205	0.494	645	632	83	135	0.128	0.213
From C	9.500	0.607	1.311	1.090	2879	0.799	3056	3009	1860	1739	0.609	0.578
From D	5.258	0.607	1.311	1.069	1593	0.565	523	563	0	0	0.000	0.000
From E												
From F												
From G												
From H												

Junction:	Sha Tau Kok		a Sik Ro	ad											Job Nu	mber:	
Scenario: Design Year:	Existing Cond	Designe	ed By:		NCL			Checke	d By:		WCH			Date:	23	J3 - P. June 20	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critica
ha Tau Kok Road -	Lung Yeuk Tau SB	SA	A1	2	3.20		Gradient		(pcu/hr) 1935	(pcu/hr) 559	0.289			(pcu/hr) 1935	(pcu/hr) 516	0.267	
		SA+RT	A2	2	3.20	26.00		0	2075	599	0.289		7	2066	551	0.267	
		RT	A3	2	3.20	23.00		100	1948	476	0.244		100	1948	519	0.267	
Ma Sik Road EB		LT	B1	2,3	3.50	15.0		100	1786	613	0.343	0.343	100	1786	649	0.363	0.36
		RT	B2	3	3.50	20.0		100	1958	75	0.038		100	1958	61	0.031	
Sha Tau Kok Road -	Lung Yeuk Tau NB	LT+SA	C1	1	3.50	15.0		30	1908	240	0.126	0.126	50	1872	262	0.140	0.14
		SA	C2	1	3.50				2105	264	0.126			2105	294	0.140	
		SA	C3	1	3.50				2105	264	0.126			2105	294	0.140	
pedestrian pha	ase		D _(P)	1		min c	rossing	time =	5	sec	GM +	8	sec F	GM =	13	sec	
			E _(P)	3		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
			F _(P)	2,3		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
			G _(P)	1		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
M Traffic Flow (pcu/hr	-)		N	PM Traffic I	low (pcu/hr)				N	S=1940+	100(W-3.2	25) S=	2080+100	(W-3.25)	Note:		
			7									S.,	=(S-230)÷	(4 . 4 EE/A)			
			/						/	S _M =S÷(1-	+1.5f/r)	- OM					
71	75 ◀	→ 613	/		131	61	<u></u>	649	/	S _M =S÷(1-	AM Pe	ak Hour	PM Pe	ak Hour	1		
71	75 ←	→ 613	/		131		<u></u>	649 560	/		AM Pe	ak Hour 1+2,3	PM Per 1+2+3	1+2,3			
⁷¹	75 ←	476 †	/		131	61 720	1027		<i>/</i>	Sum y	AM Pe 1+2+3 0.453	1+2,3 0.469	PM Per 1+2+3 0.438	1+2,3 0.503			
71 1	697	476 †	/		131				<i>/</i>	Sum y	1+2+3 0.453	1+2,3 0.469	PM Per 1+2+3 0.438 14	1+2,3 0.503			
⁷¹	697	476 †	/		131				<i>/</i> ·	Sum y L (s) C (s)	1+2+3 0.453 14 136	1+2,3 0.469 13 136	1+2+3 0.438 14 136	1+2,3 0.503 13 136			
⁷¹ →	697	476 †	/		131				<i>/</i>	Sum y	1+2+3 0.453	1+2,3 0.469	PM Per 1+2+3 0.438 14	1+2,3 0.503			
71 1	697	476 †	/	11	<u></u>			560	В1	Sum y L (s) C (s) practical y	1+2+3 0.453 14 136 0.807	1+2,3 0.469 13 136 0.814	1+2+3 0.438 14 136 0.807	1+2,3 0.503 13 136 0.814			
Ç1	697	476 †	F _(P)	ــا لر	B1		1027	560	,	Sum y L (s) C (s) practical y	1+2+3 0.453 14 136 0.807	1+2,3 0.469 13 136 0.814	1+2+3 0.438 14 136 0.807	1+2,3 0.503 13 136 0.814			
C1 C2 C3	115 D _(p)	476 †	F _(p)	- ↓↓	<u></u>		1027	560	,	Sum y L (s) C (s) practical y	1+2+3 0.453 14 136 0.807	1+2,3 0.469 13 136 0.814	1+2+3 0.438 14 136 0.807	1+2,3 0.503 13 136 0.814			
Ç1	697	476 †	F _(p)	A2	B1 A3		1027	560	,	Sum y L (s) C (s) practical y	1+2+3 0.453 14 136 0.807	1+2,3 0.469 13 136 0.814	1+2+3 0.438 14 136 0.807	1+2,3 0.503 13 136 0.814			
C2 C3	115 D _(p)	476 †	F _(p)		B1 A3		1027	560	В1	Sum y L (s) C (s) practical y	1+2+3 0.453 14 136 0.807	1+2,3 0.469 13 136 0.814	1+2+3 0.438 14 136 0.807	1+2,3 0.503 13 136 0.814			
C2 C3 G _(p)	115 D _(p)	2 = 5	F _(p)	A2	B1 A3 1 VG =	720	1027 B2 E _(p) F _(p)	560	B1	Sum y L (s) C (s) practical y R.C. (%)	AM Pe 1+2+3 0.453 14 136 0.807 78%	1+2,3 0.469 13 136 0.814	PM Per 1+2+3 0.438 14 136 0.807 84%	1+2,3 0.503 13 136 0.814	G =		VG =
C2 C3 C3 G _(p)	115 D _(p)	476	F _(p) G = G = G =	A2	B1 A3	720	1027 B2	560	B1	Sum y L (s) C (s) practical y R.C. (%) 4	AM Pe 1+2+3 0.453 14 136 0.807 78%	1+2,3 0.469 13 136 0.814	PM Per 1+2+3 0.438 14 136 0.807 84%	1+2,3 0.503 13 136 0.814	G = G = G =		VG =

Priority Junction Analysis

Junction: S	ha Tau Kok Road	/ On Kui :	Street				Job I	Number: J7204
Scenario: W	ithout Proposed	Developm	ent					J3P - P. 2
Design Year: 20	Desig	ned By: _	NCL	Chec	ked By:\	NCH_	Date: _	23 Jun 2023
Sha Tau Ko	ok Road - Lung Y	euk Tau (<i>i</i>	Arm C)	Sha Tau	Kok Road	- Lung Y	′euk Tau	(Arm A)
N N		⁴	Street (Al	rm B)	←	— [— [1127 AM	<u>896</u> <u>PM</u>
E = [1 + 0.094) F = [1 + 0.094) where Y = 1 - 0.03 q-AB, etc = W = major W-CR = ce w-BA, etc = v-rBA, etc =	4W-CR - Y(0.364c 0.364q-AC + 0.14 864Y(q-AC + q-AE neters represente (w-BA - 3.65)][1 + (w-BC - 3.65)][1 + (w-CB - 3.65)][1 + 345W the design flow of	q-AC + 0.1 4q-AB)] d by D, E, 0.0009(V 0.0009(V 0.0009(V of movements	F are: -rBA - 12i -rBC - 12i -rCB - 12 -rCB - te	0)][1 + 0.0 0)] 0)] c	0006(V-IBA	150)]		
Geometry :	Inp	ut	Inpu	ıt	Input		Calcul	lated
Geometry .	W W-CR	7.30 0.00	V-rBA V-IBA V-rBC V-rCB		w-BA w-BC w-CB	0.00 7.40 0.00	D E F Y	0.5332 1.2795 0.5860 0.4963
Analysis :								
Traffic Flows, pcu q-CA q-CB q-AB q-AC q-BA q-BC f	u/hr AM 0 0 0 1127 0 427 1.000	PM 0 0 0 896 0 456 1.000		(acity, pcu/h Q-BA Q-BC Q-CB Q-BAC	r	AM 226 693 317 693	PM 248 746 342 746
	 	flow to Ca 3-A 3-C C-B 3-AC	apacity	AM 0.000 0.617 0.000 0.617	PM 0.000 0.611 0.000 0.611			

Priority Junction Analysis

lunation:	Sha Tau k	Ank Bood	/ On Kui	Stroot				lob I	Number: 17204
Junction: Scenario:									Number: <u>J7204</u> J3P - P. 3
Design Year:	With Prop		ned By:		Cher	ked By:	WCH	Date:	23 Jun 2023
Design real.	2034	Desig	ned by	INCL	Cile	жей Бу	VVCII	Date	23 Juli 2023
Sha Tau	Kok Road	- Lung Ye	euk Tau ((Arm C)	Sha Tau	Kok Road	- Lung \	euk Tau	(Arm A)
							_		
						•		1193	<u>924</u>
			← ¬						
	N	⊢	427				Г	AM	PM
I	1	F	456				L	Aivi	1 101
/		L		Street (A	Arm B)	I			
			• • • • • • • • • • • • • • • • • • • •		= /				
The predictive equ	uations of c	capacity of	movem	ent are:					
Q-BA = D[627 +	· 14W-CR -	- Y(0.364q	-AC + 0.	144q-AB	+ 0.229q-	CA + 0.520	q-CB)]		
Q-BC = $E[745 -$. /-						
Q-CB = F[745 -		-	<i>,</i> –						
The geometric pa		•	-						
D = [1 + 0.0]						0006(V-IB <i>A</i>	A - 150)]		
E = [1 + 0.0]	`	/	,		/ -				
F = [1 + 0.0		3.65)][1 +	0.0009(\	7-rCB - 1	20)]				
where $Y = 1 - 0$		ian flow o	f mayam	ont AD o	.to				
	c = the des or road wid	-	movem	ent Ab, e	elG				
	central res		,						
	centraries c = lane wi								
	tc = visibilit			aitina veh	icles in str	eam BA e	tc		
	tc = visibilit		-	-					
,	•	,		J		,			
Geometry:		Inpu		-	out	Inpu		Calcu	
		W		V-rBA		w-BA	0.00	D	0.5332
		W-CR	0.00	V-IBA	0	w-BC	7.40	E	1.2795
				V-rBC	60	w-CB	0.00	F	0.5860
Amaluaia				V-rCB	0			Υ	0.4963
Analysis :	nou/br	AM	PM		Con	acity par/	or	A N 4	PM
Traffic Flows, q-CA	pcu/III	AIVI 0	РМ 0			acity, pcu/ł Q-BA	П	AM 219	245
q-CA q-CB		0	0			Q-BC		677	245 740
q-CB q-AB		0	0			Q-BC Q-CB		310	339
q-AB q-AC		1193	924			Q-BAC		677	740
q-AC q-BA		0	924		`	G DAO		011	170
q-BC		427	456						
f q-BO		1.000	1.000						
		Ratio-of-	flow to C	apacity	AM	PM			
			3-A	. •	0.000	0.000			
			3-C		0.630	0.616			
			C-B		0.000	0.000			
		E	3-AC		0.630	0.616			
I									

 Junction:
 Jockey Club Road / Sha Tau Kok Road
 Job Number: J7204

 Scenario:
 Existing Condition
 J4 - P. 1

 Design Year:
 2023
 Designed By: NCL
 Checked By: WCH
 Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	14	127	814	262					1217	404
From B	384	26	68	258					736	1233
From C	743	121	40	131					1034	1011
From D	264	113	37	67					481	1328
From E										
From F										
From G										
From H										
Total	1404	388	959	717					3468	

PM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A		138	680	256					1074	472
From B	498	46	78	79					702	1085
From C	700	145	34	67					945	919
From D	263	131	76	39					510	1423
From E										
From F										
From G										
From H										
Total	1462	461	868	441					3231	

Legend

Λ	Deed (in alcelouies and an)
Arm	Road (in clockwise order)
Α	Sha Tau Kok Road - East
В	Jockey Club Road - South
С	Sha Tau Kok Road - West
D	Jockey Club Road - North
E	
F	
G	
I н	

Geometric Parameters

	tile i didileters											
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S					
From A	8.0	7.5	35.0	4.0	65	10	0.2					
From B	7.5	7.0	25.0	1.0	65	10	0.8					
From C	10.0	7.0	40.0	15.0	65	40	0.3					
From D	8.5	8.0	60.0	2.0	65	20	0.4					
From E												
From F												
From G												
From H												

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q _c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow			
Arm	X ₂	М	t_D	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	7.857	1.649	1.189	1.090	2381	0.642	2313	2266	1217	1074	0.526	0.474
From B	7.192	1.649	1.189	1.079	2179	0.609	1542	1639	736	702	0.477	0.428
From C	8.829	1.649	1.189	0.990	2675	0.690	1957	2020	1034	945	0.528	0.468
From D	8.278	1.649	1.189	1.067	2508	0.663	1737	1670	481	510	0.277	0.305
From E												
From F												
From G												
From H												

 Junction:
 Jockey Club Road / Sha Tau Kok Road
 Job Number: J7204

 Scenario:
 Without Proposed Development
 J4 - P. 2

 Design Year:
 2034
 Designed By: NCL
 Checked By: WCH
 Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	21	148	940	366					1475	638
From B	313	34	90	465					901	1527
From C	822	136	49	144					1150	1275
From D	278	269	74	77					698	1373
From E										
From F										
From G										
From H										
Total	1433	586	1153	1052					4224	

PM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	34	141	712	383					1270	705
From B	368	55	75	258					756	1325
From C	806	209	58	87					1160	1151
From D	282	245	85	52					664	1531
From E										
From F										
From G										
From H										
Total	1490	650	930	781					3851	

Legend

Arm	Road (in clockwise order)
Α	Sha Tau Kok Road - East
В	Jockey Club Road - South
С	Sha Tau Kok Road - West
D	Jockey Club Road - North
Е	
F	
G	
Н	

Geometric Parameters

Geometri	eometric Parameters												
Arm	e (m)	v (m)	r (m)	r (m) L (m)		Ø (°)	S						
From A	7.3	7.3	35.0	100.0	65	10	0.0						
From B	7.3	7.3	25.0	100.0	65	10	0.0						
From C	10.0	7.0	40.0	15.0	65	40	0.3						
From D	7.3	7.3	60.0	100.0	65	20	0.0						
From E													
From F													
From G													
From H													

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q _c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow			RFC	
Arm	X ₃	М	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM	
From A	7.300	1.649	1.189	1.090	2212	0.614	1985	1939	1475	1270	0.743	0.655	
From B	7.300	1.649	1.189	1.079	2212	0.614	1375	1509	901	756	0.655	0.501	
From C	8.829	1.649	1.189	0.990	2675	0.690	1776	1861	1150	1160	0.647	0.623	
From D	7.300	1.649	1.189	1.067	2212	0.614	1461	1357	698	664	0.478	0.489	
From E													
From F													
From G													
From H													

 Junction:
 Jockey Club Road / Sha Tau Kok Road
 Job Number: J7204

 Scenario:
 With Proposed Development
 J4 - P. 3

 Design Year:
 2034
 Designed By: NCL
 Checked By: WCH
 Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	21	148	993	370					1532	638
From B	313	34	90	465					901	1584
From C	822	136	49	144					1150	1279
From D	278	269	74	77					698	1373
From E										
From F										
From G										
From H										
Total	1433	586	1206	1056		•	•	·	4281	

PM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	34	141	731	386					1292	705
From B	368	55	75	258					756	1347
From C	806	209	58	87					1160	1154
From D	282	245	85	52					664	1531
From E										
From F										
From G										
From H										
Total	1490	650	949	784					3873	

Legend

Arm	Road (in clockwise order)
Α	Sha Tau Kok Road - East
В	Jockey Club Road - South
С	Sha Tau Kok Road - West
D	Jockey Club Road - North
E	
F	
G	
lн	

Geometric Parameters

	o i aramote						
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	35.0	100.0	65	10	0.0
From B	7.3	7.3	25.0	100.0	65	10	0.0
From C	10.0	7.0	40.0	15.0	65	40	0.3
From D	7.3	7.3	60.0	100.0	65	20	0.0
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q _c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	X ₄	М	t_D	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	7.300	1.649	1.189	1.090	2212	0.614	1985	1939	1532	1292	0.772	0.666
From B	7.300	1.649	1.189	1.079	2212	0.614	1337	1494	901	756	0.674	0.506
From C	8.829	1.649	1.189	0.990	2675	0.690	1774	1859	1150	1160	0.648	0.624
From D	7.300	1.649	1.189	1.067	2212	0.614	1461	1357	698	664	0.478	0.489
From E												
From F												
From G												
From H												

l			a =														.=
Junction:		Club Road / Ma	Sik Roa	ad / So I	Kwun Po	Road									Job Nu	mber:	
Scenario: Design Year:	Existing (Design	ed By:		NCL			Checke	d By:		WCH			Date:	23	J5 - P. June 20	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
							Gradient		(pcu/hr)	(pcu/hr)	-	Critical y		(pcu/hr)	(pcu/hr)	-	Citical
Jockey Club R		LT	A1	2	3.30	12.5		100	1737	90	0.052		100	1737	87	0.050	0.05
Jockey Club R		LT+SA SA	A2 A3	2	3.30	15.0		59	1969 2085	103	0.052		87	1919 2085	97 104	0.051	0.05
Jockey Club Ro Jockey Club Ro		RT	A3 A4	2	3.30	27.5		100	1977	116	0.052	0.059	100	1977	92	0.030	
Jockey Club R		RT	A5	2	3.30	25.0		100	1967	115	0.059	0.009	100	1967	91	0.046	
ooney olds it	load LB	- 1	710		0.00	20.0		100	1001	110	0.000		100	1007	- 01	0.010	
So Kwun Po R	 Road NB	LT	B1	1, 2	4.60	45.0		100	2008	347	0.173		100	2008	417	0.208	
So Kwun Po R	 Road NB	SA	B2	1	3.30				2085	419	0.201	0.201		2085	408	0.195	0.19
So Kwun Po R	≀oad NB	SA+RT	В3	1	3.30	27.5		0	2085	419	0.201		0	2085	407	0.195	
So Kwun Po R	Road NB	RT	B4	1	3.30	25.0		100	1967	310	0.157		100	1967	291	0.148	
Jockey Club R		LT	C1	3	3.30	25.0		100	1967	146	0.074		100	1967	128	0.065	0.06
Jockey Club R		LT+SA	C2	3	3.30	27.5		64	2015	150	0.074	0.074	56	2023	131	0.065	
Jockey Club R		SA 	C3	3	3.30				2085	155	0.074			2085	136	0.065	
Jockey Club R	toad WB	RT	C4	3	3.60	25.0		100	1995	121	0.060		100	1995	82	0.041	
Ma Sik Road S		LT	D1	4	3.70	12.5		100	1772	68	0.039		100	1772	56	0.031	
Ma Sik Road S		SA	D2	4	3.80	15.0		100	2135	388	0.182	0.182	100	2135	311	0.031	
Ma Sik Road S		SA	D3	4	3.80	10.0			2135	389	0.182	0.102		2135	311	0.146	
Ma Sik Road S		RT	D4	4	3.50	25.0		100	1986	191	0.096		100	1986	193	0.097	0.09
pedestrian pha	300		E _(p)	1		min c	rossing t	time -	5	800	GM +	10	sec F	GM -	15	sec	
pedestriari pria	136		F _(p)	2,3,4			rossing		7		GM +	9	sec F		16	sec	
			G _(p)	1			rossing		13		GM +	14	sec F		27	sec	
			H _(p)	3,4			rossing t		7		GM +	7	sec F		14	sec	
AM Traffic Flow (pcu/hr	r)		N _E	PM Traffic I	Flow (pcu/hr)				N _E	S=1940+	100(W-3.2	25) S=	2080+100	(W-3.25)	Note:		
AM Traffic Flow (pcu/hr	<u>r)</u>		N_	PM Traffic I	Flow (pcu/hr)		1		N	S=1940+ S _M =S÷(1-	+1.5f/r)	S _M	=(S-230)÷	(vv–3.25) ·(1+1.5f/r)	Note:		
	r) 191 ←	68	N	PM Traffic I		193		56	N			S _M		(vv–3.25) ·(1+1.5f/r)	Note:		
151	191 🛨	68	N	PM Traffic I	Flow (pcu/hr)	193	622	56	N		+1.5f/r)	S _M	=(S-230)÷	(vv–3.25) ·(1+1.5f/r)	Note:		
151	191 * • 150	121 †	N	PM Traffic I		193 117	622	56	N		+1.5f/r) AM Per 1+2+3+4 0.516	S _M	PM Pea 1+2+3+4 0.457	(W=3.25) (1+1.5f/r) ak Hour	Note:		
151	191 ← 150 838	209	N	PM Traffic f		193 117 815	194	56	N	S _M =S÷(1-	+1.5f/r) AM Per 1+2+3+4 0.516 27	S _M ak Hour 1,2+3+4 0.429 21	=(S-230)+ PM Pea 1+2+3+4 0.457 27	(W-3.25) -(1+1.5f/r) ak Hour 1,2+3+4 0.418 21	Note:		
151	191 ← 150 838	121 †	N	PM Traffic I	171	193 117 815	622	56	N N	S _M =S÷(1-	1+2+3+4 0.516 27 116	S _M ak Hour 1,2+3+4 0.429 21 116	PM Per 1+2+3+4 0.457 27 116	(W-3.25) (1+1.5f/r) ak Hour 1,2+3+4 0.418 21 116	Note:		
151	191 ← 150 838	209	N	PM Traffic f	171	193 117 815	194	56	n	Sum y L (s) C (s) practical y	1+2+3+4 0.516 27 116 0.691	S _M ak Hour 1,2+3+4 0.429 21 116 0.737	PM Per 1+2+3+4 0.457 27 116 0.691	(W-3.25) (1+1.5f/r) ak Hour 1,2+3+4 0.418 21 116 0.737	Note:		
151	191 ← 150 838	209	N	PM Traffic I	171	193 117 815	194		N	S _M =S÷(1-	1+2+3+4 0.516 27 116	S _M ak Hour 1,2+3+4 0.429 21 116	PM Per 1+2+3+4 0.457 27 116	(W-3.25) (1+1.5f/r) ak Hour 1,2+3+4 0.418 21 116	Note:		
151	191 ← 150 838	209	N .	PM Traffic I	171	193 117 815	194	56	N	Sum y L (s) C (s) practical y	1+2+3+4 0.516 27 116 0.691	S _M ak Hour 1,2+3+4 0.429 21 116 0.737	PM Per 1+2+3+4 0.457 27 116 0.691	(W-3.25) (1+1.5f/r) ak Hour 1,2+3+4 0.418 21 116 0.737	Note:		
151	191 ← 150 838	209	n K	PM Traffic I	171	193 117 815	194		z	Sum y L (s) C (s) practical y	1+2+3+4 0.516 27 116 0.691	S _M ak Hour 1,2+3+4 0.429 21 116 0.737	PM Per 1+2+3+4 0.457 27 116 0.691	(W-3.25) (1+1.5f/r) ak Hour 1,2+3+4 0.418 21 116 0.737	Note:		
151	191 ← 150 838	209	N.K.	PM Traffic I	171	193 117 815	194		N C4	Sum y L (s) C (s) practical y	1+2+3+4 0.516 27 116 0.691	S _M ak Hour 1,2+3+4 0.429 21 116 0.737 72%	PM Per 1+2+3+4 0.457 27 116 0.691	(W-3.25) (1+1.5f/r) ak Hour 1,2+3+4 0.418 21 116 0.737	Note:		
151	191 ← 150 838	209	N	PM Traffic I	171	193 117 815	194			Sum y L (s) C (s) practical y	1+2+3+4 0.516 27 116 0.691	S _M ak Hour 1,2+3+4 0.429 21 116 0.737 72%	PM Per 1+2+3+4 0.457 27 116 0.691	(W-3.25) (1+1.5f/r) ak Hour 1,2+3+4 0.418 21 116 0.737	Note:		τ.
151	191 ← 150 838	209	N To a long to the second of	PM Traffic I	171	193 117 815	194		C4	Sum y L (s) C (s) practical y	1+2+3+4 0.516 27 116 0.691	S _M ak Hour 1,2+3+4 0.429 21 116 0.737 72%	PM Per 1+2+3+4 0.457 27 116 0.691	(W-3.25) (1+1.5f/r) ak Hour 1,2+3+4 0.418 21 116 0.737	Note:		-
151	191 ★ 150 838 7 ★ 3	209	N	PM Traffic I	171	193 117 815	194		C4	Sum y L (s) C (s) practical y R.C. (%)	1+2+3+4 0.516 27 116 0.691	S _M ak Hour 1,2+3+4 0.429 21 116 0.737 72%	PM Per 1+2+3+4 0.457 27 116 0.691	((W-3.25) ((1+1.5f/r)) ak Hour 1.2+3+4 0.418 21 116 0.737 76%	Note:		VG =
151 231 347	191 * 150 838 7	121 209 10 242	**************************************	PM Traffic I	171 183 417	193 117 815	194 291		C4 C3 C2 C1	S _M =S+(1-S _M =S+(1-S _M)) Sum y L (s) C (s) practical y R.C. (%)	1.5f/r) AM Per 1+2+3+4 0.516 27 116 0.691 34%	S _M ak Hour 1,2+3+4 0.429 21 116 0.737 72%	=(S-230)+ PM Pec 1+2+3+4 0.457 27 116 0.691 51%	((W-3.25) ((1+1.5f/r)) ak Hour 1.2+3+4 0.418 21 116 0.737 76%			VG = VG =
151 231 347	191 ★ 150 838 7 ★ 3 → 150 B38 7 ★ 3	209 - 121 10 242		PM Traffic I	171 183 417	193 117 815	194 291 ▼ • Ēω. G =		C4 C3 C1 VG =	S _M =S+(1-S _M =S	1.5f/r) AM Per 1+2+3+4 0.516 27 116 0.691 34% D4	S _M ak Hour 1,2+3+4 0.429 21 116 0.737 72%	=(S-230)+ PM Per 1+2+3+4 0.457 27 116 0.691 51%	((W-3.25) ((1+1.5f/r)) ak Hour 1.2+3+4 0.418 21 116 0.737 76%	G=		

Junction:	Jockey (Club Road / Ma	Sik Ro	ad / So	Kwun Po	Road								-	Job Nu	mber:	J7204
Scenario:	Without	Proposed Deve	elopmer	nt												J5 - P.	2
Design Year:	2034	Design	ed By:		NCL			Checke	ed By:		WCH			Date:	23	June 20)23
					1	1				AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Jockey Club R	Road EB	LT	A1	1	3.30	12.5	Gradient	100	1737	113	0.065		100	1737	102	0.059	
Jockey Club R		LT+SA	A2	1	3.30	15.0		55	1976	129	0.065		98	1899	112	0.059	0.05
Jockey Club R		SA	A3	1	3.30				2085	135	0.065			2085	123	0.059	
Jockey Club R		RT	A4	1	3.30	27.5		100	1977	126	0.064	0.064	100	1977	100	0.050	
Jockey Club R		RT	A5	1	3.30	25.0		100	1967	125	0.064		100	1967	99	0.050	
,																	
So Kwun Po R	Road NB	LT	B1	1, 2	4.60	45.0		100	2008	387	0.193		100	2008	466	0.232	
So Kwun Po R	Road NB	SA	B2	2	3.30				2085	392	0.188	0.188		2085	388	0.186	0.18
So Kwun Po R	Road NB	SA	В3	2	3.30				2085	392	0.188			2085	388	0.186	
So Kwun Po R	Road NB	SA+RT	В3	2	3.30	27.5		6	2078	393	0.189		2	2083	388	0.186	
So Kwun Po R	Road NB	RT	B4	2	3.30	25.0		100	1967	370	0.188		100	1967	367	0.186	
Jockey Club R	Road WB	LT	C1	2, 3	3.30	40.0		100	1875	181	0.097		100	1875	149	0.079	0.07
Jockey Club R		LT	C2	2, 3	3.30	42.5		100	2014	194	0.097		100	2014	160	0.079	
Jockey Club R		SA	C3	3	3.30				2085	133	0.064		Ĺ	2085	125	0.060	
Jockey Club R		SA+RT	C4	3	3.60	27.5		5	2109	135	0.064		0	2115	127	0.060	
Jockey Club R	Road WB	RT	C5	3	3.60	25.0		100	1995	127	0.064		100	1995	92	0.046	
Ma Sik Road S	SB	LT	D1	4	3.70	12.5		100	1772	84	0.048	0.048	100	1772	69	0.039	
Ma Sik Road S	SB	SA	D2	4	3.80	15.0			2135	576	0.270			2135	392	0.184	
Ma Sik Road S	SB	SA	D3	4	3.80				2135	576	0.270			2135	392	0.184	0.184
Ma Sik Road S	SB	RT	D4	4	3.50	25.0		100	1986	225	0.114		100	1986	227	0.114	
pedestrian pha	ase		E _(p)	1		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
			F _(p)	2,3,4		min c	rossing	time =	7	sec	GM +	9	sec F	GM =	16	sec	
			G _(p)	1		min c	rossing	time =	13	sec	GM +	14	sec F	GM =	27	sec	
			H _(p)	3,4		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
			I _(p)	1,4		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hi	r)			PM Traffic I	low (pcu/hr)					S=1040±	100(W-3.2	25)	2080+100)/\/\ 3 25\	Note:		
			N						N	S _M =S÷(1-		•	=(S-230)+				
	225 <	94	\			227	\leftarrow	60	\	OM-0-(1		ak Hour		ak Hour	1		
184	223	1 04			212	221	↓	03									
	▶ 193	1151 135			\perp	125	784	92			1+2+3+4	1,2+3+4	1+2+3+4	1,2+3+4			
<u> </u>	1152	261			,	1157	252	↲		Sum y	0.588	0.527	0.489	0.476			
251	†	Ţ			199	. 1		Ţ		L (s)	24	18	24	18			
387	7 🔭 3	395 375			466	$ \uparrow $	374	308		C (s)	116	116	116	116			
										practical y	0.714	0.760	0.714	0.760			
										R.C. (%)	21%	44%	46%	60%			
1	ր∐կ	2		∤∐կ		3		վ∐կ		4	D4		D1	5			
A1 A2		됵				됵				됵		D3 D2					
→ A3 → A4			G _(p)			屋			C5	屋							
▼ A5		⊒ - ↓			F				C4 +								_
4 Fω	· *	Ţ	. ††	← ^E (P)- →	Ţ	H _{@F}	.▼ 4 ^F (o). >	← ^E (ρ)- →	C3 ← C2 ▼	H _(p)	.▼ <u></u>	•	*	1			
•լ∐ե		I _(p) B1	<u> </u>	•	*	***	<u>ין דדי</u> ר		♥ C1	***	<u>ין דֿ ד</u> ֿרַ		I _(p) .				
AM G=		VG = 8	G =		I/G =	7	G =		I/G =	7	G =		I/G =	6	G =		I/G =
G =		I/G =	G =		I/G =	7	G =		I/G =	7	G =		I/G =	6	G =		I/G =
PM G=		I/G = 8	G =		I/G =	7	G =		I/G =	7	G =	-	I/G =	6	G =		I/G =
G =	=	I/G =	G =		I/G =	7	G =		I/G =	7	G =		I/G =	6	G =		I/G =

Junction:	lockey C	lub Road / Ma	Sik Por	ad / So I	(wiin Di	. Poad									Joh Nu	mber:	17204
_	•	osed Develor		au / 30 i	(Wull F	Noau									JOD NU	J5 - P.	
_	2034	Design			NCL			Checke	d By:		WCH			Date:	23	June 20	
						l				AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Jockey Club Roa	ad EB	LT	A1	1	3.30	12.5		100	1737	114	0.066		100	1737	104	0.060	
Jockey Club Roa	ad EB	LT+SA	A2	1	3.30	15.0		57	1973	131	0.066		99	1897	114	0.060	0.060
Jockey Club Roa	ad EB	SA	A3	1	3.30				2085	137	0.066			2085	124	0.060	
Jockey Club Roa	ad EB	RT	A4	1	3.30	27.5		100	1977	126	0.064	0.064	100	1977	100	0.050	
Jockey Club Roa	ad EB	RT	A5	1	3.30	25.0		100	1967	125	0.064		100	1967	99	0.050	
So Kwun Po Roa	ad NB	LT	B1	1, 2	4.60	45.0		100	2008	387	0.193		100	2008	466	0.232	
So Kwun Po Roa	ad NB	SA	B2	2	3.30				2085	399	0.192	0.192		2085	399	0.191	0.19
So Kwun Po Roa	ad NB	SA	В3	2	3.30				2085	399	0.192			2085	399	0.191	
So Kwun Po Roa	ad NB	SA+RT	В3	2	3.30	27.5		4	2080	400	0.192		0	2085	399	0.191	
So Kwun Po Roa	ad NB	RT	B4	2	3.30	25.0		100	1967	377	0.192		100	1967	374	0.190	
Jockey Club Roa	ad WP	LT	C1	2, 3	3.30	40.0		100	1875	181	0.097		100	1875	149	0.079	0.079
		LT	C2	2, 3	3.30	42.5		100	2014	194	0.097		100	2014	160	0.079	0.07
Jockey Club Roa						42.5		100					100				
Jockey Club Roa		SA	C3	3	3.30	07.5			2085	135	0.065			2085	127	0.061	
Jockey Club Roa		SA+RT	C4	3	3.60	27.5		4	2110	136	0.065		0	2115	128	0.061	
Jockey Club Roa	ad WB	RT	C5	3	3.60	25.0		100	1995	129	0.065		100	1995	92	0.046	
Ma Sik Road SB	i	LT	D1	4	3.70	12.5		100	1772	84	0.048	0.048	100	1772	69	0.039	
Ma Sik Road SB	,	SA	D2	4	3.80	15.0			2135	576	0.270			2135	392	0.184	
Ma Sik Road SB		SA	D3	4	3.80				2135	576	0.270			2135	392	0.184	0.184
Ma Sik Road SB		RT	D4	4	3.50	25.0		100	1986	225	0.114		100	1986	227	0.114	
pedestrian phase	е		E _(p)	1		min c	rossing	time =	5	sec (GM +	10	sec F	GM =	15	sec	
			F(p)	2,3,4		min c	rossing	time =	7	sec (GM +	9	sec F	GM =	16	sec	
			G(p)	1		min c	rossing	time =	13	sec (GM +	14	sec F	GM =	27	sec	
			H(p)	3,4		min c	rossing	time =	7	sec (GM +	7	sec F	GM =	14	sec	
			l(p)	1,4		min c	rossing	time =	7	sec (GM +	7	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)			N	PM Traffic I	low (pcu/hr)	'			N	S=1940+	100(W-3.2	25) S=	2080+100	(W-3.25)	Note:		
		1					1		7	S _M =S÷(1+	+1.5f/r)	S _M	=(S-230)÷	·(1+1.5f/r)			
	225 🗲	84	,			227	\leftarrow	69	•		AM Pe	ak Hour	PM Pea	ak Hour			
189 ↑		♦ 1151			217 *		♦ 784				1+2+3+4	1,2+3+4	1+2+3+4	1,2+3+4			
→ 1	193	135 ★			-	125		92 †		Sum y	0.593	0.527	0.496	0.477			
↓ 251	1180	265 🕶			↓ 199	1197	255			L(s)	24	18	24	18			
387 ◆	39	↓ 95 375			466	\leftarrow	374	↓ 308		C (s)	116	116	116	116			
										practical y	0.714	0.760	0.714	0.760			
										R.C. (%)	20%	44%	44%	60%			
1 	J	2		 		3		 		4	D4		D1	5			
A1 A2		투				乓				ᆿ		D3 D2					
→ A3 → A4			G _(p)			屖			Ç5	屖							
▼ A5		# 7 ↓				_			C4 🛨				П				
← ^F ®→ ←⊤Ɗ」	▼,	<u>,</u> [4]	. † †	← ^E (ρ)- →	\F	H _(p)	.▼ ∢ ^F (0)→	← ^E (p) →	C3 C2V	H _(p)	.▼	.	√ ∑≡				
ין ון־	10	p) `▲ B1			•		<u> </u>		Č1		<u>ካ የ</u> ተ		f(p) **				
AM G = G =		VG = 8	G =		I/G =		G = G =		I/G =		G = G =		I/G =		G = G =		I/G =
G = PM G =		I/G = 8	G = G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
PM G = G =		I/G = 0	G =		I/G =		G =		I/G =		G = G =		I/G =		G = G =		I/G =
<u> </u>														-			

 Junction:
 So Kwun Po Road / Fanling Highway Interchange
 Job Number: J7204

 Scenario:
 Existing Condition
 J6 - P. 1

 Design Year:
 2023
 Designed By: NCL
 Checked By: WCH
 Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	59		359	1144					1561	550
From B	427								427	1812
From C	396	299							695	1630
From D			251						251	1181
From E										
From F										
From G										
From H										
Total	882	299	609	1144					2934	

PM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	3		567	981					1550	575
From B	572								572	1863
From C	476	261							738	1556
From D			313						313	1313
From E										
From F										
From G										
From H										
Total	1051	261	880	981					3173	

Legend

Arm	Road (in clockwise order)
Α	So Kwun Po Road - North
В	Fanling Highway - East
С	So Kwun Po Road - South
D	Fanling Highway - West
E	
F	
G	
н	

Geometric Parameters

Geometric Farameters									
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S		
From A	9.5	6.0	20.0	50.0	65	55	0.1		
From B	7.0	3.5	90.0		65	25	0.1		
From C	9.0	6.9	30.0		65	35	0.1		
From D	7.5	3.5	55.0	50.0	65	30	0.1		
From E									
From F									
From G									
From H									

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q _c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	x ₂	M	t_D	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	8.859	1.649	1.189	0.913	2684	0.692	2104	2088	1561	1550	0.742	0.742
From B	6.359	1.649	1.189	1.055	1927	0.567	949	918	427	572	0.450	0.623
From C	8.751	1.649	1.189	0.999	2652	0.687	1531	1582	695	738	0.454	0.466
From D	6.685	1.649	1.189	1.031	2025	0.583	1378	1299	251	313	0.182	0.241
From E												
From F												
From G												
From H												

 Junction:
 So Kwun Po Road / Fanling Highway Interchange
 Job Number: J7204

 Scenario:
 Without Proposed Development
 J6 - P. 2

 Design Year:
 2034
 Designed By: NCL Checked By: WCH Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	24		128	1275					1427	631
From B	491								491	1740
From C	172	318							490	1790
From D			313						313	1005
From E										
From F										
From G										
From H										
Total	687	318	441	1275				·	2721	

PM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	27	•	273	1102	•		•	•	1401	638
From B	654								654	1771
From C	207	268							475	1782
From D			370						370	1155
From E										
From F										
From G										
From H										
Total	887	268	643	1102					2900	

Legend

Arm	Road (in clockwise order)
Α	So Kwun Po Road - North
В	Fanling Highway - East
С	So Kwun Po Road - South
D	Fanling Highway - West
E	
F	
G	
lн	

Geometric Parameters

	netric i didireters									
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S			
From A	9.5	6.0	20.0	50.0	65	55	0.1			
From B	7.0	3.5	90.0	50.0	65	25	0.1			
From C	9.0	6.9	30.0	50.0	65	35	0.1			
From D	7.5	3.5	55.0	50.0	65	30	0.1			
From E										
From F										
From G										
From H										

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q _c	Circulating Flow across the Entry
К	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	X ₃	М	t_{D}	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	8.859	1.649	1.189	0.913	2684	0.692	2053	2048	1427	1401	0.695	0.684
From B	6.359	1.649	1.189	1.055	1927	0.567	992	973	491	654	0.495	0.671
From C	8.751	1.649	1.189	0.999	2652	0.687	1421	1426	490	475	0.345	0.333
From D	6.685	1.649	1.189	1.031	2025	0.583	1484	1394	313	370	0.211	0.265
From E												
From F												
From G												
From H												

 Junction:
 So Kwun Po Road / Fanling Highway Interchange
 Job Number: J7204

 Scenario:
 With Proposed Development
 J6 - P. 3

 Design Year:
 2034
 Designed By: NCL Checked By: WCH Date: 23 June 2023

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	24		128	1328					1480	631
From B	491								491	1793
From C	172	318							490	1843
From D			313						313	1005
From E										
From F										
From G										
From H										
Total	687	318	441	1328					2774	

PM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	27		273	1121		•	•	•	1420	638
From B	654								654	1790
From C	207	268							475	1801
From D			370						370	1155
From E										
From F										
From G										
From H										
Total	887	268	643	1121					2919	

Legend

Arm	Road (in clockwise order)
Α	So Kwun Po Road - North
В	Fanling Highway - East
С	So Kwun Po Road - South
D	Fanling Highway - West
E	
F	
G	
lн	

Geometric Parameters

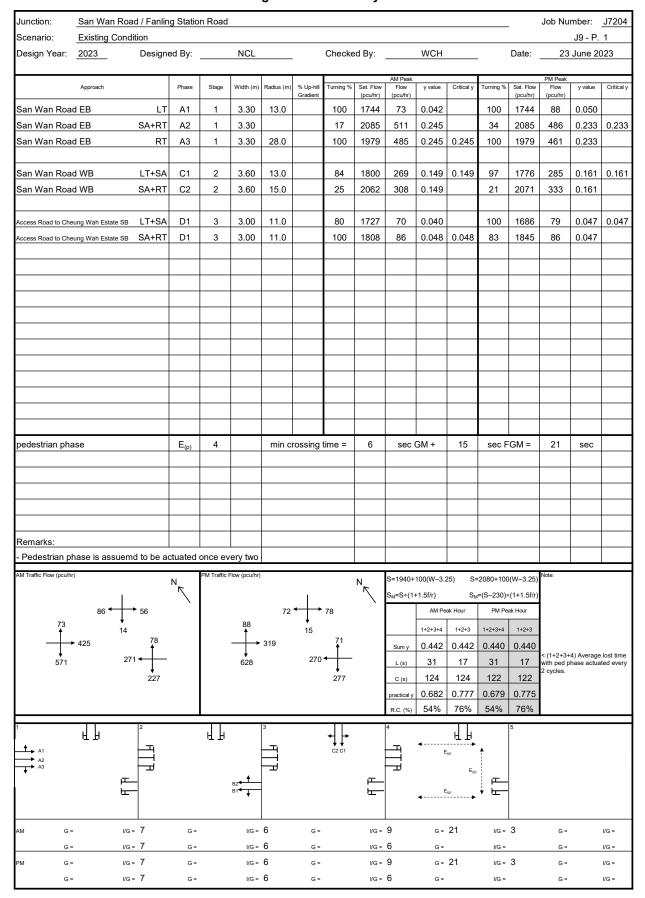
Ocomenia	etric i didireters									
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S			
From A	9.5	6.0	20.0	50.0	65	55	0.1			
From B	7.0	3.5	90.0	50.0	65	25	0.1			
From C	9.0	6.9	30.0	50.0	65	35	0.1			
From D	7.5	3.5	55.0	50.0	65	30	0.1			
From E										
From F										
From G										
From H										

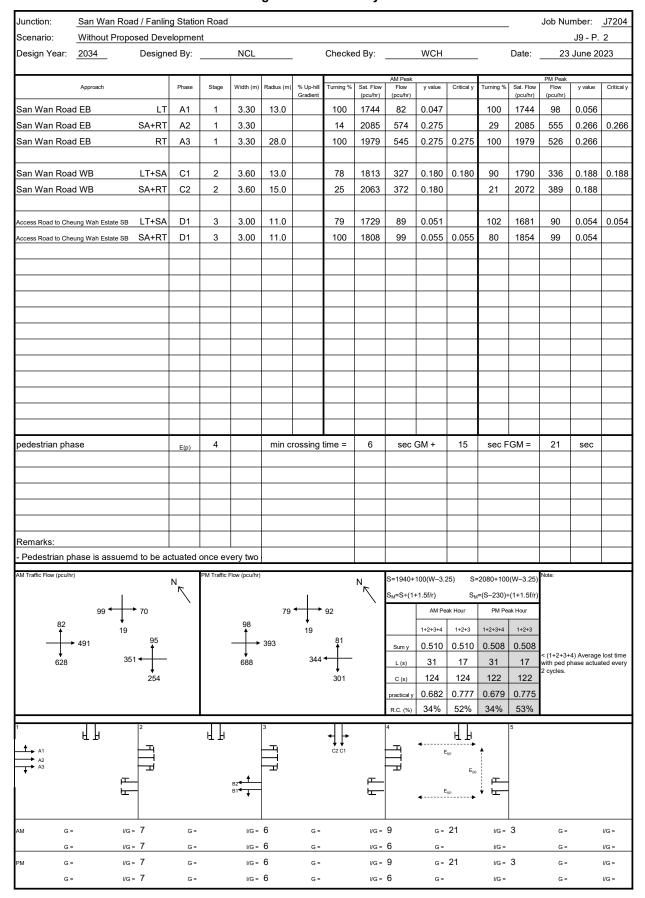
Predictive Equation $Q_E = K(F - f_cq_c)$

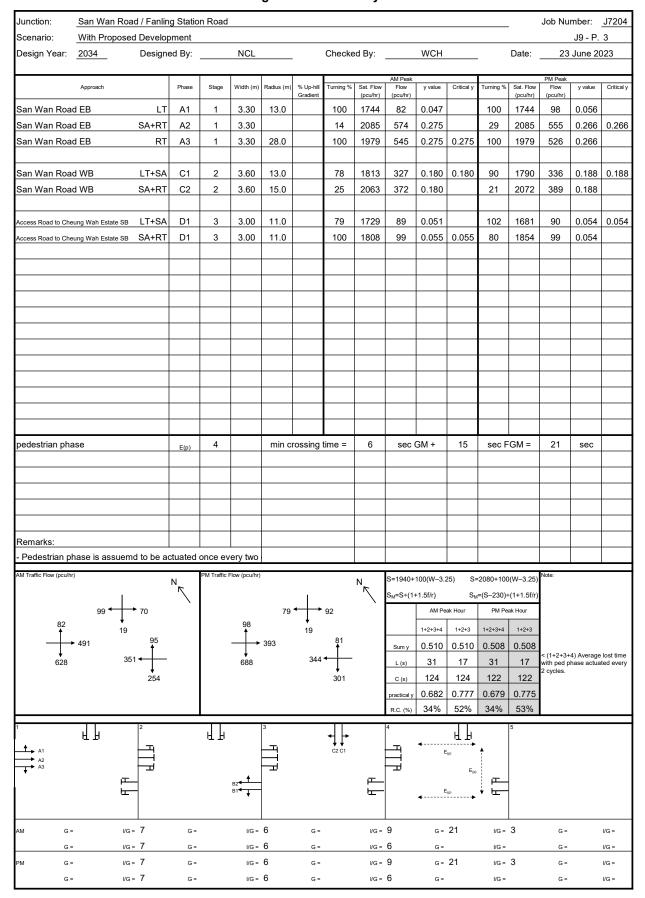
Q_E	Entry Capacity
q _c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0


Ratio-of-Flow to Capacity (RFC)


							Q_{E}		Entry Flow		RFC	
Arm	X ₄	М	t_D	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	8.859	1.649	1.189	0.913	2684	0.692	2053	2048	1480	1420	0.721	0.693
From B	6.359	1.649	1.189	1.055	1927	0.567	960	962	491	654	0.511	0.679
From C	8.751	1.649	1.189	0.999	2652	0.687	1385	1413	490	475	0.354	0.336
From D	6.685	1.649	1.189	1.031	2025	0.583	1484	1394	313	370	0.211	0.265
From E												
From F												
From G												
From H												


Junction:	Jockey C	lub Road / Lol	k Yip Ro	ad / Sai	n Wan F	Road									Job Nu	mber:	J7204
Scenario:	Existing (Condition														J8 - P.	1
Design Year:	2023	Design	ed By:		NCL			Checke	d By:		WCH		-	Date:	23	June 20	023
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Jockey Club R	oad EB	LT+SA	A1	1	3.30	13.0		37	1864	121	0.065	0.065	21	1900	146	0.077	
Jockey Club R	oad EB	SA	A2	1	3.30				2085	135	0.065			2085	159	0.076	0.07
Jockey Club R	oad EB	RT+SA	A3	1	3.30	28.0		70	2010	131	0.065		62	2018	155	0.077	
San Wan Road	d NB	LT+SA	B1	4	3.30	12.0		43	1846	55	0.030		37	1859	65	0.035	
San Wan Road	d NB	SA+RT	B2	4	3.30	22.5		100	1955	214	0.110	0.110	100	1955	167	0.085	0.08
San Wan Road	d NB	RT	В3	4	3.30	19.0		100	1932	212	0.110		100	1932	165	0.085	
Jockey Club R	oad WB	LT	C1	2	3.30	13.0		100	1744	379	0.217		100	1744	375	0.215	
Jockey Club R	oad WB	LT+SA	C2	2	3.30	15.0		1	2083	453	0.217	0.217	7	2070	446	0.215	
Jockey Club R	oad WB	SA+RT	C3	2	3.30	27.0		54	2025	440	0.217		54	2024	436	0.216	0.21
Jockey Club R	oad WB	RT	C4	2	3.30	29.0		100	1982	431	0.217		100	1982	427	0.215	
Lok Yip Road S	SB	LT	D1	2,3	3.30	11.0		100	1712	445	0.260		100	1712	445	0.260	
Lok Yip Road S	SB	LT	D2	2,3	3.30	14.0		100	1883	490	0.260		100	1883	489	0.260	
Lok Yip Road S	SB	SA	D3	3	3.30				2085	101	0.049	0.049		2085	114	0.054	0.05
Lok Yip Road S	SB	RT	D4	3	3.30	17.5		100	1920	59	0.031		100	1920	64	0.033	
pedestrian pha	ase		E _(p)	1,2,3		min c	rossing	time =	7	sec	GM +	9	sec F	GM =	16	sec	
			F _(p)	4		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
AM Traffic Flow (pcu/hr	-)		NK	PM Traffic I	Flow (pcu/hr)				N		100(W-3.2	•	2080+100		Note:		
		1.	./				.1.		./	S _M =S÷(1-			=(S-230)÷				
45	59 🗲	+			30	64	$ \downarrow $	934			AM Pe	ak Hour		ak Hour			
†	≥ 251	101 667			<u> </u>	224	↓ 114	664			1+2+3+4	1+2,3+4	1+2+3+4	1+2,3+4			
<u> </u>	31	653			ļ [*]	41	614	\downarrow		Sum y	0.441	0.435	0.432	0.422			
91		26 384			96	<u> </u>	222	100		L(s)	120	22	27 120	21			
24	4	20 304			24		332	400		C (s)	0.690	0.735	0.698	0.743			
										R.C. (%)	57%	69%	61%	76%			
1	7]44	2		J] .	· D1	3	D4	1	D1	4		վ∐կկ		5			
A1				D2		丑		D3									
A2 A3		ᆛ			C4 ★	-			_				_				
-		부 부	_		C3 + 1		_		Щ		B1 B2	_	<u>F</u>				
₹- ^E ₩- ≯	+ 		╇╌┉ ╸ ┡ ┡		C1		╃╌╚┵ ╊┠ ┣		_ = -		1	◆	_ I _				
AM G =	i	VG = 9	G =		I/G =	8	G =		I/G =		G =		I/G =		G =		I/G =
G =		I/G = 9	G =		I/G =	•	G =		I/G =		G =		I/G =		G =		I/G =
PM G = G =		VG = 8 VG =	G = G =		I/G =		G = G =		I/G =		G = G =		I/G =		G = G =		I/G =

Junction:	Jockey C	lub Road / Lol	k Yip Ro	ad / Sai	n Wan F	Road									Job Nu	mber:	J7204
Scenario:	Without F	Proposed Deve	elopmer	nt												J8 - P.	2
Design Year:	2034	Designe	ed By:		NCL			Checke	d By:		WCH			Date:	23	June 20)23
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Jockey Club Ro	oad EB	LT+SA	A1	1	3.30	13.0		41	1857	121	0.065	0.065	22	1897	146	0.077	
Jockey Club Ro	oad EB	SA	A2	1	3.30				2085	336	0.161			2085	350	0.168	0.168
Jockey Club Ro	oad EB	RT+SA	A3	1	3.30	28.0		80	2000	130	0.065		68	2011	154	0.077	
San Wan Road	I NB	LT+SA	B1	4	3.30	12.0		47	1836	75	0.041		35	1864	81	0.044	
San Wan Road	I NB	SA+RT	B2	4	3.30	22.5		100	1955	245	0.125	0.125	100	1955	203	0.104	0.104
San Wan Road	I NB	RT	В3	4	3.30	19.0		100	1932	242	0.125		100	1932	201	0.104	
Jockey Club Ro	oad WB	LT	C1	2	3.30	13.0		100	1744	379	0.217		100	1744	375	0.215	
Jockey Club Ro	oad WB	LT+SA	C2	2	3.30	15.0		23	2039	443	0.217	0.217	24	2036	438	0.215	
Jockey Club Ro	oad WB	SA+RT	C3	2	3.30	27.0		38	2042	494	0.242		32	2049	448	0.218	0.218
Jockey Club Ro	oad WB	RT	C4	2	3.30	29.0		100	1982	431	0.217		100	1982	427	0.215	
Lok Yip Road S	SB	LT	D1	2,3	3.30	11.0		100	1712	372	0.217		100	1712	362	0.211	
Lok Yip Road S	SB	LT	D2	2,3	3.30	14.0		100	1883	409	0.217		100	1883	398	0.211	
Lok Yip Road S	SB	SA	D3	3	3.30				2085	117	0.056	0.056		2085	140	0.067	0.067
Lok Yip Road S	SB	RT	D4	3	3.30	17.5		100	1920	75	0.039		100	1920	72	0.037	
pedestrian pha	se		E _(p)	1,2,3		min c	rossing	time =	7	sec	GM +	9	sec F	GM =	16	sec	
			F _(p)	4		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
AM Traffic Flow (pcu/hr)			NK	PM Traffic I	Flow (pcu/hr)				N		100(W-3.2	25) S=	2080+100)(W-3.25)	Note:		
		782 117 618 791	/				, ,	759	./	S _M =S÷(1-			=(S-230)÷				
50	75 -	782			32	72	1	759			AM Pe			ak Hour			
50	122	117 618			†	512	140	569			1+2+3+5	1+2,3+5	1+2+3+5	1+2,3+5			
121	433	791			105	513	657	\leftarrow		Sum y	0.584	0.504	0.558	0.483			
104	1 10 €	96 470			105		404	180		L (s)	120	22 120	27 120	21 120			
30	40	50 479			20		404	400		C (s)	0.690	0.735	0.698	0.743			
										R.C. (%)	18%	46%	25%	54%			
1	7]44	2		J] .	· D1	3	D4		D1	4		<u> </u>		5			
				D2		丑		D3									
A2 A3		ᆗ			C4 ★	-			_				_				
1 -		1 1	_		C3 + 1		_		Щ		B1 B2	-					
╃╌ [╩] ╌ →			┪┩ ┋		C1		₽ ₽ ₽		-		1	4 ¹ -100 - ▶ B3	<u>-</u>				
AM G=		I/G = 9	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
G =		I/G = 9	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
PM G = G =		VG = 8 VG =	G = G =		I/G =		G = G =		I/G =		G = G =		I/G =		G = G =		I/G =
G =		I/G =	G =		I/G =	J	G =		⊮G =	'	G =		⊮G =	U	G =		i/G =

Junction:	Jockey C	lub Road / Lol	k Yip Ro	ad / Sai	n Wan F	Road									Job Nu	mber:	J7204
Scenario:		oosed Develop												•		J8 - P.	
Design Year:	2034	Design	ed By:		NCL			Checke	d By:		WCH			Date:	23	June 20)23
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical y
Jockey Club Ro	oad EB	LT+SA	A1	1	3.30	13.0		41	1857	121	0.065	0.065	22	1897	146	0.077	
Jockey Club R	oad EB	SA	A2	1	3.30				2085	336	0.161			2085	350	0.168	0.168
Jockey Club R	oad EB	RT+SA	A3	1	3.30	28.0		80	2000	130	0.065		68	2011	154	0.077	
San Wan Road	l NB	LT+SA	B1	4	3.30	12.0		47	1836	75	0.041		35	1864	81	0.044	
San Wan Road	l NB	SA+RT	B2	4	3.30	22.5		100	1955	245	0.125	0.125	100	1955	203	0.104	0.104
San Wan Road	l NB	RT	В3	4	3.30	19.0		100	1932	242	0.125		100	1932	201	0.104	
Jockey Club R	oad WB	LT	C1	2	3.30	13.0		100	1744	379	0.217		100	1744	375	0.215	
Jockey Club Ro	oad WB	LT+SA	C2	2	3.30	15.0		23	2039	443	0.217	0.217	24	2036	438	0.215	
Jockey Club Ro	oad WB	SA+RT	C3	2	3.30	27.0		39	2041	495	0.243		32	2048	448	0.219	0.21
Jockey Club Ro	oad WB	RT	C4	2	3.30	29.0		100	1982	431	0.217		100	1982	427	0.215	
Lok Yip Road S	SB	LT	D1	2,3	3.30	11.0		100	1712	375	0.219		100	1712	363	0.212	
Lok Yip Road S	SB	LT	D2	2,3	3.30	14.0		100	1883	412	0.219		100	1883	399	0.212	
Lok Yip Road S	SB	SA	D3	3	3.30				2085	117	0.056	0.056		2085	140	0.067	0.06
Lok Yip Road S	8B	RT	D4	3	3.30	17.5		100	1920	75	0.039		100	1920	72	0.037	
pedestrian pha	se		E(p)	1,2,3		min c	rossing	time =	7	sec	GM +	9	sec F	GM =	16	sec	
			F(p)	4		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
AM Traffic Flow (pcu/hr)			NK	PM Traffic I	Flow (pcu/hr)				N ^r	S=1940+	100(W-3.2	25) S=	2080+100	(W-3.25)	Note:		
		787 117 623 791 479	'\				.1.	762 571 480	'\	S _M =S÷(1-			=(S-230)÷		0		
50	75 🕶	787			32	72	\rightarrow	762			AM Pe	ak Hour	PM Pe	ak Hour			
50		117			†	=	140	571			1+2+3+6	1+2,3+6	1+2+3+6	1+2,3+6			
\neg	433	701			\rightarrow	513	657	<u> </u>		Sum y	0.585	0.505	0.558	0.484			
104	433	791			105	513	037	1		L(s)	28	22	27	21			
36	48	86 479			28	\Box	404	480		C (s)	120	120	120	120			
										practical y	0.690 18%	0.735 45%	0.698 25%	0.743 53%			
1	J ∐44	2		J D2	· D1	3	D4	11.	D1	4		<u> </u>		5			
A1	_	 		D2				♥ D2 D3		<u> </u>		_					
A2 A3		_ 🗔			C4	7			_	8			_				
		두			C3 + -				Щ		R1 P2		H.H.				
◆- ^{∞⊒} -• ₧₫Ъ		튁	⋆₋ଭ₃₊ ৸Ң Ћ		C1		╊ ╃ ┡ ┡		Έ		B1 B2	4 - ^F ₄₀ - ▶ B3	Έ				
AM G =		VG = 9	G =		I/G =	8	G =		I/G =	7	G =		I/G =	8	G =		I/G =
G =		I/G = 9	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
PM G = G =		I/G = 8	G = G =		I/G =		G = G =		I/G =		G = G =		I/G =		G = G =		I/G =
G =		#G =	G =		1/G =	J	G =		I/G =	•	G=		I/G =		G =		, G -

 Junction:
 Sha Tau Kok Road / San Wan Road / Fanling Station Road
 Job Number: J7204

 Scenario:
 Existing Condition
 J10 - P. 1

 Design Year:
 2023
 Designed By: NCL Checked By: WCH Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A		456	163						618	870
From B	343		615						959	454
From C	211	147							358	343
From D	89	432	291						812	701
From E										
From F										
From G										
From H										
Total	643	1034	1070						2747	

PM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A		269	143						412	931
From B	231		637						868	397
From C	190	152							341	231
From D	141	525	254						920	572
From E										
From F										
From G										
From H										
Total	561	945	1035						2541	

Legend

Arm	Road (in clockwise order)
Α	San Wan Road - West
В	Sha Tau Kok Road - North
С	San Wan Road - East
D	Fanling Station Road - South
E	
F	
G	
Н	

Geometric Parameters

Geometri	c raiaillete	113					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	9.0	7.5	45.0	50.0	55	30	0.0
From B	9.5	6.0	50.0	50.0	55	25	0.1
From C	9.5	7.5	100.0	50.0	55	30	0.1
From D	8.5	5.0	20.0	15.0	55	60	0.4
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q _c	Circulating Flow across the Entry
К	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
٧	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	x ₂	М	t_{D}	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	8.869	0.607	1.311	1.027	2687	0.764	2078	2030	618	412	0.298	0.203
From B	8.859	0.607	1.311	1.047	2684	0.763	2447	2492	959	868	0.392	0.348
From C	9.273	0.607	1.311	1.039	2810	0.786	2639	2731	358	341	0.135	0.125
From D	7.004	0.607	1.311	0.896	2122	0.661	1486	1563	812	920	0.546	0.589
From E												
From F												
From G												
From H												

 Junction:
 Sha Tau Kok Road / San Wan Road / Fanling Station Road
 Job Number: J7204

 Scenario:
 Without Proposed Development
 J10 - P. 1

 Design Year:
 2034
 Designed By: NCL Checked By: WCH Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	5	552	207						765	924
From B	486	0	667						1153	539
From C	304	139	6						450	491
From D	122	458	320						901	941
From E										
From F										
From G										
From H										
Total	917	1150	1201						3268	

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	6	438	277						721	1007
From B	315		616						930	568
From C	248	168	6						422	320
From D	173	555	278						1006	743
From E										
From F										
From G										
From H										
Total	742	1160	1178						3080	

Legend

Arm	Road (in clockwise order)
Α	San Wan Road - West
В	Sha Tau Kok Road - North
С	San Wan Road - East
D	Fanling Station Road - South
E	
F	
G	
н	

Geometric Parameters

Geometri	c raiaillete	113					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	9.0	7.5	45.0	50.0	55	30	0.0
From B	9.5	6.0	50.0	50.0	55	25	0.1
From C	9.5	7.5	100.0	50.0	55	30	0.1
From D	8.5	5.0	20.0	15.0	55	60	0.4
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q _E	Entry Capacity
q _c	Circulating Flow across the Entry
к	= 1-0.00347(∅-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow	,	RFC	
Arm	X ₃	М	t_{D}	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	8.869	0.607	1.311	1.027	2687	0.764	2035	1970	765	721	0.376	0.366
From B	8.859	0.607	1.311	1.047	2684	0.763	2379	2356	1153	930	0.485	0.395
From C	9.273	0.607	1.311	1.039	2810	0.786	2518	2658	450	422	0.179	0.159
From D	7.004	0.607	1.311	0.896	2122	0.661	1344	1461	901	1006	0.670	0.689
From E												
From F												
From G												
From H												

 Junction:
 Sha Tau Kok Road / San Wan Road / Fanling Station Road
 Job Number: J7204

 Scenario:
 With Proposed Development
 J10 - P. 2

 Design Year:
 2034
 Designed By: NCL Checked By: WCH Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	5	552	207						765	924
From B	539	0	667						1206	539
From C	304	139	6						450	544
From D	122	458	320						901	994
From E										
From F										
From G										
From H										
Total	970	1150	1201						3321	

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	6	438	277						721	1007
From B	334		616						949	568
From C	248	168	6						422	339
From D	173	555	278						1006	762
From E										
From F										
From G										
From H										
Total	761	1160	1178						3099	

Legend

Arm	Road (in clockwise order)
Α	San Wan Road - West
В	Sha Tau Kok Road - North
С	San Wan Road - East
D	Fanling Station Road - South
E	
F	
G	
Н	

Geometric Parameters

Geometri	- raiaiiiete	113					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	9.0	7.5	45.0	50.0	55	30	0.0
From B	9.5	6.0	50.0	50.0	55	25	0.1
From C	9.5	7.5	100.0	50.0	55	30	0.1
From D	8.5	5.0	20.0	15.0	55	60	0.4
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q _c	Circulating Flow across the Entry
Κ	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
٧	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow	,	RFC	
Arm	X ₄	М	t_{D}	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	8.869	0.607	1.311	1.027	2687	0.764	2035	1970	765	721	0.376	0.366
From B	8.859	0.607	1.311	1.047	2684	0.763	2379	2356	1206	949	0.507	0.403
From C	9.273	0.607	1.311	1.039	2810	0.786	2475	2642	450	422	0.182	0.160
From D	7.004	0.607	1.311	0.896	2122	0.661	1313	1450	901	1006	0.686	0.694
From E												
From F												
From G												
From H												

 Junction:
 Sha Tau Kok Road / Fanling Bypass Interchange
 Job Number: J7204

 Scenario:
 Without Proposed Development
 J7 - P. 1

 Design Year:
 2034
 Designed By: NCL
 Checked By: WCH
 Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A			937	139					1076	841
From B	659			55					714	1270
From C	807	647	93	4					1551	857
From D	180		97	4					281	2206
From E										
From F										
From G										
From H										
Total	1646	647	1127	201					3622	

PM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A		•	789	120		•			910	731
From B	850			60					910	1019
From C	622	622	68	2					1313	1033
From D	197		38	3					239	2160
From E										
From F										
From G										
From H										
Total	1669	622	896	186					3372	

Legend

Arm	Road (in clockwise order)
Α	Sha Tau Kok Road - North
В	Fanling Bypass - East
С	Sha Tau Kok Road - South
D	Fanling Bypass - West
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	9.0	7.0	25.0	50.0	75	40	0.1
From B	6.0	5.5	45.0	50.0	75	25	0.0
From C	9.5	9.0	35.0	50.0	75	30	0.0
From D	8.5	4.5	40.0	50.0	75	45	0.1
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q	E Entry Capacity
q	c Circulating Flow across the Entry
K	$= 1-0.00347(\varnothing -30)-0.978[(1/r)-0.05]$
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t	= 1+0.5/(1+M)
M	$1 = \exp[(D-60)/10]$
X ₂	= v+(e-v)/(1+2S)
S	s = 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	X ₃	М	t_{D}	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	8.773	4.482	1.091	0.975	2658	0.631	2075	2142	1076	910	0.519	0.425
From B	5.984	4.482	1.091	1.045	1813	0.503	1226	1358	714	910	0.582	0.670
From C	9.484	4.482	1.091	1.021	2874	0.664	2354	2234	1551	1313	0.659	0.588
From D	7.685	4.482	1.091	0.972	2328	0.581	1017	1043	281	239	0.276	0.229
From E												
From F												
From G												
From H												

 Junction:
 Sha Tau Kok Road / Fanling Bypass Interchange
 Job Number: J7204

 Scenario:
 With Proposed Development
 J7 - P. 2

 Design Year:
 2034
 Designed By: NCL
 Checked By: WCH
 Date: 23 June 2023

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A			1003	139					1142	841
From B	759			55					814	1336
From C	850	647	93	4					1594	957
From D	180		97	4					281	2349
From E										
From F										
From G										
From H										
Total	1789	647	1193	201					3831	

PM Peak

Arm	To A	ТоВ	To C	To D	To E	To F	To G	То Н	Total	q _c
From A			817	120					938	731
From B	937			60					997	1047
From C	671	622	68	2					1362	1120
From D	197		38	3					239	2296
From E										
From F										
From G										
From H										
Total	1805	622	924	186					3536	

Legend

Arm	Road (in clockwise order)
Α	Sha Tau Kok Road - North
В	Fanling Bypass - East
С	Sha Tau Kok Road - South
D	Fanling Bypass - West
E	
F	
G	
lн	

Geometric Parameters

Coomoun							
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	9.0	7.0	25.0	50.0	75	40	0.1
From B	6.0	5.5	45.0	50.0	75	25	0.0
From C	9.5	9.0	35.0	50.0	75	30	0.0
From D	8.5	4.5	40.0	50.0	75	45	0.1
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Γ	Q_E	Entry Capacity
ı	$q_{\rm c}$	Circulating Flow across the Entry
ı	K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
ı	F	= 303x ₂
ı	f_c	$= 0.210t_D(1+0.2x_2)$
ı	t_D	= 1+0.5/(1+M)
ı	M	$= \exp[(D-60)/10]$
ı	x_2	= v+(e-v)/(1+2S)
L	S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	X ₄	M	t_D	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	8.773	4.482	1.091	0.975	2658	0.631	2075	2142	1142	938	0.551	0.438
From B	5.984	4.482	1.091	1.045	1813	0.503	1192	1344	814	997	0.683	0.742
From C	9.484	4.482	1.091	1.021	2874	0.664	2286	2175	1594	1362	0.697	0.626
From D	7.685	4.482	1.091	0.972	2328	0.581	936	966	281	239	0.300	0.247
From E												
From F												
From G												
From H												

Priority Junction Analysis

lunation	Drangad	Vahiaulan	. ^	/ Cha Tai	. Kak Daa	۵		lah I	Number 17004	
Junction: Scenario:	Proposed Vehicular Access / Sha Tau Kok Road With Proposed Development							Job Number: <u>J7204</u> J11 - P. 1		
	2034	Designed By: NCL			Char	Checked By: WCH			23 Jun 2023	
Design real.	2004	Desig	neu by	INCL	Cried	neu by	VVCIT	Date: _	23 Juli 2023	
Sha Tau	Kok Road	l - Lung Ye	euk Tau ((Arm C)	Sha Tau	Kok Road	- Lung Y	∕euk Tau	(Arm A)	
							_	4464	1210	
						—	<u> </u>	1161 <u>1310</u> 155 143		
						_		100	140	
	N	⊢	251				Г	AM	PM	
 	• •	-	113				L	7	<u></u>	
/		<u> </u>		Street (A	Arm B)	•				
				`	,					
The predictive equ										
Q-BA = D[627 +				144q-AB	+ 0.229q-	CA + 0.52c	_l -CB)]			
Q-BC = E[745 - 1]			. /-							
Q-CB = F[745 - 0		•	<i>,</i> –	_						
The geometric par D = [1 + 0.09					0.0114 + 0.4	0006/1/104	150\1			
E = [1 + 0.09]	`	/	,		/	0006(V-IBA	(- 150)]			
F = [1 + 0.08]										
where $Y = 1 - 0.03$	`	J.00/J[1 ·	0.0003(V-10D - 12	20)]					
	c = the des	sian flow o	f movem	ent AB. e	tc					
-	or road wid	-		J						
•	central res		1							
w-BA, etc	c = lane w	idth to veh	icle							
v-rBA, et	c = visibilit	ty to the rig	ght for wa	aiting veh	icles in str	eam BA, et	tc			
v-IBA, etc	c = visibilit	y to the lef	ft for wait	ting vehic	les in stre	am BA, etc				
Geometry :		Inpu	ıt	Inp	out	Input		Calcul	lated	
		W		V-rBA		w-BA	0.00	D	0.5332	
		W-CR	0.00	V-IBA	0	w-BC	7.50	Е	1.2884	
				V-rBC	60	w-CB	0.00	F	0.5860	
				V-rCB	0			Υ	0.4963	
Analysis :										
Traffic Flows, p	ocu/hr	AM	PM			acity, pcu/h	ır	AM	PM	
q-CA		0	0			Q-BA		217	203	
q-CB		0	0			Q-BC		675 297	642	
q-AB		155	143			Q-CB Q-BAC			283	
q-AC		1161	1310		(642	
q-BA		0	0							
q-BC f		251	113							
		1.000	1.000							
		Ratio-of-	flow to C	apacitv	AM	PM				
			3-A	1	0.000					
			3-C							
		C-B			0.000	0.000				
		B-AC			0.372	0.176				