

Traffic Impact Assessment

Final Report July 2024

Prepared by: CKM Asia Limited

Prepared for: Wing Mau Tea House Limited

CONTENTS

<u>CHA</u>	PTER	PAGE
1.0	INTRODUCTION Background Structure of Report	1 1 1
2.0	EXISTING SITUATION The Subject Site The Road Network Existing Traffic Flows Existing Junction Performance Link Operational Performance Public Transport Facilities Survey on Road-based Public Transport Services Located in the Vicinity Existing Footpath Level-Of-Service	2 2 2 3 3 4 5 7
3.0	THE PROPOSED DEVELOPMENT Key Parameters Provision of Internal Transport Facilities Planned Road Works near the Proposed Development Swept Path Analysis	9 9 10 10
4.0	TRAFFIC IMPACT Design Year Traffic Forecasting Modelling and Validation Estimated Traffic Growth Rate from 2031 to 2033 Additional Planned/ Committed Developments near the Subject Site Planned Road Improvement Works Nearby Net Increase in Traffic Generation between the Approved Scheme and the Proposed Development Year 2033 Proposed Additional Bus Trips Year 2033 Traffic Flows Year 2033 Junction Capacity Analysis	14 15 15 16
	Year 2033 Link Performance	16

CONTENTS

CHAPTER

PAGE

5.0	IMPACT TO PUBLIC TRANSPORT SERVICES	18
	Transport Mode of the Subject Site	18
	Estimated Peak Hour Mechanised Trip Generation of Proposed Development	18
	Estimated Peak Hour Transport Demand	19
	Impact to Road-based Public Transport Services	20
	Additional Bus Trip for the Proposed Development	20
	Proposed Bus Route for the Additional Bus Trips	21
	Public Transport Demand Generated by Planned / Committed Developments	in
	the Vicinity	22
	2033 Rail-Based Public Transport Occupancies	22
	2033 LRT Service Occupancies	22
	Annual Public Transport Demand Growth Rate between 2024 – 2033	22
	Review on Public Transport Facilities	23
	Proposed Improvement on the Length of the CPR Bus Stop Laybys	26
6.0	PEDESTRIAN IMPACT	27
	2033 Pedestrian Flow Forecasting	27
	Annual Pedestrian Growth Rate between 2024 – 2033	27
	Peak 15-minute Pedestrian Generated by Planned / Committed Developments	in
	the Vicinity	27
	Peak hour Pedestrian Generation and Pedestrian Generation Rates	27
	Year 2033 Pedestrian Flows	28
	Year 2033 LOS Analysis	28
7.0	SUMMARY	29
Apper	ndix A – Junction Capacity Analysis	
•••	ndix B – Public Transport Survey Result	
Apper	ndix C – Planned Road Works to be implemented by the Owner	
	ndix D – Swept Path Analysis	
Apper	ndix E – Extract of Planned Road Works under Agreement No. CE 39/2021 (CE and CV/2019/04 by CEDD	.)
Annar	ndiv E Extract of Dianned Road Works under Agreement No. CE 01/2020 (CE	· \

Appendix F – Extract of Planned Road Works under Agreement No. CE 01/2020 (CE) by CEDD

TABLES

NUMBER

- 2.1 Surveyed Junctions and Road Links
- 2.2 Existing Junction Performance
- 2.3 Existing Link Capacity Assessment
- 2.4 Road-Based Public Transport Services Operating close to the Subject Site
- 2.5 Occupancy of existing Road-Based Public Transport Services operating near the Subject Site
- 2.6 Operational Performance of MTR Tuen Ma Line
- 2.7 Operational Performance of LRT Services at Lam Tei Stop
- 2.8 Description of Pedestrian Footpath LOS
- 2.9 Existing LOS Assessment
- 3.1 Key Parameters
- 3.2 Provision of Internal Transport Facilities for Proposed Development
- 4.1 Validation Criteria
- 4.2 Hong Kong Population Projections from Census and Statistics Department
- 4.3 The Additional Planned / Committed Developments near the Subject Site
- 4.4 Planned Road Improvement Works
- 4.5 Adopted Trip Rates and Traffic Generation for Proposed Development
- 4.6 Adopted Traffic Generation for Approved Scheme
- 4.7 Net Increase in Traffic Generation (PCU per hour)
- 4.8 Net Increase in Traffic Generation (Vehicle per hour)
- 4.9 Year 2033 Junction Performance
- 4.10 Year 2033 Link Capacity Assessment
- 5.1 Modified Transport Mode for the Proposed Development
- 5.2 Estimated Peak Hour Mechanised Trip Generation of Proposed Development
- 5.3 Estimated Peak Hour Transport Demand
- 5.4 Estimated Road-Based Public Transport Demand
- 5.5 Estimated Rail-Based Public Transport Demand
- 5.6 Additional Bus Trip for the Proposed Development
- 5.7 Working District of Working Population in Tuen Mun
- 5.8 Comparison on Destination of Bus Routes between Bus Stop at CPR and LTI
- 5.9 Proposed Bus Route for the Additional Bus Trips
- 5.10 Population Projections of the 5 TPUs
- 5.11 Tuen Mun New Town Population Projections
- 5.12 Hong Kong Population Projections from Census and Statistics Department
- 5.13 Additional Queuing/Waiting Demand due to the Proposed Development
- 5.14 Utilisation of Passenger Waiting / Queuing Area at Bus Stops and LRT Platforms
- 5.15 Assessment on Length of the Laybys for Bus Stops
- 5.16 Assessment on Length of the Laybys for Bus Stops with Proposed Improvement

TABLES (CONT'D)

- 6.1 Pedestrian Generations and Pedestrian Generation Rates of the Subject Site
- 6.2 Year 2033 LOS Assessment

FIGURES

NUMBER

- 1.1 Location of the Subject Site
- 2.1 Location of Surveyed Junctions
- 2.2 Layout of Junction of Unnamed Road/ Access Road
- 2.3 Layout of Junction of Ng Lau Road/ Unnamed Road
- 2.4 Layout of Junction of Ng Lau Road/ Lam Tei Interchange
- 2.5 Layout of Junction of Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange
- 2.6 Layout of Lam Tei Interchange
- 2.7 Layout of Junction of Lam Tei Interchange/ Castle Peak Road Lam Tei
- 2.8 Layout of Junction of Tsing Lun Road/ Tsz Tin Road
- 2.9 Layout of Junction of San Hing Road/ Ng Lau Road (Southern)
- 2.10 Layout of Junction of San Hing Road/ Ng Lau Road (Northern)
- 2.11 Layout of San Hing Road T-junction
- 2.12 Layout of Junction of Ng Lau Road / Castle Peak Road Lam Tei
- 2.13 Layout of Junction of Hong Po Road / Yan Tin Estate Access Road
- 2.14 Existing Peak Hour Junction Flows
- 2.15 Existing Peak Hour Link Flows
- 2.16 Road-Based Public Transport Services Operating Close to the Subject Site
- 2.17 Existing Peak 15-minute Pedestrian Flows
- 3.1 Master Layout Plan
- 4.1 The Major Additional Planned / Committed Developments near the Subject Site
- 4.2 Peak Hour Traffic Generation of Approved Scheme
- 4.3 Peak Hour Traffic Generation of Proposed Development
- 4.4 Year 2033 Proposed Additional Bus Trips
- 4.5 Year 2033 Peak Hour Junction Flows without Proposed Development
- 4.6 Year 2033 Peak Hour Junction Flows with Approved Scheme
- 4.7 Year 2033 Peak Hour Junction Flows with Proposed Development
- 4.8 Year 2033 Peak Hour Link Flows
- 5.1 Proposed Bus Routes for the Additional Bus Trips
- 5.2 Proposed Improvement of on Length of the CPR Bus Stops Laybys
- 6.1 Year 2033 Peak 15-minute Pedestrian Flows

1.0 INTRODUCTION

Background

- 1.1 The subject site is located in D.D.130, Lam Tei, Tuen Mun (the "Subject Site"). At present, the Subject Site is unoccupied, and access to the Subject Site via an existing unnamed road which is connected to Ng Lau Road. The location of the Subject Site is shown in **Figure 1.1**.
- 1.2 A Section 12A planning application for the minor relaxation of the maximum plot ratio restriction to 2.5 for residential use at the Subject Site was approved by the Town Planning Board (TPB ref: Y/TM-LTYY/9) on 24th September 2021 (the "Approved Scheme"). This Section 12A planning application is for minor relaxation of the maximum plot ratio restriction for residential use at the Subject Site from the approved 2.5 to 5.0 (the "Proposed Development").
- 1.3 Against this background, CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Owner to conduct a traffic impact assessment in support of the Proposed Development. This report presents the findings and recommendations of the traffic impact assessment for the Proposed Development.

Structure of Report

1.4 The report is structured as follows:

Chapter One	-	Gives the background of the project;
Chapter Two	-	Describes the existing situation;
Chapter Three	-	Presents the Proposed Development;
Chapter Four	-	Describes the traffic impact analysis; and
Chapter Five	-	Gives the overall conclusion.

2.0 EXISTING SITUATION

The Subject Site

2.1 The Subject Site is bounded by the Light Rail Transit ("LRT") and the Tuen Ma Line to the East, and a nullah to the West. Access to the Subject Site is from the south and is via a bridge over the nullah. The Access Road is connected to Ng Lau Road.

The Road Network

- 2.2 Ng Lau Road is a single carriageway 2-lane 2-way local distributor which connects with the Lam Tei Interchange to the south and Castle Peak Road Lam Tei underneath the Kong Sham Western Highway. It provides access to villages, e.g., San Hing Tsuen, Tuen Tsz Wai, and Tsing Chuen Wai.
- 2.3 Lam Tei Interchange connects Tsing Lun Road, Hong Po Road, Ng Lau Road, Castle Peak Road – Lam Tei, Yuen Long Highway and Tuen Mun Road. It is the main access for traffic accessing the Subject Site and strategic routes.

Existing Traffic Flows

2.4 To quantify the junction and road link flows in the vicinity of the Subject Site, manual classified counts were conducted at 0700 – 0900 and 1700 – 1900 on Tuesday, 18th April 2023, Wednesday, 19th April 2023 and Wednesday, 26th April 2023, and were re-conducted on Wednesday, 8th May 2024 at the junctions and road links listed in **Table 2.1**.

<u>Reference</u>	Junction
J1:	Unnamed Road/ Access Road
J2:	Ng Lau Road/ Unnamed Road
J3:	Ng Lau Road/ Lam Tei Interchange
J4:	Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange
J5:	Lam Tei Interchange
J6:	Lam Tei Interchange/ Castle Peak Road – Lam Tei
J7:	Tsing Lun Road/ Tsz Tin Road
J8:	San Hing Road/ Ng Lau Road (Southern)
J9:	San Hing Road/ Ng Lau Road (Northern)
J10:	T-junction at San Hing Road
J11:	Ng Lau Road / Castle Peak Road – Lam Tei
J12:	Hong Po Road / Yan Tin Estate Access Road
Reference	Road Link
L1:	Castle Peak Road – Lam Tei
L2:	Castle Peak Road – Lingnan
L3:	Yuen Long Highway
L4:	Tuen Mun Road
L5:	San Hing Road
L6:	Ng Lau Road (north of J9)
L7:	Ng Lau Road (south of J2)
L8:	Lam Tei Interchange (between J3 and J5)
L9:	Tsing Lun Road

TABLE 2.1SURVEYED JUNCTIONS AND ROAD LINKS

- 2.5 The locations of these junctions, road links and the area of influence (the "AOI") are shown in **Figure 2.1** and the junction layouts are shown in **Figures 2.2 2.13** respectively.
- 2.6 The traffic counts are classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. The AM and PM peak hours identified from the surveys are found to be between 0800 0900 hours and 1700 1800 hours respectively. The existing AM and PM peak hour junction in pcu/hour and road link flows in veh/hr are presented in Figures 2.14 2.15.

Existing Junction Performance

2.7 The existing junction performance of the junctions are calculated based on the traffic flows obtained from the survey, and the analysis was undertaken using the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"). The results are summarised in Table 2.2 and the detailed calculations are found in Appendix A.

Ref.	Junction	Type of Junction (Parameter)	AM Peak	PM Peak
J1	Unnamed Road/ Access Road	Priority (DFC)	0.000	0.000
J2	Ng Lau Road/ Unnamed Road	Priority (DFC)	0.033	0.032
J3	Ng Lau Road/ Lam Tei Interchange	Signal (RC)	91%	84%
J4	Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange	RA (DFC)	0.545	0.591
J5	Lam Tei Interchange	RA (DFC)	0.522	0.489
J6	Lam Tei Interchange/ Castle Peak Road – Lam Tei	Signal (RC)	120%	215%
J7	Tsing Lun Road/ Tsz Tin Road	Signal (RC)	58%	92%
J8	San Hing Road/ Ng Lau Road (Southern)	Priority (DFC)	0.061	0.040
J9	San Hing Road/ Ng Lau Road (Northern)	Priority (DFC)	0.227	0.498
J10	T-junction at San Hing Road	Priority (DFC)	0.008	0.002
J11	Ng Lau Road / Castle Peak Road – Lam Tei	Signal (RC)	139%	132%
J12	Hong Po Road / Yan Tin Estate Access Road	Priority (DFC)	0.066	0.011

 TABLE 2.2
 EXISTING JUNCTION PERFORMANCE

Note: RC – reserve capacity; DFC – design flow/capacity ratio, RA – Roundabout

2.8 The above results indicate that the surveyed junctions currently operate with capacities during the AM and PM peak hours.

Link Operational Performance

2.9 The link operational performance of the road links are calculated based on the surveyed existing traffic flows, and the analysis was undertaken using the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"). The results are summarised in Table 2.3.

Ref	Link	Adjusted Design Flow (veh/hr)		Traffic Demand (veh/hr)		V/C Ratio		
			AM	PM	AM	PM	AM	PM
			Peak	Peak	Peak	Peak	Peak	Peak
L1	Castle Peak Road – Lam	NB	2,604	2,604	766	1,317	0.29	0.51
	Tei	SB	2,604	2,604	1,448	766	0.56	0.29
L2	Castle Peak Road –	NB	2,800	2,800	417	452	0.15	0.16
	Lingnan	SB	2,800	2,800	672	472	0.24	0.17
L3	Yuen Long Highway	NB	4,700	4,700	3,759	3,181	0.80	0.68
		SB	4,700	4,700	3,642	3,988	0.77	0.85
L4	Tuen Mun Road	NB	4,700	4,700	4,108	4,219	0.87	0.90
		SB	4,700	4,700	4,404	3,961	0.94	0.84
L5	San Hing Road	2-way	800	800	46	31	0.06	0.04
L6	Ng Lau Road (north of J9)	2-way	744	800	218	345	0.29	0.43
L7	Ng Lau Road (south of J2)	2-way	800	800	252	373	0.32	0.47
L8	Lam Tei Interchange	EB	2,800	2,800	1,055	713	0.38	0.25
	(between J3 and J5)	WB	2,800	2,800	1,108	1,199	0.40	0.43
L9	Tsing Lun Road	NB	1,900	1,900	519	409	0.27	0.22
		SB	1,900	1,900	825	735	0.43	0.39
NB – northbound SB – southbound EB – eastbound WB – westbound								

TABLE 2.3 EXISTING LINK CAPACITY ASSESSMENT

2.10 The above results show that the assessed road links operate with sufficient capacity.

Public Transport Facilities

2.11 The Subject Site is located close to public transport services, including franchised buses and public light buses and these operate within 400 metres or some 8-minutes' walk away. Details of these public transport services are presented in Table 2.4. The location and major pedestrian routes of these public transport services are shown in Figure 2.16.

TABLE 2.4ROAD-BASEDPUBLICTRANSPORTSERVICESOPERATINGCLOSE TO THE SUBJECT SITE

Route	Bus Stop	Destination	Routing	Frequency (min)
CTB 50	LTI	YTM	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Tsim Sha Tsui (Kowloon Station) ^(E)	20 - 30
			Tsim Sha Tsui (Kowloon Station) \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(F)	20 - 35
CTB 55 ⁽¹⁾	LTI	Kln(E)	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Kwun Tong Ferry Pier ^(A)	7 per day
			Kwun Tong Ferry Pier → Tuen Mun (Ching Tin and Wo Tin) ^(B)	4 per day
CTB 56 ⁽¹⁾	LTI	N	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Sheung Shui (Tin Ping Estate) ^(G)	30
			Sheung Shui (Tin Ping Estate) \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(G)	30
CTB 56A ⁽¹⁾	LTI	Ν	Tuen Mun (Ching Tin and Wo Tin) → Queen's Hill Fanling (via: Sheung Shui Station) ^(C)	15 - 30
			Queen's Hill Fanling (via: Sheung Shui Station) \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(C)	20 - 30
CTB 950 ⁽¹⁾	LTI	HKI	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Exhibition Centre Station ^(A)	2 per day
			Exhibition Centre Station \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(B)	1 per day
CTB 955 ⁽¹⁾	LTI	HKI	Tuen Mun (Ching Tin and Wo Tin) → Sai Wan Ho ^(A)	1 per day
			Sai Wan Ho \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(B)	1 per day
СТВ ВЗА	LTI	BCP	Shan King Estate - Shenzhen Bay Port	30 - 60
CTB N50 ^(D)	LTI	YTM	Tuen Mun (Ching Tin and Wo Tin) - Tsim Sha Tsui (Kowloon Station)	4 per day
CTB N969 ^(D)	CPR	HKI	Tin Shui Wai Town Centre - Causeway Bay (Moreton Terrace)	20 - 45
KMB 53	CPR	NTW	Yoho Mall (Yuen Long) - Tsuen Wan (Nina Tower)	25 - 35

TABLE 2.4 ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING CLOSE TO THE SUBJECT SITE (CONT'D)

Route	Bus Stop	Destination	Routing	Frequency (min)
KMB 63X	CPR	YTM	Hung Shui Kiu (Hung Fuk Estate) - Jordan (West Kowloon Station)	12 - 30
KMB 67M	LTI	NTW	Tuen Mun (Siu Hong Court) - Kwai Fong Station	5 - 20
KMB 67X	LTI	Kln(W)	Tuen Mun (Siu Hong Court) - Mong Kok East Station	7 - 25
KMB 68A	CPR	NTW	Long Ping Estate - Tsing Yi Station	8 - 30
KMB 258A ⁽¹⁾	CPR	Kln(E)	Hung Shui Kiu (Hung Fuk Estate) \rightarrow Lam Tin Station ^(A)	2 per day
KMB 258P ⁽²⁾	CPR	Kln(E)	Hung Shui Kiu (Hung Fuk Estate) - Lam Tin Station ^(C)	12 - 30
KMB 261P	CPR	N	Tuen Mun (Siu Hong Court) \rightarrow Sheung Shui (Tin Ping) ^{(2)(A)}	2-3 per day
			Sheung Shui (Tin Ping) → Tuen Mun (Siu Hong Court) ^{(1)(B)}	1 per day
KMB 267X ⁽¹⁾	LTI	Kln(E)	Tuen Mun (Siu Hong Court) \rightarrow Lam Tin Station ^(A)	2 per day
			Lam Tin Station \rightarrow Tuen Mun (Siu Hong Court) ^(B)	2 per day
KMB 960A ⁽¹⁾	CPR	HKI	Central → Hung Shui Kiu (Hung Fuk Estate) ^(B)	1 per day
KMB 960C ⁽¹⁾	LTI	HKI	Tuen Mun (Fu Tai Estate) → Causeway Bay (Victoria Park) ^(A)	2 per day
			Causeway Bay (Victoria Park) → Tuen Mun (Fu Tai Estate) ^(B)	1 per day
KMB 960P	CPR	HKI	Hung Shui Kiu (Hung Yuen Road) → Causeway Bay (Victoria Park) ^(A)	10 - 35
			Causeway Bay (Victoria Park) → Hung Shui Kiu (Hung Yuen Road) ^{(1)(B)}	2 per day
KMB 960X ⁽¹⁾	CPR	HKI	Hung Shui Kiu (Hung Yuen Road) \rightarrow Quarry Bay (King's Road) ^(A)	
			Quarry Bay (King's Road) → Hung Shui Kiu (Hung Yuen Road) ^(B)	10 per day
KMB N260 ^(D)	CPR	NTW	Tuen Mun Pier Head - Mei Foo	20 - 30
LWB A34	CPR	TCL	Hung Shui Kiu (Hung Yuen Road) - Airport (Ground Transportation Centre)	15 - 60
LWB E33P	LTI	TCL	Siu Hong Station (South) - Airport (Ground Transportation Centre)	12 - 45
LWB NA33 ^(D)	LTI	TCL	Tuen Mun (Fu Tai Estate) → Cathay Pacific City	4 per day
			Cathay Pacific City → Tuen Mun (Fu Tai Estate)	6 per day
LWB NA37 ^(D)	CPR	TCL	Tin Shui Wai Town Centre → Cathay Pacific City	5 per day
			Cathay Pacific City → Tin Shui Wai Town Centre	6 per day
NLB B2	CPR	BCP	Yuen Long MTR Station - Shenzhen Bay Port	20 - 30
GMB 42	LTI	NTW	Tsing Chuen Wai - Tuen Mun Town Centre	13 – 15
GMB 606S ^(D)	CPR	YTM	Yuen Long (Fung Cheung Rd) - Tsim Sha Tsui East	6 - 13
KMB – Kowlo	on Mot	or Bus	LWB – Long Win Bus CTB – CityBus	
GMB – Green Minibus			NLB – New Lantao Bus	

GMB – Green Minibus CPR – Castle Peak Road – Lam Tei Kln(E) – Kowloon (East) HKI – Hong Kong Island

YTM - Yau Ma Tei/ Tsim Sha Tsui / Mong Kok N – North NTW - New Territories West

TCL-Tung Chung / Lantau Island

⁽¹⁾ Monday to Friday. (Except public holidays) ⁽²⁾ Monday to Saturday (Except public holidays) Note:

BCP – Boundary Control Point

(A) AM peak only ^(B) PM peak only ^(C) AM and PM peak only ^(D) overnight service

LTI – Lam Tei Interchange

Kln(W) – Kowloon (West)

^(E) AM service only ^(F) PM service only ^(G) daytime non-peak service

Survey on Road-based Public Transport Services Located in the Vicinity

Road-based Public Transport

- Survey on road-based public transport services listed in Table 2.4 was conducted 2.12 during the AM and PM peak periods on Thursday, 18th January 2024 at the bus stops near the subject site.
- 2.13 The AM and PM peak hours identified from the surveys are found to be between 0715 - 0815 hours and 1830 - 1930 hours respectively. The survey locations are shown in Figure 2.16. The survey results are summarized in Table 2.5 and the detailed information are shown in **Appendix B**.

TABLE 2.5OCCUPANCY OF EXISTING ROAD-BASED PUBLIC TRANSPORT
SERVICES OPERATING NEAR THE SUBJECT SITE

Direction		AM Peal	ĸ		PM Pe	ak
	No. o	f Pass.	Occupancy	No. o	f Pass.	Occupancy
	Cap. [a]	Occ. [b]	[c]=[b]/[a]	Cap. [d]	Occ. [e]	[f]=[e]/[d]
Outbound – To other districts	8,476	3,163	37%	2,236	767	34%
Inbound – From other districts	2,476	897	36%	5,356	1,823	34%
Pass. – Passenger Cap. – Capacity Occ Occupied						

2.14 The above results indicate that the surveyed road-based public transport services currently operate with spare capacities during the AM and PM peak hours.

Rail-based Public Transport

2.15 Based on the information obtained from the Legislative Council, the operational performance for MTR Tuen Ma Line in 2023 is summarized in Table 2.6.

 TABLE 2.6
 OPERATIONAL PERFORMANCE OF MTR TUEN MA LINE

Item	Parameters
Maximum carrying capacity when train frequency	70,000 passengers / hour
is maximized [a]	
Existing carrying capacity [b]	58,800 passengers / hour ⁽¹⁾
Current Patronage [c]	35,700 passengers / hour
Current Loading [c]/[b] {Critical Link}	61% {Tsuen Wan West to Mei Foo}
Loading compared with maximum carrying	51%
capacity [c]/[a]	

Source: Reply Serial No. TLB162 for Question Serial No. 2402, Controlling Officer's Reply, Examination of Estimates of Expenditure 2024-25. Finance Committee. Legislative Council. 18 April 2024.

<https://www.tlb.gov.hk/eng/legislative/transport/special/land/TLB-2-e1.pdf>

⁽¹⁾ According to the reply, existing train frequency has not yet increased to the maximum level as permitted by the signalling system.

2.16 **Table 2.6** shows that the MTR Tuen Ma Line operates at 61% of its current capacity, or 51% of its maximum carrying capacity during the peak hour.

Light Rail Transit (LRT) Transport

2.17 Survey on LRT transport services at Lam Tei LRT stops was conducted during the AM and PM peak periods on Thursday, 18th January 2024. The AM and PM peak hours identified from the surveys are found to be between 0715 – 0815 hours and 1830 – 1930 hours respectively. The survey results are summarized in **Table 2.7**.

TABLE 2.7 OPERATIONAL PERFORMANCE OF LRT SERVICES AT LAM TEI STOP

Direction	No. of. Trips.			No. of Pa	Occupancy			
	Single	Coupled-set	Total	Capacity ⁽¹⁾ [a]	Occupied [b]	[c]=[b]/[a]		
	AM Peak Hour							
Yuen Long bound	13	10	23	6,600	3,290	50%		
Tuen Mun bound	12	12	24	7,200	5,796	81%		
PM Peak Hour								
Yuen Long bound	14	7	21	5,600	4,236	76%		
Tuen Mun bound	12	10	22	6,400	3,092	48%		

⁽¹⁾ Assumed capacity of 200 passengers per trip for single Light Rail Vehicle (LRV) and 400 passengers per trip for coupled-set LRV

2.18 **Table 2.7** shows that the surveyed LRT services at Lam Tei Stop currently operate with spare capacities during the AM and PM peak hours.

Existing Footpath Level-Of-Service

- 2.19 To quantify the existing pedestrian flows, pedestrian counts were conducted during the AM and PM peak periods on Thursday, 18th January 2024 at footpaths located in the vicinity of Proposed Development, and the observed peak 15-minute pedestrian flows are shown in **Figure 2.17**.
- 2.20 The Level-Of-Service ("LOS") of a pedestrian footpath depends on its width and number of pedestrians using the facility. Description of the LOS at walkway is obtained from Volume 6 of the TPDM and is presented in **Table 2.8**.

LOS	Flow Rate (ped/min/m)	Description
А	≤ 16	Pedestrians basically move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely selected, and conflicts between pedestrians are unlikely.
В	16 – 23	Sufficient space is provided for pedestrians to freely select their walking speeds, to bypass other pedestrians and to avoid crossing conflicts with others. At this level, pedestrians begin to be aware of other pedestrians and to respond to their presence in the selection of walking paths.
С	23 – 33	Sufficient space is available to select normal walking speeds and to bypass other pedestrians primarily in unidirectional stream. Where reverse direction or crossing movement exist, minor conflicts will occur, and speed and volume will be somewhat lower.
D	33 – 49	Freedom to select individual walking speeds and bypass other pedestrians is restricted. Where crossing or reverse-flow movements exist, the probability of conflicts is high and its avoidance requires changes of speeds and position. The LOS provides reasonable fluid flow; however considerable friction and interactions between pedestrians are likely to occur.
E	49 – 75	Virtually, all pedestrians would have their normal walking speeds restricted. At the lower range of this LOS, forward movement is possible only by shuffling. Space is insufficient to pass over slower pedestrians. Cross- and reverse-movement are possible only with extreme difficulties. Design volumes approach the limit of walking capacity with resulting stoppages and interruptions to flow.
F	> 75	Walking speeds are severely restricted. Forward progress is made only by shuffling. There are frequent and unavoidable conflicts with other pedestrians. Cross- and reverse-movements are virtually impossible. Flow is sporadic and unstable. Space is more characteristics of queued pedestrians than of moving pedestrian streams.

TABLE 2.8 DESCRIPTION OF PEDESTRIAN FOOTPATH LOS

Source: Volume 6 Chapter 10 of TPDM

2.21 The observed peak 15-minute pedestrian flows LOS assessment is presented in Table 2.9.

Location	Clear Width ⁽¹⁾ [Effective Width] (m)	Peak Period	Flow (ped/ 15 min)	Flow rate (ped/min/m)	LOS
P1. Footpath on the footbridge	2.0[1.5]	AM	50	2.2	Α
connected to Ng Lau Road		PM	33	1.5	А
P2. Footpath between Lam Tei	2.5[1.5]	AM	105	4.7	А
LRT stop and bus stop at Castle Peak Road – Lam Tei		PM	70	3.1	A
P3. Footbridge over Castle Peak	2.5[1.5]	AM	72	3.2	А
Road – Lam Tei		PM	35	1.6	Α
P4. Southern Footpath of San	1.5[0.5]	AM	15	2.0	Α
Hing Road		PM	10	1.3	Α
P5. Eastern Footpath of Ng Lau	2.0[1.0]	AM	63	4.2	Α
Road		PM	40	2.7	Α

TABLE 2.9 EXISTING LOS ASSESSMENT

⁽¹⁾ The width excludes railing and obstructions.

2.22 The above results indicate that the surveyed footpaths currently operate with LOS A during the AM and PM peak. As stated in the TPDM, LOS A to C is considered as an acceptable level of service: "In general, LOS C is desirable for most design at streets with dominant 'living' pedestrian activities".

3.0 THE PROPOSED DEVELOPMENT

Key Parameters

3.1 The Proposed Development key parameters are presented in **Table 3.1**.

TABLE 3.1KEY PARAMETERS

	Item	Proposed Development
Developm	ent Site Area	About 8,896 m ²
Domestic	Plot Ratio	5.0
Domestic	GFA	44,480 m ²
Flat Mix	Flat Size $\leq 40m^2$	1,110
(GFA) $40m^2 < Flat Size \le 70m^2$		275
Total num	ber of Flats	<u>1,385</u>

Provision of Internal Transport Facilities

3.2 The internal transport facilities for the Proposed Development are provided in accordance with the recommendations of the Hong Kong Planning Standards and Guidelines ("HKPSG") and are presented in **Table 3.2**.

TABLE 3.2PROVISIONOFINTERNALTRANSPORTFACILITIESFORPROPOSEDDEVELOPMENT

Facility	HKPSG Recon	Provision	
Car	For Residents:		
Parking	Parking Requirement = GPS x R1	x R2 x R3	222 nos. @ 5.0m (L) x
Space	Global Parking Standard (GPS):	1 car parking space per 4 - 7	2.5m (W) x 2.4m (H)
	flats		= HKPSG maximum
	Demand Adjustment Ratio (R1):	0.5 for flat size \leq 40 m ² GFA	
		1.2 for flat size $40 - 70 \text{ m}^2$	
	GFA		
	Accessibility Adjustment Ratio(R2)	: 1.0 outside 500m-radius of rail	
	station		
	Development Intensity Adjustment	Ratio (R3): 1.0 for Plot Ratio	
	2.0 – 5.0		
	For 1,100 flats with flat size less th	an 40 m ² GFA	
	Minimum: (1,110 / 7 x 0.5 x 1.0 x		
	Maximum: (1,110 / 4 x 0.5 x 1.0 x		
	For 275 flats with flat size 40 – 70		
	Minimum: (275 / 7 x 1.2 x 1.0 x 1		
	Maximum: (275 / 4 x 1.2 x 1.0 x 1		
		.o, 02.0, suy 00 nos.	
	Total		
	Minimum = 80 + 48 = 128 nos.		
	Maximum = 139 + 83 = 222 nos	5.	
	For Visitors:		
	Visitor car parking for private resid	lential developments with more	25 nos . (22 nos. @
	than 75 units per block should be		5.0m(L) x 2.5m(W) x
	block in addition to the recommer		2.4m(H) + 3 nos. @
	the Authority.		5.0m(L) x 3.5m(W) x
			2.4m(H) for person with
	For 5 blocks: 5×5 nos. = 25 nos.		disabilities)
		= HKPSG maximum	
	Total Car Parking Space:		247 nos. (including 3
	Minimum = 128 + 25 = 153 nos.		accessible car parking
	Maximum = 222 + 25 = 247 nos.		spaces)
	Note: For total no. of car parking space		
	Building (planning) regulation 72 requ	ire provision of 3 accessible car	
	parking spaces		

TABLE 3.2PROVISIONOFINTERNALTRANSPORTFACILITIESFORPROPOSEDDEVELOPMENT (CONT'D)

Facility	HKPSG Recommendation	Provision
Motorcycle	For Residential Uses:	18 nos. @ 2.4m (L) x
Parking	TD Comment: 1 motorcycle parking space shall be	1.0m (W) x Min. 2.4m
Space	provided for every 81 flats	(H)
		= fulfil TD comment,
	For 1,385 flats:	OK
	1,385 / 81 = 17.1, say 18 nos.	
Goods	For Residential Uses:	5 nos. @ 11.0m (L) x
Vehicle	Minimum of 1 loading / unloading bay for goods vehicles	3.5m (W) x Min. 4.7m
Loading/	within the site for every 800 flats or part thereof, subject to a	(H)
Unloading	minimum of 1 bay for each housing block or as determined	= HKPSG minimum,
Bay	by the Authority.	OK
	For 5 blocks, each block less than 800 flats: 5 no.	
Bicycle	For Residential Uses:	93 no. @ 1.8m (L) x
Parking	Within $0.5 - 2$ km to rail station, 1 space per 15 flats with flat	0.8m (W) x Min. 2.4m
Spaces	size < 70m ²	(H)
	$= 1,385 \div 15$	= comply HKPSG,
	= 93 nos.	OK

3.3 **Table 3.2** shows that the internal transport facilities provided comply with the recommendations of the HKPSG. The master layout plan of the Proposed Development is shown in **Figure 3.1**.

Planned Road Works near the Proposed Development

3.4 The existing access road and unnamed road connecting the Proposed Development with Ng Lau Road is planned to be improved, to provide a 7.3m-wide road carriageway, a 2m-wide footpath and a 2m-wide cycle track (the "Planned Road Works"). The Planned Road Works to be implemented by the Owner as part of the Approved Scheme and is found in **Appendix C**.

Swept Path Analysis

3.5 The CAD-based swept path analysis programme, Autodesk Vehicle Tracking, was used to check the ease of manoeuvring of vehicles within the Proposed Development, and the swept path analysis drawings are found in **Appendix D**. Vehicles are found to have no manoeuvring problems.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Development is expected to be completed in 2030, and the design year adopted for the traffic assessment is, whichever later of the 2: (i) at least 3 years after the planned completion of the development, i.e., 2033, or (ii) 5 years from the date of this application, i.e., 2028. Therefore, Year 2033 is adopted for junction capacity analysis.

Traffic Forecasting

4.2 Year 2033 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to the 2019-based BDTM NTW1 (the "BDTM"); (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the 2 cases, i.e., Approved Scheme and Proposed Development.

Modelling and Validation

- 4.3 The BDTM provides traffic forecasts for the years 2026 and 2031 and these have taken into account the planned developments, changes to the strategic road network, population growth, etc. Therefore, The BDTM is used as the basis to produce the traffic flow for this TIA.
- 4.4 The BDTM is validated, and the validation meets criteria found in the "BDTM Study". Nevertheless, the traffic network and zone in the vicinity of the Proposed Development were further reviewed to ensure the traffic model is up-to-date and the modelled flow can be adopted. The modelling and validation methodology include, but not limited to, the following:
 - The road links and junctions were checked and updated to ensure that any recent change in the existing road network is considered and missing road links or junction does not exist.
 - The schedules of public transport services such as franchised bus and green/ red minibus were also checked to ensure that the updated routings and headway information are adopted.
 - The zone and centroid connectors were reviewed to ensure that the traffic zones generate/ attract traffic at appropriate locations.
 - The traffic flows produced by BDTM at the surveyed junctions were reviewed with reference to the observed traffic flows.
 - The validation methodology is same as that adopted in the BDTM. All count locations were reviewed and checked using the GEH statistic (a modified chi squared test to provide a statistic for both the magnitude of the difference and the percentage difference between modelled and observed flows). The GEH statistic is defined by:

$$\sqrt{rac{(V_2-V_1)^2}{rac{1}{2}(V_2+V_1)}}$$

where V_1 and V_2 are the observed and modelled flows.

4.5 The validation criteria adopted are found in **Table 4.1**.

TABLE 4.1VALIDATION CRITERIA

Locations	Target
Traffic flows at all count locations	85% return a GEH statistic of 5 or less 100% return a GEH statistic of 10 or less

Estimated Traffic Growth Rate from 2031 to 2033

4.6 Reference is made to the "Hong Kong Population Projections 2022 – 2046" published by Census and Statistics Department, and the information is presented in **Table 4.2**.

 TABLE 4.2
 HONG KONG POPULATION PROJECTIONS FROM CENSUS

 AND STATISTICS DEPARTMENT

Year	Population in Hong Kong (thousands)
2031	7,820.2
2033	7,903.6
Average Annual Growth (2031 – 2033)	0.53%

4.7 **Table 4.2** shows that the annual population growth between 2031 and 2033 is 0.53%, and is adopted for estimated traffic growth rate from 2031 to 2033.

Additional Planned/ Committed Developments near the Subject Site

4.8 The planned/ committed developments near the Subject Site not included in the BDTM but have been incorporated to produce the future year traffic flows are listed in **Table 4.3** and the locations are presented in **Figure 4.1**.

TABLE 4.3	THE ADDITIONAL PLANNED / COMMITTED DEVELOPMENTS
	NEAR THE SUBJECT SITE

Ref. No.	Development	Intake Year	Land Use	GFA (m²)	No. of Flat (no.)	Average Flat Size (m²)	No.
Tue	n Mun Area 54 (1)						
А	Site 1 &1A	2022	PRH		4,232		
	Wo Tin Estate		Retail	2,420			
			SWF	1,060			
			Kindergarten				1 no.
В	Site 2	2017	PRH		4,688		
	Yan Tin Estate		Retail	4,250			
			SWF	3,600			
С	Site 3 & 4 (East)	2022	PRH		5,183		
	Ching Tin Estate		Retail	3,130			
			SWF	1,810			
			Kindergarten				1 no.
D	Site 3 & 4 (West)	2025	Private Housing		4,600		
	Novo Land		Retail	5,000			
E	Site 4A (East and West) ⁽²⁾	2026	Light Public Housing		5,620		
G	Site 4A (South)	2028	PRH		1,475		
			Kindergarten				1 no.
Н	Site 5	2028	SSF		1,020		
			SWF	1,300			

TABLE 4.3THE ADDITIONAL PLANNED / COMMITTED DEVELOPMENTS
NEAR THE SUBJECT SITE (CONT'D)

Ref. No.	Development	Intake Year	Land Use	GFA (m ²)	No. of Flat (no.)	Average Flat Size (m²)	No.
Dev	elopment at San Hir	ng Road a	nd Hong Po Road, Tuen	Mun ⁽³⁾			
I	San Hing Road	2030	PRH / SSF		9,400		
	Site	-	Primary School				1 nos.
		2033	Kindergarten				2 nos.
			SWF	N/A			
J	San Hing Road	2030	PRH / SSF		1,500		
	Site Extension	-	Retail	5,000 ⁽⁴⁾			
		2033	Sport Centre	-			1 no.
К	Ho Pong Road	2030	PRH / SSF		9,500		
	Site	-	Retail	5,000(4)			
		2033	Kindergarten				2 no.
			SWF	N/A			
Oth	er Planning Applicat	tions Nea	rby ⁽⁵⁾				
L	A/TM-LTYY/ 426	2026	Private Housing		184	31	
Μ	Y/TM-LTYY/ 10		Private Housing		288	40	
Ν	A/TM-LTYY/ 301		NTEH ⁽³⁾		1	195	
0	A/TM-LTYY/ 335		NTEH ⁽³⁾		1	195	
Р	A/TM-LTYY/ 336		NTEH ⁽³⁾		1	195	
Q	A/TM-LTYY/ 370		NTEH ⁽³⁾		1	195	
R	A/TM-LTYY/ 371		NTEH ⁽³⁾		1	195	
S	A/TM-LTYY/ 372		NTEH ⁽³⁾		1	195	

PRH – Public Rental Housing SSF – Subsidised Sale Flats NTEH – New Territories Exempted House SWF – Social Welfare Facilities

 (2) extracted from Legislative Council Panel on Housing discussion paper CB(1)1123/2023(02) on December 2023

- (3) extracted from Tuen Mun District Council discussion paper TMDC 19/2023 on September 2023
- (4) No information on area for retail uses is found in public domain, assumed 5,000 m² GFA of retail

(5) extracted from Planning Statement of Approved Planning Applications

Planned Road Improvement Works Nearby

4.9 The planned road improvement works at assessed junctions are presented below.

Development at San Hing Road and Hong Po Road

4.10 Some road improvement works are planned under various contracts by CEDD, and these are summarized in **Table 4.4**. The road improvement works are found in **Appendix E**.

TABLE 4.4 PLANNED ROAD IMPROVEMENT WORKS

Ref	Brief Description of the Improvement	Contract			
J3	Provide 2 left-turn lanes at Ng Lau Road southbound	CE 39/2021 (CE)			
	Provide 1 left-turn lane at Lam Tei Interchange eastbound	CE 39/2021 (CE)			
J4	Provide exclusive left-turn lane from Hong Po Road southbound	CE 39/2021 (CE)			
	Modify the entry lanes from Lam Tei Interchange westbound	CE 39/2021 (CE)			
J6	Provide 2 right-turn lanes and 1 shared lane for right turn and straight ahead at	CE 39/2021 (CE)			
	Castle Peak Road – Lam Tei southbound				
J7	Provide a channelized island at Tsz Tin Road eastbound ()	CV/2019/04			
J10	Widened to provide 21ane 2-way single carriageway at minor road	CE 39/2021 (CE)			
J12	Provide signalised cross junction	CE 39/2021 (CE)			
CE 39	V/2021 (CE) - Site Formation and Infrastructure Works for Public Housing Deve	lopments at San Hing			
Road and Hong Po Road, Tuen Mun and Choi Shun Street, Sheung Shui – Investigat Design and Construction"					
CV/2019/04 - Site Formation and Infrastructure Works near Tsz Tin Road and Hing Eu Street i					

CV/2019/04 - Site Formation and Infrastructure Works near Tsz Tin Road and Hing Fu Street in Area 54, Tuen Mun

⁽¹⁾ extracted from TIA of Approved Planning Applications A/TM/500 and A/TM/583

4.11 The improvement work described in **Table 4.4** will be completed gradually before 2030 – 2033, i.e., the intake of public housing of San Hing Road site, and San Hing Road site extension and Hong Po Road site (Note: These are items I, J and K in **Table 4.3**). These improvement works are adopted for the Year 2033 junction capacity analysis.

Hung Shiu Kiu New Development Area

4.12 Road improvement work is planned at Ng Lau Road / Castle Peak Road – Lam Tei (J11) under the "Hung Shui Kiu/Ha Tsuen New Development Area Package A Works for Second Phase Development - Design and Construction" (Agreement No. CE 01/2020 (CE)) by Civil Engineering and Development Department ("CEDD"). The layout of road improvement at J11 is presented in **Appendix E**.

Net Increase in Traffic Generation between the Approved Scheme and the Proposed Development

4.13 To estimate the traffic generation of the Proposed Development, reference is made to the TPDM. However, the smallest flat size in the TPDM is 60m² GFA, which is substantially larger than the Proposed Development average flat size of only 32m² GFA. Hence, the estimated traffic generation is conservative, i.e., on the high-side. The adopted trip generation rates and the estimated AM and PM peak hour traffic generation are presented in **Table 4.5**.

TABLE 4.5	ADOPTED	TRIP	RATES	AND	TRAFFIC	GENERATION	FOR
	PROPOSED	DEVE	LOPMEN	١T			

Proposed Development	Parameter	AM Peak		PM Peak		
(1,385 flats with average flat about 32m ² GFA)		Generation	Attraction	Generation	Attraction	
<i>Trip Rates:</i> Residential Use with average 60m ² GFA	pcu/flat/ hr	0.0718	0.0425	0.0286	0.0370	
Traffic Generation	pcu/hr	100	59	40	52	
	-	159		9	2	
	veh/hr ⁽¹⁾	<u>94</u>	<u>56</u>	<u>37</u>	<u>49</u>	
		<u>150</u>		<u>150</u> <u>86</u>		<u>6</u>

⁽¹⁾ Converted from pcu/hr to veh/hr based on 90% private car/ taxi and 10% heavy goods vehicles

4.14 The traffic generation of Approved Scheme found in the approved traffic impact assessment is presented in **Table 4.6**.

TABLE 4.6	ADOPTED TRAFFIC GENERATION FOR APPROVED SCHEME

Approved Scheme	Parameter	Parameter AM Peak			PM Peak			
		Generation	Attraction	Generation	Attraction			
Traffic Generation	pcu/hr	37	22	18	23			
		59 (2-way)		59 (2-wa		41 (2	-way)	
	veh/hr ⁽¹⁾	35	21	17	22			
	<u>56 (2-way)</u>			<u>39 (2</u>	-way)			

⁽¹⁾ Converted from pcu/hr to veh/hr based on 90% private car/ taxi and 10% heavy goods vehicles

4.15 The peak hour traffic generation of Approved Scheme and Proposed Development are shown in **Figures 4.2 – 4.3** respectively.

4.16 The net increase in traffic generation (in pcu/hr and veh/ hr) between the Approved Scheme and the Proposed Development is presented in **Tables 4.7** and **4.8**.

TABLE 4.7	NET INCREASE IN TRAFFIC GENERATION (PCU PER HOUR)

Scheme	Traffic Generation (pcu/ hr)						
	AM	Peak	PM Peak				
	Generation	Attraction	Generation	Attraction			
Proposed Development (from Table 4.5) [a]	100	59	40	52			
Approved Scheme (from Table 4.6) [b]	37	22	18	23			
Net Increase [a] – [b]:	+63	+37	+22	+ 29			
	+ 100 <u>(2-way)</u>		+ 100 <u>(2-way)</u> + 51 <u>(2-w</u>				

TABLE 4.8 NET INCREASE IN TRAFFIC GENERATION (VEHICLE PER HOUR)

Scheme	Traffic Generation (veh/ hr)						
	AM	PM Peak					
	Generation	Attraction	Generation	Attraction			
Proposed Development (from Table 4.5) [a]	<u>94</u>	<u>56</u>	<u>37</u>	<u>49</u>			
Approved Scheme (from Table 4.6) [b]	<u>35</u>	<u>21</u>	<u>17</u>	<u>22</u>			
Net Increase [a] – [b]:	+ 59	+ 35	+ 20	+ 27			
	+94 <u>(2-way)</u>		-way) + 47 <u>(</u> 2-way)				

4.17 The Proposed Development is expected to generate 100 and 51 additional pcu / hour (2-way) in AM and PM peak respectively, or equivalent to 94 and 47 vehicles / hour (2-way).

Year 2033 Proposed Additional Bus Trips

4.18 It is expected that 4 additional bus trips are required to accommodate the roadbased public transport demand of the Proposed Development in Year 2033. The year 2033 proposed additional bus trips are shown in **Figure 4.4**, and details of the additional bus trips are presented in **Paragraphs 5.13 – 5.14**.

Year 2033 Traffic Flows

4.19 Year 2033 traffic flows for the following cases are derived:

Year 2033 Without = Proposed Development [A]	Traffic flows derived with reference to 2031 NTW1 BDTM + estimated traffic growth between 2031 and 2033 + estimated traffic generation of the planned / committed developments after 2019
Year 2033 With Approved = Scheme [B]	[A] + estimated traffic generation for Approved Scheme
Year 2033 With Proposed = Development [C]	[B] + net increase in traffic generation by Proposed Development + Additional Bus Trips

4.20 Year 2033 peak hour junction flows and link flows for the above three cases are shown in **Figures 4.5 – 4.8** respectively.

Year 2033 Junction Capacity Analysis

4.21 Year 2033 junction capacity analysis for the three cases are summarised in **Table 4.9** and detailed calculations are found in the **Appendix A**.

TABLE 4.9	YEAR 2033 JUNCTION PERFORMANCE

Ref	Junction	Type of Junction (Parameter)	Prop	Vithout osed pment	2033 Appr Scho	oved	2033 With Proposed Development	
			AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
J1	Unnamed Road/ Access Road	Priority (DFC)	0.055	0.049	0.057	0.050	0.059	0.051
J2	Ng Lau Road/ Unnamed Road	Priority (DFC)	0.052	0.046	0.125	0.081	0.250	0.124
J3	Ng Lau Road/ Lam Tei Interchange	Signal (RC)	36%	42%	33%	40%	29%	38%
J4	Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange	RA (DFC)	0.733	0.695	0.741	0.702	0.754	0.712
J5	Lam Tei Interchange	RA (DFC)	0.802	0.695	0.813	0.704	0.835	0.765
J6	Lam Tei Interchange/ Castle Peak Road – Lam Tei	Signal (RC)	21%	47%	21%	47%	20%	47%
J7	Tsing Lun Road/ Tsz Tin Road	Signal (RC)	23%	58%	23%	57%	23%	57%
J8	San Hing Road/ Ng Lau Road (Southern)	Priority (DFC)	0.091	0.055	0.096	0.060	0.106	0.068
J9	San Hing Road/ Ng Lau Road (Northern)	Priority (DFC)	0.198	0.448	0.198	0.448	0.198	0.448
J10	T-junction at San Hing Road	Priority (DFC)	0.058	0.071	0.061	0.074	0.069	0.080
J11	Ng Lau Road / Castle Peak Road – Lam Tei	Signal (RC)	16%	15%	16%	15%	16%	15%
J12	San Hing Road / Hong Po Road	Signal (RC)	45%	<mark>8</mark> 5%	108%	166%	106%	165%

Note: RC - reserve capacity; RA - Roundabout, DFC - design flow/capacity ratio

4.22 **Table 4.9** shows that the Proposed Development has negligible traffic impact to the road junctions analysed.

Year 2033 Link Performance

4.23 The 2033 link performances are assessed and the results are shown in **Table 4.10**.

D (N	No						
Ref	Link Adjuste				Year 2033 Traffic Demand (veh/hr) Without With With					Year 2033 V/C Ratio Without With With					• 1	
			-	n Flow		hout				ith	-					
			(ver	n /hr)	Prop			oved		osed		osed		oved		osed
						pment				pment				eme		opment
			AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
			Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak
L1	Castle Peak	NB	2,604	2,604	866	1,436	866	1,436	866	1,436	0.33	0.55	0.33	0.55	0.33	0.55
	Road – Lam Tei	SB	2,604	2,604	1,811	1,240	1,811	1,240	1,813	1,242	0.70	0.48	0.70	0.48	0.70	0.48
L2	Castle Peak	NB	2,800	2,800	533	613	534	614	536	616	0.19	0.22	0.19	0.22	0.19	0.22
	Road – Lingnan	SB	2,800	2,800	855	583	857	584	860	585	0.31	0.21	0.31	0.21	0.31	0.21
L3	Yuen Long	NB	4,700	4,700	4,976	4,692	4,990	4,699	5,017	4,708	1.06	1.00	1.06	1.00	1.07	1.00
	Highway	SB	4,700	4,700	5,130	5,222	5,139	5,231	5,152	5,242	1.09	1.11	1.09	1.11	1.10	1.12
L4	Tuen Mun Road	NB	4,700	4,700	5,388	5,776	5,396	5,784	5,408	5,792	1.15	1.23	1.15	1.23	1.15	1.23
		SB	4,700	4,700	6,174	5,576	6,187	5,582	6,207	5,589	1.31	1.19	1.32	1.19	1.32	1.19
L5	San Hing Road	2-way	800	800	173	80	181	85	194	91	0.22	0.10	0.23	0.11	0.24	0.11
L6	Ng Lau Road	2-way	744	800	252	371	252	371	252	371	0.34	0.46	0.34	0.46	0.34	0.46
	(north of J9)															
L7	Ng Lau Road	2-way	800	800	405	438	452	470	531	510	0.51	0.55	0.57	0.59	0.66	0.64
	(south of J2)															
L8	Lam Tei	EB	2,800	2,800	1,861	1,252	1,890	1,266	1,940	1,283	0.66	0.45	0.68	0.45	0.69	0.46
	Interchange	WB	2,800	2,800	1,876	1,798	1,894	1,816	1,923	1,839	0.67	0.64	0.68	0.65	0.69	0.66
	(between J3&J5)															
L9	Tsing Lun Road	NB	1,900	1,900	889	663	890	664	892	666	0.47	0.35	0.47	0.35	0.47	0.35
		SB	1,900	1,900	1,321	975	1,323	976	1,326	977	0.70	0.51	0.70	0.51	0.70	0.51
NB –	northbound	SB -	- south	bound	E	B – eas	tbound		WB – w	/estbou	nd					

TABLE 4.10YEAR 2033 LINK CAPACITY ASSESSMENT

- 4.24 The above results show that the assessed road links operate with sufficient capacity, except for Yuen Long Highway (L3) and Tuen Mun Road (L4), both which operate with V/C ratios at 1.2 or above during the AM and PM peak hours in Year 2033. In view that there are no changes on the V/C ratios to L3 and L4 for cases without Proposed Development, with Approved Scheme and with Proposed Development, it can be concluded that the traffic generated by the Proposed Development is negligible.
- 4.25 As shown in LC paper no. CB(4)619/20-21(03) of Legislative Council Panel on Transport, the planned Route 11 would reduce v/c in Year 2036 from 1.2 to 1.0 at Tuen Mun Road (Siu Lam Section) in morning peak, which indicates the traffic congestion at Tuen Mun Road will be relieved by planned Route 11.
- 4.26 In addition to the above, other planned strategic road improvements, including, Tuen Mun Bypass and Yuen Long Highway (between Lam Tei and Tong Yan San Tsuen) are planned to be implemented. The traffic condition at L3 and L4 would be further improved by these planned strategic road improvements.
- 4.27 With the planned strategic road improvement works, both Yuen Long Highway (L3) and Tuen Mun Road (L4) are expected to operate with sufficient capacity in Year 2033.

5.0 IMPACT TO PUBLIC TRANSPORT SERVICES

Transport Mode of the Subject Site

- 5.1 The transport mode of the Subject Site is assessed with reference to "Travel Characteristic Survey 2011" ("TCS2011"), but adjusted to reflect the nearby public transport provisions. The public transport provisions near the subject site have the following characteristics:
 - (1) Direct and comprehensive light rail services at Lam Tei LRT stops operating within 50m from the Subject Site, which serve as feeder services to MTR and within Tuen Mun, instead of GMB route 42 at Ng Lau Road.
 - (2) Comprehensive bus services is identified within 400m walking distance.
 - (3) There are no special purpose bus, tram and ferry nearby.
- 5.2 Based on the above public transport characteristics, special purposed bus, tram, ferry, and public light bus found in TCS2011 are converted to rail and bus mode on pro-rata basis. The modified transport mode adopted for the Proposed Development is compared with TCS2011 and is found in **Table 5.1**.

TABLE 5.1	MODIFIED	TRANSPORT	MODE	FOR	THE	PROPOSED
	DEVELOPME	INT				

Transport Mode	TCS 2011	Modified Transport Mode adopted for the Proposed Development
Rail	30%	44%
Bus	27%	38%
Public Light Bus	13%	0%
Private Car	12%	12%
Special Purpose bus	9%	0%
Taxi	6%	<mark>6</mark> %
Tram	2%	0%
Ferry	1%	0%
Total	100%	100%

5.3 **Table 5.1** shows that 44% and 38% of mechanised trips from the Proposed Development would use MTR and bus respectively. For residents who use MTR, it is assumed that 100% would use the LRT service.

Estimated Peak Hour Mechanised Trip Generation of Proposed Development

5.4 The mechanised trip generation of the Approved Scheme and the Proposed Development is estimated with reference to TCS2011 and is presented in **Table 5.2**.

TABLE 5.2ESTIMATED PEAK HOUR MECHANISED TRIP GENERATION OF
THE PROPOSED DEVELOPMENT

Parameter	Calculation	Unit	Approved Scheme	Proposed Development
No. of Flats	А	flats	307	1,385
Average domestic household size in Tuen Mun ⁽¹⁾	В	persons/ flat	2.6	2.6
Population	$C = B \times A$	persons	799	3,601
Average Daily Mechanised Trips ⁽²⁾	D	trips/ persons/ day	1.83	1.83
Peak hour factor of Daily Mechanised Trips ⁽³⁾	E	N/A	12%	12%
Estimated Peak Hour Mechanised Trip Generation	$F = C \times D$ $\times E$	persons/ hr	176	791

⁽¹⁾ Extracted from Census and Statistic Department website

⁽²⁾ From Table 3.3, Travel Characteristics Survey 2011 Final Report

⁽³⁾ From Para. 3.3.7, Travel Characteristics Survey 2011 Final Report

Estimated Peak Hour Transport Demand

5.5 The peak hour transport demand of the Approved Scheme and the Proposed Development are estimated based on the modified transport mode in **Table 5.1**, and are presented in **Table 5.3**.

Transport Mode of the Approved Scheme		Ratio ⁽¹⁾	Estimated Peak Hour Transport Dema (Passenger/hr)				
/ Pro	posed Development		Approved Scheme [a]	Proposed Development [b]	Net Increase in Passenger Demand [c] = [b] – [a]		
Public	Rail-based [a]	44%	77	348	+271		
Transport	Road-based [b]	38%	67	301	+234		
	Sub-total $[c] = [a] + [b]$	82%	144	<u>649</u>	+ 505		
Private Car	Private Car / Taxi [d]		32	142	+110		
Total [e]=[c]+[d]		100%	176	791	+615		

TABLE 5.3 ESTIMATED PEAK HOUR TRANSPORT DEMAND

⁽¹⁾ From Table 5.1

5.6 **Table 5.3** shows that compared with the Approved Scheme, the Proposed Development is expected to generate additional public transport demand of 505 passengers per hour (2-way) during both AM and PM peak hours.

Road-Based Public Transport Demand Generated

5.7 The road-based public transport demand generated by the subject site is summarised in **Table 5.4**.

TABLE 5.4 ESTIMATED ROAD-BASED PUBLIC TRANSPORT DEMAND

Development	Road-based Public Transport Demand (persons / hour)			emand
	AM P	Peak	PM	Peak
	Generation	Attraction	Generation	Attraction
Approved Scheme: 307 Flats [a]	61	6	6	61
Proposed Development: 1,385 Flats [b]	271	30	30	271
Net increase [b] – [a]	210	24	24	210
	+234 (2-way)		+234 ((2-way)

5.8 **Tables 5.4** shows that compared with the Approved Scheme, the Proposed Development is expected to generate additional road-based public transport demand of 234 passengers per hour (2-way) during both AM and PM peak hours.

Rail-Based Public Transport Demand Generated

5.9 The rail-based public transport demand generated by the Approved Scheme and Proposed Development are summarised in **Table 5.5**.

Development	Rail-based	Rail-based Public Transport Demand (persons / hour)		
	AM Pe	ak	PM I	Peak
	Generation	Attraction	Generation	Attraction
Approved Scheme: 307 Flats [a]	70	7	7	70
Proposed Development: 1,385 Flats [b]	314	34	34	314
Net increase [b] – [a]	244	27	27	244
	+271 (2-	way)	+271 ((2-way)

TABLE 5.5 ESTIMATED RAIL-BASED PUBLIC TRANSPORT DEMAND

5.10 **Tables 5.5** shows that compared with the Approved Scheme, the Proposed Development is expected to generate additional rail-based public transport demand of 271 passengers per hour (2-way) during both AM and PM peak hours.

Impact to Road-based Public Transport Services

- 5.11 In view that there is substantial population intake of Tuen Mun Area 54 and "San Hing Road and Hong Po Road Public Housing Development" between year 2024 and 2033, Transport Department will enhance the existing bus routes and propose new bus routes. However, the information is now not available. Hence, to assess the impact to road-based public transport, the followings assumptions are adopted:
 - 1. All bus services provided in Year 2033 remain the same as the existing, i.e., observed from surveys conducted in 2024.
 - 2. By Year 2033, all existing bus services will operate at capacity.
- 5.12 Based on above the assumptions, the followings paragraphs assess the additional bus services required in Year 2033 for the Proposed Development.

Additional Bus Trip for the Proposed Development

5.13 The additional bus trips for the Proposed Development in Year 2033 is estimated based on the AM peak hour generation of road-based public transport demand as and is summarised in **Table 5.6**.

TABLE 5.6ADDITIONAL BUS TRIP FOR THE PROPOSED DEVELOPMENT

Parameter	Calculation	Value	Unit
AM peak hour generation of road-based public	А	271	persons
transport demand (from Table 5.5)			
Capacity per double-deck bus	В	120	persons
Design Utilization Rate during peak hour	С	75%	N/A
Additional Bus Trips	$\mathbf{D} = \mathbf{A} / (\mathbf{B} \mathbf{X} \mathbf{C})$	4	Trips

5.14 **Table 5.6** shows that 4 bus trips (10 pcu 2-way) are required to accommodate the

road-based public transport demand for the Proposed Development.

Proposed Bus Route for the Additional Bus Trips

5.15 The working district of working population in Tuen Mun extracted from the "Population Census 2021" published by Census and Statistic Department are summarised in **Table 5.7**.

TABLE 5.7WORKING DISTRICT OF WORKING POPULATION IN TUEN
MUN

Working District	Working Population in Tuen Mun (Percentage)
Hong Kong Island	25,577 (20%)
Kowloon	41,987 (32%)
New Territories	63,466 (48%)

The Population Census 2021 website:

 $\label{eq:https://idds.census2021.gov.hk/app/idds.html?id = IDDS¶m = N4IgxgbiBcoMoFEAaNQH0AuaYgIwgBoQ0AHbaXItAE3IBYjEk0AmAcRwGYQBfIgdQDyAJQDSAFQCaABVz5YxLDnxUyMAAxVaMTgJESZctAA4O0EJ2x8QAQWEIbqReRDrCxNdE3Ft0FkTsHNAARAGE0XFMcdX43a1DQyUkneRAWdRYVZ2j3UnJvGnJcHmsAZygFPJh-EH5pGABtWuk0ADIpBGEQAF1rABsYDAAnAFcAUx4gA&lang = en$

5.16 The destination of bus routes are served by the bus stops at Castle Peak Road – Lam Tei ("CPR") and Lam Tei Interchange ("LTI") are presented in **Table 5.8**.

TABLE 5.8COMPARISON ON DESTINATION OF BUS ROUTES BETWEEN
BUS STOP AT CPR AND LTI

	Walking Distance		N	lo. of B	us Rout	es at De	stinatio	n	
Bus Stop	(Time)	HKI	NTW	ΥΤΜ	Kln(E)	Kln(W)	Ν	TCL	BCP
CPR	100 to 200 (2 - 4 mins)	4	3	2	2	0	1	2	1
LTI	350 to 400 (7 - 8 mins)	3	2	2	2	1	2	2	1
			NTW – N	ew Terri	tories W	est			
YTM – Yau Ma Tei/Tsim Sha Tsui/Mong Kok			Kln(E) – K	owloon	(East)				

Kln(W) – Kowloon (West) BCP – Boundary Control Point Kln(E) - Kowloon (East)N - North

TCL-Tung Chung / Lantau Island

- 5.17 **Table 5.8** shows that the bus stops at CPR are located only 2 4 minutes' walk away and it has routes to all destinations as the LTI stop, except to Kowloon West.
- 5.18 However, it is found that most of the bus routes at CPR are operated by KMB, and residents from the Proposed Development travelling to Kowloon West could change to other bus routes operated by KMB at the Tuen Mun Road interchange, e.g. KMB 59X, 60X and 67X. Therefore, it is concluded that all road-based public transport demand from the Proposed Development would use CPR, and negligible usage of LTI, due to its longer walking time.
- 5.19 Based on the proportion of working district of working population in Tuen Mun presented in **Table 5.7** and the findings from **Table 5.8**, the proposed bus route for the 4 additional bus trips are presented in **Table 5.9**, and bus route are shown in **Figure 5.1**.

District	Proportion	Additional Demand (pa	Passenger assenger /hr)	Additional Trips	Proposed Bus Route
Hong Kong Island	20%	54		1	KMB 960P
Kowloon	32%	87		1	KMB 63X
New Territories	48%	131	131 66		KMB 68A
		65		1	KMB 261P
Total	100%	271		4	N/A

TABLE 5.9PROPOSED BUS ROUTE FOR THE ADDITIONAL BUS TRIPS

Public Transport Demand Generated by Planned / Committed Developments in the Vicinity

5.20 The public transport demand generated by planned / committed developments in the vicinity as presented in **Table 4.3** is considered for Year 2033. Public transport interchanges are provided for the 2 planned development areas, i.e., "Tuen Mun Area 54" and "Development at San Hing Road and Hong Po Road, Tuen Mun". It is assumed that the public transport services provided would be sufficient to serve the demand generated by these development areas.

2033 Rail-Based Public Transport Occupancies

5.21 As presented in **Table 5.5**, the demand on rail-based public transport services, i.e. MTR Tuen Ma Line, associated with the Proposed Development is no more than 314 passengers during the peak hours. As presented in **Table 2.5**, the MTR Tuen Ma Line has a maximum carrying capacity of 70,000 passenger / hour. Hence, the additional passenger demand is only 0.5% of the maximum carrying capacity [Calculation: $314 \div 70,000 = 0.5\%$], which is negligible on the MTR Tuen Ma Line.

2033 LRT Service Occupancies

5.22 As shown in **Table 2.6**, the Lam Tei Tuen Mun bound LRT stop has a capacity of 7,200 passenger / hour. The additional passenger demand generated by the Proposed Development is 4.3% of the maximum carrying capacity [Calculation: 314 ÷ 7,200 = 4.3%], which is acceptable. The survey results in **Table 2.6** show that 12 out of 24 LRT trips are operated using coupled-set LRV. When necessary, 2 LRT trips operating with single LRV could be converted to coupled-set LRV, thus giving additional capacity of 400, which could accommodate the additional rail-based public transport demand generated by the Proposed Development.

Annual Public Transport Demand Growth Rate between 2024 – 2033

- 5.23 To establish the local public transport demand growth rate from 2024 to 2033, reference is made to several sources of information including:
 - 2024 2029: "Projections of Population Distribution 2021 2029" published by Planning Department
 - 2029 2033: "Hong Kong Population Projections" from the Census and Statistics Department
- 5.24 The "Projections of Population Distribution 2021 2029" has Tertiary Planning Units ("TPU"), i.e., the local area population projections up to 2025, and reference is made to 5 relevant TPUs, which are presented in **Table 5.10**.

TABLE 5.10POPULATION PROJECTIONS OF THE 5 TPUS

Year		TP	U		Total
	423 & 428	425	441	442	
2024	225,800	70,200	16,600	7,100	319,700
2025	227,100	71,300	16,300	7,100	321,800
Average Annual Growth (2024 to 2025)	0.58%	1.57%	-1.81%	0.00%	0.66%

- 5.25 **Table 5.10** shows that the average annual population growth between 2024 and 2025 is 0.66%.
- 5.26 Between 2025 and 2029, reference is made to the population growth of Tuen Mun New Town, and population projections are presented in **Table 5.11**.

Year	Tuen Mun New Town Population
2025	557,400
2029	575,400
Average Annual Growth 2025 to 2029	0.80%

TABLE 5.11 TUEN MUN NEW TOWN POPULATION PROJECTIONS

- 5.27 **Table 5.11** shows that the average annual population growth in the Tuen Mun New Town between 2025 and 2029 is 0.8%.
- 5.28 Beyond 2029, reference is made to the *"Hong Kong Population Projections"* from the Census and Statistics Department, which is presented in **Table 5.12**.

 TABLE 5.12
 HONG KONG POPULATION PROJECTIONS FROM CENSUS

 AND STATISTICS DEPARTMENT

Year	Hong Kong Resident Population ('000)
2029	7,731.1
2033	7,903.6
Average Annual Growth 2029 to 2033	0.55%

- 5.29 **Table 5.12** shows that the average annual population growth in Hong Kong between 2029 2033 is 0.55%.
- 5.30 Based on the above, the annual growth factors adopted are 0.66% from 2024 to 2025, 0.8% between 2025 and 2029, and 0.55% between 2029 and 2033.

Review on Public Transport Facilities

5.31 Public Transport Facilities are reviewed and presented in below paragraphs.

Additional Queuing/Waiting Demand due to the Proposed Development

5.32 The estimated additional queuing/waiting related to the Proposed Development at each bus stop / LRT station is presented in **Table 5.13**.

TABLE 5.13ADDITIONAL QUEUING/WAITING DEMAND RELATED TO THE
PROPOSED DEVELOPMENT

Bus Stop / LRT Stop		Boarding Demand (No. of Passenger) (from Table 5.9) [a]	(including	Average Queuing / Waiting Passenger (No. of Passenger) [c] = [a] / [b]
CPR – Southbound	KMB 960P	54	7	8
	KMB 63X	87	6	15
	KMB 68A	66	4	17
	<u>Sub-total</u>	207	<u>17</u>	<u>40</u>
CPR – Northbound	KMB 261P	65	2	33
LTI – Westbound		0	2	0
LTI – Eastbound		0	0	0
Lam Tei LRT Stop – Y	uen Long bound	0	0	0
Lam Tei LRT Stop – T	uen Mun bound	314	24	14

5.33 **Table 5.13** shows that the estimated additional average queuing /waiting passenger at CPR southbound and CPR northbound bus stops are 40 and 33 passengers respectively and no additional average queuing /waiting passenger at LTI bus stops.

Utilisation of Passenger Waiting/Queuing Areas at Bus Stops / LRT Platforms

5.34 Survey on passenger waiting/queuing areas at bus stops / LRT platforms was conducted during the AM and PM peak periods on Thursday, 8th May 2024, and the peak hours identified from the surveys is found to be between 0715 – 0815 hours. Based on this survey, the year 2033 maximum number of passenger waiting/queuing at the Bus Stops / LRT platforms were derived as follows:

2033 without Proposed = Development [A]	2024 observed maximum queue + adopted passenger demand growth from 2024 to 2033 + estimated passenger demand due to the planned / committed developments
2033 with Proposed = Development [B]	[A] + average queuing / waiting passenger due to Proposed Development (from Table 5.13)

5.35 Utilisations of passenger waiting/queuing area at the bus stops / LRT platforms for existing, 2033 cases without and with Proposed Development are presented in **Table 5.14**.

TABLE 5.14 UTILISATIONS OF PASSENGER WAITING / OUEUING AREA AT **BUS STOPS AND LRT PLATFORMS**

Bus Stop / LRT Platform	• •	/ Waiting acity	Exis	ting	ng Year 2033 N Without Proposed Development		Development	
	Area (m²)	Pass ⁽¹⁾ [a]	Max Queue [b]	Util [c] = [b] / [a]	Max Queue [d]	Util [e] = [d] / [a]	Max Queue [f]	Util [g] = [f] / [a]
CPR – Southbound	38	125	38	30%	46	37%	86	69%
CPR – Northbound	20	<mark>6</mark> 9	10	14%	13	19%	46	67%
LTI – Westbound	8	28	8	29%	9	32%	9	32%
LTI – Eastbound	8	28	0	0%	1	4%	1	4%
Lam Tei LRT Stop – Yuen Long bound	30 ⁽²⁾	104	16	15%	18	17%	18	17%
Lam Tei LRT Stop – Tuen Mun bound	96 ⁽²⁾	229	84	37%	99	43%	113	49%
Pass – Passenger		Max – N	laximum		Ut	il - Utilisat	ion	

Pass – Passenger (1)

Util - Utilisation

Refer to Volume 9, Chapter 2.7, TPDM, standing capacity of 5 passengers per 1.44m² is adopted. (2) Deducted minimum of 1.1m walkways from doors of light rail vehicles to the exit of the platforms and utilities on the platforms, e.g. shelter, seats, ticket vending machines and Octopus card readers.

Table 5.14 shows that the assessed bus stops /LRT platforms would have 5.36 sufficient passenger waiting/queuing areas for the case of year 2033 with the Proposed Development.

Length of the Laybys for Bus Stops

Based on the survey on road-based public transport services, the existing and 5.37 year 2033 with the Proposed Development bus arrival at the Castle Peak Road -Lam Tei bus stops and Lam Tei Interchange bus stops are presented in Table 5.12, and are presented in Table 5.15.

TABLE 5.15 A	ASSESSMENT	ON LENGTH OF	THE LAYBYS FOR BUS STOPS	
--------------	------------	--------------	--------------------------	--

Bus Stop	Layby Size (Length)	Capacity of Bus on Arrival ⁽¹⁾	Bus on Boarding / Alight		Year 2033 With Propose Development Bus Arriva for Boarding / Alighting		
			AM Peak	PM Peak	AM Peak	PM Peak	
CPR – Southbound	Double (26m)	35	35	10	39 ⁽³⁾	14 ⁽³⁾	
CPR – Northbound	Single (13m)	16	10	20	14 ⁽³⁾	24 ⁽³⁾	
LTI – Westbound	Single (13m)	16	3	4	3	4	
LTI – Eastbound	Single (13m)	16	7	2	7	2	

Refer to table 2.7.6.1, Volume 9, Chapter 2.7, TPDM.

(2) Refer to Paragraph 5.11, all bus services provided in Year 2033 remain the same as observed from surveys conducted in 2024 (3)

The 4 additional bus trips related to the Proposed Development are included in Year 2033 with Proposed Development scenario.

Table 5.15 shows that: 5.38

- LTI bus stop laybys have sufficient length for bus arrival for boarding / alighting in existing and year 2033 with Proposed Development.
- CPR southbound bus stop layby reached its capacity for boarding / alighting • in existing AM peak. With the additional bus trips related to the Proposed Development, the layby would have insufficient capacity for bus arrival.
- CPR northbound bus stop exceed its capacity for boarding / alighting in PM • peak for the case of existing and year 2033 with Proposed Development.

Proposed Improvement on the Length of the CPR Bus Stop Laybys

- 5.39 **Figure 5.2** shows the proposed improvement for the CPR bus stop laybys, which include the following:
 - CPR southbound bus stop Extend the existing 26m-long bus layby to 42m (14m x 3) to accommodate 3 12.8m-long bus boarding /alighting at the same time
 - CPR northbound bus stop Extend the existing 13m-long bus layby to 28m (14m x 2) to accommodate 2 12.8m-long bus boarding /alighting at the same time
- 5.40 The assessment on bus arrival for boarding / alighting at the Castle Peak Road Lam Tei Bus Stops taking into consideration the proposed improvement, are summarized in **Table 5.16**.

TABLE 5.16ASSESSMENT ON LENGTH OF THE LAYBYS FOR BUS STOPS
WITH PROPOSED IMPROVEMENT

Bus Stop	Layby Size (Length)	Capacity of Bus on			ar 2033 Bi Boarding			
		Arrival ⁽¹⁾	Without Develo	Proposed pment	With Ap Sche		With Pr Develo	
			AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
CPR – Southbound	Triple (42m)	51 (35+16)	35	10	35	10	39	14
CPR – Northbound	Double (28m)	35	10	20	10	20	14	24

⁽¹⁾ Refer to table 2.7.6.1, Volume 9, Chapter 2.7, TPDM.

5.41 **Table 5.16** shows that the laybys would have sufficient capacity for bus boarding / alighting in Year 2033 with Proposed Development with the proposed improvement on CPR bus stop laybys.

6.0 PEDESTRIAN IMPACT

2033 Pedestrian Flow Forecasting

6.1 2033 peak 15-minute pedestrian flows are produced by estimating (i) the pedestrian growth from 2024 to 2033; and (ii) expected pedestrian generated by the Proposed Development and planned / committed developments in the vicinity.

Annual Pedestrian Growth Rate between 2024 – 2033

6.2 Growth rates of 0.66% per annum from 2024 to 2025, 0.8% per annum for the period between 2025 and 2029, and 0.55% per annum for the period between 2029 and 2033, are adopted, and reference to these are found in **Paragraphs 5.23 – 5.30**.

Peak 15-minute Pedestrian Generated by Planned / Committed Developments in the Vicinity

6.3 Peak 15-minute pedestrian generated by planned / committed developments in the vicinity as presented in **Table 4.3** is included in the Year 2033 pedestrian flow.

Peak hour Pedestrian Generation and Pedestrian Generation Rates

6.4 Based on public transport demand presented in **Table 5.5**, the peak hour and peak 15-mins pedestrian generation and pedestrian generation rates of the Approved Scheme and Proposed Development are presented in **Table 6.1**.

ltem	Parameter	AN	1 Peak	PM Peak		
		GEN	ATT	GEN	ATT	
Approved Scheme: 307 Flats						
Pedestrian Generation	ped / hour	61	6	6	61	
	ped / 15-min ⁽¹⁾ [a]	21	2	2	21	
Pedestrian Generation rate	ped / flat / hour	0.199	0.019	0.019	0.199	
		0.218 (2-way)		0.218 (2-way)		
	ped / flat / 15-min	0.068	0.007	0.007	0.068	
Proposed Development: 1385						
Pedestrian Generation	ped / hour	271	30	30	271	
	ped / 15-min ⁽¹⁾ [b]	91	10	10	91	
	ped / flat / hour	0.196	0.022	0.022		
Pedestrian Generation rate	peu / nat / noui	0.150	0.022	0.011	0.196	
Pedestrian Generation rate			(2-way)		0.196 (2-way)	
Pedestrian Generation rate	ped / flat / 15-min					
Net Increase of Pedestrian Generation	ped / flat / 15-min	0.218	(2-way)	0.218	2-way)	

TABLE 6.1PEDESTRIAN GENERATION AND PEDESTRIAN GENERATION
RATES

GEN – Generation ATT - Attraction

⁽¹⁾ By applying peak hour factor of 33% of peak hour pedestrian flow

6.5 **Tables 6.1** shows that compared with the Approved Scheme, the additional pedestrian generated by the Proposed Development is 78 persons (2-way) during both AM and PM peak 15 minutes.

Year 2033 Pedestrian Flows

- 6.6 Year 2033 pedestrian flows are produced with reference to (i) the observed 2024 pedestrian flows, (ii) annual pedestrian growth rate between 2024 2033, (iii) expected pedestrian generation due to the planned / committed developments between 2024 2033 and the Subject Site.
- 6.7 Year 2033 pedestrian flows for the footpath analysis were derived as follows:

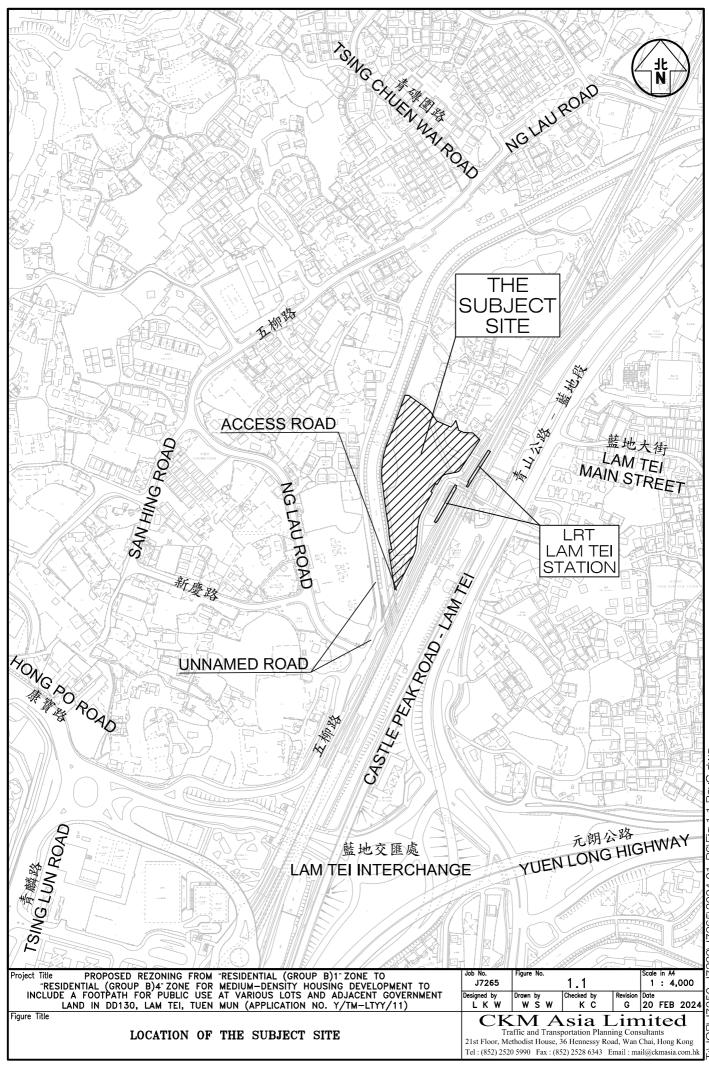
2033 without Proposed Development [A]	=	2024 observed pedestrian flows + Adopted pedestrian growth from 2024 to 2033 + estimated pedestrian due to the planned / committed developments
2033 with Approved Scheme [B]	=	[A] + pedestrian generation due to Approved Scheme
2033 with Proposed Development [C]	=	[B] + net increase in pedestrian generation due to Proposed Development

Year 2033 LOS Analysis

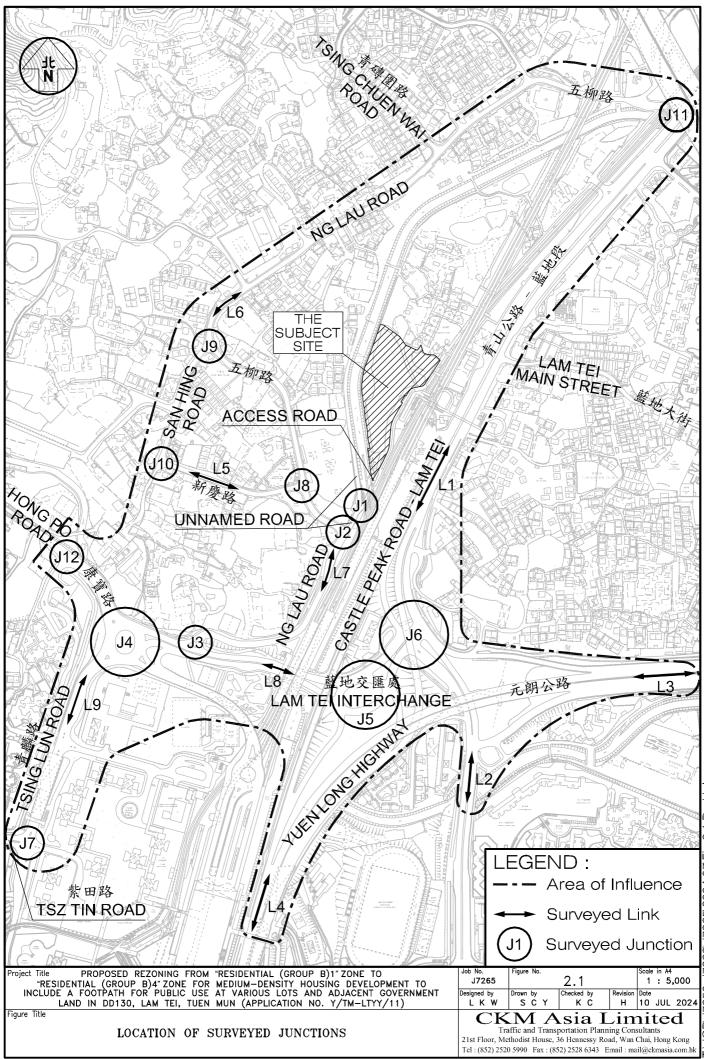
6.8 Year 2033 peak 15-minute pedestrian flows for the three cases are estimated and presented in **Figure 6.1** and the corresponding LOS assessment is presented in **Table 6.2**.

Location	Clear Width ⁽¹⁾ [Effective	Peak Period	Р	3 with ropose relopm	ed	Α)33 wi pprove Scheme	ed	P)33 wi ropose /elopm	ed
	Width] (m)		Flow	Flow rate	LOS	Flow	Flow rate	LOS	Flow	Flow rate	LOS
P1. Footpath on the footbridge	2.0[1.5]	AM	80	3.6	A	80	3.6	А	80	3.6	A
accessing to Ng Lau Road		PM	62	2.8	A	62	2.8	А	62	2.8	A
P2. Footpath between Lam Tei LRT stop	2.5[1.5]	AM	130	5.8	A	135	6.0	A	151	6.7	A
and bus stop at Castle Peak Road – Lam Tei		PM	93	4.1	A	112	5.0	A	174	7.7	A
P3. Footbridge over	2.5[1.5]	AM	79	3.5	A	98	4.4	А	160	7.1	Α
Castle Peak Road – Lam Tei		PM	40	1.8	А	45	2.0	А	<mark>6</mark> 1	2.7	Α
P4. Southern Footpath	2.5[1.5]	AM	16	0.7	Α	16	0.7	А	16	0.7	Α
of San Hing Road		PM	11	0.5	Α	11	0.5	Α	11	0.5	Α
P5. Eastern Footpath of Ng Lau Road	2.0[1.0]	AM PM	67 43	4.5 2.9	A A	67 43	4.5 2.9	A A	67 43	4.5 2.9	A A
Note: Flows in pedestria	ın / 15 minu						minute				

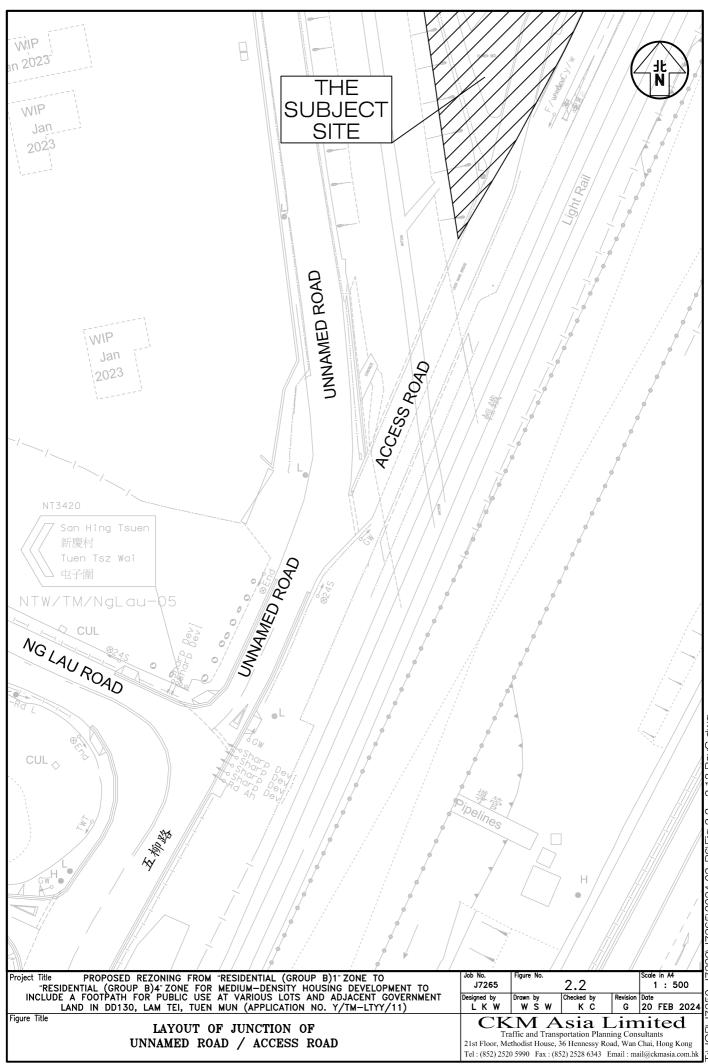
TABLE 6.2 YEAR 2033 LOS ASSESSMENT
--

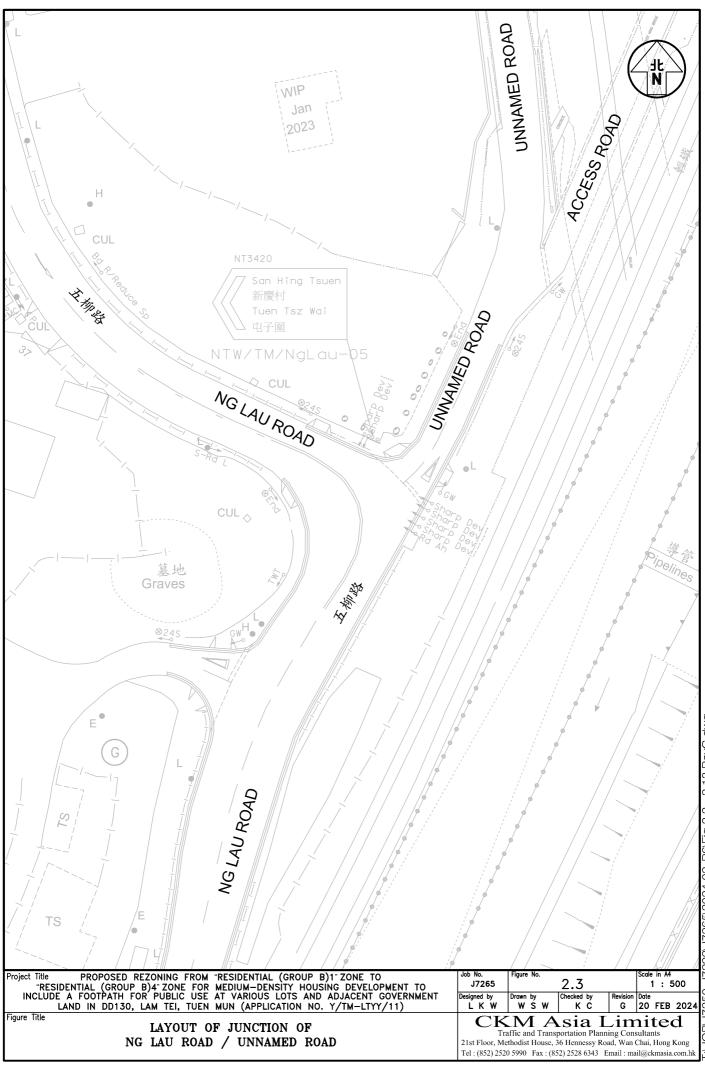

Flows in pedestrian / 15 minutes flow rates in pedestrian / 15 minutes / meter ⁽¹⁾ The width excludes railing and obstructions.

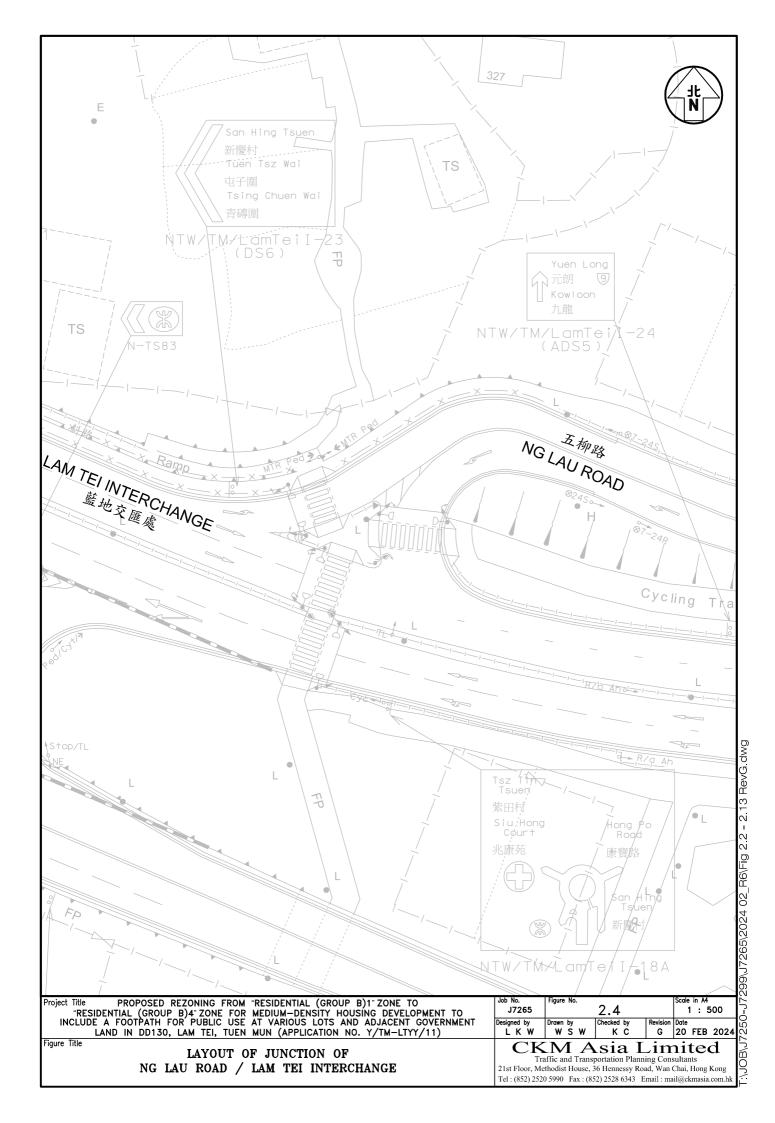
6.9 **Table 6.2** shows that the assessed footpaths operate with LOS A, i.e., have sufficient capacity to accommodate the expected pedestrian growth and additional pedestrian generated due to Proposed Development.

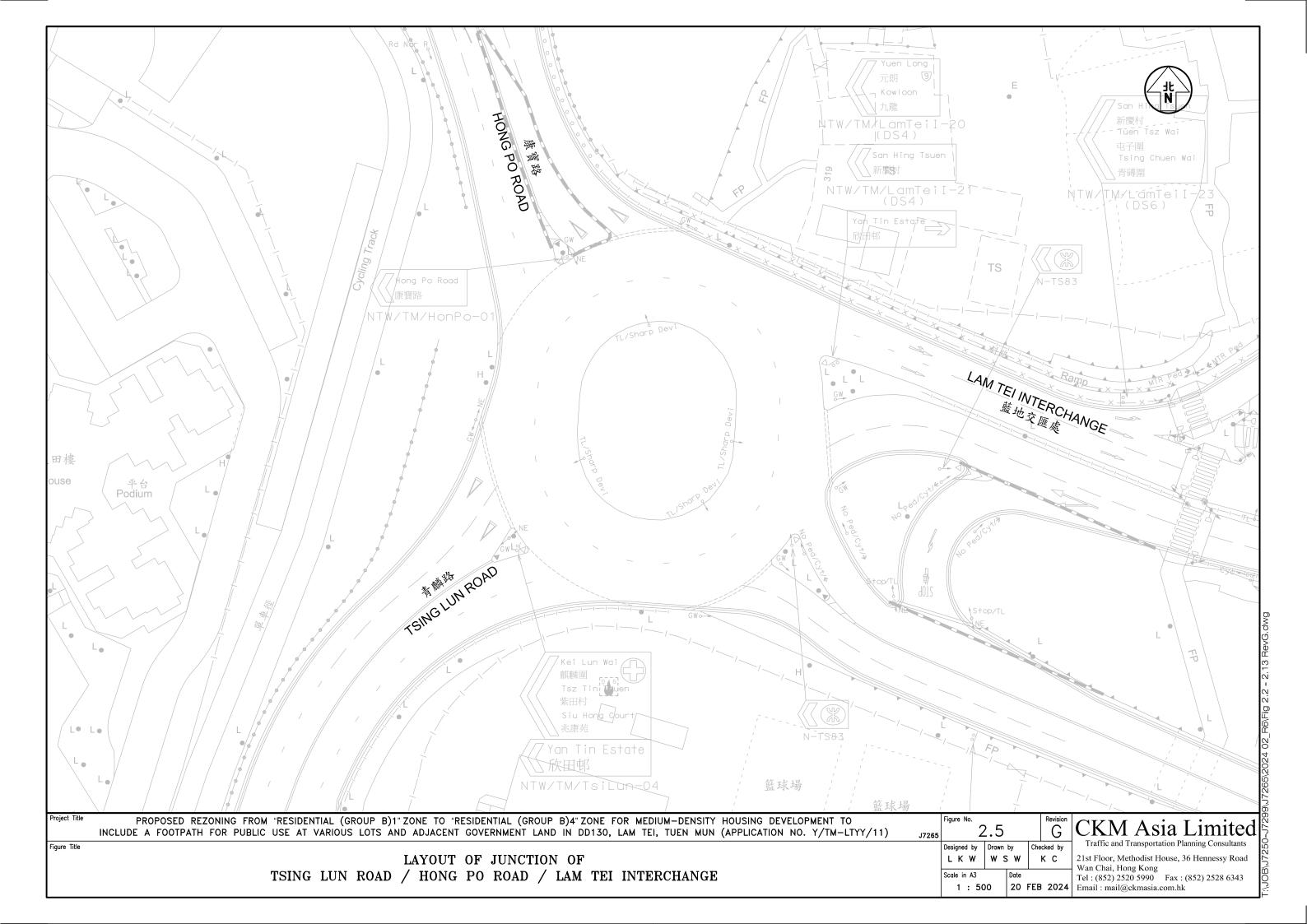

7.0 SUMMARY

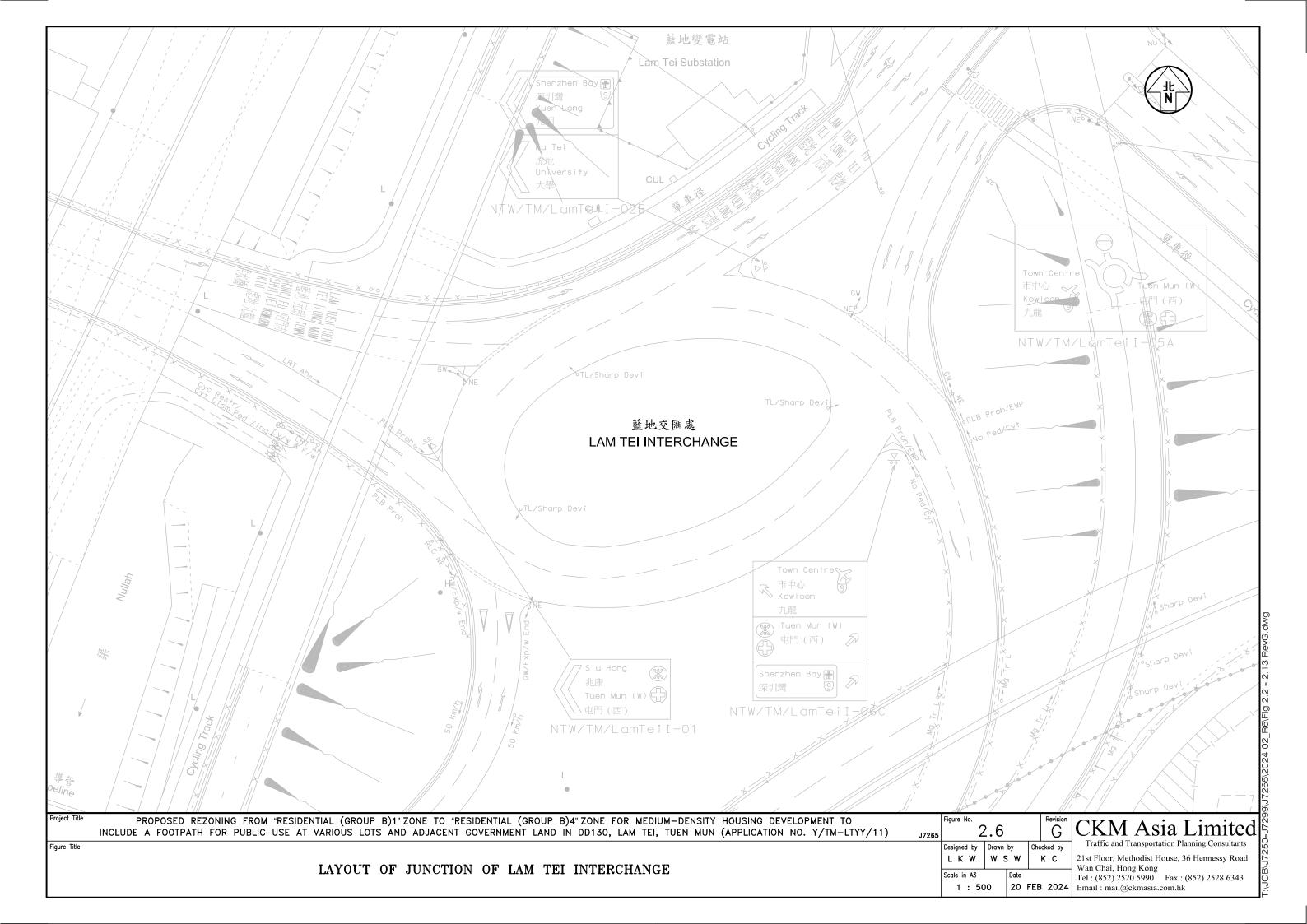
- 7.1 The Subject Site is located in D.D.130, Lam Tei, Tuen Mun. At present, the Subject Site is unoccupied, and access to the Subject Site is via an existing unnamed road which is connected to Ng Lau Road.
- 7.2 Manual classified counts were conducted at junctions and road links which are located in the vicinity in order to establish the existing traffic flows during AM Peak and PM peak hours.
- 7.3 The internal transport facilities provided comply with recommendations of the HKPSG and comments from Transport Department.
- 7.4 Year 2033 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to the BDTM; (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the 2 cases, i.e., Approved Scheme and Proposed Development.
- 7.5 Compared to the Approved Scheme, the Proposed Development will generate only 100 and 51 additional pcu (2-way) in AM peak and PM peak respectively. In addition, 4 nos. of bus trips are proposed to accommodate the road-based public transport demand of the Proposed Development.
- 7.6 The assessment of the nearby public transport services found that the Proposed Development has negligible impact. The assessment of footpaths found that the Proposed Development has negligible impact.
- 7.7 Based on the finding on review of public transport facilities, improvement on the CPR bus stop laybys is proposed, i.e., extend the existing 26m-long bus layby to 42m at CPR southbound bus stop and the existing 13m-long bus layby to 28m at CPR northbound bus stop.
- 7.8 This TIA concluded that the Proposed Development has no adverse traffic impact and the Proposed Development is acceptable from traffic engineering terms.

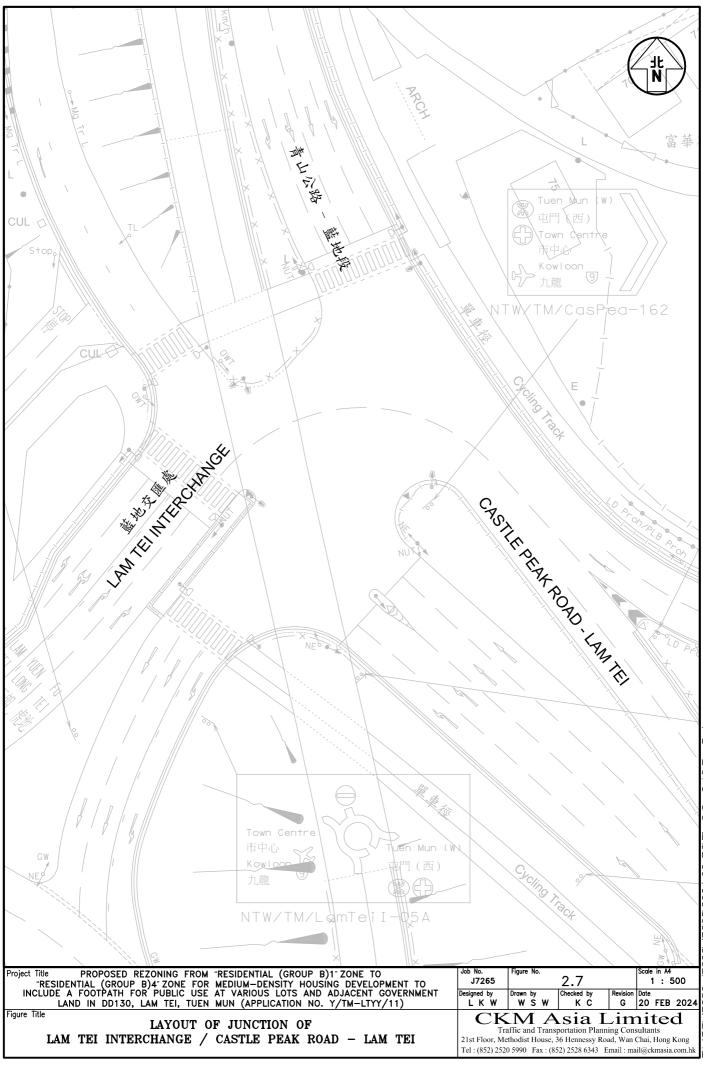

Figures

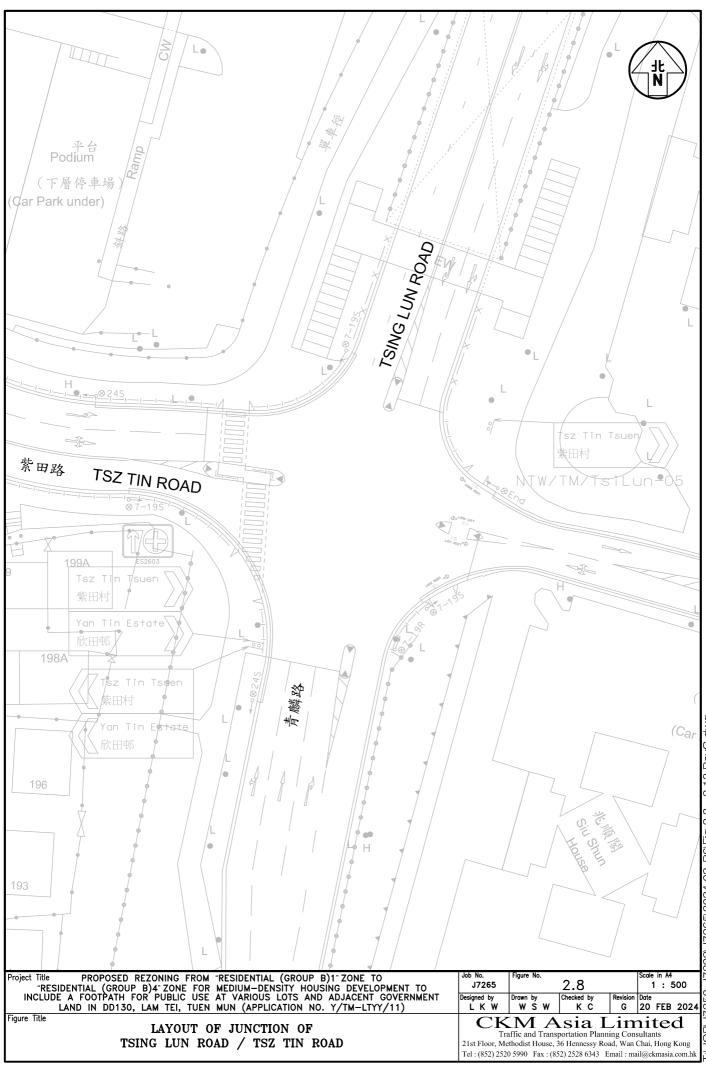

\JOB\J7250-J7299\J7265\2024 01_R6\Fig 1 1 RevG dwg

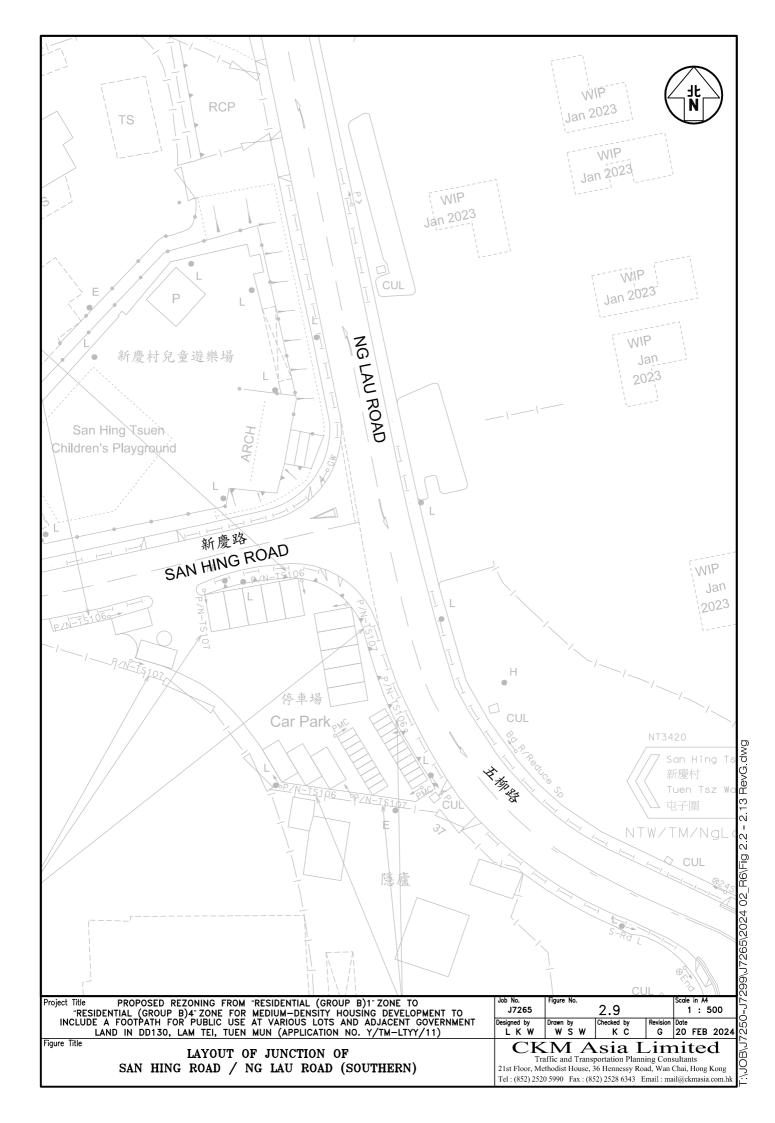


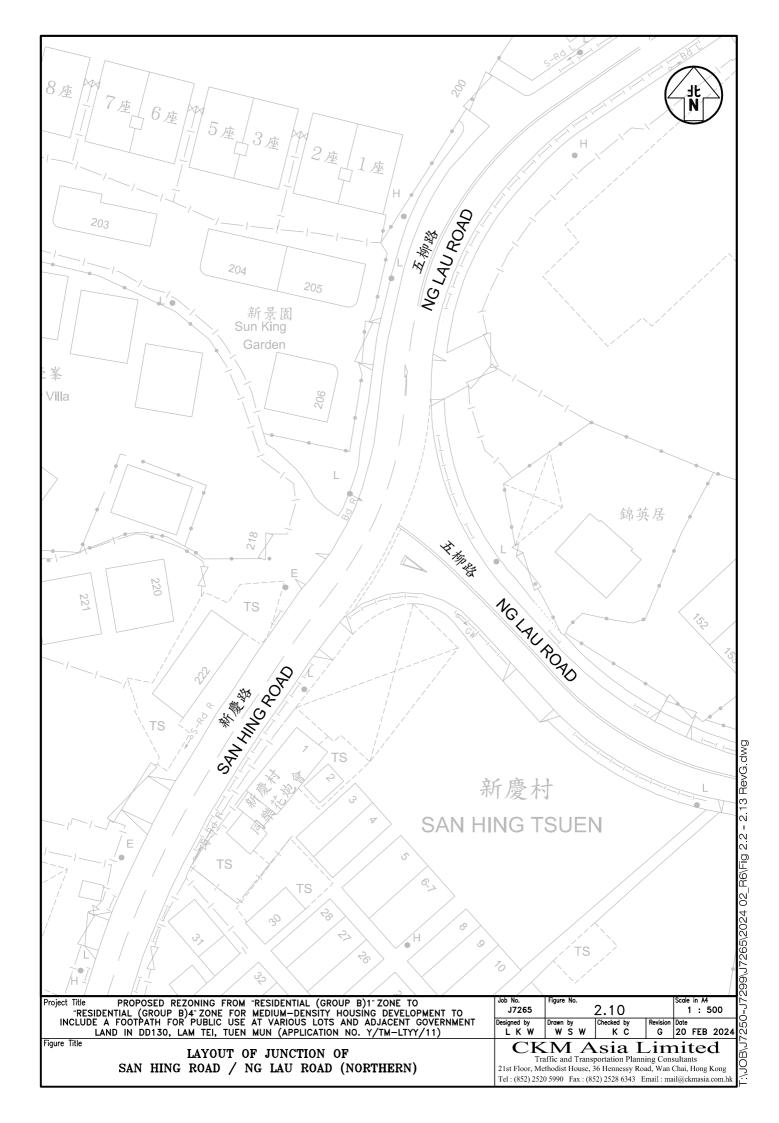

OB\J7250-J7299\J7265\2024 07\Fig 2 1 RevH dwg

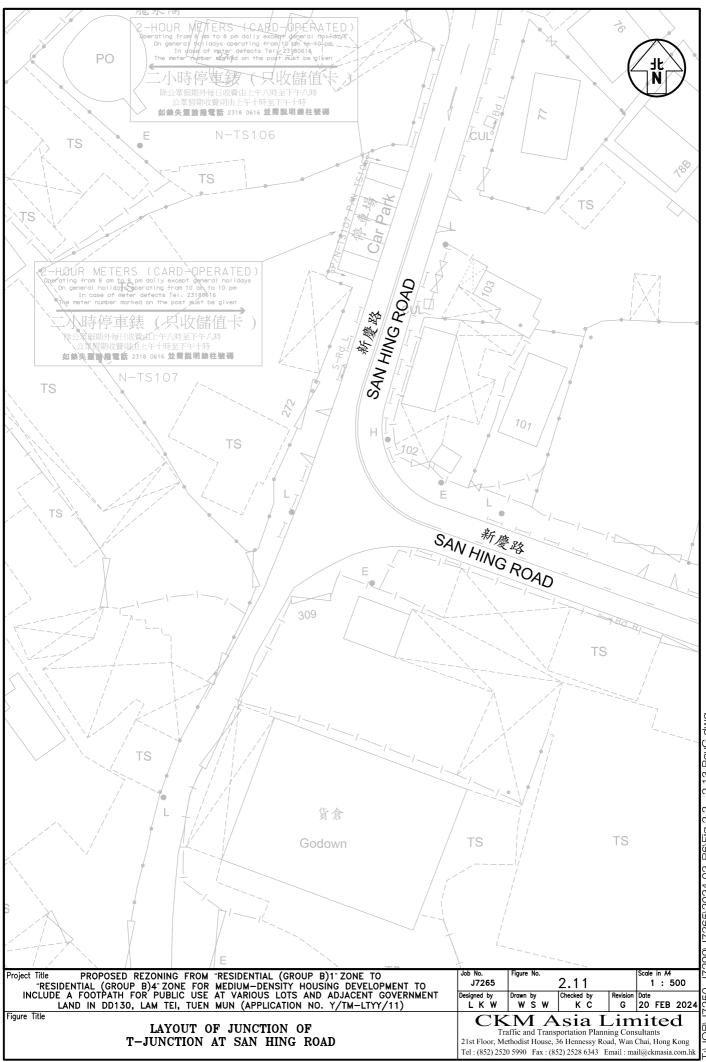


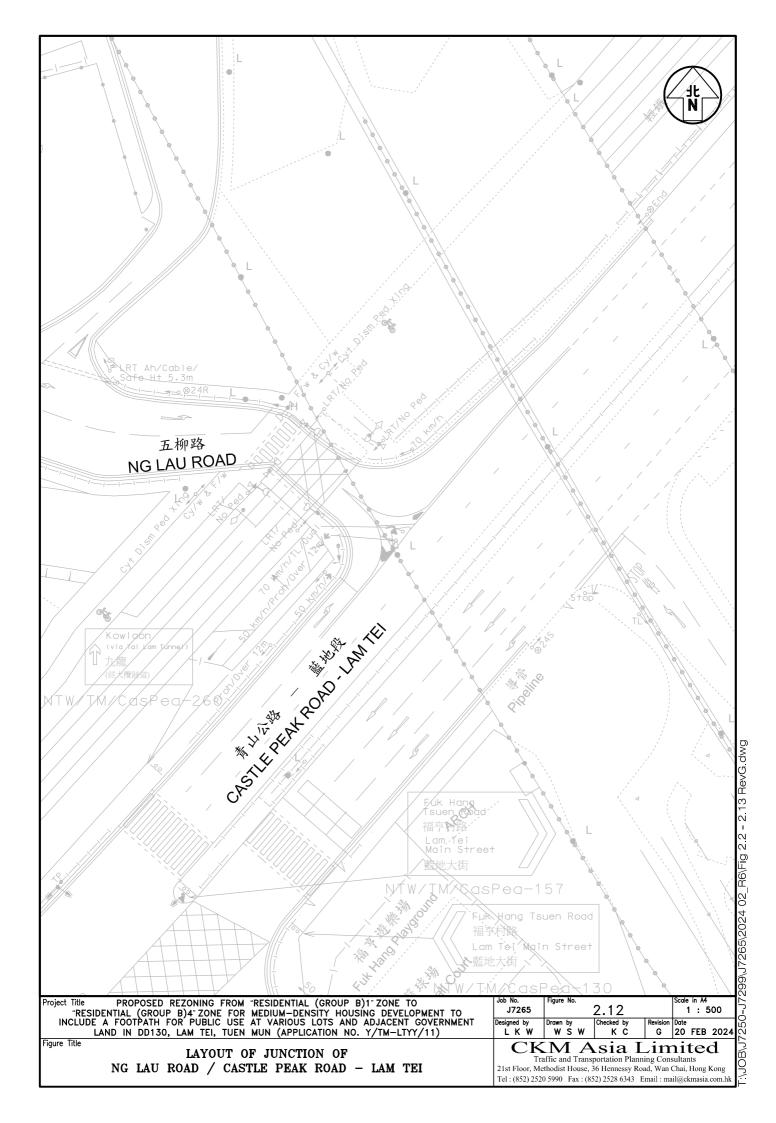

\JOB\J7250-J7299\J7265\2024 02_R6\Fig 2.2 - 2.13 RevG dwg

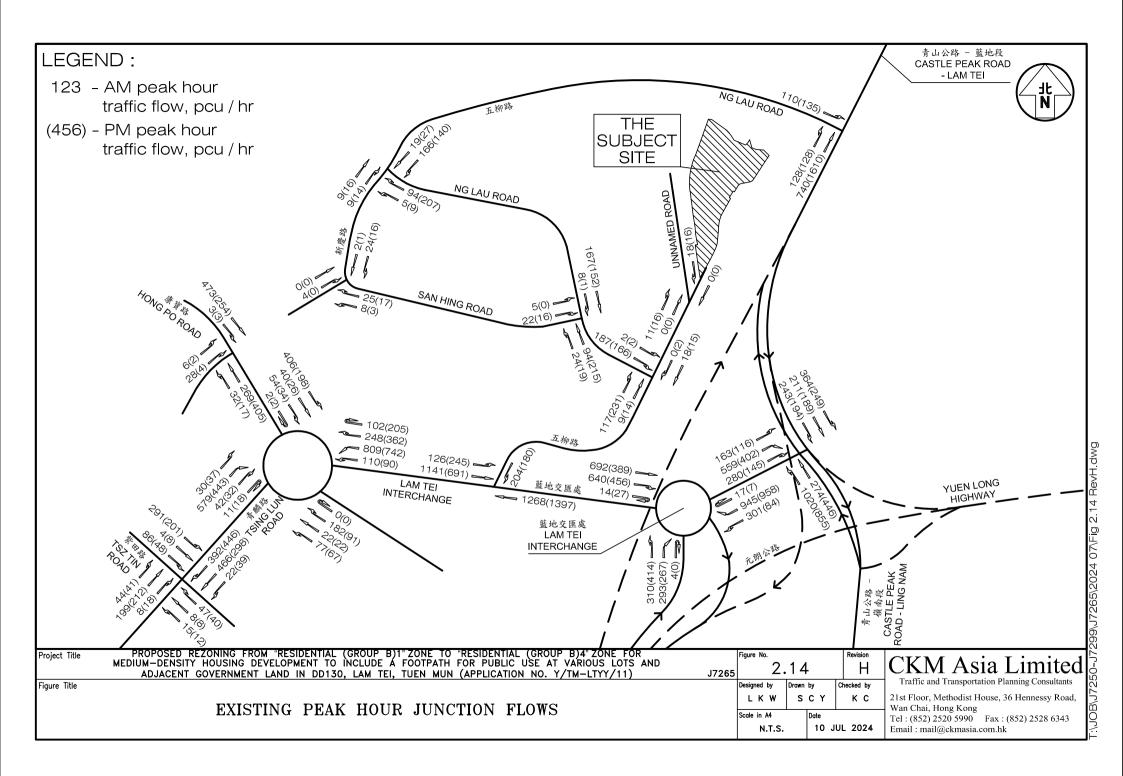


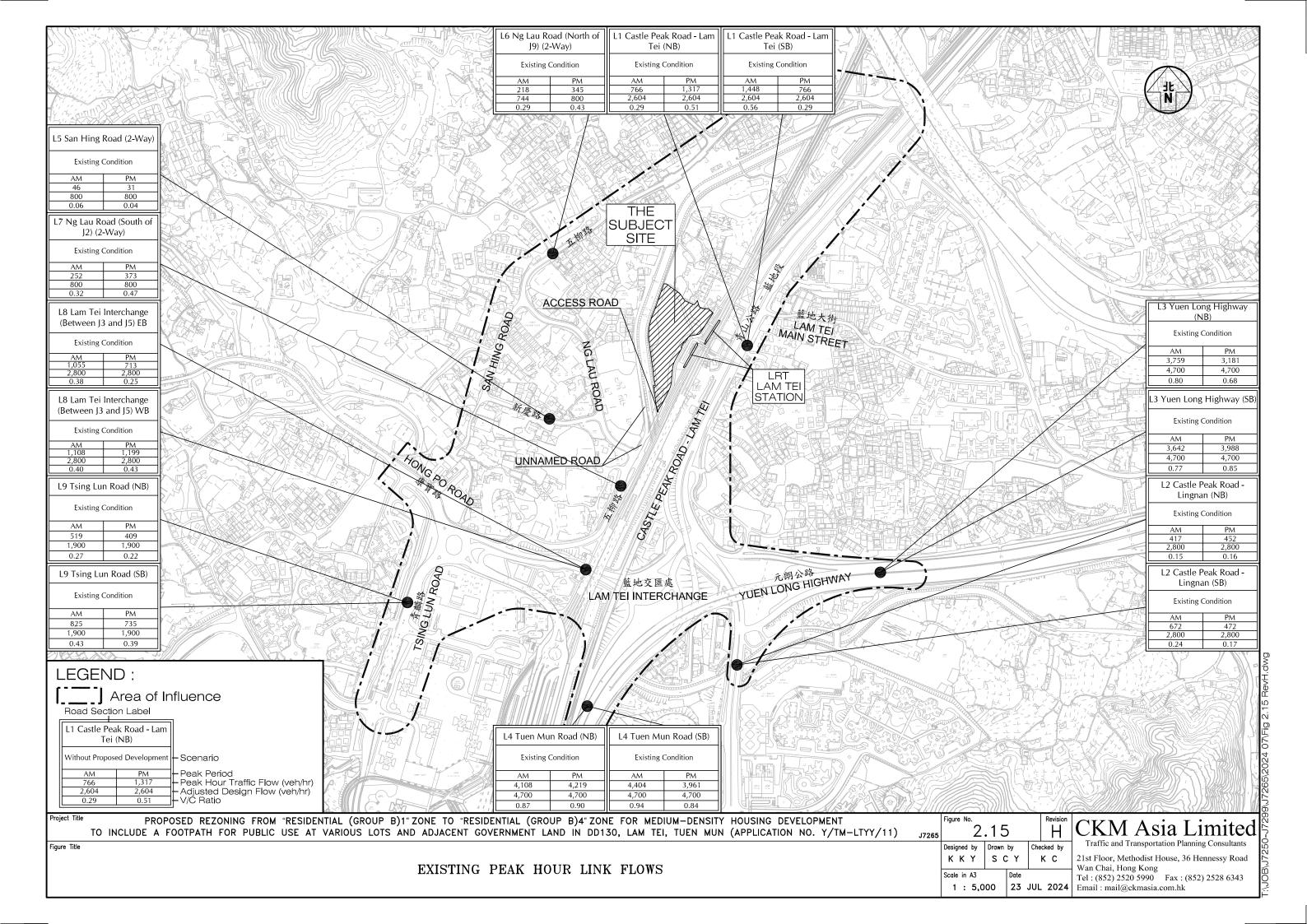


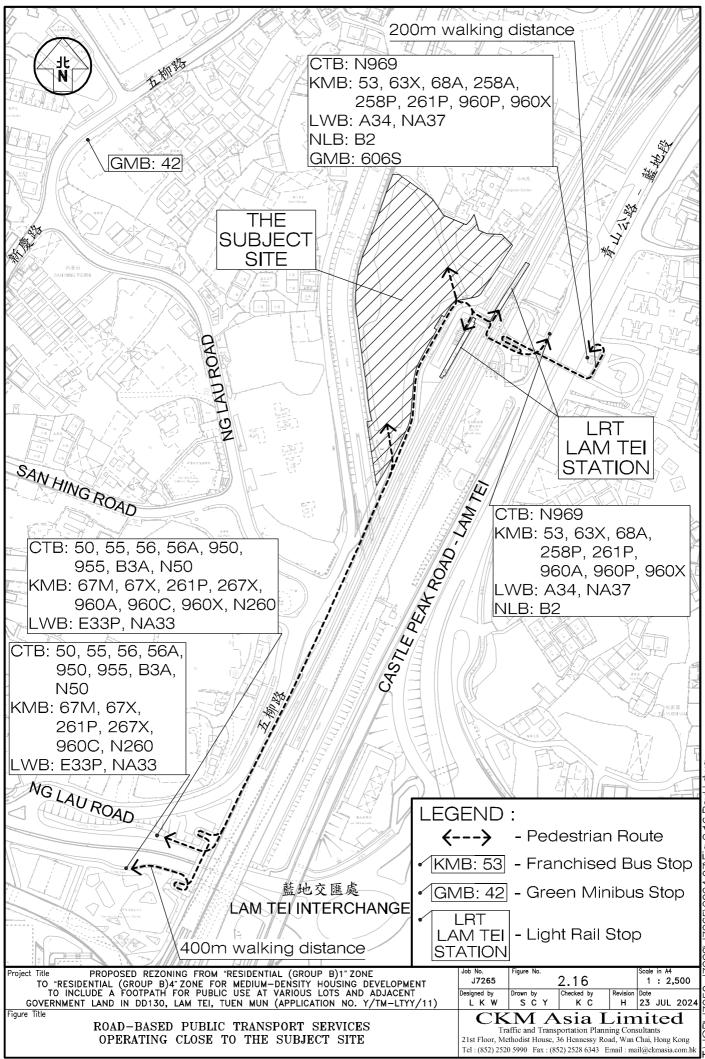



\JOB\J7250-J7299\J7265\2024 02_R6\Fig 2.2 - 2.13 RevG dwg

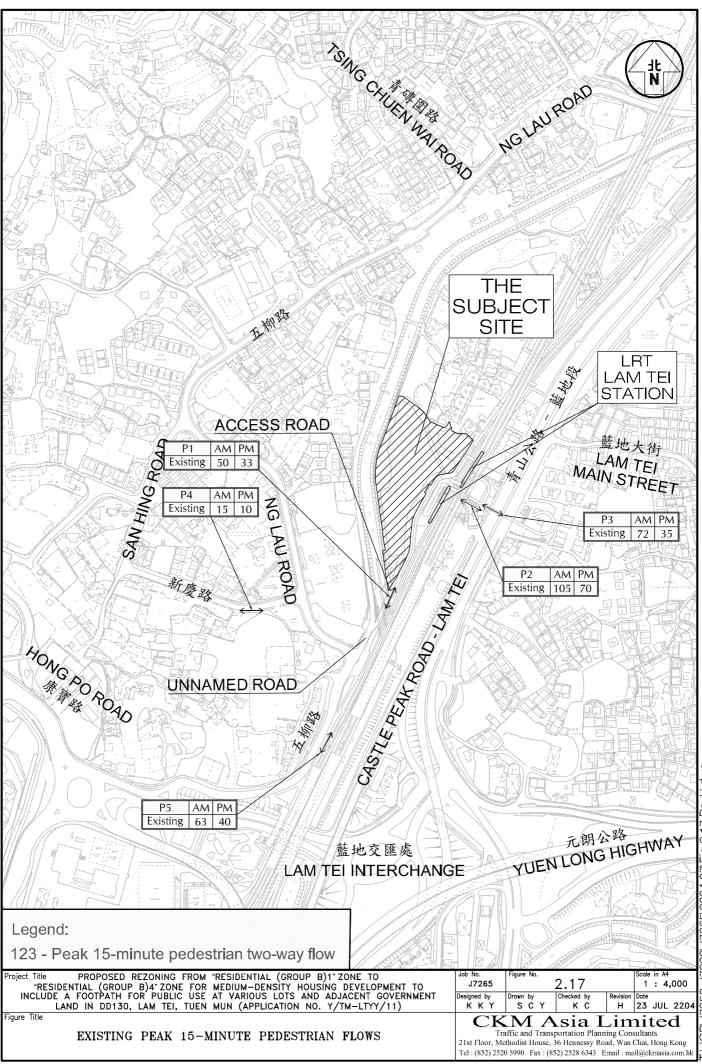

.\JOB\J7250-J7299\J7265\2024 02_R6\Fig 2.2 - 2.13 RevG.dwg

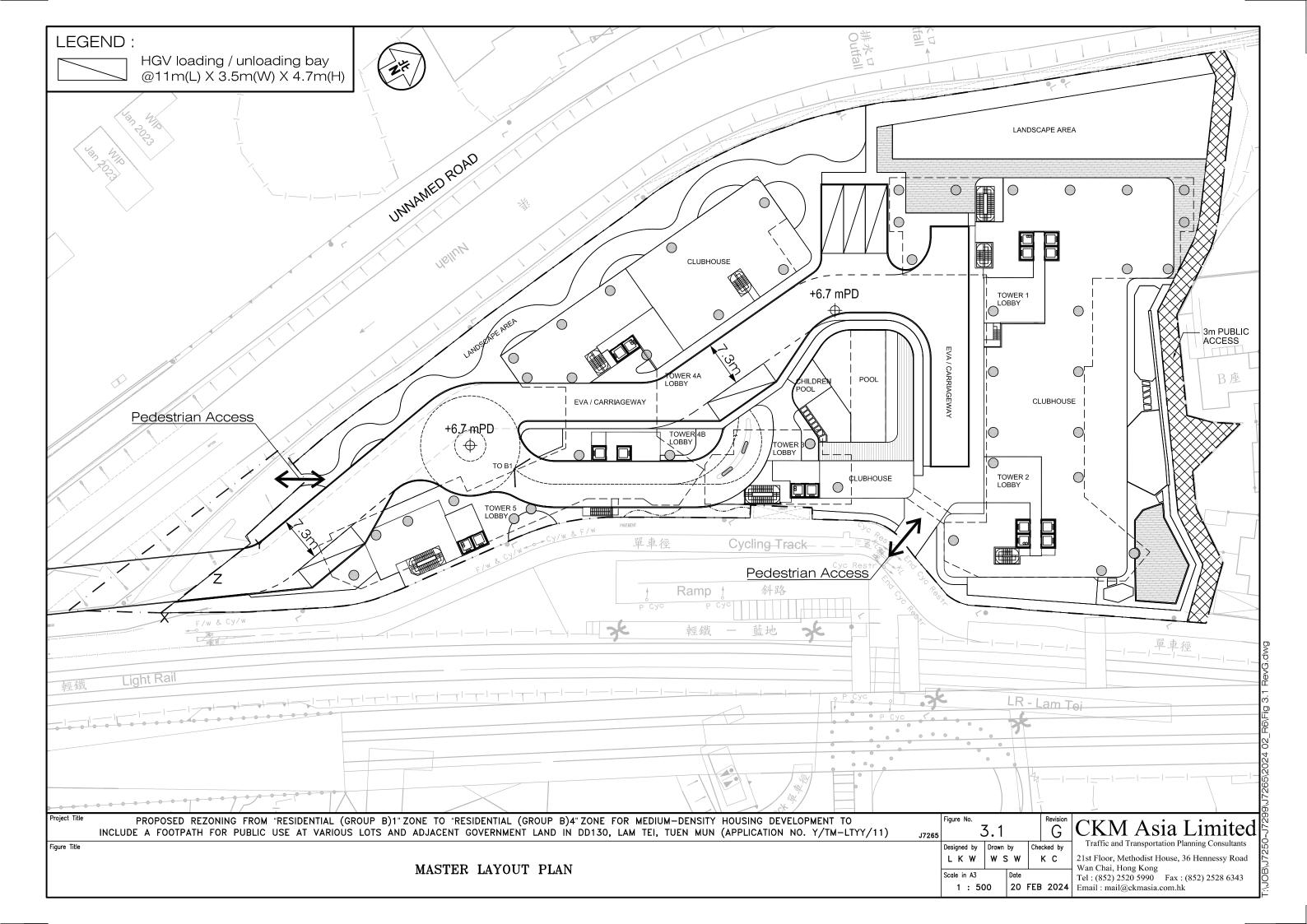


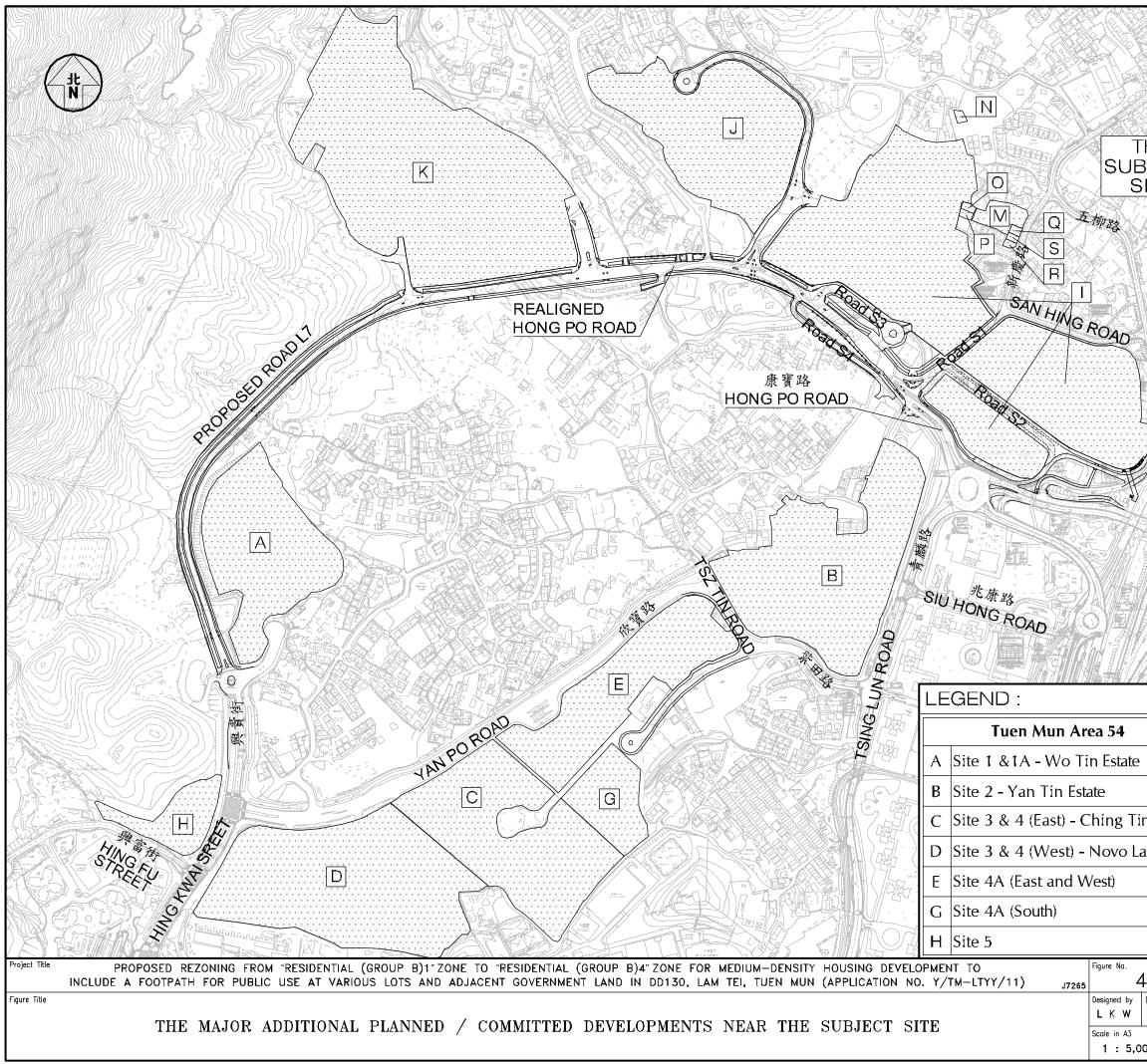

\JOB\J7250-J7299\J7265\2024 02_R6\Fig 2.2 - 2.13 RevG.dwg

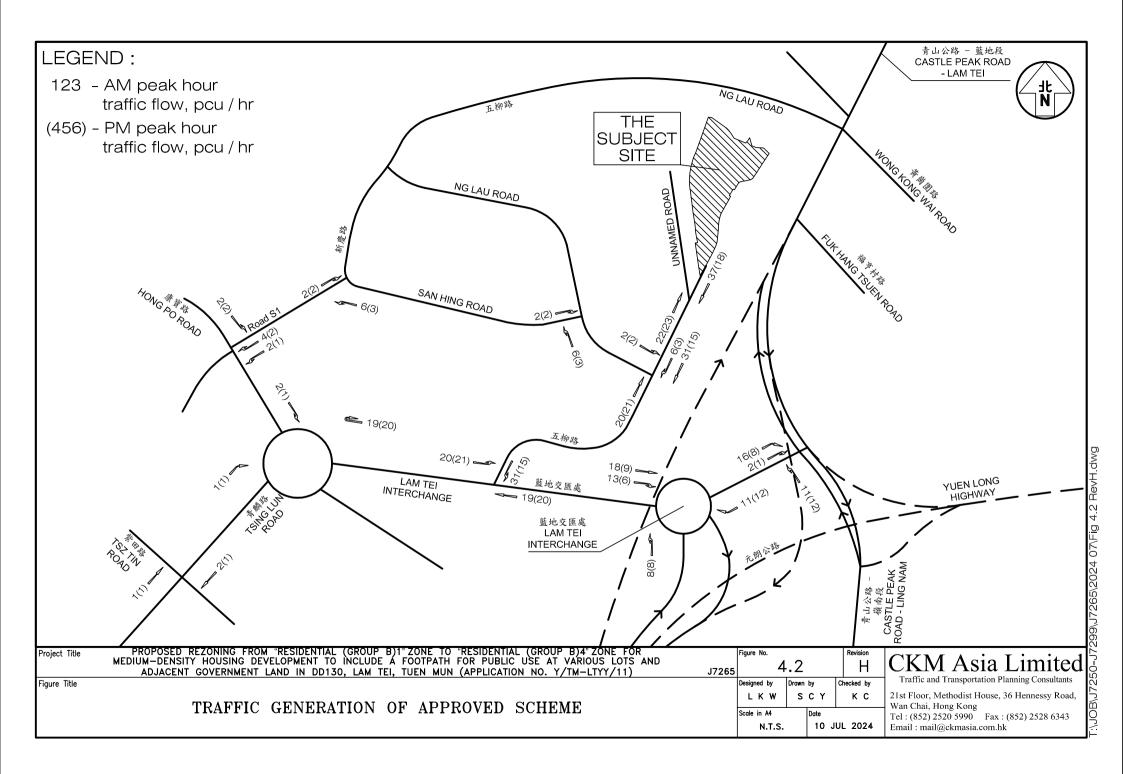


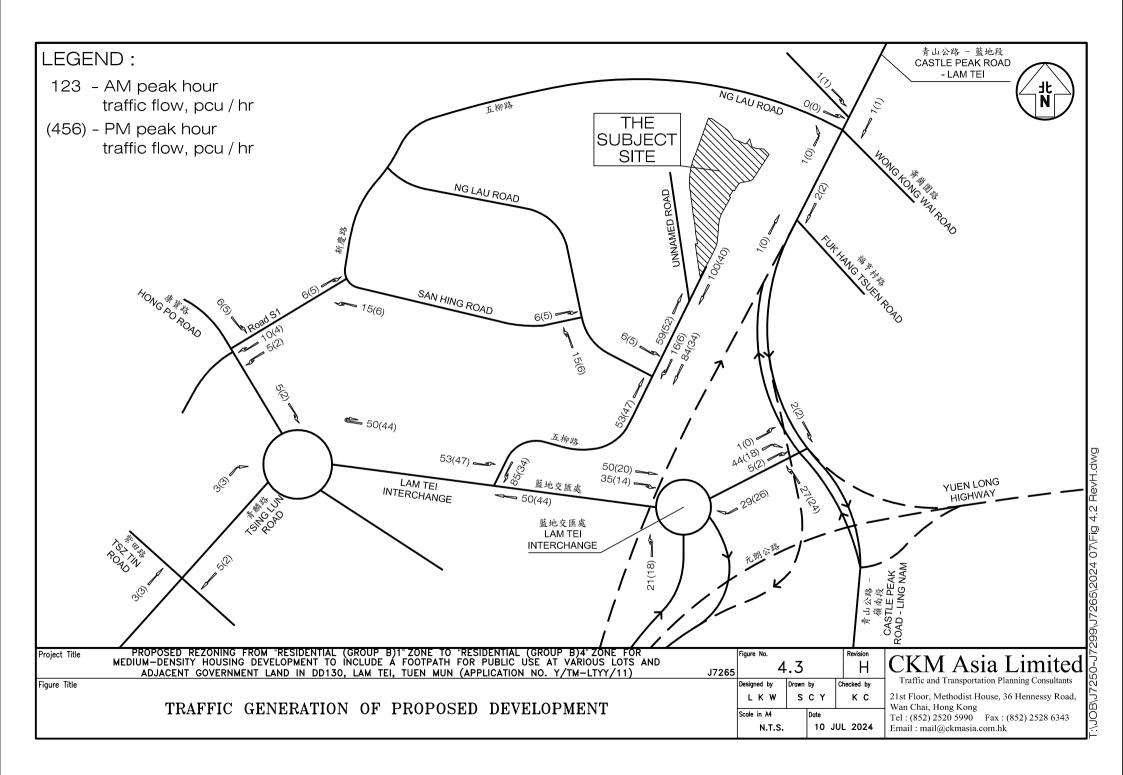
	A
	FR I I
	FB
FP FP	
	RCP CUL
in the second seco	
	FB
	4
	Mo see
	HONG ROAD
	S D &
CCFSS AL	
	Rd Nor R
	/ his right 3
Project Title PROPOSED REZONING FROM "RESIDENTIAL (GROUP B)1" ZONE TO "RESIDENTIAL (GROUP B)4" ZONE FOR MEDIUM-DENSITY HOUSING DEVELOPMENT TO INCLUDE A FOOTPATH FOR PUBLIC USE AT VARIOUS LOTS AND ADJACENT GOVERNMENT LAND IN DD130, LAM TEI, TUEN MUN (APPLICATION NO. Y/TM-LTYY/11)	Job No. Figure No. Scale in A4 J7265 2.13 1 : 500
TRESIDENTIAL (GROUP B)4 ZONE FOR MEDIUM-DENSITY HOUSING DEVELOPMENT TO INCLUDE A FOOTPATH FOR PUBLIC USE AT VARIOUS LOTS AND ADJACENT GOVERNMENT	Designed by Drawn by Checked by Revision Date
LAND IN DD130, LAM TEI, TUEN MUN (APPLICATION NO. Y/TM-LTYY/11)	LKW WSW KC G 20 FEB 2024
Figure Title LAYOUT OF JUNCTION OF	CKM Asia Limited Traffic and Transportation Planning Consultants
HONG PO ROAD / YAN TIN ESTATE ACCESS ROAD	21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong
1	Tel : (852) 2520 5990 Fax : (852) 2528 6343 Email : mail@ckmasia.com.hk

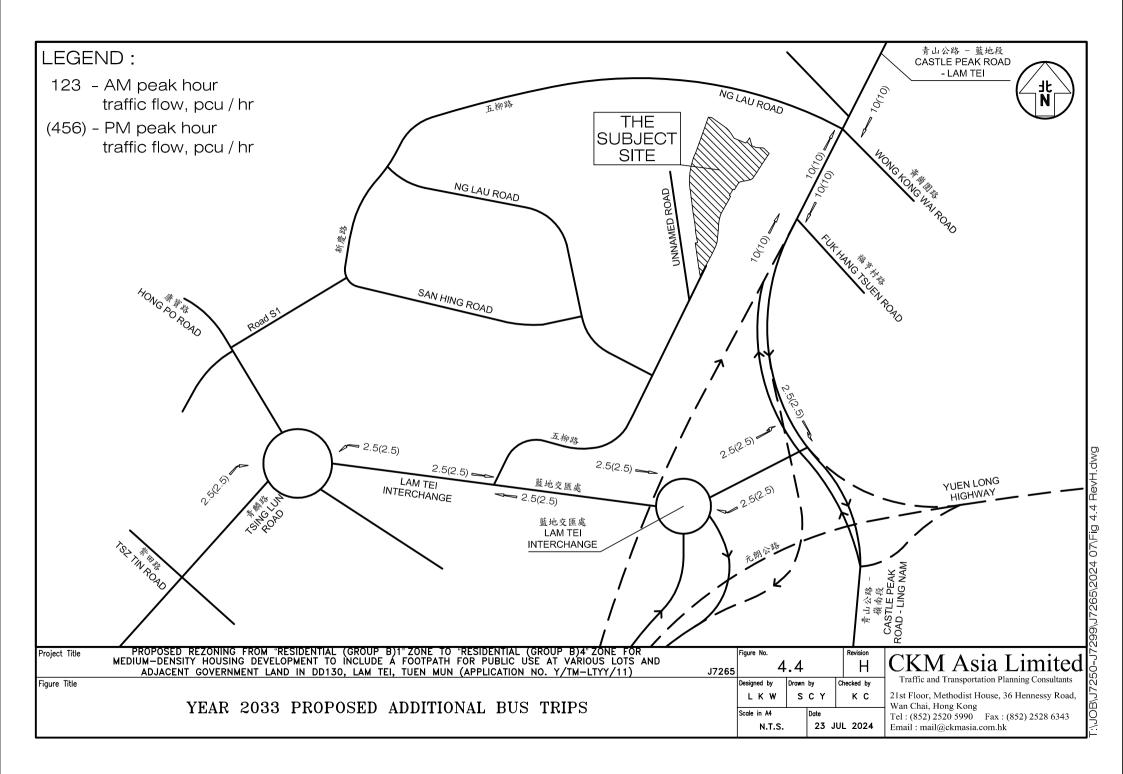

T \JOB\J7250-J7299\J7265\2024 02 _R6\Fig 2.2 - 2.13 RevG.dwg

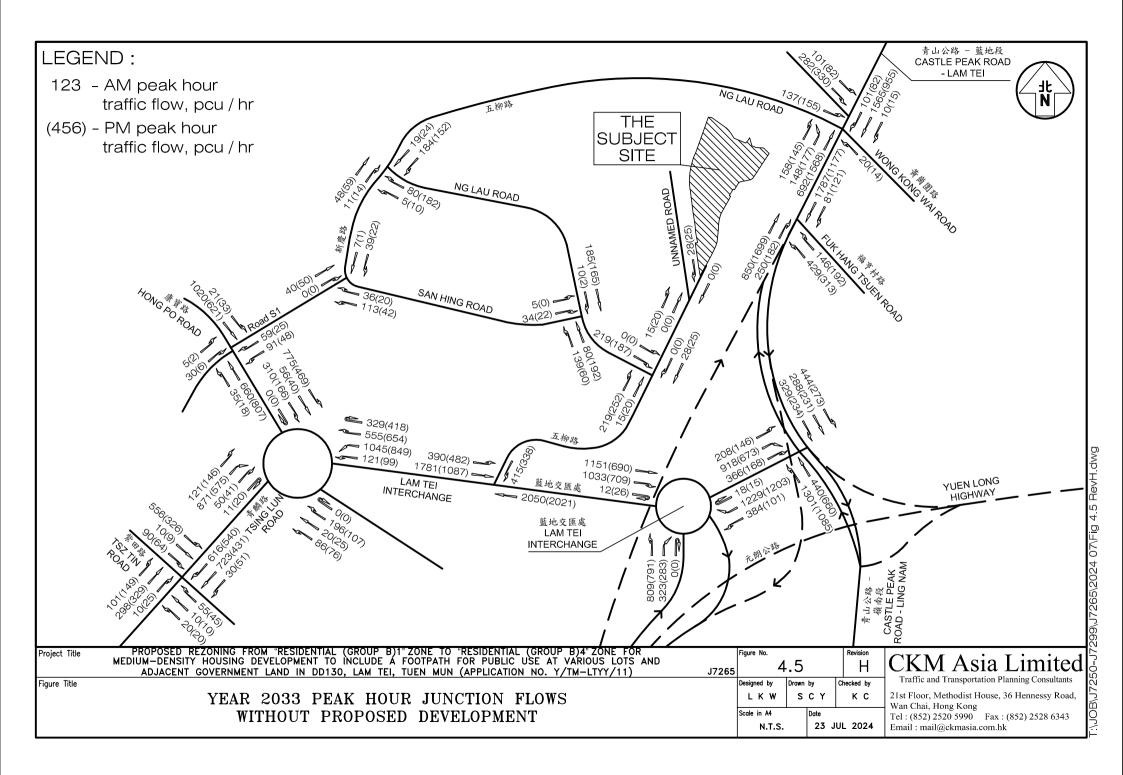


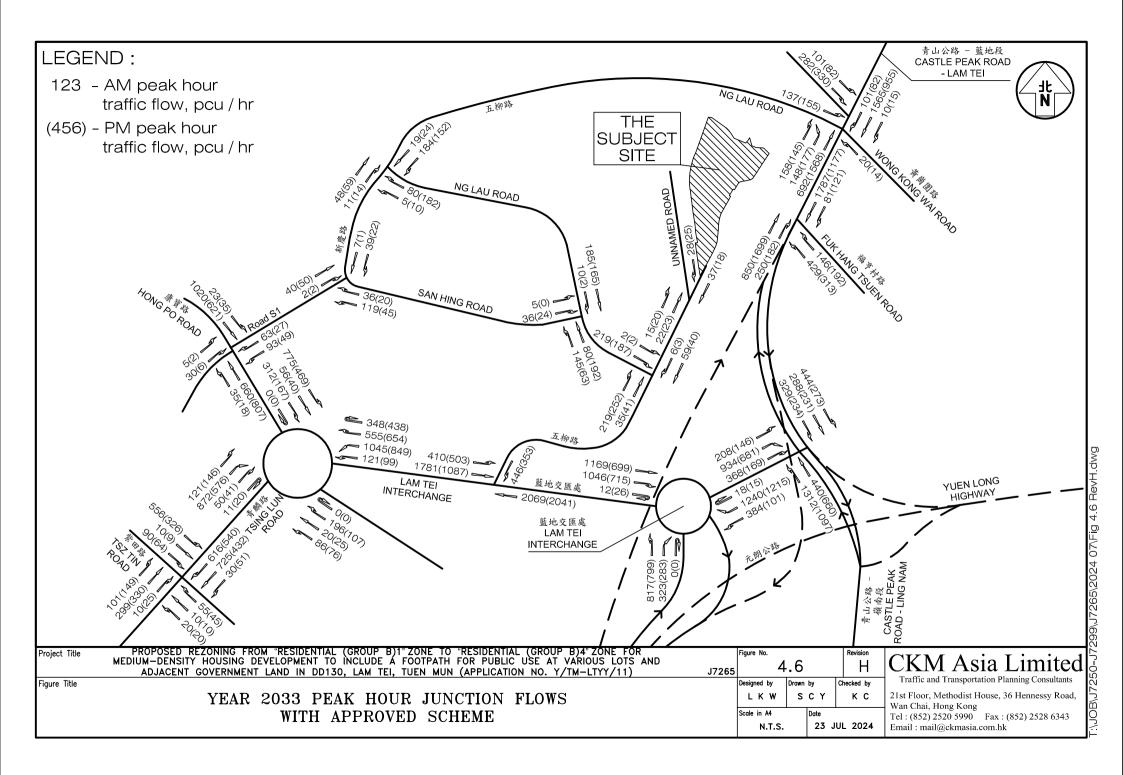


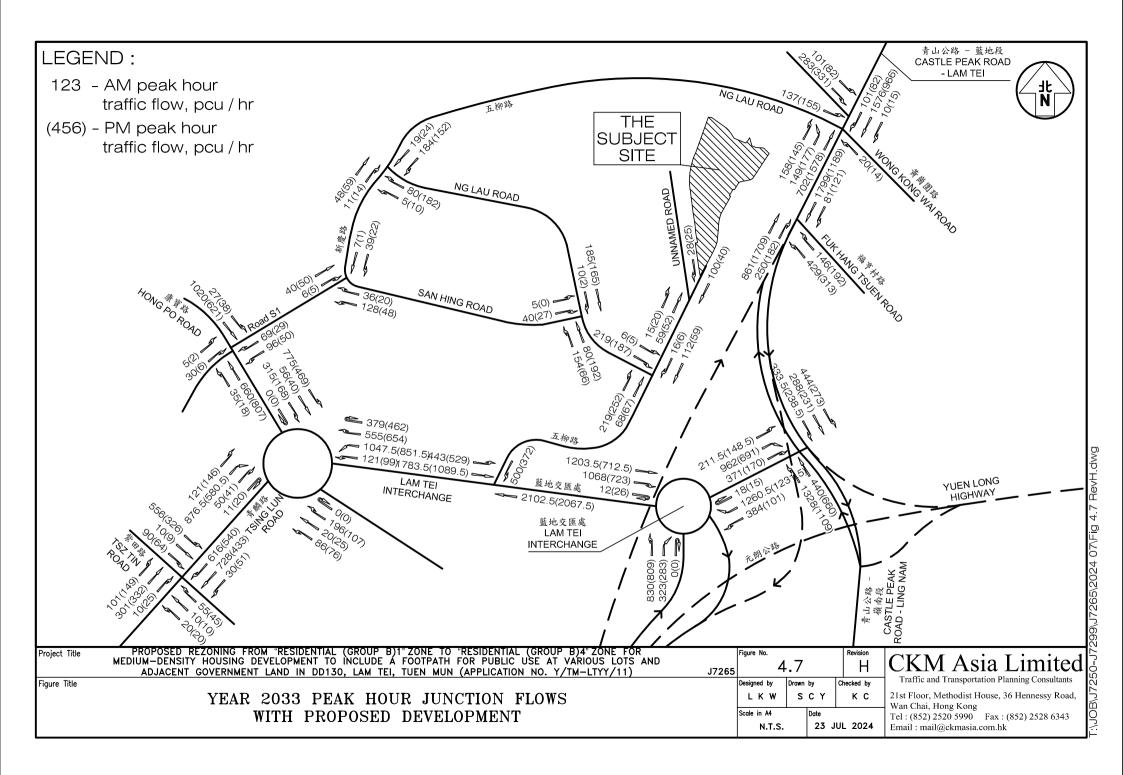

IOB\J7250-J7299\J7265\2024 07\Fig 2 16 RevH dv

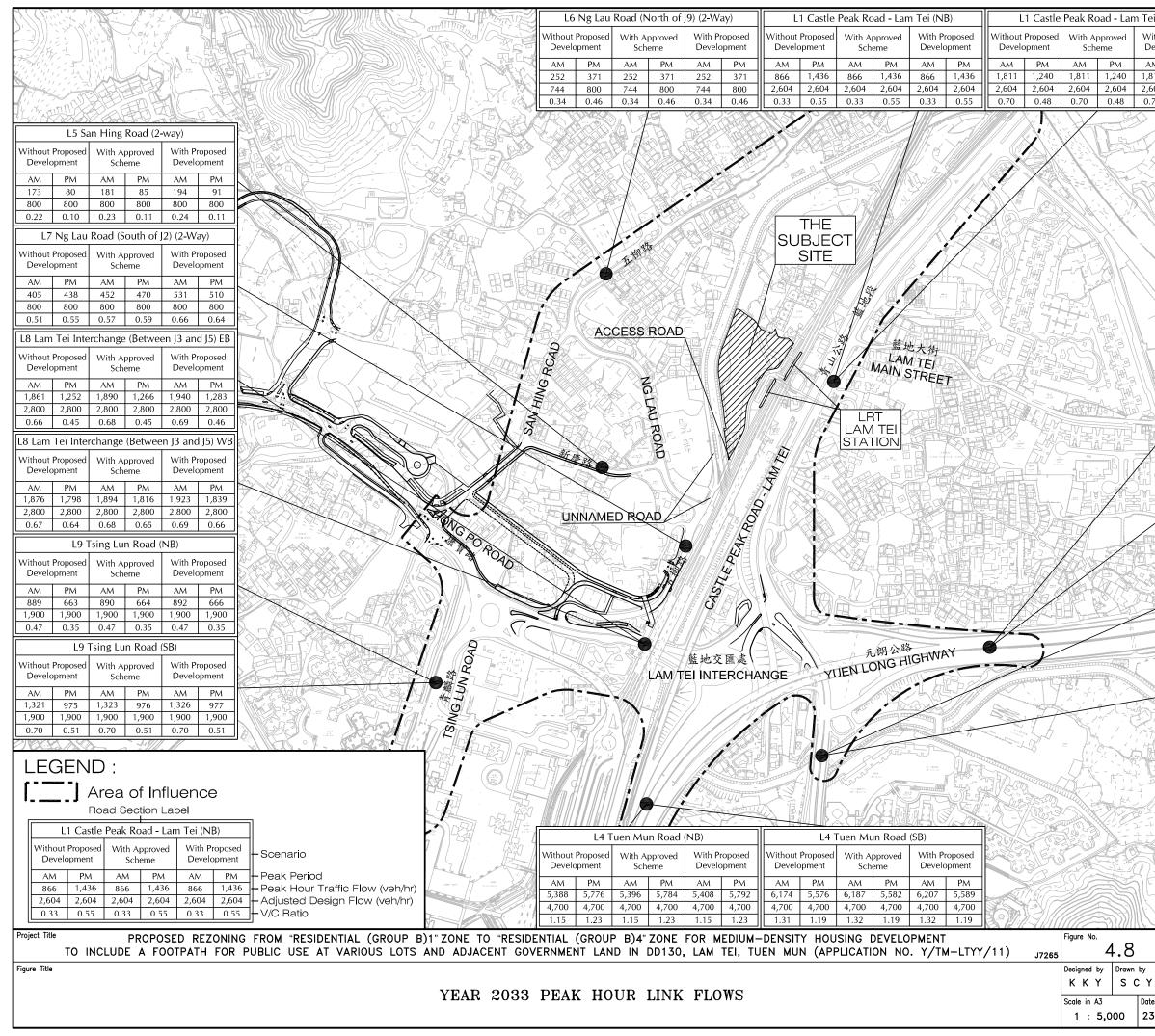







HEBJECT	J. BOAD J. BOAD J. J. J
	五柳路 NG LAU ROAD 藍地交匯處 LAM TEI INTERCHANGE
	Development at San Hing Road and
	Hong Po Road, Tuen Mun
	I San Hing Road Site
	J San Hing Road Site Extension
	K Ho Pong Road Site
	Other Planning Applications Nearby
	L A/TM-LTYY/ 426
	M Y/TM-LTYY/ 10
	N A/TM-LTYY/ 301
in Estate	O A/TM-LTYY/ 335
and	P A/TM-LTYY/ 336
	Q A/TM-LTYY/ 370
	R A/TM-LTYY/ 371
	S A/TM-LTYY/ 372
4.1	G CKM Asia Limited
	M Y/TM-LTYY/ 10 N A/TM-LTYY/ 301 O A/TM-LTYY/ 335 P A/TM-LTYY/ 336 Q A/TM-LTYY/ 370 R A/TM-LTYY/ 371 S A/TM-LTYY/ 372 Revision G CKKM Asia Limited Traffic and Transportation Planning Consultants 21st Floor, Methodist House, 36 Hennessy Road Wan Chai, Hong Kong Tel : (852) 2520 5990 Fax : (852) 2528 6343 Email : mail@ckmasia.com.bk
Dote	Wan Chai, Hong Kong Tel : (852) 2520 5990 Fax : (852) 2528 6343
000 20 F	EB 2024 Email : mail@ckmasia.com.bk





- Lar	n Tei (SE	3)	Fil							
ved		roposed opment		加盟						
PM	АМ	PM			6	\sim	STATES	100		
240	1,813	1,242	HD V		-1/1	9K 👌	the the			
604	2,604	2,604				Ň				
.48	0.70	0.48		744	(N					
	L3 Yuen Long Highway (NB)									
4		~	Without			-		roposod		
1 - F		0	Without Proposed With Approved Development Scheme		With Proposed Development					
LAN		T	AM	PM	AM	РМ	AM	PM		
TH			4,796	4,692	4,990	4,699	5,017	4,708		
N.F.	III I	1	4,700	4,700	4,700	4,700	4,700	4,700		
		Ant	1.06	1.00	1.06	1.00	1.07	1.00		
				L3 Yu	en Long	Highwa	iy (SB)			
				Without Proposed With Approved Development Scheme			With Proposed Development			
1			AM	РM	AM	РM	AM	РМ		
	sif l	XX	5,130	5,222	5,139	5,231	5,152	5,242		
57	\rightarrow		4,700	4,700 1.11	4,700	4,700 1.11	4,700 1.10	4,700		
L		> K		2 Castle						
			Without	Proposed opment			With Proposed Development			
1.	AN AN		AM	РМ	AM	РМ	AM	PM		
12	0-1	M.M.	533	613	534	614	536	616		
P			2,800	2,800	2,800	2,800	2,800	2,800		
FI			0.19	0.22	0.19	0.22	0.19	0.22		
1	1		l L	2 Castle	Peak Ro	oad - Lin	gnan (SE	3)		
		елек Loruniye	Without Proposed Development		With Approved Scheme		With Proposed Development			
) / / [/] 8			AM	PM	AM	PM	AM	PM		
15	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		855	583	857	584	860	585		
. (S. S.	AL-9	2,800	2,800	2,800	2,800	2,800	2,800		
/ ,	5, - T- T-	X	0.31	0.21	0.31	0.21	0.31	0.21		
Ń										

 4.8
 Revision

 M
 H

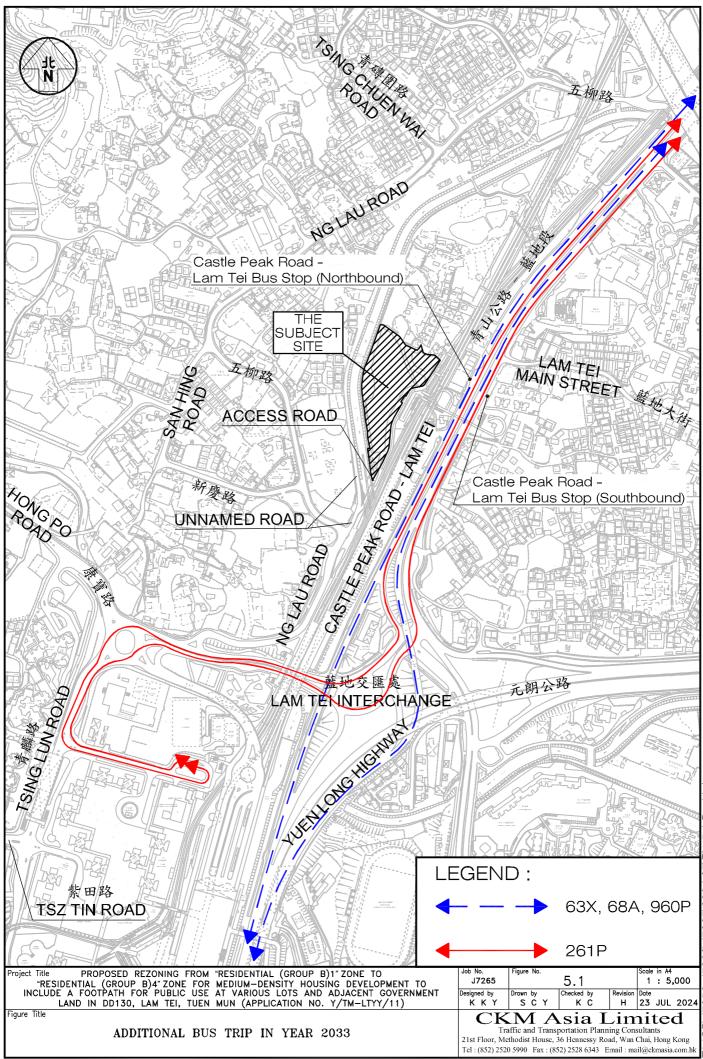
 S C Y
 K C

 Jorown by
 Checked by

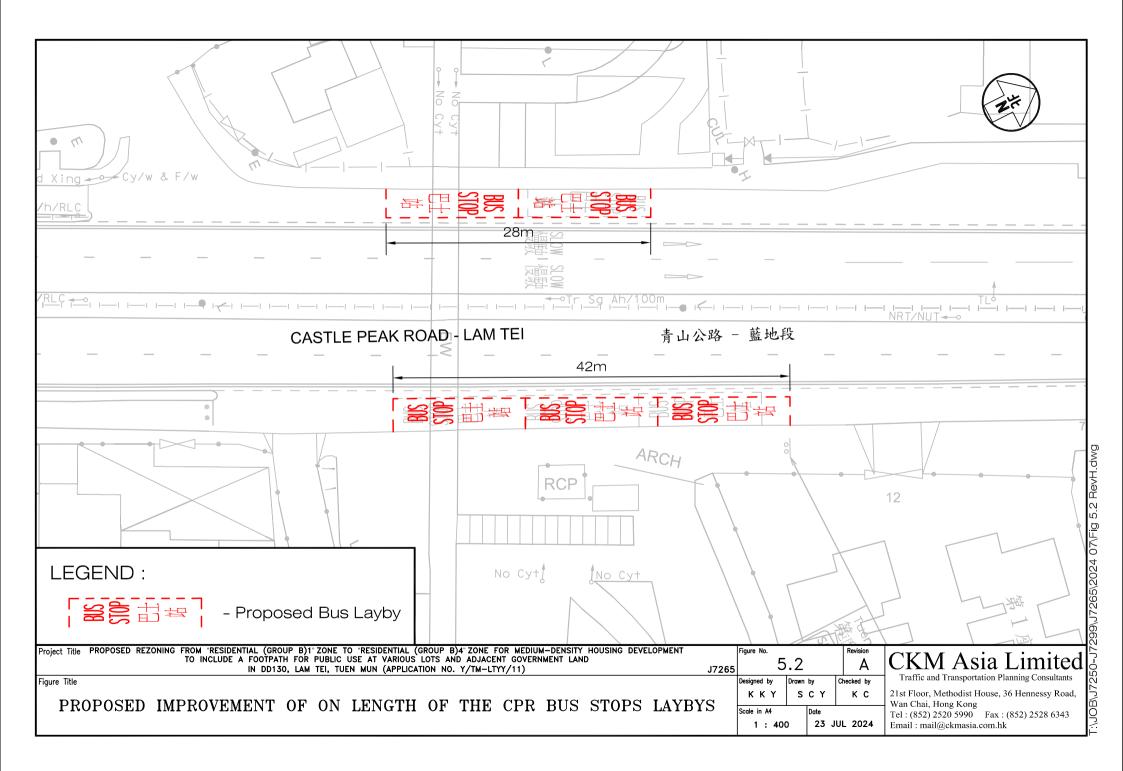
 S C Y
 K C

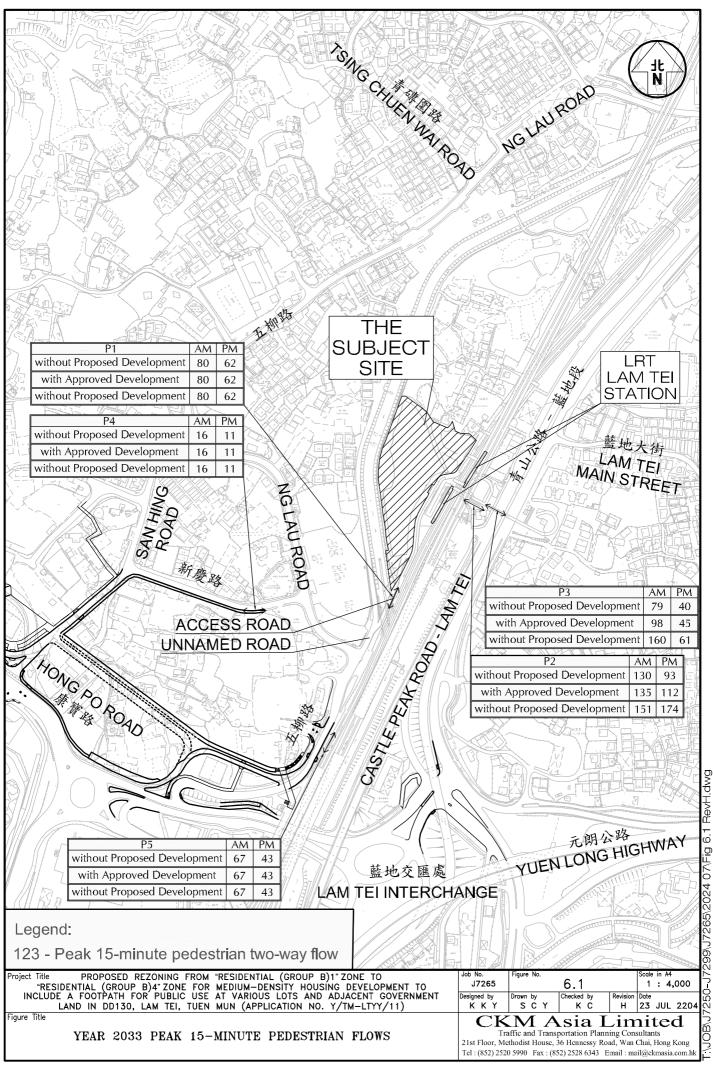
 Jorown by
 Checked by

 S C Y
 K C

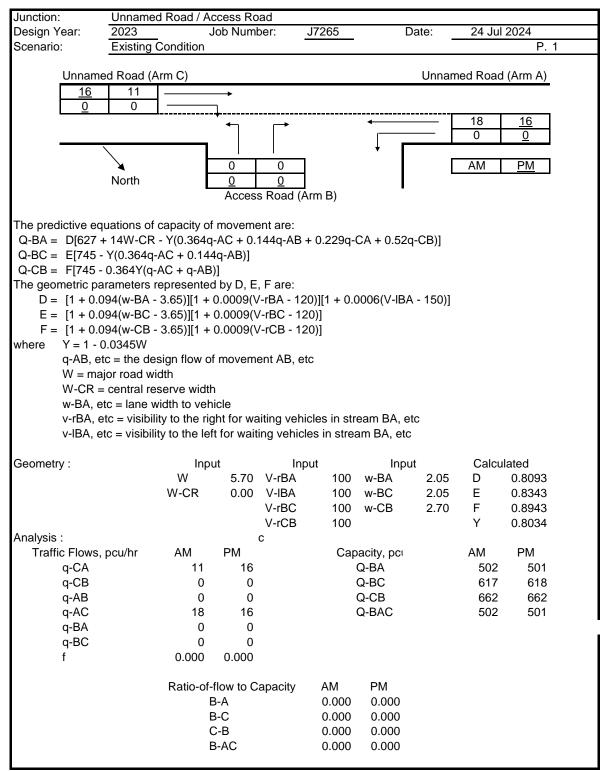

 Jorde
 23 JUL 2024

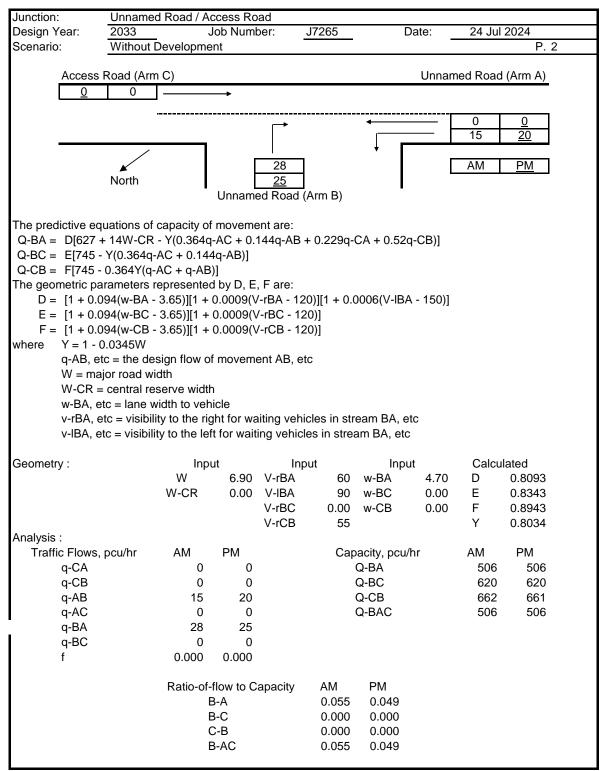
 Date
 Cite (852) 2520 5990

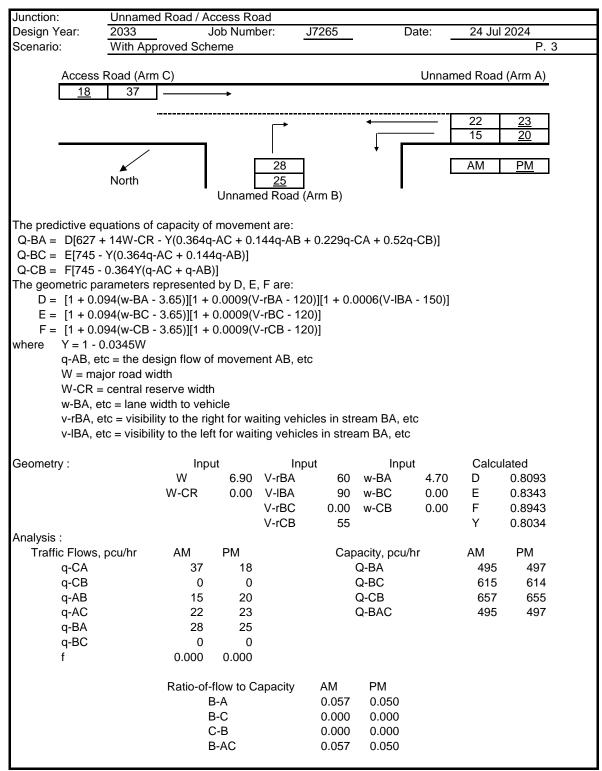

 Jorown Barter
 Site Floor, Methodist House, 36 Hennessy Road Wan Chai, Hong Kong

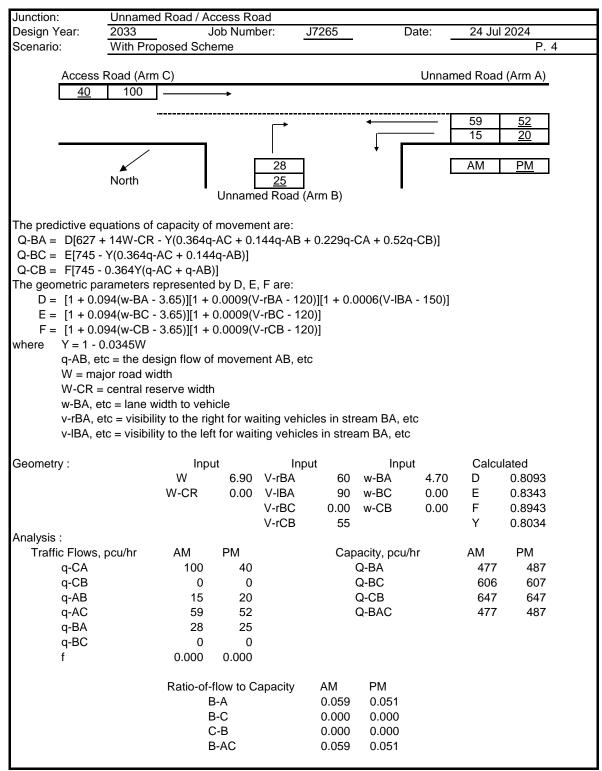

 Tel: (852) 2520 5990
 Fax: (852) 2528 6343

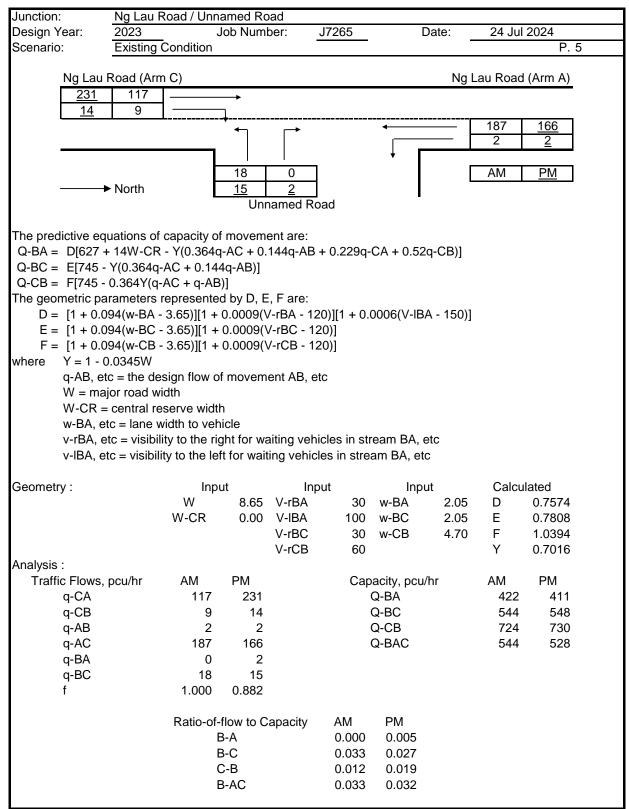
 Email: mail@ckmasia.com.hk
 Email: mail@ckmasia.com.hk

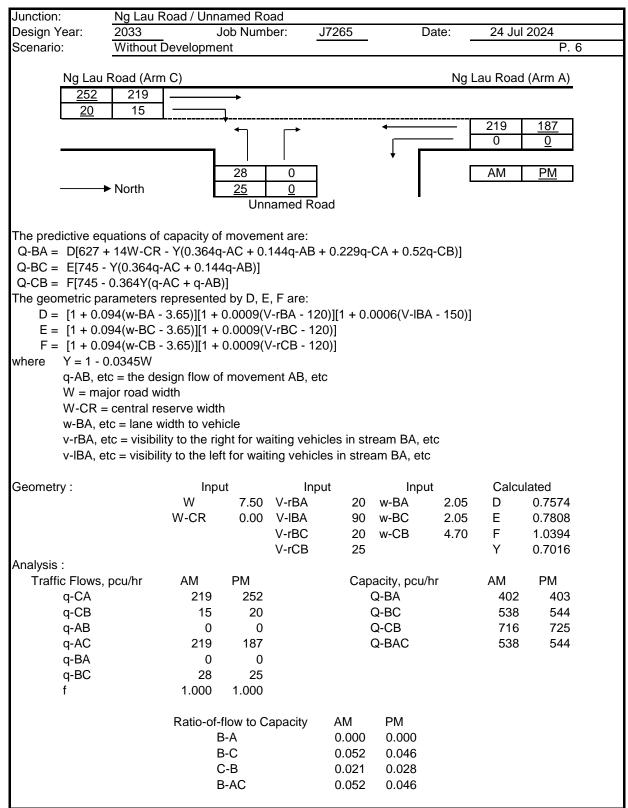

RevH.dwg -2 D D $\overline{\mathbf{o}}$ б О

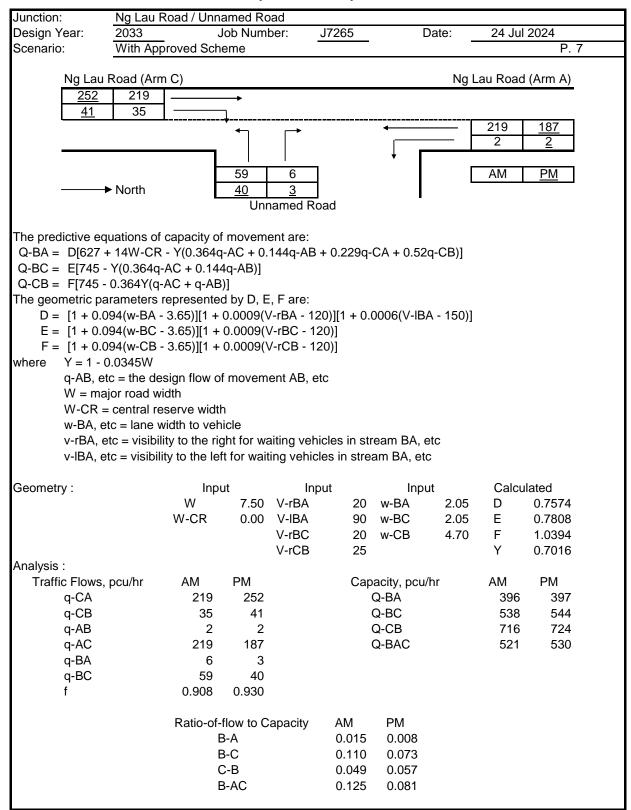


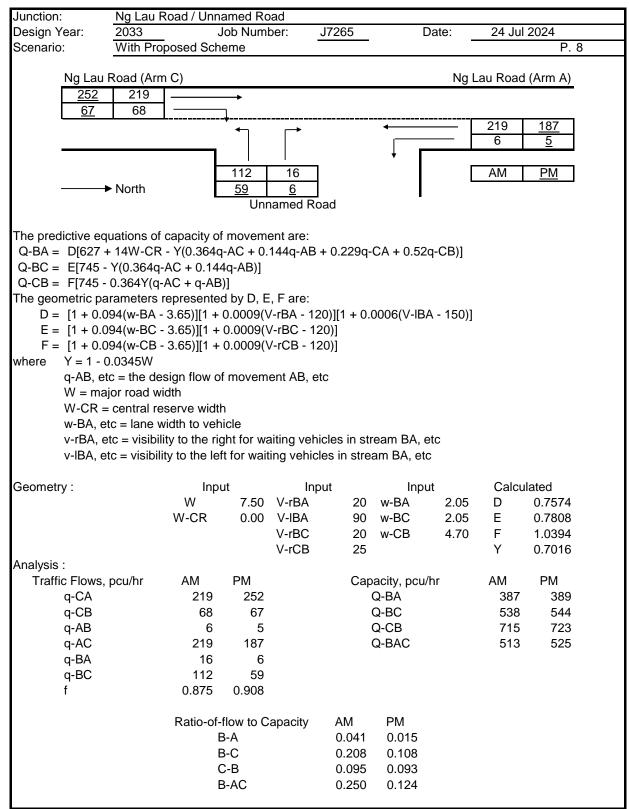



6.1 D L 2024 1/269/


Appendix A – Junction Capacity Analysis







						Signal J		liaiyələ									
Junction:	Ng Lau Road		Intercha	inge											Job Nu	mber:	
Scenario: Design Year:	Existing Cond 2023		ed By:				-	Checke	d By:					Date:	2	P. 4 Jul 20:	
			-	-						AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Lam Tei Intercha	ange EB	SA+LT	A1	1	3.65	30.0	ordalorit	21	1959	609	0.311	0.311	55	1927	446	0.231	
		SA	A2	1	3.65				2120	658	0.310			2120	490	0.231	
Lam Tei Intercha	ange WB	SA+LT	A3	1	3.65	15.0		0	1980	612	0.309		0	1980	675	0.341	0.341
		SA	A4	1	3.65				2120	656	0.309			2120	722	0.341	
Ng Lau Road SB	3	LT	D4	0	4.00	40.0		400	4704	004	0.444	0.444	400	4704	400	0.400	0.400
	-		B1	2	4.00	12.0		100	1791	204	0.114	0.114	100	1791	180	0.100	0.100
pedestrian pha	ase		C _(P)	1		min c	rossing	time =	8	sec	GM +	8	sec F	GM =	16	sec	
			D _(P)	2			rossing		8	sec	GM +	9	sec F		17	sec	
ļ																	
AM Traffic Flow (pcu/h	ır)		N	PM Traffic	Flow (pcu/hr)				Ν	S = 1940 +	- 100 (W-3.:	25) S :	= 2080 + 10	0 (W-3.25)	Note:		
	204						180			SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
12	26				. 245								PM	Peak			
					245		-		I		AM	Peak					
	• 1141	1269				691	-	1207			1+2	Peak	1+2				
		1268					-	1397		Sum y	1+2 0.425	Peak	1+2 0.441				
		1268					-	1397 0		L (s)	1+2 0.425 8	Peak	1+2 0.441 8				
		*					-	•		L (s) C (s)	1+2 0.425 8 82		1+2 0.441 8 82				
		*					-	•		L (s)	1+2 0.425 8 82 0.812		1+2 0.441 8				
1		•				691		•		L (s) C (s) practical y R.C. (%)	1+2 0.425 8 82	Peak	1+2 0.441 8 82 0.812				
1		*		B1				•		L (s) C (s) practical y	1+2 0.425 8 82 0.812	Peak	1+2 0.441 8 82 0.812	5			
1 A1		•		B1		691		•		L (s) C (s) practical y R.C. (%)	1+2 0.425 8 82 0.812	Peak	1+2 0.441 8 82 0.812				
1	 1141 C_(P) A3 	•		B1		691		•		L (s) C (s) practical y R.C. (%)	1+2 0.425 8 82 0.812	Peak	1+2 0.441 8 82 0.812				
1 A1	1141	•	• _ D _(P)	B1		691		•		L (s) C (s) practical y R.C. (%)	1+2 0.425 8 82 0.812	263k	1+2 0.441 8 82 0.812				
1 A1	 1141 C_(P) A3 	•	• _ D _(P)	Ļ		691		•		L (s) C (s) practical y R.C. (%)	1+2 0.425 8 82 0.812	2eak	1+2 0.441 8 82 0.812				
1 A1 A2	A3	•	C = G = G = G = G = G = G = G = G = G =	Ļ		3	G =	•	VG =	L (s) C (s) practical y R.C. (%)	1+2 0.425 8 82 0.812	Peak	1+2 0.441 8 82 0.812		G =		
1 A1 A2	► 1141 ► C _(P) ► A3 ► A4 = VC	2	G = G =	Ļ		⁶⁹¹ 3 5		•	VG = VG =	L (s) C (s) practical y R.C. (%)	1+2 0.425 8 82 0.812 91%	2eak	1+2 0.441 8 82 0.812 84%		G = G =		
1 A1 A2 AM G =	► 1141 ► C _(P) ► A3 ► A4 = VC = VC	2 2 = 5		Ļ	1/G =	⁶⁹¹ 3 5	G =	•		L (s) C (s) practical y R.C. (%)	1+2 0.425 8 82 0.812 91%		1+2 0.441 8 82 0.812 84%				

						Signal J	unction Ar	nalysis									
Junction:	Ng Lau Road	/ Lam Tei	Intercha	ange											Job Nu	mber:	J726
Scenario:	Without Deve	elopment														Ρ.	10
Design Year:	2033	Designe	ed By:				-	Checke	d By:				Date: 24 Jul 2024				
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Lam Tei Interchan	ge EB	SA	A2	1	4.00				2155	891	0.413			2155	544	0.252	
		SA	A3	1	4.00				2155	890	0.413			2155	543	0.252	
Lam Tei Interchan	ge WB	SA+LT	B1	1	4.00	15.0		0	2015	991	0.492	0.492	0	2015	977	0.485	0.48
		SA	B2	1	4.00				2155	1059	0.491			2155	1044	0.484	
Ng Lau Road SB		LT	C1	2	5.50	10.0		100	1883	199	0.106	0.106	100	1883	162	0.086	0.08
		LT	C2	2	5.00	15.0		100	2050	216	0.105		100	2050	176	0.086	
pedestrian phas	se		D _(P) E _(P)	1 2			rossing t		5 10		GM + GM +	13 12		GM = GM =	18 22	sec sec	
							9										
AM Traffic Flow (pcu/hr)			N	PM Traffic	Flow (pcu/hr)				Ν	S = 1940 -	+ 100 (W-3	.25) S =	2080 + 100	0 (W-3.25)	Note:		
	415						338			SM = S / (1 + 1.5 f/r) AM	SM =	(S - 230) / (PM I	1 + 1.5 f/r) Peak			
	1781	د	_			1087		د	_		1+2		1+2	Call			
		2050						2021		Sum y	0.598		0.571				
		0						0		L (s)	8		8				
										C (s)	82		82				
										practical y R.C. (%)	0.812 36%		0.812 42%				
1		2				3				4				5			
A1				C2 C1													
A2	← B2 ← B1			└→ [→]													
	ţ			E _(P) ♥													
	VG	e= 5	G =		I/G =	5	G =		I/G =	1	G =		I/G =		G =		
AM G =																	
AM G = G = PM G =		8= 8= 5	G = G =		I/G =	5	G = G =		I/G =		G = G =		I/G =		G = G =		

						Signal J	unction Ar	naiysis									
Junction:	Ng Lau Roa	d / Lam Tei	Intercha	inge											Job Nu	mber:	J7265
Scenario:	With Approv	ved Scheme	•													Ρ.	11
Design Year:	2033	Designe	ed By:				-	Checke	d By:				-	Date:	2	4 Jul 20	24
					-												
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Lam Tei Intercha	nge FB	SA	4.0	4	4.00		Gradient		(pcu/hr)	(pcu/hr)	0.440			(pcu/hr)	(pcu/hr)	0.050	
Lan Torintorona		SA	A2	1	4.00				2155	891	0.413			2155	544	0.252	
		0,1	A3	1	4.00				2155	890	0.413			2155	543	0.252	
Lam Tei Intercha	nge WB	SA+LT	D1	4	4.00	15.0		0	2015	1000	0.406	0.406	0	2015	096	0.490	
Lan for interent	iigo ii b	SA	B1	1	4.00	15.0		0	2015	1000	0.496	0.496	0	2015	986	0.489	0.400
			B2	1	4.00				2155	1069	0.496			2155	1055	0.490	0.490
Ng Lau Road SB		LT	C1	2	<i>E E</i> 0	10.0		100	1000	214	0 1 1 4	0 1 1 4	100	1000	160	0.000	0.000
		LT	01	2	5.50	10.0		100	1883	214	0.114	0.114	100	1883	169	0.090	0.090
		2.	C2	2	5.00	15.0		100	2050	232	0.113		100	2050	184	0.090	
									_			10	_		10		
pedestrian pha	ise		D _(P)	1			rossing		5		GM +	13		GM =	18	sec	
			E _(P)	2		min c	rossing	time =	10	sec	GM +	12	sec F	GM =	22	sec	
AM Traffic Flow (pcu/hr	r)		Ν	PM Traffic I	Flow (pcu/hr)				Ν	S = 1940 -	+ 100 (W-3.	25) S =	= 2080 + 10	0 (W-3.25)	Note:		
	446						353			SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
	L,						L				AM	Peak	PM	Peak			
\longrightarrow	1781					1087					1+2		1+2				
		2069						2041		Sum y	0.610		0.579				
		0						0		L (s)	8		8				
										C (s)	82		82				
										practical y	0.812		0.812				
										R.C. (%)	33%		40%				
		-								1							
1	_	2				3				4				5			
A1				C2 C1													
A2	► B2			L,													
	➡ B1			_ ‡													
	*			E _(P)													
AM G =	- 1	//G = 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
G =	- 1	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =	- 1	//G = 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
G =	. 1	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

						Signal Ji	unction Ar	nalysis									
Junction:	Ng Lau Road	d / Lam Tei	Intercha	ange										-	Job Nu	mber:	J7265
Scenario:	With Propos	ed Scheme	•													Ρ.	12
Design Year:	2033	Designe	ed By:				•	Checke	d By:				-	Date:	2	4 Jul 20	24
								1		AM Peak			r		PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Lam Tei Intercha	nge EB	SA	A2	1	4.00				2155	892	0.414			2155	545	0.253	
		SA	A3	1	4.00				2155	892	0.414			2155	545	0.253	
Lam Tei Intercha	nge WB	SA+LT	B1	1	4.00	15.0		0	2015	1016	0.504	0.504	0	2015	999	0.496	0.496
		SA	B2	1	4.00				2155	1087	0.504			2155	1069	0.496	
Ng Lau Road SB		LT	C1	2	5.50	10.0		100	1883	239	0.127	0.127	100	1883	178	0.095	0.095
		LT	C2	2	5.00	15.0		100	2050	261	0.127		100	2050	194	0.095	
					ſ				[ľ	ſ	[
pedestrian pha	ise		D _(P)	1		min c	rossing	time =	5	sec	GM +	13	sec F	GM =	18	sec	
			E _(P)	2			rossing		10		GM +	12		GM =	22	sec	
AM Traffic Flow (pcu/hr	r)			DM Traffic	Flow (pcu/hr)										Note:		
And traine from (pearing			N	i wi mame i	iow (pou/iii)				N	S = 1940 -	+ 100 (W-3	.25) S =	2080 + 10	0 (W-3.25)	14065.		
	500						372			SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
	L.						$ \rightarrow $				AM	Peak	PM	Peak			
	1784	د				1090					1+2		1+2				
		2103						2068		Sum y	0.631		0.590				
		0						0		L (s)	8		8				
										C (s)	82		82	L			
										practical y	0.812		0.812				
										R.C. (%)	29%		38%				
1		2				3				4				5			
				C2 C1													
A1				L													
N2	B2 B1			نب م													
				E _(P) ↓													
				.,													
		1				1				l							
AM 0		c - 5	~		10	5	~				~		100		~		
AM G=		G = 5	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =	= I/	G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
	= W					5											

Scenario	Existing Co	ondition									Page	1
Design Ye	ar	2023			Job Numbe	er	J7265			Date	24 July	y 202
AM Peak Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c *	1	
From A	107		809	248	TOL	101	100	1011	1269			
	-	110								259		
From B	182	0	77	22					281	1336		
From C	579	42	11	30					662	666		
From D	406	40	54	2					502	1026		
From E												
From F												
From G												
From H												
Total	1269	192	951	302					2714			
PM Peak					⁻ q _c in e	xisting condi	tion is adjusted	a due to Tem	porary Traffic	Arrangement		
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c *		
From A	205	90	742	362	TOL	101	100	1011	1399	9c 202		
From B	205 91	90 0	67	22					180	1453		
From C	443	32	18	37					530	772		
From D		32 26		2						879		
	198	20	34	Z					260	679		
From E												
From F												
From G												
From H Total	937	148	861	423					2369			

Legend	
Arm	Road (in clockwise order)
А	Slip Road from Lam Tei Interchange
В	Access Road from Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Е	
F	
G	
н	

Geometrie	c Paramete	ers					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	10.0	7.3	20.0	10.0	55	45	0.4
From B	9.0	6.8	28.0	4.0	55	19	0.9
From C	11.5	7.8	100.0	9.0	55	23	0.7
From D*	6.0	4.5	27.0	6.0	55	10	0.4
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

- Entry Capacity Q_E \mathbf{q}_{c} Circulating Flow across the Entry
- Κ $= 1\text{-}0.00347(\varnothing\text{-}30)\text{-}0.978[(1/r)\text{-}0.05]$
- = 303x₂ F
- $= 0.210t_D(1+0.2x_2)$ \mathbf{f}_{c}
- \mathbf{t}_{D} = 1+0.5/(1+M)
- Μ $= \exp[(D-60)/10]$
- = v+(e-v)/(1+2S)**x**₂
- S = 1.6(e-v)/L

е	Entry Width
v	Approach Half Width
	Entry Padius

* Parameter in existing condition is adjusted for TTA

Limitation

r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

4.0 - 15.0 m

2.0 - 7.3 m

							C	2 _E	Entry	Flow	RI	=C
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	8.748	0.607	1.311	0.948	2651	0.757	2327	2368	1269	1399	0.545	0.591
From B	7.597	0.607	1.311	1.051	2302	0.694	1445	1360	281	180	0.194	0.132
From C	9.398	0.607	1.311	1.063	2848	0.793	2467	2377	662	530	0.268	0.223
From D	5.333	0.607	1.311	1.082	1616	0.569	1117	1207	502	260	0.449	0.215
From E												
From F												
From G												
From H												

Location	Tsing Lun Road	/ Hong Po Road	/ Lam Tei Interchange
----------	----------------	----------------	-----------------------

Scenario Withou	t Development			Page	14
Design Year	2033	Job Number J7265	Date	24 July	/ 2024

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	
From A	329	0	1045	555					1929	
From B	196	0	86	20					302	
From C	871	50	11	121					1053	
From D	775	56	310	0					1141	
From E										
From F										
From G										
From H										
Total	2171	106	1452	696					4425	

PM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	418	0	849	654					1921	267
From B	107	0	76	25					208	2107
From C	575	41	20	146					782	1204
From D	469	40	166	0					675	1161
From E										
From F										
From G										
From H										
Total	1569	81	1111	825					3586	

Legena

Leyenu	
Arm	Road (in clockwise order)
Α	Slip Road to Lam Tei Interchange
В	Access Road to Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Е	
F	
G	
Н	

Geometric Parameters										
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S			
From A	11.0	7.8	30.0	10.0	55	20	0.5			
From B	9.0	6.8	28.0	6.0	55	19	0.6			
From C	11.5	7.8	100.0	9.0	55	23	0.7			
From D	14.0	8.5	40.0	10.0	55	10	0.9			
From E										
From F										
From G										
From H										

Predictive Equation $Q_E = K(F - f_cq_c)$

Q _E	Entry Capacity
q _c	Circulating Flow across the Entry

- Κ $= 1-0.00347(\emptyset-30)-0.978[(1/r)-0.05]$ F
- $= 303x_2$ $= 0.210t_D(1+0.2x_2)$ \mathbf{f}_{c}
- = 1+0.5/(1+M) \mathbf{t}_{D}
- Μ $= \exp[(D-60)/10]$ = v+(e-v)/(1+2S)
- \mathbf{X}_2
- S = 1.6(e-v)/L

Limitati	Limitation									
е	Entry Width	4.0 - 15.0 m								
v	Approach Half Width	2.0 - 7.3 m								
r	Entry Radius	6.0 - 100.0 m								
L	Effective Length of Flare	1.0 - 100.0 m								
D	Inscribed Circle Diameter	15 - 100 m								
Ø	Entry Angle	10° - 60°								
S	Sharpness of Flare	0.0 - 3.0								

							C	0 ^E	Entry	Flow	RI	FC
Arm	Х ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	9.381	0.607	1.311	1.051	2842	0.792	2632	2765	1929	1921	0.733	0.695
From B	7.812	0.607	1.311	1.051	2367	0.706	819	925	302	208	0.369	0.225
From C	9.398	0.607	1.311	1.063	2848	0.793	2101	2013	1053	782	0.501	0.388
From D	10.493	0.607	1.311	1.094	3179	0.853	2118	2394	1141	675	0.539	0.282
From E												
From F												
From G												
From H												

Location	Tsing Lun Road	Hong Po Road	/ Lam Tei Interchange
----------	----------------	--------------	-----------------------

Scenario With A	Page	15			
Design Year	2033	Job Number J7265	Date	24 July	/ 2024

AM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	348	0	1045	555					1948	429
From B	196	0	86	20					302	2271
From C	872	50	11	121					1054	1119
From D	775	56	312	0					1143	1477
From E										
From F										
From G										
From H										
Total	2191	106	1454	696					4447	

PM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	438	0	849	654					1941	268
From B	107	0	76	25					208	2128
From C	576	41	20	146					783	1224
From D	469	40	167	0					676	1182
From E										
From F										
From G										
From H										
Total	1590	81	1112	825					3608	

Le	ea	e	nd

Legenu	
Arm	Road (in clockwise order)
Α	Slip Road to Lam Tei Interchange
В	Access Road to Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Е	
F	
G	
Н	

Geometri	c Paramete	ers					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	11.0	7.8	30.0	10.0	55	20	0.5
From B	9.0	6.8	28.0	4.0	55	19	0.9
From C	11.5	7.8	100.0	9.0	55	23	0.7
From D	14.0	8.5	40.0	10.0	55	10	0.9
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q _E	Entry Capacity
q _c	Circulating Flow across the Entry

- $\begin{array}{lll} \mathsf{K} & = 1\mbox{-}0.00347(\ensuremath{\varnothing}\mbox{-}30)\mbox{-}0.978[(1/r)\mbox{-}0.05] \\ \mathsf{F} & = 303x_2 \end{array}$
- $f_c = 0.210t_D(1+0.2x_2)$
- $t_D = 1+0.5/(1+M)$
- M = exp[(D-60)/10]
- $x_2 = v+(e-v)/(1+2S)$
- S = 1.6(e-v)/L

Limitation

minuan		
е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

							C	0 ^E	Entry	Flow	RI	FC
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	9.381	0.607	1.311	1.051	2842	0.792	2630	2764	1948	1941	0.741	0.702
From B	7.597	0.607	1.311	1.051	2302	0.694	763	868	302	208	0.396	0.240
From C	9.398	0.607	1.311	1.063	2848	0.793	2085	1996	1054	783	0.506	0.392
From D	10.493	0.607	1.311	1.094	3179	0.853	2099	2375	1143	676	0.544	0.285
From E												
From F												
From G												
From H												

Location	Tsing Lun Road / Hong Po Road / Lam Tei Interchange	
----------	---	--

Scenario	With Prop	bosed Scher	me								Page	16
Design Ye	ar	2033	_		Job Numb	er	J7265			Date	24 July	/ 2024
AM Peak												
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		

	IUA	10.0	100	100	IUL	101	10.0	1011	TOLAI	Чc
From A	379	0	1048	555					1981.5	432
From B	196	0	86	20					302	2307.5
From C	877	50	11	121					1058.5	1150
From D	775	56	315	0					1146	1512.5
From E										
From F										
From G										
From H										
Total	2226.5	106	1459.5	696					4488	

PM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	462	0	852	654					1967.5	269
From B	107	0	76	25					208	2155.5
From C	581	41	20	146					787.5	1248
From D	469	40	168	0					677	1210.5
From E										
From F										
From G										
From H										
Total	1618.5	81	1115.5	825					3640	

Legend

Legenu	
Arm	Road (in clockwise order)
Α	Slip Road to Lam Tei Interchange
В	Access Road to Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Е	
F	
G	
Н	

Geometric Parameters Arm e (m) v (m) r (m) L (m) D (m) Ø (°) S From A 11.0 7.8 30.0 10.0 55 20 0.5 From B 9.0 6.8 28.0 4.0 55 19 0.9 From C 11.5 7.8 100.0 9.0 55 23 0.7 From D 14.0 8.5 40.0 10.0 55 10 0.9 From E From F From G From H

Predictive Equation $Q_E = K(F - f_cq_c)$

Q _E	Entry Capacity
q _c	Circulating Flow across the Entry

- $= 1\text{-}0.00347(\varnothing\text{-}30)\text{-}0.978[(1/r)\text{-}0.05]$ Κ = 303x₂ F
- $= 0.210t_D(1+0.2x_2)$ \mathbf{f}_{c}
- \mathbf{t}_{D} = 1+0.5/(1+M)
- Μ = exp[(D-60)/10] = v+(e-v)/(1+2S)
- **x**₂
- S = 1.6(e-v)/L

e Entry Width 4.0 - 15.0 m v Approach Half Width 2.0 - 7.3 m r Entry Radius 6.0 - 100.0 m L Effective Length of Flare 1.0 - 100.0 m D Inscribed Circle Diameter 15 - 100 m Ø Entry Angle 10° - 60°	imitatio	on	
rEntry Radius6.0 - 100.0 mLEffective Length of Flare1.0 - 100.0 mDInscribed Circle Diameter15 - 100 mØEntry Angle10° - 60°	е	Entry Width	4.0 - 15.0 m
LEffective Length of Flare1.0 - 100.0 mDInscribed Circle Diameter15 - 100 mØEntry Angle10° - 60°	v	Approach Half Width	2.0 - 7.3 m
DInscribed Circle Diameter15 - 100 m∅Entry Angle10° - 60°	r	Entry Radius	6.0 - 100.0 m
\varnothing Entry Angle 10° - 60°	L	Effective Length of Flare	1.0 - 100.0 m
	D	Inscribed Circle Diameter	15 - 100 m
S Sharppage of Flore 0.0.2.0	Ø	Entry Angle	10° - 60°
5 Shaiphess of Flate 0.0 - 3.0	S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							C	2 _E	Entry	Flow	RI	-C
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	9.381	0.607	1.311	1.051	2842	0.792	2628	2764	1982	1968	0.754	0.712
From B	7.597	0.607	1.311	1.051	2302	0.694	737	848	302	208	0.410	0.245
From C	9.398	0.607	1.311	1.063	2848	0.793	2058	1976	1059	788	0.514	0.399
From D	10.493	0.607	1.311	1.094	3179	0.853	2066	2348	1146	677	0.555	0.288
From E												
From F												
From G												
From H												

L

Scenario	Existing C	Condition									Page	1
Design Ye	ar	2023	-		Job Numb	er	J7265			Date	24 July	/ 202
AM Peak												
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	17	0	945						962	658		
From B	293	4	310						607	976		
From C	385	640	14						1039	314		
From D												
From E												
From F												
From G												
Total	695	644	1269						2608			

I WII Cuk										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	7	0	958						965	483
From B	267	0	414						681	992
From C	202	456	27						685	274
From D										
From E										
From F										
From G										
From H										
Total	476	456	1399						2331	

F

Legend

Legena	
Arm	Road (in clockwise order)
Α	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Е	
F	
G	
Н	

Geometric Parameters

ocomoun		510					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	51	22	0.0
From B	8.8	7.3	65.0	3.0	51	26	0.8
From C	7.7	6.8	100.0	8.0	51	17	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q _E	Entry Capacity
q_{c}	Circulating Flow across the Entry
к	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

imitatio	on	
е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

							C	2 _E	Entry	Flow	RI	=C
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.407	1.355	1.052	2212	0.700	1843	1972	962	965	0.522	0.489
From B	7.877	0.407	1.355	1.048	2387	0.733	1751	1739	607	681	0.347	0.392
From C	7.438	0.407	1.355	1.084	2254	0.708	2203	2233	1039	685	0.472	0.307
From D												
From E												
From F												
From G												
From H												

Scenario W	/ithout D	evelopmen	t								Page	1
Design Year		2033			Job Numb	er	J7265			Date	24 Jul	y 202
AM Peak												
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	18	0	1229						1247	1045		
From B	323	0	809						1132	1259		
From C	704	1033	12						1749	341		
From D												
From E												
From F												
From G												
From H												
Total	1045	1033	2050						4128			

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	15	0	1203						1218	735
From B	283	0	791						1074	1244
From C	410	709	26						1145	298
From D										
From E										
From F										
From G										
From H										
Total	708	709	2020						3437	

Legend

Legenu	
Arm	Road (in clockwise order)
А	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Е	
F	
G	
Н	

Geometric Parameters

ocomean	o i aramen						
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	51	22	0.0
From B	8.8	7.3	65.0	3.0	51	26	0.8
From C	7.7	6.8	100.0	8.0	51	17	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_{c}	Circulating Flow across the Entry
K F	= 1-0.00347(∅-30)-0.978[(1/r)-0.05] = 303x ₂
f_{c}	$= 0.210t_{D}(1+0.2x_{2})$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

iiiiitatio		
е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

							C	2 _E	Entry	Flow	RI	FC
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.407	1.355	1.052	2212	0.700	1557	1786	1247	1218	0.801	0.682
From B	7.877	0.407	1.355	1.048	2387	0.733	1534	1545	1132	1074	0.738	0.695
From C	7.438	0.407	1.355	1.084	2254	0.708	2182	2215	1749	1145	0.802	0.517
From D												
From E												
From F												
From G												
From H												

Scenario	With Appr	oved Schei	me								Page	1
Design Ye	ar	2033	-		Job Numb	er	J7265			Date	24 Jul	/ 202
AM Peak	Τ. Δ	T- D	T- 0	T- D	T- F	T- 5	T- 0	T- 11	Tetel	~		
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	18	0	1240						1258	1058		
From B	323	0	817						1140	1270		
From C	714	1046	12						1772	341		
From D												
From E												
From F												
From G												
From H												
Total	1055	1046	2069						4170			
PM Peak											_	
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	15	0	1215						1230	741		
From B	283	0	799						1082	1256		

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	15	0	1215						1230	741
From B	283	0	799						1082	1256
From C	415	715	26						1155.768	298
From D										
From E										
From F										
From G										
From H										
Total	713	715	2040						3467.768	

F

Legend

Legenu	
Arm	Road (in clockwise order)
Α	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Scomean	o i aramete	13					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	51	22	0.0
From B	8.8	7.3	65.0	3.0	51	26	0.8
From C	7.7	6.8	100.0	8.0	51	17	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_{c}	Circulating Flow across the Entry
К	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_{D}(1+0.2x_{2})$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation Entry Width 4.0 - 15.0 m е 2.0 - 7.3 m Approach Half Width ۷ Entry Radius 6.0 - 100.0 m r Effective Length of Flare 1.0 - 100.0 m L D 15 - 100 m Inscribed Circle Diameter Ø 10° - 60° Entry Angle s Sharpness of Flare 0.0 - 3.0

							C	Q _E	Entry	Flow	RI	-C
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.407	1.355	1.052	2212	0.700	1548	1781	1258	1230	0.813	0.690
From B	7.877	0.407	1.355	1.048	2387	0.733	1525	1536	1140	1082	0.747	0.704
From C	7.438	0.407	1.355	1.084	2254	0.708	2182	2215	1772	1156	0.812	0.522
From D												
From E												
From F												
From G												
From H												

Scenario	With Propo	sed Sche	me								Page	20
Design Y	ear <u>2</u>	2033	_		Job Numb	er	J7265			Date	24 July	/ 2024
AM Peak												
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	18	0	1261						1278.5	1080		
From B	323	0	830						1153	1290.5		
From C	733	1068	12						1813	341		
From D												
From E												
From F												
From G												
From H												
Total	1073.853	1068	2102.5						4244			

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	15	0	1298						1312.5	783
From B	283	0	843						1126	1338.5
From C	422	757	26						1205	298
From D										
From E										
From F										
From G										
From H										
Total	720	757	2166.5						3644	

F

Legend

Legenu	
Arm	Road (in clockwise order)
А	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	51	22	0.0
From B	8.8	7.3	65.0	3.0	51	26	0.8
From C	7.7	6.8	100.0	8.0	51	17	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_{c}	Circulating Flow across the Entry
K F	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05] = 303x ₂
f_{c}	$= 0.210t_{D}(1+0.2x_{2})$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

millau		
е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

							C	2 _E	Entry	Flow	RI	-C
Arm	X ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.407	1.355	1.052	2212	0.700	1532	1750	1279	1313	0.835	0.750
From B	7.877	0.407	1.355	1.048	2387	0.733	1509	1473	1153	1126	0.764	0.765
From C	7.438	0.407	1.355	1.084	2254	0.708	2182	2215	1813	1205	0.831	0.544
From D												
From E												
From F												
From G												
From H												

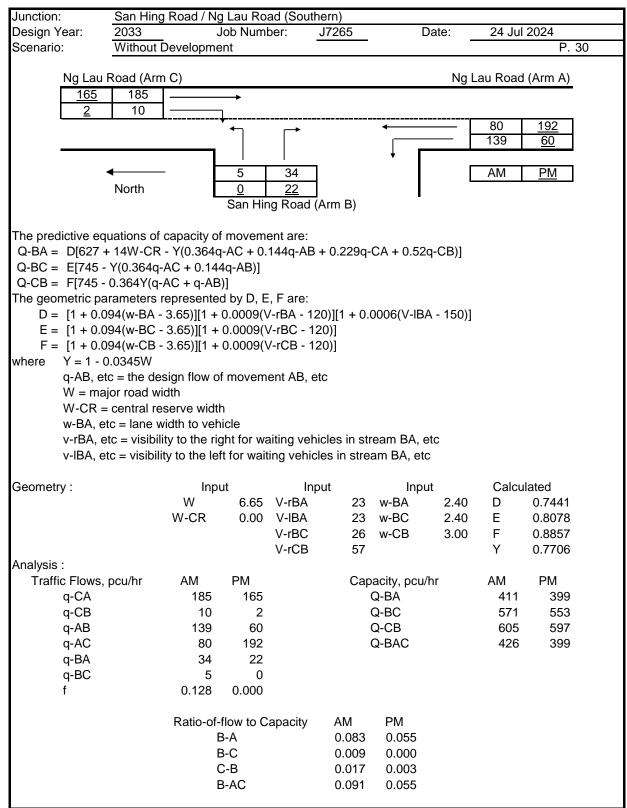
						Signal J	unction A	nalysis									
Junction:	Lam Tei Inter	rchange / C	astle Pe	eak Roa	ıd – Lam	Tei								-	Job Nu	mber:	J7265
Scenario:	Existing Con	dition														Ρ.	21
Design Year:	2023	Designe	ed By:				-	Checke	d By:					Date:	2	4 Jul 202	24
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Castle Peak Roa	d -Lam Tei SB	LT	A1	1,4	3.25	80.0	ordaiont	100	1904	364	0.191	0.191	100	1904	249	0.131	0.131
		SA	A2	1,4	3.25				2080	157	0.075			2080	132	0.063	
		SA+RT	A3	1	3.25	22.5		64	1995	151	0.076		55	2006	128	0.064	
		RT	A4	1	3.25	20.0		100	1935	146	0.075		100	1935	123	0.064	
Slip Road from L	am Tei Interchan	- LI	B1	2,3	3.50	8.0		100	1655	163	0.099		100	1655	116		
		LT+RT	B2	2,3	3.50	30.0		100	2005	281	0.140		100	2005	202	0.101	
		RT	B3	2,3	3.50	26.0		100	1990	278		0.140	100	1990	200	0.100	0.100
		RT	B4	2,3	3.50	23.0		100	1976	280	0.142		100	1976	145	0.073	
Castle Peak Roa	d NB	LT	C1	3,4	3.50	14.0		100	1775	486	0.274	ļ	100	1775	407	0.229	
		LT	C2	3,4	3.50	19.0		100	1951	534	0.274		100	1951	448	0.220	
		SA	D1	4	3.50				2105	137	0.065			2105	223	0.106	
		SA	D2	4	3.50				2105	137	0.065			2105	223	0.106	
pedestrian pha	ise		E _(P)	1,3		min c	rossing	time =	6	sec	GM +	12	sec F	FGM =	18	sec	
			$F_{(P)}$	1		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
			G _(P)	2		min c	rossing	time =	6	sec	GM +	11	sec F	GM =	17	sec	
			$H_{(P)}$	2		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)				N	S - 1940 -	- 100 (W-3.:	25) S.	= 2080 + 10	0 (W-3 25)	Note:		
		\						~		SM = S / (,		(1 + 1.5 f/r)			
▲ ³⁶⁻	4				▲ ²⁴⁹							Peak		Peak			
	211	274			→	189		446			1,4+2,3	our	1,4+2,3	- out			
↓ 24:	3	1020			↓ 194			855		Sum y	0.331		0.231				
										L (s)	21		21				
	163 559	280				116	402	145		C (s)	110		110				
							1			practical y	0.728		0.728				
										R.C. (%)	120%		215%				
1		2				3				4				5			
A1	t	G _(P)	A			-				- A1	t			- 			
		- (P)	*							A2		<u> </u>	D2				
A4				•		•	⊢→┌╸┌	. . .	C2			Ţ	D1 C2				
F _(P)								٠	01			•	C1				
	► ?)	B1	B2 B3 B4		← – – ► H _(P)	B1	B2 B3 B4				← • E _(P)	•					
AM G =	= I/C	G= 15	G =		I/G =		G =		I/G =	8	G =		I/G =	•	G =		
G =		G= 15	G =		I/G =		G =		I/G =		G =		I/G =	7	G =		
PM G =		G= 15	G =		I/G =		G =		I/G =		G =		I/G =	-	G =	-	
G =	= VC	G= 15	G =		I/G =		G =		I/G =	7	G =		I/G =	7	G =		

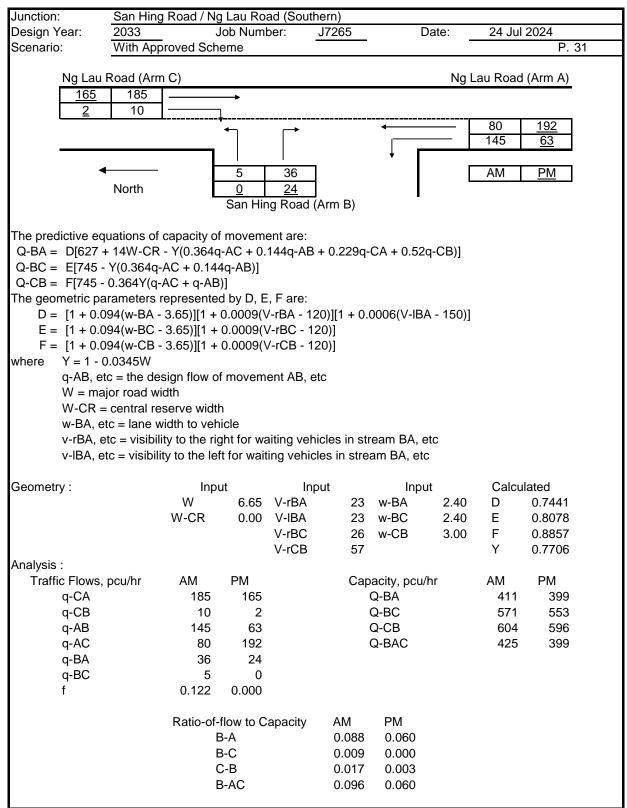
						Signal J	unction A	nalysis									
Junction: Scenario:		Interchange / C Development	astle Pe	eak Roa	d – Lam	Tei								-	Job Nu	mber:	J7265 22
Design Year:	2033		ed By:				-	Checke	d By:				-	Date:	2	4 Jul 202	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
		LT					Gradient		(pcu/hr)	(pcu/hr)		Ontical y		(pcu/hr)	(pcu/hr)		Ontical y
Castle Peak Roa	u 36	SA+RT	A1	1,4	3.50	80.0		100	1929	444	0.230	0.407	100	1929	273	0.142	0.440
		RT	A2 A3	1 1	3.50 3.50	30.0 25.0		0 100	2105 1986	288 166	0.137	0.137	0 100	2105 1986	231 118	0.110	0.110
		RT	A4	1	3.50	20.0		100	1958	163	0.083		100	1958	116	0.059	
Slip Road from		+(To YL Hwy)RT	B2	2,3	3.50	30.0		100	2105	579	0.275		100	2005	401	0.200	0.200
Lam Tei Intercha	nge	(To YL Hwy) RT (To CPR) RT	B3	2,3	3.50	25.0		100	1986	547	0.275		100	2086	418	0.200	
		(TO CER) KI	B4	2,3	3.50	20.0		100	1958	366	0.187		100	1958	168	0.086	
Castle Peak Roa	d NB	LT	C1	3,4	3.50	14.0		100	1775	620	0.349	0.349	100	1775	517	0.291	
		LT	C2	3,4	3.50	14.0		100	1951	681	0.349	0.040	100	1951	568	0.291	
		SA	D1	4	3.50				2105	220	0.105			2105	330	0.157	0.157
		SA	D2	4	3.50				2105	220	0.105			2105	330	0.157	
a subscription and a												10			40		
pedestrian pha	ise		D _(P) E _(P)	1			rossing		6		GM +	12		GM =	18	sec	
			F _(P)	1,4 2			rossing t rossing t		5 6		<u>GM +</u> GM +	7 11		= <u>GM =</u> =GM =	12 17	sec sec	
			G _(P)	2,3			rossing		5		GM +	9		FGM =	14	sec	
AM Traffic Flow (pcu/hr	r)		Ν	PM Traffic I	Flow (pcu/hr)				Ν	S = 1940 +	- 100 (W-3.:	25) S	= 2080 + 10	00 (W-3.25)	Note:		
		~						~		SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
1 ⁴⁴⁴	4	۰	_		²⁷³			←	_		AM	Peak	PM	Peak			
	288	440			\rightarrow	231		660			1+3,4		1 + 2,3 + 4				
329	J	1301			234			1085		Sum y	0.486		0.467				
	208 9	18 366				146	673	•		L (s)	38		26				
	11	1					I	168		C (s) practical y	110 0.589		110 0.687				
										R.C. (%)	21%		47%				
1	•	2	•			3	•			4	*			5			
	•	G _(P)	ŧ			G _(P)	÷			A1		<u>+</u>	D2				
A4		-						.t	C2				D1 C2				
D _(P) ↓ ←	•	B1	B2 B3 B4		← > F	B1	B2 B3 B4	+	C1		← ,	•	C1				
AM G =		VG = 15	G =	7	F _(P)		G =		I/G =		E _(P) G =		I/G =	7	G =		
G =		⊮G = 15	G =		I/G =		G =		I/G =	7	G =		1/G =		G =		
AM G =		⊮G = 15	G =		I/G =		G =		I/G =	7	G =		I/G =		G =		
G =		I/G = 15	G =	7	I/G =	11	G =		I/G =		G =		I/G =	7	G =	-	

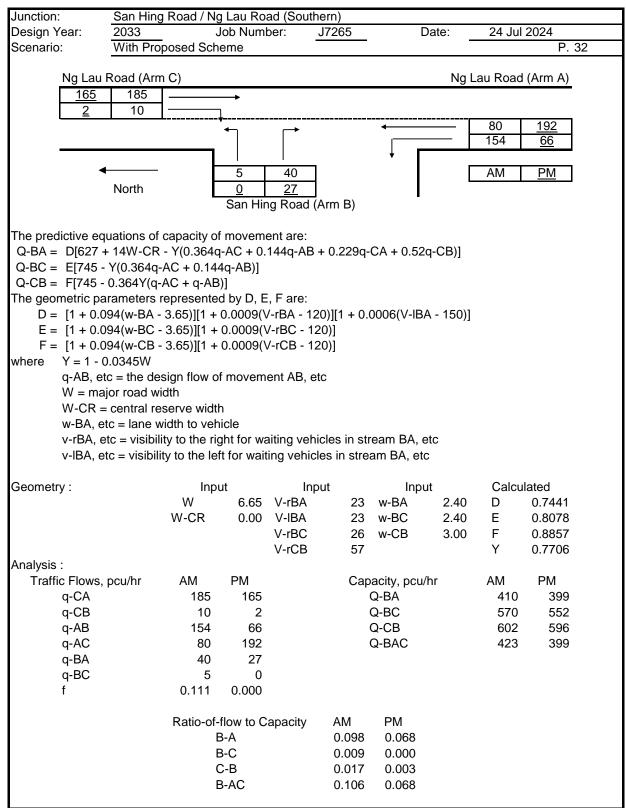
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							Signal J	unction A	nalysis									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Junction:	Lam Tei	Interchange / C	astle Pe	eak Roa	d – Lam	Tei								_	Job Nu	mber:	J7265
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Scenario:	With App	roved Scheme														Ρ.	23
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Design Year:	2033	Designe	ed By:				-	Checke	d By:					Date:	2	4 Jul 202	24
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											AM Peak					PM Peak		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Approach		Phase	Stage	Width (m)	Radius (m)		Turning %			y value	Critical y	Turning %			y value	Critical y
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Castle Peak Road	d SB	LT	A1	1,4	3.50	80.0		100	1929	444	0.230		100	1929	273	0.142	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			SA+RT	A2	1	4.00	85.0		0	2155	288	0.134	0.134	0	2155	231	0.107	0.107
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				A3	1	3.50	25.0		100	1986	166	0.084		100	1986	118	0.059	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			RT	A4	1	3.50	20.0		100	1958	163	0.083		100	1958	116	0.059	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Slip Road from	LT	+(To YL Hwy)RT	B2	23	3 50	30.0		100	2105	588	0 270		100	2005	405	0 202	0.202
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		0.202
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(To CPR) RT															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Castle Peak Road	I NB	LT	C1	3,4	3.50	14.0		100	1775	625	0.352	0.352	100	1775	523	0.295	
$ \begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$			LT	C2	3,4	3.50	19.0		100	1951	687	0.352		100	1951	574	0.294	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			SA	D1	4	3.50				2105	220	0.105			2105	330	0.157	0.157
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			SA	D2	4	3.50				2105	220	0.105			2105	330	0.157	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pedestrian pha	se		Em	1		min c	rossina t	time =	6	sec	GM +	12	sec F	GM =	18	sec	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	poucourian pria							-										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,													
$\begin{array}{c ccccc} & & & & & & & \\ & & & & & & \\ & & & & $				$H_{(P)}$	2,3					5			9			14	sec	
$\begin{array}{c ccccc} & & & & & & & \\ & & & & & & \\ & & & & $																		
$\begin{array}{c ccccc} & & & & & & & \\ & & & & & & \\ & & & & $																		
$\begin{array}{c ccccc} & & & & & & & \\ & & & & & & \\ & & & & $																		
$\begin{array}{c ccccc} & & & & & & & \\ & & & & & & \\ & & & & $																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AM Traffic Flow (pcu/hr))		Ν	PM Traffic I	Flow (pcu/hr)				Ν	S = 1940 +	- 100 (W-3.	25) S :	= 2080 + 10	00 (W-3.25)	Note:		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			~						~		SM = S / ('	1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	† 444	ł	-	_		1 ²⁷³			-	_		AM	Peak	PM	Peak			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			*			\rightarrow	231		+			1+3,4		1 + 2,3 + 4				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	329)	1312			234			1097		Sum y	0.486		0.466				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							↓	601	160		L (s)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		208 9	368				140	081	109									
$1 \xrightarrow{A2} \xrightarrow{A3} \xrightarrow{A4} \xrightarrow{F_{(P)}} \qquad 2 \xrightarrow{H_{(P)}} \xrightarrow{f_{(P)}} \xrightarrow{f_{(P)}} \xrightarrow{g_{(P)}} g_{(P$																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											R.C. (%)	21%		4/70				
$A^{A^{2}}_{A^{4}} \xrightarrow{F_{(P)}} B^{1}_{B^{2}} B^{2}_{B^{2}} B^{4}_{B^{2}} \xrightarrow{F_{(P)}} B^{1}_{B^{2}} B^{2}_{B^{3}} B^{4}_{B^{2}} \xrightarrow{F_{(P)}} C^{2}_{C1} \xrightarrow{F_{(P)}} C^{2}_{C1} \xrightarrow{C^{2}}_{F_{(P)}} C^{2}_{F_{(P)}} \xrightarrow{C^{2}}_{F_{(P)$	1 		2	A				A			4	ŧ			5			
$A4 \longrightarrow G = VG = 15 G = 7 VG = 11 G = VG = G = VG = 7 G = 0$			H _(P)	ŧ			H _(P)	÷			A1			C4				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A4								_	C2			-	C3				
AM G= VG=15 G=7 VG=11 G= VG= G= VG=7 G=	Em 1			┯╸	•		•	╋╋	ţ	C1			ţ—	C1				
	^{-(P)} ↓ ← F _(P)	→	B1	1 B2 B3 B4		G (P)	B1	I I I B2 B3 B4				← + F _(P)						
	AM C		VG - 15	0	7	10	11	0		10.	I	0		1/0	7	0		
G= VG=15 G= VG= G= VG=7 G= VG=7 G=	AM G = G =		vg = 15 vg = 15	G = G =	,	I/G =		G = G =			7	G = G =				G = G =		
AM G= VG= 15 G= VG= G= VG= 7 G= VG= 7 G=																		
G= VG= 15 G= 7 VG= 11 G= VG= G= VG= 7 G=					7		11											

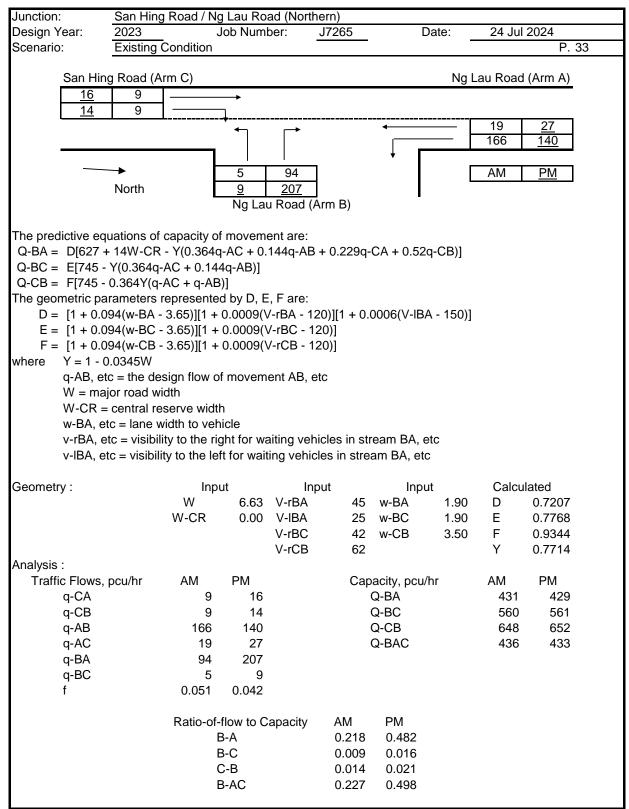
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														alysis	0001170	ignal Ju	6						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J7:	ber:	nber:	ımb	Job Nu											Теі	m	ad – Lar	ak Roa	astle P	erchange / 0	Lam Tei Interch	nction:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P. 24	Ρ.	Р																		ed Scheme	With Proposed	enario:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2024	Jul 202	Jul 20	24 J	2	Date:							d By:	Checke						d By:	Designe	2033	esign Year:
Approxim Proof Support Visite interval Support First proof Support Visite interval Direct interval Support Proof interval Support Proof interval Support Proof interval Support Proof interval Support																							
Caute Peak Road SB LT A1 14 3.50 80.0 100 1929 444 0.230 100 1929 273 0.14 SAHT A2 1 4.00 85.0 0.0 2165 288 0.134 0.134 0.245 281 0.10 RT A3 1 3.50 25.0 100 1966 188 0.085 100 1968 180 0.265 100 1968 190 0.06 RT A4 1 3.50 25.0 100 1966 180 0.085 100 1968 190 0.06 RT A4 1 3.50 2.0 10 1968 180 0.285 100 1968 190 0.06 RT A4 1 3.50 2.0 10 1968 160 0.287 100 1968 490 0.26 490 0.27 SI pRad from LT+(To VL Hwy)R B3 2.3 3.50 2.0 100 1968 570 0.287 100 2.068 410 0.26 (To CFR)RT B4 2.3 3.50 2.0 100 1968 371 0.189 100 1968 470 0.06 Caute Peak Road NB LT C1 3.4 3.50 14.0 100 1975 5.33 0.357 0.357 100 1755 528 0.25 LT C2 3.4 3.50 100 1961 196 0.366 100 1165 161 0.25 Caute Peak Road NB LT C1 3.4 3.50 14.0 100 1975 5.22 0.105 100 1755 528 0.55 LT C2 3.4 3.50 100 100 1961 696 0.366 100 1165 161 0.25 Caute Peak Road NB LT C1 3.4 3.50 14.0 100 1975 5.22 0.105 100 1755 528 0.55 LT C2 3.4 3.50 10 10 1961 696 0.366 100 1165 161 0.25 Caute Peak Road NB LT C1 3.4 3.50 14.0 100 1975 5.22 0.105 12 2105 330 0.15 LT C2 3.4 3.50 14.0 100 1961 696 0.366 100 1165 161 0.25 LT C2 3.4 3.50 14.0 100 1975 5.22 0.105 12 2105 330 0.15 LT C2 3.4 3.50 14.0 100 1961 696 0.366 100 1165 161 0.25 LT C2 3.4 3.50 14.0 100 1975 5.22 0.105 12 2105 330 0.15 LT C2 3.4 3.50 14.0 100 1961 696 0.366 100 1165 161 0.25 LT C2 3.4 3.50 14.0 100 1961 696 0.366 100 1165 161 0.25 LT C2 3.4 3.50 14.0 100 1975 5.28 0.006 100 1961 696 0.366 100 1165 161 0.25 LT C2 3.4 3.50 14.0 10 100 1975 5.28 0.006 100 1961 696 0.366 100 196 100 196 100 196 100 196 100 196 100 196	e Crit	y value	y value		Flow		Turning %	Critical y	е	y value	low	1		Turning %		adius (m)	i) R	Width (m)	Stage	Phase		Approach	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_			-			400		_					100	Gradient		+	0.50			ιT	SB	etle Peak Road
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.142																				30	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.107						0.134															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.060																					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	0.061	0.061	0.	119	1958	100		5	0.085	66	_	1958	100		20.0	+	3.50	1	A4	RI		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				┝					_			_					+						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_			┢					-			-					+						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.005	0.005	-		0005	100		-	0.007	204		0405	400		00.0	+	0.50		50		I T+(To YI	n Road from
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	+			-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>′</u>	0.087	0.087	0.	170	1958	100		9	0.189	571		1958	100		20.0	╈	3.50	2,3	В4	10 01 10/11	(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	0 207	0 207	1	520	1775	100	0 357	7	0 357	33	+	1775	100		14.0	+	3 50	3 1	C1	1.7	NB	stle Peak Road
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								0.357															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							100							100		19.0							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.157																					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>′</u>	0.157	0.157	0.	330	2105			5	0.105	20	+	2105					3.50	4	DZ	54		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-			+								+											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-			+								+											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-			┢								+					+						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				+								-					+						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-			+													╈						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. —	SAC	500	٢.	18	GM -	sec F	12		GM +	sar (+	6	ime –	ssina t	min c	+		1	Fire		0	destrian nhas
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1								+					+						destrian priac
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												+								. ,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	╈			. ,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	360	360	Ť	14		3601	3			360 0		5	ine –	Sangi	THILT CI	T		2,5	(.)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				T													T						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				╈													T						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1													t						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				_	Note:							1					ar)	Elow (pcu/br	PM Traffic I				Traffic Flow (pcu/br)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					4015.) (W-3.25)	2080 + 10	25) S =	1-3.2	+ 100 (W-3	1940 +	s	N				")	iow (pearin	W Hand	N			manie now (pearin)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1 + 1.5 f/r)	(S - 230) / (SM =	/r)	1 + 1.5 f/r)	= S / (′	SI									```````````````````````````````````````		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Peak	PM	Peak	MP	AM			_	•				1 ²⁷³		_ `	د		1 ⁴⁴⁴
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							1 + 2,3 + 4					╞		*		31		\rightarrow			*	288	\rightarrow
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0.469		0	0.490	um y	╞		1109			9	239			1328		334
$1 \\ \begin{array}{c c} c_{(8)} & 110 \\ \hline \\ \hline \\ \hline \\ \hline \\ ractical y \\ R.C. (\%) \\ \hline \\ 20\% \\ \hline \\ 47\% \\ \hline \\ \hline \\ H_{(p)} \\ \hline \\ H_{(p)} \\ \hline \\ H_{(p)} \\ \hline \\ \hline \\ H_{(p)} \\ \hline \\ H_{(p)} \\ \hline \\ \hline \\ \hline \\ H_{(p)} \\ \hline \\ \hline \\ H_{(p)} \\ \hline \\ $							26		-	38	. (s)	┢			÷ —	• r							
R.C. (%) 20% 47%											C (s)	┢		170	91	19	1				371	212 962	
$\begin{array}{c} 1 \\ 1 \\ A_{12} \\ \hline \end{array} \end{array} \qquad \begin{array}{c} 2 \\ H_{(p)} \\ \downarrow \end{array} \qquad \begin{array}{c} 3 \\ H_{(p)} \\ \downarrow \end{array} \qquad \begin{array}{c} 4 \\ H_{(p)} \\ \downarrow \end{array} \qquad \begin{array}{c} 5 \\ A_{1} \\ \hline \end{array} \qquad \begin{array}{c} 5 \\ \end{array} \qquad \begin{array}{c} 5 \\ \end{array}$											ctical y	р											
$\begin{array}{c} A_1 \underbrace{\longrightarrow}_{A_2} \\ \downarrow \end{array} \qquad \qquad$							47%		6	20%	C. (%)	F											
A2 4						5						4					3				2		
A3 C4									t		A1					H _(P)				•	H _(P)		
A4 🖌							C4 C3	\leftarrow	•														A3
							C2 C1	<u> </u>					C2 C1		+ + +	•⊤•				╷╺┤╾┤	•_+		
								•	- •	.				•				←>					E _(P) ↓ ← ▶
F(p) B1 B2 B3 B4 G(p) B1 B2 B3 B4 F(p)									(P)	F _{(F}					2 B3 B4	B1		G _(P)		B2 B3 B4	B1		F _(P)
AM G= 15 G=7 1/G=11 G= 1/G= G= 1/G=7 G=					G =	7	I/G =) =	G =			I/G =		G =	1	- 1	I/G =	7	G =	G = 15	I/G =	G =
G= 15 G= 16= G= 16=7 G= 16=7 G=									6 =	G =													
AM G= 15 G= 16= G= 16=7 G= 16=7 G=															G =								G =
G= 15 G=7 1/G=11 G= 1/G= G= 1/G=7 G=					G =	7	I/G =		; =	G =		-	I/G =		G =	1	- 1	I/G =	7	G =			G =

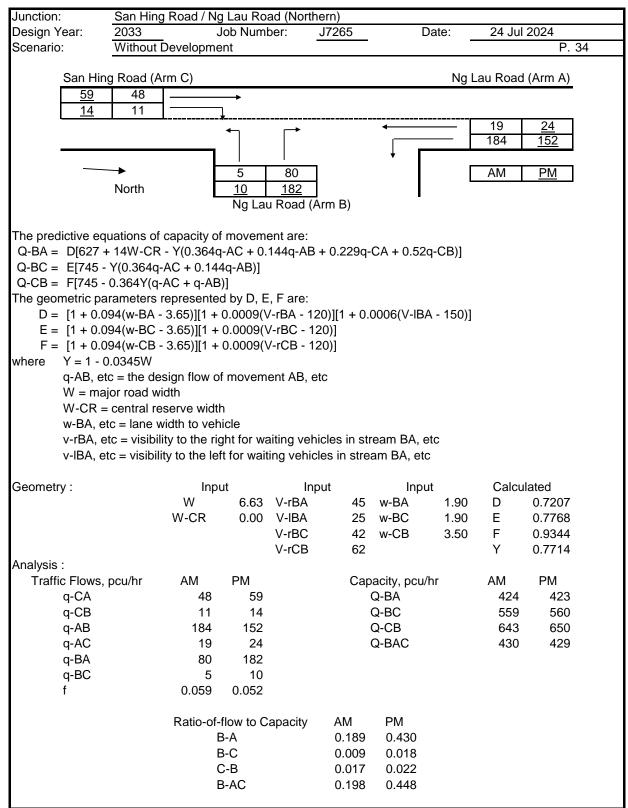
						Signal J	unction A	nalysis									
Junction:	Tsing Lu	n Road/ Tsz Ti	n Road												Job Nu	mber:	J7265
Scenario:	Existing	Condition														Ρ.	25
Design Year:	2023	Designe	ed By:				-	Checke	d By:					Date:	2	4 Jul 202	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Tsing Lun Roa	d SB	LT+SA	A1	1	3.65	13.0	Gradient	5	1969	488	0.248	0.248	12	1953	337	0.173	
		RT	A2	1	3.65	15.0		100	1927	392	0.203		100	2120	446	0.210	0.210
Tsing Lun Roa	d NB	LT+SA SA	C1	2	3.30	23.0		38	1898	116	0.061	0.061	34	1903	120	0.063	0.06
		RT	C2 C3	2	3.40 3.40	15.0		100	2095 1905	127 8	0.061		100	2095 1905	133 18	0.063	
		17 04 57															
Access Road t Siu Hong Cour		LT+SA+RT	D1	3	3.50	15.0		89	1804	70	0.039	0.039	87	1808	60	0.033	0.03
Tsz Tin Road I	FB	LT	D1	4	2.20	10.0		100	1609	190	0.106	0.106	100	1609	115	0.068	0.06
		LT+SA+RT	B1 B2	4	3.38 3.37	10.0 15.0		100 98	1698 1905	180 201	0.106	0.106	100 94	1698 2092	142	0.068	0.066
pedestrian pha	ise		E _(P)	2		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
			F _(P)	3		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
AM Traffic Flow (pcu/hi	rl			PM Traffic	Flow (pcu/hr)					1					Note:		
an riano rion (poari	.,		N	r w rrano	non (pourn)				N		⊧ 100 (W-3.: 1 + 1.5 f/r)	,	= 2080 + 10 (S - 230) / (. ,	1010.		
1 ²⁹	1 392 🗲	22			²⁰¹	446	+	39				Peak		Peak			
	6	466 47			48	8	298	40		Sum y	1+2+3+4 0.454		1+2+3+4 0.374				
	199 ↑	8				212 †	8	-		L (s)	24		24				
44	4 + 8	t 15			41	← →	18	♦ 12		C (s)	118		118				
	I					I				practical y	0.717		0.717				
										R.C. (%)	58%		92%				
1	A2 A1	2				3				4				5			
F _(P) ↓		F _(P)	ŧ			F _(P)	ŧ			B1							
^{Γ(P)} ↓	+	F (P)	⁺ ↑↑┌╍			Г(P)	+	↓	D1	B2	_ +						
			C1 C2 C3					Ŧ		E _(P)	↑ ↓						
AM G =		1/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =	7	G =		
G =		⊮G = 6	G =		I/G =		G =		I/G =		G =	14	I/G =		G =		
PM G = G =		VG = 6 VG = 6	G = G =		I/G = I/G =		G = G =		I/G =		G = G =	14	I/G =		G = G =		
G =		⊮G = U	G =		I/G =	U	G =		I/G =	3	G =	14	I/G =	1	G =		

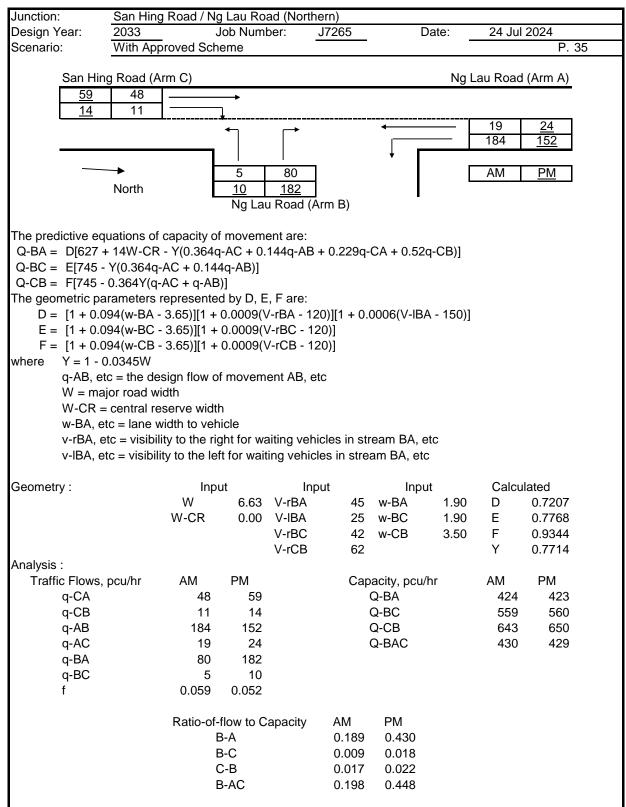

						Signal J	unction A	nalysis									
Junction:		Road/ Tsz Tir	n Road											-	Job Nu		J7265
Scenario: Design Year:	Without D	evelopment Designe	ed By:				-	Checke	d By:					Date:	2	P. 4 Jul 20	26 24
					1	1									2 14 D		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %		AM Peak Flow	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical y
Tsing Lun Road	d SB	LT+SA	A1	1	3.65	13.0	Gradient	4	(pcu/hr) 1971	(pcu/hr) 753	0.382	0.382	11	1955	482	0.247	
		RT	A2	1	3.65	15.0		100	1927	616	0.320		100	2120	540		0.255
Tsing Lun Roa	d NB	LT+SA	C1	2	3.30	23.0		53	1880	189	0.101	0 101	66	1865	225	0.121	0.121
		SA	C2	2	3.40	20.0			2095	210	0.100	0.101		2095	253	0.121	0
		RT	C3	2	3.40	15.0		100	1905	10	0.005		100	1905	25	0.013	
Access Road to		LT+SA+RT	D1	3	3.50	15.0		88	1806	85	0.047	0.047	87	1808	75	0.041	0.041
Siu Hong Cour	t WB																
Tsz Tin Road E	B	LT	B1	4,1	3.38	10.0		100	1698	556	0.327		100	1698	326	0.192	
		SA+RT	B2	4	3.37	15.0		90	1919	100	0.052	0.052	88	1923	73	0.038	0.038
pedestrian pha	se		E _(P)	2		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
			$F_{(P)}$	3		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
AM Traffic Flow (pcu/hr	.)			PM Traffic	Flow (pcu/hr)					 					Note:		
	,		N		(r ,				N		+ 100 (W-3.:			0 (W-3.25)			
▲ 556	616 🗲	30			▲ 326	540		51		SM = S / (1 + 1.5 f/r)			(1 + 1.5 f/r)			
\rightarrow	10	723			→	9	431				AM 1+2+3+4	Peak	PM 1+2+3+4	Peak			
↓ 90		55			↓ 64		431	45		Sum y	0.582		0.455				
	298 ≜	10 🗕 🗕				329 †	10	•		L (s)	24		24				
101	1 + 10	↓ 20			149	+++	25	↓ 20		C (s)	118		118				
	I					I				practical y	0.717		0.717				
										R.C. (%)	23%		58%				
1	A2 A1	2				3				4				5			
+			•								ŧ						
в1 ——	⊷ †	F _(P)	ŧ			F _(P)	ŧ	t		B1 B2							
			╷┤╽╷	•				़	D1	_	↑						
			C1 C2 C3							E _(P)	÷						
AM G =		I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =	7	G =		
G =		VG = 6	G =		I/G =		G =		I/G =		G =		I/G =		G =		
											-			-			
PM G =		I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =	1	G =		

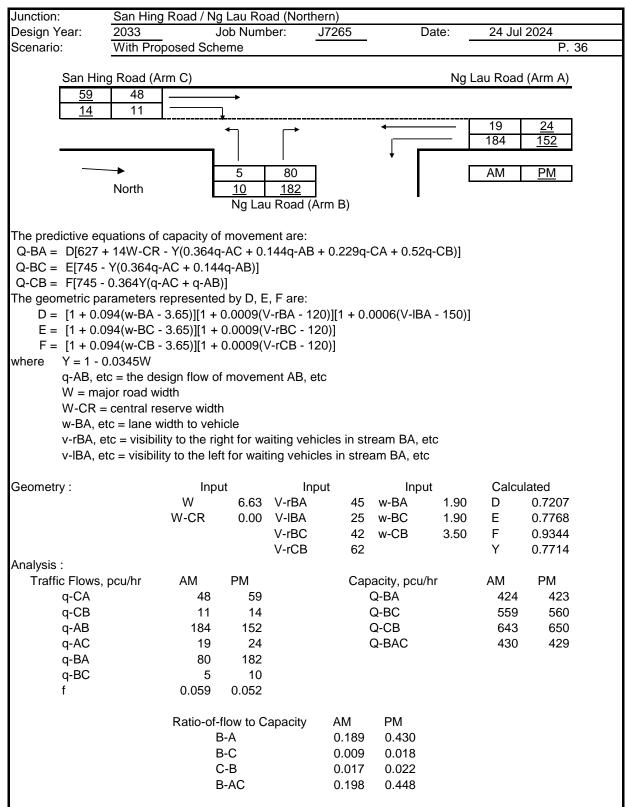

						Signal J	unction A	nalysis									
Junction:	Tsing Lur	n Road/ Tsz Ti	n Road											-	Job Nu	mber:	J7265
Scenario:	With App	roved Scheme														Ρ.	27
Design Year:	2033	Designe	ed By:				-	Checke	ed By:					Date:	2	4 Jul 20	24
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tsing Lun Roa	d SB	LT+SA	A1	1	3.65	13.0		4	1971	755	0.383	0.383	11	1955	483	0.247	
		RT	A2	1	3.65	15.0		100	1927	616	0.320		100	2120	540	0.255	0.255
Tsing Lun Roa	d NB	LT+SA	C1	2	3.30	23.0		53	1880	189	0.101	0.101	66	1865	226	0.121	0.121
		SA	C2	2	3.40				2095	211	0.101			2095	253	0.121	
		RT	C3	2	3.40	15.0		100	1905	10	0.005		100	1905	25	0.013	
Access Road to		LT+SA+RT	D1	3	3.50	15.0		88	1806	85	0.047	0.047	87	1808	75	0.041	0.041
Siu Hong Cour	t WB																
Teo Tio Deed C																	
Tsz Tin Road E	ď	LT	B1	4,1	3.38	10.0		100	1698	556	0.327		100	1698	326	0.192	
		SA+RT	B2	4	3.37	15.0		90	1919	100	0.052	0.052	88	1923	73	0.038	0.038
nedectrian nha	50		E _(P)	2		min.c	rossing	time –	5	500	GM +	10	soc F	GM =	15	sec	
pedestriari pria	destrian phase						-		5			6					
						minc	rossing	ume =	5	Sec	GM +	0	Secr	GM =	11	sec	
AM Traffic Flow (pcu/hr)			PM Traffic	Flow (pcu/hr)										Note:		
	,		N						N					00 (W-3.25)			
		1								SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
556		→ ³⁰			³²⁶	540	\rightarrow	51	,			Peak		Peak			
	10	725 55				9	432	45			1+2+3+4		1+2+3+4				
90	299	to a 1			64	330	10	. 1		Sum y	0.583		0.455				
101					140	1	10	\neg		L (s)	24		24				
101		20			149	\top	25	20		C (s)	118		118				
										practical y	0.717		0.717				
										R.C. (%)	23%		57%				
1	A2 A1 2					3				4				5			
<u>. </u>							<u> ۸</u>				t						
B1						F _(P)	ŧ	+		B1 B2	→						
				•				←	D1		•						
								•		E _(P)	ŧ						
			C1 C2 C3														
AM G =		I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =	7	G =		
G =		I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =		G =		
PM G =					I/G =	6	G =		I/G =	9	G =		I/G =	7	G =		
- U -																	


CKM Asia Limited


						Signal J	unction A	nalysis									
Junction:	Tsing Lur	n Road/ Tsz Ti	n Road												Job Nu	mber:	J7265
Scenario:	With Prop	oosed Scheme	9													Ρ.	28
Design Year:	2033	Designe	ed By:	By: Checked By: Date: 24 Ju										4 Jul 20	24		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Tsing Lun Roa	ad SB	LT+SA	A1	1	3.65	13.0	Gradient	4	(pcu/hr) 1971	(pcu/hr) 758	0.385	0.385	11	(pcu/hr) 1955	(pcu/hr) 484	0.248	
0		RT	A2	1	3.65	15.0		100	1927	616	0.320	0.000	100	2120	540	0.255	0.255
Tsing Lun Roa	ad NB	LT+SA	C1	2	3.30	23.0		53	1880	190	0.101	0.101	66	1865	227	0.122	0.122
_		SA	C2	2	3.40	20.0		00	2095	212	0.101	0.101	00	2095	254	0.121	0.122
		RT	C3	2	3.40	15.0		100	1905	10	0.005		100	1905	25	0.013	
Access Road	to	LT+SA+RT	D1	3	2.50	15.0		88	1906	95	0.047	0.047	87	1000	75	0.041	0.041
Siu Hong Cou		LITOMIN	DI	3	3.50	15.0		88	1806	85	0.047	0.047	87	1808	75	0.041	0.041
Tsz Tin Road	EB	LT SA+RT	B1	4,1	3.38	10.0		100	1698	556	0.327		100	1698	326	0.192	
		SA+R I	B2	4	3.37	15.0		90	1919	100	0.052	0.052	88	1923	73	0.038	0.038
pedestrian pha	ase		E _(P) F _(P)	2			rossing		5 5		GM +	10 6		GM =	15	sec	
			· (P)	3		minic	rossing	ume =	5	Sec	GM +	0	Sec F	GM =	11	sec	
AM Traffic Flow (pcu/h	nr)		N	PM Traffic	Flow (pcu/hr)			N	S = 1940 -	+ 100 (W-3.	25) S =	= 2080 + 10	0 (W-3.25)	Note:		
		I					I				1 + 1.5 f/r)		(S - 230) / (
55		30			326	540	\leftrightarrow	51				Peak		Peak			
9	• 10 0	728 55			64	9	433	45			1+2+3+4		1+2+3+4				
	301 ♦	10				332 ♦	10	+		Sum y L (s)	0.585 24		0.456 24				
10	1 + 10	20			149	++	25	↓ 20		C (s)	118		118				
	I					I				practical y	0.717		0.717				
										R.C. (%)	23%		57%				
1	A2 A1	2				3				4				5			
в1	₊∣⊦	F _(P)	≜			F _(P)	ţ			B1	t _						
	•	- (*)	⁺↑↑┌╴	•		. (*)	*	-	D1	B2	++						
			$H \parallel$					ŧ		E _(P)	↑ ↓						
			C1 C2 C3														
AM G =		I/G = 6 I/G = 6	G = G =		I/G = I/G =		G = G =		I/G =		G = G =		I/G =	7	G =		
G =		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =	7	G = G =		
PM G =		10 - 0	0-						1/0 =	0	6 =		.0-				


Junction:	San Hing Road /	'Ng Lau Roa	ad (Souther	rn)				
Design Year:	2023	Job Numb		, 265	Da	ate:	24 Jul	2024
Scenario:	Existing Condition	n						P. 29
Ng Lau F	Road (Arm C)					Ng L	au Road	(Arm A)
152	167	>				0		,
1	8							
					•	T	94	215
					[— F	24	19
					↓ □			
4		5	22			Γ	AM	PM
	North	<u>0</u>	<u>16</u>			-		
		San Hin	g Road (Ar	m B)	•			
E = [1 + 0.09] F = [1 + 0.09] where $Y = 1 - 0$	14W-CR - Y(0.36 Y(0.364q-AC + 0. 0.364Y(q-AC + q- ameters represen 94(w-BA - 3.65)][1 94(w-BC - 3.65)][1 94(w-CB - 3.65)][1 0345W	54q-AC + 0.' 144q-AB)] AB)] nted by D, E I + 0.0009(V I + 0.0009(V I + 0.0009(V	144q-AB + , F are: ′-rBA - 120) ′-rBC - 120 ′-rCB - 120)][1 + 0.()]				
W = maj W-CR = w-BA, et v-rBA, et	c = the design flow or road width central reserve w c = lane width to v c = visibility to the c = visibility to the	ridth vehicle e right for wa	iting vehicl			с		
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et	or road width central reserve w c = lane width to v $c = visibility to thec = visibility to the$	ridth vehicle e right for wa	iting vehicl	s in strea			Calcu	lated
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et	or road width central reserve w c = lane width to v $c = visibility to thec = visibility to the$	ridth vehicle e right for wa e left for waiti	iting vehicle	s in strea	am BA, etc		Calcul D	lated 0.7441
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et	or road width central reserve w c = lane width to v $c = visibility to thec = visibility to the$	ridth vehicle e right for wa e left for waiti nput 6.65	iting vehicl ing vehicles Input	s in strea t	am BA, etc Input w-BA			
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et	or road width central reserve w c = lane width to v c = visibility to the c = visibility to the l W	ridth vehicle e right for wa e left for waiti nput 6.65	iting vehicle ing vehicles Input V-rBA	s in strea t 23	am BA, etc Input w-BA w-BC	2.40	D	0.7441
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et	or road width central reserve w c = lane width to v c = visibility to the c = visibility to the l W	ridth vehicle e right for wa e left for waiti nput 6.65	iting vehicl ing vehicles Input V-rBA V-IBA	s in strea t 23 23	am BA, etc Input w-BA w-BC	2.40 2.40	D E	0.7441 0.8078
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et	or road width central reserve w c = lane width to v c = visibility to the c = visibility to the U W W-CR	ridth vehicle e right for wa e left for waiti nput 6.65	iting vehicles Ing vehicles V-rBA V-IBA V-rBC	s in strea t 23 23 26 57	am BA, etc Input w-BA w-BC w-CB	2.40 2.40 3.00	D E F	0.7441 0.8078 0.8857
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Analysis : Traffic Flows, p	or road width central reserve w c = lane width to v c = visibility to the c = visibility to the W W-CR	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM	iting vehicles Ing vehicles V-rBA V-IBA V-rBC	s in strea 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h	2.40 2.40 3.00	D E F Y	0.7441 0.8078 0.8857 0.7706 PM
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et	or road width central reserve w c = lane width to w c = visibility to the c = visibility to the W W-CR bcu/hr AM 16	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM 7 152	iting vehicles Ing vehicles V-rBA V-IBA V-rBC	s in strea 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB	2.40 2.40 3.00	D E F Y AM 421	0.7441 0.8078 0.8857 0.7706
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Analysis : Traffic Flows, p	or road width central reserve w c = lane width to w c = visibility to the c = visibility to the U W W-CR	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM 7 152 8 1	iting vehicles Ing vehicles V-rBA V-IBA V-rBC	s in strea 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC	2.40 2.40 3.00	D E F Y AM 421 578	0.7441 0.8078 0.8857 0.7706 PM 400 551
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Analysis : Traffic Flows, p q-CA	or road width central reserve w c = lane width to w c = visibility to the c = visibility to the U W W-CR	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM 7 152	iting vehicles Ing vehicles V-rBA V-IBA V-rBC	s in strea 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA	2.40 2.40 3.00	D E F Y AM 421	0.7441 0.8078 0.8857 0.7706 PM 400
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Geometry : Traffic Flows, p q-CA q-CB q-AB	or road width central reserve w c = lane width to v c = visibility to the c = visibility to the W W-CR bcu/hr AM 16	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM 7 152 8 1	iting vehicles Ing vehicles V-rBA V-IBA V-rBC	s in strea 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC	2.40 2.40 3.00	D E F Y AM 421 578	0.7441 0.8078 0.8857 0.7706 PM 400 551
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et Ceometry : Geometry : Traffic Flows, p q-CA q-CB q-AB q-AB q-AC	or road width central reserve w c = lane width to v c = visibility to the c = visibility to the W W-CR bcu/hr AM 16 2 9	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM 7 152 8 1 4 19 4 215	iting vehicles Ing vehicles V-rBA V-IBA V-rBC	s in strea 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Geometry : Traffic Flows, p q-CA q-CB q-AB q-AB q-AC q-BA	or road width central reserve w c = lane width to v c = visibility to the c = visibility to the W W-CR bcu/hr AM 16 2 9 2	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM 7 152 8 1 4 19 4 215 2 16	iting vehicles Ing vehicles V-rBA V-IBA V-rBC	s in strea 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et Ceometry : Geometry : Traffic Flows, p q-CA q-CB q-AB q-AB q-AC	or road width central reserve w c = lane width to v c = visibility to the c = visibility to the W W-CR bcu/hr AM 16 2 9 2	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM 7 152 8 1 4 19 4 215 2 16 5 0	iting vehicles Ing vehicles V-rBA V-IBA V-rBC	s in strea 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et V-IBA, et Geometry : Geometry : Traffic Flows, p q-CA q-CB q-AB q-AC q-BA q-BA q-BC	or road width central reserve w c = lane width to w c = visibility to the c = visibility to the w W-CR bcu/hr AM 16 2 9 2 0.18	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM 7 152 8 1 4 19 4 215 2 16 5 0.000	iting vehicl ing vehicles Input V-rBA V-IBA V-IBA V-rBC V-rCB	s in strea 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-BAC	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et V-IBA, et Geometry : Geometry : Traffic Flows, p q-CA q-CB q-AB q-AC q-BA q-BA q-BC	or road width central reserve w c = lane width to w c = visibility to the c = visibility to the w W-CR bcu/hr AM 16 2 9 2 0.18	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM 7 152 8 1 4 19 4 215 2 16 5 0.000 5 0.000	iting vehicl ing vehicles Input V-rBA V-IBA V-IBA V-rBC V-rCB	s in strea 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-BAC	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Geometry : Traffic Flows, p q-CA q-CB q-AB q-AC q-BA q-BC	or road width central reserve w c = lane width to w c = visibility to the c = visibility to the w W-CR bcu/hr AM 16 2 9 2 0.18	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM 7 152 8 1 4 19 4 215 2 16 5 0.000 5 0.000 -of-flow to Ca B-A	iting vehicl ing vehicles Input V-rBA V-IBA V-IBA V-rBC V-rCB	AM 0.052	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-CB Q-BAC PM 0.040	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et V-IBA, et Geometry : Geometry : Traffic Flows, p q-CA q-CB q-AB q-AC q-BA q-BA q-BC	or road width central reserve w c = lane width to w c = visibility to the c = visibility to the w W-CR bcu/hr AM 16 2 9 2 0.18	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM 7 152 8 1 4 19 4 215 2 16 5 0.000 -of-flow to Ca B-A B-C	iting vehicl ing vehicles Input V-rBA V-IBA V-IBA V-rBC V-rCB	AM 0.052 0.009	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-CB Q-BAC PM 0.040 0.000	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W = maj W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Geometry : Traffic Flows, p q-CA q-CB q-AB q-AC q-BA q-BC	or road width central reserve w c = lane width to w c = visibility to the c = visibility to the w W-CR bcu/hr AM 16 2 9 2 0.18	ridth vehicle e right for wa e left for waiti nput 6.65 0.00 PM 7 152 8 1 4 19 4 215 2 16 5 0.000 5 0.000 -of-flow to Ca B-A	iting vehicl ing vehicles Input V-rBA V-IBA V-IBA V-rBC V-rCB	AM 0.052	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-CB Q-BAC	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602



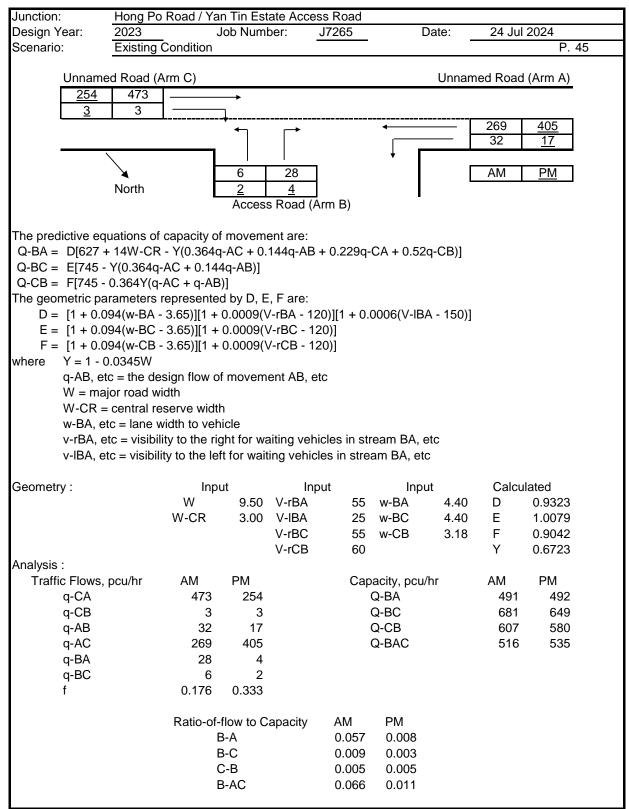


Junction: T-junc		T-junctior	n of San H	ing Road						
Design Year:		2023		Job Numl		7265	Da	te:	24 Jul	2024
Scenario		Existing C	Condition							P. 37
	San Hing	g Road (Ar	m C)					San Hi	ng Road	(Arm A)
	16	24	, 						U	
	1	2		л́						
	<u> </u>			-+			•		25	<u>17</u>
							I	— F	8	3
			1							
			-	0	4			Г	AM	PM
	North	←	-	0	0				,	<u></u>
	Tionan		L		amed Roa	hd	I			
				U.I.						
The pred	lictivo on	uations of o	canacity o	fmovem	ont aro:					
						0 220a-	CA + 0.52q-			
	-	Y(0.364q-/		-		0.2239-	0A + 0.02q-			
		0.364Y(q-/								
	-	rameters r	-		E ara:					
-	-			-			0006(V-IBA ·	150)]		
					/-rBA - 120 /-rBC - 120		0000(V-IBA ·	- 150)]		
	-	•	/	•	/-rCB - 120 /-rCB - 120					
where	Y = 1 - 0	•	3.03)][1 +	0.0009(1	/-100 - 120	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
where			sign flow o	fmovom	ent AB, etc					
	•		•	movern	eni AD, eic	,				
	-	or road wid		L						
		central res								
		c = lane w			siting vahio	loo in otr				
			•	-	-		eam BA, etc	;		
	v-IBA, et		y to the le	it for wait	ing venicle	es in strea	am BA, etc			
Coomote			المعا	4			اسمر		Calaul	lata d
Geometr	y :		Inp		Inpu			0.50	Calcul	
			W		V-rBA	25	w-BA	2.50	D	0.7912
			W-CR	0.00	V-IBA	100		2.50	E	0.8156
					V-rBC	25	w-CB	3.00	F	0.8586
					V-rCB	25			Y	0.7930
Analysis						-	·. "			514
Traffi	c Flows, I	pcu/hr	AM	PM			acity, pcu/hr		AM	PM
	q-CA		24	16			Q-BA		486	489
	q-CB		2	1			Q-BC		601	603
	q-AB		8	3			Q-CB		631	635
	q-AC		25	17		(Q-BAC		486	489
	q-BA		4	0						
	q-BC		0	0						
	f		0.000	0.000						
				flow to C	apacity	AM	PM			
			E	3-A		0.008	0.000			
			E	B-C		0.000	0.000			
			(С-В		0.003	0.002			
			E	B-AC		0.008	0.000			

Junction:	T-junctior	of San H	ing Road						
Design Year:	2033		Job Numl		7265	Da	ate:	24 Jul	2024
Scenario:	Without D	Developme	ent				-		P. 38
	g Road (Ar	m C)					San H	ing Road	(Arm A)
<u>22</u>	39		→						
<u><u>1</u></u>	7		7						
			• _	_→		•		36	<u>20</u>
								113	<u>42</u>
		ŀ	40	0		,	г	AM	PM
North		ŀ	40 50	0				Aivi	
North	•	L		amed Roa	ad	I			
			U.I.		20				
W = maj W-CR = w-BA, et v-rBA, e	- 14W-CR - Y(0.364q-/ 0.364Y(q-/ rameters rr 94(w-BA - 94(w-BC - 94(w-CB - 94(w-CB - 0.0345W c = the des or road wid central res c = lane wid	- Ý(0.364c AC + 0.14 AC + q-AE epresente 3.65)][1 + 3.65)][1 + 3.65)][1 + 3.65)][1 + sign flow o dth serve widt idth to ver ty to the rig	q-AC + 0. 4q-AB)] b)] d by D, E 0.0009(\ 0.0009(\ 0.0009(\ f movem h hicle ght for wa	144q-AB + /-rBA - 120 /-rBC - 120 /-rCB - 120 ent AB, etc	0)][1 + 0.0 0)] 0)] c	0006(V-IBA	- 150)]		
Geometry :		Inp	ut	Inpu	ut	Input		Calcu	lated
,		w		V-rBA	45	w-BA	4.00	D	0.9343
		W-CR	0.00	V-IBA	100	w-BC	4.00	Е	0.9632
				V-rBC	45	w-CB	3.00	F	0.8586
				V-rCB	25			Y	0.7930
Analysis :	nou/h-	A N 4			0	ooitu	-	A N 4	
Traffic Flows, q-CA	pcu/nr	AM 39	PM 22		-	acity, pcu/h Q-BA	I	AM 555	PM 572
q-CA q-CB		39 7	1			д-ва Q-BC		555 695	707
q-CB q-AB		, 113	42			Q-DC Q-CB		603	624
q-∧D q-AC		36	20			Q-BAC		695	707
q-BA		0	0						
q-BC		40	50						
f		1.000	1.000						
		Ratio-of- I	flow to C 3-A 3-C C-B 3-AC	apacity	AM 0.000 0.058 0.012 0.058	PM 0.000 0.071 0.002 0.071			

Junction		T-junctior	of San H	ing Road						
Design Y		2033		Job Numl		7265	Da	ite:	24 Jul	2024
Scenario	:	With App	roved Sch	eme				-		P. 39
		g Road (Ar	m C)					San H	ing Road	(Arm A)
	<u>22</u>	39		→						
	<u>1</u>	7		_						
				ר∙			•		36	<u>20</u>
									119	<u>45</u>
			F	40	2		,	г	A N /	
	North	-	F	40	2			L	AM	<u>PM</u>
	North			<u>50</u>	<u>2</u> named Roa	h	I			
				Uni		au				
Q-BA = Q-BC = Q-CB = The geor D = E =	$D[627 + E[745 - 0] \\ F[745 - $	Y(0.364q-/ 0.364Y(q-/ rameters re 94(w-BA - 94(w-BC - 94(w-CB - 0345W c = the des or road wid c entral res c = lane wi c = visibilit	- Ý(0.364c AC + 0.14 AC + q-AB epresente 3.65)][1 + 3.65)][1 + 3.65)][1 + 3.65)][1 + sign flow o dth serve widtl idth to ver	 q-AC + 0. 4q-AB)] b)] d by D, E 0.0009(\ 0.0009(\ 0.0009(\ f movem h hicle ght for wate 	144q-AB + -, F are: /-rBA - 120 /-rBC - 120 /-rCB - 120 ent AB, etc	0)][1 + 0.0 0)] 0)] c	CA + 0.52q- 0006(V-IBA eam BA, etc am BA, etc	- 150)]		
Geometr	y:		Inp	ut	Inpu	ut	Input		Calcu	lated
			W.	6.00	V-rBA	45	w-BA	4.00	D	0.9343
			W-CR	0.00	V-IBA	100	w-BC	4.00	Е	0.9632
					V-rBC	45	w-CB	3.00	F	0.8586
					V-rCB	25			Y	0.7930
Analysis						-				514
Traffi	c Flows, p	ocu/hr	AM	PM		-	acity, pcu/h	r	AM	PM
	q-CA		39	22			Q-BA		554	571
	q-CB		7	1			Q-BC		694 601	707
	q-AB		119	45			Q-CB		601	624
	q-AC		36	20			Q-BAC		686	701
	q-BA		2	2						
	q-BC f		40	50						
	I		0.952	0.962						
			Ratio-of-	flow to C	apacity	AM	PM			
				3-A	apaony	0.004	0.003			
				3-C		0.058	0.071			
				С-В		0.000	0.002			
				B-AC		0.061	0.074			
			•							

Junction:		T-junctior	of San H	ing Road							
Design Ye	ear:	2033		Job Numl		7265	Da	ite:	24 Jul	2024	
Scenario:		With Prop	osed Sch	eme				_		P. 40	
:	San Hing	g Road (Ar	m C)					San H	ing Road	(Arm A)	
	<u>22</u>	39		→							
	<u>1</u>	7]							
				ં≁ન	_→		←	— L	36	<u>20</u>	
									128	<u>48</u>	
			ŀ	40			•	Г	A.N.4		
	Marth		ŀ	40	6			L	AM	<u>PM</u>	
	North	•	L	<u>50</u>	<u>5</u> amed Roa	ad a	l				
				Uni		au					
Q-BA = Q-BC = Q-CB = The geom D = E = F = where	The predictive equations of capacity of movement are: Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)] Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)] Q-CB = F[745 - 0.364Y(q-AC + q-AB)] The geometric parameters represented by D, E, F are: D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-IBA - 150)] E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-rBC - 120)] F = [1 + 0.094(w-CB - 3.65)][1 + 0.0009(V-rCB - 120)] where $Y = 1 - 0.0345W$ q-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width w-BA, etc = lane width to vehicle v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc										
Geometry	/:		Inp	ut	Inpu	ut	Input		Calcu	lated	
,			w		V-rBA	45	w-BA	4.00	D	0.9343	
			W-CR	0.00	V-IBA	100	w-BC	4.00	Е	0.9632	
					V-rBC	45	w-CB	3.00	F	0.8586	
					V-rCB	25			Y	0.7930	
Analysis :						_					
	Flows, p	ocu/hr	AM	PM			acity, pcu/h	r	AM	PM	
	q-CA		39	22			Q-BA		553	571	
	q-CB		7	1			Q-BC		693	707	
	q-AB		128	48			Q-CB		599	623	
	q-AC		36	20		(Q-BAC		671	692	
	q-BA ~ BC		6	5							
	q-BC		40	50							
	f		0.870	0.909							
				flow to C	apacity	AM	PM				
				B-A		0.011	0.009				
				3-C		0.058	0.071				
				C-B		0.012	0.002				
			ſ	B-AC		0.069	0.080				


Junction:	Ng Lau Road		eak Roa	ad - Larr	n Tei									-	Job Nu	mber:	
Scenario:	Existing Cond							0						Data			41
Design Year:	2023	Designe	ea By:				•	Checke	а ву:				•	Date:	2	4 Jul 202	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Ng Lau Road EB		LT	A1	2	4.00	20.0	Gradient	100	(pcu/hr) 1874	(pcu/hr) 110	0.059	0.059	100	(pcu/hr) 1874	(pcu/hr) 135	0.072	0.072
-																	
Castle Peak Roa	d - Lam Tei NB	LT	B1	1	3.50	15.0		100	1786	128	0.072	0.072	100	1786	128	0.072	0.072
pedestrian pha	ise		C _(P)	1,2		min c	rossing	time =	8	sec	GM +	8	sec F	GM =	16	sec	
			D _(P)	3			rossing		7		GM +	7		GM =	14	sec	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)				N	<u>Г</u>					Note:		
	110		Î				135		Î		+ 100 (W-3. 1 + 1.5 f/r)		= 2080 + 10 (S - 230) / (
	, L,					•	L		I	011 - 07 (Peak		Peak			
12					128						1+2		1+2				
										Sum y	0.130		0.144				
										L (s)	2358		2284				
										C (s)	3609		3627				
										practical y R.C. (%)	0.312 139%		0.333 132%				
4		0				0					10070	I	10270				
1 C _(P) ↓	↓C _(P)	2 C _(P)	↑ ↓	A1	C(P)	3	Drph			4				5			
- (r) ↓	↓ - (e)	- (r).	*	Ľ	• • • • •		← → +++++ +++++	E(IRT)									
B1							+ ++++	(=)									
AM G =			G =		I/G =		G =		I/G =		G =		I/G =		G =		
G = PM G =			G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G = G =			G = G =		I/G =		G = G =		I/G =		G = G =		I/G =		G = G =		
-															-		

						Signal J	unction A	nalysis									
Junction: I	Ng Lau Road	d / Castle P	eak Roa	ad - Lam	Tei									-	Job Nu	mber:	J7265
Scenario: <u>N</u>	Without Dev	elopment														Ρ.	42
Design Year:	2033	Designe	ed By:				-	Checke	d By:					Date:	2	4 Jul 202	24
						1				AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Ng Lau Road EB		LT	A1	1	4.00	15.0	Gradient	100	1832	137	0.075		100	1832	155	0.085	
Castle Peak Road -	- Lam Tei NB	SA	B1	2,3	3.30				1945	270	0.139			1945	540	0.278	
		SA	B2	2,3	3.30				2085	290	0.139			2085	579	0.278	
		SA	B3	2,3	3.30				2085	290	0.139			2085	580	0.278	
		RT	C1	1	3.40	15.0		100	1905	250	0.131	0.131	100	1905	182	0.096	0.096
Castle Peak Road -	- Lam Tei NB	LT	D1	2	3.50	13.0		100	1762	158	0.090		100	1762	145	0.082	
		LT	D2	2	3.40	15.0		100	1905	148	0.078		100	1905	177	0.093	
		SA	E1	2,3	3.65				2120	346	0.163			2095	779	0.372	0.372
		SA	E2	2,3	3.65				2120	346	0.163			2120	789	0.372	
Castle Peak Road -	- Lam Tei SB	LT+SA	F1	2,3	3.70	15.0		2	1981	594	0.300	0.300	4	1977	412	0.208	
		SA	F2	2,3	3.70				2125	637	0.300			2125	443	0.208	
		SA	F3	2,3	3.70				2125	637	0.300			2125	443	0.208	
Castle Peak Road -	Lam Tei SB	LT+SA	G1	1,2,3	3.65	10.0		11	1948	754	0.387		26	1906	459	0.241	
		SA	G2	1,2,3	3.65				2120	821	0.387			2120	511	0.241	
		RT	H1	4	3.50	20.0		100	1958	101	0.052	0.052	100	1958	82	0.042	0.042
Wong Kong Wai Ro	oad WB	LT	I 1	4	4.00	10.0		100	1752	20	0.011		100	1752	14	0.008	
Fuk Hang Tsuen Re	oad WB	LT	J1	5	3.65	12.0		100	1760	274	0.156	0.156	100	1760	241	0.137	0.137
		LT+RT	J2	5	3.65	15.0		100	1927	301	0.156		100	1927	264	0.137	
Road P1		LT+RT	K1	5	3.80	12.0		100	1773	183	0.103		100	1773	197	0.111	
		RT	K2	5	3.80	15.0		100	1941	200	0.103		100	1941	215	0.111	
pedestrian phase	9		L _(P)	3,4,5		min c	rossing	time =	5	sec	GM +	11	sec F	GM =	16	sec	
			M _(P)	3			rossing		5	sec	GM +	15	sec F	GM =	20	sec	
			N _(P)	3,4			rossing		5	sec	GM +	16	sec F	GM =	21	sec	
			O _(P)	5		min c	rossing	time =	5	sec	GM +	14	sec F	GM =	19	sec	
			P _(P)	4			rossing		5		GM +	18		GM =	23	sec	
			Q _(P)	3		min c	rossing	time =	11	sec	GM +	11	sec F	GM =	22	sec	
			R _(P)	1,2,4,5		min c	rossing	time =	5	sec	GM +	13	sec F	GM =	18	sec	
AM Traffic Flow (pcu/hr)				PM Traffic F	low (pcu/hr)										Note:		
,	137		N		,	155			N	S = 1940 +	+ 100 (W-3.	25) S =	= 2080 + 10	00 (W-3.25)			
	L.	282 101				L		↓ 82		SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
1	158 148					145 177					AM	Peak	PM	Peak			
				1699 182		1568					1+2,3+4+5		1+2,3+4+5				
↓ 250 -				♥ 182						Sum y	0.638		0.646				
		1565						955 📩		L (s)	21		21				
	1787 81	↓ ↓			→	1177		Ţ		C (s)	120		120				
	20	¹⁰		▲ 313	۲	•	14	15		practical y	0.743		0.743				
429 146		•		313	192					R.C. (%)	16%		15%				
1 R _(P)	A1 R _{(F}	2	R _(P)		R _(P)	3	+++	L _(P)	Q _(P)	4	R _(P)	L(P)	R _(P)	5	R _(P)	L _(P)	K1 K2 R
• [*	B1 →			•	в1 →	<u> </u>	<u> </u>					•		•	*	44
		$B2 \longrightarrow B3 \longrightarrow$	D2 E1			$B2 \rightarrow B3 \rightarrow $	E1				M _(P)						
C1 🚽				F3			E2	F3			N(P)		₫_н1		N(P)		
	↓	G2 G1		F2 F1	← G2 ← G1		↓ ↓	F2 F1	← G2 ← G1	+ - P (P)	• •	•		4 1 4 , \$	•	O _(P)	
	*		•		•		•		•			1		11 J1 J2			
AM G =	I/G	= 8	G =		I/G =	7	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G =	I/G		G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
PM G =		= 8	G =		I/G =	7	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G =	I/G		G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
_							-				-				-		-

						Signal J	unction A	laiysis									
Junction:	Ng Lau Roa	d / Castle P	eak Roa	ad - Lam	Tei									-	Job Nu	mber:	J7265
Scenario:	With Approv	ed Scheme														Ρ.	43
Design Year:	2033	Designe	ed By:				-	Checke	d By:					Date:	2	4 Jul 202	24
				r									1				
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical y
Ng Lau Road EB		LT	A1	1	4.00	15.0	Gradient	100	1832	137	0.075		100	1832	155	0.085	
Castle Peak Road	d - Lam Tei NB	SA	B1	2,3	3.30				1945	270	0.139			1945	540	0.278	
		SA	B2	2,3	3.30				2085	290	0.139			2085	579	0.278	
		SA	B3	2,3	3.30				2085	290	0.139			2085	580	0.278	
		RT	C1	1	3.50	15.0		100	1914	250	0.131	0.131	100	1914	182	0.095	0.095
Castle Peak Road	d - Lam Tei NB	LT	D1	2	3.50	13.0		100	1762	158	0.090		100	1762	145	0.082	
		LT	D2	2	3.40	15.0		100	1905	148	0.078		100	1905	177	0.093	
		SA	E1	2,3	3.65				2120	346	0.163			2095	779	0.372	
		SA	E2	2,3	3.65				2120	346	0.163			2120	789	0.372	0.372
Castle Peak Road	d - Lam Tei SB	LT+SA	F1	2,3	3.70	15.0		2	1981	594	0.300		4	1977	412	0.208	
		SA	F2	2,3	3.70				2125	637	0.300			2125	443	0.208	
		SA	F3	2,3	3.70				2125	637	0.300	0.300		2125	443	0.208	
Castle Peak Road	d - Lam Tei SB	LT+SA	G1	1,2,3	3.65	10.0		11	1948	754	0.387		26	1906	459	0.241	
		SA	G2	1,2,3	3.65				2120	821	0.387			2120	511	0.241	
		RT	H1	4	3.50	20.0		100	1958	101	0.052	0.052	100	1958	82	0.042	0.042
Wong Kong Wai I	Road WB	LT	l1	4	4.00	10.0		100	1752	20	0.011		100	1752	14	0.008	
Fuk Hang Tsuen I	Road WB	LT	J1	5	3.65	12.0		100	1760	274	0.156	0.156	100	1760	241	0.137	0.137
		LT+RT	J2	5	3.65	15.0		100	1927	301	0.156		100	1927	264	0.137	
Road P1		LT+RT	K1	5	3.80	12.0		100	1773	183	0.103		100	1773	197	0.111	
		RT	K2	5	3.80	15.0		100	1941	200	0.103		100	1941	215	0.111	
pedestrian phas	se		L _(P)	3,4,5		min c	rossing	time =	5	sec	GM +	11	sec F	GM =	16	sec	
			M _(P)	3		min c	rossing	time =	5	sec	GM +	15	sec F	GM =	20	sec	
			N _(P)	3,4		min c	rossing	time =	5	sec	GM +	16	sec F	GM =	21	sec	
			O _(P)	5		min c	rossing	time =	5	sec	GM +	14	sec F	GM =	19	sec	
			P _(P)	4		min c	rossing	time =	5	sec	GM +	18	sec F	GM =	23	sec	
			Q _(P)	3		min c	rossing	time =	11	sec	GM +	11	sec F	FGM =	22	sec	
			R _(P)	1,2,4,5		min c	rossing	time =	5	sec	GM +	13	sec F	FGM =	18	sec	
AM Traffic Flow (pcu/hr))		N	PM Traffic I	low (pcu/hr)				N	S - 1940 -	+ 100 (W-3.:	25) S.	= 2080 + 10	0 (W-3 25)	Note:		
	137 I	282// 101				155	330	// 82		SM = S / ((1 + 1.5 f/r)			
	158	•/4				145		+				Peak		Peak			
850				1699							1+2,3+4+5		1+2,3+4+5				
▶ 250	692			v 182	-	1568				Sum y	0.638		0.646				
		101						82		L (s)	21		21				
+	1787	1565 🦾						955		C (s)	120		120				
≁ ₁⊧≯		√ 10		•	-+	121	4 1	15		practical y	0.743		0.743				
429 ► 146	20			₹ 313	192		14			R.C. (%)	16%		15%				
1 B	A1 R _{(F}	1 2	R _(P)		R _(P) ↓	3	*	>	4 - ►	4	R₀¶ ◄	>	R _(P)	5	R₀Î ◄	•	K1 K2 R
· · · · · · · •	Ļ	*	••••• †		+ (⁽⁾)		<u>+</u> +++	- 1 ° · + →	-(P)		↓	-(r)	↓	Ĩ		-(r) *	4
		$B1 \rightarrow B2 \rightarrow $					F4 — 5				↑ ! Μ _(P)						
C1-		вз —		F3		D3		F3			↓ ···		₫_н1		Nor		
	÷	G2	+	F2			-	F2 F1	← G2 ← G1	P _(P)	(P)				. •(P)	O _(P)	.
	۰ ۲	61	-+	11	`↓ ^{G1}		. †	гI	`↓ ^{G1}			1		1 ↑ J1 J2			
AM G =	1/0	= 8	G =		I/G =	7	G =		I/G =	1	G =		I/G =		G =		I/G = 5
G =	I/G		G = G =		I/G =	,	G =		I/G =		G =		I/G =	5	G =		I/G = 5
PM G=		= 8	G =		I/G =	7	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G =	I/G		G =		I/G =		G =		I/G =		G =		I/G =	-	G =		I/G = 3
0=	1/0	-	0-				0-		.0-		0-				0-		

						Signal Ji	unction A	nalysis									
Junction:	Ng Lau Road	d / Castle F	eak Ro	ad - Lar	n Tei										Job Nu	mber:	J7265
Scenario:	With Propos	ed Scheme)													Ρ.	44
Design Year:	2033	Designe	ed By:				-	Checke	d By:					Date:	24	4 Jul 202	24
								1		AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Ng Lau Road EB		LT	A1	1	4.00	15.0		100	1832	137	0.075		100	1832	155	0.085	
Castle Peak Road	d - Lam Tei NB	SA	B1	2,3	3.30				1945	274	0.141			1945	544	0.280	
		SA	B2	2,3	3.30				2085	294	0.141			2085	583	0.280	
		SA	B3	2,3	3.30				2085	293	0.141			2085	582	0.279	
		RT	C1	1	3.50	15.0		100	1914	250	0.131	0.131	100	1914	182	0.095	0.095
Castle Peak Road	d - Lam Tei NB	LT	D1	2	3.50	13.0		100	1762	158	0.090		100	1762	145	0.082	
		LT	D2	2	3.40	15.0		100	1905	149	0.078		100	1905	177	0.093	
		SA	E1	2,3	3.65				2120	351	0.166			2095	784	0.374	
		SA	E2	2,3	3.65				2120	351	0.166			2120	794	0.375	0.375
Castle Peak Road	d - Lam Tei SB	LT+SA	F1	2,3	3.70	15.0		2	1981	598	0.302		4	1977	416	0.210	
		SA	F2	2,3	3.70				2125	641	0.302			2125	447	0.210	
		SA	F3	2,3	3.70				2125	641	0.302	0.302		2125	447	0.210	
Castle Peak Road	d - Lam Tei SB	LT+SA	G1	1,2,3	3.65	10.0		11	1948	759	0.390		26	1906	464	0.243	
		SA	G2	1,2,3	3.65				2120	827	0.390			2120	517	0.244	
		RT	H1	4	3.50	20.0		100	1958	101	0.052	0.052	100	1958	82	0.042	0.042
Wong Kong Wai	Road WB	LT	11	4	4.00	10.0		100	1752	20	0.011		100	1752	14	0.008	
Fuk Hang Tsuen	Road WB	LT	J1	5	3.65	12.0		100	1760	274	0.156	0.156	100	1760	241	0.137	0.137
		LT+RT	J2	5	3.65	15.0		100	1927	301	0.156		100	1927	264	0.137	
Road P1		LT+RT	K1	5	3.80	12.0		100	1773	183	0.103		100	1773	197	0.111	
		RT	K2	5	3.80	15.0		100	1941	201	0.104		100	1941	216	0.111	
pedestrian pha	se		L _(P)	3,4,5		min c	rossing	time =	5	sec	GM +	11	sec F	GM =	16	sec	
			$M_{(P)}$	3		min c	rossing	time =	5	sec	GM +	15	sec F	GM =	20	sec	
			N _(P)	3,4		min c	rossing	time =	5	sec	GM +	16	sec F	GM =	21	sec	
			O _(P)	5		min c	rossing	time =	5	sec	GM +	14	sec F	GM =	19	sec	
			P _(P)	4		min c	rossing	time =	5	sec	GM +	18	sec F	GM =	23	sec	
			Q _(P)	3		min c	rossing	time =	11	sec	GM +	11	sec F	GM =	22	sec	
			R _(P)	1,2,4,5		min c	rossing	time =	5	sec	GM +	13	sec F	GM =	18	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr)				N	S - 1940 -	+ 100 (W-3.	25) S -	2080 + 10	0 (W-3 25)	Note:		
	137	283// 101				155 I	331	// 82			1 + 1.5 f/r)	,	(S - 230) / (
	158	•/4				ц 145	• •/•	4				Peak		Peak			
861	149			1709							1+2,3+4+5		1+2,3+4+5				
★ 250	702			v 182		1578				Sum y	0.640		0.648				
		101						82		L (s)	21		21				
•	1799	1576 🛴			+	1189		966		C (s)	120		120				
• ••	81	▲ 10		•		121	•	15		practical y	0.743		0.743				
429 t 146	20			▲ 313	192		14			R.C. (%)	16%		15%				
		î la				0			← ->					c.	_ † <	•	
1 R _(P) ▼	A1 R _{(P}	••• ²	R _(P)		R _(P) ↓	3	<u>+</u> ++-		Q _(P)	4	R _(P)	L _(P)	R _(P) ↓	5	R _(P) ↓	L(P)	
		$B1 \longrightarrow B2 \longrightarrow$				$B1 \longrightarrow B2 \longrightarrow$					†						
C1-		вз→	$E1 \longrightarrow E2 \longrightarrow$			вз→	$E1 \longrightarrow E2 \longrightarrow$				↓ ^M (P)		۶				
,	←	G2	Ļ	- F3 - F2	← G2		Ļ	F3 F2	← G2	P(P)	N _(P) ∎ ↓		≛н1		N _(P) ∎ ↓	O _(P)	I
	*∓	G1	*∓	F1	↓ G1		*∓	F1	← G2 ← G1	+ ∸i	•	1		* * *		← →	
												i1		J1 J2			
AM G =		= 8	G =		I/G =	7	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G =	I/G		G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
PM G =		= 8	G =		I/G =	7	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G =	I/G	=	G =		I/G =	<u> </u>	G =		I/G =		G =		I/G =		G =		I/G =

Priority Junction Analysis

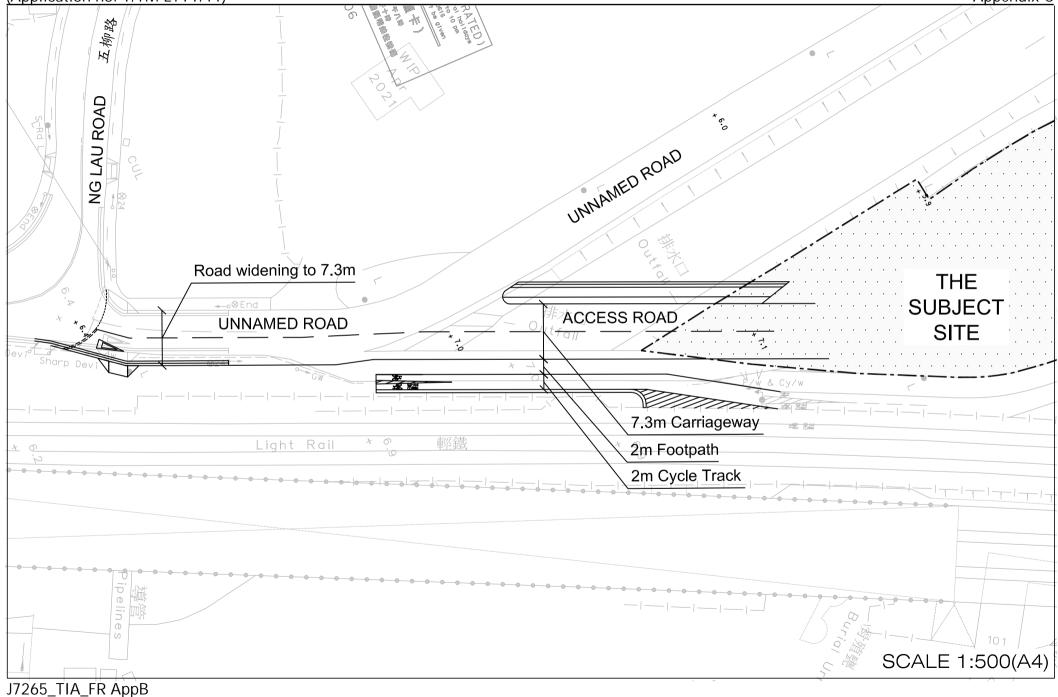
							unction Ar										
Junction:	Hong Po Ro		ng Road											-	Job Nu		J7265
Scenario: Design Year:	Without Dev 2033	velopment Designe	ed By:					Checke	d By:					Date:	2	P. 4 Jul 20	46 24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Hong Po Road W	/B	SA+LT	A1	1	3.75	10.0	Gradient	11	(pcu/hr) 1958	(pcu/hr) 333	0.170	0.170	5	(pcu/hr) 1975	(pcu/hr) 397	0.201	0.201
0		SA	A2	1	3.75	10.0			2130	362	0.170	0.170	5	2130	428	0.201	0.201
Access Road NB	l	LT+RT	B1	2	3.50	15.0		100	1786	35	0.020	0.020	100	1786	8	0.004	0.004
Hong Po Road E	В	SA	C1	1	3.65				1980	493	0.249	0.249		1980	300	0.152	0.152
		SA	C2	1	3.65				2120	493 527	0.249	0.249		2120	300	0.152	0.152
			02		0.00				2120	021	0.2-10			2120	021	0.101	
San Hing Road S	B	LT	D1	3	3.65	10.0		100	1722	73	0.042	0.042	100	1722	36	0.021	0.021
		LT+RT	D2	3	3.65	15.0		100	1800	77	0.043		100	1800	37	0.021	
pedestrian pha	ise		E _(P)	4		min c	rossing t	time =	8	sec	GM +	7	sec F	GM =	15	sec	
podootnan pha			E(P)	4			rossing f		7		GM +	6		GM =	13	sec	
			G _(P)	4			rossing f		8		GM +	7		GM =	15	sec	
			H _(P)	4			rossing		9		GM +	5		GM =	14	sec	
AM Traffic Flow (pcu/hr	r)		N	PM Traffic	Flow (pcu/hr)				N	S - 1040	+ 100 (W-3.	25) 8 -	2080 + 10	0 (W-3.25)	Note:		
											1 + 1.5 f/r)			(1 + 1.5 f/r)			
	59 ┥	→ 91				25	$ \rightarrow $	48				Peak		Peak			
→	1020				 →	621					1+2+3		1+2+3				
										Sum y	0.481		0.378				
		660					807	←		L (s)	27		27				
ŧ	5 - 30	★ 35			2	<>	6	♦ 18		C (s)	120		120				
	I									practical y	0.698		0.698				
										R.C. (%)	45%		85%				
1		2				3				4				5			
							D1 D2				*	H _(P)					
$C1 \longrightarrow C2$											E _(P)	G _(P)					
	▲ A1 ▲ A2		${ }$.	_ ,	,				
	Ŧ		B1								F _(P)						
AM G =	-	I/G = 5	G =		I/G =	5	G =		I/G =	2	G =	15	I/G =	3	G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =	-	I/G = 5	G =		I/G =	5	G =		I/G =	2	G =	15	I/G =	3	G =		
G =	-	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
-																	

						Signal J	unction A	nalysis									
Junction:	Hong Po Ro	oad / San Hi	ng Road	1											Job Nu	mber:	J7265
Scenario:	With Approv	ved Scheme														Ρ.	47
Design Year:	2033	Designe	ed By:				-	Checke	d By:					Date:	2	4 Jul 202	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow (pcu/hr)	y value	Critical y
Hong Po Road W	/B	SA+LT	A1	1	3.75	10.0	Gradient	11	(pcu/hr) 1958	(pcu/hr) 333	0.170		5	(pcu/hr) 1975	(pcu/nr) 397	0.201	
		SA	A2	1	3.75	10.0			2130	362	0.170		0	2130	428	0.201	0.201
Access Road NB		LT+RT	B1	2	3.50	15.0		100	1786	35	0.020		100	1786	8	0.004	
Hong Po Road E	В	LT	C1	1	3.65	25.0		100	1868	23	0.012		100	1868	35	0.019	
		SA	C2	1	3.65				2120	510	0.241	0.241		2120	311	0.147	
		SA	C3	1	3.65				2120	510	0.241			2120	310	0.146	
San Hing Road S	B	LT	D 4	2	0.05	10.0		100	4700	70	0.044	0.044	100	4700	07	0.001	0.004
		LT+RT	D1 D2	3	3.65 3.65	10.0 15.0		100 100	1722 1800	76 80	0.044	0.044	100 100	1722 1800	37 39	0.021	0.021
		2	DZ	3	3.05	15.0		100	1800	80	0.044		100	1800	39	0.022	
															-		
pedestrian pha	se		E _(P)	4		min c	rossing	time =	8	sec	GM +	7	sec F	GM =	15	sec	
			F _(P)	4		min c	rossing	time =	7	sec	GM +	6	sec F	GM =	13	sec	
			G _(P)	4		min c	rossing	time =	8	sec	GM +	7	sec F	GM =	15	sec	
			H _(P)	4			rossing		11		GM +	9	sec F		20	sec	
			I _(P)	2,3,4	-	min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr))		Ν	PM Traffic	Flow (pcu/hr)				N	S = 1940 ·	+ 100 (W-3	25) S =	2080 + 10	0 (W-3.25)	Note:		
							I.				1 + 1.5 f/r)		(S - 230) / (
↑ ²³	3 63 ◀	→ 93			t 35	27		49			AM	Peak	PM F	Peak			
_ _	1020				_	621					1+3		1+3				
		000 d					007			Sum y	0.285		0.222				
5	5 🛶 🔸 30	660			2	←→	807	Ļ		L (s)	41		41				
		35			2		0	18		C (s)	120 0.593		120 0.593				
										practical y R.C. (%)	108%		166%				
1		2				3				4				5			
•						-		D1 D2			(P)	H _(P)		-			
C1										1	E _(P)	G _(P)					
			←→				•										
$\begin{array}{c} C_1 \\ C_2 \\ C_3 \end{array} $	▲ A1 ▲ A2										· •						
$\begin{array}{c} C1 \\ C2 \\ C3 \end{array}$	A1 A2		 B1								Г(P)						
$\begin{array}{c} C1 \\ C2 \\ C3 \end{array}$	Ļ			5		5				10	г (P) -	15		2			
C1 C2 AM G = G =	•	VG = 5 VG = 5	G =	5	I/G =		G = G =		I/G =			15 15	I/G =		G = G =		
C1 C2 C3 AM G = G = PM G =	•	VG = 5 VG = 5 VG = 5			I/G = I/G = I/G =	5	G = G = G =		I/G = I/G = I/G =	10	G =	15 15 15	1/G = 1/G = 1/G =	3	G = G = G =		

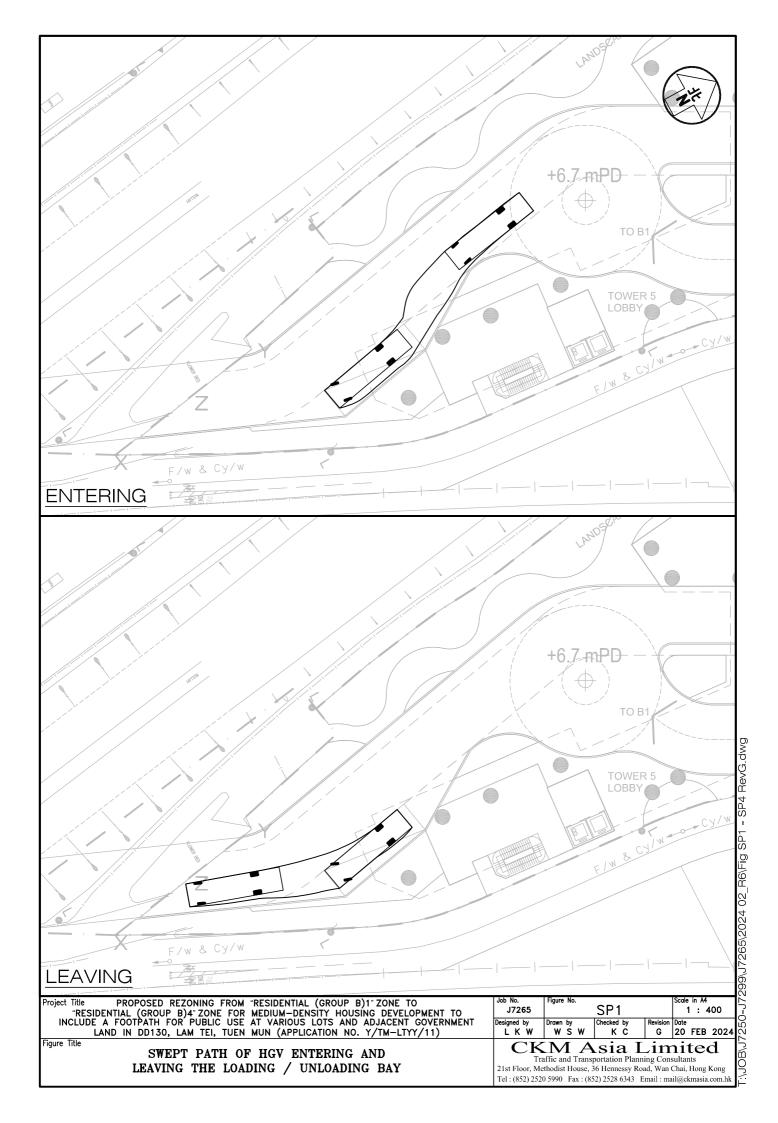
						-		nalysis									
Junction:	Hong Po Ro	ad / San Hi	ng Road	t											Job Nu	mber:	J7265
Scenario:	With Propos							Charles	d Dur					Datas			48
Design Year:	2033	Designe	а ву:				•	Checke	а ву:					Date:	2	4 Jul 20:	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Hong Po Road W	VB	SA+LT	A1	1	3.75	10.0	Gradient	11	(pcu/hr) 1958	(pcu/hr) 333	0.170		5	(pcu/hr) 1975	(pcu/hr) 397	0.201	
		SA	A1 A2	1	3.75	10.0		11	2130	362	0.170		5	2130	428	0.201	0.201
Access Road NB	1	LT+RT	B1	2	3.50	15.0		100	1786	35	0.020		100	1786	8	0.004	
Hong Po Road E	В	LT	C1	1	3.65	25.0		100	1868	27	0.014		100	1868	38	0.020	
		SA	C2	1	3.65	20.0		100	2120	510	0.241	0.241	100	2120	311	0.147	
		SA	C3	1	3.65				2120	510	0.241			2120	310	0.146	
One Uline Deed O	20	1.7															
San Hing Road S	<u>эв</u>	LT LT+RT	D1	3	3.65	10.0		100	1722	81	0.047	0.047	100	1722	39	0.023	0.023
		LITKI	D2	3	3.65	15.0		100	1800	84	0.047		100	1800	40	0.022	
pedestrian pha	ase		E _(P)	4		min c	rossing	time =	8	sec	GM +	7	sec F	GM =	15	sec	
			F _(P)	4			rossing		7	sec	GM +	6	sec F	GM =	13	sec	
			G _(P)	4		min c	rossing	time =	8	sec	GM +	7	sec F	GM =	15	sec	
			$H_{(P)}$	4		min c	rossing	time =	11	sec	GM +	9	sec F	GM =	20	sec	
			I _(P)	2,3,4		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr	e)			DM Troffie	Flow (pcu/hr)										Note:		
Aw Hanc Flow (pcu/li	9		N	FWITTAILIC	now (pcu/ni)				N	S = 1940	+ 100 (W-3	.25) S =	2080 + 10	0 (W-3.25)	NOTE.		
27	7 69				. 38	20	\downarrow	50		SM = S / (1 + 1.5 f/r)		S - 230) / (
Ť	1020		·		_ 1 ,			50			AM 1+3	Peak	PM 1+3	Peak			
										Sum y	0.288		0.224				
		660 +					807	•		L (s)	41		41				
5	5 - 30	↓ 35			2	←	6	↓ 18		C (s)	120		120				
	I					I				practical y	0.593		0.593				
										R.C. (%)	106%		165%				
1		2				3				4	, I _(P)			5			
C1								D1 D2			`* +	H _(P)					
							*	⊥, L,			E _(P)	G _(P)					
	A1 A2		\neg								← F _(P)	-• 1	,				
	*		B1								• (P)						
AM G =	= 1/	/G = 5	G =	5	I/G =	5	G =		I/G =	10	G =	15	I/G =	3	G =		
G =		G = 5	G =	<u>.</u>	I/G =		G =		I/G =		G =		I/G =		G =	<u>.</u>	
PM G =	: IA	/G = 5	G =	5	I/G =	5	G =		I/G =	10	G =	15	I/G =	3	G =		
G =	: I/	/G = 5	G =		I/G =	5	G =		I/G =	10	G =	15	I/G =	3	G =		

Appendix B – Public Transport Survey Result

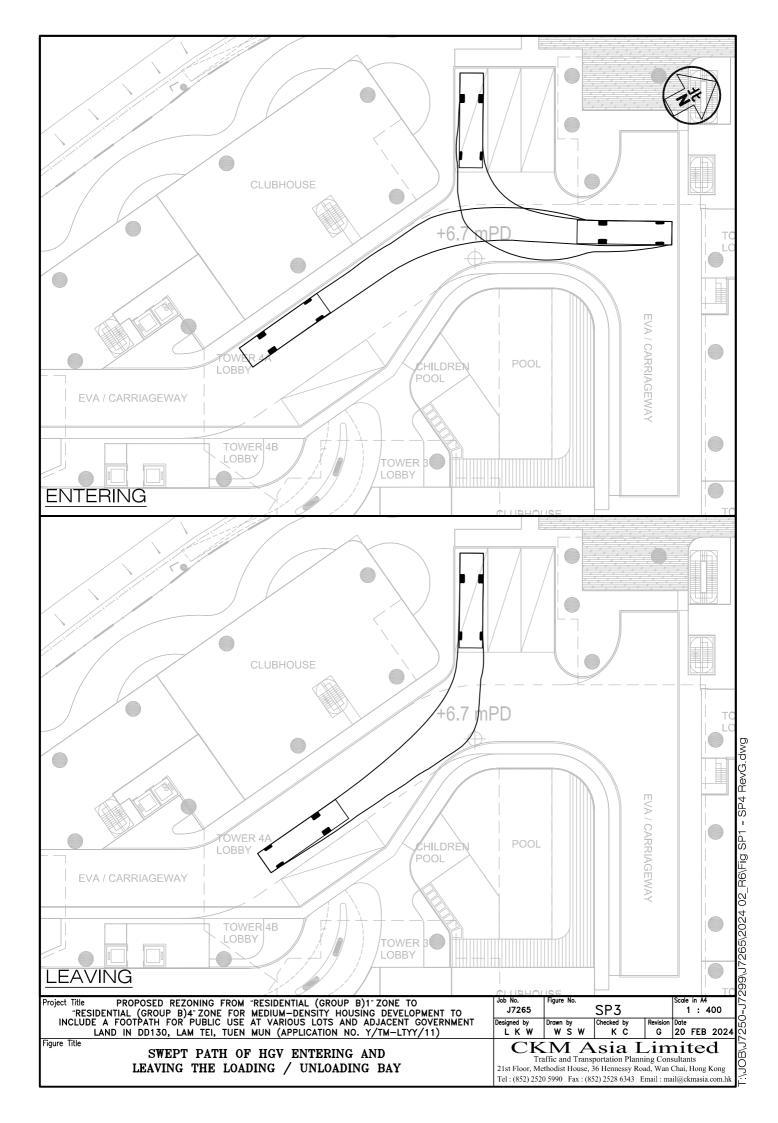
TABLE B1DETAILED INFORMATION OCCUPANCY SURVEY RESULT ON THE
PUBLIC TRANSPORT NEAR THE PROPOSED DEVELOPMENT

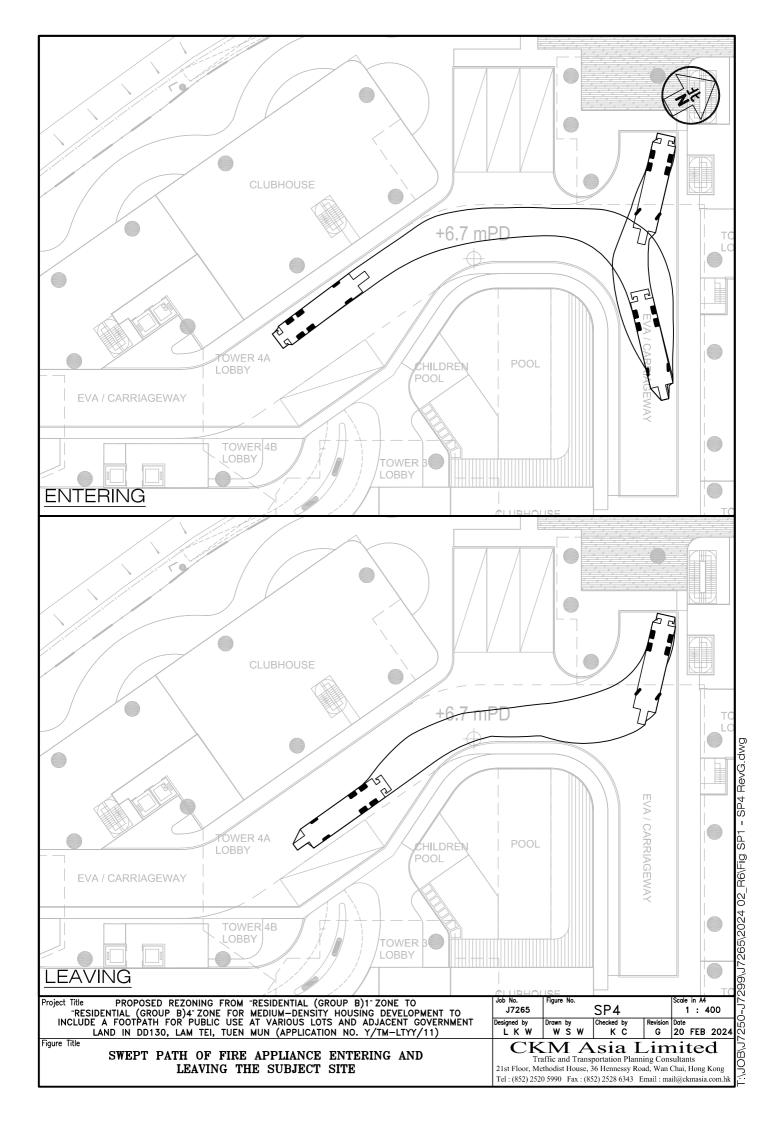

Direction	Routes	Survey			M				PM	
		Location	No. of	No. of P		Occu-	No. of		assenger	Occu-
			Trips		Occupied		Trips		Occupied	
				[a]		[c]=[b]/[a]		[a]	[b]	[c]=[b]/[a]
To other	CTB 50	LTI - WB	3	360	180	50%	0	-	-	-
districts	CTB 55	LTI - WB	4	480	320	67%	0	-	-	-
	CTB 56	LTI - WB	0	-	-	-	0	-	-	-
	CTB 56A	LTI - WB	2	240	168	70%	0	-	-	-
	CTB 950	LTI - WB	2	240	150	63%	0	-	-	-
	CTB 955	LTI - WB	1	120	60	50%	0	-	-	-
	CTB B3A	LTI - WB	1	120	108	90%	2	240	120	50%
	KMB 53	CPR - SB	2	240	90	38%	1	120	60	50%
	KMB 63X	CPR - SB	5	600	338	56%	4	480	120	25%
	KMB 67M	LTI - WB	8	960	210	22%	3	360	36	10%
	KMB 67X	LTI - WB	7	840	174	21%	1	120	30	25%
	KMB 68A	CPR - SB	3	360	195	54%	3	360	135	38%
	KMB 258P	CPR - SB	2	240	120	50%	0	-	-	-
	KMB 261P	CPR - SB	4	480	120	25%	0	-	-	-
	KMB 267X	CPR - NB	1	120	36	30%	0	-	-	-
	KMB 960A	LTI - WB	2	240	24	10%	0	-	-	-
	KMB 960C	LTI - EB	1	120	6	5%	0	-	-	-
	KMB 960P	CPR - SB	6	720	412	57%	0	-	-	-
	KMB 960X	CPR - SB	7	840	105	13%	0	-	-	-
	LWB A34	CPR - SB	3	360	66	18%	1	120	10	8%
	LWB E33P	LTI - EB	3	360	77	21%	0	-	-	-
	NLB B2 GMB 42	CPR - SB LTI - WB	3	360 76	158	44%	3	360	225	63%
From other		LTI - VVB	4	- 70	46	- 60%	4	76 360	31 90	40% 25%
districts	CTB 50 CTB 55	LTI - EB	0	-	-	-	2	240	90 60	25%
uistricts	CTB 55 CTB 56	LTI - EB	0	-	-	-	0		-	23 %
	CTB 56A	LTI - EB	3	360	- 180	50%	3	360	270	- 75%
	CTB 950	LTI - EB	0		-	- 50 %	0	-		-
	CTB 955	LTI - EB	0	-		-	1	120	72	60%
	CTB 935 CTB B3A	LTI - EB	1	120	- 60	50%	2	240	180	75%
	KMB 53	CPR - NB	2	240	90	38%	2	240	180	75%
	KMB 63X	CPR - NB	2	240	90	38%	2	240	180	75%
	KMB 67M	LTI - EB	3	360	27	8%	4	480	150	31%
	KMB 67X	LTI - EB	3	360	50	14%	3	360	90	25%
	KMB 68A	CPR - NB	2	240	140	58%	5	600	350	58%
	KMB 258P	CPR - NB	0	-	-	-	3	360	90	25%
	KMB 261P	CPR - SB	0	-	-	-	0	-	-	-
	KMB 267X	LTI - EB	0	-	-	-	0	-	-	-
	KMB 960A	LTI - WB	0	-	-	-	0	-	-	-
	KMB 960C	LTI - WB	0	-	-	-	0	-	-	-
	KMB 960P	CPR - NB	0	-	-	-	2	240	60	25%
	KMB 960X	CPR - NB	0	-	-	-	3	360	180	50%
	LWB A34	CPR - NB	0	-	-	-	3	360	36	10%
	LWB E33P	LTI - WB	0	-	-	-	3	360	36	10%
	NLB B2	CPR - NB	4	480	240	50%	3	360	135	38%
	GMB 42	LTI - EB	4	76	20	26%	4	76	25	33%

CPR – Castle Peak Road –Lam Tei LTI – Lam Tei Interchange

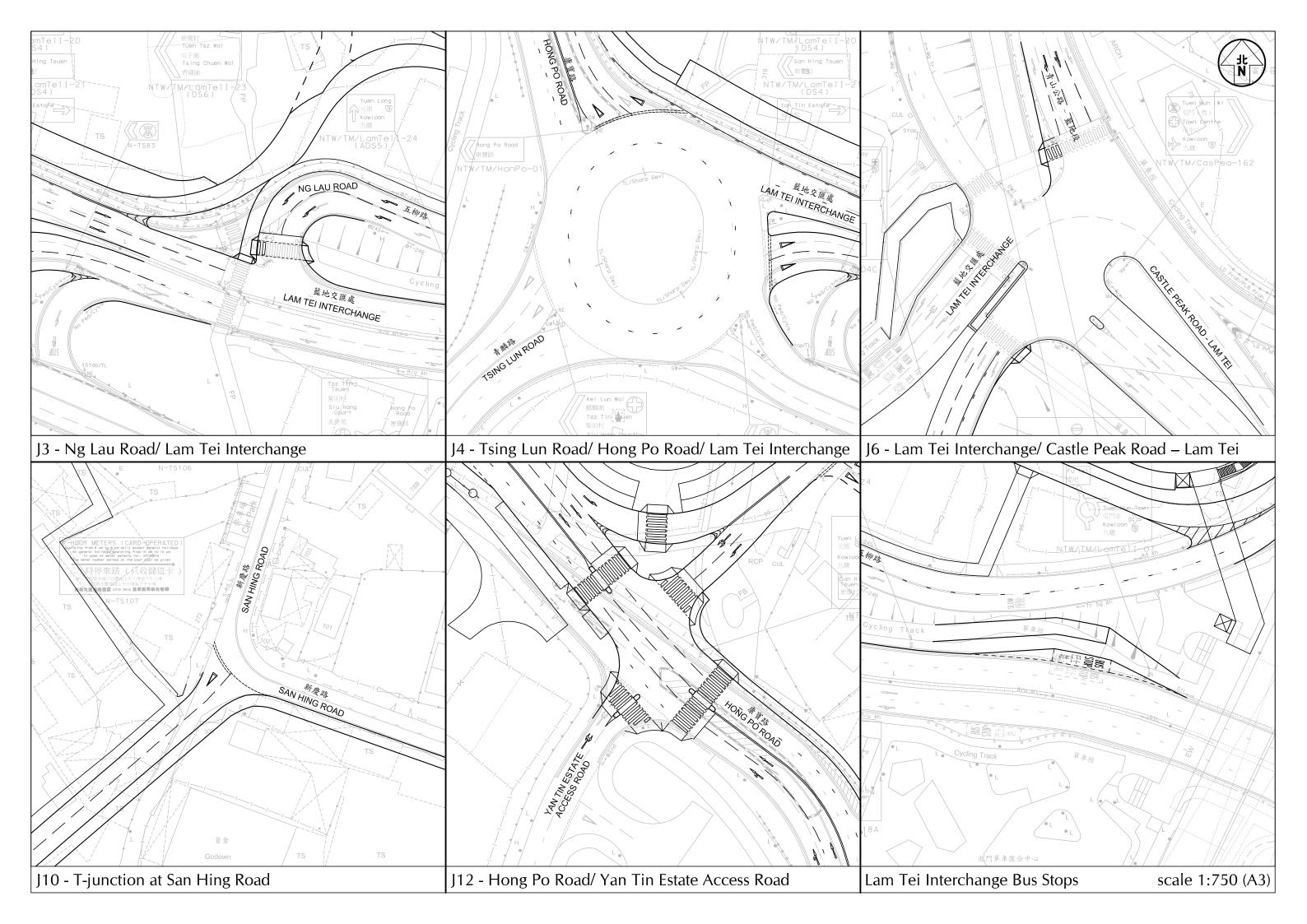

NB – northbound SB – southbound EB – eastbound WB – westbound

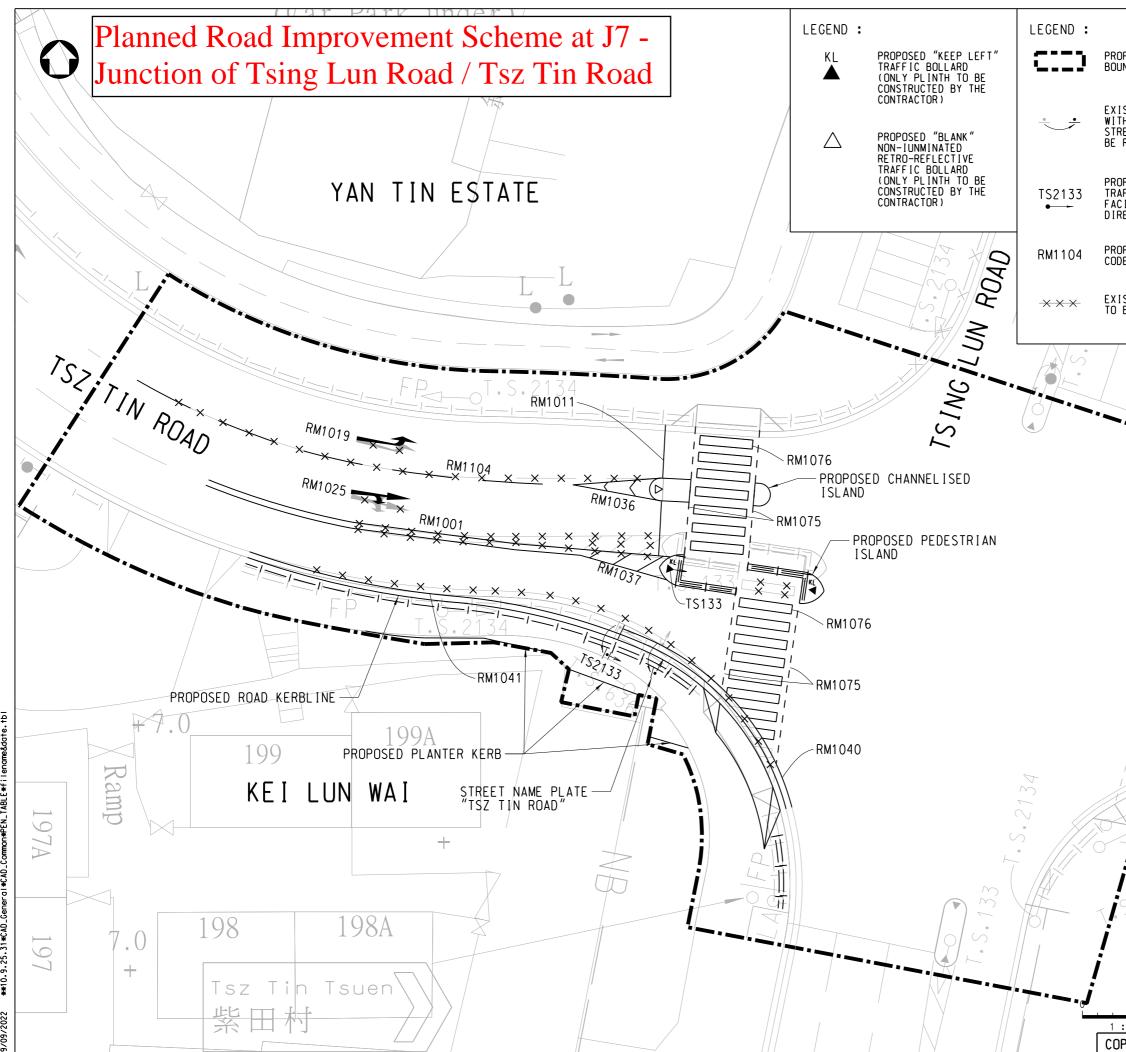

Appendix C – Planned Road Works to be implemented by the Owner Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun (Application no. Y/TM-LTYY/11)


Traffic Impact Assessment Appendix C

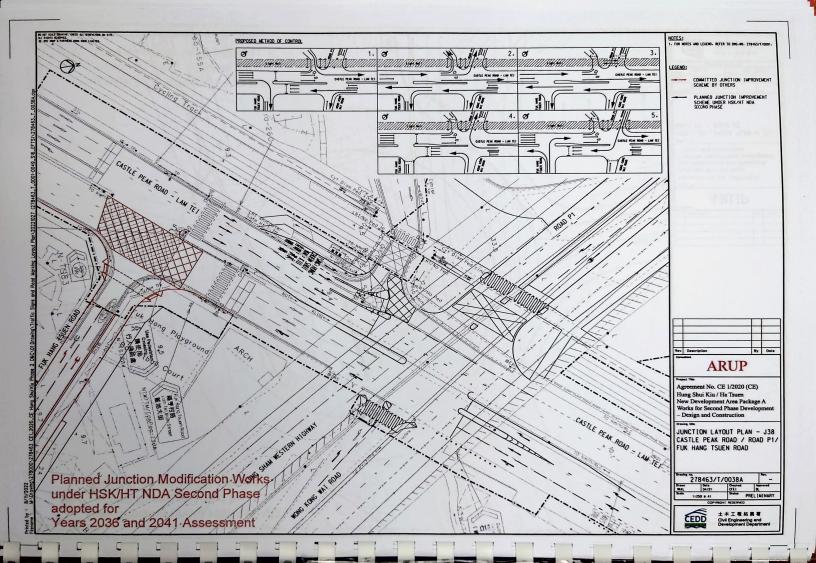


Appendix D – Swept Path Analysis





Appendix E – Extract of Planned Road Works under Agreement No. CE 39/2021 (CE) and CV/2019/04 by CEDD



S:*CV201101*Tsing Lun Road and Tsz Tin Road Junction*Sketches*LWSK-J5-0009.dgn
19/09/2022 **10.9.25.31*CAD_General*CAD_Common*FEN_TABLE*filename&date.tbl

	NC	DTES :	
DPOSED SITE JNDARY	1.	ALL DIMENSIONS ARE I MILLIMETRES UNLESS O STATED.	
ISTING SINGLE POST TH TRAFFIC SIGN OR	2.	GRID LINES ARE IN HO METRIC GRID 1980.	NG KONG
REET NAME PLATE TO RELOCATED	3.	ALL LEVELS ARE IN ME PRINCIPAL DATUM (mPD	
DPOSED SYMBOLIC AFFIC SIGN NO. CING INDICATED RECTION	4.	THIS DRAWING SHALL B CONJUNCTION WITH DRA LWSK-J5-0010.	
DPOSED ROAD MARKING DE NO.	5.	DETAILS OF CONCRETE TRAFFIC BOLLARD SHAL HyD STANDARD DRAWING H2140 TO H2141.	L REFER TO
ISTING ROAD MARKING BE REMOVED	6.	FOR DETAILS OF TRAFF AND ROAD MARKING, RE VOLUME 3 OF TRANSPOR AND DESIGN MANUAL (T PUBLISHED BY TRANSPO DEPARTMENT.	FER TO T PLANNING PDM)
	7.	FOR SUPPORT DETAILS POST TRAFFIC SIGNS I COLOR OF POST, REFER STANDARD DRAWING NOS H2148.	NCLUDING TO HyD
····;	8.	BACK OF ALL SIGNS SH PAINTED IN GREY TO B CODE 18B19.	
i i i i i i i i i i i i i i i i i i i	9.	EXISTING ROAD MARKIN AFFECTED SHALL BE RE REPLACED BY PROPOSED MARKING.	MOVED AND
	10.	NEW SUPPORTS, INCLUD SINGLE/MULTIPLE POST FRAME SUPPORTS, SHAL CONSTRUCTED FOR ALL AND RELOCATED TRAFFI DIRECTIONAL SIGNS.	S AND L BE PROPOSED
	IMP JUN ROA	s order title ROVEMENT WORKS AT CTION OF TSING LUM D AND TSZ TIN ROA(N MUN	
1		wing title	
		AFFIC AIDS AND RKING LAYOUT	NUAD
	dra	wing no.	scale
Scale Bar	LWS	K-J5-0009	1 : 250
		ice LAND WORKS DIVISI CIVIL ENGINEERING	
: 250 SCALE BAR PYRIGHT RESERVED	ĆE	CIVIL ENGINEE DEVELOPMENT (
		~ ~	A3 420 x 297

A3 420 x 297

Appendix F – Extract of Planned Road Works under Agreement No. CE 01/2020 (CE) by CEDD

