Appendix E

Sewage Impact Assessment

Application for Amendment of Plan under Section 12A of the Town Planning Ordinance (Cap. 131) to Rezone the Application Site from "Green Belt" to "Residential (Group C)1" for Proposed House Development at Various Lots in D.D. 244 and Adjoining Government Land, Nam Pin Wai, Sai Kung
Sewerage Impact Assessment
Reference:

1| 11 October 2023

Contents

1. Introduction 1
1.1 Background 1
1.2 Objective 1
1.3 Reference Materials 1
2. The Proposed Development 1
3. Sewerage Impact Assessment for the Proposed Development 2
3.1 Existing Sewerage Network 2
3.2 Population of Proposed Development 2
3.3 Private Sewage Treatment Plant 3
4. Conclusion 4
Appendices
Appendix A A-1
Plan
Appendix B B-1
Calculation

1. Introduction

$1.1 \quad$ Background

Arup Hong Kong Limited was commissioned to conduct a Sewerage Impact Assessment (SIA) to support the Section 12A Planning Application for Proposed House Development at Various Lots in D.D. 244, Nam Pin Wai, Sai Kung.

The Application Site is located within a "Green Belt" ("GB") zone on the Approved Ho Chung Outline Zoning Plan No. S/SK-HC/11.

1.2 Objective

The objective of this report is to provide an assessment of the impact of wastewater flow generation as a result of the Proposed Development at the Application Site on the connecting the existing public sewerage system and to propose mitigation measures (if any).

$1.3 \quad$ Reference Materials

In evaluating the sewerage impact arising from the Proposed Development, the following sources of information have been specifically referred to:

- Guidelines for Estimating Sewage Flows for Sewage Infrastructure Planning (Version 1.0) - Report No.: EPD/TP 1/05 issued by Environmental Protection Department (EPD);
- Sewerage Manual - Key Planning Issues and Gravity Collection System (Third Edition) issued by Drainage Services Department in May 2013;
- Employment density shall refer to Commercial and Industrial Floor Space Utilization Survey published by PlanD; and
- Drainage Record Plans obtained from the GeoInfo Map services of the Lands Department (https://www.map.gov.hk/gm/?lg=en)

2. The Proposed Development

Master Layout Plan showing the proposed development is attached in Appendix A - Plan 1. A table showing the Proposed Development parameters is shown in table below:

Proposed Development	Site Particulars
Project	Application for Amendment of Plan under Section 12A of the Town Planning Ordinance (Cap. 131) to Rezone the Application Site from "Green Belt" to "Residential (Group C1" for Proposed House Development at Various Lots in D.D. 244 and Adjoining Government Land, Nam Pin Wai, Sai Kung
Location	Nam Pin Wai Sai Kung
Land Use Zoning	"Green Belt" ("GB")
Development Site Area excluding Access Road (About)	$5,355 m^{2}$
Domestic GFA (About)	$4,016 \mathrm{~m}^{2}$

No. of House	17
Clubhouse GFA (About)	$151 \mathrm{~m}^{2}$

Below is an aerial photograph of the Application Site.

3. Sewerage Impact Assessment for the Proposed Development

3.1 Existing Sewerage Network

There is no existing public sewer in the vicinity of the Application Site as per Drainage Record Plan obtained from the GeoInfo Map services of the Lands Department.

3.2 Population of Proposed Development

The prediction for the Proposed Development sewage generation has been based on the information extracted from the development schedule in Section 2 above. The quantity of sewage generated by the Proposed Development depends on the number of population with unit flow factor of Private R2 development.

For easy reference, a table showing the sewage generation of the Proposed Development is calculated based on the guideline set in EPD Guideline for Estimating Sewage Flows for planning catchment level sewage infrastructure and is shown in Appendix B - Table T1 and summarized in below table.

Proposed Development	Parameters
Domestic GFA (About)	4,016
No. of Houses	17
No. of Residents	51
Unit Flow Factor (m³/person/day) for Private R2	0.27
Average Dry Weather Flow for Residents (m³/day)	13.77
Clubhouse GFA (m²) (About)	151
Number of Employee	8
Unit Flow Factor for Restaurant (m³/person/day)	1.58
Average Dry Weather Flow for Clubhouse (m³/day)	12.14
	25.91
Total Average Dry Weather Flow (m³/day)	96
Contributing Population	4.0
Global Peaking Factor (including stormwater allowance) for Sewage Treatment Works	8.0
Global Peaking Factor (including stormwater allowance) for Sewers	
Peak Flow for Sewage Treatment Works (L/s)	1.20
Peak Flow for Gravity Sewer (L/s)	2.40

3.3 Private Sewage Treatment Plant

In view of the lack of a public sewerage system in the vicinity of the Application Site, it is proposed to provide a private sewage treatment plant with treatment level reaching the secondary level plus disinfection as an alternative option and dispose treated effluent of a standard acceptable to EPD to the proposed drainage system along the access road. Design of the private sewage treatment plant will make reference to the "Guidelines for the Design of Small Sewage Treatment Plants (the Guidelines)" published by the EPD. A tentative location for the private sewage treatment plant is shown on the Master Layout Plan and is subject to detailed site planning. It is considered to be an acceptable alternative option prior to any future improvement to sewage infrastructure in the vicinity of the Application Site. The private sewage treatment plant should be designed in such a way that it is capable of handling the daily and peak sewage flow arising from the proposed development. Should public sewerage be available in future, we would modify the sewerage system to facilitate the sewerage connection.

Adopting the peaking factor of 8 in Table T-5 of EPD Report No. EPD/TP 1/05, the peak flow for sewers from the proposed development is estimated as $2.40 \mathrm{l} / \mathrm{s}$. A 225 mm diameter sewer of 1 in 100 minimum gradient is sufficient to convey the sewage from the proposed development to the private sewage treatment plant and the treated effluent from the private treatment plant to the proposed drainage along the future access road. Appendix B - Table T2 shows the capacity checking of the proposed sewer from the proposed development to the private sewage treatment plant with the proposed sewerage plan shown in Appendix A-Plan 2.

As regards the standard of acceptance of the treated effluent to minimize pollution, Table 7 of the "Technical Memorandum Standards for Effluent Discharged into Drainage and Sewerage Systems, Inland and Coastal

Waters" for Port Shelter Area shall be followed. EPD will be consulted on the treatment proposals during the detailed site planning and the discharged effluent standard required.

4. Conclusion

In view of the lack of a public sewerage system in the vicinity of the Application Site, it is proposed to provide a private sewage treatment plant with treatment level reaching the secondary level plus disinfection as an alternative option and dispose treated effluent of a standard acceptable to EPD to the proposed drainage system along the access road.

Design of the private sewage treatment plant will make reference to the "Guidelines for the Design of Small Sewage Treatment Plants (the Guidelines)" published by the EPD.

The private sewage treatment plant should be designed in such a way that it is capable of handling the daily and peak sewage flow arising from the proposed development. Should public sewerage be available in future, we would modify the sewerage system to facilitate the sewerage connection.

As regards the standard of acceptance of the treated effluent to minimize pollution, Table 7 of the "Technical Memorandum Standards for Effluent Discharged into Drainage and Sewerage Systems, Inland and Coastal Waters" for Port Shelter Area shall be followed. EPD will be consulted on the treatment proposals during the detailed site planning and the discharged effluent standard required.

Appendix A

Plan

Appendix B

Calculation

ARUP Ove Arup \& Partners Calculation Sheet		Job No.Made by	28825	Sheet No.Date				
Application for Amendment of Plan under Section 12A of the Town Planning Ordinance (Cap. 131) to Rezone the Application Site from "Green Belt" to "Residential (Group C)1" for Proposed House Development at Various Lots in D.D. 244 and Adjoining Government Land, Nam Pin Wai, Sai Kung			cc					
TABLE B1 Estimation of Sewage Flows Estimation for Proposed Development								
Design Code 1. Based on EPD Guidelines for Estimating Sewage Flows for Sewage Infrastructure Planning. 2. Plumbing Engineering Services Design Guide by The Institute of Plumbing.								
Design Assumption:								
Global Peaking Factor, P (Including Stormwater Allowance) as per Table T-5 Global Unit Flow Factors as per Tables T-2 and T-3								
Catchment Inflow Factor for Sai Kung (PCIF = 1.30) as per Table T-4								
Development Schedule								
Sewage Flow Estimates	Estimation	Remark						
$\underset{\text { Prooosed Development }}{\text { Domestic }}$								
Number of Houses Number of Residents 3 -storey @ 3 persons for each storey)	17 51	Based on Development Schedule						
Unit fow factor (m³/person/day)	0.27	Table T-1 of GESF - Private R2						
ADWF, (m³day)	13.77							
Clubhouse		Based on Development Schedule						
GFA (m^{2})	151							
Worker Density (Number of Worker per $100 \mathrm{~m}^{2}$ GFA)	5.1	Restaurant						
Number of Employee	8							
Unit flow factor ($\mathrm{m}^{3} / \mathrm{erson}$ /day) ADWF (m	${ }_{1}^{1.58}$	Table T-2 of GESF - J10 Restaurant and Hotel						
ADWF, (m ${ }^{\text {3/day }}$)	12.14							
Total ADwF, (m) ${ }^{3}$ /day Contributing Pooulation	${ }_{\substack{25.91 \\ 96}}$	Table T-5 of GESF Table T-5 of GESF						
Global Peeking Factor (including stormwater alowance) for Sewage Treatment Works	${ }_{4}$							
	8							
Peak Fow (LIs) for Sewage Treatment Works Peak Fow (Ls) for Gravity Sewers	1.20 2.40							

Notes:
Employment density shall refer to Commercial and Industrial Floor Space Utilization Survey published by PlanD.
Restaurant $=5.1$ employee per $100 \mathrm{~m}^{2}$ of GFA

Table B2 - Capacity Performance of Proposed Sewer

Notes:

1) Calculate by Colebrook-White Equation

$$
\bar{V}=-\sqrt{32 g R S_{f}} \log \left[\frac{k_{s}}{14.8 R}+\frac{1.255 v}{R \sqrt{32 g R S_{f}}}\right]
$$

where ks is roughness value is 3 mm for sewer.
is kinematic viscosity
V is the velocity D is of fluid $=1.14 \times 10-6 \mathrm{~m} 2 / \mathrm{s}$ and g is the gravity $=9.81 \mathrm{~m} / \mathrm{s} 2$
Abbreviation:

Proposed Development

Manhole		Catchment	CON_POP	PEAKING FACTOR	ACC_ADWF	Peak Flow (L/s)	Proposd Sewer										
$\begin{gathered} \text { UP_MAN } \\ \hline \text { No. } \end{gathered}$	$\begin{gathered} \text { DN_MAN } \\ \hline \text { No. } \end{gathered}$						$\begin{aligned} & \hline \mathrm{DIA}(\mathrm{D}) \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { LEN } \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \text { UP_GL } \\ & (\mathrm{mPD}) \end{aligned}$	$\begin{aligned} & \hline \text { DN_GL } \\ & \text { (mPD) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { UP_INV } \\ & (\text { mPD }) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DN_INV } \\ & (\mathrm{mPD}) \end{aligned}$	$\begin{gathered} \hline \text { Gradient } \\ \text { (S) } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{VEL} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & \hline \text { CAP } \\ & (\mathrm{L} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & \text { F/C } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Adequate } \\ & \text { Capacity? } \end{aligned}$
FMH-1	FMH-2	Proposed Development	96	8	030	240	225	135	13.90	1530	12400	12265	100	102	40.68	59\%	YES
FMH-2	FMH-3		96	8	0.30	2.40	225	13.2	15.30	16.00	12.265	12.133	100	1.02	40.68	5.9\%	YES
FMH-3	FMH-4		96	8	0.30	2.40	225	13.5	16.00	15.60	12.133	11.998	100	1.02	40.68	5.9\%	YES
FMH-4	FMH-5		96	8	0.30	2.40	225	19.9	15.60	14.40	11.998	11.799	100	1.02	40.68	5.9\%	YES
FMH-5	FMH-6		96	8	0.30	2.40	225	7.8	14.40	14.26	11.799	11.721	100	1.02	40.68	5.9\%	YES
FMH-6	FMH-7		96	8	0.30	2.40	225	20.4	14.26	12.35	11.721	9.686	10	3.24	128.90	1.9\%	YES
FMH-7	FMH-8		96	8	0.30	2.40	225	21.3	12.35	10.10	9.686	7.556	10	3.24	128.90	1.9\%	YES
FMH-8	FMH-9		96	8	0.30	2.40	225	9.5	10.10	9.10	7.556	6.611	10	3.24	128.90	1.9\%	YES
FMH-9			96	8	0.30	2.40	225	10.2	9.10	9.10	6.611	6.509	100	1.02	40.68	5.9\%	YES

Appendix D

Drainage Impact Assessment

Application for Amendment of Plan under Section 12A of the Town Planning Ordinance (Cap. 131) to Rezone the Application Site from "Green Belt" to "Residential (Group C)1" for Proposed House Development at Various Lots in D.D. 244 and Adjoining Government Land, Nam Pin Wai, Sai Kung
Drainage Impact Assessment
Reference:

1| 13 October 2023

Contents

1. Introduction 1
1.1 Background 1
$1.2 \quad$ Objective 1
1.3 Reference Materials 1
2. The Project Outlines 1
2.1 The Proposed Development 1
2.2 Project Interface 2
3. Assessment Methodology 2
3.1 Design Criteria 2
4. Existing Drainage 3
4.1 Existing Drainage Network 3
5. Drainage Impact Assessment for the Proposed Development 4
5.1 Catchment Area Changes 4
5.2 Assessment Result 5
5.3 Flooding Susceptibility 5
5.4 Maintenance Responsibility 5
5.5 An Outline of the Changes to the Drainage Characteristics and Potential Drainage Impacts Which Might Arise from the Proposed Project 6
5.6 Details of Proposed Temporary Drainage System 6
5.7 Details of Monitoring Requirement During Construction Stage 7
6. Conclusion 7
Appendices
Appendix A A-1
Plan
Appendix B B-1
Calculation

1. Introduction

$1.1 \quad$ Background

Arup Hong Kong Limited was commissioned to conduct a Drainage Impact Assessment (DIA) to support the Section 12A Planning Application for Proposed House Development at Various Lots in D.D. 244, Nam Pin Wai, Sai Kung. The Application Site is located within a "Green Belt" ("GB") zone on the Approved Ho Chung Outline Zoning Plan No. S/SK-HC/11.

1.2 Objective

The objective of this report is to provide an assessment of the impact of storm water flow generation as a result of the proposed house development at the Application Site on the connecting public drainage system adjacent to the Application Site and to propose mitigation measures as necessary such that the Application Site will not impose any adverse drainage impacts in areas upstream of, adjacent to, and downstream of the Application Site.

1.3 Reference Materials

In evaluating the drainage impact arising from the Proposed Development, the following sources of information have been specifically referred to:

- Stormwater Drainage Manual Fifth Edition, January 2018
- Stormwater Drainage Manual - Corrigendum No. 1/2022
- DSD's Advice Note No. 1 - Application of the Drainage Impact Assessment Process to Private Sector Projects; and
- Drainage Record Plans obtained from the GeoInfo Map services of the Lands Department (https://www.map.gov.hk/gm/?lg=en)

2. The Project Outlines

2.1 The Proposed Development

Master Layout Plan showing the proposed development is attached in Appendix A Plan 1. Table 1 showing the Proposed Development parameters is shown in table below:

Proposed Development	Site Particulars				
Project	Application for Amendment of Plan under Section 12A of the Town Planning Ordinance (Cap. 131) to Rezone the Application Site from "Green Belt" to "Residential (Group C)1" for Proposed House Development at Various Lots in D.D. 244 and Adjoining Government Land, Nam Pin Wai, Sai Kung				
Location	Nam Pin Wai Sai Kung				
Land Use Zoning	"Green Belt" ("GB")				
Development Site Area excluding Access Road	About 5,355m	$	$	\% of Hard-paved Area / Unpaved Area	Existing Site Hard-paved Area = 0\%
:---	:---				

	Unpaved Area $=100 \%$	Unpaved Area $=0 \%$

Table 1 Recommended Design Return Period
Below is an aerial photograph of the Application Site.

2.2 Project Interface

There is another Drainage Impact Assessment for Residential Development at Lot Nos. 738, 877 (Portion), 878 (Portion), 879 RP (Portion), 887, 931, 932, $1939 \mathrm{sA}, 1939 \mathrm{sB}$ (Portion), 1939 sC, 1939 RP (Portion), 1941 sA (Portion), 1942, 1943, 1944 sA, 1945 sI and adjoining Government Land in DD 244 at Nam Pin Wai, Sai Kung, N. T. (New Lot to Be Lot 2189 in DD 244), carried out for the adjoining upstream "R(C)1" Site at the west of the Application Site. This approved DIA report of "R(C)1" should be considered as a separate submission.

3. Assessment Methodology

3.1 Design Criteria

The design criteria for this DIA are based on the Stormwater Drainage Manual (SDM) Table 10 of the SDM. The recommended design return periods for the various drainage system are shown in below Table 2.

Description	Design Return Period
Intensively Used Agricultural Land	2 to 5 years
Village Drainage including Internal Drainage System under a polder scheme	10 years
Main Rural Catchment Drainage Channel	50 years

Urban Drainage Trunk System	200 years
Urban Drainage Branch System	50 years

Table 2 Recommended Design Return Period
The proposed drainage system within/outside the development is classified as village (rural) drainage system, hence 10-year flood level return period is adopted as the design criteria.

3.1.1 Determination of Flood Level

The design criteria for flood level depends on the combination of rainstorm event and tidal level under different return period. The flood level is selected referring to SDM Table 11, shown in below Table 3:

Flood Level Return Period Scenarios	Rainfall Return Period	Sea Level Return Period
10 -years A (10A)	10	2
10 -years B (10B)	2	10

Table 3 Determination of Flood Level

3.1.2 Roughness

The Colebrook-White roughness (ks) adopted for concrete pipe is 0.6 mm .

3.1.3 Freeboard

Referring to Section 6.5 of SDM, a 300 mm minimum freeboard margin of safety is recommended to account for inaccuracies in flood level computations. Therefore, a 300 mm freeboard is recommended.

3.1.4 Climate Change

Climate change is taken into account in existing drainage system capacity check calculation. 16.0% Rainfall intensity increase for end $21^{\text {st }}$ century (2081-2100) is included referring to SDM, Table 28.

3.1.5 Sea Level Rise

Climate change is taken into account in existing drainage system back water analysis calculation. 0.20 m Sea level rise for end $21^{\text {st }}$ century (2090) is included referring to SDM, Table 29.

3.1.6 Storm Surge Increase

Climate change is taken into account in existing drainage system back water analysis calculation. Storm surge increase for end 21 st century (2090) is included referring to SDM, Table 30b.

4. Existing Drainage

4.1 Existing Drainage Network

The Application Site is divided into 5 nos. of individual parcels which are next to the planned access road to be constructed under the residential development in $R(C) 1$ zone. There is a proposed $825 \emptyset$ stormwater drain to be laid along the $\mathrm{R}(\mathrm{C}) 1$ access road to collect the surface runoff from $\mathrm{R}(\mathrm{C}) 1$ site and will be connected to an existing triple $1800 \emptyset$ pipe and finally discharge to Pak Sha Wan via an existing twin cell box culvert ($2 \times 2 \mathrm{~m} \times 2 \mathrm{~m}$) according to the approved $\mathrm{R}(\mathrm{C}) 1$ Residential Development DIA.

Surface run-off from the Application Site will be collected by a separate new drainage system to be constructed by the Applicant other than the proposed $825 \emptyset$ stormwater drain to be constructed along
the $\mathrm{R}(\mathrm{C}) 1$ access road by $\mathrm{R}(\mathrm{C}) 1$ Residential Development and finally discharges to Ho Chung River directly.

5. Drainage Impact Assessment for the Proposed Development

5.1 Catchment Area Changes

Comparing the existing and the proposed catchment area, it can be found that the proposed house development will be assumed fully paved for conservative analysis.

The catchment area change is summarized in Table 4 and Table 5 below:

	Existing Catchment Area		Proposed Catchment Area	
	Hard-paved	Unpaved	Hard-paved	Unpaved
Surface run-off discharges to the proposed $825 \varnothing$	$\mathrm{R}(\mathrm{C}) 1$ Site and $\mathrm{R}(\mathrm{C}) 1$ Access Road	0	$\mathrm{R}(\mathrm{C}) 1$ Site and $\mathrm{R}(\mathrm{C}) 1$ Access Road	0
Surface run-off discharges to the proposed 525ø	0	Site A, Site B, Site C and the Remaining Phase	Site A, Site B, Site C and the Remaining Phase	

Table 4 Summary of Catchment Area Change

Figure 4-1 Catchment Plan

Catchment Area Distribution			
Catchment paved Area	natural slope $\left(\mathrm{m}^{2}\right)$	grassland	
Site A+B+C (About)	4,020	0	0
Remaining Site (About)	1,335	0	0
Access Road under Approved Planning Application No. A/SK-HC/223 (About)	1246	0	0

Table 5 Summary of Catchment Area Distribution for Proposed Development and the Adjacent developments

5.2 Assessment Result

The peak runoff generated from the proposed development is $0.292 \mathrm{~m}^{3} / \mathrm{s}$ under 10 -year return period. Surface run-off from the Application Site will be collected by a separate new drainage system of $375 \varnothing$ to $525 \varnothing$ to be constructed by the Applicant along the $\mathrm{R}(\mathrm{C}) 1$ access road and finally discharges to Ho Chung River directly (see Appendix A - Plan 2 and 3).

The proposed stormwater drainage system is aligned within a single lane as shown in drawing in Appendix A - Plan 2 and 3 to avoid difficulty in approval and implementation of TTA. It is observed that the existing ground level of the public carpark is too low for catering the design tidal level and therefore the design manhole cover level of the proposed manhole SMH-M4a located at the amenity area in Heung Chung public carpark will be raised to +4.15 , around 450 mm above the ground. The proposed manhole SMH-M4a is located away from the dripline of the existing tree and will be located at the back of the parking space which will not affect the departure of driver/passenger from the vehicle. Consent from relevant departments regarding the proposed upstand design of manhole SMH-M4a from safety point of view will be seek. To facilitate the future maintenance works at any time and at high tide, installation of stoplog will be provided within manhole in the detailed design of proposed manhole SMH-M4a for submission to DSD for comment prior to the commencement of the works.

The assessment result of adopting a proposed $375 \varnothing$ to $525 \varnothing$ stormwater drain has been appended in Appendix B. Referring to the backwater checking, by adopting a proposed $375 \varnothing$ to $525 \varnothing$ stormwater drain along Wo Mei Hung Min Road and Hiram's Road, 300 mm freeboard can be achieved.

Considering the assessment result and the conservative approach adopted in estimation of the freeboard, there will be negligible impact on the existing drainage system as a result of the proposed house development.

5.3 Flooding Susceptibility

The proposed site ground level is varying from around +6.0 mPD to +16.0 mPD which is much higher than the design extreme sea level of 1 in 200 return period which is +4.19 mPD referring to DSD Storm Drainage Manual Table 8. On the other hand, there is no record of flood blackspot found for the Application Site or adjacent area. In general, foreseeing there is slim chance of the Application Site been affected by backwater effect under extreme weather.

5.4 Maintenance Responsibility

The management and maintenance responsibilities for the proposed $375 \varnothing$ to $525 \varnothing$ inside the Application site will be maintained by the developer or the management of the development after completion. The proposed drainage system of $525 \varnothing$ outside the Application Site will be handed over to DSD upon completion of the construction works.

5.5 An Outline of the Changes to the Drainage Characteristics and Potential Drainage Impacts Which Might Arise from the Proposed Project

According to the topographical survey included in Appendix C, the Application Site is at high point in the central region of the site that grades down in all directions with overland flows towards existing surface channel outside the Application Site. The proposed development will keep all the existing ground levels or drainage or land use adjacent to but outside the project site intact and they will be unaffected by the proposed development.

During construction, the Application Site should be fenced off by hoarding boards with temporary drainage, comprising perimeter channels and catchpits with desilting trap, towards the existing surface channel outside site following the existing catchment overland flow paths. No change to the drainage path during construction but after the completion of the proposed drainage in Wo Mei Hung Min Road, the drainage path of the Application Site after completion will be altered by discharging to the newly proposed drainage system in Wo Mei Hung Min Road.

No potential adverse impact and impact on the land users which might arise as a result of changes to the drainage characteristics caused by the proposed development. As all the existing ground levels or drainage or land use adjacent to but outside the project site will kept intact. The Application Site drainage will be discharge to the new stormwater drainage system in Wo Mei Hung Min Road directly.

5.6 Details of Proposed Temporary Drainage System

The existing catchment of the Application Site and the proposed temporary drainage system during construction period with hydraulic capacity checking is included in Appendix C. During construction, the Application Site should be fenced off by hoarding boards with temporary drainage, comprising perimeter channels and catchpits with desilting trap, towards the existing surface channel outside site following the existing catchment overland flow paths.

The temporary drainage should be designed in accordance with standards and recommendations established in DSD Stormwater Drainage Manual (SDM), DSD Technical Circular No. 14/2000 - Temporary Flow Diversions and Temporary Works Affecting Capacity in Stormwater Drainage System, and DSD Practice Note No. 1/2004 - Design Rainfall Depth for Temporary Works within the Dry Season.

Proper measures shall be taken to maintain the existing drainage characteristic of the catchment areas and to minimize drainage impacts associated with the construction works. The principal drainage impacts which are associated with construction of the works have been identified as follows:

- Erosion of ground material;
- Sediment transportation to existing downstream drainage system, and
- Obstruction to drainage systems.

Excavated slopes for the Application Site shall be well-compacted and protected to prevent any loose material being washed out during rainfall. Temporary protection may be in the form of placing layers of granular material and rockfill material or hard surface cover on the sloping faces of channel or tarpaulin covering.

Regular inspection shall be carried out to ensure integrity of the works. These inspections shall cover works under construction as well as the existing area in the vicinity of the Application Site.

No excavated materials should be left on site. If it is not possible to transport away the excavated material within the same day, the material should be covered by tarpaulin/impervious sheets. Measures shall be taken to ensure that runoff from the Application Site is managed so that silts and other pollution are properly intercepted.

In the event of extreme weather including landslip warning, issuance of amber/red/black rainstorm warning signal, Typhoon Signal No. 3 or above and the like, site inspections shall be carried out by the contractor's emergency team as deemed practical and safe before and after the events to ascertain if there has been any siltation or erosion. If it is determined that any unacceptable siltation or erosion has occurred, the contractor shall rectify it immediately.

Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. The deposited silt and grit should be removed regularly, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.

As the preliminary temporary drainage scheme and monitoring requirements included in this submission are subject to changes based on actual site constraints encountered on site and the method statement for each phase of construction works. As such, a detailed temporary drainage management plan, including but not limited to the proposed temporary drainage plan, associated hydraulic calculation, method statement for each phase of works, and the monitoring requirement and programme which should be endorsed by AP of the project should be submitted to DSD for agreement prior to the commencement of the works.

5.7 Details of Monitoring Requirement During Construction Stage

The contractor should include below drainage monitoring requirements during construction stage for agreement with RSS and DSD:

- Monitoring points should be set at catchpits, inlets to existing channels, manholes etc of the temporary drainage system and the existing drainage system in the vicinity of the Application Site;
- Drainage performance requirement: (i.e. no blockage, no flooding, no damage of drainage system; no mud/silty water discharge to monitoring points);
- General inspection should be carried out by contractor for the temporary drainage system (i.e. sump pit, sedimentation tank, wastewater treatment facilities and surface channel etc.) within the site and the existing drainage facilities in the vicinity of the Application Site;
- Monitoring frequency at monitoring points: Weekly basis \& appropriate time after lowering of amber/red/black rainstorm warning signal and typhoon signal no. 3 or above hoisted by Hong Kong Observatory;
- Requirement of Remedial works: Timely complete the remedial works if non-conformity found after inspection, to ensure the drainage performance during construction;
- Provide an inspection checklist and rectification record (certified by the RSS with signature) together with the site photos at the monitoring points; and
- Keep the monitoring record and rectification record properly and submit to DSD upon requested.

6. Conclusion

This DIA has been prepared to assess the potential drainage impact as a result of the proposed house development.

Surface run-off from the Application Site will be collected by a separate new drainage system of $375 \varnothing$ to $525 \varnothing$ to be constructed by the Applicant along the $R(C) 1$ access road and finally discharges to Ho Chung River directly

10-year design return period of design criteria is adopted for the impact assessment on the proposed stormwater drain. Based on the hydraulic assessment, the proposed drainage system has sufficient capacity for the proposed house development.

Regarding the proposed upstand design of manhole SMH-M4a located at the amenity area in Heung Chung public carpark, consent from relevant departments from safety point of view will be seek. To facilitate the future maintenance works at any time and at high tide, installation of stoplog will be provided within the proposed manhole SMH-M4a in the detailed design for submission to DSD for comment prior to the commencement of the works. A flap valve is also proposed at the downstream to prevent backwater effect for mitigation measure.

In conclusion, no adverse drainage impact is expected to the surrounding drainage system arising from the proposed development and the proposed drainage system has sufficient capacity to convey the additional surface runoff arising from the proposed development.

Appendix A

Plan

Application for Amendment of Plan under Section 12A of the Town Planning
Ordinance (Cap. 131) to Rezone the Application Site from "Green Belt" to "Residential (Group C)1" for Proposed House Development at Various Lots in D.D. 244 and Adjoining Government Land, Nam Pin Wai, Sai Kung

Appendix B

Calculation

Ove Arup \& Partrers Hong Kong

Table A - Backwater Checking of the proposed drainage system atter compleion of the Proposed Developme

The ine of entry (te) is assumad to be 5.5 .o minutus.

Appendix C

Temporary Drainage During Construction Stage

Job Title
Nam Pin Wai Sai Kung

TABLE 1 Temporary Drainage Design During Construction Stage

Rainfall Increase due to Climate Change $=16.00 \% \quad$ (End 21st Century, Table 28)
By Colebrook-White Equation $\quad \bar{V}=-\sqrt{32 g R S_{f}} \log \left[\frac{k_{s}}{14.8 R}+\frac{1.255 v}{R \sqrt{32 g R S_{f}}}\right]$
where ks is equivalent roughness with value equals 1.5 mm for channels
v is kinematic viscosity of fluid $=1.14 \times 10-6 \mathrm{~m} 2 / \mathrm{s}$ and g is the gravity $=9.81 \mathrm{~m} / \mathrm{s} 2$
V is the velocity, R is the hydraulic radius of the drain and S is the gradient of the dra
Proposed Temporary Drainage Design

Manhole/Catchpit Ref		Contributing Catchment Ref.	Area (m²)		$\begin{gathered} \text { Factored Area } \\ \text { A, }\left(m^{2}\right) \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{T}_{\mathrm{o}} \\ (\text { min. }) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{t}} \\ (\text { min. } \end{gathered}$	$\begin{gathered} \hline \mathrm{T}_{\mathrm{c}} \\ (\text { min. }) \end{gathered}$	$\begin{gathered} 1 \\ (\mathrm{~mm} / \mathrm{rr}) \end{gathered}$	$\begin{array}{\|c\|} \hline \hline \text { Peak Flow, } \\ Q \\ \left(m^{3} / \mathrm{s}\right) \end{array}$	Existing / Proposed Stepped Channel and Drain														$\begin{aligned} & \mathrm{F} / \mathrm{C} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Adequate } \\ & \text { Capacity? } \end{aligned}$
$\begin{aligned} & \text { Upstreaz } \\ & \text { Manhole/ } \\ & \text { Catchpit } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Downstream } \\ \text { Manhole/ } \\ \text { Catchpit } \end{array}$		Unpaved	Paved							$\begin{aligned} & \text { Channel// } \\ & \text { Drain } \end{aligned}$	$\begin{aligned} & \hline \text { Width } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \hline \text { Depth } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \text { Wetted } \\ \text { Area } \\ \mathrm{m}^{2} \text { A } \\ \hline\left(\mathrm{m}^{2}\right. \end{gathered}$	$\begin{array}{\|c} \hline \text { Wetted } \\ \text { Perimeter } \\ P(m) \end{array}$	$\begin{gathered} \text { Hydraulic } \\ \text { Radius R } \\ (\mathrm{m}) \end{gathered}$	Length (m)	$\begin{gathered} \hline \text { UP_GL } \\ (\mathrm{mPD}) \end{gathered}$	$\begin{aligned} & \hline \text { DN_GL } \\ & \text { (mPD) } \end{aligned}$	$\begin{gathered} \hline \text { UP_INV } \\ (\mathrm{mPD}) \end{gathered}$	$\begin{gathered} \hline \text { DN_INV } \\ (\mathrm{mPD}) \end{gathered}$	Gradient (S)	$\begin{aligned} & \hline \mathrm{VEL} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & \text { CAP } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$		
uis ul	CP-1	A1	662	0	232	1.00	0.23	1.23	308.10	0.020	2250 C	225	225	0.045	0.578	0.08	43.1	11.000	9.000	10.775	8.775	0.046	3.07	0.139	14\%	Y
CP-1	CP-2	$A_{1}+A_{2}$	974	0	341	1.23	0.19	1.43	302.71	0.029	225 UC	225	225	0.045	0.578	0.08	45.8	9.000	5.500	8.775	5.275	0.076	3.95	0.178	16\%	Y
CP-2	CP-3	$\mathrm{A}_{1}+\mathrm{A}_{2}$	974	0	341	1.43	0.09	1.52	300.30	0.028	225 Cc	225	225	0.045	0.578	0.08	16.1	5.500	4.800	5.275	4.575	0.043	2.98	0.134	21\%	Y
uis uc	CP-4	${ }^{\text {B1 }}$	1147	0	402	1.00	0.17	1.17	309.85	0.035	225sc	225	225	0.045	0.578	0.08	52.0	18.000	9.000	17.775	8.775	0.173	5.00	0.226	15\%	Y
uis uc	CP-4	${ }^{\text {B1 }}$	1147	0	402	1.00	0.13	1.13	311.24	0.035	225sc	225	225	0.045	0.578	0.08	37.9	16.000	9.000	15.775	8.775	0.185	5.00	0.226	15\%	Y
CP-4	Ex outrall	${ }^{\text {B1 }}$	1147	0	402	1.17	0.03	1.20	309.07	0.034	22Suc	225	225	0.045	0.578	0.08	8.0	9.000	7.000	8.775	6.775	0.251	5.00	0.226	15\%	Y
uis uc	CP-5	C1	1919	0	672	1.00	0.06	1.06	313.12	0.058	22SUC	225	225	0.045	0.578	0.08	8.4	8.400	8.200	8.175	7.975	0.024	2.20	0.099	59\%	Y
us ulc	CP-5	C1	1919	0	672	1.00	0.27	1.27	307.00	0.057	22suc	225	225	0.045	0.578	0.08	75.1	16.000	8.200	15.775	7.975	0.104	4.60	0.208	28\%	Y
CP-5	CP-6	C1	1919	0	672	1.06	0.10	1.16	310.17	0.058	22SUC	225	225	0.045	0.578	0.08	17.1	8.200	7.500	7.975	7.275	0.041	2.89	0.130	44\%	Y

Existing Drainage Checking

Manhole/Catchpit Ref		Contributing Catchment Ref.	Area (m^{2})		$\begin{gathered} \text { Factored Area } \\ \text { A, }\left(\mathrm{m}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{T}_{0} \mathrm{~T}_{0} \\ (\text { min. }) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{t}} \\ \text { (min.) } \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{e}} \\ (\text { min. }) \end{gathered}$	$\begin{gathered} \hline 1 \\ (\mathrm{~mm} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \hline \hline \text { Peak Flow, } \\ Q \\ \left(m^{3} / \mathrm{s}\right) \end{gathered}$	Existing / Proposed Stepped Channel and Drain														$\begin{aligned} & \mathrm{F} / \mathrm{C} \\ & (\%) \end{aligned}$	Adequate Capacity?
Upstream Manhole/ Catchpit	Downstream Manhole/ Catchpit		Unpaved	Paved							Channel / Drain	$\begin{aligned} & \hline \text { Width } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \hline \text { Wetted } \\ \text { Area A } \\ \left(\mathrm{m}^{2}\right) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Wetted } \\ \text { Perimeter } \\ P(m) \end{array}$	Hydraulic Radius R Radius R (m)	Length (m)	$\begin{aligned} & \hline \text { UP_GL } \\ & \text { (mPD) } \end{aligned}$	$\begin{aligned} & \hline \text { DN_GL } \\ & \text { (mPD) } \end{aligned}$	$\begin{gathered} \text { UP_INV } \\ (\mathrm{mPD}) \end{gathered}$	$\begin{gathered} \hline \text { DN_INV } \\ \text { (mPD) } \end{gathered}$	Gradient (S)	$\begin{aligned} & \hline \mathrm{VEL} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & \text { CAP } \\ & \left(\mathrm{m}^{3} \mathrm{~s}\right) \end{aligned}$		
Exising 450uc		E1, E2, E3, E4	2837	0	993	1.00	0.28	1.28	306.86	0.085	450uc	450	450	0.181	1.157	0.16	38.0	5.400	5.000	4.950	4.550	0.011	2.28	0.413	20\%	Y
Exising 300uc		F1, F2	1853	0	649	1.00	0.09	1.09	312.41	0.056	300uc	300	300	0.080	0.771	0.10	9.0	8.000	8.000	7.700	7.610	0.010	1.72	0.138	41\%	Y
Exising 300uc		61, G2, G3, G4	3785	0	1325	1.00	0.20	1.20	309.13	0.114	3000 c	300	300	0.080	0.771	0.10	36.2	8.000	4.800	7.300	6.160	0.031	3.05	0.245	46\%	Y

