Appendix III Revised Traffic Impact Assessment

Traffic Impact Assessment

Final Report
October 2024

Prepared by: CKM Asia Limited

Prepared for: Wing Mau Tea House Limited

CONTENTS

<u>CHA</u>	<u>PTER</u>	<u>PAGE</u>
1.0	INTRODUCTION	1
	Background	1
	Structure of Report	1
2.0	existing situation	2
	The Subject Site	2
	The Road Network	2
	Existing Traffic Flows	2
	Existing Junction Performance	3
	Link Operational Performance	3
	Public Transport Facilities	4
	Survey on Road-based Public Transport Services Located in the Vicinity Existing Footpath Level-Of-Service	5 7
3.0	THE PROPOSED DEVELOPMENT	9
	Key Parameters	9
	Provision of Internal Transport Facilities	9
	Planned Road Works near the Proposed Development	10
	Swept Path Analysis	10
4.0	TRAFFIC IMPACT	11
	Design Year	11
	Traffic Forecasting	11
	Modelling and Validation	11
	Estimated Traffic Growth Rate from 2031 to 2033	12
	Additional Planned/ Committed Developments near the Subject Site	13
	Planned Road Improvement Works Nearby	14
	Net Increase in Traffic Generation between the Approved Scheme and the	
	Proposed Development	15
	Year 2033 Proposed Additional Bus Trips	16
	Year 2033 Traffic Flows	16 16
	Year 2033 Junction Capacity Analysis Year 2033 Link Performance	17
	I CAI 4000 LIIIN I CHUIIIIAHUC	1/

CONTENTS (CONT'D)

<u>CHA</u>	<u>PTER</u> <u>P</u> /	\GE
5.0	IMPACT TO PUBLIC TRANSPORT SERVICES Transport Mode of the Subject Site Estimated Peak Hour Mechanised Trip Generation of Proposed Development Estimated AM Peak Hour Transport Demand Impact to Road-based Public Transport Services Additional Bus Trip for the Proposed Development	19 19 19 20 21 21
	Proposed Bus Route for the Additional Bus Trips 2033 Rail-Based Public Transport Occupancies Annual Public Transport Demand Growth Rate between 2024 – 2033	21 23 23
	2033 LRT Service Occupancies Review on Public Transport Facilities Proposed Improvement on the Length of the CPR Bus Laybys Justification on Not Providing Shuttle Bus Service for the Proposed Development	24 24 27 nent 27
6.0	PEDESTRIAN IMPACT 2033 Pedestrian Flow Forecasting Annual Pedestrian Growth Rate between 2024 – 2033 Peak Hour Pedestrian Generated by Planned / Committed Developments in t Vicinity Adopted Pedestrian Generation Rate Peak hour Pedestrian Generation of the Proposed Development Year 2033 Pedestrian Flows Year 2033 LOS Analysis	28 28 28
7.0	SUMMARY	30
Appe Appe Appe Appe	endix A – Junction Capacity Analysis endix B – Public Transport Survey Result endix C – Planned Road Works to be implemented by the Owner endix D – Swept Path Analysis endix E – Extract of Planned Road Works under Agreement No. CE 39/2021 (C and CV/2019/04 by CEDD endix F – Extract of Planned Road Works under Agreement No. CE 01/2020 (C	

TABLES

NUMBER						
NUMBER	N.I		A 4	D	Г	n
	1	. ,	w	n		к

- 2.1 Surveyed Junctions and Road Links
- 2.2 Existing Junction Performance
- 2.3 Existing Link Capacity Assessment
- 2.4 Road-Based Public Transport Services Operating close to the Subject Site
- 2.5 Occupancy of Existing Road-Based Public Transport Services Operating near the Subject Site
- 2.6 Operational Performance of MTR Tuen Ma Line
- 2.7 Operational Performance of LRT Services at Lam Tei Stop
- 2.8 Description of Pedestrian Footpath LOS
- 2.9 Existing LOS Assessment
- 3.1 Key Parameters
- 3.2 Provision of Internal Transport Facilities for Proposed Development
- 4.1 Validation Criteria
- 4.2 AADT of the Core Stations in the vicinity of the Subject Site
- 4.3 Hong Kong Population Projections from Census and Statistics Department
- 4.4 The Additional Planned / Committed Developments near the Subject Site
- 4.5 Planned Road Improvement Works
- 4.6 Adopted Trip Rates and Traffic Generation for Proposed Development
- 4.7 Adopted Traffic Generation for Approved Scheme
- 4.8 Net Increase in Traffic Generation (PCU per Hour)
- 4.9 Net Increase on Traffic Generation (Vehicle per Hour)
- 4.10 Year 2033 Junction Performance
- 4.11 Year 2033 Link Capacity Assessment
- 5.1 Modified Transport Mode for the Proposed Development
- 5.2 Estimated Peak Hour Mechanised Trip Generation of the Proposed Development
- 5.3 Estimated Peak Hour Transport Demand
- 5.4 Estimated Road-Based Public Transport Demand
- 5.5 Estimated Rail-Based Public Transport Demand
- 5.6 Additional Bus Trip for the Proposed Development
- 5.8 Comparison on Destination of Bus Routes between Bus Stop at CPR and LTI
- 5.9 Proposed Bus Route for the Additional Bus Trips
- 5.10 Tuen Mun New Town Population Projections
- 5.11 Hong Kong Population Projections from Census and Statistics Department
- 5.12 Year 2033 Performance of LRT Services at Lam Tei Stop

TABLES (CONT'D)

- 5.13 Additional Queuing / Waiting Demand Related to the Proposed Development 5.14 Utilisations of Passenger Waiting / Queuing Area at Bus Stops and LRT Platforms Assessment on Length of the Laybys for Bus Stops 5.15 Assessment on Length of the Laybys for Bus Stops with Proposed Improvement 5.16 6.1 Pedestrian Generation and Pedestrian Generation Rates
- 6.2 Pedestrian Generation of Proposed Development
- 6.3 Year 2033 LOS Assessment

FIGURES

NUMBER

1.	1	Location	of the	Subi	iect :	Site
		Locution	OI UIC		1 - 1 - 1	σ

- 2.1 Location of Surveyed Junctions
- 2.2 Layout of Junction of Unnamed Road/ Access Road
- 2.3 Layout of Junction of Ng Lau Road/ Unnamed Road
- 2.4 Layout of Junction of Ng Lau Road/ Lam Tei Interchange
- 2.5 Layout of Junction of Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange
- 2.6 Layout of Lam Tei Interchange
- 2.7 Layout of Junction of Lam Tei Interchange/ Castle Peak Road Lam Tei
- 2.8 Layout of Junction of Tsing Lun Road/ Tsz Tin Road
- 2.9 Layout of Junction of San Hing Road/ Ng Lau Road (Southern)
- 2.10 Layout of Junction of San Hing Road/ Ng Lau Road (Northern)
- 2.11 Layout of San Hing Road T-junction
- 2.12 Layout of Junction of Ng Lau Road / Castle Peak Road Lam Tei
- 2.13 Layout of Junction of Hong Po Road / Yan Tin Estate Access Road
- 2.14 Existing Peak Hour Junction Flows
- 2.15 Existing Peak Hour Link Flows
- 2.16 Road-Based Public Transport Services Operating Close to the Subject Site
- 2.17 Existing Peak Hour Pedestrian Flows
- 3.1 Master Layout Plan
- 4.1 The Major Additional Planned / Committed Developments near the Subject Site
- 4.2 Peak Hour Traffic Generation of Approved Scheme
- 4.3 Peak Hour Traffic Generation of Proposed Development
- 4.4 Year 2033 Proposed Additional Bus Trips
- 4.5 Year 2033 Peak Hour Junction Flows without Proposed Development
- 4.6 Year 2033 Peak Hour Junction Flows with Approved Scheme
- 4.7 Year 2033 Peak Hour Junction Flows with Proposed Development
- 4.8 Year 2033 Peak Hour Link Flows
- 5.1 Proposed Bus Routes for the Additional Bus Trips
- 5.2 Proposed Improvement of on Length of the CPR Bus Stops Laybys
- 6.1 Year 2033 Peak Hour Pedestrian Flows

1.0 INTRODUCTION

Background

- 1.1 The subject site is located in D.D.130, Lam Tei, Tuen Mun (the "Subject Site"). At present, the Subject Site is unoccupied, and access to the Subject Site via an existing unnamed road which is connected to Ng Lau Road. The location of the Subject Site is shown in **Figure 1.1**.
- 1.2 A Section 12A planning application for the minor relaxation of the maximum plot ratio restriction to 2.5 for residential use at the Subject Site was approved by the Town Planning Board (TPB ref: Y/TM-LTYY/9) on 24th September 2021 (the "Approved Scheme"). This Section 12A planning application is for minor relaxation of the maximum plot ratio restriction for residential use at the Subject Site from the approved 2.5 to 5.0 (the "Proposed Development").
- 1.3 Against this background, CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Owner to conduct a traffic impact assessment in support of the Proposed Development. This report presents the findings and recommendations of the traffic impact assessment for the Proposed Development.

Structure of Report

1.4 The report is structured as follows:

Chapter One - Gives the background of the project;

Chapter Two - Describes the existing situation;

Chapter Three - Presents the Proposed Development;
Chapter Four - Describes the traffic impact analysis; and

Chapter Five - Gives the overall conclusion.

2.0 EXISTING SITUATION

The Subject Site

2.1 The Subject Site is bounded by the Light Rail Transit ("LRT") and the Tuen Ma Line to the East, and a nullah to the West. Access to the Subject Site is from the south and is via a bridge over the nullah. The Access Road is connected to Ng Lau Road.

The Road Network

- 2.2 Ng Lau Road is a single carriageway 2-lane 2-way local distributor which connects with the Lam Tei Interchange to the south and Castle Peak Road Lam Tei underneath the Kong Sham Western Highway. It provides access to villages, e.g., San Hing Tsuen, Tuen Tsz Wai, and Tsing Chuen Wai.
- 2.3 Lam Tei Interchange connects Tsing Lun Road, Hong Po Road, Ng Lau Road, Castle Peak Road Lam Tei, Yuen Long Highway and Tuen Mun Road. It is the main access for traffic accessing the Subject Site and strategic routes.

Existing Traffic Flows

2.4 To quantify the junction and road link flows in the vicinity of the Subject Site, manual classified counts were conducted at 0700 – 0900 and 1700 – 1900 on Tuesday, 18th April 2023, Wednesday, 19th April 2023 and Wednesday, 26th April 2023, and were re-conducted on Wednesday, 8th May 2024 at the junctions and road links listed in **Table 2.1**.

TABLE 2.1 SURVEYED JUNCTIONS AND ROAD LINKS

<u>Reference</u>	Junction
J1:	Unnamed Road/ Access Road
J2:	Ng Lau Road/ Unnamed Road
J3:	Ng Lau Road/ Lam Tei Interchange
J4:	Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange
J5:	Lam Tei Interchange
J6:	Lam Tei Interchange/ Castle Peak Road – Lam Tei
J7:	Tsing Lun Road/ Tsz Tin Road
J8:	San Hing Road/ Ng Lau Road (Southern)
J9:	San Hing Road/ Ng Lau Road (Northern)
J10:	T-junction at San Hing Road
J11:	Ng Lau Road / Castle Peak Road – Lam Tei
J12:	Hong Po Road / Yan Tin Estate Access Road
<u>Reference</u>	Road Link
L1:	Castle Peak Road – Lam Tei
L2:	Castle Peak Road – Lingnan
L3:	Yuen Long Highway
L4:	Tuen Mun Road
L5:	San Hing Road
L6:	Ng Lau Road (north of J9)
L <i>7</i> :	Ng Lau Road (south of J2)
L8:	Lam Tei Interchange (between J3 and J5)
L9:	Tsing Lun Road

- 2.5 The locations of these junctions, road links and the area of influence (the "AOI") are shown in **Figure 2.1** and the junction layouts are shown in **Figures 2.2 2.13** respectively.
- 2.6 The traffic counts are classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. The AM and PM peak hours identified from the surveys are found to be between 0800 0900 hours and 1700 1800 hours respectively. The existing AM and PM peak hour junction in pcu/hour and road link flows in veh/hr are presented in **Figures 2.14 2.15**.

Existing Junction Performance

2.7 The existing junction performance of the junctions are calculated based on the traffic flows obtained from the survey, and the analysis was undertaken using the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"). The results are summarised in **Table 2.2** and the detailed calculations are found in **Appendix A**.

TABLE 2.2 EXISTING JUNCTION PERFORMANCE

Ref.	Junction	Type of Junction (Parameter)	AM Peak	PM Peak
J1	Unnamed Road/ Access Road	Priority (DFC)	0.000	0.000
J2	Ng Lau Road/ Unnamed Road	Priority (DFC)	0.033	0.032
J3	Ng Lau Road/ Lam Tei Interchange	Signal (RC)	91%	84%
J4	Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange	RA (DFC)	0.545	0.591
J5	Lam Tei Interchange	RA (DFC)	0.522	0.489
J6	Lam Tei Interchange/ Castle Peak Road – Lam Tei	Signal (RC)	120%	215%
J <i>7</i>	Tsing Lun Road/ Tsz Tin Road	Signal (RC)	58%	92%
J8	San Hing Road/ Ng Lau Road (Southern)	Priority (DFC)	0.061	0.040
J9	San Hing Road/ Ng Lau Road (Northern)	Priority (DFC)	0.227	0.498
J10	T-junction at San Hing Road	Priority (DFC)	0.008	0.002
J11	Ng Lau Road / Castle Peak Road – Lam Tei	Signal (RC)	139%	132%
J12	Hong Po Road / Yan Tin Estate Access Road	Priority (DFC)	0.066	0.011

Note: RC – reserve capacity; DFC – design flow/capacity ratio, RA – Roundabout

2.8 The above results indicate that the surveyed junctions currently operate with capacities during the AM and PM peak hours.

Link Operational Performance

2.9 The link operational performance of the road links are calculated based on the existing traffic flows obtained from the traffic survey, and the analysis was undertaken using the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"). The results are summarised in **Table 2.3.**

TABLE 2.3	EXISTING I	INK CAPACITY	ASSESSMENT
1/(1)11 /)	/\		/ 1. J. JI . J. J/VII N I

Ref	Link	Adjusted Design Flow (veh/hr)		Traffic Demand (veh/hr)		V/C Ratio		
			AM	PM	AM	PM	AM	PM
			Peak	Peak	Peak	Peak	Peak	Peak
L1	Castle Peak Road –	NB	2,604 ⁽¹⁾	2,604 ⁽¹⁾	766	1,317	0.29	0.51
	Lam Tei	SB	2,604 ⁽¹⁾	2,604 ⁽¹⁾	1,448	766	0.56	0.29
L2	Castle Peak Road –	NB	2,800	2,800	417	452	0.15	0.16
	Lingnan	SB	2,800	2,800	672	472	0.24	0.17
L3	Yuen Long Highway	NB	4,700	4,700	3,759	3,181	0.80	0.68
		SB	4,700	4,700	3,642	3,988	0.77	0.85
L4	Tuen Mun Road	NB	4,700	4,700	4,108	4,219	0.87	0.90
		SB	4,700	4,700	4,404	3,961	0.94	0.84
L5	San Hing Road	2-way	800	800	46	31	0.06	0.04
L6	Ng Lau Road (north of J9)	2-way	744 ⁽¹⁾	800	218	345	0.29	0.43
L7	Ng Lau Road (south of J2)	2-way	800	800	252	373	0.32	0.47
L8	Lam Tei Interchange	EB	2,800	2,800	1,055	713	0.38	0.25
	(between J3 and J5)	WB	2,800	2,800	1,108	1,199	0.40	0.43
L9	Tsing Lun Road	NB	1,900	1,900	519	409	0.27	0.22
		SB	1,900	1,900	825	735	0.43	0.39

NB – northbound

SB – southbound

EB – eastbound

WB - westbound

(1) With reference to paragraph 2.4.1.2 and table 2.4.1.2, Chapter 2.4, Volume 2 of TPDM, the design flow is to be reduced when the expected proportion of heavy vehicles exceeds 15%. The table below presents the adjusted design flow based on the proportion of heavy vehicles ("HV%").

Road Type	Design	Adjusted Design Flow (veh/hr)				
	Flow	0-15 HV%	15-20 HV%	20-25 HV%		
	(veh/hr)	0%	<i>7</i> %	10%		
		reduction	reduction	reduction		
Expressway / trunk road (Dual 3 lanes – 11m-wide)	4,700	4,700	4,371	4,230		
Primary Distributor (Dual 3 lanes – 7.3m-wide)	2,800	2,800	2,604	2,520		
District Distributor (Single 4 lanes – 13.5m-wide)	1,900	1,900	1,767	1,710		
Local Roads (Single 2 lanes)	800	800	744	720		

2.10 The above results show that the assessed road links operate with sufficient capacity.

Public Transport Facilities

2.11 The Subject Site is located close to public transport services, including franchised buses and public light buses and these operate within 400 metres or some 8-minutes' walk away. Details of these public transport services are presented in **Table 2.4**. The location and major pedestrian routes of these public transport services are shown in **Figure 2.16**.

TABLE 2.4 ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING CLOSE TO THE SUBJECT SITE

Route	Bus Stop	Destination	Routing	Frequency (min)
CTB 50	LTI	YTM	Tuen Mun (Ching Tin and Wo Tin) → Tsim Sha Tsui (Kowloon Station) (E)	20 - 30
			Tsim Sha Tsui (Kowloon Station) → Tuen Mun (Ching Tin and Wo Tin) (F)	20 - 35
CTB 55 ⁽¹⁾	LTI	Kln(E)	Tuen Mun (Ching Tin and Wo Tin) → Kwun Tong Ferry Pier (A)	7 per day
			Kwun Tong Ferry Pier → Tuen Mun (Ching Tin and Wo Tin) (B)	4 per day
CTB 56 ⁽¹⁾	LTI	Ν	Tuen Mun (Ching Tin and Wo Tin) → Sheung Shui (Tin Ping Estate) (G)	30
			Sheung Shui (Tin Ping Estate) \rightarrow Tuen Mun (Ching Tin and Wo Tin) (G)	30

TABLE 2.4 ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING CLOSE TO THE SUBJECT SITE (CONT'D)

Route	Bus Stop	Destination	Routing	Frequency (min)
CTB 56A ⁽¹⁾	LTI	N	Tuen Mun (Ching Tin and Wo Tin) → Queen's Hill Fanling (via: Sheung Shui Station) ^(C)	15 - 30
			Queen's Hill Fanling (via: Sheung Shui Station) → Tuen Mun (Ching Tin and Wo Tin)(C)	20 - 30
CTB 950 ⁽¹⁾	LTI	HKI	Tuen Mun (Ching Tin and Wo Tin) → Exhibition Centre Station (A)	2 per day
			Exhibition Centre Station → Tuen Mun (Ching Tin and Wo Tin) (B)	1 per day
CTB 955 ⁽¹⁾	LTI	HKI	Tuen Mun (Ching Tin and Wo Tin) → Sai Wan Ho (A)	1 per day
			Sai Wan Ho → Tuen Mun (Ching Tin and Wo Tin) (B)	1 per day
CTB B3A	LTI	ВСР	Shan King Estate - Shenzhen Bay Port	30 - 60
CTB N50 ^(D)	LTI	YTM	Tuen Mun (Ching Tin and Wo Tin) - Tsim Sha Tsui (Kowloon Station)	4 per day
CTB N969 ^(D)	CPR	HKI	Tin Shui Wai Town Centre - Causeway Bay (Moreton Terrace)	20 - 45
KMB 53	CPR	NTW	Yoho Mall (Yuen Long) - Tsuen Wan (Nina Tower)	25 - 35
KMB 63X	CPR	YTM	Hung Shui Kiu (Hung Fuk Estate) - Jordan (West Kowloon Station)	12 - 30
KMB 67M	LTI	NTW	Tuen Mun (Siu Hong Court) - Kwai Fong Station	5 - 20
KMB 67X	LTI	Kln(W)	Tuen Mun (Siu Hong Court) - Mong Kok East Station	7 - 25
KMB 68A	CPR	NTW	Long Ping Estate - Tsing Yi Station	8 - 30
KMB 258A ⁽¹⁾	CPR	Kln(E)	Hung Shui Kiu (Hung Fuk Estate) → Lam Tin Station ^(A)	2 per day
KMB 258P ⁽²⁾	CPR	Kln(E)	Hung Shui Kiu (Hung Fuk Estate) - Lam Tin Station ^(C)	12 - 30
KMB 261P	CPR	Ν	Tuen Mun (Siu Hong Court) → Sheung Shui (Tin Ping) (2)(A)	2-3 per day
			Sheung Shui (Tin Ping) → Tuen Mun (Siu Hong Court) (1)(B)	1 per day
KMB 267X ⁽¹⁾	LTI	Kln(E)	Tuen Mun (Siu Hong Court) → Lam Tin Station (A)	2 per day
			Lam Tin Station → Tuen Mun (Siu Hong Court) (B)	2 per day
KMB 960A ⁽¹⁾	CPR	HKI	Central → Hung Shui Kiu (Hung Fuk Estate) (B)	1 per day
KMB 960C ⁽¹⁾	LTI	HKI	Tuen Mun (Fu Tai Estate) → Causeway Bay (Victoria Park) (A)	2 per day
			Causeway Bay (Victoria Park) → Tuen Mun (Fu Tai Estate) (B)	1 per day
KMB 960P	CPR	HKI	Hung Shui Kiu (Hung Yuen Road) → Causeway Bay (Victoria Park)(A)	10 - 35
			Causeway Bay (Victoria Park) → Hung Shui Kiu (Hung Yuen Road) (1)(B)	2 per day
KMB 960X ⁽¹⁾	CPR	HKI	Hung Shui Kiu (Hung Yuen Road) → Quarry Bay (King's Road) (A)	9 per day
			Quarry Bay (King's Road) → Hung Shui Kiu (Hung Yuen Road) (B)	10 per day
KMB N260 ^(D)	CPR	NTW	Tuen Mun Pier Head - Mei Foo	20 - 30
LWB A34	CPR	TCL	Hung Shui Kiu (Hung Yuen Road) - Airport (Ground Transportation Centre)	15 - 60
LWB E33P	LTI	TCL	Siu Hong Station (South) - Airport (Ground Transportation Centre)	12 - 45
LWB NA33 ^(D)	LTI	TCL	Tuen Mun (Fu Tai Estate) → Cathay Pacific City	4 per day
			Cathay Pacific City → Tuen Mun (Fu Tai Estate)	6 per day
LWB NA37 ^(D)	CPR	TCL	Tin Shui Wai Town Centre → Cathay Pacific City	5 per day
			Cathay Pacific City → Tin Shui Wai Town Centre	6 per day
NLB B2	CPR	ВСР	Yuen Long MTR Station - Shenzhen Bay Port	20 - 30
GMB 42	LTI	NTW	Tsing Chuen Wai - Tuen Mun Town Centre	13 – 15
GMB 606S ^(D)	CPR	YTM	Yuen Long (Fung Cheung Rd) - Tsim Sha Tsui East	6 - 13

KMB – Kowloon Motor Bus LWB – Long Win Bus CTB – CityBus

GMB – Green Minibus NLB – New Lantao Bus

CPR – Castle Peak Road – Lam Tei LTI – Lam Tei Interchange YTM – Yau Ma Tei/ Tsim Sha Tsui / Mong Kok

Kln(E) - Kowloon (East) Kln(W) - Kowloon (West) N - North

HKI – Hong Kong Island BCP – Boundary Control Point NTW – New Territories West

TCL-Tung Chung / Lantau Island

Note: (1) Monday to Friday. (Except public holidays) (2) Monday to Saturday (Except public holidays)

(A) AM peak only (B) PM peak only (C) AM and PM peak only (D) overnight service

(E) AM service only (F) PM service only (G) daytime non-peak service

Survey on Road-based Public Transport Services Located in the Vicinity

Road-based Public Transport

2.12 Survey on road-based public transport services listed in **Table 2.4** was conducted during the AM and PM peak periods on Thursday, 18th January 2024 at the bus stops near the subject site.

2.13 The AM and PM peak hours identified from the surveys are found to be between 0715 – 0815 hours and 1830 – 1930 hours respectively. The survey locations are shown in **Figure 2.16**. The survey results are summarized in **Table 2.5** and the detailed information are shown in **Appendix B**.

TABLE 2.5 OCCUPANCY OF EXISTING ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING NEAR THE SUBJECT SITE

Direction		AM Peal	(PM Peak		
	No. of Pass.		Occupancy	No. of Pass.		Occupancy
	Cap. [a]	Occ. [b]	[c] = [b]/[a]	Cap. [d]	Occ. [e]	[f] = [e]/[d]
Outbound – To other districts	8,476	3,163	37%	2,236	767	34%
Inbound – From other districts	2,476	897	36%	5,356	1,823	34%

Pass. – Passenger

Cap. - Capacity Occ. - Occupied

2.14 The above results indicate that the surveyed road-based public transport services currently operate with spare capacities during the AM and PM peak hours.

Rail-based Public Transport

2.15 Based on the information obtained from the Legislative Council, the operational performance for MTR Tuen Ma Line in 2023 is summarized in **Table 2.6**.

TABLE 2.6 OPERATIONAL PERFORMANCE OF MTR TUEN MA LINE

Item	Parameters
Maximum carrying capacity when train frequency	70,000 passengers / hour
is maximized [a]	
Existing carrying capacity [b]	58,800 passengers / hour (1)
Current Patronage [c]	35,700 passengers / hour
Current Loading [c]/[b] {Critical Link}	61% {Tsuen Wan West to Mei Foo}
Loading compared with maximum carrying	51%
capacity [c]/[a]	

Source:

Reply Serial No. TLB162 for Question Serial No. 2402, Controlling Officer's Reply, Examination of Estimates of Expenditure 2024-25. Finance Committee. Legislative Council. 18 April 2024.

- https://www.tlb.gov.hk/eng/legislative/transport/special/land/TLB-2-e1.pdf
- (1) According to the reply, existing train frequency has not yet increased to the maximum level as permitted by the signalling system.
- 2.16 **Table 2.6** shows that the MTR Tuen Ma Line operates at 61% of its current capacity, or 51% of its maximum carrying capacity during the peak hour.

Light Rail Transit (LRT) Transport

2.17 Survey on LRT transport services at Lam Tei LRT stops was conducted during the AM and PM peak periods on Thursday, 18th January 2024. The AM and PM peak hours identified from the surveys are found to be between 0715 – 0815 hours and 1830 – 1930 hours respectively. The survey results are summarized in **Table 2.7**.

TABLE 2.7 OPERATIONAL PERFORMANCE OF LRT SERVICES AT LAM TEI STOP

Direction	No. of. Trips.			No. of F	Occupancy				
	Single Coupled-set Total		Total	Capacity ⁽¹⁾ [a] Occupied [b]		[c]=[b]/[a]			
			AM Peak F	<u>lour</u>					
Yuen Long bound	13	10	23	6,600	3,290	50%			
Tuen Mun bound	12	12	24	7,200	5, 7 96	81%			
	PM Peak Hour								
Yuen Long bound	14	7	21	5,600	4,236	76%			
Tuen Mun bound	12	10	22	6,400	3,092	48%			

⁽¹⁾ Assumed capacity of 200 passengers per trip for single Light Rail Vehicle (LRV) and 400 passengers per trip for coupled-set LRV

2.18 **Table 2.7** shows that the surveyed LRT services at Lam Tei Stop currently operate with spare capacities during the AM and PM peak hours.

Existing Footpath Level-Of-Service

- 2.19 To quantify the existing pedestrian flows, pedestrian counts were conducted during the AM and PM peak periods on Thursday, 18th January 2024 at footpaths located in the vicinity of Proposed Development, and the observed peak hour pedestrian flows are shown in **Figure 2.17**.
- 2.20 The Level-Of-Service ("LOS") of a pedestrian footpath depends on its width and number of pedestrians using the facility. Description of the LOS at walkway is obtained from Volume 6 of the TPDM and is presented in **Table 2.8**.

TABLE 2.8 DESCRIPTION OF PEDESTRIAN FOOTPATH LOS

LOS	Flow Rate (ped/min/m)	Description
Α	≤ 16	Pedestrians basically move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely selected, and conflicts between pedestrians are unlikely.
В	16 – 23	Sufficient space is provided for pedestrians to freely select their walking speeds, to bypass other pedestrians and to avoid crossing conflicts with others. At this level, pedestrians begin to be aware of other pedestrians and to respond to their presence in the selection of walking paths.
С	23 – 33	Sufficient space is available to select normal walking speeds and to bypass other pedestrians primarily in unidirectional stream. Where reverse direction or crossing movement exist, minor conflicts will occur, and speed and volume will be somewhat lower.
D	33 – 49	Freedom to select individual walking speeds and bypass other pedestrians is restricted. Where crossing or reverse-flow movements exist, the probability of conflicts is high and its avoidance requires changes of speeds and position. The LOS provides reasonable fluid flow; however considerable friction and interactions between pedestrians are likely to occur.
E	49 – 75	Virtually, all pedestrians would have their normal walking speeds restricted. At the lower range of this LOS, forward movement is possible only by shuffling. Space is insufficient to pass over slower pedestrians. Cross- and reverse-movement are possible only with extreme difficulties. Design volumes approach the limit of walking capacity with resulting stoppages and interruptions to flow.
F	> 75	Walking speeds are severely restricted. Forward progress is made only by shuffling. There are frequent and unavoidable conflicts with other pedestrians. Cross- and reverse-movements are virtually impossible. Flow is sporadic and unstable. Space is more characteristics of queued pedestrians than of moving pedestrian streams.

Source: Volume 6 Chapter 10 of TPDM

2.21 The observed peak hour pedestrian flows LOS assessment is presented in **Table 2.9**.

TABLE 2.9 EXISTING LOS ASSESSMENT

Location	Clear Width ⁽¹⁾ [Effective Width] (m)	Peak Period	Flow (ped/ hour)	Flow rate (ped/min/m)	LOS
P1. Footpath on the footbridge	2.0[1.0]	AM	150	2.5	Α
connected to Ng Lau Road		PM	99	1.7	Α
P2. Footpath between Lam Tei LRT stop and bus stop at	2.5[1.5]	AM	315	3.5	A
Castle Peak Road – Lam Tei		PM	210	2.3	A
P3. Footbridge over Castle Peak	2.5[1.5]	AM	216	2.4	Α
Road – Lam Tei		PM	105	1.2	Α
P4. Southern Footpath of San	1.5[0.5]	AM	45	1.5	Α
Hing Road		PM	30	1.0	Α
P5. Eastern Footpath of Ng Lau	2.0[1.0]	AM	189	3.2	Α
Road		PM	120	2.0	Α

⁽¹⁾ The width excludes railing and obstructions.

2.22 The above results indicate that the surveyed footpaths currently operate with LOS A during the AM and PM peak. As stated in the TPDM, LOS A to C is considered as an acceptable level of service: "In general, LOS C is desirable for most design at streets with dominant 'living' pedestrian activities".

3.0 THE PROPOSED DEVELOPMENT

Key Parameters

3.1 The Proposed Development key parameters are presented in **Table 3.1**.

TABLE 3.1 KEY PARAMETERS

	ltem	Proposed Development
Development Site Area		About 8,896 m ²
Domestic Plot Ratio		5.0
Domestic	GFA	44,480 m ²
Flat Mix	Flat Size ≤ 40m ²	1,110
(GFA)	40m ² < Flat Size ≤ 70m ²	275
Total num	ber of Flats	1,385

Provision of Internal Transport Facilities

3.2 The internal transport facilities for the Proposed Development are provided in accordance with the recommendations of the Hong Kong Planning Standards and Guidelines ("HKPSG") and are presented in **Table 3.2**.

TABLE 3.2 PROVISION OF INTERNAL TRANSPORT FACILITIES FOR PROPOSED DEVELOPMENT

Facility	HKPSG Recommendation	Provision
Car Parking Space	For Residents: Parking Requirement = GPS x R1 x R2 x R3 Global Parking Standard (GPS): 1 car parking space per 4 - 7 flats Demand Adjustment Ratio (R1): 0.5 for flat size ≤ 40 m² GFA 1.2 for flat size $40 - 70$ m² GFA Accessibility Adjustment Ratio(R2): 1.0 outside 500m-radius of rail station Development Intensity Adjustment Ratio (R3): 1.0 for Plot Ratio $2.0 - 5.0$ For 1,100 flats with flat size less than 40 m^2 GFA	222 nos. @ 5.0m (L) x 2.5m (W) x 2.4m (H) = HKPSG maximum
	Minimum: $(1,110 / 7 \times 0.5 \times 1.0 \times 1.0) = 79.3$, say 80 nos. Maximum: $(1,110 / 4 \times 0.5 \times 1.0 \times 1.0) = 138.8$, say 139 nos. For 275 flats with flat size $40 - 70$ m ² GFA Minimum: $(275 / 7 \times 1.2 \times 1.0 \times 1.0) = 47.2$, say 48 nos. Maximum: $(275 / 4 \times 1.2 \times 1.0 \times 1.0) = 82.5$, say 83 nos. Total Minimum = $80 + 48 = 128$ nos. Maximum = $139 + 83 = 222$ nos.	
	For Visitors: Visitor car parking for private residential developments with more than 75 units per block should be provided at 5 visitor spaces per block in addition to the recommendations, or as determined by the Authority. For 5 blocks: 5 x 5 nos. = 25 nos.	25 nos. (22 nos. @ 5.0m(L) x 2.5m(W) x 2.4m(H) + 3 nos. @ 5.0m(L) x 3.5m(W) x 2.4m(H) for person with disabilities) = HKPSG maximum
	Total Car Parking Space: Minimum = 128 + 25 = 153 nos. Maximum = 222 + 25 = 247 nos. Note: For total no. of car parking space in lot = 151 - 250 nos., the Building (planning) regulation 72 require provision of 3 accessible car parking spaces	247 nos. (including 3 accessible car parking spaces)

TABLE 3.2 PROVISION OF INTERNAL TRANSPORT FACILITIES FOR PROPOSED DEVELOPMENT (CONT'D)

Facility	HKPSG Recommendation	Provision
Motorcycle	For Residential Uses:	18 nos. @ 2.4m (L) x
Parking [']	TD Comment: 1 motorcycle parking space shall be	1.0m (W) x Min. 2.4m
Space	provided for every 81 flats	(H)
l .	,	= fulfil TD comment,
	For 1,385 flats:	OK
	$\overline{1,385/81}$ = 17.1, say 18 nos.	
Goods	For Residential Uses:	5 nos. @ 11.0m (L) x
Vehicle	Minimum of 1 loading / unloading bay for goods vehicles	3.5m (W) x Min. 4.7m
Loading/	within the site for every 800 flats or part thereof, subject to a	(H)
Unloading	minimum of 1 bay for each housing block or as determined	= HKPSG minimum,
Bay	by the Authority.	OK
	For 5 blocks, each block less than 800 flats: 5 no.	
Bicycle	For Residential Uses:	277 no. @ 1.8m (L) x
Parking	TD Comment: 1 space per 5 flats with flat size < 70 m ² .	0.8m (W) x Min. 2.4m
Spaces		(H)
	$= 1,385 \div 5$	= fulfil TD comment,
	= 277 nos.	OK

3.3 **Table 3.2** shows that the internal transport facilities provided comply with the recommendations of the HKPSG. The master layout plan of the Proposed Development is shown in **Figure 3.1**.

Planned Road Works near the Proposed Development

3.4 The existing access road and unnamed road connecting the Proposed Development with Ng Lau Road is planned to be improved, to provide a 7.3m-wide road carriageway, a 2m-wide footpath and a 2m-wide cycle track (the "Planned Road Works"). The Planned Road Works to be implemented by the Owner as part of the Approved Scheme and is found in **Appendix C**.

Swept Path Analysis

3.5 The CAD-based swept path analysis programme, Autodesk Vehicle Tracking, was used to check the ease of manoeuvring of vehicles within the Proposed Development, and the swept path analysis drawings are found in **Appendix D**. Vehicles are found to have no manoeuvring problems.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Development is expected to be completed in 2030, and the design year adopted for the traffic assessment is, whichever later of the 2: (i) at least 3 years after the planned completion of the development, i.e., 2033, or (ii) 5 years from the date of this application, i.e., 2028. Therefore, Year 2033 is adopted for junction capacity analysis.

Traffic Forecasting

4.2 Year 2033 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to the 2019-based BDTM NTW1 (the "BDTM"); (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the 2 cases, i.e., Approved Scheme and Proposed Development.

Modelling and Validation

- 4.3 The BDTM provides traffic forecasts for the years 2026 and 2031 and these have taken into account the planned developments, changes to the strategic road network, population growth, etc. Therefore, The BDTM is used as the basis to produce the traffic flow for this TIA.
- 4.4 The BDTM is validated, and the validation meets criteria found in the "BDTM Study". Nevertheless, the traffic network and zone in the vicinity of the Proposed Development were further reviewed to ensure the traffic model is upto-date and the modelled flow can be adopted. The modelling and validation methodology include, but not limited to, the following:
 - The road links and junctions were checked and updated to ensure that any recent change in the existing road network is considered and missing road links or junction does not exist.
 - The schedules of public transport services such as franchised bus and green/ red minibus were also checked to ensure that the updated routings and headway information are adopted.
 - The zone and centroid connectors were reviewed to ensure that the traffic zones generate/ attract traffic at appropriate locations.
 - The traffic flows produced by BDTM at the surveyed junctions were reviewed with reference to the observed traffic flows.
 - The validation methodology is same as that adopted in the BDTM. All count locations were reviewed and checked using the GEH statistic (a modified chi squared test to provide a statistic for both the magnitude of the difference and the percentage difference between modelled and observed flows). The GEH statistic is defined by:

$$\sqrt{rac{(V_2-V_1)^2}{rac{1}{2}(V_2+V_1)}}$$

where V_1 and V_2 are the observed and modelled flows.

4.5 The validation criteria adopted are found in **Table 4.1**.

TABLE 4.1 VALIDATION CRITERIA

Locations	Target
Traffic flows at all count locations	85% return a GEH statistic of 5 or less
	100% return a GEH statistic of 10 or less

Estimated Traffic Growth Rate from 2031 to 2033

- 4.6 Reference is made to the: (i) the Annual Average Daily Traffic ("AADT") of core stations located in the vicinity of the Proposed Development, which is found in the Annual Traffic Census, published by Transport Department, (ii) population and employment data for Tuen Mun from the "2019-based Territorial Population and Employment Data Matrix" (the "TPEDM") prepared by Planning Department, and (iii) the Hong Kong Population Projection published by Census and Statistics Department.
- 4.7 Item (ii) has no population and employment data beyond year 2031, hence, there is no reference growth rate from 2031 to 2033. In addition, the major population growth near the Proposed Development, i.e., "Development at San Hing Road and Hong Po Road, Tuen Mun", which will be completed in 2030 2033, have been taken included in the planned / committed developments, hence the traffic growth of the road network of concern is conservative.
- 4.8 The information of (i) and (iii) are presented in **Tables 4.2 and 4.3** respectively.

TABLE 4.2 AADT OF THE CORE STATIONS IN THE VICINITY OF THE SUBJECT SITE

ЗОВЈЕСТ	0		
Station	6213	5647	Overall
Road	Castle Peak Road - Hung Shui Kiu	Tsing Lun Road	-
From	Tin Ha Road	Tsing Chung Koon Road	_
То	Lam Tei Interchange	Lam Tei Interchange	_
2010	31,280	10,770	42,050
2011	30,910	10,050	40,960
2012	31,210	9,990*	41,200
2013	30,520	10,070*	40,590
2014	33,510	9,970*	43,480
2015	31,720	10,390	42,110
2016	33,490	11,490	44,980
2017	34,140	11,310*	45,450
2018	32,740	11,590*	44,330
2019#	33,220	11,500*	44,720
2020#	34,710	12,870	47,580
2021#	34,800	13,870	48,670
2022#	34,500	13450*	47,950
Average Annual Growth (2010-2018)	0.57%	0.92%	0.66%

Note: * Estimated by Growth Factor

4.9 Reference is made to the "Hong Kong Population Projections 2022 – 2046" published by Census and Statistics Department and the information is presented in **Table 4.3**.

^{*} Excluded due to the impact of the public events in 2019 and COVID-19 pandemic in 2020 – 2022.

TABLE 4.3 HONG KONG POPULATION PROJECTIONS FROM CENSUS AND STATISTICS DEPARTMENT

Year	Population in Hong Kong (thousands)
2031	7,820.2
2033	7,903.6
Average Annual Growth (2031 – 2033)	0.53%

4.10 Table 4.3 shows that the annual average traffic growth of 0.66%. **Table 4.3** shows that the annual population growth between 2031 – 2033 is 0.53%. To be conservative, the annual growth rate of 1% is adopted for 2031 – 2033.

Additional Planned/ Committed Developments near the Subject Site

The planned/ committed developments near the Subject Site not included in the BDTM but have been incorporated to produce the future year traffic flows are listed in **Table 4.4** and the locations are presented in **Figure 4.1**.

TABLE 4.4 THE ADDITIONAL PLANNED / COMMITTED DEVELOPMENTS NEAR THE SUBJECT SITE

Ref. No.	Development	Intake Year	Land Use	GFA (m²)	No. of Flat (no.)	Average Flat Size (m²)	No.
Tuei	n Mun Area 54 ⁽¹⁾						
Α	Site 1 &1A	2022	PRH	_	4,232		
	Wo Tin Estate		Retail	2,420			
			SWF	1,060			
			Kindergarten				1 no.
В	Site 2	2017	PRH		4,688		
	Yan Tin Estate		Retail	4,250			
			SWF	3,600		-	
С	Site 3 & 4 (East)	2022	PRH		5,183		
	Ching Tin Estate		Retail	3,130			
			SWF	1,810			
			Kindergarten				1 no.
D	Site 3 & 4 (West)	2025	Private Housing		4,600		
	Novo Land		Retail	5,000			
E	Site 4A (East and West) (2)	2026	Light Public Housing	_	5,620	_	
G	Site 4A (South)	2028	PRH		1,475		
			Kindergarten				1 no.
Н	Site 5	2028	SSF		1,020	-	
			SWF	1,300			
Dev	elopment at San Hi	ng Road	and Hong Po Road, Tu	en Mun ⁽³⁾			
I	San Hing Road	2030	PRH / SSF		9,400	-	
	Site	-	Primary School			-	1 nos.
		2033	Kindergarten				2 nos.
			SWF	N/A			
J	San Hing Road	2030	PRH / SSF		1,500		
	Site Extension	-	Retail	5,000 ⁽⁴⁾			
		2033	Sport Centre				1 no.
K	Ho Pong Road	2030	PRH / SSF		9,500		
	Site	-	Retail	5,000(4)	-		
		2033	Kindergarten				2 no.
			SWF	N/A			

TABLE 4.4 THE ADDITIONAL PLANNED / COMMITTED DEVELOPMENTS NEAR THE SUBJECT SITE (CONT'D)

Ref.	Development	Intake Year	Land Use	GFA (m²)	No. of Flat (no.)	Average Flat Size (m²)	No.
Oth	er Planning Applicat	tions Nea	rby ⁽⁵⁾				
L	A/TM-LTYY/ 426	2026	Private Housing		184	31	
Μ	Y/TM-LTYY/ 10		Private Housing		288	40	
Ν	A/TM-LTYY/ 301		NTEH (3)		1	195	
Ο	A/TM-LTYY/ 335		NTEH (3)		1	195	
Р	A/TM-LTYY/ 336		NTEH (3)		1	195	
Q	A/TM-LTYY/ 370		NTEH (3)		1	195	
R	A/TM-LTYY/ 371		NTEH (3)		1	195	
S	A/TM-LTYY/ 372		NTEH (3)		1	195	

PRH – Public Rental Housing SSF – Subsidised Sale Flats NTEH – New Territories Exempted House SWF – Social Welfare Facilities

- (1) extracted from TIA of Approved Planning Applications A/TM/500 and A/TM/583
- (2) extracted from Legislative Council Panel on Housing discussion paper CB(1)1123/2023(02) on December 2023
- (3) extracted from Tuen Mun District Council discussion paper TMDC 19/2023 on September 2023
- (4) No information on area for retail uses is found in public domain, assumed 5,000 m² GFA of retail
- (5) extracted from Planning Statement of Approved Planning Applications

Planned Road Improvement Works Nearby

4.12 The planned road improvement works at assessed junctions are presented below.

Development at San Hing Road and Hong Po Road

4.13 Some road improvement works are planned under various contracts by CEDD, and these are summarized in **Table 4.5**. The road improvement works are found in **Appendix E**.

TABLE 4.5 PLANNED ROAD IMPROVEMENT WORKS

Ref	Brief Description of the Improvement	Contract
J3	Provide 2 left-turn lanes at Ng Lau Road southbound	CE 39/2021 (CE)
	Provide 1 left-turn lane at Lam Tei Interchange eastbound	CE 39/2021 (CE)
J4	Provide exclusive left-turn lane from Hong Po Road southbound	CE 39/2021 (CE)
	Modify the entry lanes from Lam Tei Interchange westbound	CE 39/2021 (CE)
J6	Provide 2 right-turn lanes and 1 shared lane for right turn and straight ahead at	CE 39/2021 (CE)
	Castle Peak Road – Lam Tei southbound	
J <i>7</i>	Provide a channelized island at Tsz Tin Road eastbound ()	CV/2019/04
J10	Widened to provide 2lane 2-way single carriageway at minor road	CE 39/2021 (CE)
J12	Provide signalised cross junction	CE 39/2021 (CE)

CE 39/2021 (CE) - Site Formation and Infrastructure Works for Public Housing Developments at San Hing Road and Hong Po Road, Tuen Mun and Choi Shun Street, Sheung Shui – Investigation, Design and Construction"

CV/2019/04 - Site Formation and Infrastructure Works near Tsz Tin Road and Hing Fu Street in Area 54, Tuen Mun

4.14 The improvement work described in **Table 4.5** will be completed gradually before 2030 – 2033, i.e., the intake of public housing of San Hing Road site, and San Hing Road site extension and Hong Po Road site (Note: These are items I, J and K in **Table 4.3**). These improvement works are adopted for the Year 2033 junction capacity analysis.

Hung Shiu Kiu New Development Area

4.15 Road improvement work is planned at Ng Lau Road / Castle Peak Road – Lam Tei (J11) under the "Hung Shui Kiu/Ha Tsuen New Development Area Package A Works for Second Phase Development - Design and Construction" (Agreement

No. CE 01/2020 (CE)) by Civil Engineering and Development Department ("CEDD"). The layout of road improvement at J11 is presented in **Appendix E**.

Net Increase in Traffic Generation between the Approved Scheme and the Proposed Development

4.16 To estimate the traffic generation of the Proposed Development, reference is made to the TPDM. However, the smallest flat size in the TPDM is 60m² GFA, which is substantially larger than the Proposed Development average flat size of only 32m² GFA. Hence, the estimated traffic generation is conservative, i.e., on the high-side. The adopted trip generation rates and the estimated AM and PM peak hour traffic generation are presented in **Table 4.6**.

TABLE 4.6 ADOPTED TRIP RATES AND TRAFFIC GENERATION FOR PROPOSED DEVELOPMENT

Proposed Development (1,385	Para-	AM I	Peak	PM I	Peak
flats with average flat about 32m ²	meter	Generatio	Attraction	Generatio	Attraction
GFA)		n		n	
Trip Rates: Residential Use with average 60m ² GFA	pcu/flat/ hr	0.0718	0.0425	0.0286	0.0370
Traffic Generation	pcu/hr	100	59	40	52
		<u>159 (2</u>	?-way)	92 (2·	-way)
	veh/hr ⁽¹⁾	<u>94</u>	<u>56</u>	<u>37</u>	<u>49</u>
		<u>150 (2</u>	?-way)	86 (2-	-way)

⁽¹⁾ Converted from pcu/hr to veh/hr based on 90% private car/ taxi and 10% heavy goods vehicles

4.17 The traffic generation of Approved Scheme found in the approved traffic impact assessment is presented in **Table 4.7**.

TABLE 4.7 ADOPTED TRAFFIC GENERATION FOR APPROVED SCHEME

Approved Scheme	Parameter	AM	Peak	PM	Peak
		Generation	Attraction	Generation	Attraction
Traffic Generation	pcu/hr	<u>37</u>	22	<u>18</u>	23
		59 (2-way)		41 (2	?-way)
	veh/hr ⁽¹⁾	35	21	17	22
		56 (2-	-way)	39 (2	?-way)

Converted from pcu/hr to veh/hr based on 90% private car/ taxi and 10% heavy goods vehicles

- 4.18 The peak hour traffic generation of Approved Scheme and Proposed Development are shown in **Figures 4.2 4.3** respectively.
- 4.19 The net increase in traffic generation (in pcu/hr and veh/ hr) between the Approved Scheme and the Proposed Development is presented in **Tables 4.8** and 4.9.

TABLE 4.8 NET INCREASE IN TRAFFIC GENERATION (PCU PER HOUR)

Scheme		,	ation (pcu/ h	,	
	AM	Peak	PM Peak		
	Generation	Attraction	Generation	Attraction	
Proposed Development (from Table 4.6) [a]	100	59	40	52	
Approved Scheme (from Table 4.7) [b]	37	22	18	23	
Net Increase [a] – [b]:	+63	+37	+22	+ 29	
	+ 100 (2-way)		+51 (2-way)		

TABLE 4.9 NET INCREASE IN TRAFFIC GENERATION (VEHICLE PER HOUR)

Scheme Traffic Generation (veh/ hr)							
	AM	Peak	PM Peak				
	Generation	Attraction	Generation	Attraction			
Proposed Development (from Table 4.6) [a]	94	<u>56</u>	<u>37</u>	<u>49</u>			
Approved Scheme (from Table 4.7) [b]	35	<u>21</u>	<u>17</u>	22			
Net Increase [a] – [b]:	+59	+35	+20	+27			
	+94 (2-way)		+47 (2	2-way)			

4.20 The Proposed Development is expected to generate 100 and 51 additional pcu / hour (2-way) in AM and PM peak respectively, or equivalent to 94 and 47 vehicles / hour (2-way).

Year 2033 Proposed Additional Bus Trips

4.21 It is expected that 4 additional bus trips are required to accommodate the road-based public transport demand of the Proposed Development in Year 2033. The year 2033 proposed additional bus trips are shown in **Figure 4.4**, and details of the additional bus trips are presented in **Paragraphs 5.13 – 5.19**.

Year 2033 Traffic Flows

4.22 Year 2033 traffic flows for the following cases are derived:

Year 2033 Without = Traffic flows derived with reference to 2031 NTW1 BDTM + estimated traffic growth between 2031 and 2033 + estimated traffic generation of the planned / committed developments after 2019

Year 2033 With Approved = [A]+ estimated traffic generation for Approved Scheme

Scheme [B]

Year 2033 With Proposed = [B] + net increase in traffic generation by Proposed Development [C] Development + Additional Bus Trips

4.23 Year 2033 peak hour junction flows and link flows for the above three cases are shown in **Figures 4.5 – 4.8** respectively.

Year 2033 Junction Capacity Analysis

4.24 Year 2033 junction capacity analysis for the three cases are summarised in **Table 4.10** and detailed calculations are found in the **Appendix A**.

TABLE 4.10 YEAR 2033 JUNCTION PERFORMANCE

Ref	Junction	Type of Junction (Parameter)	2033 Without Proposed Development		Approved t Scheme		2033 With Proposed Development	
			AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
J1	Unnamed Road/ Access Road	Priority (DFC)	0.055	0.049	0.057	0.050	0.059	0.051
J2	Ng Lau Road/ Unnamed Road	Priority (DFC)	0.052	0.046	0.125	0.081	0.250	0.124
J3	Ng Lau Road/ Lam Tei Interchange	Signal (RC)	35%	41%	32%	39%	28%	36%
J4	Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange	RA (DFC)	0.741	0.702	0.748	0.709	0.762	0.719
J5	Lam Tei Interchange	RA (DFC)	0.812	0.706	0.824	0.716	0.847	0.777
J6	Lam Tei Interchange/ Castle Peak Road – Lam Tei	Signal (RC)	20%	46%	20%	45%	19%	44%
J <i>7</i>	Tsing Lun Road/ Tsz Tin Road	Signal (RC)	22%	56%	22%	56%	21%	56%
J8	San Hing Road/ Ng Lau Road (Southern)	Priority (DFC)	0.092	0.055	0.097	0.060	0.107	0.068
J9	San Hing Road/ Ng Lau Road (Northern)	Priority (DFC)	0.200	0.453	0.200	0.453	0.200	0.453
J10	T-junction at San Hing Road	Priority (DFC)	0.058	0.071	0.061	0.074	0.069	0.080
J11	Ng Lau Road / Castle Peak Road – Lam Tei	Signal (RC)	16%	15%	16%	15%	16%	15%
J12	San Hing Road / Hong Po Road	Signal (RC)	106%	164%	106%	164%	104%	163%

Note:

RC – reserve capacity; RA – Roundabout, DFC – design flow/capacity ratio

4.25 **Table 4.10** shows that the Proposed Development has negligible traffic impact to the road junctions analysed.

Year 2033 Link Performance

4.26 The 2033 link performances are assessed and results are shown in **Table 4.11**.

TABLE 4.11 YEAR 2033 LINK CAPACITY ASSESSMENT

Ref	Link			,						Year 2033 Traffic Demand (veh/hr)					ear 2033 V/C Ratio			
				1 Flow		hout		ith		ith		hout	W			ith		
			(veh	/hr)		osed	Appr			osed		osed	Appr			osed		
						pment		eme		pment						pment		
			AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM		
			Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak		
L1	Castle Peak	NB	$2,604^{(1)}$	$2,604^{(1)}$	874	1,450	874	1,450	874	1,450	0.34	0.56	0.34	0.56	0.34	0.56		
	Road – Lam Tei	SB	$2,604^{(1)}$	2,604 ⁽¹⁾	1,828	1,252	1,828	1,252	1,830	1,254	0.70	0.48	0.70	0.48	0.70	0.48		
L2	Castle Peak	NB	2,800	2,800	538	619	539	620	541	622	0.19	0.22	0.19	0.22	0.19	0.22		
	Road – Lingnan	SB	2,800	2,800	863	589	865	590	868	591	0.31	0.21	0.31	0.21	0.31	0.21		
L3	Yuen Long	NB	4,700	4,700	5,023	4,737	5,037	4,744	5,064	4,753	1.07	1.01	1.07	1.01	1.08	1.01		
	Highway	SB	4,700	4,700	5,179	5,272	5,188	5,281	5,201	5,292	1.10	1.12	1.10	1.12	1.11	1.13		
L4	Tuen Mun Road	NB	4,700	4,700	5,439	5,831	5,447	5,839	5,459	5,847	1.16	1.24	1.16	1.24	1.16	1.24		
		SB	4,700	4,700	6,233	5,629	6,246	5,635	6,266	5,642	1.33	1.20	1.33	1.20	1.33	1.20		
L5	San Hing Road	2-way	800	800	175	81	183	86	196	92	0.22	0.10	0.23	0.11	0.25	0.12		
L6	Ng Lau Road	2-way	744 ⁽¹⁾	800	254	375	254	375	254	375	0.34	0.47	0.34	0.47	0.34	0.47		
	(north of J9)																	
L7	Ng Lau Road	2-way	800	800	409	442	456	474	535	514	0.51	0.55	0.57	0.59	0.67	0.64		
	(south of J2)																	
L8	Lam Tei	EB	2,800	2,800	1,879	1,264	1,908	1,278	1,958	1,295	0.67	0.45	0.68	0.46	0.70	0.46		
	Interchange	WB	2,800	2,800	1,894	1,815	1,912	1,833	1,941	1,856	0.68	0.65	0.68	0.65	0.69	0.66		
	(between J3&J5)																	
L9	Tsing Lun Road	NB	1,900	1,900	897	669	898	670	900	672	0.47	0.35	0.47	0.35	0.47	0.35		
		SB	1,900	1,900	1,334	984	1,336	985	1,339	986	0.70	0.52	0.70	0.52	0.70	0.52		

NB – northbound

SB – southbound

EB – eastbound

WB – westbound

With reference to paragraph 2.4.1.2 and table 2.4.1.2, Chapter 2.4, Volume 2 of TPDM, the design flow is to be reduced when the expected proportion of heavy vehicles exceeds 15%. The table below presents the adjusted design flow based on the proportion of heavy vehicles ("HV%").

Road Type	Design	Adjusted Design Flow (veh/hr)				
	Flow	0-15 HV%	20-25 HV%			
	(veh/hr)	0% reduction	7% reduction	10% reduction		
Expressway / trunk road (Dual 3 lanes – 11m-wide)	4,700	4,700	4,371	4,230		
Primary Distributor (Dual 3 lanes – 7.3m-wide)	2,800	2,800	2,604	2,520		
District Distributor (Single 4 lanes – 13.5m-wide)	1,900	1,900	1,767	1,710		
Local Roads (Single 2 lanes)	800	800	744	720		

Traffic Impact Assessment Final Report

- 4.27 The above results show that the assessed road links operate with sufficient capacity, except for Tuen Mun Road (L4), which operate with V/C ratios at 1.2 or above during the AM and PM peak hours in Year 2033. In view that there are negligible changes on the V/C ratios to L4 for cases without Proposed Development, with Approved Scheme and with Proposed Development, it can be concluded that the traffic generated by the Proposed Development is negligible.
- 4.28 As shown in LC paper no. CB(4)619/20-21(03) of Legislative Council Panel on Transport , the planned Route 11 would reduce v/c in Year 2036 from 1.2 to 1.0 at Tuen Mun Road (Siu Lam Section) in morning peak, which indicates the traffic congestion at Tuen Mun Road will be relieved by planned Route 11.
- 4.29 In addition to the above, other planned strategic road improvements, including, Tuen Mun Bypass and Yuen Long Highway (between Lam Tei and Tong Yan San Tsuen) are planned to be implemented. The traffic condition at L3 and L4 would be further improved by these planned strategic road improvements.
- 4.30 With the planned strategic road improvement works, both Yuen Long Highway (L3) and Tuen Mun Road (L4) are expected to operate with sufficient capacity.

5.0 IMPACT TO PUBLIC TRANSPORT SERVICES

Transport Mode of the Subject Site

- 5.1 The transport mode of the Subject Site is assessed with reference to "Travel Characteristic Survey 2011" ("TCS2011"), but adjusted to reflect the nearby public transport provisions. The public transport provisions near the subject site have the following characteristics:
 - (1) Direct and comprehensive light rail services at Lam Tei LRT stops operating within 50m from the Subject Site, which serve as feeder services to MTR and within Tuen Mun, instead of GMB route 42 at Ng Lau Road.
 - (2) Comprehensive bus services is identified within 400m walking distance.
 - (3) There are no special purpose bus, tram and ferry nearby.
- 5.2 Based on the above public transport characteristics, special purposed bus, tram, ferry, and public light bus found in TCS2011 are converted to rail and bus mode on pro-rata basis. The modified transport mode adopted for the Proposed Development is compared with TCS2011 and is found in **Table 5.1**.

TABLE 5.1 MODIFIED TRANSPORT MODE FOR THE PROPOSED DEVELOPMENT

Transport Mode	TCS 2011	Modified Transport Mode adopted
		for the Proposed Development
Rail	30%	44%
Bus	27%	38%
Public Light Bus	13%	0%
Private Car	12%	12%
Special Purpose bus	9%	0%
Taxi	6%	6%
Tram	2%	0%
Ferry	1%	0%
Total	100%	100%

5.3 **Table 5.1** shows that 44% and 38% of mechanised trips from the Proposed Development would use MTR and bus respectively. For residents who use MTR, it is assumed that 100% would use the LRT service.

Estimated Peak Hour Mechanised Trip Generation of Proposed Development

5.4 The mechanised trip generation of the Approved Scheme and the Proposed Development is estimated with reference to TCS2011 and is presented in **Table 5.2**.

TABLE 5.2 ESTIMATED PEAK HOUR MECHANISED TRIP GENERATION OF THE PROPOSED DEVELOPMENT

Parameter	Calculation	Unit	Approved Scheme	Proposed Development
No. of Flats	Α	flats	307	1,385
Average domestic household size in Tuen Mun ⁽¹⁾	В	persons/ flat	2.6	2.6
Population	$C = B \times A$	persons	799	3,601
Average Daily Mechanised Trips(2)	D	trips/ persons/ day	1.83	1.83
AM Peak hour factor of Daily Mechanised Trips ⁽³⁾	Е	N/A	12%	12%
Estimated Peak Hour Mechanised Trip Generation	$F = C \times D$ $\times E$	persons/ hr	176	791

⁽¹⁾ Extracted from Census and Statistic Department website

Estimated AM Peak Hour Transport Demand

5.5 The AM peak hour transport demand of the Proposed Development is estimated based on the modified transport mode in **Table 5.1**, and are presented in **Table 5.3**.

TABLE 5.3 ESTIMATED PEAK HOUR TRANSPORT DEMAND

Transport Mode of Proposed Development		Ratio ⁽¹⁾	Estimated AM Peak Hour Transport Demand of Proposed Development (Passenger/hr)
Public	Rail-based [a]	44%	348
Transport	Road-based [b]	38%	301
	Sub- total $[c] = [a] + [b]$	82%	649
Private Car	Private Car / Taxi [d]		142
	Total $[e]=[c]+[d]$	100%	791

⁽¹⁾ From Table 5.1

5.6 **Table 5.3** shows that Proposed Development is expected to generate additional public transport demand of 791 passengers per hour (2-way) during AM peak hour.

Road-Based Public Transport Demand Generated

5.7 The road-based public transport demand generated by the Proposed Development is summarised in **Table 5.4**.

TABLE 5.4 ESTIMATED ROAD-BASED PUBLIC TRANSPORT DEMAND

Development	Road-based Public Transport Demand (persons / hour)							
	AM	Peak	PM I	Peak				
	Generation ⁽¹⁾	Attraction ⁽¹⁾	Generation ⁽¹⁾	Attraction ⁽¹⁾				
Proposed Development: 1,385 Flats	214	87	87	148				
	<u>301 (2</u>	2-way)	235 (2	!-way)				

⁽¹⁾ Proportional to adopted peak hours pedestrian generation and attraction rates in **Table 6.2**.

5.8 **Tables 5.4** shows that the Proposed Development is expected to generate road-based public transport demand of 301 and 235 passengers per hour (2-way) during AM and PM peak hours respectively.

⁽²⁾ From Table 3.3, Travel Characteristics Survey 2011 Final Report

⁽³⁾ From Para. 3.3.7, Travel Characteristics Survey 2011 Final Report

Rail-Based Public Transport Demand Generated

5.9 The rail-based public transport demand generated by the Proposed Development are summarised in **Table 5.5**.

TABLE 5.5 ESTIMATED RAIL-BASED PUBLIC TRANSPORT DEMAND

Development	Rail-based Public Transport Demand (persons / hour)						
	AM Peak PM Peak						
	Generation ⁽¹⁾ Attraction ⁽¹⁾ Generation ⁽¹⁾ Attraction						
Proposed Development: 1,385	247 101 100 172						
Flats	+ 348 (2-way) + 272 (2-way)						

⁽¹⁾ Proportional to adopted pedestrian generation and attraction rates in AM and PM peak

5.10 **Tables 5.5** shows that the Proposed Development is expected to generate rail-based public transport demand of 348 and 272 passengers per hour (2-way) during AM and PM peak hours respectively.

Impact to Road-based Public Transport Services

- 5.11 To assess the impact to road-based public transport, the followings assumptions are adopted:
 - 1. All bus services provided in Year 2033 remain the same as the existing, i.e., observed from surveys conducted in 2024.
 - 2. By Year 2033, all existing bus services will operate at equilibrium.
- 5.12 Based on above the assumptions, the followings paragraphs assess the additional bus services required in Year 2033 for the Proposed Development.

Additional Bus Trip for the Proposed Development

5.13 The additional bus trips for the Proposed Development in Year 2033 is estimated based on the AM peak hour generation of road-based public transport demand as and is summarised in **Table 5.6**.

TABLE 5.6 ADDITIONAL BUS TRIP FOR THE PROPOSED DEVELOPMENT

Parameter	Calculation	Value	Unit
AM peak hour generation of road-based public transport demand (from Table 5.5)	A	214	persons
Capacity per double-deck bus	В	120	persons
Design Utilization Rate during peak hour	С	<i>7</i> 5%	N/A
Additional Bus Trips	D = A / (B X C)	3	Trips

5.14 **Table 5.6** shows that at least 3 bus trips (7.5 pcu 2-way) are required to accommodate the road-based public transport demand for the Proposed Development.

Proposed Bus Route for the Additional Bus Trips

5.15 The population using bus as main mode in Tuen Mun is obtained from table B203 and C204 from the "Population Census 2021", which is published by Census and Statistic Department, and is summarised in **Table 5.7**.

TABLE 5.7 POPULATION USING BUS AS MAIN MODE IN TUEN MUN

Place of Work /	Population using B	us as Main Mode in Tue	n Mun (Percentage)
Study	Working Population in Tuen Mun ⁽¹⁾	Student Population ⁽¹⁾	Overall [C] = [A] + [B]
Hong Kong Island	14,651 (24%)	1,067 (16%)	[C] = [A] + [D] 15,718 (23%)
Kowloon	20,684 (33%)	2,321 (35%)	23,005 (34%)
New Territories	26,309 (43%)	3,175 (49%)	29,484 (43%)

Extracted from of Population Census 2021, Table B203 and C204: https://www.census2021.gov.hk/en/main_tables.html

5.16 The destination of bus routes with stops at Castle Peak Road – Lam Tei ("CPR") and the Lam Tei Interchange ("LTI") are presented in **Table 5.8**.

TABLE 5.8 COMPARISON ON DESTINATION OF BUS ROUTES BETWEEN BUS STOP AT CPR AND LTI

	Walking Distance		N	lo. of B	us Rout	es at De	stinatio	n	
Bus Stop	(Time)	HKI	NTW	YTM	Kln(E)	Kln(W)	Z	TCL	BCP
CPR	100 to 200 (2 - 4 mins)	4	3	2	2	0	1	2	1
LTI	350 to 400 (7 - 8 mins)	3	2	2	2	1	2	2	1

HKI – Hong Kong Island

NTW - New Territories West

YTM – Yau Ma Tei/Tsim Sha Tsui/Mong Kok

Kln(E) – Kowloon (East)

Kln(W) – Kowloon (West)

N – North

BCP - Boundary Control Point

TCL-Tung Chung / Lantau Island

- 5.17 **Table 5.8** shows that the bus stops at CPR which are located only 2 4 minutes' walk away, has similar routes as the LTI stop, except for the routes to Kowloon West.
- 5.18 However, it is found that most of the bus routes at CPR are operated by KMB, and residents from the Proposed Development travelling to Kowloon West using these bus routes could change to other bus routes operated by KMB at the Tuen Mun Road interchange, e.g. KMB 59X, 60X and 67X. Therefore, it is concluded that all road-based public transport demand from the Proposed Development would use CPR, and negligible usage of LTI, due to its longer walking time.
- 5.19 Based on the proportion of working district of working population in Tuen Mun presented in **Table 5.7** and the findings from **Table 5.8**, the proposed bus route for the 4 additional bus trips are presented in **Table 5.9**, and bus route are shown in **Figure 5.1**.

TABLE 5.9 PROPOSED BUS ROUTE FOR THE ADDITIONAL BUS TRIPS

District	Proportion ⁽¹⁾	Der (passer	l Passenger mand nger /hr) a]		Occupancy of Additional bus trip [b] = [a] / 120	
Hong Kong Island	23%		19	1	41%	KMB 960P
Kowloon	34%	,	⁷ 2	1	60%	KMB 63X
New Territories	43%	93	47	1	39%	KMB 68A (3)
		46		1	38%	KMB 261P ⁽³⁾
Total	100%	214		4	N/A	N/A

⁽¹⁾ From **Table 5.7**

2033 Rail-Based Public Transport Occupancies

5.20 As presented in **Table 5.5**, the demand on rail-based public transport services, i.e. MTR Tuen Ma Line, associated with the Proposed Development is no more than 247 passengers during the peak hours. As presented in **Table 2.5**, the MTR Tuen Ma Line has a maximum carrying capacity of 70,000 passenger / hour. Hence, the additional passenger demand is only 0.4% of the maximum carrying capacity [Calculation: 247 ÷ 70,000 = 0.4%], which is negligible on the MTR Tuen Ma Line.

Annual Public Transport Demand Growth Rate between 2024 – 2033

- 5.21 To establish the local public transport demand growth rate from 2024 to 2033, reference is made to several sources of information including:
 - 2024 2031: 2019 based TPEDM
 - 2031 2033: "Hong Kong Population Projections" from the Census and Statistics Department
- 5.22 Between 2024 and 2029, reference is made to the population and employment growth of Tuen Mun in the TPDEM, and population projections are presented in **Table 5.10**.

TABLE 5.10 TUEN MUN NEW TOWN POPULATION PROJECTIONS

Year	Population [a]	Employment [b]	Overall [c] = [a] + [b]
2019	476,500	130,800	607,300
2031	606,850	150,750	757,600
Average Annual Growth 2019 to 2031	2.0%	1.2%	1.9%

- 5.23 **Table 5.10** shows that the average annual population growth in the Tuen Mun between 2019 and 2031 is 1.9%.
- 5.24 Beyond 2031, reference is made to the "Hong Kong Population Projections" from the Census and Statistics Department, which is presented in **Table 5.11**.

Determined by the greatest occupancy in existing condition for clarity.

⁽³⁾ 2 buses to be provide services for New Territories West and New Territories East respectively

TABLE 5.11 HONG KONG POPULATION PROJECTIONS FROM CENSUS AND STATISTICS DEPARTMENT

Year	Hong Kong Resident Population ('000)
2031	7,820.2
2033	7,903.6
Average Annual Growth 2031 to 2033	0.53%

- 5.25 **Table 5.11** shows that the average annual population growth in Hong Kong between 2031 2033 is 0.53%.
- 5.26 Based on the above, the annual growth factors adopted are 1.9% from 2024 to 2031, and 1.0% from 2031 to 2033 for conservative approach.

2033 LRT Service Occupancies

5.27 Based on survey result shown in **Table 2.7**, the year 2033 performance of LRT services at Lam Tei Stop were derived as follows:

2033 without Proposed = 2024 observed performance of LRT services at Lam Development [A] Tei Stop + adopted public transport demand growth demand growth from 2024 to 2033

2033 with Proposed = [A] + rail-based public transport demand due to Development [B] Proposed Development (from **Table 5.5**)

5.28 Year 2033 performances of LRT services at Lam Tei Stop are presented in **Table** 5.12.

TABLE 5.12 YEAR 2033 PERFORMANCE OF LRT SERVICES AT LAM TEI STOP

Direction	Capacity ⁽¹⁾	No. of Passe Year 2033	nger Occupied [b]	Occupancy [c]=[b]/[a]					
	[a]	Without Proposed Development	With Proposed Development	Without Proposed Development	With Proposed Development				
		AN	M Peak						
Yuen Long bound	6,600	3,829	3,866	58%	59%				
Tuen Mun bound	7,200	6,746	6,956	94%	97%				
	PM Peak								
Yuen Long bound	5,600	4,930	88%	90%					
Tuen Mun bound	6,400	3,599	3,651	56%	57%				

5.29 **Table 5.12** shows that the year 2033 LRT services at Lam Tei Stop would operate with limited capacities during the AM and PM peak hours. If necessary, 2 LRT trips operating with single LRV could be converted to coupled-set LRV, thus giving additional capacity of 400, which could accommodate the additional rail-based public transport demand generated by the Proposed Development.

Review on Public Transport Facilities

5.30 Public Transport Facilities are reviewed and presented in below paragraphs.

Additional Queuing/Waiting Demand due to the Proposed Development

5.31 The estimated additional queuing/waiting related to the Proposed Development

at each bus stop / LRT station is presented in **Table 5.13**.

TABLE 5.13 ADDITIONAL QUEUING / WAITING DEMAND RELATED TO THE PROPOSED DEVELOPMENT

Bus Stop / LRT Stop		Boarding Demand (No. of Passenger) (from Table 5.9) [a]	(including	Average Queuing / Waiting Passenger (No. of Passenger) [c] = [a] / [b]
CPR – Southbound	KMB 960P	49	7	7
	KMB 63X	72	6	12
	KMB 68A	47	4	12
	Sub-total	<u>168</u>	<u>17</u>	<u>31</u>
CPR – Northbound	KMB 261P	46	2	23
LTI – Westbound		0	2	0
LTI – Eastbound		0	0	0
Lam Tei LRT Stop – Yuen Long bound		38	23	2
Lam Tei LRT Stop – T	uen Mun bound	210	24	9

5.32 **Table 5.13** shows that the estimated additional average queuing /waiting passenger at CPR southbound and CPR northbound bus stops are 31 and 23 passengers respectively and no additional average queuing /waiting passenger at LTI bus stops.

Utilisation of Passenger Waiting/Queuing Areas at Bus Stops / LRT Platforms

5.33 Survey on passenger waiting/queuing areas at bus stops / LRT platforms was conducted during the AM and PM peak periods on Thursday, 8th May 2024, and the peak hours identified from the surveys is found to be between 0715 – 0815 hours. Based on this survey, the year 2033 maximum number of passenger waiting/queuing at the Bus Stops / LRT platforms were derived as follows:

2033 without Proposed = 2024 observed maximum queue + adopted passenger Development [A] demand growth from 2024 to 2033

2033 with Proposed = [A] + average queuing / waiting passenger due to Development [B] Proposed Development (from **Table 5.13**)

5.34 Utilisations of passenger waiting/queuing area at the bus stops / LRT platforms for existing, 2033 cases without and with Proposed Development are presented in **Table 5.14**.

TABLE 5.14 UTILISATIONS OF PASSENGER WAITING / QUEUING AREA AT BUS STOPS AND LRT PLATFORMS

Bus Stop / LRT Platform	Queuing/ Waiting Capacity		V		Without	2033 Proposed opment	Development		
	Area	Pass ⁽¹⁾	Max	Util	Max	Util	Max	Util	
	(m ²)	[a]	Queue	[c] =	Queue	[e] =	Queue	[g] =	
			[b]	[b] / [a]	[d]	[d] / [a]	[f]	[f] / [a]	
CPR – Southbound	38	132	38	29%	45	34%	76	58%	
CPR – Northbound	20	69	10	14%	12	17%	35	51%	
LTI – Westbound	8	28	8	29%	10	36%	10	36%	
LTI – Eastbound	8	28	0	0%	0	0%	0	0%	
Lam Tei LRT Stop –	30 ⁽²⁾	104	16	15%	19	18%	21	20%	
Yuen Long bound									
Lam Tei LRT Stop – Tuen Mun bound	96(2)(3)	333	84	25%	98	29%	10 <i>7</i>	32%	

Pass - Passenger

Max – Maximum

Util - Utilisation

5.35 **Table 5.14** shows that the assessed bus stops /LRT platforms would have sufficient passenger waiting/queuing areas for the case of year 2033 with the Proposed Development.

Length of the Laybys for Bus Stops

5.36 The assessment on length of the laybys at the Castle Peak Road – Lam Tei bus stops and Lam Tei Interchange bus stops for the year 2033 without and with Proposed Development are presented in **Table 5.15.**

TABLE 5.15 ASSESSMENT ON LENGTH OF THE LAYBYS FOR BUS STOPS

Bus Stop	Number of Bus Could Stop (Length) [c]	Dwell	rage Time te) [a]	Fime Boarding /A 2) [a] 2033 Without Proposed		Alighting [b]		[d]=[a]x[b] / ([2033 Without Proposed		Bus Stop Layby c]x60 minutes) 2033 With Proposed Development	
		AM Peak			AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	
CPR – Southbound	2 (26m)	1.6	0.9	35	10	39	14	47%	8%	53%	11%
CPR – Northbound	1 (13m)	1.2	1.3	10	21	14	25	20%	47%	28%	55%
LTI – Westbound	1 (13m)	0.5	0.5	3	4	3	4	3%	3%	3%	3%
LTI – Eastbound	1 (13m)	0.7	0.5	7	2	7	2	8%	2%	8%	2%

⁽¹⁾ Refer to Paragraph 5.11, all bus services provided in Year 2033 remain the same as observed from surveys conducted in 2024

5.37 **Table 5.15** shows that:

- CPR southbound bus stop layby: The utilisation increases from 47% to 53%, and from 8% to 11% in the AM and PM peak respectively.
- CPR northbound bus stop layby: The utilisation increases from 20% to 28%, and from 47 to 55% in the AM and PM peak respectively.
- LTI bus stop westbound and eastbound laybys: No impact from the Proposed Development.

⁽¹⁾ Refer to Volume 9, Chapter 2.7, TPDM, standing capacity of 5 passengers per 1.44m² is adopted.

⁽²⁾ Deducted minimum of 1.1m walkways from doors of light rail vehicles to the exit of the platforms and utilities on the platforms, e.g. shelter, seats, ticket vending machines and Octopus card readers.

Included the expansion of Lam Tei LRT Tuen Mun bound platform

The 4 additional bus trips related to the Proposed Development are included in Year 2033 with Proposed Development scenario.

Proposed Improvement on the Length of the CPR Bus Laybys

- 5.38 **Figure 5.2** shows the proposed improvement for the CPR bus laybys, which include the following:
 - CPR southbound bus stop Extend the existing 26m-long bus layby to 42m (14m x 3) to accommodate 3 12.8m-long bus boarding /alighting at the same time
 - CPR northbound bus stop Extend the existing 13m-long bus layby to 28m (14m x 2) to accommodate 2 12.8m-long bus boarding /alighting at the same time

The assessment on length of the laybys for bus stops at the Castle Peak Road – Lam Tei bus stops taking into consideration the proposed improvement, are summarized in **Table 5.16**.

TABLE 5.16 ASSESSMENT ON LENGTH OF THE LAYBYS FOR BUS STOPS WITH PROPOSED IMPROVEMENT

Bus Stop	Number of Bus Could Stop (Length) [c]	Average Dwell Time (minute) [a]			Alighting (1)	Utilisation of Bus Stop Layby [d]=[a]x[b] / ([c]x60 minutes)		
		AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	
CPR – Southbound	3 (42m)	1.6	0.9	39	14	35%	7%	
CPR – Northbound	2 (28m)	1.2	1.3	14	25	14%	28%	

The 4 additional bus trips related to the Proposed Development are included in Year 2033 with Proposed Development scenario.

5.39 **Table 5.16** shows that the laybys would have sufficient capacity for bus boarding / alighting for Year 2033 with the Proposed Development and after implementation of the proposed improvement on CPR bus stop laybys.

<u>Justification on Not Providing Shuttle Bus Service for the Proposed</u> Development

5.40 The assessment on the impact of public transport concluded that the public transport provisions in the vicinity of the Proposed Development are sufficient to accommodate the passenger demand due to the Proposed Development by providing 4 additional bus services. Hence, provision of shuttle bus services for the Proposed Development is not required.

6.0 PEDESTRIAN IMPACT

2033 Pedestrian Flow Forecasting

6.1 2033 peak hour pedestrian flows are produced by estimating (i) the pedestrian growth from 2024 to 2033; and (ii) expected pedestrian generated by the Proposed Development and planned / committed developments in the vicinity.

Annual Pedestrian Growth Rate between 2024 – 2033

6.2 Growth rates of 1.9% per annum from 2024 to 2031, and 1% per annum for the period from 2031 to 2033, are adopted, and references to these are found in **Paragraphs 5.20 – 5.26.**

<u>Peak Hour Pedestrian Generated by Planned / Committed Developments in the Vicinity</u>

6.3 Peak hour pedestrian generated by planned / committed developments in the vicinity as presented in **Table 4.3** is included in the Year 2033 pedestrian flow.

Adopted Pedestrian Generation Rate

6.4 Pedestrian generation survey was conducted at 0700 – 0900 and 1800 – 2000 hours on Thursday, 12th September 2024 at developments found near the Proposed Development. The AM and PM peak hours identified from the surveys are found to be between 0715 – 0815 hours and 1830 – 1930 hours respectively. The pedestrian generation and pedestrian generation rates is shown in **Table 6.1**.

TABLE 6.1 PEDESTRIAN GENERATION AND PEDESTRIAN GENERATION RATES

Surveyed Developments (Number of Flat)		AM	Peak	PM Peak			
		Generation Attraction		Generation	Attraction		
Pedestrian Generation (Ped / hr)							
Novoland ((3,282) ⁽¹⁾	1,491	568	542	1,346		
Ching Tin Estate ((5,183)	3,214	1,436	1,270	2,379		
Yan Tin Estate ((4,688)	3,085	1,262	1,248	2,143		
Pedestrian Generation Rate (Ped / hr / flat)							
Novoland ((3,282) ⁽¹⁾	0.4543	0.1731	0.1651	0.4101		
Ching Tin Estate ((5,183)	0.6201	0.2771	0.2450	0.459		
Yan Tin Estate ((4,688)	0.6581	0.2692	0.2662	0.4571		
Adopted Pedestrian Generation Rate (% 2-way)		0.6581	0.2692	0.2662	0.4571		
		(71%)	(29%)	(37%)	(63%)		
		0.9273 (2-way)		0.7233 (2-way)			

GEN – Generation ATT – Attraction

6.5 **Table 6.1** shows that the adopted AM and PM peak hour pedestrian generation rate are 0.9273 and 0.7233 ped/flat/hour (2-way).

Peak hour Pedestrian Generation of the Proposed Development

6.6 Based on the adopted pedestrian generation rates shown in **Table 6.1**, the peak hour pedestrian generation of the Proposed Development are calculated and are presented in **Table 6.2**.

⁽¹⁾ As of the time of survey, only phases 1 and 2 of the development are occupied.

TABLE 6.2 PEDESTRIAN GENERATION OF PROPOSED DEVELOPMENT

Item	Pedestrian Generation (Ped/ hour)					
	AM Peak		PM Peak			
	Generation	Attraction	Generation	Attraction		
The Proposed Development (1,385 Flats)	911	373	369	633		
	<u>1,284 (2-way)</u>		<u>1,002 (2-way)</u>			

6.7 **Tables 6.2** shows that Proposed Development would generate 1,284 and 1,002 persons (2-way) during AM and PM peak hour respectively.

Year 2033 Pedestrian Flows

- 6.8 Year 2033 pedestrian flows are produced with reference to (i) the observed 2024 pedestrian flows, (ii) annual pedestrian growth rate between 2024 2033, (iii) expected pedestrian generation due to the planned / committed developments between 2024 2033 and the Subject Site.
- 6.9 Year 2033 pedestrian flows for the footpath analysis were derived as follows:

2033 without Proposed = 2024 observed pedestrian flows + Adopted pedestrian Development [A] growth from 2024 to 2033 + estimated pedestrian due to the planned / committed developments

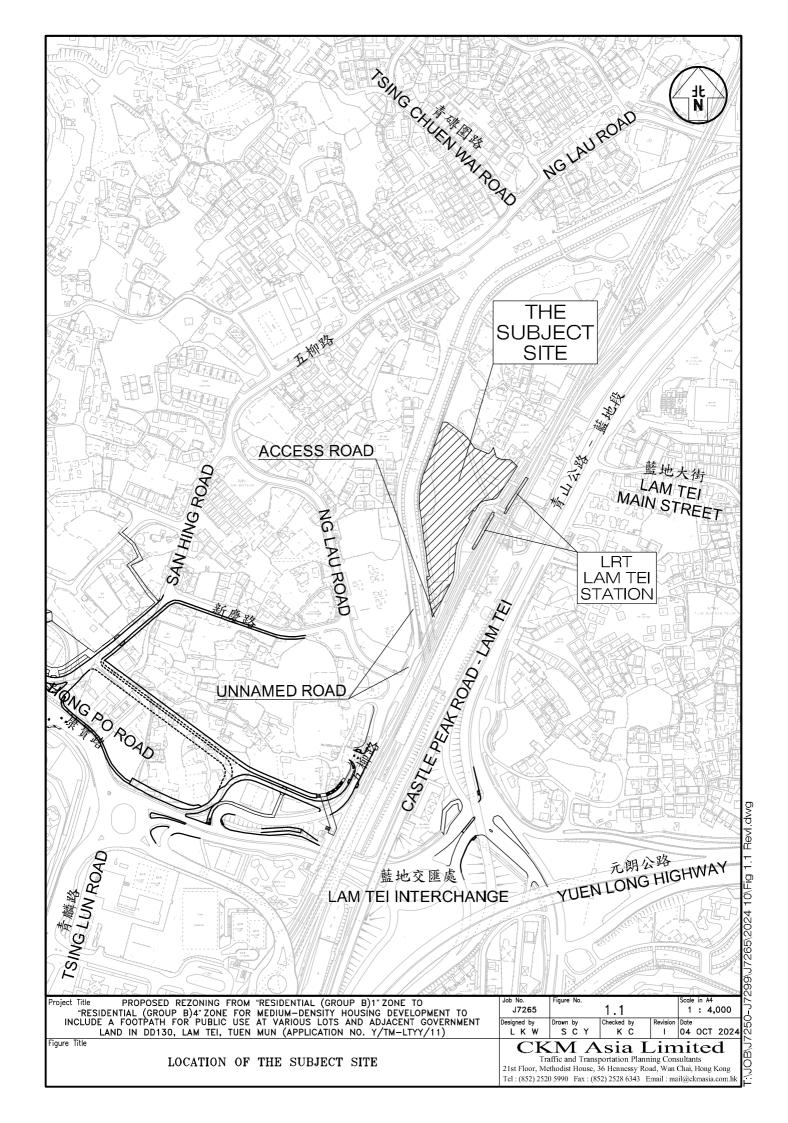
2033 with Proposed = [A] + pedestrian generation due to Proposed Development [B] Development

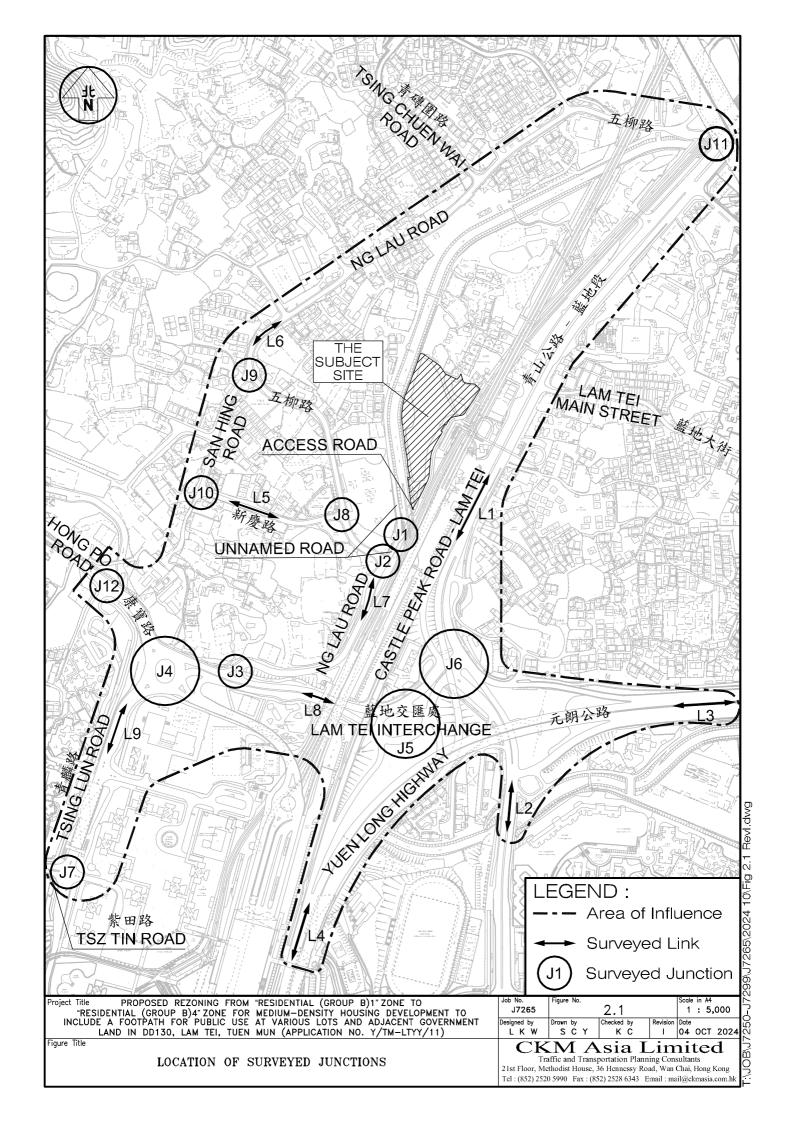
Year 2033 LOS Analysis

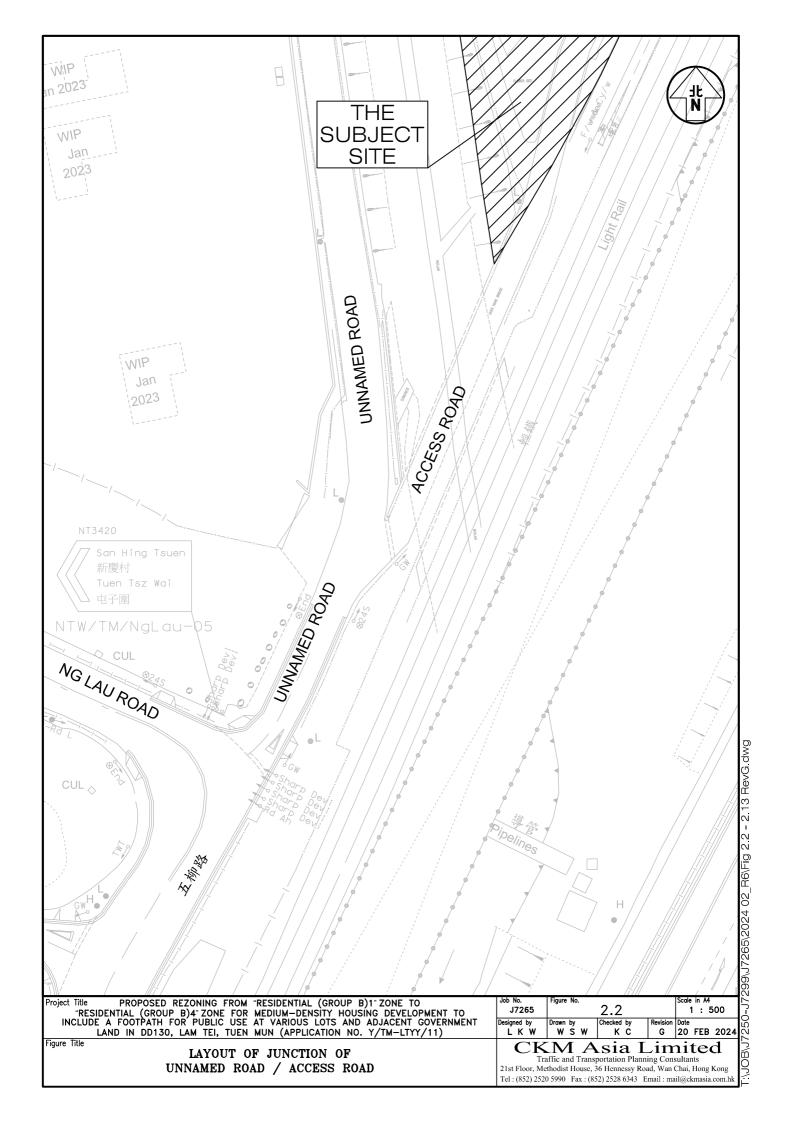
6.10 Year 2033 peak hour pedestrian flows for the two cases are estimated and presented in **Figure 6.1** and the corresponding LOS assessment is presented in **Table 6.3**.

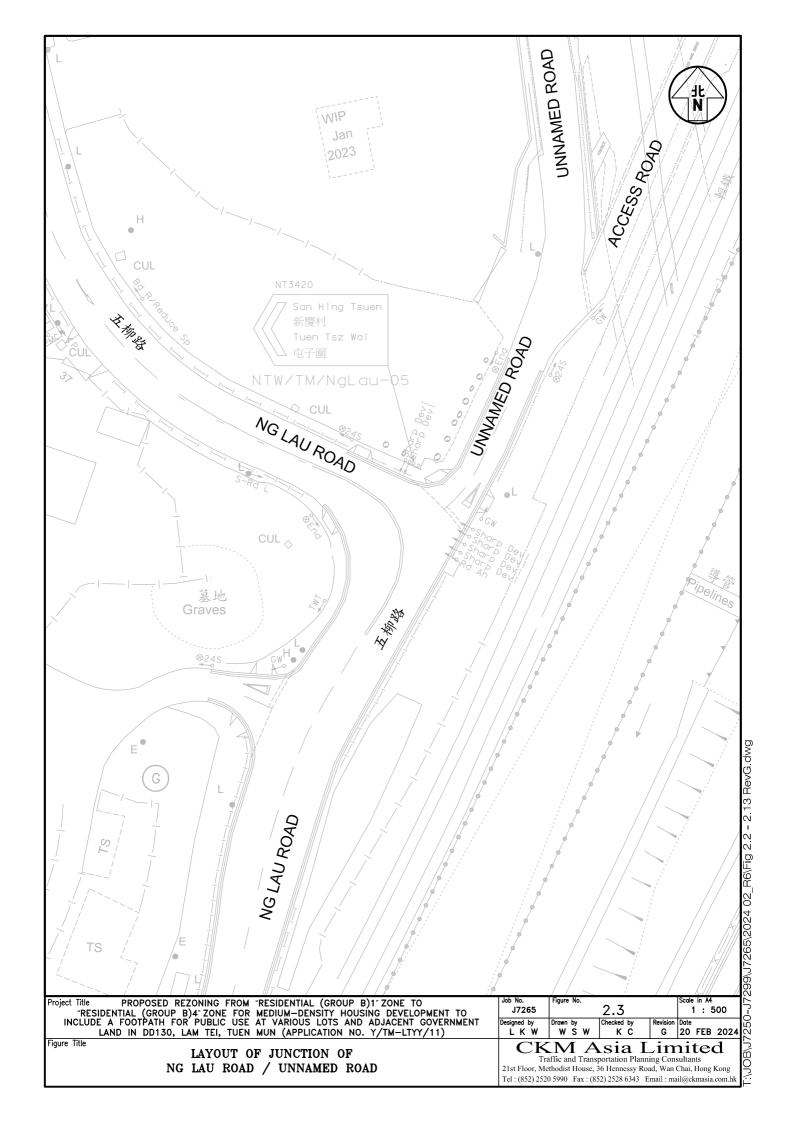
TABLE 6.3 YEAR 2033 LOS ASSESSMENT

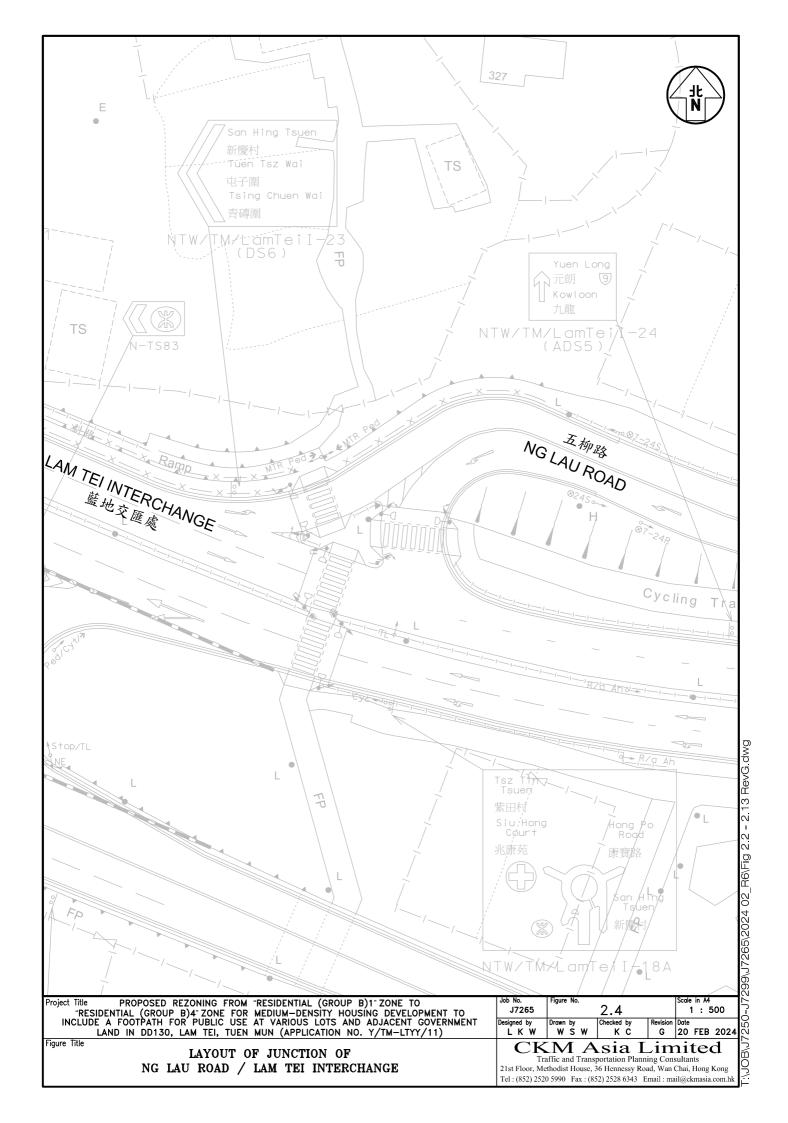
Location	Clear Width ⁽¹⁾ [Effective	Peak Period	2033 without Proposed Development			2033 with Proposed Development		
	Width] (m)		Flow	Flow rate	LOS	Flow	Flow rate	LOS
P1. Footpath on the footbridge	2.0[1.0]	AM	327	5.5	Α	456	7.6	Α
accessing to Ng Lau Road		PM	235	3.9	Α	336	5.6	Α
P2. Footpath between Lam Tei LRT stop and bus stop at	2.5[1.5]	AM	443	4.9	Α	700	7.8	Α
Castle Peak Road – Lam Tei		PM	305	3.4	Α	1,007	11.2	Α
P3. Footbridge over Castle Peak	2.5[1.5]	AM	328	3.6	Α	1,227	13.6	Α
Road – Lam Tei		PM	183	2.0	Α	384	4.3	Α
P4. Southern Footpath of San Hing	2.5[1.5]	AM	129	1.4	Α	194	2.2	Α
Road		PM	95	1.1	Α	146	1.6	Α
P5. Eastern Footpath of Ng Lau	2.0[1.0]	AM	296	4.9	Α	361	6.0	Α
Road		PM	200	3.3	Α	251	4.2	Α

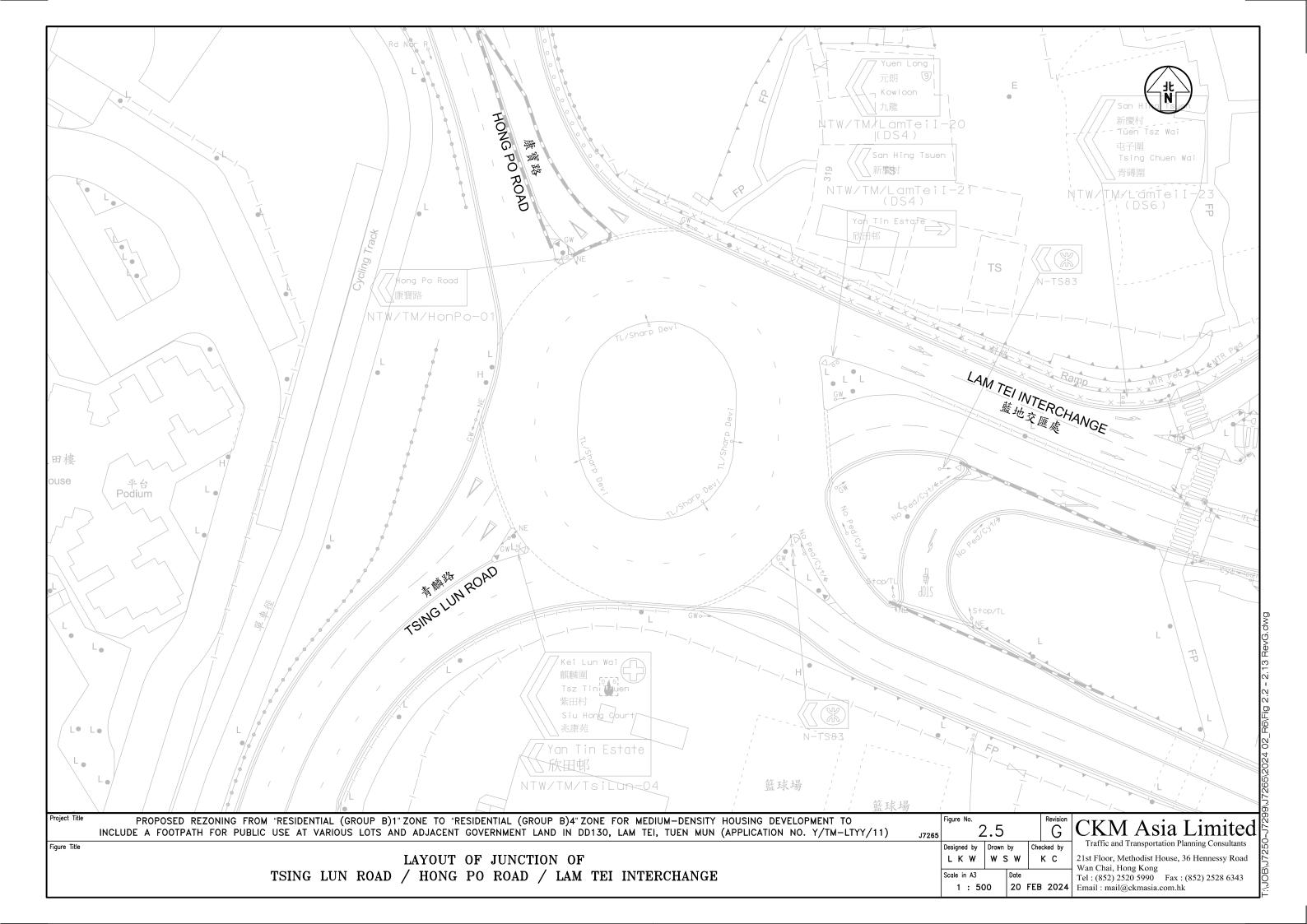

Note: Flows in pedestrian / hour flow rates in pedestrian / hour / meter

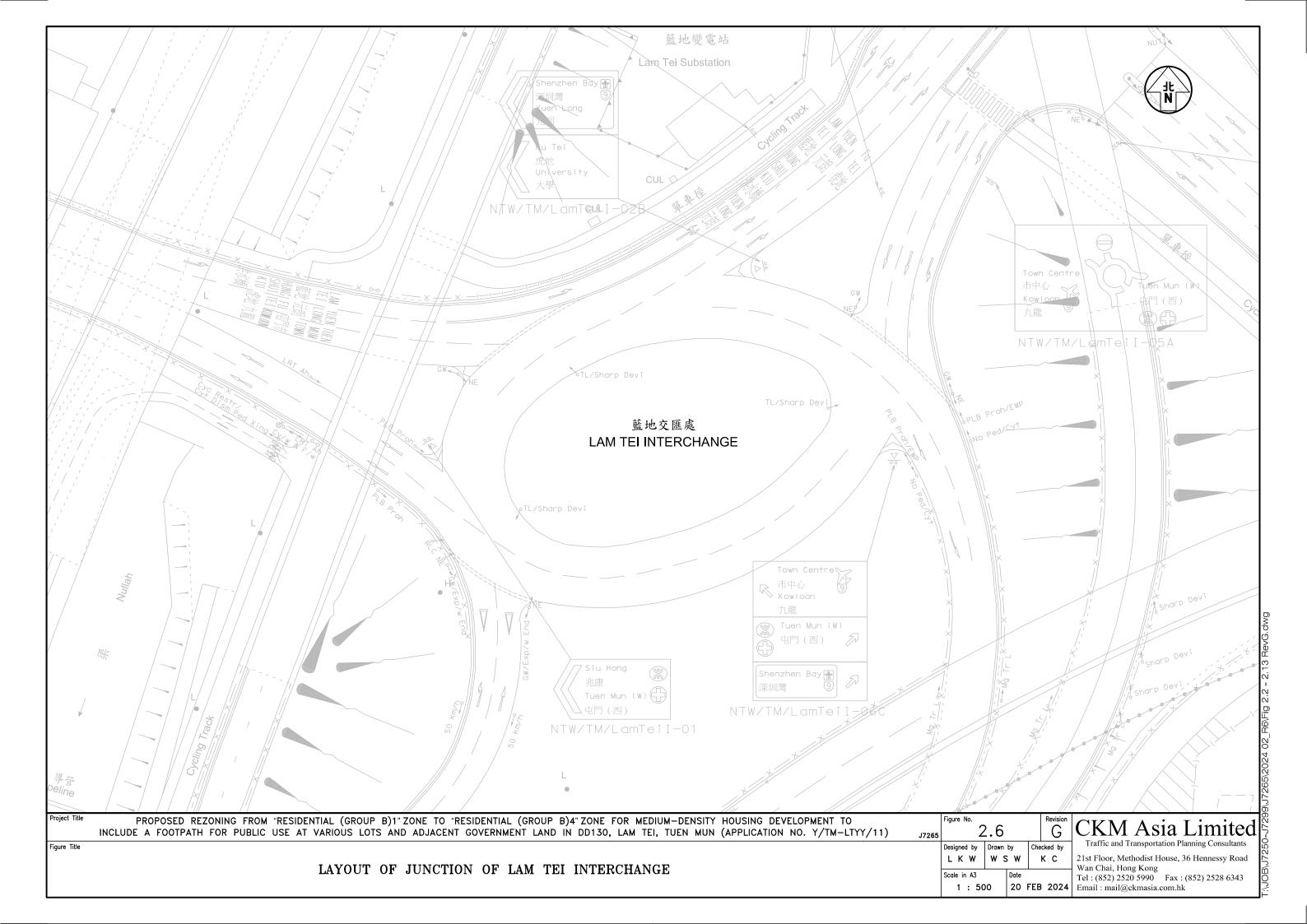

6.11 **Table 6.3** shows that the assessed footpaths operate with LOS A, i.e., have sufficient capacity to accommodate the expected pedestrian growth and pedestrian generated due to Proposed Development.

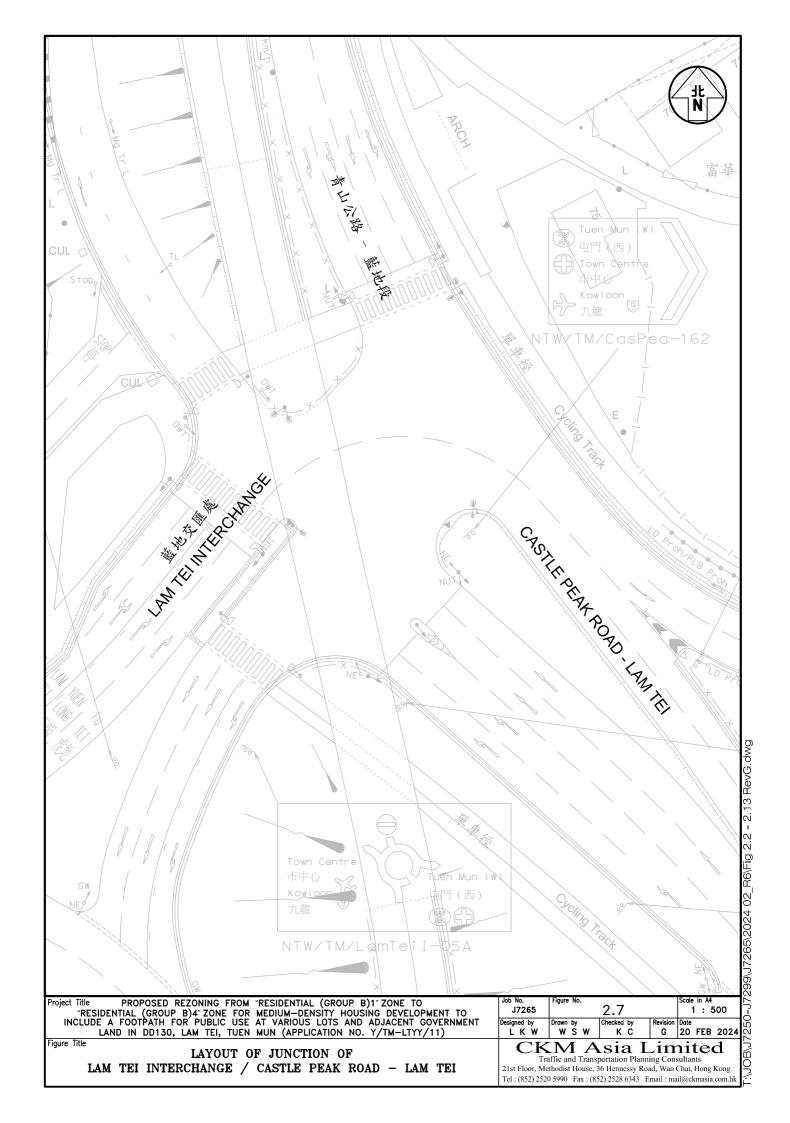

⁽¹⁾ The width excludes railing and obstructions.

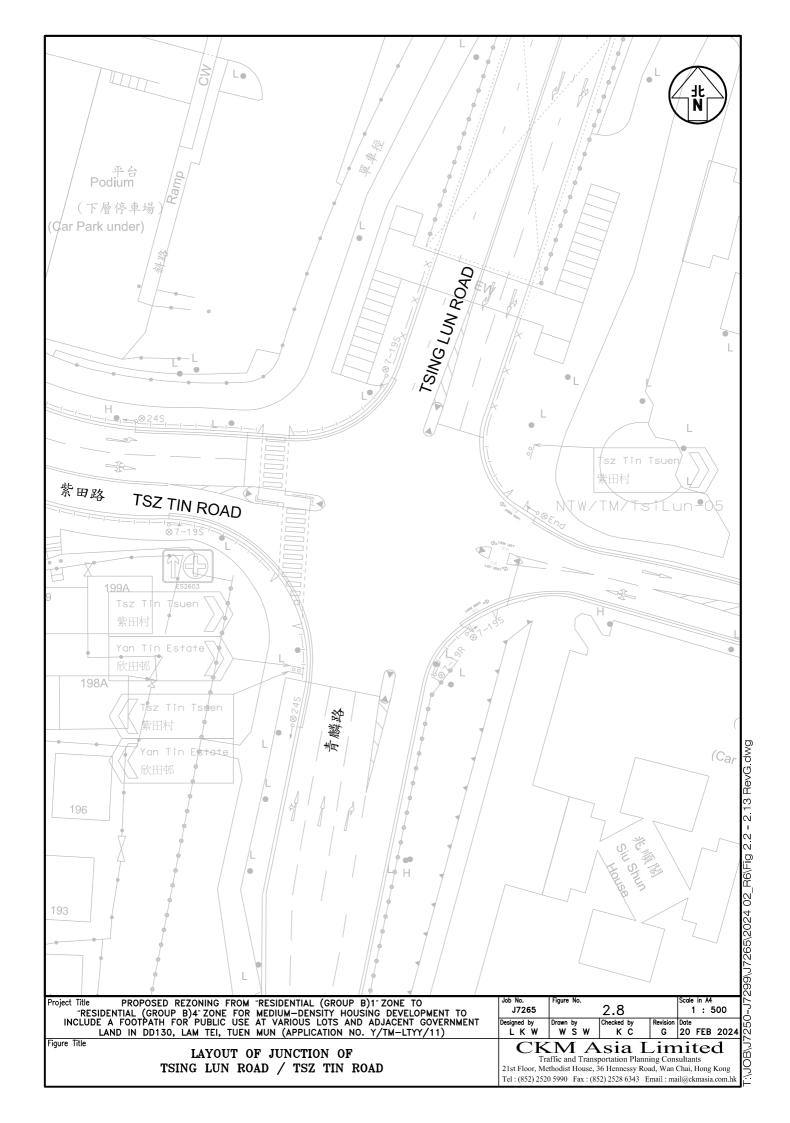

7.0 SUMMARY

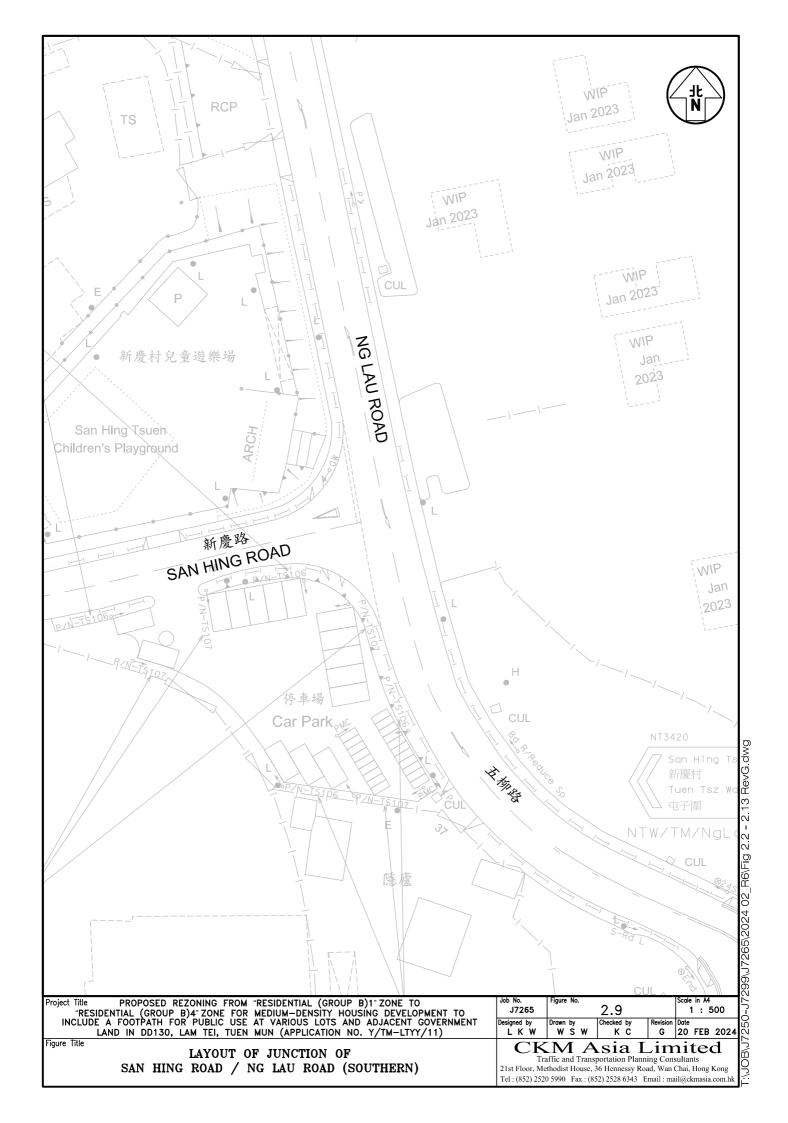

- 7.1 The Subject Site is located in D.D.130, Lam Tei, Tuen Mun. At present, the Subject Site is unoccupied, and access to the Subject Site is via an existing unnamed road which is connected to Ng Lau Road.
- 7.2 Manual classified counts were conducted at junctions and road links which are located in the vicinity in order to establish the existing traffic flows during AM Peak and PM peak hours.
- 7.3 The internal transport facilities provided comply with recommendations of the HKPSG and comments from Transport Department.
- 7.4 Year 2033 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to the BDTM; (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the 2 cases, i.e., Approved Scheme and Proposed Development.
- 7.5 Compared to the Approved Scheme, the Proposed Development will generate only 100 and 51 additional pcu (2-way) in AM peak and PM peak respectively. In addition, 4 nos. of bus trips are proposed to accommodate the road-based public transport demand of the Proposed Development.
- 7.6 The assessment of the nearby public transport services found that the Proposed Development has negligible impact. The assessment of footpaths found that the Proposed Development has negligible impact.
- 7.7 Based on the finding on review of public transport facilities, improvement on the CPR bus stop laybys is proposed, i.e., extend the existing 26m-long bus layby to 42m at CPR southbound bus stop and the existing 13m-long bus layby to 28m at CPR northbound bus stop.
- 7.8 This TIA concluded that the Proposed Development has no adverse traffic impact and the Proposed Development is acceptable from traffic engineering terms.

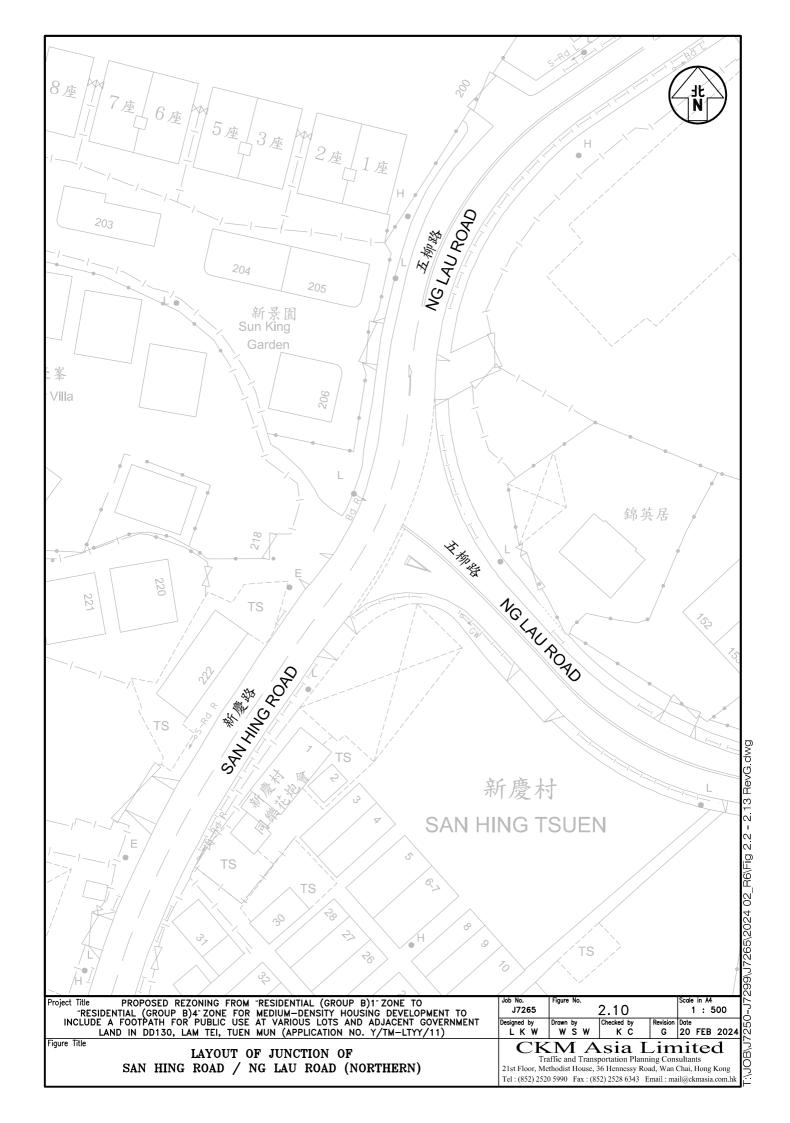


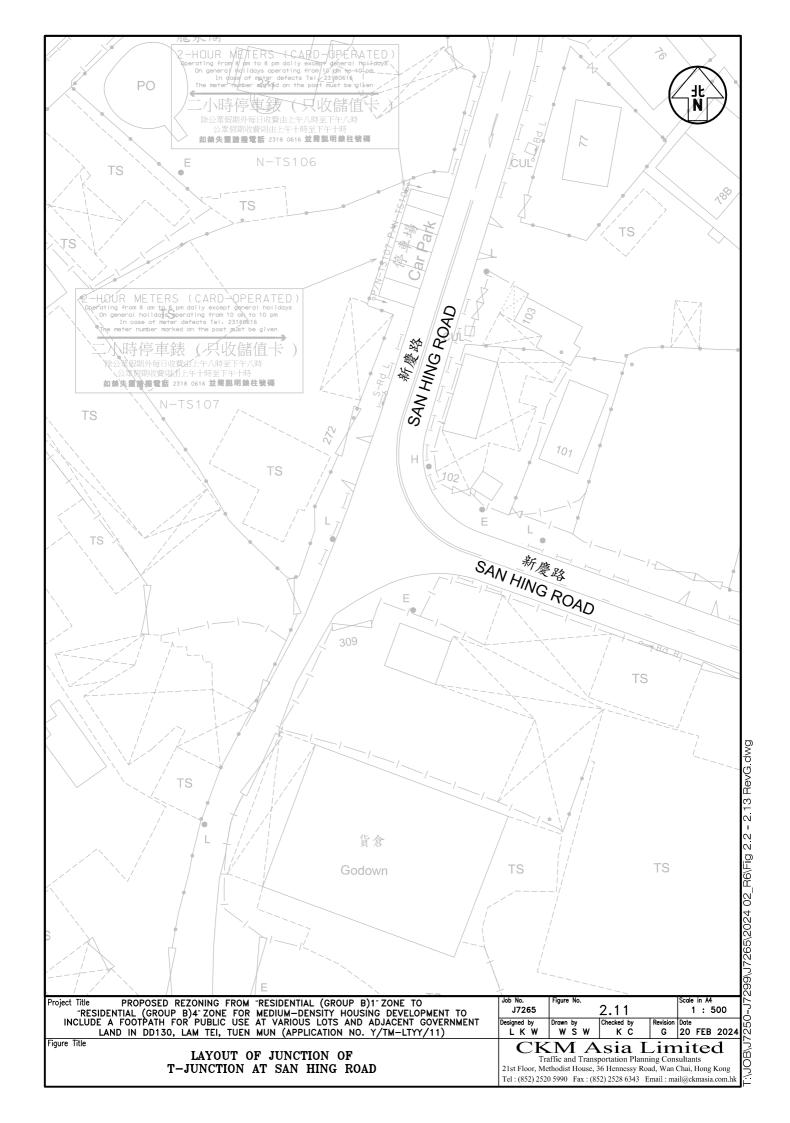


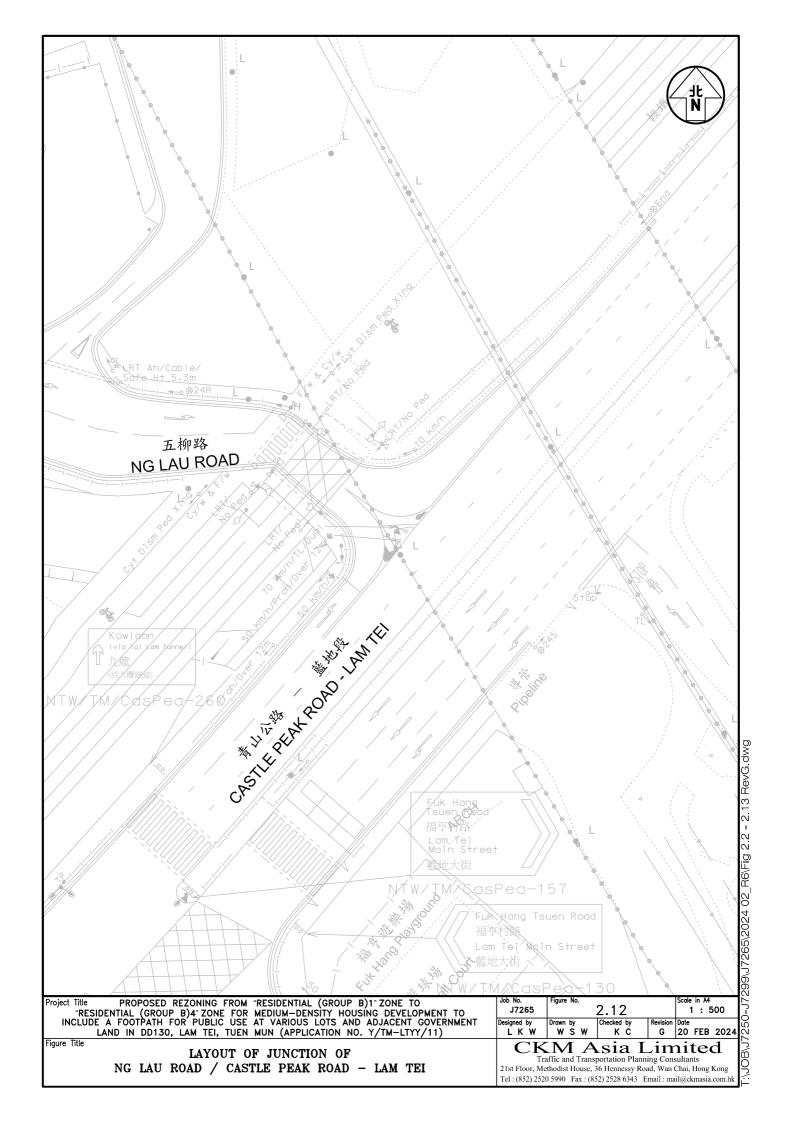


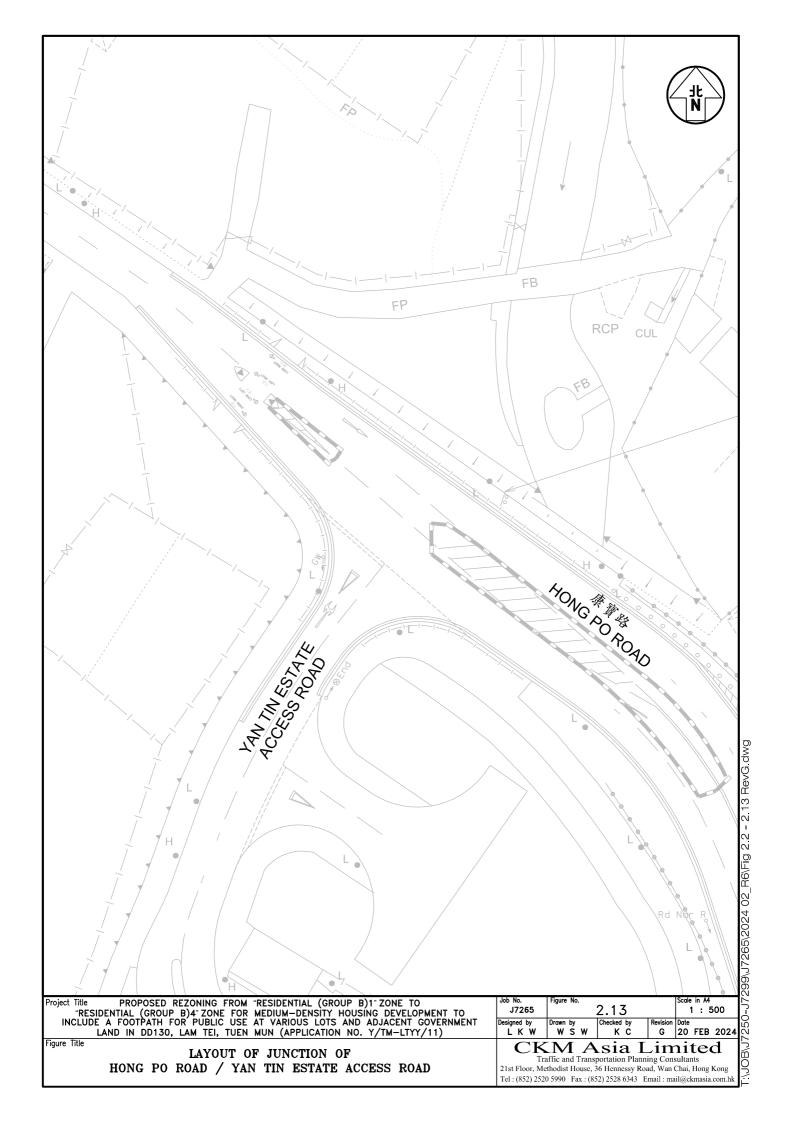




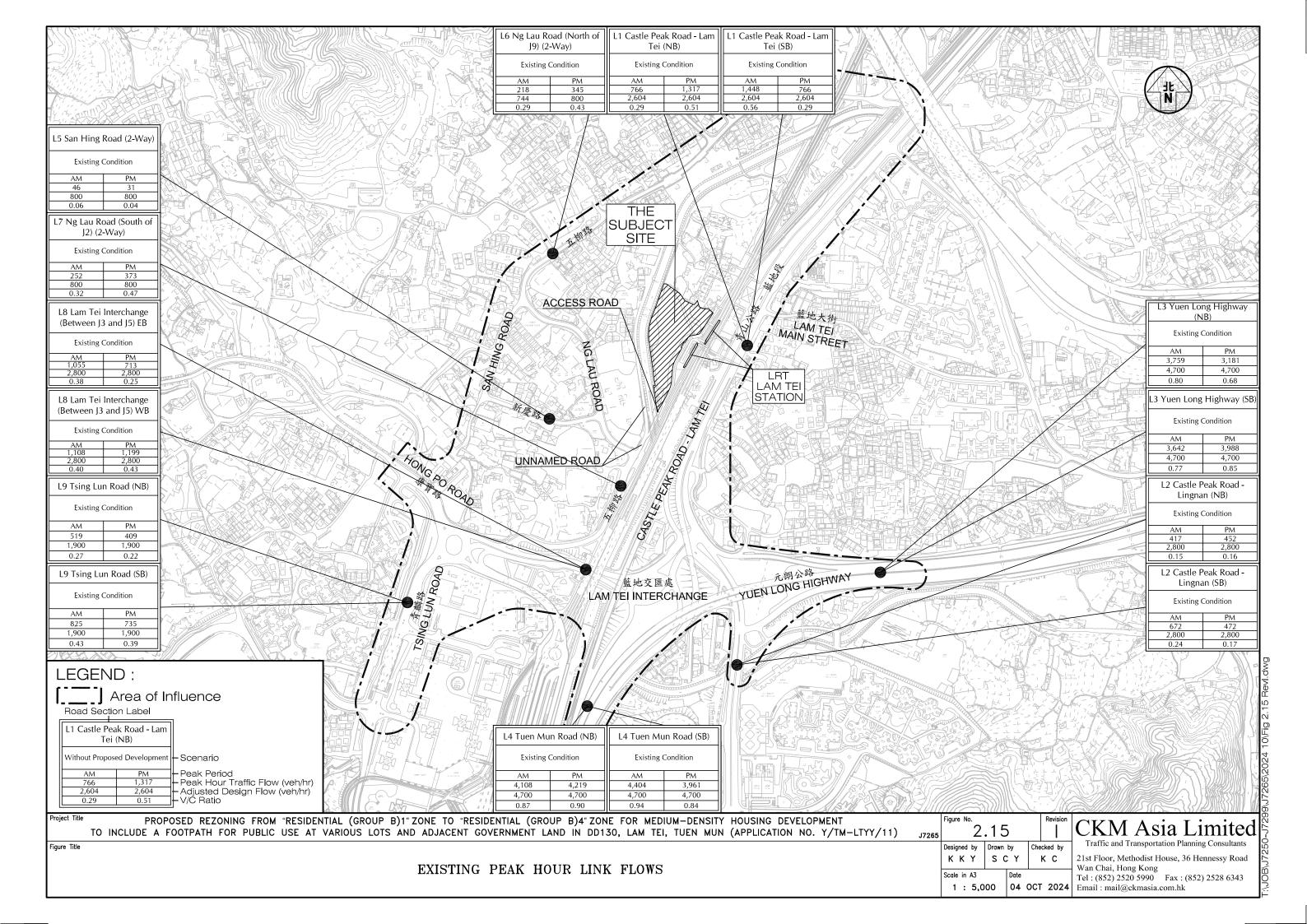


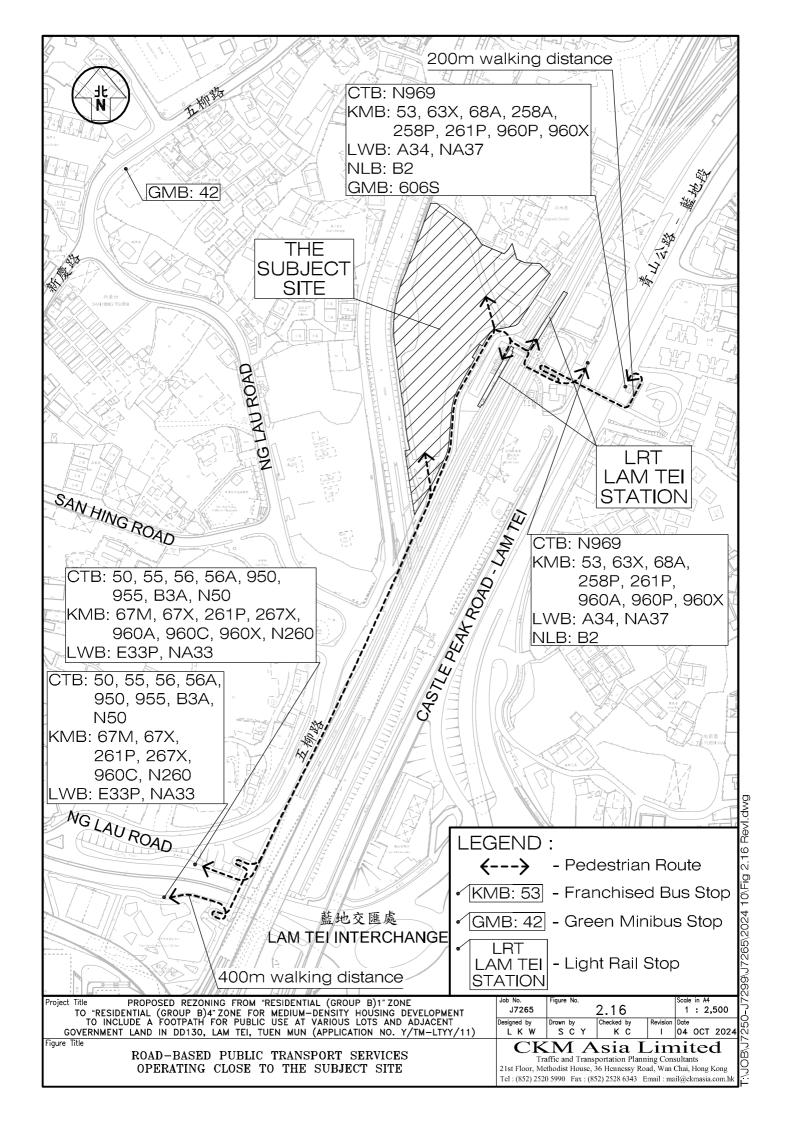


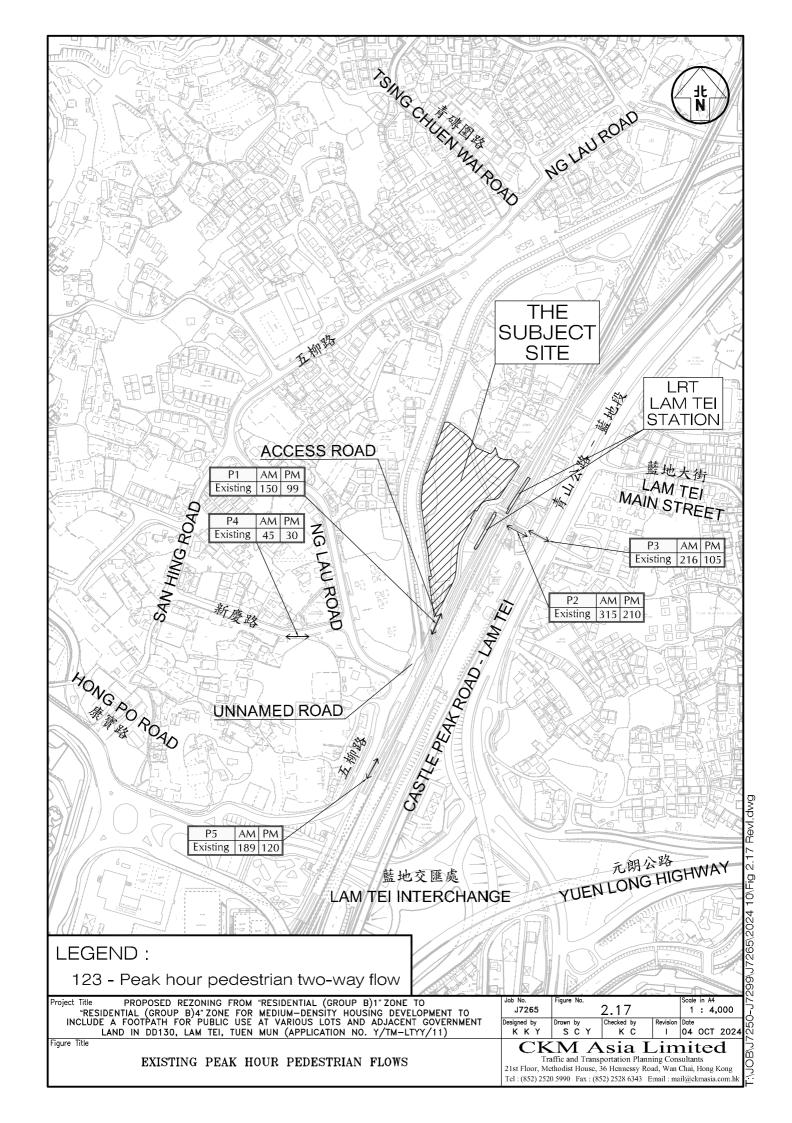


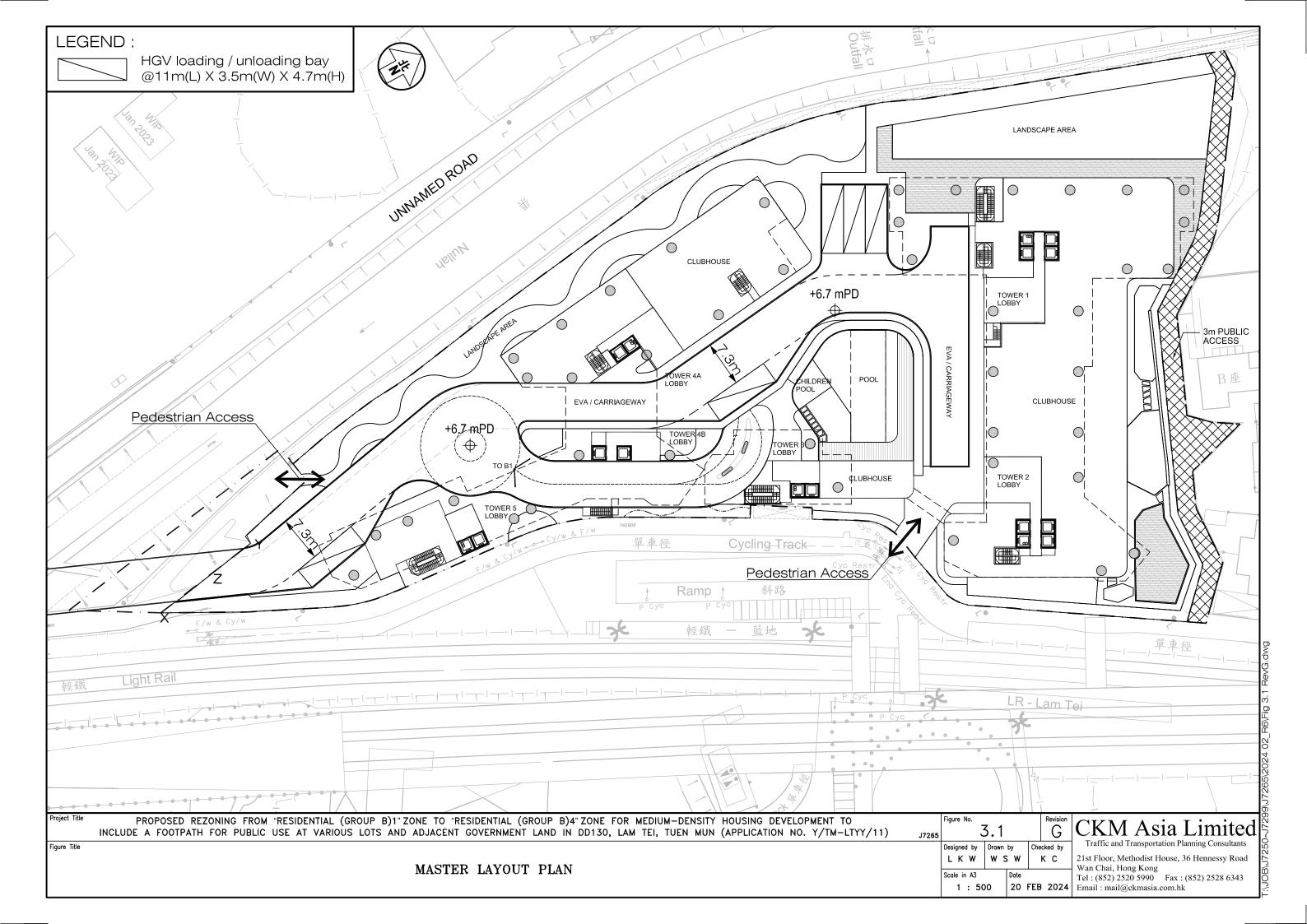


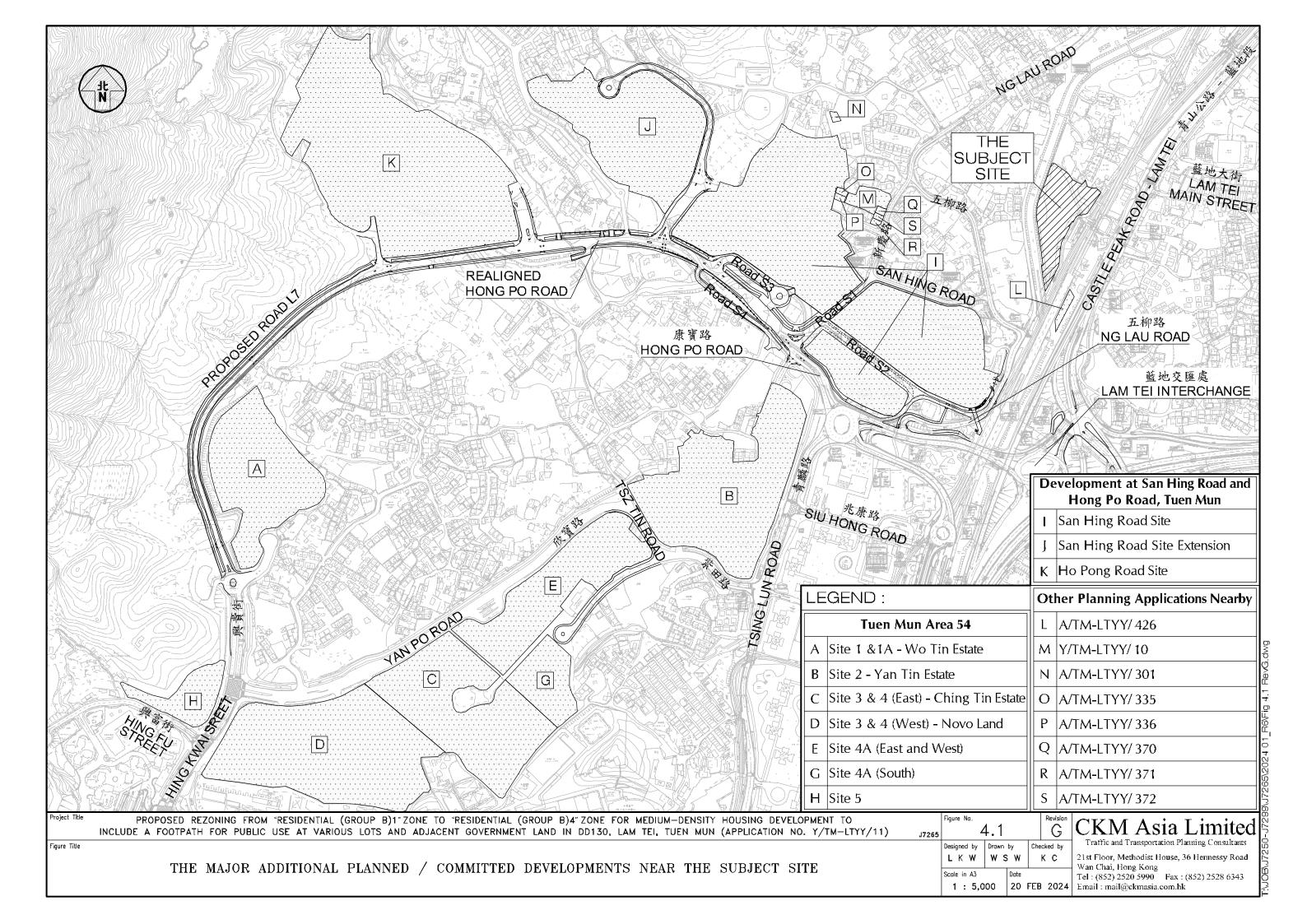


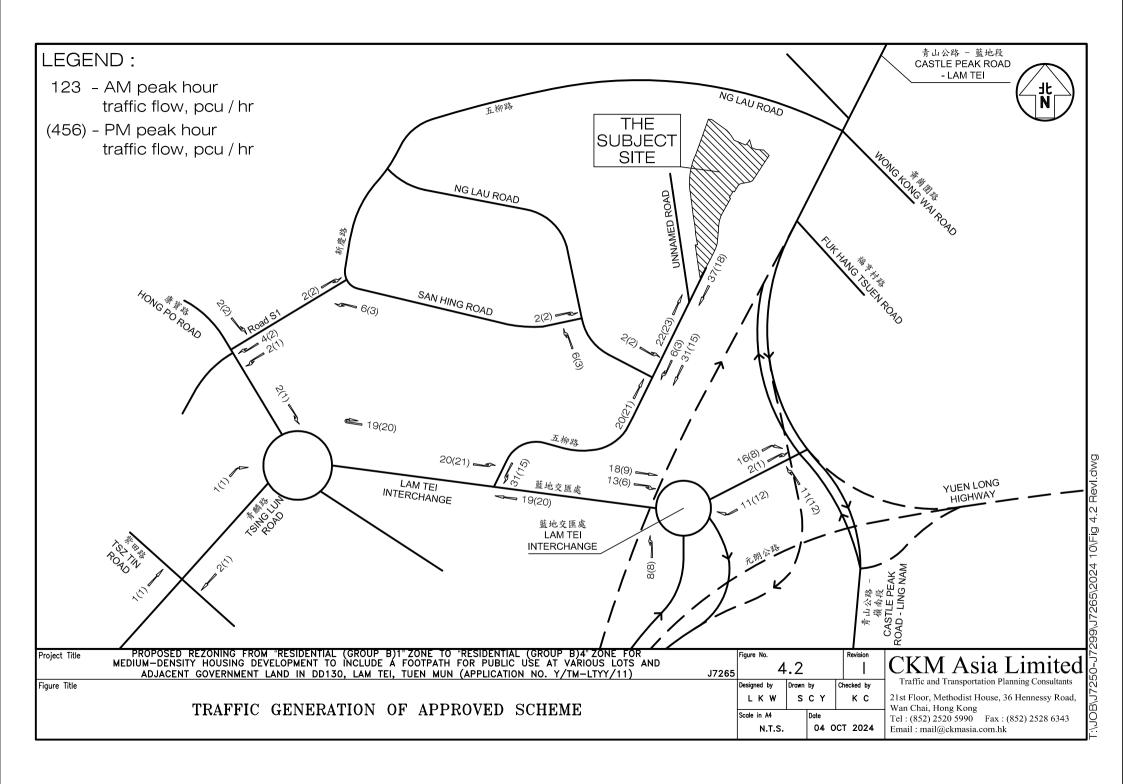


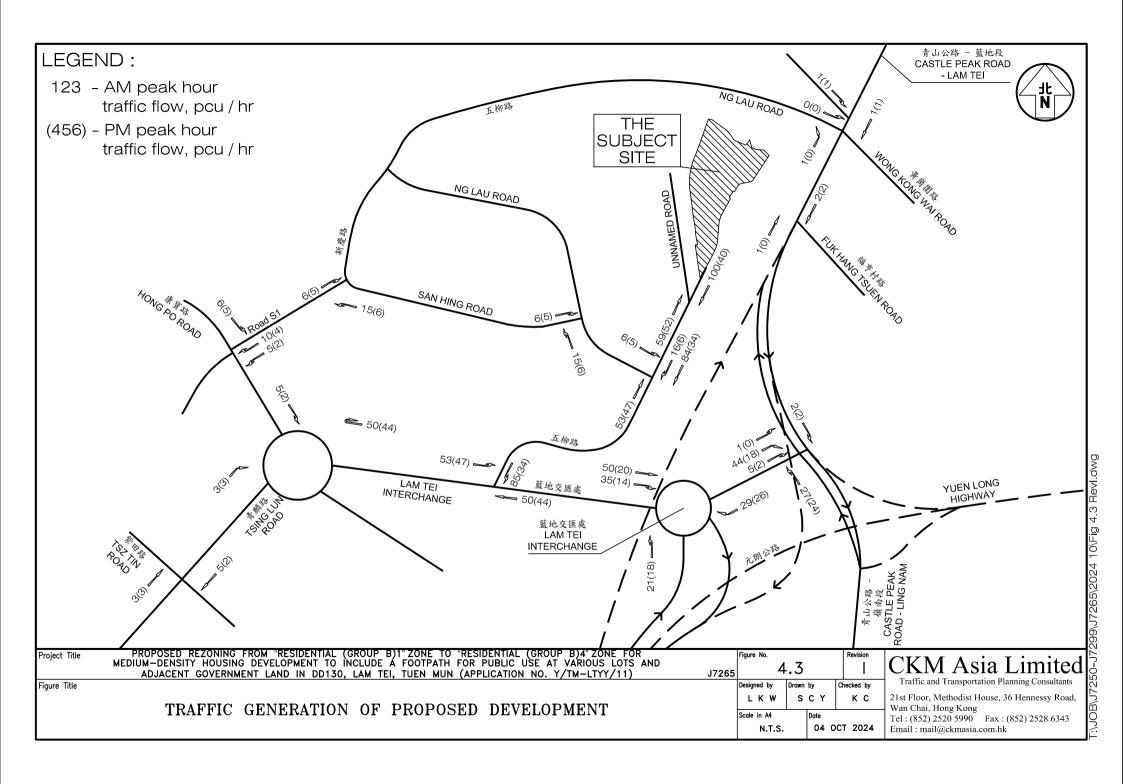


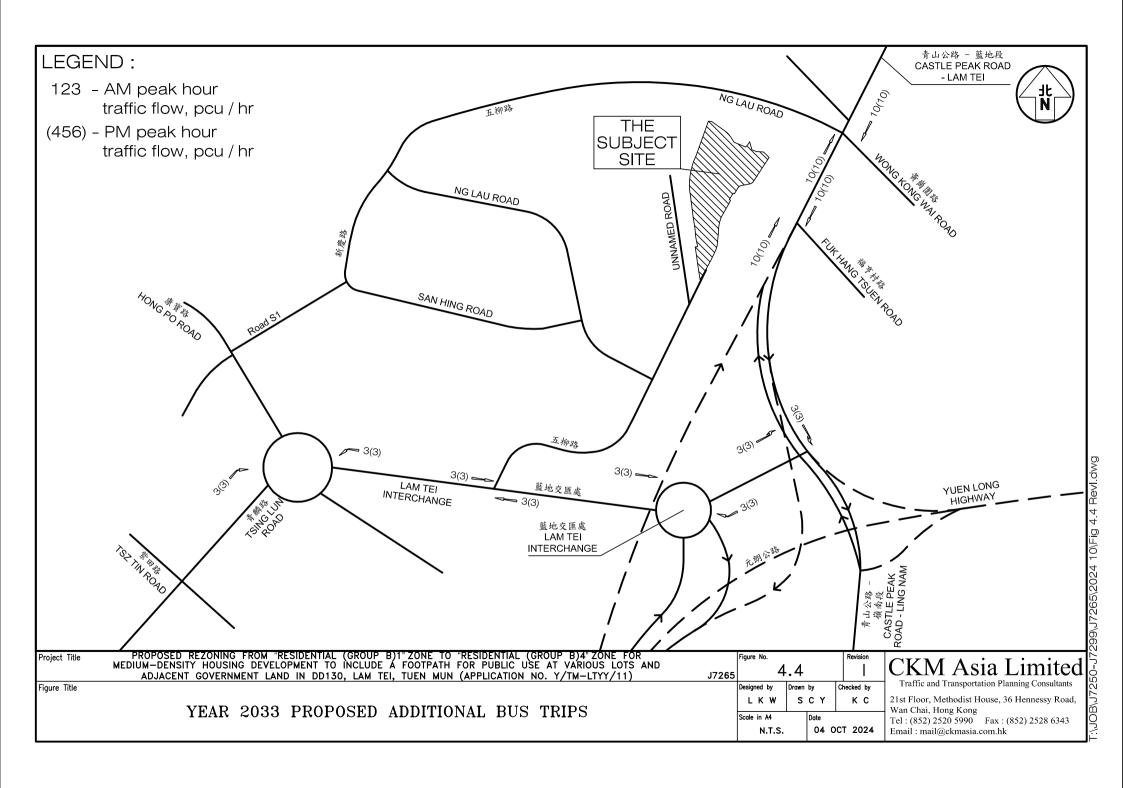


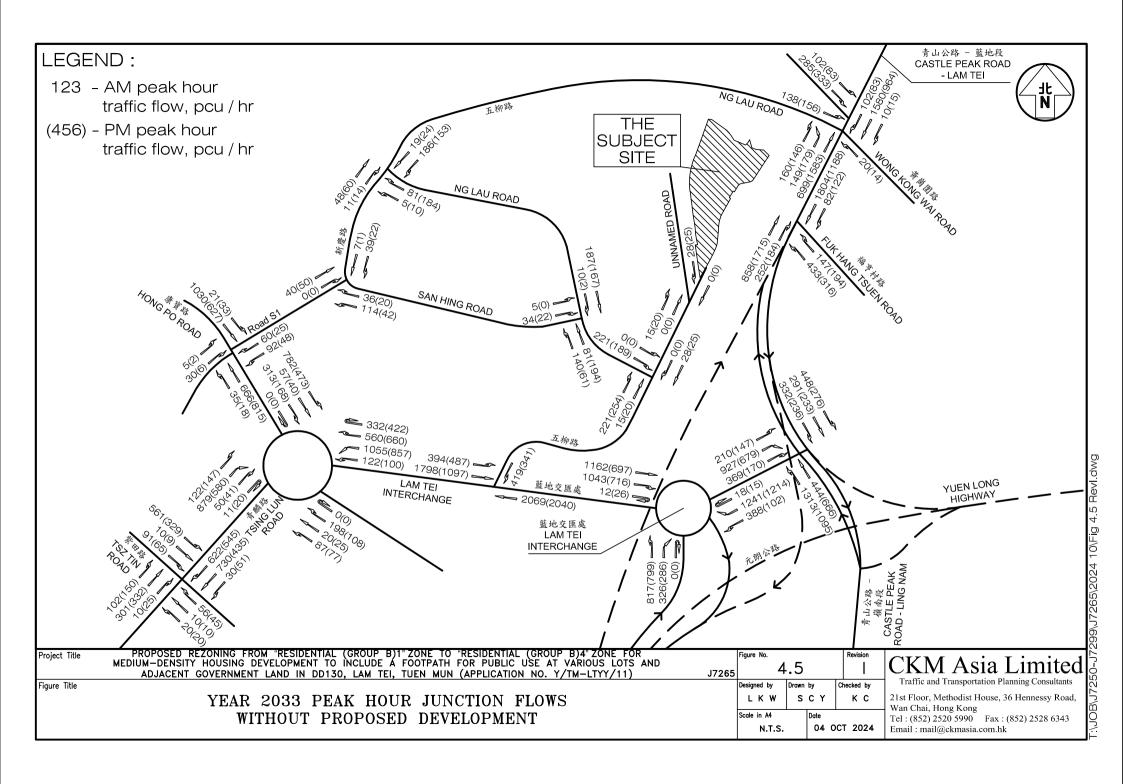


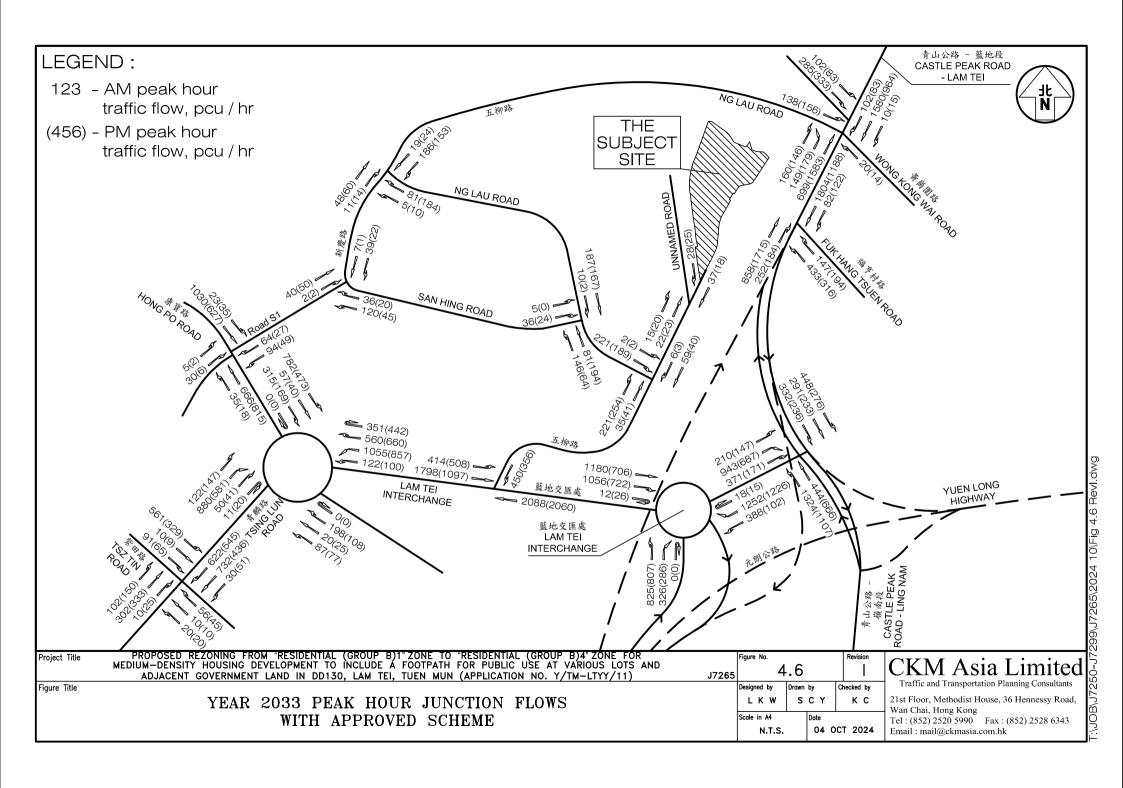


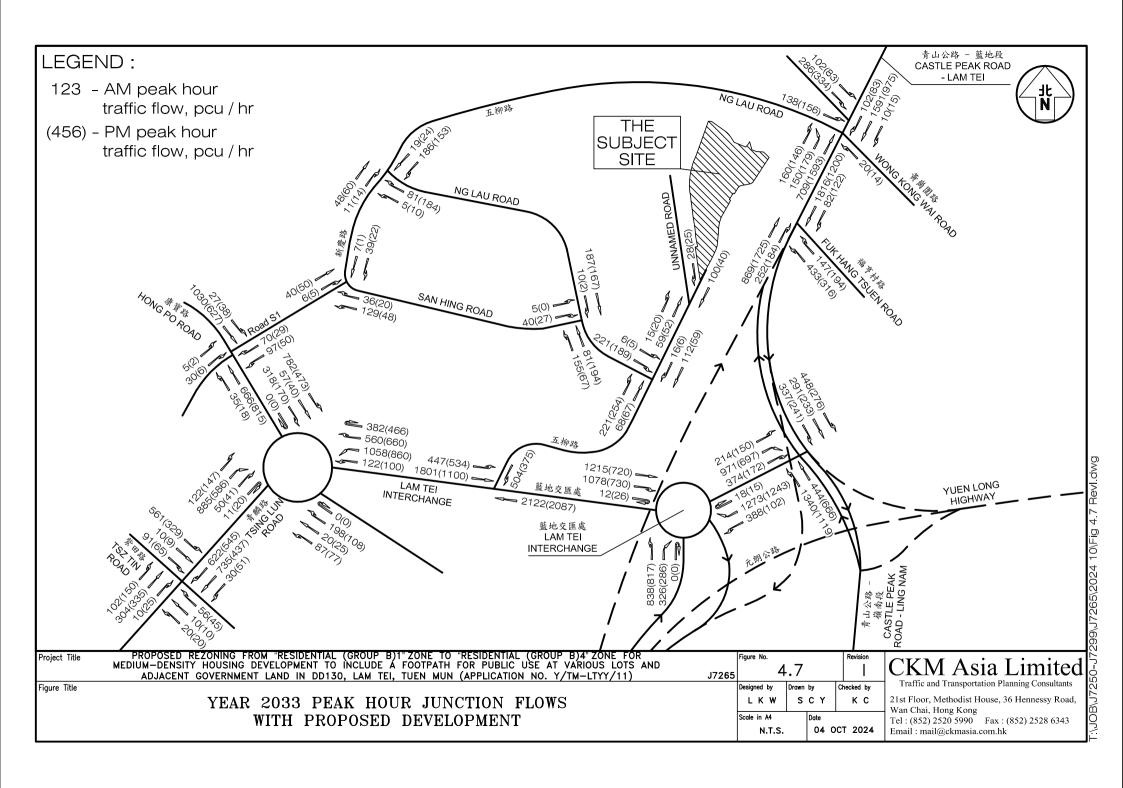


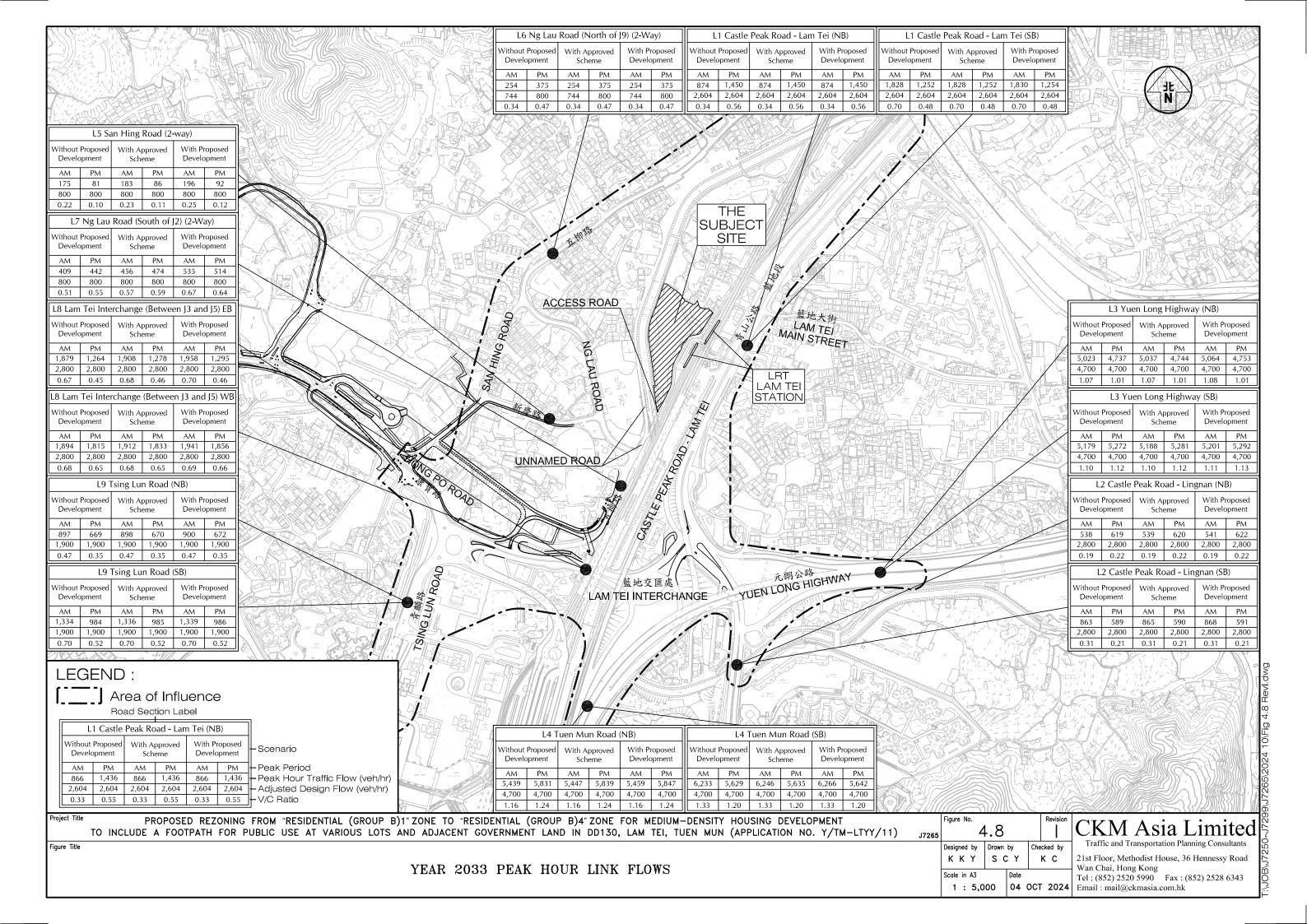


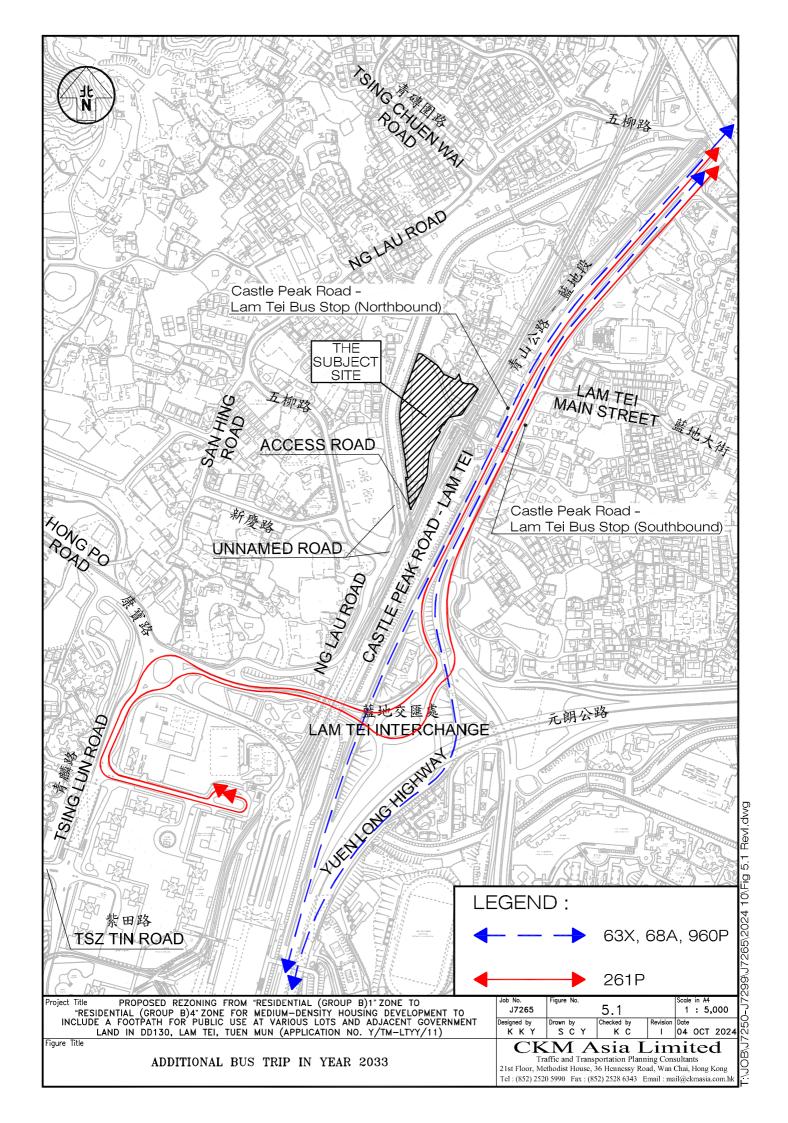


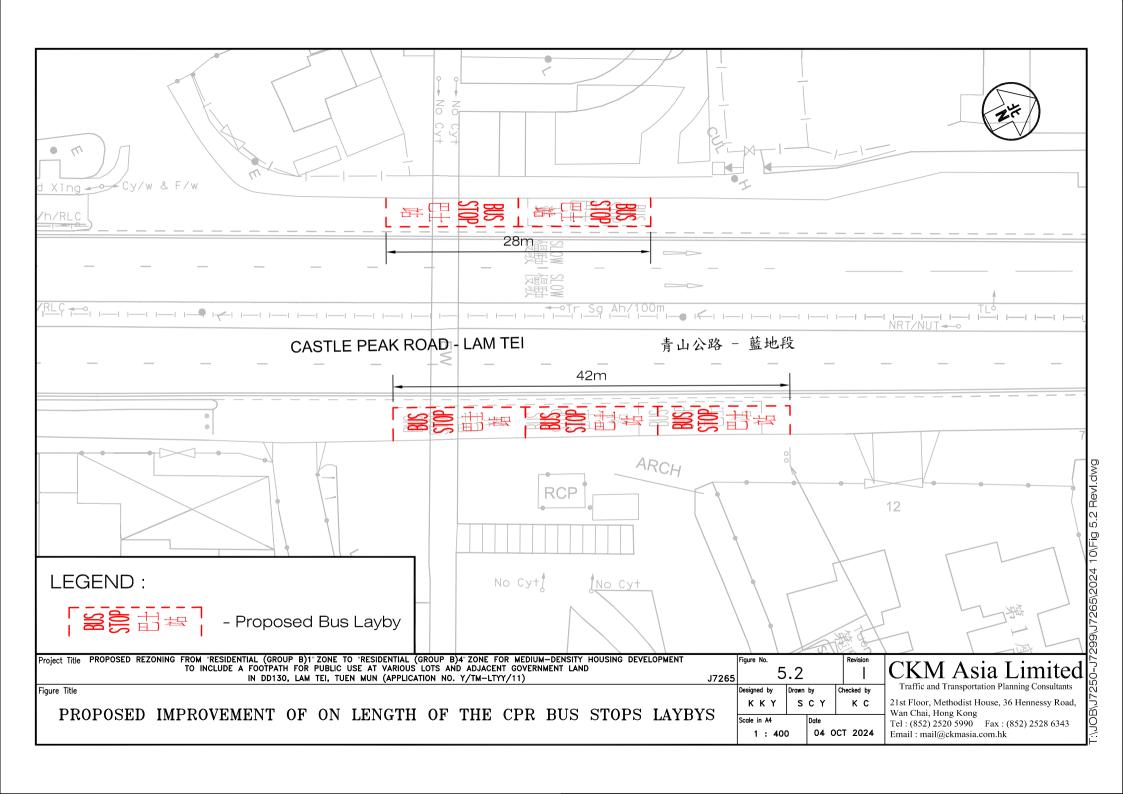


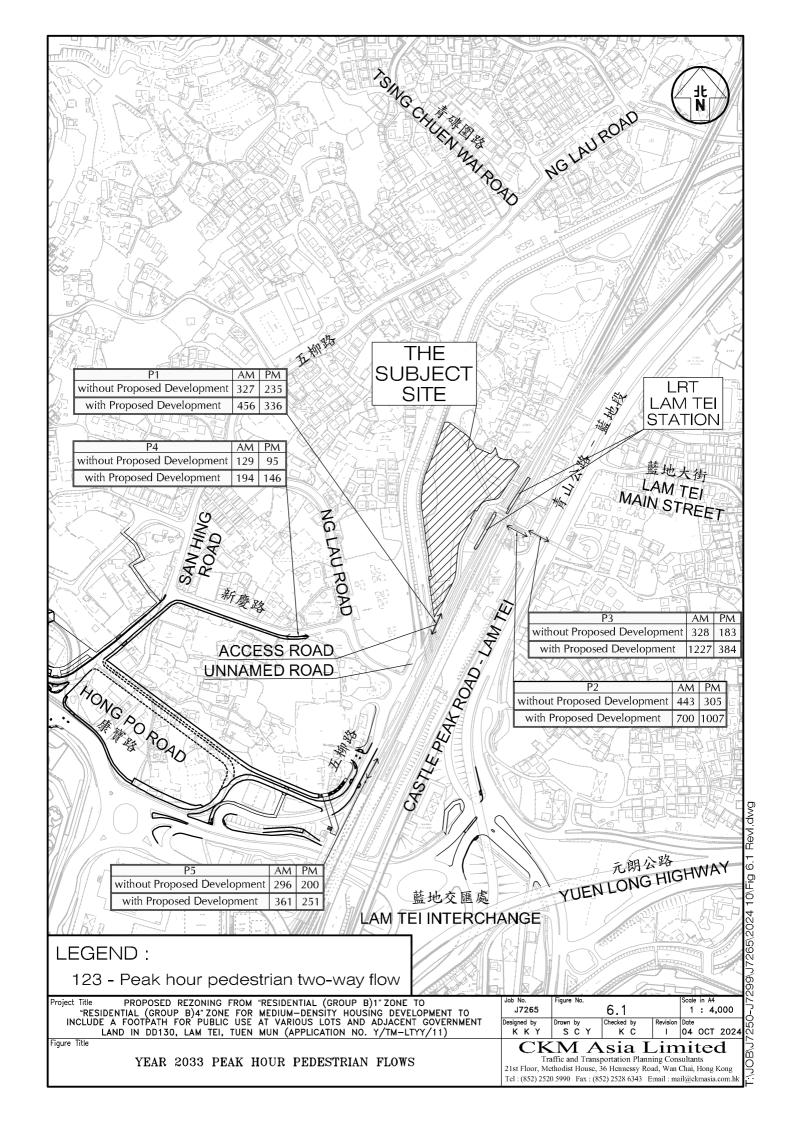


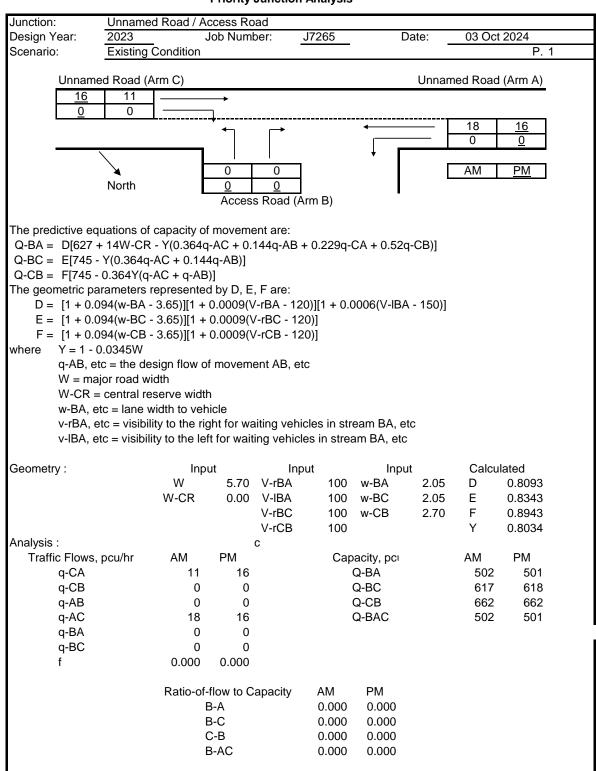


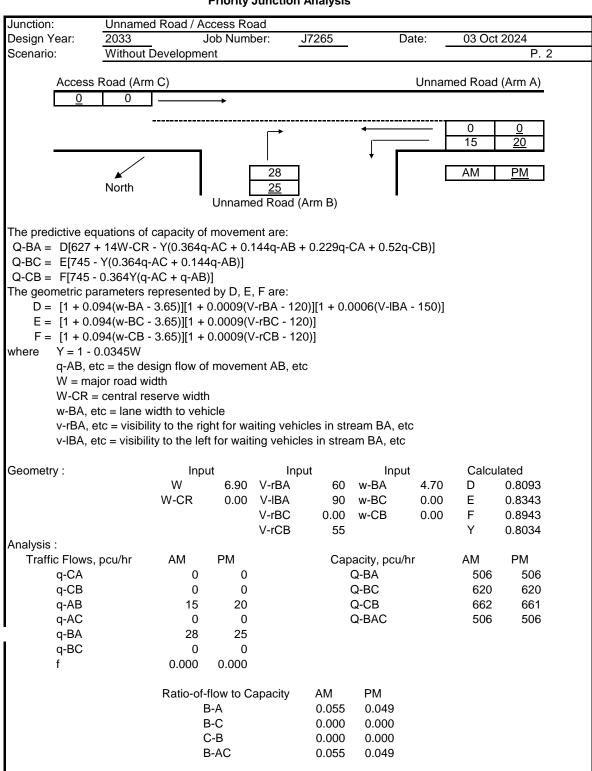




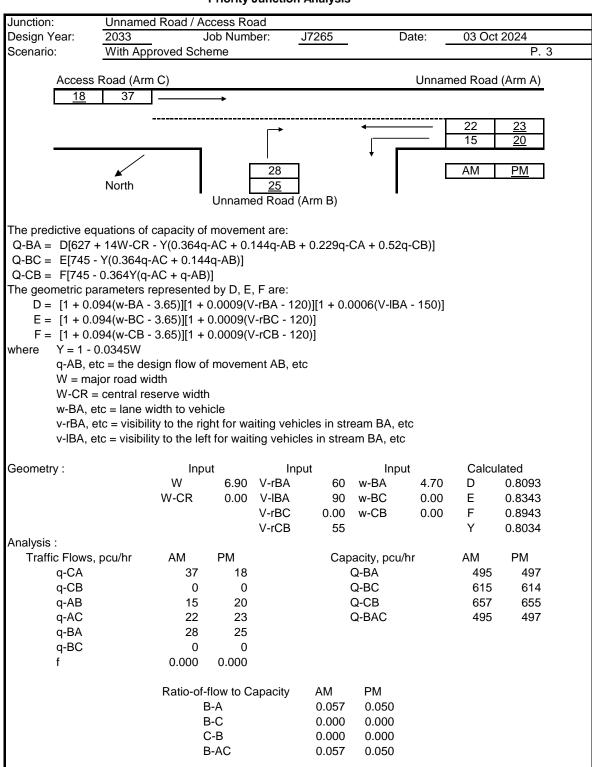




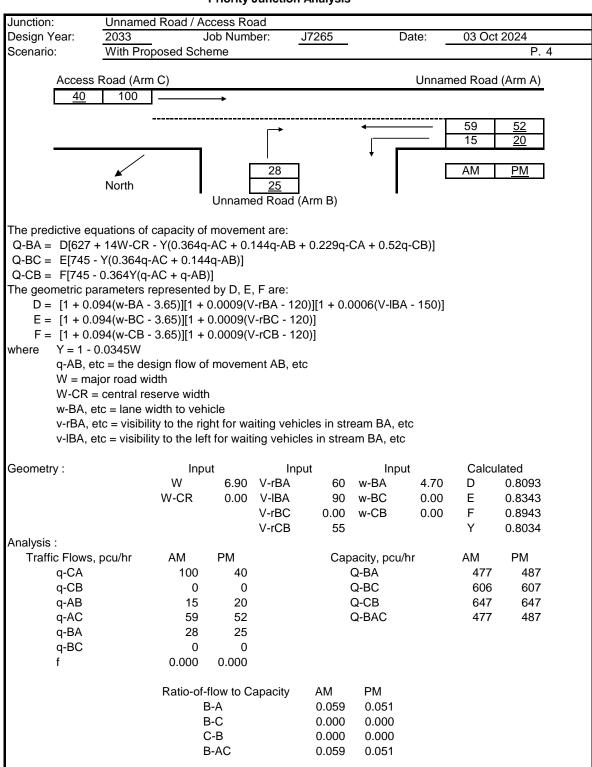


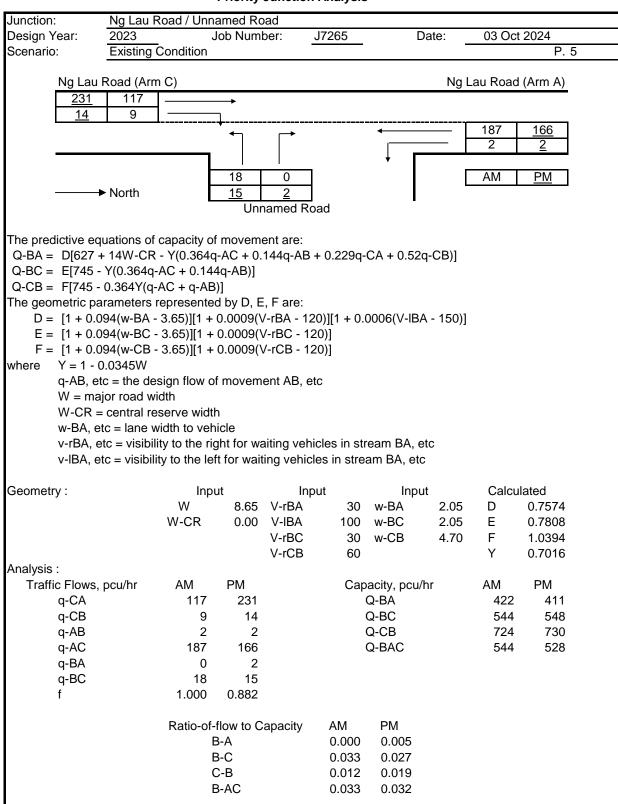


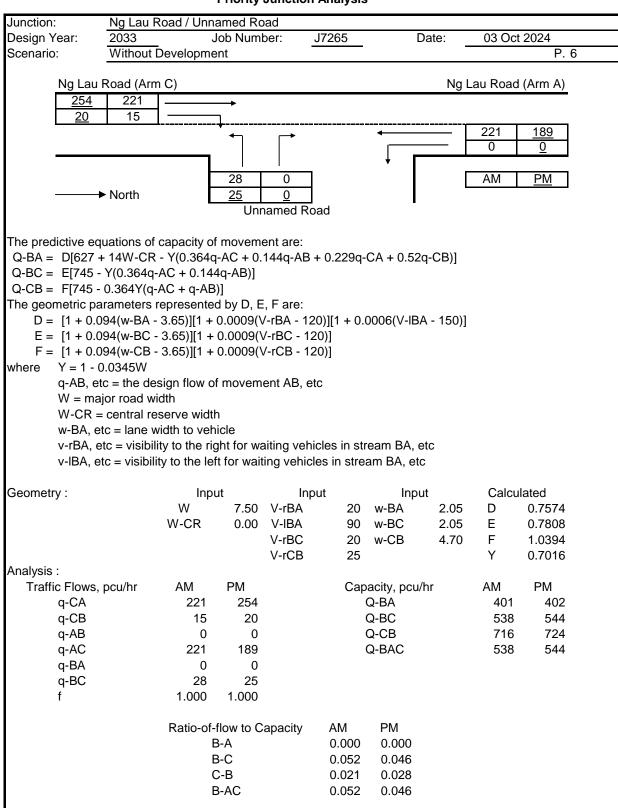
Priority Junction Analysis

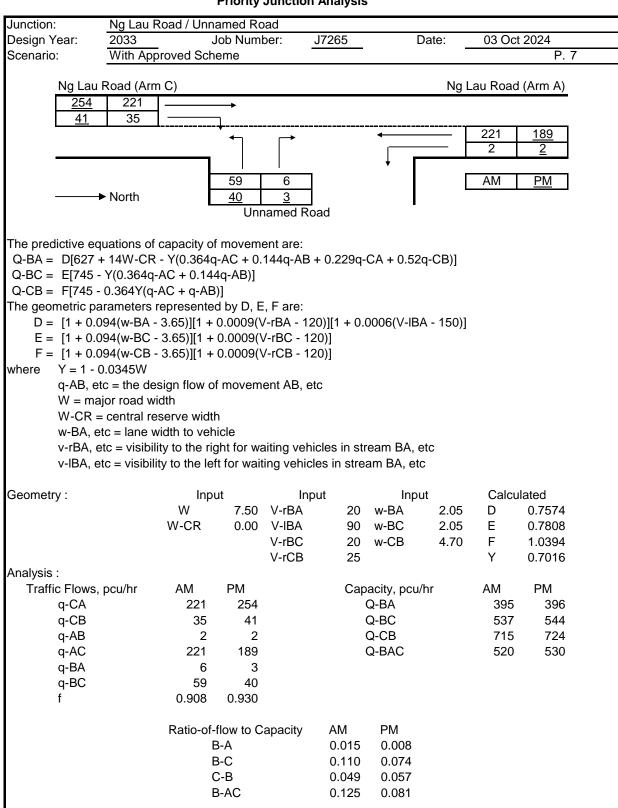

CKM Asia Limited J1

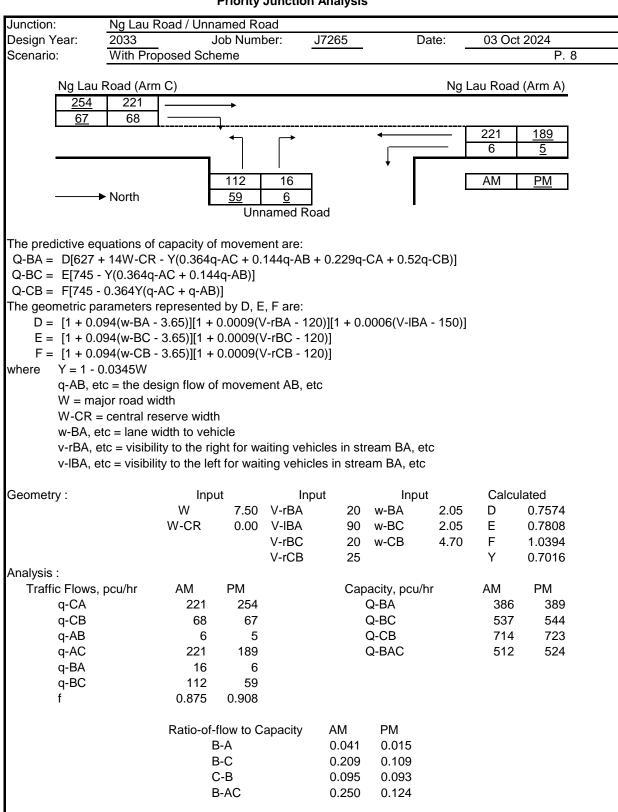
Priority Junction Analysis




CKM Asia Limited J1


Priority Junction Analysis




CKM Asia Limited J1

Junction: Scenario:		Road / Lam Tei	Interch	ange										-	Job Nu	mber: P.	
Design Year:	2023		ed By:				-	Checke	d By:				-	Date:	0	3 Oct 20	
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Lam Tei Intercha	ange EB	SA+LT	A1	1	3.65	30.0		21	1959	609	0.311	0.311	55	1927	446	0.231	
		SA	A2	1	3.65				2120	658	0.310			2120	490	0.231	
Lam Tei Intercha	ange WB	SA+LT	А3	1	3.65	15.0		0	1980	613	0.310		0	1980	676	0.341	0.341
		SA	A4	1	3.65				2120	656	0.309			2120	723	0.341	
Ng Lau Road SE	3	LT	B1	2	4.00	12.0		100	1791	204	0.114	0.114	100	1791	180	0.100	0.100
				_				t'	0		CM .	0		CM	40		
pedestrian pha	ase		C _(P)	1			rossing		8		GM +	8		GM =	16	sec	
			D _(P)	2		min c	rossing	time =	8	sec	GM +	9	sec F	FGM =	17	sec	
AM Traffic Flow (pcu/h	nr)		N	PM Traffic	Flow (pcu/hr)			N	S = 1040	+ 100 (W-3.	25) 9.	_ 2090 + 10	00 (W-3.25)	Note:		
		204					180				1 + 1.5 f/r)			(1 + 1.5 f/r)			
▲ 12	26				▲ 245					SIVI = 37 (
	1141					691	_					Peak		Peak			
		1269	_					1399	_		1+2		1+2				
		0						0		Sum y	0.425		0.442				
		J						ŭ		L(s)	8		8				
										C (s)	82		82		1		
										practical y	0.812		0.812				
										R.C. (%)	91%		84%				
1		2				3				4				5			
1 ↑	C _{(P}		D(P)	B1													
A1 A2	• •			<u> </u>													
	\sqsubseteq	A3 -A4		!													
	· ↓		,	D _(P)													
				•													
AM -		10 5			I/G =	5				1			1/0	1			
AM G		I/G = 5	G =				G =		I/G =		G =		I/G =		G =		
G:		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G:		I/G = 5	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G:	=	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

Junction:	Ng Lau Ro	oad / Lam Tei	Intercha	ange										-	Job Nu	mber:	J7265
Scenario:	Without D	evelopment														P.	10
Design Year:	2033	Designe	ed By:				=	Checke	d By:				=	Date:	03	3 Oct 20)24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Lam Tei Intercha	nge FR	SA	40	_	4.00		Gradient		(pcu/hr)	(pcu/hr)	0.447			(pcu/hr)	(pcu/hr)	0.055	
Lam Ter intercha	inge LD	SA	A2	1	4.00				2155	899	0.417			2155	549	0.255	
		JA.	A3	1	4.00				2155	899	0.417			2155	548	0.254	
Lam Tei Intercha	inge WB	SA+LT	B1	1	4.00	15.0		0	2015	1000	0.496	0.496	0	2015	986	0.489	0.489
		SA	B2	1	4.00				2155	1069	0.496			2155	1054	0.489	
Ng Lau Road SB	<u> </u>	LT	C1	2	5.50	10.0		100	1883	201	0.107	0.107	100	1883	163	0.087	0.087
		LT	C2	2	5.00	15.0		100	2050	218	0.106		100	2050	178	0.087	
pedestrian pha	ase		D _(P)	1		min c	rossing	time =	5	sec	GM +	13	sec F	GM =	18	sec	
			E _(P)	2		min c	rossing	time =	10	sec	GM +	12	sec F	GM =	22	sec	
AM Traffic Flow (pcu/h	r)			PM Traffic	Flow (pcu/hr)										Note:		
			N		,				N	S = 1940 -	+ 100 (W-3	.25) S :	= 2080 + 10	0 (W-3.25)			
	41:	9					341			SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
	L	→					□		· ·		AM	Peak	PM	Peak			
	1798	←-	_		→	1097		•	_		1+2		1+2				
		2069						2040		Sum y	0.603		0.576				
		0						0		L (s)	8		8				
										C (s)	82		82				
										practical y	0.812		0.812				
										R.C. (%)	35%		41%				
		_				L				1.				L			
1		2				3				4				5			
A1	← <u>D</u> (<u>F</u>	2 ►		C2 C1													
A1 ————————————————————————————————————	•			LĻ→													
	B2 B1			1													
	ţ			E _(P) ▼													
AM G:	=	VG = 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
G:		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G:		/G = 5	G =		I/G =		G =		I/G =		G =		I/G =		G =		
						-											
G:	-	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

Junction:	Ng Lau Ro	ad / Lam Tei	Intercha	ange										-	Job Nu	mber:	J7265
Scenario:	With Appro	ved Scheme														P.	11
Design Year:	2033	Designe	ed By:				=	Checke	d By:				_	Date:	03	3 Oct 20)24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Lam Tei Intercha	nge FR	SA	4.0		4.00		Gradient		(pcu/hr)	(pcu/hr)	0.447			(pcu/hr)	(pcu/hr)	0.055	
Lam Ter interent	inge EB	SA	A2	1	4.00				2155	899	0.417			2155	549	0.255	
		- OA	A3	1	4.00				2155	899	0.417			2155	548	0.254	
Laur Tai latanaha	WD	04.17															
Lam Tei Intercha	inge wb	SA+LT	B1	1	4.00	15.0		0	2015	1009		0.501	0	2015	995	0.494	
		SA	B2	1	4.00				2155	1079	0.501			2155	1065	0.494	0.494
Ng Lau Road SB	<u> </u>	LT	C1	2	5.50	10.0		100	1883	215	0.114	0.114	100	1883	170	0.090	0.090
		LT	C2	2	5.00	15.0		100	2050	235	0.115		100	2050	186	0.091	
pedestrian pha	ase		D _(P)	1		min c	rossing	time =	5	sec	GM+	13	sec F	GM =	18	sec	
			E _(P)	2			rossing		10	sec	GM+	12	sec F	GM =	22	sec	
							J										
MT (7 5)	,			DUT "											l		l
AM Traffic Flow (pcu/h	r)		N	PM Traffic I	Flow (pcu/hr)				N	S = 1940 -	+ 100 (W-3	.25) S :	= 2080 + 10	0 (W-3.25)	Note:		
	450						356			SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
		+	ı,				\Box		,		AM	Peak	PM	Peak			
	1798				→	1097		_			1+2		1+2				
		2088						2060		Sum y	0.615		0.584				
		0						0		L (s)	8		8				
										C (s)	82		82				
										practical y	0.812		0.812				
										R.C. (%)	32%		39%				
		1.		•						ı	•	•					
1		2				3				4				5			
	↓ <u>D</u> (P)	•		C2 C1													
A1 ————————————————————————————————————	•			ĹĻ→													
	B2 B1			1													
	+			E _(P)													
AM G:	=	I/G = 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
G:	=	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G	-	I/G = 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
G:	=	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

Junction:	Ng Lau	Road / Lam Tei	Intercha	ange										_	Job Nu	mber:	J7265
Scenario:	With Pro	oposed Scheme														P.	12
Design Year:	2033	Designe	ed By:				_	Checke	d By:				_	Date:	03	3 Oct 20)24
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Lam Tei Intercha	inge EB	SA	A2	1	4.00		Oradion		2155	901	0.418			2155	550	0.255	
		SA	А3	1	4.00				2155	900	0.418			2155	550	0.255	
Lam Tei Intercha	inge WB	SA+LT	B1	1	4.00	15.0		0	2015	1025	0.509	0.509	0	2015	1008	0.500	0.500
		SA	B2	1	4.00				2155	1097	0.509			2155	1079	0.501	
Ng Lau Road SB		LT	C1	2	5.50	10.0		100	1883	241	0.128	0.128	100	1883	180	0.096	0.096
		LT	C2	2	5.00	15.0		100	2050	263	0.128		100	2050	195	0.095	
				<u> </u>													
				1				-					-				ļ
nodostrian pho	200		D	1		min o	roccina	timo –	5	200	CM :	13	000 5	GM -	18	000	
pedestrian pha	ase		D _(P)	1			rossing		5		GM +			GM =		sec	
			-(P)	2		min c	rossing	time =	10	sec	GM +	12	sec F	GM =	22	sec	
AM Traffic Flow (pcu/h	r)			PM Traffic	low (pcu/hr)	l .				1		!	!		Note:	l	
run runo ron poeri			N	i iii riano	ion (powin)				N		+ 100 (W-3		= 2080 + 10	0 (W-3.25)	11010.		
		504					375			SM = S / (1 + 1.5 f/r)	SM =		(1 + 1.5 f/r)			
l	1801	→				1100	□					Peak		Peak			
	1001	2122	_			1100		2087	_		1+2		1+2				
		2122 ↓						0		Sum y	0.637		0.596				
		Ü						0		L (s)	8		8				
										C (s)	82 0.812		82 0.812				
										Practical y	28%		36%				
		T								K.C. (%)	2070		3070				
1		2				3				4				5			
A1	+	<u>D</u> (<u>P</u>) ▶		C2 C1													
A1 ————————————————————————————————————		B2		LĻ→													
	$\overline{}$	B1		1													
	*			E _(P)													
]]			
AM G	=	I/G = 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
G:		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G		I/G = 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
G:	=	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

Scenario Existing	g Condition		Page	13
Design Year	2023	Job Number J7265 D	ate 03 Octo	ober 2024

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	То Н	Total	q _c *
From A	102	110	809	248					1269	259
From B	182	0	77	22					281	1336
From C	579	42	11	30					662	666
From D	406	40	54	2					502	1026
From E										
From F										
From G										
From H										
Total	1269	192	951	302					2714	

 $^{^{\}star}\,q_{c}$ in existing condition is adjusted due to Temporary Traffic Arrangement

PM Peak

Arm	To A	ТоВ	To C	To D	To E	To F	To G	То Н	Total	q _c *
From A	205	90	742	362					1399	202
From B	91	0	67	22					180	1453
From C	443	32	18	37					530	772
From D	198	26	34	2					260	879
From E										
From F										
From G										
From H										
Total	937	148	861	423					2369	

 $^{^{\}star}$ q_{c} in existing condition is adjusted for TTA

Legend

Arm	Road (in clockwise order)
Α	Slip Road from Lam Tei Interchange
В	Access Road from Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	10.0	7.3	20.0	10.0	55	45	0.4
From B	9.0	6.8	28.0	4.0	55	19	0.9
From C	11.5	7.8	100.0	9.0	55	23	0.7
From D*	6.0	4.5	27.0	6.0	55	10	0.4
From E							
From F							
From G							
From H							

* Parameter in existing condition is adjusted for TTA

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_E		Entry Flow		RI	FC
Arm	x ₂	M	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	8.748	0.607	1.311	0.948	2651	0.757	2327	2368	1269	1399	0.545	0.591
From B	7.597	0.607	1.311	1.051	2302	0.694	1445	1360	281	180	0.194	0.132
From C	9.398	0.607	1.311	1.063	2848	0.793	2467	2377	662	530	0.268	0.223
From D	5.333	0.607	1.311	1.082	1616	0.569	1117	1207	502	260	0.449	0.215
From E												
From F												
From G												
From H												

Scenario Withou	t Development		Page	14
Design Year	2033	Job Number J7265 Date	03 Octobe	er 2024

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	332	0	1055	560					1947	431
From B	198	0	87	20					305	2271
From C	879	50	11	122					1062	1110
From D	782	57	313	0					1152	1470
From E										
From F										
From G										
From H										
Total	2191	107	1466	702					4466	

PM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	422	0	857	660					1939	269
From B	108	0	77	25					210	2127
From C	580	41	20	147					788	1215
From D	473	40	168	0					681	1171
From E										
From F										
From G										
From H										
Total	1583	81	1122	832					3618	

Legend

Arm	Road (in clockwise order)
Α	Slip Road to Lam Tei Interchange
В	Access Road to Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Ε	
F	
G	
Н	

Geometric Parameters

Geometri	Paramete	ers					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	11.0	7.8	30.0	10.0	55	20	0.5
From B	9.0	6.8	28.0	6.0	55	19	0.6
From C	11.5	7.8	100.0	9.0	55	23	0.7
From D	14.0	8.5	40.0	10.0	55	10	0.9
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
$q_{\rm c}$	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
\mathbf{x}_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							C) _E	Entry	Flow	RI	=C
Arm	X ₂	М	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	9.381	0.607	1.311	1.051	2842	0.792	2629	2764	1947	1939	0.741	0.702
From B	7.812	0.607	1.311	1.051	2367	0.706	804	911	305	210	0.379	0.231
From C	9.398	0.607	1.311	1.063	2848	0.793	2092	2004	1062	788	0.508	0.393
From D	10.493	0.607	1.311	1.094	3179	0.853	2106	2385	1152	681	0.547	0.286
From E												
From F												
From G												
From H												

CKM Asia Limited J4_Imp

Location Tsing Lun Road / Hong Po Road / Lam Tei Interchange

Scenario With App	proved Scheme				Page	15
Design Year	2033	Job Number	J7265	Date	03 Octob	er 2024

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_c
From A	351	0	1055	560					1966	433
From B	198	0	87	20					305	2292
From C	880	50	11	122					1063	1129
From D	782	57	315	0					1154	1490
From E										
From F										
From G										
From H										
Total	2211	107	1468	702					4488	

PM Peak

I WII CUR										
Arm	To A	To B	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	442	0	857	660					1959	270
From B	108	0	77	25					210	2148
From C	581	41	20	147					789	1235
From D	473	40	169	0					682	1192
From E										
From F										
From G										
From H										
Total	1604	81	1123	832					3640	

Legend

Arm	Road (in clockwise order)
Α	Slip Road to Lam Tei Interchange
В	Access Road to Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Е	
F	
G	
Н	

Geometri	Geometric Parameters										
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S				
From A	11.0	7.8	30.0	10.0	55	20	0.5				
From B	9.0	6.8	28.0	4.0	55	19	0.9				
From C	11.5	7.8	100.0	9.0	55	23	0.7				
From D	14.0	8.5	40.0	10.0	55	10	0.9				
From E											
From F											
From G											
From H											

Predictive Equation $Q_E = K(F - f_c q_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
X ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation е ٧

L

='	Entry Width	4.0 - 15.0 m
	Approach Half Width	2.0 - 7.3 m
	Entry Radius	6.0 - 100.0 m
	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

			·				Q_{E}		Entry Flow		RFC	
Arm	X ₂	М	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	9.381	0.607	1.311	1.051	2842	0.792	2627	2763	1966	1959	0.748	0.709
From B	7.597	0.607	1.311	1.051	2302	0.694	748	853	305	210	0.408	0.246
From C	9.398	0.607	1.311	1.063	2848	0.793	2076	1987	1063	789	0.512	0.397
From D	10.493	0.607	1.311	1.094	3179	0.853	2087	2365	1154	682	0.553	0.288
From E												
From F												
From G												
From H												

CKM Asia Limited J4_Imp

Scenario With Pro	posed Scheme				Page	16
Design Year	2033	Job Number	J7265	Date	03 Octobe	er 2024

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	382	0	1058	560					2000	436
From B	198	0	87	20					305	2329
From C	885	50	11	122					1068	1160
From D	782	57	318	0					1157	1526
From E										
From F										
From G										
From H										
Total	2247	107	1474	702					4530	

PM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	466	0	860	660					1986	271
From B	108	0	77	25					210	2176
From C	586	41	20	147					794	1259
From D	473	40	170	0					683	1221
From E										
From F										
From G										
From H										
Total	1633	81	1127	832					3673	

Legend

Arm	Road (in clockwise order)
Α	Slip Road to Lam Tei Interchange
В	Access Road to Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Ε	
F	
G	
Н	

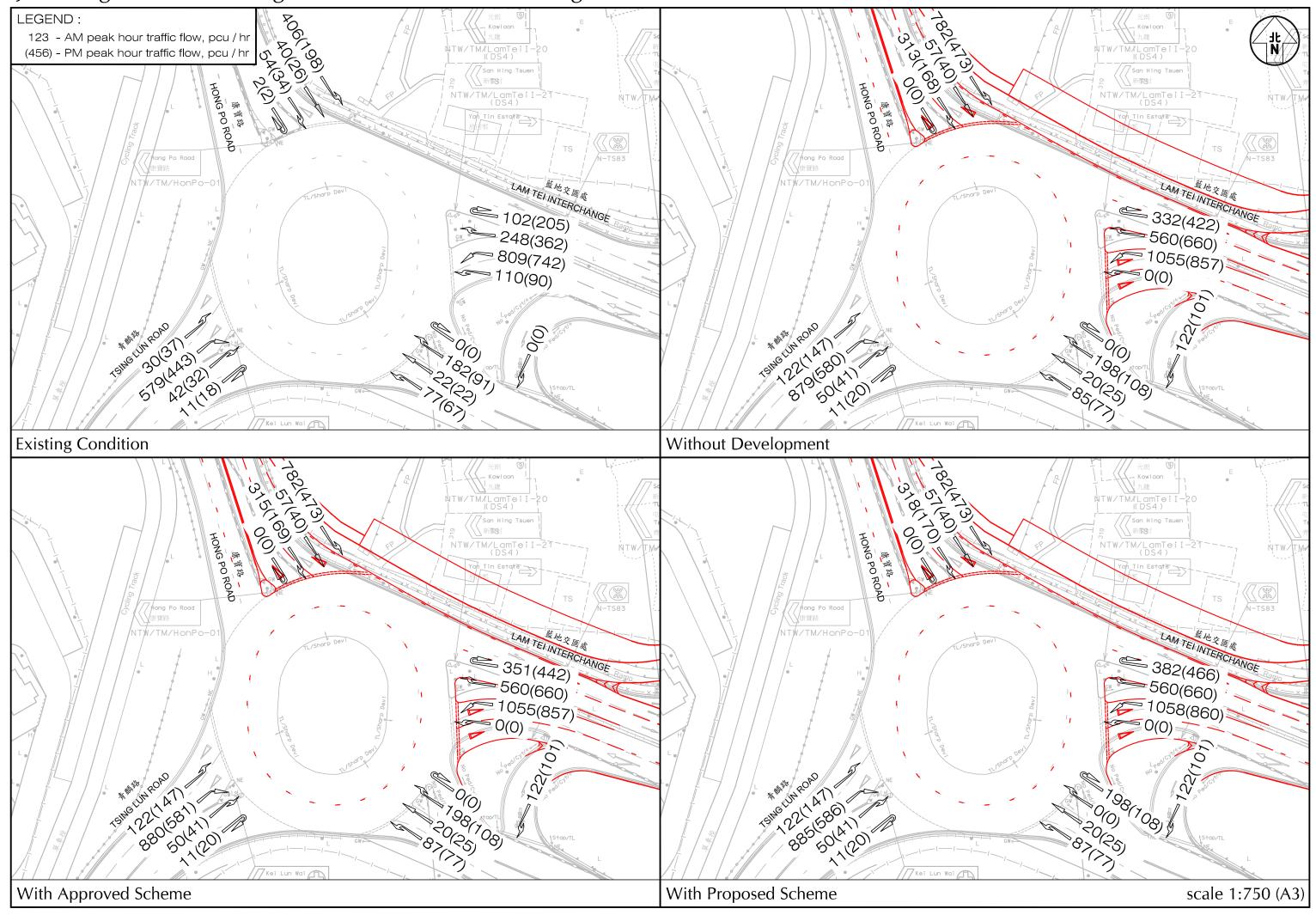
Geometric Parameters

Geometri	c Paramett	#15					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	11.0	7.8	30.0	10.0	55	20	0.5
From B	9.0	6.8	28.0	4.0	55	19	0.9
From C	11.5	7.8	100.0	9.0	55	23	0.7
From D	14.0	8.5	40.0	10.0	55	10	0.9
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
$q_{\rm c}$	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_{D}	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation


е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	X ₂	М	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	9.381	0.607	1.311	1.051	2842	0.792	2624	2762	2000	1986	0.762	0.719
From B	7.597	0.607	1.311	1.051	2302	0.694	721	833	305	210	0.423	0.252
From C	9.398	0.607	1.311	1.063	2848	0.793	2050	1967	1068	794	0.521	0.404
From D	10.493	0.607	1.311	1.094	3179	0.853	2053	2338	1157	683	0.563	0.292
From E												
From F												
From G												
From H												

CKM Asia Limited J4_Imp

J4 - Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange

Location Lam Tei Interchange

Scenario Existin	g Condition		Page 17
Design Year	2023	Job Number J7265 Date	e 03 October 2024

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	17	0	945						962	658
From B	293	4	310						607	976
From C	385	640	14						1039	314
From D										
From E										
From F										
From G										
Total	695	644	1269						2608	

PM Peak

oan										
Arm	To A	To B	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	7	0	958						965	483
From B	267	0	414						681	992
From C	202	456	27						685	274
From D										
From E										
From F										
From G										
From H										
Total	476	456	1399						2331	

Legend

3	
Arm	Road (in clockwise order)
Α	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Ocometin	c i aramet	<i>,</i> 13					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	51	22	0.0
From B	8.8	7.3	65.0	3.0	51	26	0.8
From C	7.7	6.8	100.0	8.0	51	17	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_c q_c)$

Q_{E}	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							C) _E	Entry	Flow	RI	=C
Arm	X ₂	М	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.407	1.355	1.052	2212	0.700	1843	1972	962	965	0.522	0.489
From B	7.877	0.407	1.355	1.048	2387	0.733	1751	1739	607	681	0.347	0.392
From C	7.438	0.407	1.355	1.084	2254	0.708	2203	2233	1039	685	0.472	0.307
From D												
From E												
From F												
From G												
From H												

Location Lam Tei Interchange

Scenario Withou	t Development		Page 18	
Design Year	2033	Job Number J7265 Date	03 October 2024	

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	18	0	1241						1259	1055
From B	326	0	817						1143	1271
From C	711	1043	12						1766	344
From D										
From E										
From F										
From G										
From H										
Total	1055	1043	2070						4168	

PM Peak

I WII CUR										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_c
From A	15	0	1214						1229	742
From B	286	0	799						1085	1255
From C	414	716	26						1156	301
From D										
From E										
From F										
From G										
From H										
Total	715	716	2039	•		•			3470	

Legend

Arm	Road (in clockwise order)
Α	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
E	
F	
G	
Н	

Geometric Parameters

Geometri	Faramete	#15					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	51	22	0.0
From B	8.8	7.3	65.0	3.0	51	26	8.0
From C	7.7	6.8	100.0	8.0	51	17	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
M	$= \exp[(D-60)/10]$
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0
	-	•

Ratio-of-Flow to Capacity (RFC)

							Q_E		Entry Flow		RFC	
Arm	X ₂	M	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.407	1.355	1.052	2212	0.700	1550	1781	1259	1229	0.812	0.690
From B	7.877	0.407	1.355	1.048	2387	0.733	1524	1537	1143	1085	0.750	0.706
From C	7.438	0.407	1.355	1.084	2254	0.708	2180	2213	1766	1156	0.810	0.522
From D												
From E												
From F												
From G												
From H												

Location Lam Tei Interchange

Scenario With A	pproved Scheme			Page	19
Design Year	2033	Job Number J7265	Date	03 Octobe	er 2024

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	18	0	1252						1270	1068
From B	326	0	825						1151	1282
From C	721	1056	12						1789	344
From D										
From E										
From F										
From G										
From H										
Total	1065	1056	2089			<u> </u>			4210	

PM Peak

oan										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_c
From A	15	0	1226						1241	748
From B	286	0	807						1093	1267
From C	412	722	26						1159.658	301
From D										
From E										
From F										
From G										
From H										
Total	713	722	2059						3493.658	

Legend

Arm	Road (in clockwise order)
Α	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Ε	
F	
G	
Н	

Geometric Parameters

Geometri	Faramete	#15					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	51	22	0.0
From B	8.8	7.3	65.0	3.0	51	26	8.0
From C	7.7	6.8	100.0	8.0	51	17	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
$q_{\rm c}$	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
M	$= \exp[(D-60)/10]$
\mathbf{x}_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	x ₂	M	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.407	1.355	1.052	2212	0.700	1540	1776	1270	1241	0.824	0.699
From B	7.877	0.407	1.355	1.048	2387	0.733	1516	1527	1151	1093	0.759	0.716
From C	7.438	0.407	1.355	1.084	2254	0.708	2180	2213	1789	1160	0.821	0.524
From D												
From E												
From F												
From G												
From H												

Location Lam Tei Interchange

Scenario With P	roposed Scheme			Page	20
Design Year	2033	Job Number J7265	Date	03 Octob	er 2024

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	18	0	1273						1291	1090
From B	326	0	838						1164	1303
From C	740	1078	12						1830	344
From D										
From E										
From F										
From G										
From H										
Total	1083.599	1078	2123						4285	

PM Peak

I WII Cak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_c
From A	15	0	1309						1324	790
From B	286	0	851						1137	1350
From C	419	764	26						1209	301
From D										
From E										
From F										
From G										
From H										
Total	720	764	2186						3670	

Legend

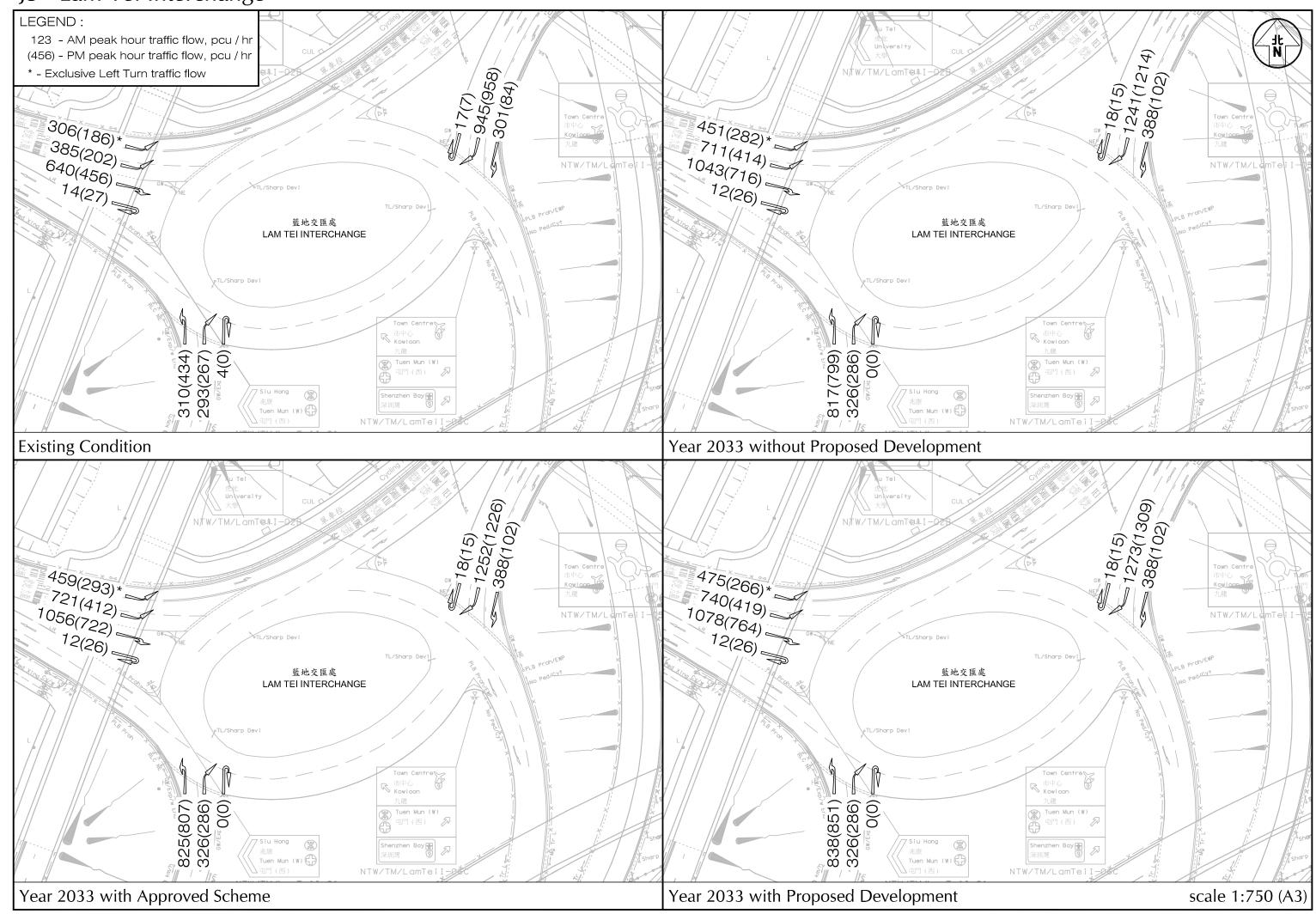
Arm	Road (in clockwise order)
Α	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
E	
F	
G	
Н	

Geometric Parameters

Geometri	c Farainett	513					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	51	22	0.0
From B	8.8	7.3	65.0	3.0	51	26	0.8
From C	7.7	6.8	100.0	8.0	51	17	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_c q_c)$

Q_{E}	Entry Capacity
$q_{\rm c}$	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
M	$= \exp[(D-60)/10]$
\mathbf{x}_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L


Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							C	Q _E	Entry	Flow	RI	-C
Arm	X ₂	М	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.407	1.355	1.052	2212	0.700	1524	1745	1291	1324	0.847	0.759
From B	7.877	0.407	1.355	1.048	2387	0.733	1500	1464	1164	1137	0.776	0.777
From C	7.438	0.407	1.355	1.084	2254	0.708	2180	2213	1830	1209	0.839	0.546
From D												
From E												
From F												
From G												
From H												

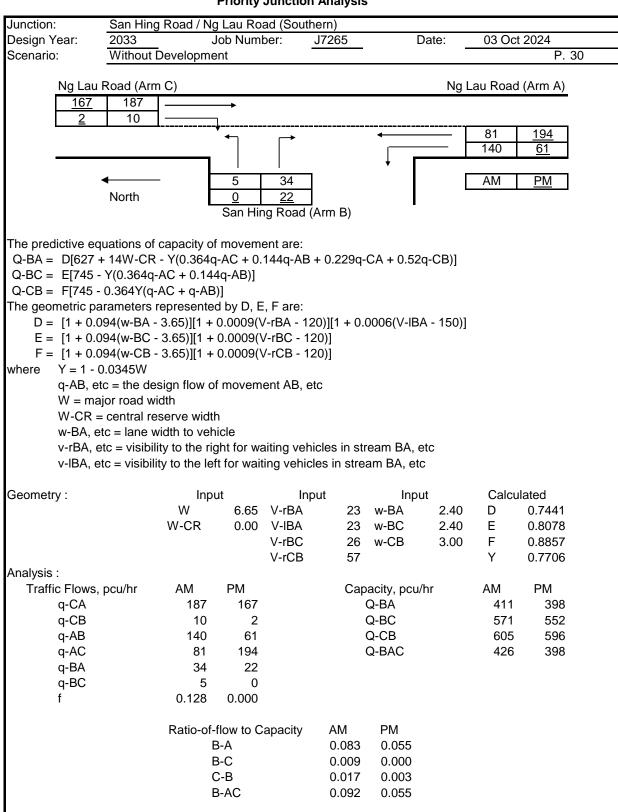
J5 - Lam Tei Interchange

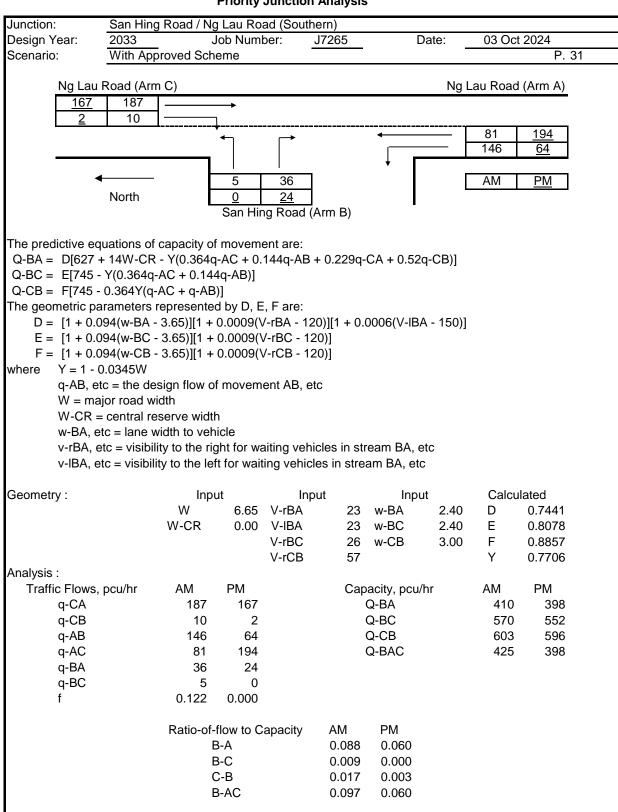
Junction:	Lam Tei Inte	erchange / C	Castle P	eak Roa	d – Lam		unouon								Job Nu	mber:	J7265
Scenario:	Existing Con													-	P. 21		
Design Year:	2023	Designe	ed By:				-	Checke	d By:	-			-	Date:	0;	3 Oct 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %		AM Peak Flow	y value	Critical y	Turning %		PM Peak Flow	y value	Critical y
Castle Peak Road	d -Lam Tei SB	LT	A1	1,4	3.25	80.0	Gradient	100	(pcu/hr) 1904	(pcu/hr) 364	0.191	0.191	100	(pcu/hr) 1904	(pcu/hr) 249	0.131	0.131
		SA	A2	1,4	3.25	00.0			2080	157	0.075	0		2080	132	0.063	001
		SA+RT	А3	1	3.25	22.5		64	1995	151	0.076		55	2006	128	0.064	
		RT	A4	1	3.25	20.0		100	1935	146	0.075		100	1935	123	0.064	
Slip Road from La	am Tei Interchar	nge LT	B1	2,3	3.50	8.0		100	1655	163	0.099		100	1655	116	0.070	
·		LT+RT	B2	2,3	3.50	30.0		100	2005	281	0.140		100	2005	202	0.101	
		RT		2,3	3.50	26.0		100	1990	278		0.140	100	1990	200		0.100
		RT	B4	2,3	3.50	23.0		100	1976	280	0.142		100	1976	145	0.073	
Castle Peak Road	d NB	LT	C1	3,4	3.50	14.0		100	1775	486	0.274		100	1775	407	0.229	
		LT	C2	3,4	3.50	19.0		100	1951	534	0.274		100	1951	448	0.230	
		SA	D1	4	3.50				2105	137	0.065			2105	223	0.106	
		SA	D2	4	3.50				2105	137	0.065			2105	223	0.106	
pedestrian pha	se		E _(P)	1,3		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
			F _(P)	1			rossing		5	sec	GM +	7	sec FGM =		12	sec	
			G _(P)	2		min c	rossing	time =	6	sec	GM +	11	sec F	GM =	17	sec	
			H _(P)	2		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr))		N	PM Traffic	Flow (pcu/hr)				N	S = 1940 +	+ 100 (W-3.	25) S :	= 2080 + 10	00 (W-3.25)	Note:		
										SM = S / (1 + 1.5 f/r)	SM =		(1 + 1.5 f/r)			
364		←	_		249			←	_		AM	Peak	PM	Peak			
I ↓	211	274			$\overrightarrow{\downarrow}$	189		446			1,4+2,3		1,4+2,3				
243	i	1020			194			855		Sum y	0.331		0.231				
	163 559	280				↓	402	► 145		L(s)	21		21				
	309	1 200								C (s)	110		110		l		
										practical y	0.728 120%		0.728 215%		l		
											12070		21070		l		
1 A1 —		2				3				4 A1				5			
A2 1	•	G _(P)	+							A2		•——	D2				
A4									C2				D1 C2				
F _{IP} ,		7	Tr			7		-	C1			;	C1				
"' ↓ ← E _{P)}	>	B1	B2 B3 B4	•	H _(P) ►	B1	B2 B3 B4				← − − + E _(P)	•					
AM G =	1/	/G = 15	G =		I/G =		G =		I/G =	8	G =		I/G =		G =		
G =		/G = 15	G =		I/G =		G =		I/G =		G =		I/G =	7	G =		
PM G =	1/	/G = 15	G =		I/G =		G =		I/G =	8	G =		I/G =		G =		
G =		/G = 15	G =		I/G =		G =		I/G =	7	G =		I/G =	7	G =		

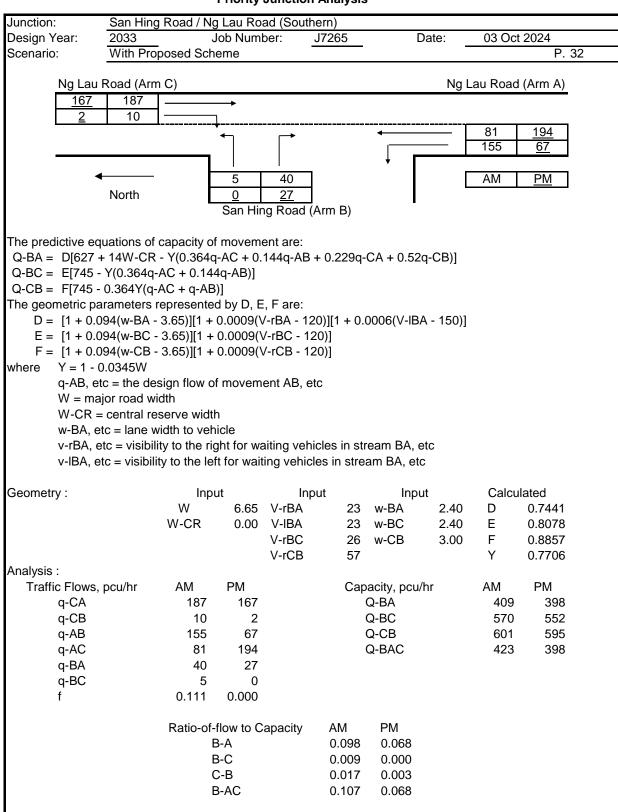
Junction:	Lam Tei Inte	rchange / C	Castle Pe	eak Roa	d – Lam	Tei									Job Nu	mber:	J7265
Scenario:	Without Deve	elopment														P.	22
Design Year:	2033	Designe	ed By:				•	Checke	d By:				-	Date:	0;	3 Oct 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %		AM Peak Flow	y value	Critical y	Turning %		PM Peak Flow	y value	Critical y
Castle Peak Road	i SB	LT	A1	1,4	3.50	80.0	Gradient	100	(pcu/hr) 1929	(pcu/hr) 448	0.232		100	(pcu/hr) 1929	(pcu/hr) 276	0.143	
		SA+RT	A2	1	3.50	30.0		0	2105	291		0.138	0	2105	233		0.111
		RT	A3	1	3.50	25.0		100	1986	167	0.084		100	1986	119	0.060	
		RT	A4	1	3.50	20.0		100	1958	165	0.084		100	1958	117	0.060	
Slip Road from	LT+(To	YL Hwy)RT	B2	2,3	3.50	30.0		100	2105	585	0.278		100	2005	405	0.202	0.202
Lam Tei Interchan	nge (To	YL Hwy) RT	В3	2,3	3.50	25.0		100	1986	552	0.278		100	2086	421	0.202	
	(To CPR) RT	B4	2,3	3.50	20.0		100	1958	369	0.188		100	1958	170	0.087	
Castle Peak Road	I NB	LT	C1	3,4	3.50	14.0		100	1775	625	0.352	0.352	100	1775	522	0.294	
		LT	C2	3,4	3.50	19.0		100	1951	688	0.353	0.002	100	1951	573	0.294	
		SA	D1	4	3.50				2105	222	0.105			2105	333	0.158	0.158
		SA	D2	4	3.50				2105	222	0.105			2105	333	0.158	
pedestrian phas	se		D _(P)	1		min c	rossing	time =	6	sec (GM +	12	sec F	GM =	18	sec	
			E _(P)	1,4		min c	rossing	time =	5	sec (GM +	7	sec F	GM =	12	sec	
			F _(P)	2			rossing		6		GM +	11		GM =	17	sec	
			O (P)	2,3 min crossing time = 5 sec GM + 9 sec FGI							GM =	14	sec				
AM Traffic Flow (pcu/hr)			N	PM Traffic F	low (pcu/hr)				N	S = 1940 +	- 100 (W-3.	25) S :	= 2080 + 10	00 (W-3.25)	Note:		
								\		SM = S / (1 + 1.5 f/r)	SM =	(S - 230) / ((1 + 1.5 f/r)			
↑ ⁴⁴⁸		←	_		276			•	_ `		AM	Peak	PM	Peak			
332	291	444 ↓ 1313			236	233		1095			1+3,4		1 + 2,3 + 4				
002		.0.0			200			1000		Sum y	0.490 38		0.471 26		-		
	210 927	369				147	679	► 170		L (s)	110		110				
	' ' '	ı				' '				practical y	0.589		0.687				
										R.C. (%)	20%		46%				
1		2				3				4				5			
A1 A2		$G_{(P)}$	Ţ			G _(P)	Ţ			A1							
A3 A4								_	C2			\equiv	D2 D1 C2				
D _(P)		1	7	•		1	7	; —	C2 C1				C2 C1				
E _(P)	•		B2 B3 B4	•	F _(P) →		B2 B3 B4				← • E _(P)	•					
AM G =	1/0	G = 15	G =	7	I/G =	11	G =		I/G =		G =		I/G =	7	G =		
G =		g = 15	G =		I/G =		G =		I/G =	7	G =		I/G =		G =		
AM G =	1/0	G = 15	G =		I/G =		G =		I/G =	7	G =		I/G =	7	G =		
G =	1/0	G = 15	G =	7	I/G =	11	G =		I/G =		G =		I/G =	7	G =		-

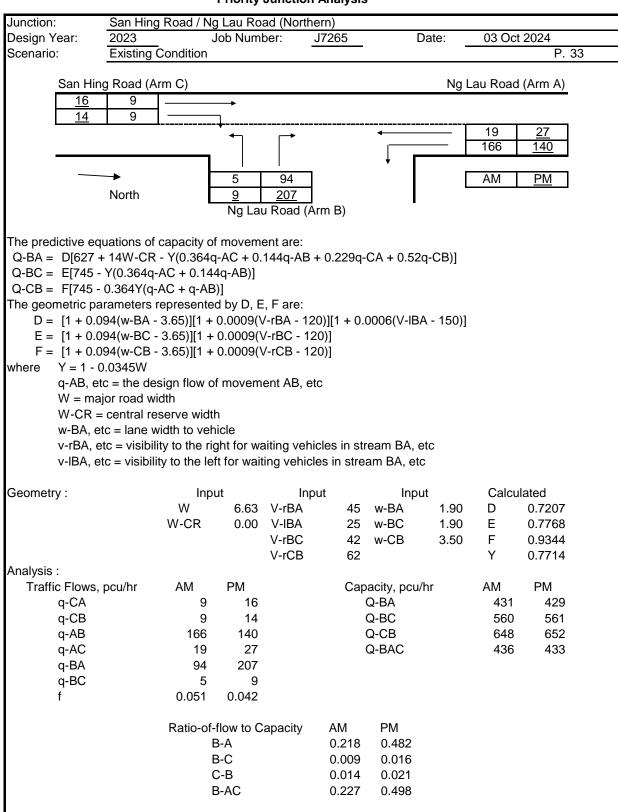
		terchange / C		eak Roa	d – Lam	Tei								<u>-</u>	Job Nu		J7265 23
Scenario: Design Year:	2033	oved Scheme Designe						Checke	d By:					Date:	0;	3 Oct 20	
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Castle Peak Road	SB	LT	A1	1,4	3.50	80.0		100	1929	448	0.232		100	1929	276	0.143	
		SA+RT	A2	1	4.00	85.0		0	2155	291	0.135	0.135	0	2155	233	0.108	0.108
		RT	А3	1	3.50	25.0		100	1986	167	0.084		100	1986	119	0.060	
		RT	A4	1	3.50	20.0		100	1958	165	0.084		100	1958	117	0.060	
Slip Road from	LT+(To YL Hwy)RT	B2	2,3	3.50	30.0		100	2105	593	0.282		100	2005	419	0.209	0.209
Lam Tei Interchan	ge (T	o YL Hwy) RT	В3	2,3	3.50	25.0		100	1986	560	0.282		100	1986	415	0.209	
		(To CPR) RT	B4	2,3	3.50	20.0		100	1958	371	0.189		100	1958	171	0.087	
Castle Peak Road	NB	LT	C1	3,4	3.50	14.0		100	1775	631	0.356	0.356	100	1775	527	0.297	
		LT	C2	3,4	3.50	19.0		100	1951	693	0.355		100	1951	580	0.297	
		SA	D1	4	3.50				2105	222	0.105			2105	333	0.158	0.158
		SA	D2	4	3.50				2105	222	0.105			2105	333	0.158	
pedestrian phas	se		E _(P)	1		min c	rossing	time =	6	sec (GM +	12	sec F	GM =	18	sec	
			F _(P)	1,4		min c	rossing	time =	5	sec (GM +	7	sec F	GM =	12	sec	
			G _(P)	2		min c	rossing	time =	6	sec (GM +	11	sec F	GM =	17	sec	
			H _(P)	2,3		min c	rossing	time =	5	sec (GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)			N	PM Traffic I	Flow (pcu/hr)				N						Note:		
		_						_			+ 100 (W-3.		= 2080 + 10				
▲ 448					▲ 276					SM = S / ((S - 230) /		1		
I T	291	444	_			233		666	_			Peak		Peak	ł		
332		♦ 1324			236			1107			1+3,4		1+2,3+4		ł		
										Sum y	0.491		0.475		l		
	210 943	371				147	687	▶ 171		L (s)	38		26 110				
	1 1.	1				1	I			C (s)	0.580		110		l		
										practical y	0.589 20%		0.687 45%		l		
										R.C. (%)	ZU /0		7J /0	1			
1		2				3	.			4				5			
A1		H _(P)	†			H _(P)	÷			A1							
A3 A4									00			\equiv	C4 C3 C2 C1				
1		•	<u> </u>	•		•	<u> </u>	•	C2 C1			;	C1				
E _(P) ↓ ← →	•				←						+ ,	•					
F _(P)			B2 B3 B4		G _(P)		B2 B3 B4				F _(P)						
AM G =		I/G = 15	G =	7	I/G =	11	G =		I/G =		G =		I/G =	7	G =		
G =		I/G = 15	G =		I/G =		G =		I/G =	7	G =		I/G =	7	G =		
AM G =		I/G = 15	G =		I/G =		G =		I/G =	7	G =		I/G =	7	G =		
G =		I/G = 15	G =	7	I/G =	11	G =		I/G =		G =		I/G =	7	G =		

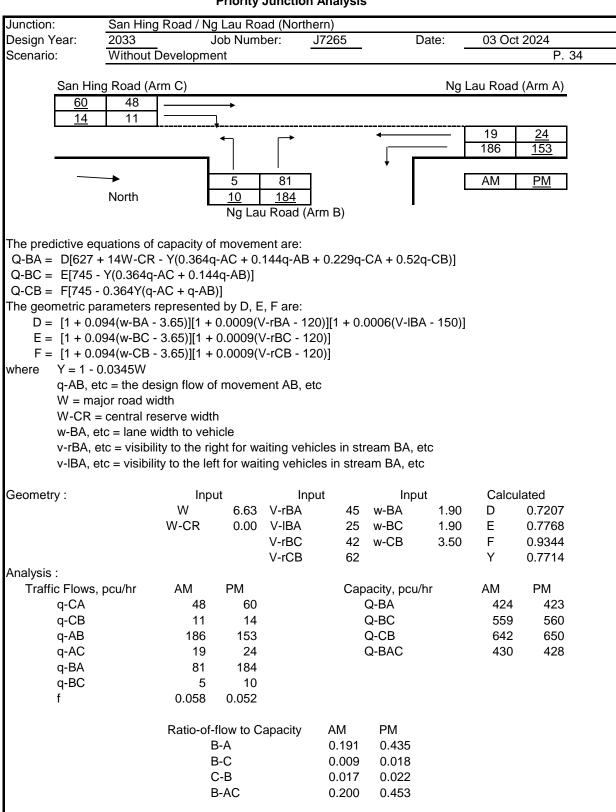

Junction:	Lam Tei Interd	change / 0	Castle P	eak Roa	ad – Lan	n Tei									Job Nu	mber:	J7265
Scenario:	With Propose	d Scheme	9												P. 24		
Design Year:	2033	Design	ed By:				-	Checke	ed By:					Date:	0	3 Oct 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %		AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Castle Peak Road	d SB	LT	A1	1,4	3.50	80.0	Gradient	100	(pcu/hr) 1929	(pcu/hr) 448	0.232		100	(pcu/hr) 1929	(pcu/hr) 276	0.143	
		SA+RT	A2	1	4.00	85.0		0	2155	291		0.135	0	2155	233		0.108
		RT	А3	1	3.50	25.0		100	1986	170	0.086		100	1986	121	0.061	
		RT	A4	1	3.50	20.0		100	1958	167	0.085		100	1958	120	0.061	
Slip Road from	LT+(To Y	'L Hwy)RT	B2	2,3	3.50	30.0		100	2105	610	0.290		100	2005	426	0.212	
Lam Tei Interchar		L Hwy) RT	B3	2,3	3.50	25.0		100	1986	575	0.290		100	1986	421		0.212
	(To	CPR) RT	B4	2,3	3.50	20.0		100	1958	374	0.191		100	1958	172	0.088	0.2.2
				ĺ													
Castle Peak Road	d NB	LT	C1	3,4	3.50	14.0		100	1775	638	0.359	0.359	100	1775	533	0.300	
		LT	C2	3,4	3.50	19.0		100	1951	702	0.360		100	1951	586	0.300	
		SA	D1	4	3.50				2105	222	0.105			2105	333	0.158	0.158
		SA	D2	4	3.50				2105	222	0.105			2105	333	0.158	
pedestrian pha	se		E _(P)	1		min c	rossing	time =	6	sec (GM+	12	sec F	GM =	18	sec	
			F _(P)	1,4		min c	rossing	time =	5	sec (GM+	7	sec F	GM =	12	sec	
			G _(P)	2		min c	rossing	time =	6	sec (GM +	11	sec F	GM =	17	sec	
			H _(P)	2,3		min c	rossing	time =	5	sec (GM +	9	GM =	14	sec		
AM Traffic Flow (pcu/hr)		N	PM Traffic	Flow (pcu/hr))			N						Note:	'	'
		_						\			+ 100 (W-3. 1 + 1.5 f/r)	25) S =	: 2080 + 10 (S - 230) / (, ,			
↑ ⁴⁴⁸	ı				↑ 276					SIVI = 57 (Peak		Peak	ĺ		
I →	291	444	_		\rightarrow	233		666	_		1+3,4	- Cuit	1 + 2,3 + 4	- cuit	1		
337		1340			♦ 241			1119		Sum y	0.495		0.478				
	← → -	→				•	- -	•		L (s)	38		26				
	214 971	374				150	697	172		C (s)	110		110				
										practical y	0.589		0.687		l		
	·									R.C. (%)	19%	<u> </u>	44%		<u> </u>		
1		2				3				4				5			
A1 A2 A3	•	H _(P)	i			H _(P)	i			A1		•—	C4				
A4									C2			=	C4 C3 C2				
Em 1		1	1	•		1	4	`	C2 C1			; 	C1				
-(P) ♦ ← F _(P)	>		B2 B3 B4	•	G (P)		B2 B3 B4				← 1 F _(P)	•					
AM G =	I/G :	= 15	G =	7	I/G =	11	G =		I/G =	<u> </u>	G =		I/G =	7	G =		
G =		= 15	G =		I/G =		G =		I/G =	7	G =		I/G =		G =		
AM G =		= 15	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =	I/G :	₌ 15	G =	7	I/G =	11	G =		I/G =		G =		I/G =	7	G =		

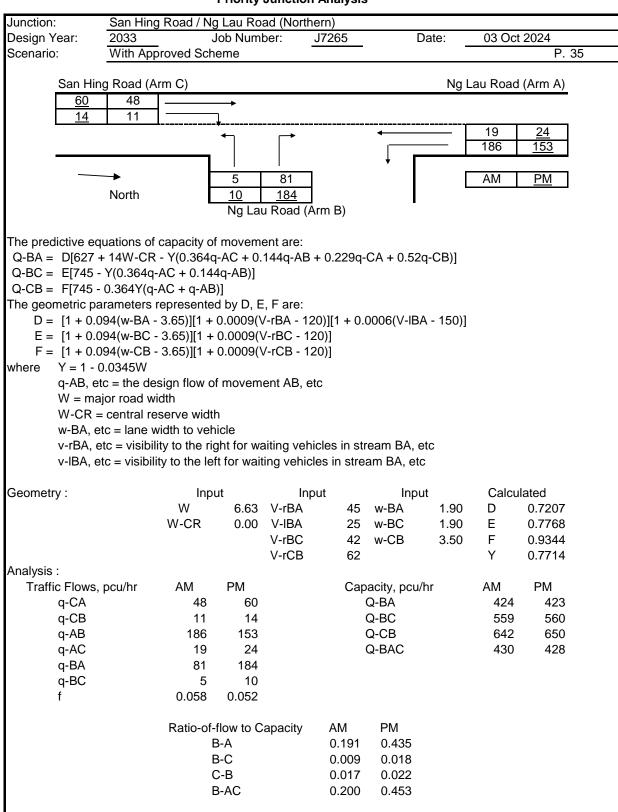

Junction:		Road/ Tsz Tii	n Road											_	Job Nu		J7265			
Scenario: Design Year:	Existing C		ed By:		Checked By:											P. 25 te: 03 Oct 2024				
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y			
Taing Lun Baa		17.04					Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		Critical y			
Tsing Lun Roa	IO 5B	LT+SA RT	A1	1	3.65	13.0		5	1969	488	0.248	0.248	12	1953	337	0.173	0.040			
		KI	A2	1	3.65	15.0		100	1927	392	0.203		100	2120	446	0.210	0.210			
Tsing Lun Roa	d NB	LT+SA	C1	2	3.30	23.0		38	1898	116	0.061	0.061	34	1903	120	0.063	0.063			
Ü		SA	C2	2	3.40	20.0		- 50	2095	127	0.061	0.001	<u> </u>	2095	133	0.063	0.000			
		RT	C3	2	3.40	15.0		100	1905	8	0.004		100	1905	18	0.009				
Access Road t	:0	LT+SA+RT	D1	3	3.50	15.0		89	1804	70	0.039	0.039	87	1808	60	0.033	0.033			
Siu Hong Cour	rt WB																			
Tsz Tin Road I	EB	LT	B1	4	3.38	10.0		100	1698	180	0.106	0.106	100	1698	115	0.068	0.068			
		LT+SA+RT	B2	4	3.37	15.0		98	1905	201	0.105		94	2092	142	0.068				
pedestrian pha	156		E _(P)	2		min c	rossina	time =	5	Sec	GM +	10	sec F	GM =	15	sec				
pedestriari prie	130		F _(P)	3			min crossing time = min crossing time =			sec GM + 10 sec GM + 6		sec FGM =		11	sec					
AM Traffic Flow (pcu/hi	r)		N	PM Traffic	Flow (pcu/hr)				N	00 (W-3.25)										
↑ 29 [.]	1 392 ←	22		SM = S / (1 + 1.5 l/r) SM = (S - 230) / (1 + 1.5 l AM Peak PM Peak									4							
\downarrow	4	↓ 466			\rightarrow	8	↓ 298				1+2+3+4									
86	6 199	1			48	212		. 1	Sum y 0.454 0.374											
44	4 + 8	8 🕎			41	\downarrow	18							24						
	.	15						12		C (s)	0.717		0.717							
										R.C. (%)	58%		92%							
1	A2 A1	2				3				4				5						
_ ↑		-	↑			F _(P)	†			B1	<u>_</u>									
F _(P) ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑						F(P)	+	←	D1	B2	→									
		- -						ţ		E _(P)	†									
			C1 C2 C3											<u> </u>						
AM G =		I/G = 6 I/G = 6	G = G =		I/G =		G = G =		I/G =		G = G =	14	I/G =		G = G =					
PM G =		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =		G =					
G =		I/G = 6	G =		I/G =	6	G =		I/G =	9	G =	14	I/G =	7	G =					

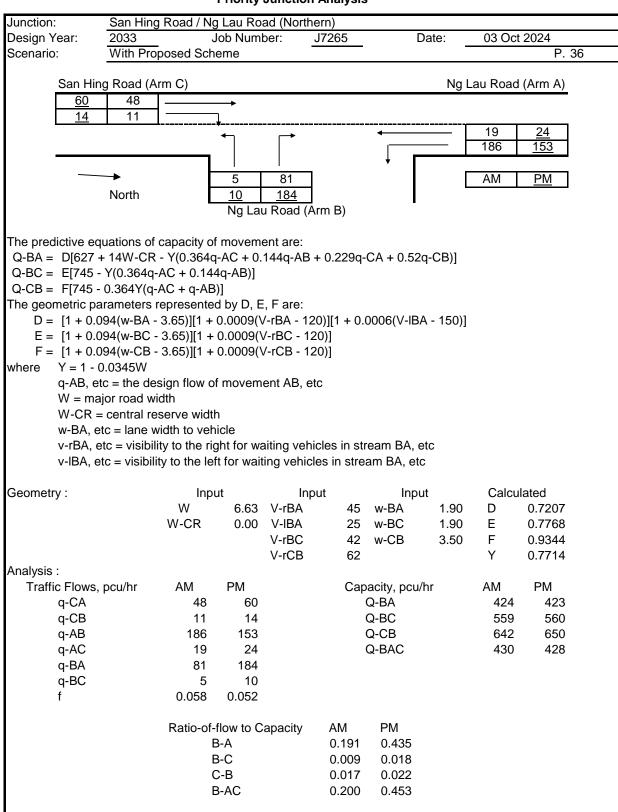

Junction:	Tsing Lun	Road/ Tsz Tir	Road											_	Job Nu	mber:	J7265
Scenario:	Without D	evelopment														Р.	26
Design Year:	2033	Designe	ed By:				_	Checke	d By:				_	Date:	03	3 Oct 20	124
	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %		PM Peak Flow	y value	Critical y
Tsing Lun Roa	ad SB	LT+SA				40.0	Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)	0.010	
TSING LUIT IXO	au 3D	RT	A1	1	3.65	13.0		4	1971	760	0.386	0.386	10	1957	486	0.248	
		KI	A2	1	3.65	15.0		100	1927	622	0.323		100	2120	545	0.257	0.257
Tsing Lun Roa	nd NIP	LT+SA											.		-		
TSING LUIT NO	au ND		C1	2	3.30	23.0		53	1880	191	0.102	0.102	66	1865	227	0.122	0.122
		SA RT	C2	2	3.40				2095	212	0.101			2095	255	0.122	
		KI	C3	2	3.40	15.0		100	1905	10	0.005		100	1905	25	0.013	
A D	4-	LT.CA.DT													-		
Access Road		LT+SA+RT	D1	3	3.50	15.0		88	1806	86	0.048	0.048	87	1808	75	0.041	0.041
Siu Hong Cou	IT WB														-		
Ta- Ti- Daad															-		
Tsz Tin Road	EB	LT	B1	4,1	3.38	10.0		100	1698	561	0.330		100	1698	329	0.194	
		SA+RT	B2	4	3.37	15.0		90	1919	101	0.053	0.053	88	1923	74	0.038	0.038
															 		-
																ļ	1
pedestrian pha	pedestrian phase		$E_{(P)}$	2		min c	crossing time =		5	sec GM +		10	sec FGM =		15	sec	
			$F_{(P)}$	3		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
AM Traffic Flow (pcu/h	nr)		N	PM Traffic	Flow (pcu/hr)				N						Note:		
											+ 100 (W-3.		= 2080 + 10				
50	24 622 4	1 . 20			220	EAE	. .	54		SM = S / (1 + 1.5 f/r)			(1 + 1.5 f/r)	ł		
56		T 30			329	0	\rightarrow	51			AM	Peak		Peak	ł		
	10	730 56			65	9	435	45			1+2+3+4		1+2+3+4		ł		
8	301	40.4			65	332	40	1		Sum y	0.587		0.459		ł		
4.0	†	10 —			450	1.	10	\Box		L (s)	24		24		ł		
10	02 10	20			150		25	20		C (s)	118		118		ŀ		
										practical y	0.717		0.717		ł		
										R.C. (%)	22%		56%		Ь		
1	Ą2 Ą1	2				3				4				5			
в1 ——	→	F _(P)	1			F _(P)	1			B1 B2							
			↑↑↑ ┌	•			•	-	D1		•						
		- -	$\exists \Box$					+		E _(P)	1						
			C1 C2 C3								•						
AM -	_	1/C - F			1/0	6			I/O	<u>-</u>			1/0	7			
AM G		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G:		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G		I/G = 6	G =		I/G =	б	G =		I/G =	9	G =		I/G =		G =		

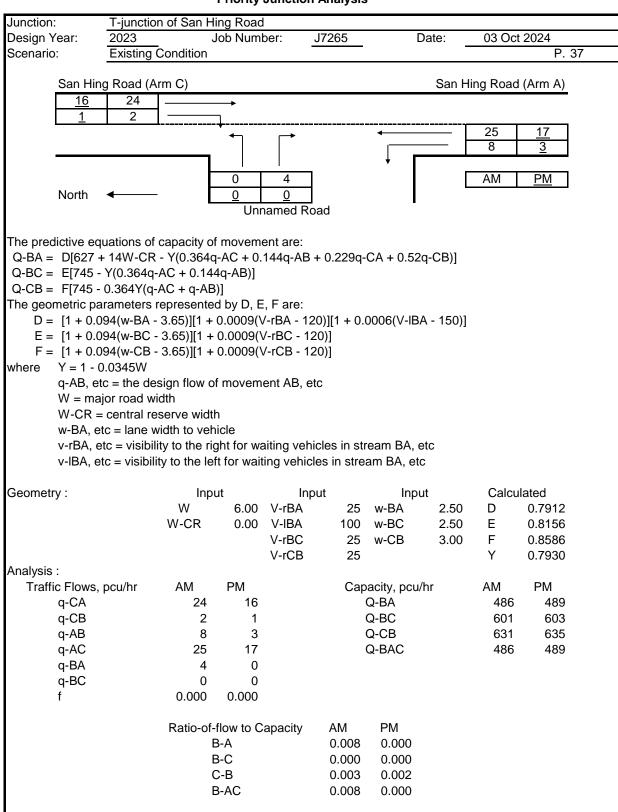

Junction:		n Road/ Tsz Tii												-	Job Nu	mber:	
Scenario:		oroved Scheme															27
Design Year:	2033	Designe	ed By:				-	Checke	ed By:				-	Date:	0	3 Oct 20)24
						ı	1	1		AM Peak			1		PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tsing Lun Roa	ad SB	LT+SA	A1	1	3.65	13.0	Gradient	4	1971	762	0.387	0.387	10	1957	487	0.249	
		RT	A2	1	3.65	15.0		100	1927	622	0.323	0.007	100	2120	545	0.257	0.257
			\\Z		3.03	13.0		100	1321	022	0.525		100	2120	343	0.231	0.237
Tsing Lun Roa	ad NB	LT+SA	C1	2	3.30	23.0		53	1880	191	0.102	0.102	66	1865	227	0.122	0.122
3		SA	C2	2	3.40	23.0		- 55	2095	213	0.102	0.102	00	2095	256	0.122	0.122
		RT	C3	2	3.40	15.0		100	1905	10	0.005		100	1905		0.013	
			U3		3.40	13.0		100	1905	10	0.003		100	1903	25	0.013	
Access Road	to	LT+SA+RT	D1	2	2.50	15.0		00	1006	06	0.049	0.040	07	1000	75	0.044	0.044
Siu Hong Cou		211071111	D1	3	3.50	15.0		88	1806	86	0.048	0.048	87	1808	75	0.041	0.041
Cia riong coa																	
Tsz Tin Road	FB	LT	D4	1.4	2 20	10.0		100	1600	EC4	0.000		100	1600	200	0.404	
. 32 THI ROAU		SA+RT	B1	4,1	3.38	10.0		100	1698	561	0.330	0.050	100	1698	329	0.194	0.000
		JATIKI	B2	4	3.37	15.0		90	1919	101	0.053	0.053	88	1923	74	0.038	0.038
																	-
									_			4.0					
pedestrian pha	ase		E _(P)	2		min crossing time =				5 sec GM +		10 sec FG			15	sec	
			F _(P)	3		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
AM Traffic Flow (pcu/h	hr)		N	PM Traffic	Flow (pcu/hr)				N	£ 1040	+ 100 (W-3.	25) 0	= 2080 + 10	00 (M/ 2 2E)	Note:		
											1 + 1.5 f/r)			(1 + 1.5 f/r)			
_▲ 56	61 622 ◄	30			▲ 329	545	→	51		SIVI = 37 (
I — [▶ 10	↓			\rightarrow	9	. ↓					Peak		Peak			
↓	91	732 56			65		436	45			1+2+3+4		1+2+3+4				
	302	10 🕂				333	10	.↓		Sum y	0.588		0.459				
10	02 + 1	10			150	\downarrow	25	. ↓		L(s)	24		24		l		
		20			130			20		C (s)	118		118		ł		
										practical y	0.717		0.717				
										R.C. (%)	22%		56%				
1	A2 A1	2				3				4				5			
											*						
В1 ——	- □ [F _(P)	Ţ			F _(P)	Ţ			B1 B2							
			11 -	•				+	D1		. *						
		•	711					+		E _(P)	1						
			C1 C2 C3														
AM G	=	I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =	7	G =		
AW G		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =	•	G =		
PM G:		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =	7	G =		
G	=	I/G = 6	G =		I/G =	0	G =		I/G =	9	G =		I/G =		G =		

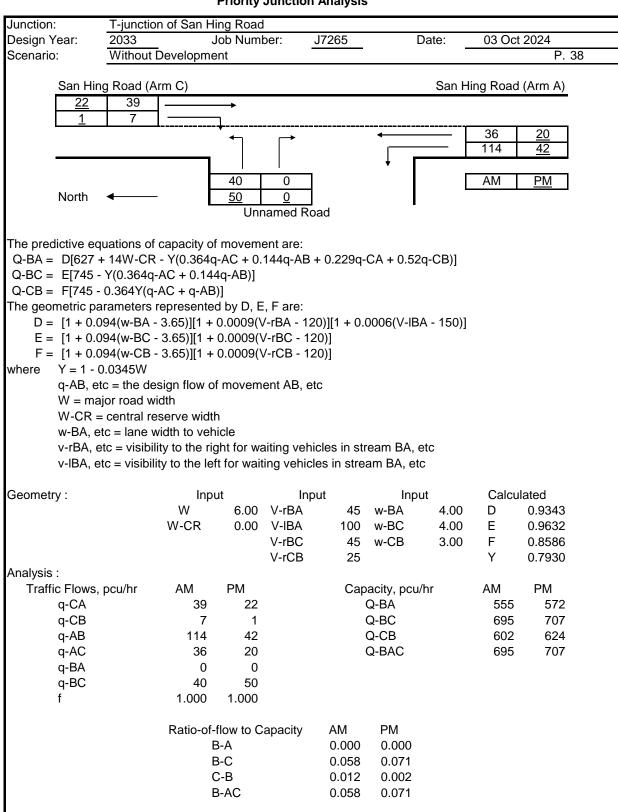

Junction:	Tsing Lur	n Road/ Tsz Ti	n Road											-	Job Nu	mber:	J7265
Scenario:	With Prop	oosed Scheme)													P.	28
Design Year:	2033	Designe	ed By:					Checke	d By:					Date:	00	3 Oct 20	124
	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %		PM Peak Flow	y value	Critical y
Tsing Lun Roa	ad SR	LT+SA			0.05	40.0	Gradient		(pcu/hr)	(pcu/hr)	0.000	0.000	40	(pcu/hr)	(pcu/hr)	0.040	
TSING LUITING	30 35	RT	A1	1	3.65	13.0		4	1971	765	0.388	0.388	10	1957	488	0.249	
		IXI	A2	1	3.65	15.0		100	1927	622	0.323		100	2120	545	0.257	0.257
Taina Lun Bar	ad NIP	17,01						<u> </u>									
Tsing Lun Roa	au IND	LT+SA	C1	2	3.30	23.0		53	1880	192		0.102	66	1865	228	0.122	0.122
		SA	C2	2	3.40				2095	214	0.102			2095	257	0.123	
		RT	C3	2	3.40	15.0		100	1905	10	0.005		100	1905	25	0.013	
		1 T O A D T															
Access Road		LT+SA+RT	D1	3	3.50	15.0		88	1806	86	0.048	0.048	87	1808	75	0.041	0.041
Siu Hong Cou	irt WB																
Tsz Tin Road	EB	LT	B1	4,1	3.38	10.0		100	1698	561	0.330		100	1698	329	0.194	
		SA+RT	B2	4	3.37	15.0		90	1919	101	0.053	0.053	88	1923	74	0.038	
					0.01	10.0		- 00	1010	101	0.000	0.000	- 00	1020		0.000	0.000
nadaatrian nh			_	2		min o	rossina	timo	5	200	CM	10	000 [CM	15		
pedesinan pri	pedestrian phase		F _(P)	2			rossing			sec GM +		10	sec FGM =		15	sec	
			1 (P)	3		min c	rossing	time =	5	sec	GM +	6	sec F	-GM =	11	sec	
																-	
AM Traffic Flow (pcu/l	hr)		N	PM Traffic	Flow (pcu/hr)			N	S = 1940 -	+ 100 (W-3	25) S =	2080 + 10	00 (W-3.25)	Note:		
											1 + 1.5 f/r)			(1 + 1.5 f/r)			
↑ 56	622 ←	→ 30		000 545													
		735			\rightarrow	9	437	1+2+3+4				Car	2ak PM Peak 1+2+3+4				
	91	56			↓ 65			45		Cumy	0.591		0.459				
	304	10 🕌				335	10	\leftarrow									
10	10	, 			150	\leftarrow	25	ļ		L (s)				24			
		20						20		C (s)	118		118				
										practical y	0.717		0.717				
										R.C. (%)	21%		56%				
1	A2 A1	2				3				4				5			
в1	_		•				A										
В1 ——	- ↓	F _(P)	Ļ			F _(P)	ţ	*		B1 B2							
			. 11 [>				\leftarrow	D1								
		1						•		E _(P)	Ţ						
			C1 C2 C3														
AM G	-	I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =	7	G =		
G	=	I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =		G =		
PM G	=	I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =	7	G =		
G	=	I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =		G =		

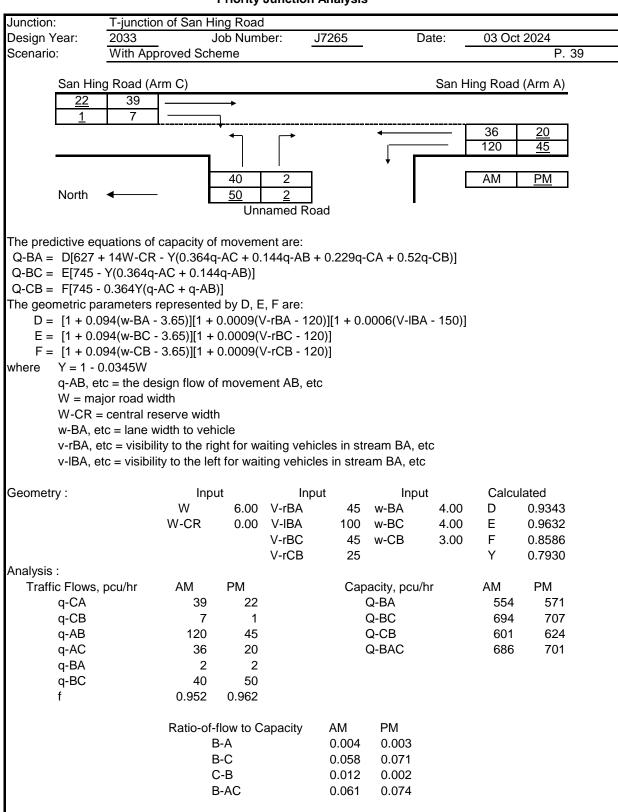


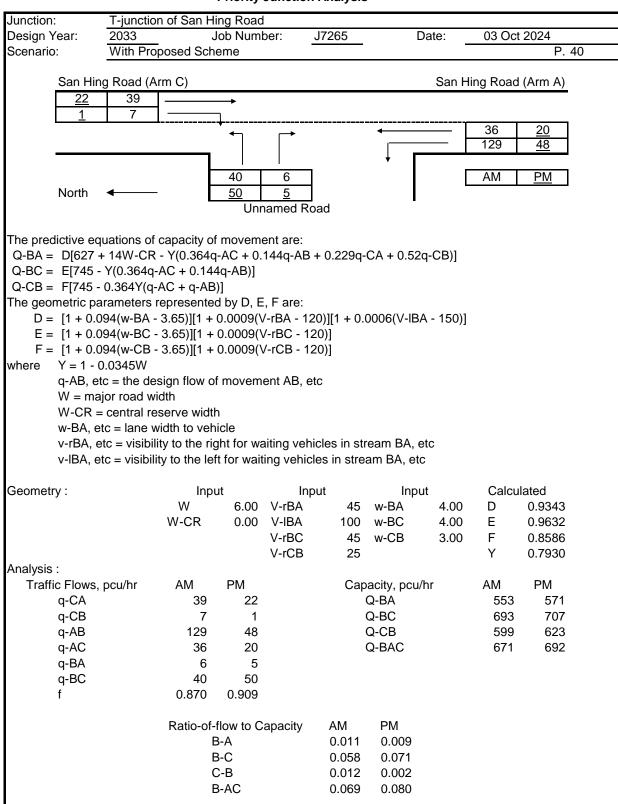










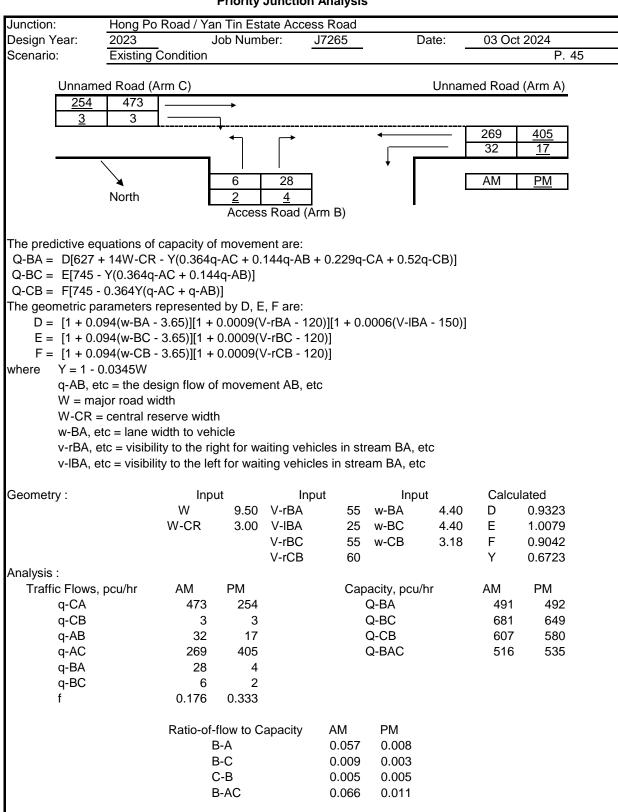


CKM Asia Limited J10

CKM Asia Limited J10

CKM Asia Limited J10

Signal Junction Analysis


Junction: Scenario:	Ng Lau Road		eak Roa	ad - Lan	n Tei									-	Job Nu		J7265 41
Design Year:	2023	Designe	ed By:					Checke	d By:				-	Date:	0;		
							г			****					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow	Flow (pcu/hr)	y value	Critical y
Ng Lau Road EB		LT	A1	2	4.00	20.0	Gradient	100	1874	110	0.059	0.059	100	(pcu/hr) 1874	135	0.072	0.072
Castle Peak Road	d - Lam Tei NB	LT	B1	1	3.50	15.0		100	1786	128	0.072	0.072	100	1786	128	0.072	0.072
pedestrian pha	180		C _(P)	1,2		min c	rossing	time –	8	202	GM +	8	sec F	GM =	16	sec	
podounan prid			D _(P)	3			rossing		7		GM +	7		GM =	14	sec	
			- (F)				ooog		·	000	<u> </u>	·	0001	<u> </u>		000	
AM Traffic Flow (pcu/hr	-)		N	PM Traffic	Flow (pcu/hr)			N	1					Note:		
	110		ï				135		Ï			25) S					
							Ϊ.			SM = S / (1 + 1.5 f/r)			(1 + 1.5 f/r)			
128	,				128		_					Peak		Peak			
										C	0.130		0.144				
										Sum y	2358		2284		1		
										C (s)	3609		3627		1		
										practical y	0.312		0.333				
										R.C. (%)	139%		132%				
1		2				3				4				5			
C _(P) ↓	$C_{(P)}$	2 C _(P)	,	A1 I	C _(P)		D _(P)										
1				\vdash			++++	E _(LRT)									
B1							*1111										
AM G =	: 1/0	G =	G =		I/G =	1	G =		I/G =	1	G =		I/G =	1	G =		
G =	: 1/0) =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =	: 1/0	G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

CKM Asia Limited J11

Junction: Ng Lau Road /	Castle P	eak Roa	ad - Lam	Tei		unotion 7								Job Nu	mber:	J7265
Scenario: Without Develo													•			42
Design Year: 2033	Designe	ed By:				:	Checke	d By:				•	Date:	00	3 Oct 20	24
Approach		Phase	Stage	Width (m)	Radius (m)		Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %		PM Peak Flow	y value	Critical y
Ng Lau Road EB	LT	A1	1	4.00	15.0	Gradient	100	(pcu/hr) 1832	(pcu/hr) 138	0.075		100	(pcu/hr) 1832	(pcu/hr) 156	0.085	
Castle Peak Road - Lam Tei NB	SA	B1	2,3	3.30			100	1945	273	0.140		100	1945	545	0.280	
	SA	B2	2,3	3.30				2085	293	0.141			2085	585	0.281	
	SA	В3	2,3	3.30				2085	292	0.140			2085	585	0.281	
	RT	C1	1	3.70	15.0		100	1932	252	0.130	0.130	100	1932	184	0.095	0.095
Castle Peak Road - Lam Tei NB	LT	D1	2	3.70	13.0		100	1780	160	0.090		100	1780	146	0.082	
	LT	D2	2	3.70	15.0		100	1932	149	0.077		100	1932	179	0.093	
	SA	E1	2,3	3.70				2125	350	0.165			2125	792	0.373	0.373
	SA	E2	2,3	3.65				2120	349	0.165			2125	791	0.372	
Castle Peak Road - Lam Tei SB	LT+SA	F1	2,3	3.70	15.0		2	1981	600	0.303	0.303	4	1977	416	0.210	
	SA	F2	2,3	3.70				2125	643	0.303			2125	447	0.210	
Castle Peak Road - Lam Tei SB	SA	F3	2,3	3.70	10.0			2125	643	0.303			2125	447	0.210	
Casile Fear Noad - Latti Tel SB	LT+SA SA	G1 G2	1,2,3	3.70	10.0		11	1953	761	0.390		26	1910	463	0.242	
	RT	H1	4	3.50	20.0		100	2125	829	0.390	0.050	100	2125	516	0.243	0.040
Wong Kong Wai Road WB	LT	I1	4	4.00	10.0		100	1958	102	0.052	0.052		1958	83	0.042	0.042
Fuk Hang Tsuen Road WB	LT	J1	5	3.70	15.0		100	1752 1805	20 280	0.011	0.155	100	1752 1805	14 246	0.008	0.136
	LT+RT	J2	5	3.70	15.0		100	1932	300	0.155	0.155	100	1932	264	0.137	0.130
Road P1	LT+RT	K1	5	3.80	12.0		100	1773	185	0.104		100	1773	199	0.112	
	RT	K2	5	3.80	15.0		100	1941	202	0.104		100	1941	217	0.112	
pedestrian phase		L _(P)	3,4,5		min c	rossing	time =	5	sec (GM +	11	sec F	GM =	16	sec	
		M _(P)	3		min c	rossing	time =	5	sec (GM +	15	sec F	GM =	20	sec	
		$N_{(P)}$	3,4		min c	rossing	time =	5	sec (GM +	16	sec F	GM =	21	sec	
		$O_{(P)}$	5		min c	rossing	time =	5	sec (GM +	14	sec F	GM =	19	sec	
		P _(P)	4		min c	rossing	time =	5	sec (GM +	18	sec F	GM =	23	sec	
		$Q_{(P)}$	3		min c	rossing	time =	11	sec	GM +	11	sec F	GM =	22	sec	
		R _(P)	1,2,4,5		min c	rossing	time =	5	sec (GM +	13	sec F	GM =	18	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic F	low (pcu/hr)				N	S = 1940 +	+ 100 (W-3.	25) S =	= 2080 + 10	00 (W-3.25)	Note:		
138 288	// 102				156	333	// 83		SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
160	4	I			146	• •	→	ı		AM	Peak	PM	Peak			
858			1715		179					1+2,3+4+5		1+2,3+4+5				
252 ——699			→ 184	•	1583				Sum y	0.641		0.646				
	102						964		L(s)	21		21				
← 1804 ★ 82				←	1188				C (s)	120		120				
433 147 20	10		◆ 316	٠	,	14	15		practical y	0.743		0.743				
400 11 147			316	194					R.C. (%)	16%		15%	<u> </u>	<u> </u>		
1 R _(P) A1 R _(P)	2	R _(P)		R _(P)	3	+ + +	L _(P)	Q _(P)	4	R _(P)	L _(P)	R _(P)	5	R _(P)	L _(P)	K1 K2 R _(P)
· ·	B1 →	_{D1} 🕹			B1 →	← 		•		+				•	*	44
c1 —	B2 B3	D2 →			B2 → B3 →	E1				↓ M _(P)						
∪	,	~ _	F3	— ^^		~ _	F3	— ^^	D	N _(P)		2 H1		N _(P)	0	
↓ G:	1	+	F1	G2 G1		-	F1	₩ G2 G1	← - Þ	*	↑		111	. *	← − i	•
											11		J1 J2			
AM G = I/G =		G =		I/G =	7	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G = 1/G =		G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
PM G = I/G =		G =		I/G =	7	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G = I/G =		G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =

Junction:	Ng Lau Road	d / Castle P	eak Ro	ad - Lam	n Tei_										Job Nu	mber:	J7265
Scenario:	With Approv													-		P.	43
Design Year:	2033	Designe	ed By:					Checke	d By:					Date:	0;	3 Oct 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Ng Lau Road EB		LT	A1	1	4.00	15.0	Gradient	100	(pcu/hr) 1832	(pcu/hr) 138	0.075		100	(pcu/hr) 1832	(pcu/hr) 156	0.085	
Castle Peak Road	d - Lam Tei NB	SA	B1	2,3	3.30				1945	273	0.140			1945	545	0.280	
		SA	B2	2,3	3.30				2085	293	0.141			2085	585	0.281	
		SA	В3	2,3	3.30				2085	292	0.140			2085	585	0.281	
		RT	C1	1	3.70	15.0		100	1932	252	0.130	0.130	100	1932	184	0.095	0.095
Castle Peak Road	d - Lam Tei NB	LT	D1	2	3.70	13.0		100	1780	160	0.090		100	1780	146	0.082	
		LT	D2	2	3.70	15.0		100	1932	149	0.077		100	1932	179	0.093	
		SA	E1	2,3	3.70				2125	350	0.165			2125	792	0.373	
		SA	E2	2,3	3.65				2120	349	0.165			2125	791	0.372	0.372
Castle Peak Road	d - Lam Tei SB	LT+SA	F1	2,3	3.70	15.0		2	1981	600	0.303		4	1977	416	0.210	
		SA	F2	2,3	3.70				2125	643	0.303			2125	447	0.210	
Castle BI: D	1 Lom T-: 00	SA	F3	2,3	3.70	10.0			2125	643	0.303	0.303		2125	447	0.210	
Castle Peak Road	u - Lam TerSB	LT+SA	G1 G2	1,2,3	3.70	10.0		11	1953	761	0.390		26	1910	463	0.242	
		SA RT	G2 H1	1,2,3	3.70	20.0		4.5.5	2125	829	0.390	0.5==	45-	2125	516	0.243	0.5.:
Wong Kong Wai	Road WR	LT	H1 I1	4	4.00	10.0		100	1958	102	0.052	0.052	100	1958	83	0.042	0.042
Fuk Hang Tsuen		LT	J1	5	3.70	15.0		100	1752	20	0.011	0.455	100	1752	14	0.008	0.400
Tuk Hang Toden	TOUG WE	LT+RT	J2	5	3.70	15.0		100	1805 1932	300	0.155	0.155	100	1805	246	0.136	0.136
Road P1		LT+RT	K1	5	3.80	12.0		100	1773	185	0.104		100	1932 1773	264 199	0.137	
		RT	K2	5	3.80	15.0		100	1941	202	0.104		100	1941	217	0.112	
no doctrion pho				2.4.5		min a	rassina	timo	-		CM	11	202 5	CM	16	200	
pedestrian pha	se		L _(P)	3,4,5			rossing		5 5		GM +	11 15		GM =	16 20	sec	
			M _(P)	3,4			rossing		5		GM + GM +	16		GM = GM =	21	sec	
			O _(P)	5			rossing		5		GM +	14		GM =	19	sec	
			P _(P)	4			rossing		5		GM +	18		GM =	23	sec	
			Q _(P)	3			rossing		11		GM +	11		GM =	22	sec	
			R _(P)	1,2,4,5			rossing		5	sec	GM +	13	sec F	GM =	18	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic F	Flow (pcu/hr)				N						Note:		
	138	285// 102	Ï			156	333	// 83	Ϊ		+ 100 (W-3.	-,	= 2080 + 10	, ,			
	↳.	-/4	ļ			L,	. "			SM = S / (1 + 1.5 f/r)		(S - 230) /				
_858	160			1715		146 179					1+2,3+4+5	Peak	1+2,3+4+5	Peak			
252	699			184		1583				Sum y	0.640		0.646				
		102						83		L (s)	21		21				
	1804	1580			•	1188		964		C (s)	120		120				
• •	₩ 82	→ 10			· -	122		↓		practical y	0.743		0.743		1		
433	, 20			4 316	194		14			R.C. (%)	16%		15%				
1 R _(P)	A1 R _{(P}	2	R _(P)		R _(P) ↓	3	+++	L _(P)	Q _(P)	4	R _(P)	► L _(P)	R _(P)	5	R _(P)	L _(P)	K1 K2 R _(P)
	•	$B1 \longrightarrow B2 \longrightarrow$	D1 J D2 J			B1 → B2 →					↑						
C1 ¬		B3 →	E1 — E2 —			В3 →	E1				↓ ^{(νι(ρ)}		1 _H1		+		
	<u>+</u>	G2	=	F2	← G2		—	F2	← G2	P _(P)	N _(P)		— Н1		N _(P)	O _(P)	
	₹	G1	*+	· F1	← G1		*+	F1	↓ G1		•	1		11	•	← -1	-
AM G =	I/G	= 8	G =		I/G =	7	G =		I/G =	<u> </u>	G =	I1	I/G =	J1 J2	G =		I/G = 5
G =	I/G		G =		I/G =	•	G =		I/G =		G =		I/G =	J	G =		I/G = 5
PM G=		= 8	G =		I/G =	7	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G =			G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
			-		_		_		-		-		-		-		

Junction: Ng Lau Road / Castle	Peak Ro	ad - I ar	n Tei	9	ounction								Job Nu	mber	J7265
Scenario: With Proposed Scher		au Lai	11 101									-	30D 140		44
	ned By:				-	Checke	ed By:				-	Date:	03	3 Oct 20	
Approach	Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Ng Lau Road EB	T A1	1	4.00	15.0	Gradient	100	(pcu/hr) 1832	(pcu/hr) 138	0.075		100	(pcu/hr) 1832	(pcu/hr) 156	0.085	
Castle Peak Road - Lam Tei NB S	A B1	2,3	3.30				1945	276	0.142		.00	1945	549	0.282	
S	A B2	2,3	3.30				2085	296	0.142			2085	588	0.282	
S	А ВЗ	2,3	3.30				2085	297	0.142			2085	588	0.282	
F	т С1	1	3.70	15.0		100	1932	252	0.130	0.130	100	1932	184	0.095	0.095
	T D1	2	3.70	13.0		100	1780	160	0.090		100	1780	146	0.082	
l	-	2	3.70	15.0		100	1932	150	0.078		100	1932	179	0.093	
\$	-	2,3	3.70				2125	355	0.167			2125	797	0.375	
9 1 9 1 9 1 7 1 9 1 7 1 9	+	2,3	3.65	45.0			2120	354	0.167			2125	796	0.375	0.375
Castle Peak Road - Lam Tei SB LT+S	+	2,3	3.70	15.0		2	1981	603	0.304		4	1977	420	0.212	
S	-	2,3	3.70				2125	647	0.304			2125	451	0.212	
Castle Peak Road - Lam Tei SB LT+S	+	2,3 1,2,3	3.70	10.0		44	2125	648	0.305	0.305		2125	451	0.212	
Castle Peak Road - Latti Tel SB LT+3	+	1,2,3	3.70	10.0		11	1953	767	0.393		26	1910	469	0.245	
F	+	4	3.50	20.0		100	2125	834	0.392	0.052	100	2125	521	0.245	0.042
	T I1	4	4.00	10.0		100	1958 1752	102 20	0.052 0.011	0.052	100	1958 1752	83 14	0.042	0.042
	т Ј1	5	3.70	15.0		100	1805	280	0.011	0.155	100	1805	246	0.136	0.136
LT+F	T J2	5	3.70	15.0		100	1932	300	0.155	0.100	100	1932	264	0.137	0.100
Road P1 LT+F	т К1	5	3.80	12.0		100	1773	185	0.104		100	1773	199	0.112	
F	T K2	5	3.80	15.0		100	1941	203	0.105		100	1941	218	0.112	
nodestrian phase	1	245		min o	rossina	tima	-		CM	11	222	CM	16	200	
pedestrian phase	L _(P)	3,4,5			rossing		5 5		GM +	11 15		GM = GM =	16 20	sec	
	N _(P)	3,4			rossing		5		GM +	16		GM =	21	sec	
	O _(P)	5			rossing		5		GM +	14		GM =	19	sec	
	P _(P)	4			rossing		5		GM +	18		GM =	23	sec	
	Q _(P)	3			rossing		11		GM +	11		GM =	22	sec	
	R _(P)	1,2,4,5			rossing		5	sec	GM +	13	sec F	GM =	18	sec	
AM Traffic Flow (pcu/hr)	N	PM Traffic	Flow (pcu/hr)			N						Note:		
138 286// 102	Ï			156	334	// 83	Ï		+ 100 (W-3.25)		= 2080 + 10	. ,			
460				L,				SIVI = 5 / (1 + 1.5 f/r) AM P		(S - 230) / (Peak	l		
869 150		1725		179					1+2,3+4+5	еак	1+2,3+4+5	Реак			
252 709		184		1593				Sum y	0.643	t	0.648		1		
1	12					83		L (s)	21		21		1		
1591 Ž	=		•	1200		975		C (s)	120		120		1		
1816 	0	-	L *	1200		15		practical y	0.743		0.743				
433 147 20		316	194		14			R.C. (%)	16%		15%				
1 R _(P) A1 R _(P) 2	R _(P)		R _(P) ↓	3		L _(P)	Q _(P)	4	R _(P) ← -	_ →	R _(P)	5	R _(P)	L _(P)	K1 K2 R _{(P}
B1 →	D1 -			B1 →			-		+					*	44
B2 — B3 —	E1			B2 → B3 →	E1				↓ M _(P)						
C1¥	" 	- F3 - F2	← 62		" 	F3	← G2	Pos	N _(P)		_ н1		N _(P)	Om	
4 G1	*₩	- F1	← G1		₹	F1	1 G1 G1	← −)	• •	1		11	. •	← −)	•
				l						l1		J1 J2			
AM G = I/G = 8	G =		I/G =	7	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G = I/G =	G =		I/G =	7	G =		I/G =		G =		I/G =	-	G =		I/G =
PM G = I/G = 8	G =		I/G =	1	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G = I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =

CKM Asia Limited J12

Scenario:	Hong Po Road																J7265
-	Without Devel	opment												-	Job Nu		46
Design Year:	2033	Designe	ed By:					Checke	d By:					Date:	03	3 Oct 20	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Hong Po Road WB	3	SA+LT	A1	1	3.75	10.0	Gradient	11	(pcu/hr) 1958	(pcu/hr) 336	0.172		4	(pcu/hr) 1978	(pcu/hr) 401	0.203	
-		SA	A2	1	3.75	10.0			2130	365	0.171		•	2130	432	0.203	0.203
Access Road NB		LT+RT	D4		0.50	45.0		400	4700		0.000		400	4700		0.004	
Access Road ND		2111(1	B1	2	3.50	15.0		100	1786	35	0.020		100	1786	8	0.004	
Hong Po Road EB		LT	C1	1	3.65	25.0		100	1868	23	0.012		100	1868	35	0.019	
		SA	C2	1	3.65				2120	515	0.243	0.243		2120	314	0.148	
		SA	C3	1	3.65				2120	515	0.243			2120	313	0.148	
San Hing Road SB	.	LT	D1	3	3.65	10.0		100	1722	77	0.045	0.045	100	1722	37	0.021	0.021
		LT+RT	D2	3	3.65	15.0		100	1800	81	0.045	0.0.0	100	1800	39	0.022	0.02
pedestrian phase	e		E _(P)	4		min c	rossing	time =	8	sec	GM+	7	sec F	GM =	15	sec	
			F _(P)	4		min c	rossing	time =	7	sec	GM+	6	sec F	GM =	13	sec	
			G _(P)	4		min c	rossing	time =	8	sec	GM+	7	sec F	GM =	15	sec	
			H _(P)	4			rossing t		11		GM +	9		GM =	20	sec	
			I _(P)	2,3,4		min c	rossing	ime =	5	sec	GM +	9	sec F	FGM =	14	sec	
AM Traffic Flow (pcu/hr)			N	PM Traffic F	low (pcu/hr)				N	S = 1940 -	+ 100 (W-3.	25) S =	2080 + 10	0 (W-3.25)	Note:		
	ı						ı				1 + 1.5 f/r)			(1 + 1.5 f/r)			
↑ ²³	64	▶ 94			1 35		←	49			AM	Peak	PM	Peak			
_ → ·	1030				─	627					1+3		1+3				
	66	6 🛨 📉					815	—		Sum y	0.288		0.224				
5 -	← 30	35			2	←	6	18		L (s)	41 120		41 120				
	ı	33				ı		10		practical y	0.593		0.593				
										R.C. (%)	106%		164%				
1		2				3				4	I _(P)			5			
C1								D1 D2			`* +	H _(P) →					
C2 C3							+	L,			E _(P)	G _(P)					
	A2 A2									;	←	- -	,				
	•		B1								· (r)						
AM G =	I/G :	<u> </u>	G =	5	I/G =	5	G =		I/G =	10	G =	15	I/G =	3	G =		
G =	l/G :		G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =	I/G :	= 5	G =	5	I/G =	5	G =		I/G =	10	G =	15	I/G =	3	G =		
G =	I/G :	-	G =		I/G =		G =		I/G =		G =		I/G =		G =		

							31100101170										
Junction:	Hong Po Ro	oad / San Hir	ng Road	i										-	Job Nu	mber:	J7265
Scenario: Design Year:	With Appro-	ved Scheme Designe						Checke	d By:				-	Date:	03	P. 3 Oct 20	47 24
		1								AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Hong Po Road V	VB	SA+LT	A1	1	3.75	10.0		11	1958	336	0.172		4	1978	401	0.203	
		SA	A2	1	3.75				2130	365	0.171			2130	432	0.203	0.203
Access Road NB	3	LT+RT	B1	2	3.50	15.0		100	1786	35	0.020		100	1786	8	0.004	
Hong Po Road E	:R	LT				0.5.0			4000				400				
riong r o rodu L		SA	C1 C2	1	3.65	25.0		100	1868	23	0.012	0.242	100	1868 2120	35	0.019	
		SA	C3	1	3.65 3.65				2120 2120	515 515	0.243	0.243		2120	314 313	0.148	
					0.00				LILO	010	0.2 10			2120	010	0.140	
San Hing Road S	SB	LT	D1	3	3.65	10.0		100	1722	77	0.045	0.045	100	1722	37	0.021	0.021
		LT+RT	D2	3	3.65	15.0		100	1800	81	0.045		100	1800	39	0.022	
pedestrian pha	200		E _(P)	4		min c	rossing	time =	8	202	GM +	7	soc F	GM =	15	sec	
pedestrian pria	330		F _(P)	4			rossing		7		GM +	6		GM =	13	sec	
			G _(P)	4			rossing		8		GM +	7		GM =	15	sec	
			H _(P)	4			rossing		11		GM+	9		GM =	20	sec	
			I _(P)	2,3,4			rossing		5		GM +	9		GM =	14	sec	
AM Traffic Flow (pcu/h	ir)		N	PM Traffic I	low (pcu/hr)				N	C 1010	+ 100 (W-3.	25) 6	2000 - 10	0 (M 2 25)	Note:		
											1 + 1.5 f/r)		(S - 230) / (
<u> </u>	3 64 ←	→ 94			_▲ 35	27	़	49		OW = O7 (Peak		Peak			
	1030				—	627					1+3	Cuit	1+3	Cuit			
										Sum y	0.288		0.224				
		666 🕶					815	•		L (s)	41		41				
:	5 - 30	↓ 35			2	\leftarrow	6	♦ 18		C (s)	120		120				
	ı					1				practical y	0.593		0.593				
										R.C. (%)	106%		164%				
1		2				3				4	I _(P)			5			
C1								D1 D2			`* +	H _(P) →					
C2 C3	•							<u>L</u> L		1	E _(P)	G _(P)	•				
	A1 A2		\leftarrow				,				.	- - •	i 				
	ţ		B1								F _(P)						
AM G:	=	I/G = 5	G =	5	I/G =	5	G =		I/G =	10	G =	15	I/G =	3	G =		
G:	=	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G:		I/G = 5	G =	5	I/G =	5	G =		I/G =	10	G =	15	I/G =	3	G =		
G:	=	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

CKM Asia Limited J12_Imp

Junction:	Hong Po Ro	ad / San Hi	ng Roa	d										-	Job Nu	mber:	J7265
Scenario: Design Year:	With Propos							Checke	d By:					Date:	03	P. 3 Oct 20	48 24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Hong Po Road W		SA+LT	A1	1	3.75		Gradient	11	(pcu/hr) 1958	(pcu/hr) 336	0.172		4	(pcu/hr) 1978	(pcu/hr) 401	0.203	
		SA	A2	1	3.75	10.0		- ' '	2130	365	0.172		-	2130	432		0.203
Access Road NB	3	LT+RT	B1	2	3.50	15.0		100	1786	35	0.020		100	1786	8	0.004	
Hong Po Road E	B	LT	C1	1	2.65	25.0		100	1000	07	0.014		100	1000	20	0.020	
	-	SA	C1 C2	1	3.65 3.65	25.0		100	1868 2120	27 515	0.014	0.243	100	1868 2120	38 314	0.020	
		SA	C3	1	3.65				2120	515	0.243	0.2-10		2120	313	0.148	
San Hing Road S	SB	LT LT+RT	D1	3	3.65	10.0		100	1722	82		0.048	100	1722	39	0.023	0.023
		LITIKI	D2	3	3.65	15.0		100	1800	85	0.047		100	1800	40	0.022	
pedestrian pha	ase		E _(P)	4		min c	rossing	time =	8	sec	GM+	7	sec F	GM =	15	sec	
			F _(P)	4		min c	rossing	time =	7	sec	GM+	6	sec F	GM =	13	sec	
			G _(P)	4			rossing		8		GM +	7		GM =	15	sec	
			H _(P)	2,3,4			rossing rossing		11 5		<u>GM +</u> GM +	9		GM = GM =	20 14	sec sec	
			(.,	2,3,4		TIMIT C	ossing	uirie –	<u> </u>	360	GIVI T	3	3601	GIVI =	14	360	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)				N	S = 1940 -	+ 100 (W-3	.25) S =	2080 + 100	0 (W-3.25)	Note:		
	1						1				,	SM = (` '			
↑ 27	7 70	→ 97			↑ 38	29	─	50			AM	Peak	PM I	Peak			
 	1030				- →	627					1+3		1+3				
		666 ←					815			Sum y	0.291		0.225				
	5 - 30	ţ			2	←_→	6	Ţ		L (s)	41		41				
		35						18		C (s)	120 0.593		120 0.593				
										R.C. (%)	104%		163%				
1		2				3				4 .	, I _(P)			5			
C1								D1 D2			(, '(P) ←	H _(P)					
C2 C3	•									1	E _(P)	G _(P)					
	A1 A2		\Box				,				; +	-▶ ₹	,				
	+		B1								F _(P)						
				_		_								_			
AM G =		G = 5	G =	5	I/G =	5	G =		I/G =	10		15	I/G =	3	G =		
G = PM G =		G = 5	G = G =	5	I/G =	5	G =		I/G =	10	G = G =	15	I/G =	3	G = G =		
G =		G =	G =	-	I/G =	-	G =		I/G =		G =		I/G =	-	G =		
			-														

TABLE B1 DETAILED PEAK 1 HOUR OCCUPANCY SURVEY RESULT ON THE PUBLIC TRANSPORT NEAR THE PROPOSED DEVELOPMENT

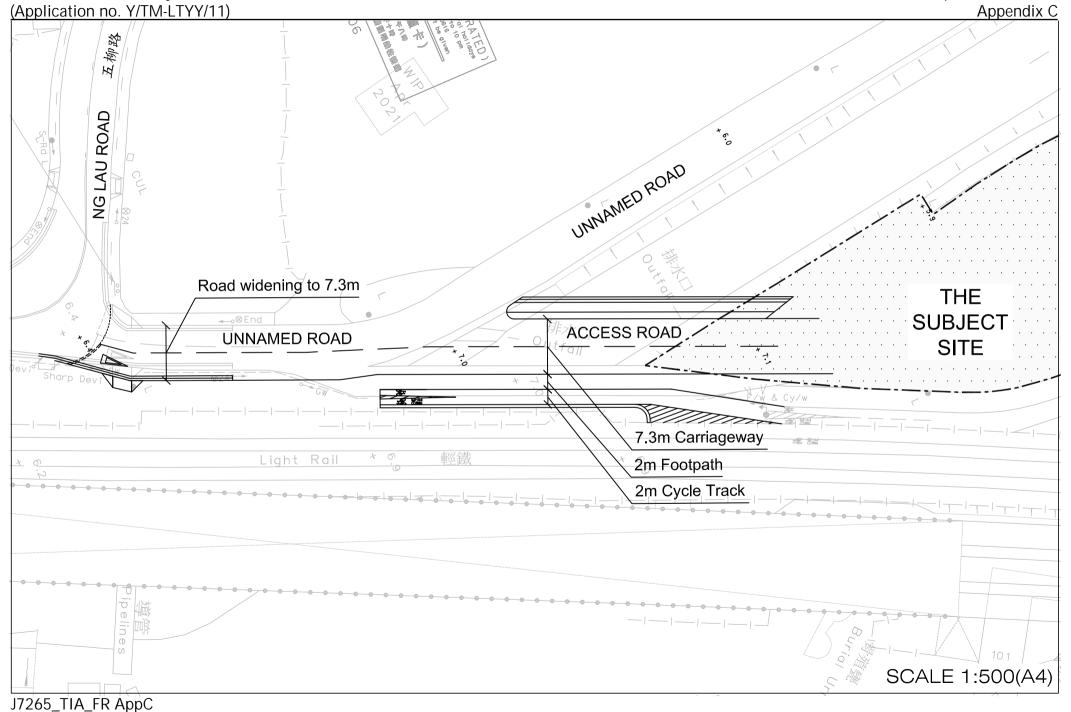
Direction	Routes	Survey		,	ık 1 Hour				ık 1 Hour	
		Location	No. of		assenger	Occu-	No. of		assenger	Occu-
			Trips	Capacity	Occupied		Trips	Capacity	Occupied	
				[a]	[b]	[c]=[b]/[a]		[a]	[b]	[c]=[b]/[a]
To other	CTB 50	LTI - EB	3	360	180	50%	0	-	-	-
districts	CTB 55	LTI - EB	4	480	320	67%	0	-	-	-
	CTB 56	LTI - EB	0	-	-	-	0	-	-	-
	CTB 56A	LTI - EB	3	360	252	70%	0	-	-	-
	CTB 950	LTI - EB	2	240	150	63%	0	-	-	-
	CTB 955	LTI - EB	1	120	60	50%	0	-	-	-
	CTB B3A	LTI - EB	1	120	108	90%	2	240	120	50%
	KMB 53	CPR - SB	2	240	90	38%	1	120	60	50%
	KMB 63X	CPR - SB	5	600	338	56%	4	480	120	25%
	KMB 67M	LTI - EB	8	960	210	22%	3	360	36	10%
	KMB 67X	LTI - EB	7	840	174	21%	1	120	30	25%
	KMB 68A	CPR - SB	3	360	217	60%	3	360	135	38%
	KMB 258A	CPR - SB	2	240	120	50%	0	-	-	-
	KMB 258P	CPR - SB	4	480	120	25%	0	-	-	-
	KMB 261P	CPR - NB	1	120	36	30%	0	-	-	-
	KMB 267X	LTI - EB	2	240	24	10%	0	-	-	-
	KMB 960A	N/A	0	-	-	-	0	-	-	-
	KMB 960C	LTI - WB	1	120	6	5%	0	-	-	-
	KMB 960P	CPR - SB	6	720	412	57%	0	-	-	-
	KMB 960X	CPR - SB	7	840	105	13%	0	-	-	
	LWB A34	CPR - SB	3	360	66	18%	1	120	0	0%
	LWB E33P	LTI - WB	3	360	77	21%	0	-	-	-
	NLB B2	CPR - SB	3	360	158	44%	3	360	225	63%
	GMB 42	LTI - EB	4	76	46	60%	4	76	31	40%
From other		LTI - WB	0	-	-	-	3	360	90	25%
districts	CTB 55	LTI - WB	0	-	-	-	2	240	60	25%
	CTB 56	LTI - WB	0	-	-	-	0	-	-	-
	CTB 56A	LTI - WB	3	360	180	50%	3	360	270	75%
	CTB 950	LTI - WB	0	-	-	-	1	120	54	45%
	CTB 955	LTI - WB	0	-	-	-	1	120	72	60%
	CTB B3A	LTI - WB	1	120	60	50%	2	240	180	75%
	KMB 53	CPR - NB	2	240	90	38%	2	240	180	75%
	KMB 63X	CPR - NB	2	240	90	38%	2	240	180	75%
	KMB 67M	LTI - WB	3	360	27	8%	4	480	150	31%
	KMB 67X KMB 68A	LTI - WB CPR - NB	3	360	50	14%	3	360	90	25%
				240	140	58%	5	600	350	58%
	KMB 258A	N/A CPR - NB	0	-	-	-	0	260	-	250/
	KMB 258P		0	-	-	-	3	360	90	25%
	KMB 261P KMB 267X	CPR - SB	0	-	-	-	0	240	- 60	25%
		LTI - WB	0	-	-	-	2		60	
	KMB 960A	LTI - EB LTI - EB	0	-	-	-	1	120	36	30% 10%
	KMB 960C KMB 960P	CPR - NB	0	-	-	-	2	120 240	60	25%
	KMB 960Y	CPR - NB	0			-	3	360	180	50%
	LWB A34	CPR - NB		-	-	-				10%
			0	-	-	-	3	360	36	10%
	LWB E33P	CPP NR	0	- 480	240	- 50%	3	360	36 135	
	NLB B2 GMB 42	CPR - NB	4	480 76	240 20	50% 26%	3	360 76	135 10	38% 13%
CDD Costlo	Dools Pood 1	LTI om Toi Li	4	70	40	ZU /0	4	70	10	13 /0

CPR – Castle Peak Road –Lam Tei LTI – Lam Tei Interchange

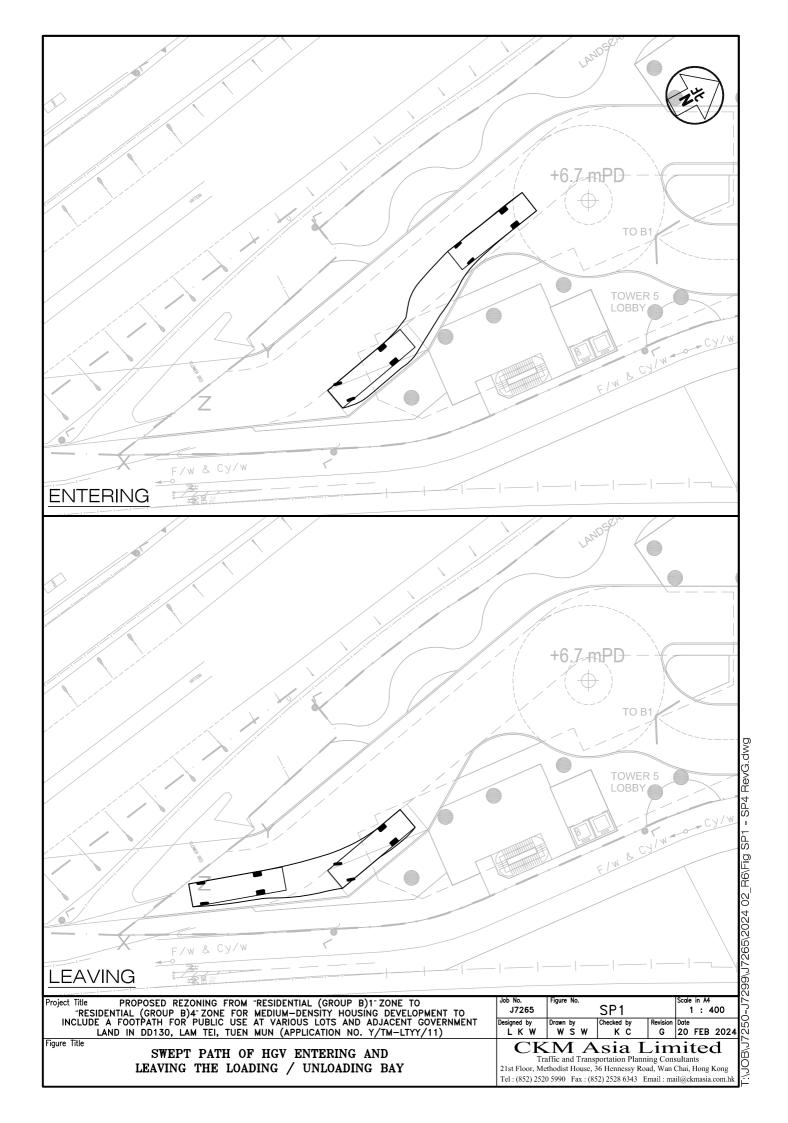
NB – northbound SB – southbound EB – eastbound WB – westbound

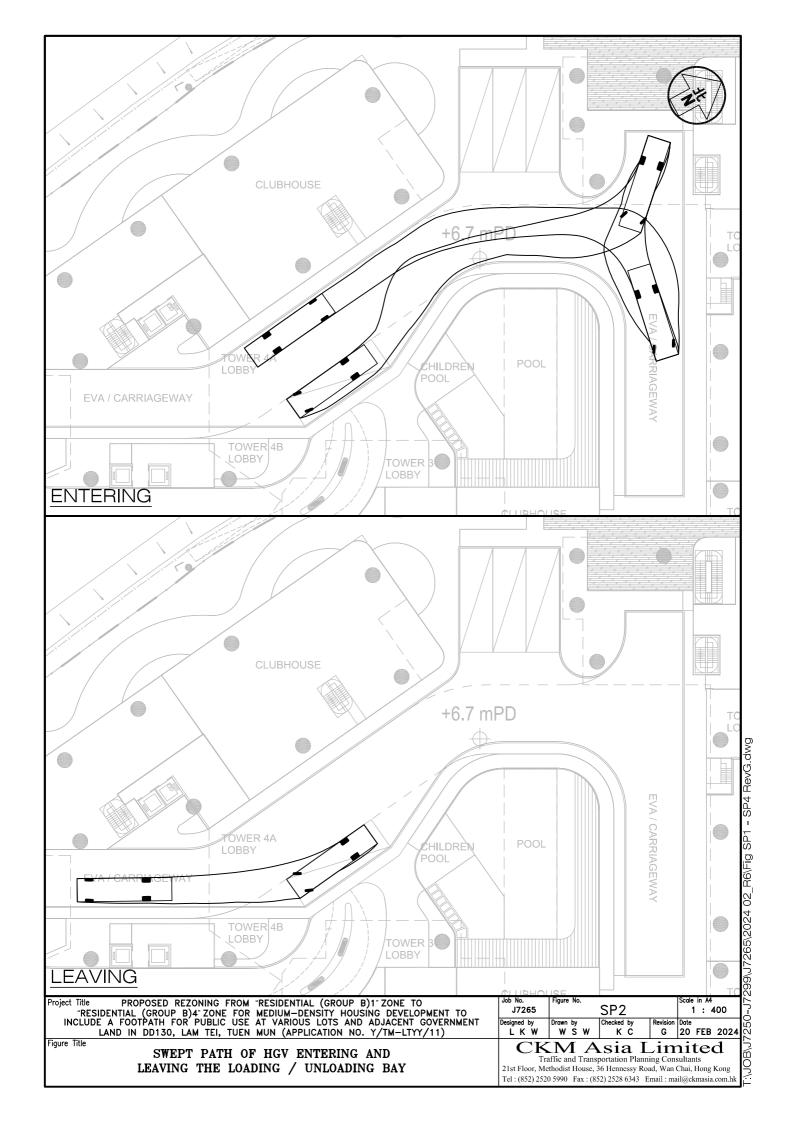
TABLE B2 DETAILED PEAK HALF-HOUR OCCUPANCY SURVEY RESULT ON THE PUBLIC TRANSPORT NEAR THE PROPOSED DEVELOPMENT

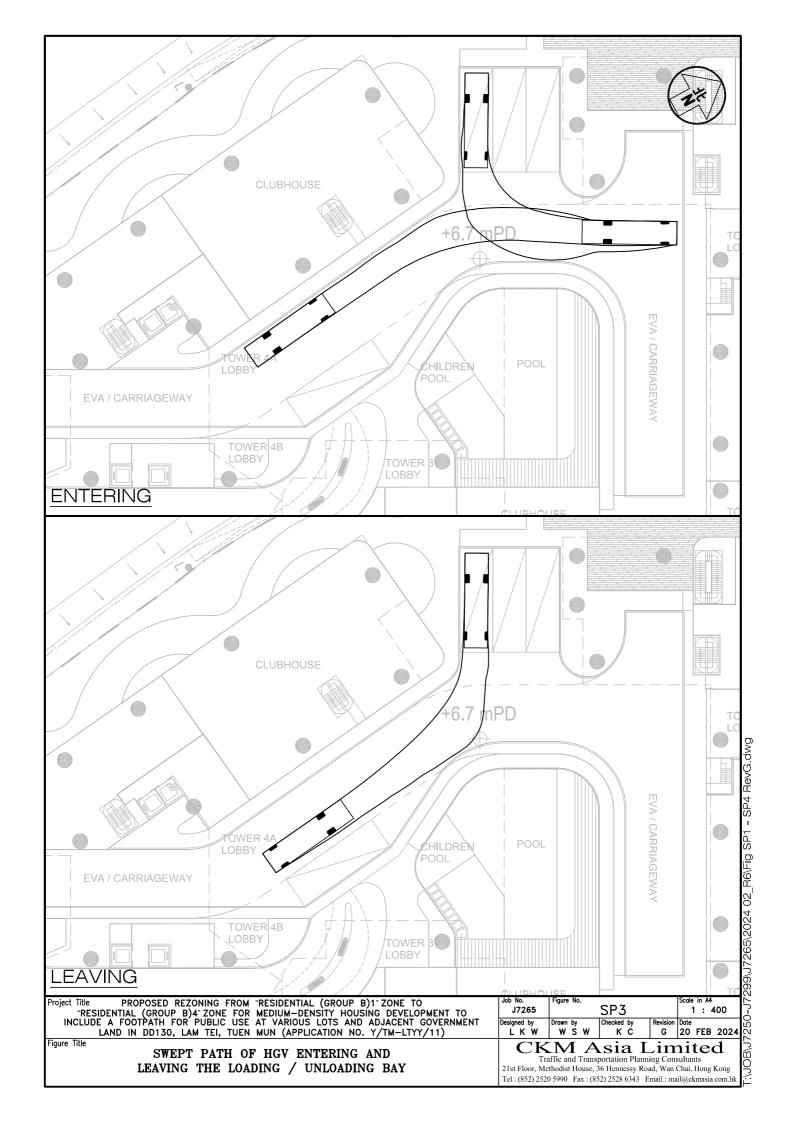
Direction	Routes	Survey		AM Peak	Half-hou	•		PM Peak	Half-hour	
		Location	No. of	No. of P		Occu-	No. of		assenger	Occu-
			Trips		Occupied		Trips	• •	Occupied	
				[a]	[b]	[c] = [b]/[a]		[a]	[b]	[c] = [b]/[a]
To other	CTB 50	LTI - EB	2	240	152	63%	0	0	-	-
districts	CTB 55	LTI - EB	2	240	180	75%	0	0	-	-
	CTB 56	LTI - EB	0	0	-	-	0	0	-	-
	CTB 56A	LTI - EB	2	240	192	80%	0	0	-	-
	CTB 950	LTI - EB	2	240	152	63%	0	0	-	-
	CTB 955	LTI - EB	1	120	60	50%	0	0	-	-
	CTB B3A	LTI - EB	1	120	108	90%	1	120	66	55%
	KMB 53	CPR - SB	1	120	45	38%	1	120	60	50%
	KMB 63X	CPR - SB	3	360	203	56%	2	240	72	30%
	KMB 67M	LTI - EB	4	480	144	30%	2	240	29	12%
	KMB 67X	LTI - EB	4	480	135	28%	1	120	30	25%
	KMB 68A	CPR - SB	2	240	169	70%	2	240	101	42%
	KMB 258A	CPR - SB	1	120	60	50%	0	0	-	-
	KMB 258P	CPR - SB	2	240	60	25%	0	0	-	-
	KMB 261P	CPR - NB	1	120	36	30%	0	0	-	-
	KMB 267X	LTI - EB	2	240	24	10%	0	0	-	-
	KMB 960A	N/A	0	0	-	- 5%	0	0	-	-
	KMB 960C	LTI - WB	1	120	6		0	0	-	-
	KMB 960P	CPR - SB	3	360	206	57%	0	0	-	-
	KMB 960X	CPR - SB	4	480	60	13%	0	0	-	- 00/
	LWB A34 LWB E33P	CPR - SB	2	240	44	18%	1	120	0	0%
	NLB B2	LTI - WB CPR - SB	2	240	63	26%	0	0	168	70%
	GMB 42	LTI - EB		240	105	44% 75%	2	240 38		40%
From other		LTI - EB	0	38	29	73 /0	2		16	28%
districts	CTB 55	LTI - WB	0	0	-	_	1	240 120	68 36	30%
districts	CTB 56	LTI - WB	0	0	-	-	0	0	30	30 /6
	CTB 56A	LTI - WB	2	240	140	58%	2	240	200	83%
	CTB 950	LTI - WB	0	0	-	-	1	120	54	45%
	CTB 955	LTI - WB	0	0		_	1	120	72	60%
	CTB B3A	LTI - WB	1	120	60	50%	1	120	108	90%
	KMB 53	CPR - NB	1	120	60	50%	1	120	90	75%
	KMB 63X	CPR - NB	1	120	54	45%	1	120	96	80%
	KMB 67M	LTI - WB	2	240	24	10%	2	240	87	36%
	KMB 67X	LTI - WB	2	240	33	14%	2	240	68	28%
	KMB 68A	CPR - NB	1	120	78	65%	3	360	234	65%
	KMB 258A	N/A	0	0	-	-	0	0	-	-
	KMB 258P	CPR - NB	0	0	_	_	2	240	72	30%
	KMB 261P	CPR - SB	0	0	_	_	0	0	-	-
	KMB 267X	LTI - WB	0	0	_	_	2	240	60	25%
	KMB 960A	LTI - EB	0	0	_	_	1	120	36	30%
	KMB 960C	LTI - EB	0	0	_	_	1	120	12	10%
	KMB 960P	CPR - NB	0	0	_	_	1	120	30	25%
	KMB 960X	CPR - NB	0	0	_	_	2	240	144	60%
	LWB A34	CPR - NB	0	0	_	_	2	240	29	12%
	LWB E33P	LTI - EB	0	0	_	_	2	240	24	10%
	NLB B2	CPR - NB	2	240	152	63%	2	240	101	42%
	GMB 42	LTI	2	38	15	37%	2	38	7	18%
	UMD 42	EII		50	1.7	J1 10		50	/	10 /0

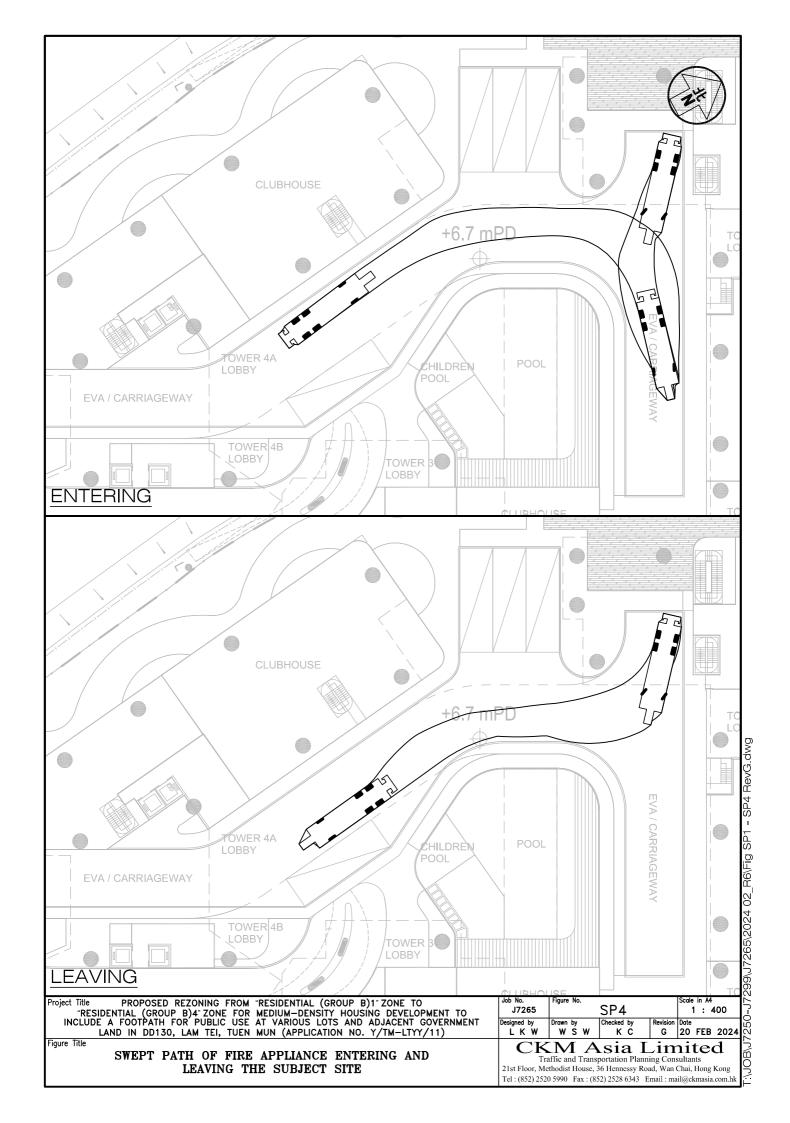

CPR – Castle Peak Road –Lam Tei LTI – Lam Tei Interchange

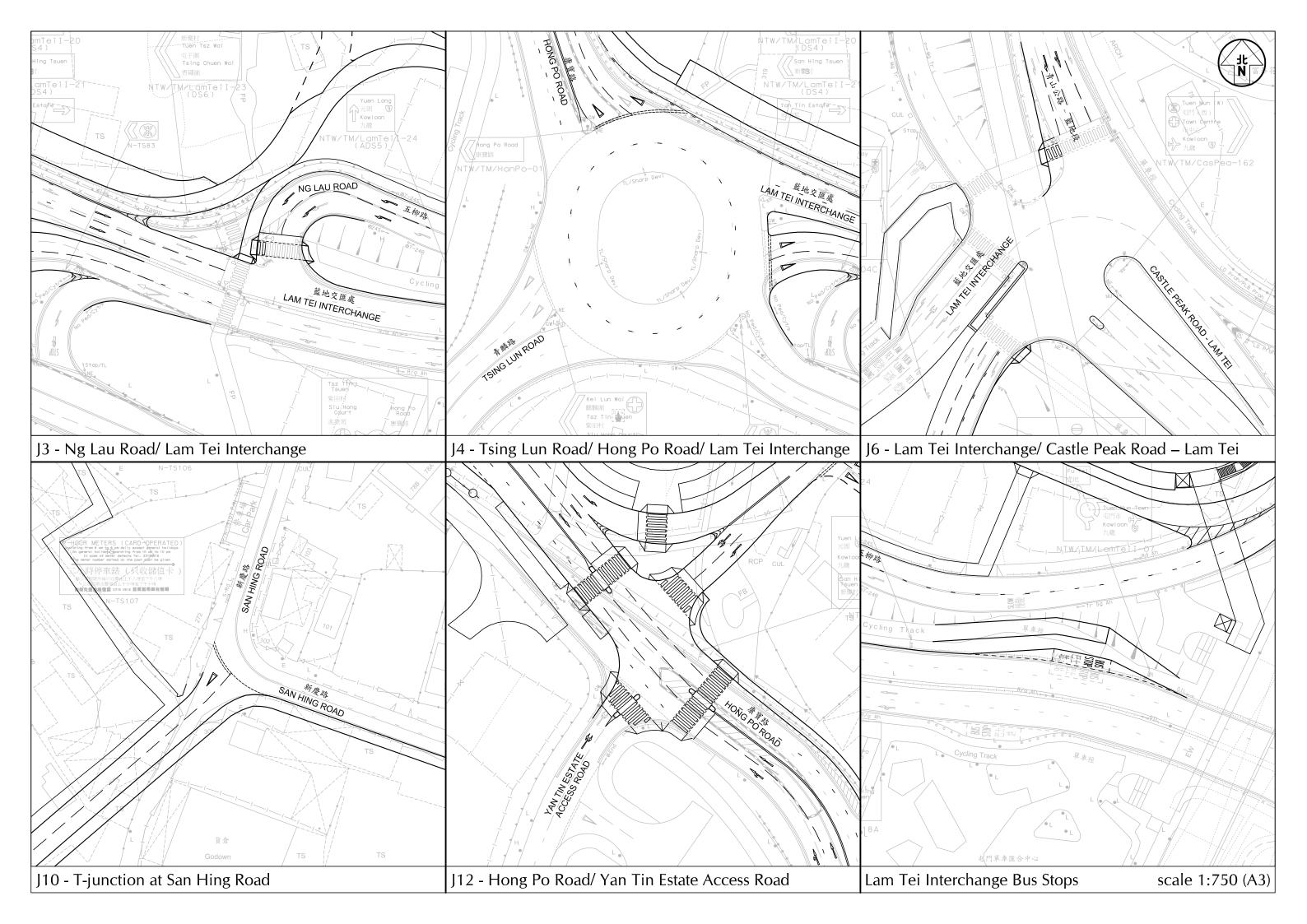

NB – northbound SB – southbound EB – eastbound WB – westbound

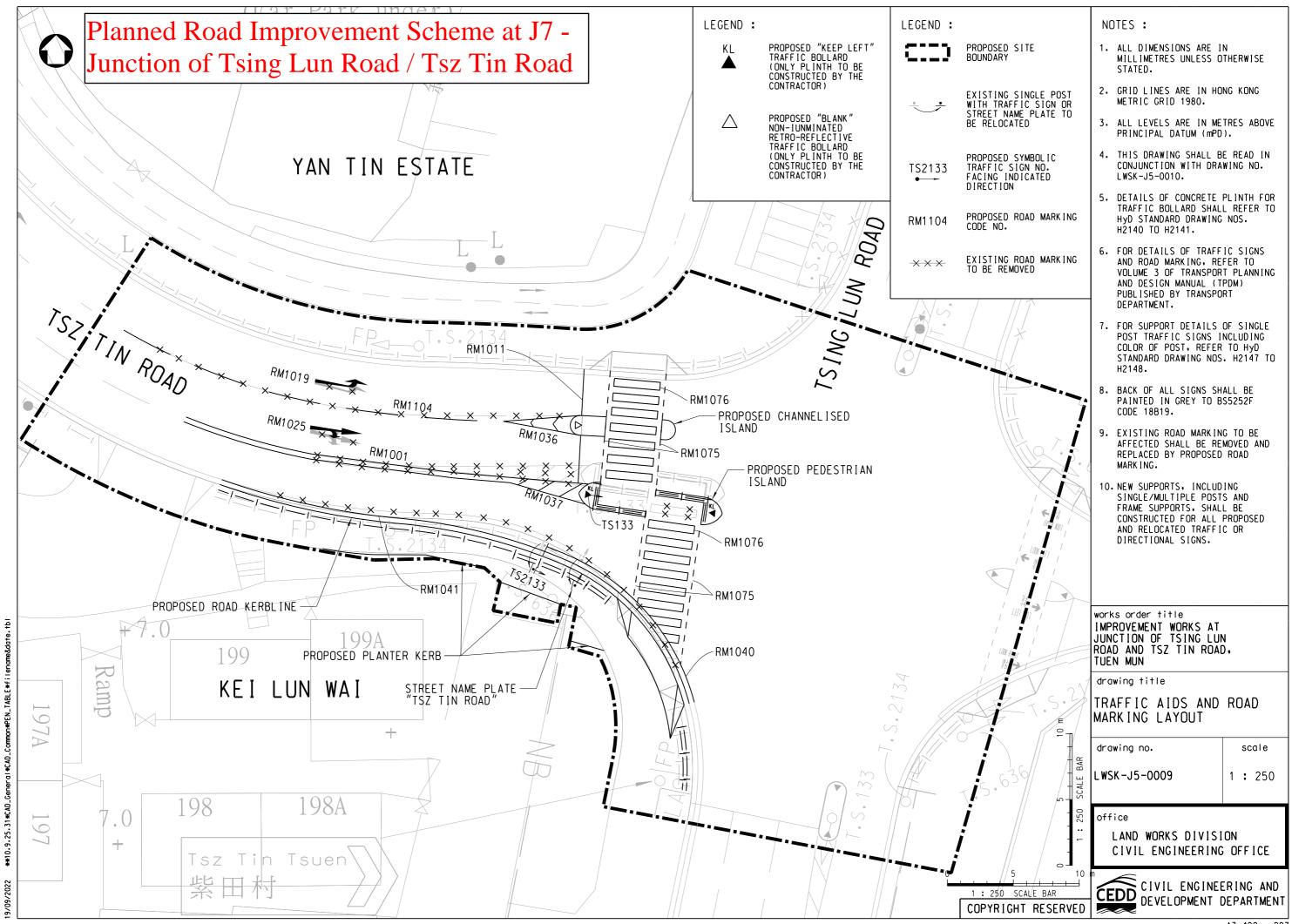


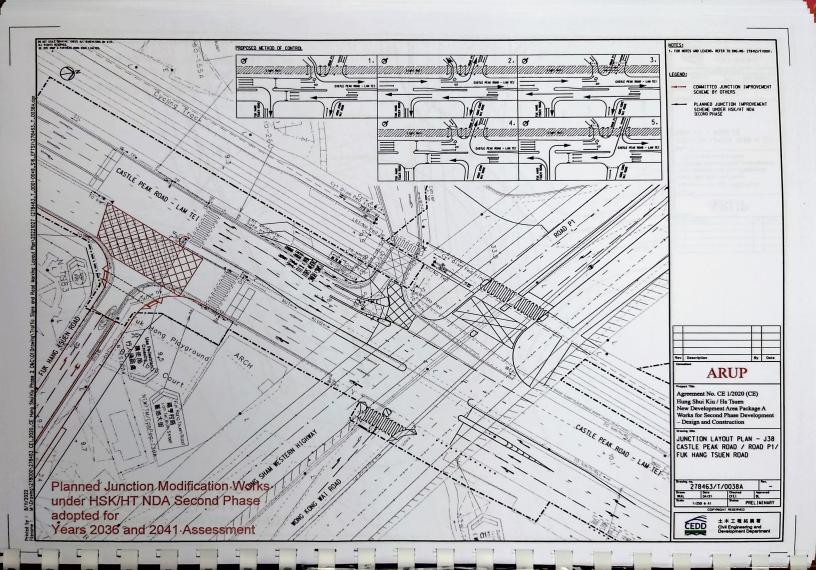

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun


Traffic Impact Assessment









Appendix E – Extract of Planned Road Works under Agreement No. CE 39/2021 (CE) and CV/2019/04 by CEDD

