S12A Application - Responses-to-Comments November 2024

Traffic Impact Assessment

Final Report November 2024

Prepared by: CKM Asia Limited

Prepared for: Wing Mau Tea House Limited

CONTENTS

CHAF	PTER	PAGE
1.0	INTRODUCTION Background Structure of Report	1 1 1
2.0	EXISTING SITUATION The Subject Site The Road Network Existing Traffic Flows Existing Junction Performance Link Operational Performance Public Transport Facilities Survey on Road-based Public Transport Services Located in the Vicinity Existing Footpath Level-Of-Service	2 2 2 3 3 4 5 7
3.0	THE PROPOSED DEVELOPMENT Key Parameters Provision of Internal Transport Facilities Planned Road Works near the Proposed Development Swept Path Analysis	9 9 10 10
4.0	TRAFFIC IMPACT Design Year Traffic Forecasting Modelling and Validation Estimated Traffic Growth Rate from 2031 to 2033 Additional Planned/ Committed Developments near the Subject Site Planned Road Improvement Works Nearby Net Increase in Traffic Generation between the Approved Scheme and the Proposed Development Year 2033 Proposed Additional Bus Trips Year 2033 Traffic Flows Year 2033 Junction Capacity Analysis Year 2033 Link Performance	11 11 11 12 13 14 15 16 16 16 16 17

CONTENTS

PAGE

CHAPTER

5.0	IMPACT TO PUBLIC TRANSPORT SERVICES Transport Mode of the Subject Site Estimated Peak Hour Mechanised Trip Generation of Proposed Development Estimated AM Peak Hour Transport Demand Annual Public Transport Demand Growth Rate between 2024 – 2033 2033 Road-Based Public Transport Occupancies Proposed Additional Bus Trips 2033 Rail-Based Public Transport Occupancies 2033 LRT Service Occupancies Review on Public Transport Facilities Justification on Not Providing Shuttle Bus Service for the Proposed Development	19 19 20 21 24 24 24 24 26 ent 28
6.0	PEDESTRIAN IMPACT 2033 Pedestrian Flow Forecasting Annual Pedestrian Growth Rate between 2024 – 2033 Peak Hour Pedestrian Generated by Planned / Committed Developments in th Vicinity Adopted Pedestrian Generation Rate Peak hour Pedestrian Generation of the Proposed Development	29 29 29 e 29 29 29
	Year 2033 LOS Analysis	30 30
7.0	SUMMARY	31
Apper Apper Apper	ndix A – Junction Capacity Analysis ndix B – Public Transport Survey Result ndix C – Planned Road Works to be implemented by the Owner ndix D – Swept Path Analysis ndix E – Extract of Planned Road Works under Agreement No. CE 39/2021 (CE and CV/2019/04 by CEDD)
Apper	ndix F – Extract of Planned Road Works under Agreement No. CE 01/2020 (CE by CEDD)

TABLES

NUMBER

- 2.1 Surveyed Junctions and Road Links
- 2.2 Existing Junction Performance
- 2.3 Existing Link Capacity Assessment
- 2.4 Road-Based Public Transport Services Operating close to the Subject Site
- 2.5 Occupancy of Existing Road-Based Public Transport Services Operating near the Subject Site
- 2.6 Operational Performance of MTR Tuen Ma Line
- 2.7 Operational Performance of LRT Services at Lam Tei Stop
- 2.8 Description of Pedestrian Footpath LOS
- 2.9 Existing LOS Assessment
- 3.1 Key Parameters
- 3.2 Provision of Internal Transport Facilities for Proposed Development
- 4.1 Validation Criteria
- 4.2 AADT of the Core Stations in the vicinity of the Subject Site
- 4.3 Hong Kong Population Projections from Census and Statistics Department
- 4.4 The Additional Planned / Committed Developments near the Subject Site
- 4.5 Planned Road Improvement Works
- 4.6 Adopted Trip Rates and Traffic Generation for Proposed Development
- 4.7 Adopted Traffic Generation for Approved Scheme
- 4.8 Net Increase in Traffic Generation (PCU per Hour)
- 4.9 Net Increase on Traffic Generation (Vehicle per Hour)
- 4.10 Year 2033 Junction Performance
- 4.11 Year 2033 Link Capacity Assessment
- 5.1 Modified Transport Mode for the Proposed Development
- 5.2 Estimated Peak Hour Mechanised Trip Generation of the Proposed Development
- 5.3 Estimated Peak Hour Transport Demand
- 5.4 Estimated Road-Based Public Transport Demand
- 5.5 Estimated Rail-Based Public Transport Demand
- 5.6 Tuen Mun New Town Population Projections
- 5.7 Hong Kong Population Projections from Census and Statistics Department
- 5.8 Comparison on Destination of Bus Routes between Bus Stop at CPR and LTI
- 5.9 The Passenger Demand and Estimated Passenger Demand for the Proposed Development of Each Bus Route at CPR Bus Stops
- 5.10 Year 2033 Performances of Road-Based Public Transport Services at CPR Bus Stops
- 5.11 Year 2033 Performance of LRT Services at Lam Tei Stop

TABLES (CONT'D)

- 5.12 Additional Queuing / Waiting Demand Related to the Proposed Development
- 5.13 Utilisations of Passenger Waiting / Queuing Area at Bus Stops and LRT Platforms
- 5.14 Assessment on Length of the Laybys for Bus Stops
- 6.1 Pedestrian Generation and Pedestrian Generation Rates
- 6.2 Pedestrian Generation of Proposed Development
- 6.3 Year 2033 LOS Assessment

FIGURES

NUMBER

- 1.1 Location of the Subject Site
- 2.1 Location of Surveyed Junctions
- 2.2 Layout of Junction of Unnamed Road/ Access Road
- 2.3 Layout of Junction of Ng Lau Road/ Unnamed Road
- 2.4 Layout of Junction of Ng Lau Road/ Lam Tei Interchange
- 2.5 Layout of Junction of Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange
- 2.6 Layout of Lam Tei Interchange
- 2.7 Layout of Junction of Lam Tei Interchange/ Castle Peak Road Lam Tei
- 2.8 Layout of Junction of Tsing Lun Road/ Tsz Tin Road
- 2.9 Layout of Junction of San Hing Road/ Ng Lau Road (Southern)
- 2.10 Layout of Junction of San Hing Road/ Ng Lau Road (Northern)
- 2.11 Layout of San Hing Road T-junction
- 2.12 Layout of Junction of Ng Lau Road / Castle Peak Road Lam Tei
- 2.13 Layout of Junction of Hong Po Road / Yan Tin Estate Access Road
- 2.14 Existing Peak Hour Junction Flows
- 2.15 Existing Peak Hour Link Flows
- 2.16 Road-Based Public Transport Services Operating Close to the Subject Site
- 2.17 Existing Peak Hour Pedestrian Flows
- 3.1 Master Layout Plan
- 4.1 The Major Additional Planned / Committed Developments near the Subject Site
- 4.2 Peak Hour Traffic Generation of Approved Scheme
- 4.3 Peak Hour Traffic Generation of Proposed Development
- 4.4 Year 2033 Proposed Additional Bus Trips
- 4.5 Year 2033 Peak Hour Junction Flows without Proposed Development
- 4.6 Year 2033 Peak Hour Junction Flows with Approved Scheme
- 4.7 Year 2033 Peak Hour Junction Flows with Proposed Development
- 4.8 Year 2033 Peak Hour Link Flows
- 5.1 Additional Bus Trips in Year 2033
- 6.1 Year 2033 Peak Hour Pedestrian Flows

1.0 INTRODUCTION

Background

- 1.1 The subject site is located in D.D.130, Lam Tei, Tuen Mun (the "Subject Site"). At present, the Subject Site is unoccupied, and access to the Subject Site via an existing unnamed road which is connected to Ng Lau Road. The location of the Subject Site is shown in **Figure 1.1**.
- 1.2 A Section 12A planning application for the minor relaxation of the maximum plot ratio restriction to 2.5 for residential use at the Subject Site was approved by the Town Planning Board (TPB ref: Y/TM-LTYY/9) on 24th September 2021 (the "Approved Scheme"). This Section 12A planning application is for minor relaxation of the maximum plot ratio restriction for residential use at the Subject Site from the approved 2.5 to 5.0 (the "Proposed Development").
- 1.3 Against this background, CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Owner to conduct a traffic impact assessment in support of the Proposed Development. This report presents the findings and recommendations of the traffic impact assessment for the Proposed Development.

Structure of Report

1.4 The report is structured as follows:

Chapter One	-	Gives the background of the project;
Chapter Two	-	Describes the existing situation;
Chapter Three	-	Presents the Proposed Development;
Chapter Four	-	Describes the traffic impact analysis; and
Chapter Five	-	Gives the overall conclusion.

2.0 EXISTING SITUATION

The Subject Site

2.1 The Subject Site is bounded by the Light Rail Transit ("LRT") and the Tuen Ma Line to the East, and a nullah to the West. Access to the Subject Site is from the south and is via a bridge over the nullah. The Access Road is connected to Ng Lau Road.

The Road Network

- 2.2 Ng Lau Road is a single carriageway 2-lane 2-way local distributor which connects with the Lam Tei Interchange to the south and Castle Peak Road Lam Tei underneath the Kong Sham Western Highway. It provides access to villages, e.g., San Hing Tsuen, Tuen Tsz Wai, and Tsing Chuen Wai.
- 2.3 Lam Tei Interchange connects Tsing Lun Road, Hong Po Road, Ng Lau Road, Castle Peak Road – Lam Tei, Yuen Long Highway and Tuen Mun Road. It is the main access for traffic accessing the Subject Site and strategic routes.

Existing Traffic Flows

2.4 To quantify the junction and road link flows in the vicinity of the Subject Site, manual classified counts were conducted at 0700 – 0900 and 1700 – 1900 on Tuesday, 18th April 2023, Wednesday, 19th April 2023 and Wednesday, 26th April 2023, and were re-conducted on Wednesday, 8th May 2024 at the junctions and road links listed in **Table 2.1**.

<u>Reference</u>	Junction						
J1:	Unnamed Road/ Access Road						
J2:	Ng Lau Road/ Unnamed Road						
J3:	Ng Lau Road/ Lam Tei Interchange						
J4:	Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange						
J5:	Lam Tei Interchange						
J6:	Lam Tei Interchange/ Castle Peak Road – Lam Tei						
J7:	Tsing Lun Road/ Tsz Tin Road						
J8:	San Hing Road/ Ng Lau Road (Southern)						
J9:	San Hing Road/ Ng Lau Road (Northern)						
J10:	T-junction at San Hing Road						
J11:	Ng Lau Road / Castle Peak Road – Lam Tei						
J12:	Hong Po Road / Yan Tin Estate Access Road						
Reference	<u>Road Link</u>						
L1:	Castle Peak Road – Lam Tei						
L2:	Castle Peak Road – Lingnan						
L3:	Yuen Long Highway						
L4:	Tuen Mun Road						
L5:	San Hing Road						
L6:	Ng Lau Road (north of J9)						
L7:	Ng Lau Road (south of J2)						
L8:	Lam Tei Interchange (between J3 and J5)						
L9:	Tsing Lun Road						

TABLE 2.1SURVEYED JUNCTIONS AND ROAD LINKS

- 2.5 The locations of these junctions, road links and the area of influence (the "AOI") are shown in **Figure 2.1** and the junction layouts are shown in **Figures 2.2 2.13** respectively.
- 2.6 The traffic counts are classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. The AM and PM peak hours identified from the surveys are found to be between 0800 0900 hours and 1700 1800 hours respectively. The existing AM and PM peak hour junction in pcu/hour and road link flows in veh/hr are presented in **Figures 2.14 2.15**.

Existing Junction Performance

2.7 The existing junction performance of the junctions are calculated based on the traffic flows obtained from the survey, and the analysis was undertaken using the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"). The results are summarised in **Table 2.2** and the detailed calculations are found in **Appendix A**.

Ref.	Junction	Type of Junction (Parameter)	AM Peak	PM Peak
J1	Unnamed Road/ Access Road	Priority (DFC)	0.000	0.000
J2	Ng Lau Road/ Unnamed Road	Priority (DFC)	0.033	0.032
J3	Ng Lau Road/ Lam Tei Interchange	Signal (RC)	91%	84%
J4	Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange	RA (DFC)	0.545	0.591
J5	Lam Tei Interchange	RA (DFC)	0.522	0.489
J6	Lam Tei Interchange/ Castle Peak Road – Lam Tei	Signal (RC)	120%	215%
J7	Tsing Lun Road/ Tsz Tin Road	Signal (RC)	58%	92%
J8	San Hing Road/ Ng Lau Road (Southern)	Priority (DFC)	0.061	0.040
J9	San Hing Road/ Ng Lau Road (Northern)	Priority (DFC)	0.227	0.498
J10	T-junction at San Hing Road	Priority (DFC)	0.008	0.002
J11	Ng Lau Road / Castle Peak Road – Lam Tei	Signal (RC)	139%	132%
J12	Hong Po Road / Yan Tin Estate Access Road	Priority (DFC)	0.066	0.011

 TABLE 2.2
 EXISTING JUNCTION PERFORMANCE

Note: RC – reserve capacity; DFC – design flow/capacity ratio, RA – Roundabout

2.8 The above results indicate that the surveyed junctions currently operate with capacities during the AM and PM peak hours.

Link Operational Performance

2.9 The link operational performance of the road links are calculated based on the existing traffic flows obtained from the traffic survey, and the analysis was undertaken using the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"). The results are summarised in **Table 2.3**.

TABL	TABLE 2.3 EXISTING LINK CAPACITY ASSESSMENT									
Ref	Link		-	d Design veh/hr)		Demand h/hr)	V/C	Ratio		
			AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak		
L1	Castle Peak Road –	NB	2,604 ⁽¹⁾	2,604 ⁽¹⁾	766	1,317	0.29	0.51		
	Lam Tei	SB	2,604 ⁽¹⁾	2,604 ⁽¹⁾	1,448	766	0.56	0.29		
L2	Castle Peak Road –	NB	2,800	2,800	417	452	0.15	0.16		
	Lingnan	SB	2,800	2,800	672	472	0.24	0.17		
L3	Yuen Long Highway	NB	4,700	4,700	3,759	3,181	0.80	0.68		
		SB	4,700	4,700	3,642	3,988	0.77	0.85		
L4	Tuen Mun Road	NB	4,700	4,700	4,108	4,219	0.87	0.90		
		SB	4,700	4,700	4,404	3,961	0.94	0.84		
L5	San Hing Road	2-way	800	800	46	31	0.06	0.04		
L6	Ng Lau Road (north of J9)	2-way	744 ⁽¹⁾	800	218	345	0.29	0.43		
L7	Ng Lau Road (south of J2)	2-way	800	800	252	373	0.32	0.47		
L8	Lam Tei Interchange	EB	2,800	2,800	1,055	713	0.38	0.25		
	(between J3 and J5)	WB	2,800	2,800	1,108	1,199	0.40	0.43		
L9	Tsing Lun Road	NB	1,900	1,900	519	409	0.27	0.22		
		SB	1,900	1,900	825	735	0.43	0.39		

TABLE 2.3 EXISTING LINK CAPACITY ASSESSMENT

NB – northbound SB – southbound EB – eastbound WB – westbound

¹⁾ With reference to paragraph 2.4.1.2 and table 2.4.1.2, Chapter 2.4, Volume 2 of TPDM, the design flow is to be reduced when the expected proportion of heavy vehicles exceeds 15%. The table below presents the adjusted design flow based on the proportion of heavy vehicles ("HV%").

Road Type	Design	Adjusted Design Flow (veh/hr)			
	Flow	0-15 HV%	15-20 HV%	20-25 HV%	
	(veh/hr)	0%	7%	10%	
		reduction	reduction	<i>reduction</i>	
Expressway / trunk road (Dual 3 lanes – 11m-wide)	4,700	4,700	4,371	4,230	
Primary Distributor (Dual 3 lanes – 7.3m-wide)	2,800	2,800	2,604	2,520	
District Distributor (Single 4 lanes – 13.5m-wide)	1,900	1,900	1,767	1,710	
Local Roads (Single 2 lanes)	800	800	744	720	

2.10 The above results show that the assessed road links operate with sufficient capacity.

Public Transport Facilities

2.11 The Subject Site is located close to public transport services, including franchised buses and public light buses and these operate within 400 metres or some 8-minutes' walk away. Details of these public transport services are presented in Table 2.4. The location and major pedestrian routes of these public transport services are shown in Figure 2.16.

TABLE 2.4ROAD-BASEDPUBLICTRANSPORTSERVICESOPERATINGCLOSE TO THE SUBJECT SITE

Route	Bus Stop	Destination	Routing	Frequency (min)
CTB 50	LTI	YTM	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Tsim Sha Tsui (Kowloon Station) ^(E)	20 - 30
			Tsim Sha Tsui (Kowloon Station) \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(F)	20 - 35
CTB 55 ⁽¹⁾	LTI	Kln(E)	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Kwun Tong Ferry Pier ^(A)	6 per day
			Kwun Tong Ferry Pier \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(B)	4 per day
CTB 56 ⁽¹⁾	LTI	N	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Sheung Shui (Tin Ping Estate) ^(G)	20 - 30
			Sheung Shui (Tin Ping Estate) \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(G)	20 - 30

TABLE 2.4ROAD-BASEDPUBLICTRANSPORTSERVICESOPERATINGCLOSE TO THE SUBJECT SITE (CONT'D)

Route Bus Destination Stop			Routing				
CTB 56A ⁽¹⁾	LTI	N	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Queen's Hill Fanling (via: Sheung Shui Station) ^(C)	10 - 20			
			Queen's Hill Fanling (via: Sheung Shui Station) \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(C)	15 - 30			
CTB 950 ⁽¹⁾	LTI	HKI	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Exhibition Centre Station ^(A)	2 per day			
			Exhibition Centre Station \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(B)	1 per day			
CTB 955 ⁽¹⁾	LTI	HKI	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Sai Wan Ho ^(A)	1 per day			
			Sai Wan Ho \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(B)	1 per day			
СТВ ВЗА	LTI	BCP	Shan King Estate - Shenzhen Bay Port	30 - 60			
CTB N50 ^(D)	LTI	YTM	Tuen Mun (Ching Tin and Wo Tin) - Tsim Sha Tsui (Kowloon Station)	4 per day			
CTB N969 ^(D)	CPR	HKI	Tin Shui Wai Town Centre - Causeway Bay (Moreton Terrace)	20 - 45			
KMB 53	CPR	NTW	Yoho Mall (Yuen Long) - Tsuen Wan (Nina Tower)	25 - 35			
KMB 63X	CPR	YTM	Hung Shui Kiu (Hung Fuk Estate) - Jordan (West Kowloon Station)	12 - 30			
KMB 67M	LTI	NTW	Tuen Mun (Siu Hong Court) - Kwai Fong Station	5 - 20			
KMB 67X	LTI	Kln(W)	Tuen Mun (Siu Hong Court) - Mong Kok East Station	7 - 25			
KMB 68A	CPR	NTW	Long Ping Estate - Tsing Yi Station	12 - 30			
KMB 258A ⁽¹⁾	CPR	Kln(E)	Hung Shui Kiu (Hung Fuk Estate) \rightarrow Lam Tin Station ^(A)	2 per day			
KMB 258P ⁽²⁾	CPR	Kln(E)	Hung Shui Kiu (Hung Fuk Estate) - Lam Tin Station ^(C)	12 - 30			
KMB 261P				2-3 per day			
			Sheung Shui (Tin Ping) → Tuen Mun (Siu Hong Court) ^{(1)(B)}	1 per day			
KMB 267X ⁽¹⁾	LTI	Kln(E)	Tuen Mun (Siu Hong Court) \rightarrow Lam Tin Station ^(A)				
			Lam Tin Station → Tuen Mun (Siu Hong Court) ^(B)	2 per day			
KMB 960A ⁽¹⁾	CPR	HKI	Central → Hung Shui Kiu (Hung Fuk Estate) ^(B)	1 per day			
KMB 960C ⁽¹⁾	LTI	HKI	Tuen Mun (Fu Tai Estate) → Causeway Bay (Victoria Park) ^(A)	2 per day			
			Causeway Bay (Victoria Park) → Tuen Mun (Fu Tai Estate) ^(B)	1 per day			
KMB 960P	CPR	HKI	Hung Shui Kiu (Hung Yuen Road) → Causeway Bay (Victoria Park) ^(A)	10 - 35			
			Causeway Bay (Victoria Park) → Hung Shui Kiu (Hung Yuen Road) ^{(1)(B)}	3 per day			
KMB 960X ⁽¹⁾	CPR	HKI	Hung Shui Kiu (Hung Yuen Road) \rightarrow Quarry Bay (King's Road) ^(A)	9 per day			
			Quarry Bay (King's Road) \rightarrow Hung Shui Kiu (Hung Yuen Road) ^(B)	10 per day			
KMB N260 ^(D)	CPR	NTW	Tuen Mun Pier Head - Mei Foo	30			
LWB A34	CPR	TCL	Hung Shui Kiu (Hung Yuen Road) - Airport (Ground Transportation Centre)	15 - 60			
LWB E33P	LTI	TCL	Siu Hong Station (South) - Airport (Ground Transportation Centre)	12 - 45			
LWB NA33 ^(D)	LTI	TCL	Tuen Mun (Fu Tai Estate) → Cathay Pacific City	4 per day			
			Cathay Pacific City → Tuen Mun (Fu Tai Estate)	6 per day			
LWB NA37 ^(D)	CPR	TCL	Tin Shui Wai Town Centre → Cathay Pacific City	5 per day			
			Cathay Pacific City → Tin Shui Wai Town Centre	6 per day			
NLB B2	CPR	BCP	Yuen Long MTR Station - Shenzhen Bay Port	20 - 30			
GMB 42	LTI	NTW	Tsing Chuen Wai - Tuen Mun Town Centre	13 – 15			
GMB 606S ^(D)	CPR	YTM	Yuen Long (Fung Cheung Rd) - Tsim Sha Tsui East	6 - 13			
KMB – Kowlo GMB – Green CPR – Castle I	Minibi Peak Ro	us bad – Lam Tei	•	ng Kok			
Kln(E) – Kowle			Kln(W) – Kowloon (West) N – North				
HKI – Hong K		and antau Island	BCP – Boundary Control Point NTW – New Territories West				

TCL-Tung Chung / Lantau Island

Note:

⁽¹⁾ Monday to Friday. (Except public holidays) ⁽²⁾ Monday to Saturday (Except public holidays)

^(A) AM peak only ^(B) PM peak only ^(C) AM and PM peak only ^(D) overnight service

^(E) AM service only ^(F) PM service only ^(G) daytime non-peak service

Survey on Road-based Public Transport Services Located in the Vicinity

Road-based Public Transport

2.12 Survey on road-based public transport services listed in **Table 2.4** was conducted during the AM and PM peak periods on Thursday, 18th January 2024 at the bus stops near the subject site.

2.13 The AM and PM peak hours identified from the surveys are found to be between 0715 – 0815 hours and 1830 – 1930 hours respectively. The survey locations are shown in **Figure 2.16**. The survey results are summarized in **Table 2.5** and the detailed information are shown in **Appendix B**.

TABLE 2.5OCCUPANCY OF EXISTING ROAD-BASED PUBLIC TRANSPORT
SERVICES OPERATING NEAR THE SUBJECT SITE

Direction	AM Peak			PM Peak		
	No. of Pass.		Occupancy	No. of Pass.		Occupancy
	Cap. [a]	Occ. [b]	[c]=[b]/[a]	Cap. [d]	Occ. [e]	[f]=[e]/[d]
Outward bound	8,520	3,178	37%	2,160	671	31%
Inward bound	2,400	832	35%	5,880	2,231	38%
Pass Passenger Can	Canacity	$\Omega_{CC} = \Omega_{CC}$	runied			

- Pass. Passenger Cap. Capacity Occ. Occupied
- 2.14 The above results indicate that the surveyed road-based public transport services currently operate with spare capacities during the AM and PM peak hours.

Rail-based Public Transport

2.15 Based on the information obtained from the Legislative Council, the operational performance for MTR Tuen Ma Line in 2023 is summarized in **Table 2.6**.

TABLE 2.6 OPERATIONAL PERFORMANCE OF MTR TUEN MA LINE

Item	Parameters
Maximum carrying capacity when train frequency is maximized [a]	70,000 passengers / hour ⁽¹⁾
Existing carrying capacity [b]	58,800 passengers / hour ⁽¹⁾⁽²⁾
Current Patronage [c]	35,700 passengers / hour
Current Loading [c]/[b] {Critical Link}	61% {Tsuen Wan West to Mei Foo}
Loading compared with maximum carrying	51%
capacity [c]/[a]	

Source: Reply Serial No. TLB162 for Question Serial No. 2402, Controlling Officer's Reply, Examination of Estimates of Expenditure 2024-25. Finance Committee. Legislative Council. 18 April 2024.

<https://www.tlb.gov.hk/eng/legislative/transport/special/land/TLB-2-e1.pdf>

⁽¹⁾ Carrying capacities are calculated under 6 ppsm

- ⁽²⁾ According to the reply, existing train frequency has not yet increased to the maximum level as permitted by the signalling system.
- 2.16 **Table 2.6** shows that the MTR Tuen Ma Line operates at 61% of its current capacity, or 51% of its maximum carrying capacity during the peak hour.

Light Rail Transit (LRT) Transport

2.17 Survey on LRT transport services at Lam Tei LRT stops was conducted during the AM and PM peak periods on Thursday, 18th January 2024. The AM and PM peak hours identified from the surveys are found to be between 0715 – 0815 hours and 1830 – 1930 hours respectively. The survey results are summarized in **Table 2.7**.

TABLE 2.7 OPERATIONAL PERFORMANCE OF LRT SERVICES AT LAM TEI STOP

Direction		No. of. Trip	s.	No. of F	Occupancy			
	Single Coupled-set Total Capacity ⁽¹⁾ [a] Occupied [b]		Occupied [b]	[c]=[b]/[a]				
AM Peak Hour								
Yuen Long bound	13	10	23	6,600	3,290	50%		
Tuen Mun bound	12	12	24	7,200	5,796	81%		
PM Peak Hour								
Yuen Long bound	14	7	21	5,600	4,236	76%		
Tuen Mun bound	12	10	22	6,400	3,092	48%		

¹⁾ Assumed capacity of 200 passengers per trip for single Light Rail Vehicle (LRV) and 400 passengers per trip for coupled-set LRV

2.18 **Table 2.7** shows that the surveyed LRT services at Lam Tei Stop currently operate with spare capacities during the AM and PM peak hours.

Existing Footpath Level-Of-Service

- 2.19 To quantify the existing pedestrian flows, pedestrian counts were conducted during the AM and PM peak periods on Thursday, 18th January 2024 at footpaths located in the vicinity of Proposed Development, and the observed peak hour pedestrian flows are shown in **Figure 2.17**.
- 2.20 The Level-Of-Service ("LOS") of a pedestrian footpath depends on its width and number of pedestrians using the facility. Description of the LOS at walkway is obtained from Volume 6 of the TPDM and is presented in **Table 2.8**.

LOS	Flow Rate (ped/min/m)	Description
A	≤ 16	Pedestrians basically move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely selected, and conflicts between pedestrians are unlikely.
В	16 – 23	Sufficient space is provided for pedestrians to freely select their walking speeds, to bypass other pedestrians and to avoid crossing conflicts with others. At this level, pedestrians begin to be aware of other pedestrians and to respond to their presence in the selection of walking paths.
С	23 - 33	Sufficient space is available to select normal walking speeds and to bypass other pedestrians primarily in unidirectional stream. Where reverse direction or crossing movement exist, minor conflicts will occur, and speed and volume will be somewhat lower.
D	33 - 49	Freedom to select individual walking speeds and bypass other pedestrians is restricted. Where crossing or reverse-flow movements exist, the probability of conflicts is high and its avoidance requires changes of speeds and position. The LOS provides reasonable fluid flow; however considerable friction and interactions between pedestrians are likely to occur.
E	49 – 75	Virtually, all pedestrians would have their normal walking speeds restricted. At the lower range of this LOS, forward movement is possible only by shuffling. Space is insufficient to pass over slower pedestrians. Cross- and reverse-movement are possible only with extreme difficulties. Design volumes approach the limit of walking capacity with resulting stoppages and interruptions to flow.
F	> 75	Walking speeds are severely restricted. Forward progress is made only by shuffling. There are frequent and unavoidable conflicts with other pedestrians. Cross- and reverse-movements are virtually impossible. Flow is sporadic and unstable. Space is more characteristics of queued pedestrians than of moving pedestrian streams.

TABLE 2.8DESCRIPTION OF PEDESTRIAN FOOTPATH LOS

Source: Volume 6 Chapter 10 of TPDM

2.21 The observed peak hour pedestrian flows LOS assessment is presented in **Table 2.9**.

	Location	Clear Width ⁽¹⁾ [Effective Width] (m)	Peak Period	Flow (ped/ hour)	Flow rate (ped/min/m)	LOS
P1.	Footpath on the footbridge	2.0[1.0]	AM	150	2.5	А
	connected to Ng Lau Road		PM	99	1.7	А
P2.	Footpath between Lam Tei LRT stop and bus stop at	2.5[1.5]	AM	315	3.5	А
	Castle Peak Road – Lam Tei		PM	210	2.3	А
P3.	Footbridge over Castle Peak	2.5[1.5]	AM	216	2.4	А
	Road – Lam Tei		PM	105	1.2	А
P4.	Southern Footpath of San	1.5[0.5]	AM	45	1.5	А
	Hing Road		PM	30	1.0	А
P5.	Eastern Footpath of Ng Lau	2.0[1.0]	AM	189	3.2	А
	Road		PM	120	2.0	А

TABLE 2.9 EXISTING LOS ASSESSMENT

⁽¹⁾ The width excludes railing and obstructions.

2.22 The above results indicate that the surveyed footpaths currently operate with LOS A during the AM and PM peak. As stated in the TPDM, LOS A to C is considered as an acceptable level of service: "In general, LOS C is desirable for most design at streets with dominant 'living' pedestrian activities".

3.0 THE PROPOSED DEVELOPMENT

Key Parameters

3.1 The Proposed Development key parameters are presented in **Table 3.1**.

TABLE 3.1	KEY PARAMETERS

	Item	Proposed Development
Developm	ent Site Area	About 8,896 m ²
Domestic	Plot Ratio	5.0
Domestic	GFA	44,480 m ²
Flat Mix	Flat Size $\leq 40m^2$	1,110
(GFA)	$40m^2$ < Flat Size \leq 70m ²	275
Total num	ber of Flats	<u>1,385</u>

Provision of Internal Transport Facilities

3.2 The internal transport facilities for the Proposed Development are provided in accordance with the recommendations of the Hong Kong Planning Standards and Guidelines ("HKPSG") and are presented in **Table 3.2**.

TABLE 3.2	PROVISION	OF	INTERNAL	TRANSPORT	FACILITIES	FOR
	PROPOSED E	DEVEL	OPMENT			

Facility	HKPSG Recommendation	Provision
Car	For Residents:	
Parking	Parking Requirement = GPS x R1 x R2 x R3	222 nos . @ 5.0m (L) x
Space	Global Parking Standard (GPS): 1 car parking space per 4 - 7 flats	2.5m (W) x 2.4m (H) = HKPSG maximum
	Demand Adjustment Ratio (R1): 0.5 for flat size \leq 40 m ² GFA 1.2 for flat size 40 - 70 m ²	
	GFA	
	Accessibility Adjustment Ratio(R2): 1.0 outside 500m-radius of rastation	ail
	Development Intensity Adjustment Ratio (R3): 1.0 for Plot Ratio $2.0 - 5.0$	
	For 1,100 flats with flat size less than 40 m ² GFA Minimum: $(1,110 / 7 \times 0.5 \times 1.0 \times 1.0) = 79.3$, say 80 nos. Maximum: $(1,110 / 4 \times 0.5 \times 1.0 \times 1.0) = 138.8$, say 139 nos.	
	For 275 flats with flat size $40 - 70 \text{ m}^2 \text{ GFA}$ Minimum: $(275 / 7 \times 1.2 \times 1.0 \times 1.0) = 47.2$, say 48 nos.Maximum: $(275 / 4 \times 1.2 \times 1.0 \times 1.0) = 82.5$, say 83 nos.	
	$\frac{\text{Total}}{\text{Minimum}} = 80 + 48 = 128 \text{ nos.}$ Maximum = $139 + 83 = 222 \text{ nos.}$	
	For Visitors: Visitor car parking for private residential developments with morthan 75 units per block should be provided at 5 visitor spaces per block in addition to the recommendations, or as determined by the Authority.	r 5.0m(L) x 2.5m(W) x 2.4m(H) + 3 nos. @ 5.0m(L) x 3.5m(W) x
	For 5 blocks: 5 x 5 nos. = 25 nos.	2.4m(H) for person with disabilities) = HKPSG maximum
	Total Car Parking Space: Minimum = 128 + 25 = 153 nos. Maximum = 222 + 25 = 247 nos. Note: For total no. of car parking space in lot = 151 – 250 nos., the Building (planning) regulation 72 require provision of 3 accessible car parking spaces	247 nos. (including 3 accessible car parking spaces)

TABLE 3.2PROVISIONOFINTERNALTRANSPORTFACILITIESFORPROPOSEDDEVELOPMENT (CONT'D)

Facility	HKPSG Recommendation	Provision
Motorcycle	For Residential Uses:	18 nos. @ 2.4m (L) x
Parking	TD Comment: 1 motorcycle parking space shall be	1.0m (W) x Min. 2.4m
Space	provided for every 81 flats	(H)
-		= fulfil TD comment,
	For 1,385 flats:	ОК
	1,385 / 81 = 17.1, say 18 nos.	
Goods	For Residential Uses:	5 nos. @ 11.0m (L) x
Vehicle	Minimum of 1 loading / unloading bay for goods vehicles	3.5m (W) x Min. 4.7m
Loading/	within the site for every 800 flats or part thereof, subject to a	(H)
Unloading	minimum of 1 bay for each housing block or as determined	= HKPSG minimum,
Bay	by the Authority.	ОК
	For 5 blocks, each block less than 800 flats: 5 no.	
Bicycle	For Residential Uses:	277 по. @ 1.8m (L) x
Parking	TD Comment: 1 space per 5 flats with flat size $< 70m^2$.	0.8m (W) x Min. 2.4m
Spaces		(H)
	$= 1,385 \div 5$	= fulfil TD comment,
	= 277 nos.	ОК

3.3 **Table 3.2** shows that the internal transport facilities provided comply with the recommendations of the HKPSG. The master layout plan of the Proposed Development is shown in **Figure 3.1**.

Planned Road Works near the Proposed Development

3.4 The existing access road and unnamed road connecting the Proposed Development with Ng Lau Road is planned to be improved, to provide a 7.3m-wide road carriageway, a 2m-wide footpath and a 2m-wide cycle track (the "Planned Road Works"). The Planned Road Works to be implemented by the Owner as part of the Approved Scheme and is found in **Appendix C**.

Swept Path Analysis

3.5 The CAD-based swept path analysis programme, Autodesk Vehicle Tracking, was used to check the ease of manoeuvring of vehicles within the Proposed Development, and the swept path analysis drawings are found in **Appendix D**. Vehicles are found to have no manoeuvring problems.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Development is expected to be completed in 2030, and the design year adopted for the traffic assessment is, whichever later of the 2: (i) at least 3 years after the planned completion of the development, i.e., 2033, or (ii) 5 years from the date of this application, i.e., 2028. Therefore, Year 2033 is adopted for junction capacity analysis.

Traffic Forecasting

4.2 Year 2033 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to the 2019-based BDTM NTW1 (the "BDTM"); (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the 2 cases, i.e., Approved Scheme and Proposed Development.

Modelling and Validation

- 4.3 The BDTM provides traffic forecasts for the years 2026 and 2031 and these have taken into account the planned developments, changes to the strategic road network, population growth, etc. Therefore, The BDTM is used as the basis to produce the traffic flow for this TIA.
- 4.4 The BDTM is validated, and the validation meets criteria found in the "BDTM Study". Nevertheless, the traffic network and zone in the vicinity of the Proposed Development were further reviewed to ensure the traffic model is up-to-date and the modelled flow can be adopted. The modelling and validation methodology include, but not limited to, the following:
 - The road links and junctions were checked and updated to ensure that any recent change in the existing road network is considered and missing road links or junction does not exist.
 - The schedules of public transport services such as franchised bus and green/ red minibus were also checked to ensure that the updated routings and headway information are adopted.
 - The zone and centroid connectors were reviewed to ensure that the traffic zones generate/ attract traffic at appropriate locations.
 - The traffic flows produced by BDTM at the surveyed junctions were reviewed with reference to the observed traffic flows.
 - The validation methodology is same as that adopted in the BDTM. All count locations were reviewed and checked using the GEH statistic (a modified chi squared test to provide a statistic for both the magnitude of the difference and the percentage difference between modelled and observed flows). The GEH statistic is defined by:

$$\sqrt{rac{(V_2-V_1)^2}{rac{1}{2}(V_2+V_1)}}$$

where V_1 and V_2 are the observed and modelled flows.

4.5 The validation criteria adopted are found in **Table 4.1**.

TABLE 4.1 VALIDATION CRITERIA

Locations	Target
Traffic flows at all count locations	85% return a GEH statistic of 5 or less 100% return a GEH statistic of 10 or less

Estimated Traffic Growth Rate from 2031 to 2033

4.6 Reference is made to the: (i) the Annual Average Daily Traffic ("AADT") of core stations located in the vicinity of the Proposed Development, which is found in the Annual Traffic Census, published by Transport Department, (ii) population and employment data for Tuen Mun from the "2019-based Territorial Population and Employment Data Matrix" (the "TPEDM") prepared by Planning Department, and (iii) the Hong Kong Population Projection published by Census and Statistics Department.

4.7 The information for (i) is presented in **Table 4.2**.

TABLE 4.2	AADT OF THE CORE STATIONS IN THE VICINITY OF THE
	SUBJECT SITE

Station	6213	5647	Overall
Road	Castle Peak Road - Hung Shui Kiu	Tsing Lun Road	-
From	Tin Ha Road	Tsing Chung Koon Road	-
То	Lam Tei Interchange	Lam Tei Interchange	-
2010	31,280	10,770	42,050
2011	30,910	10,050	40,960
2012	31,210	9,990*	41,200
2013	30,520	10,070*	40,590
2014	33,510	9,970*	43,480
2015	31,720	10,390	42,110
2016	33,490	11,490	44,980
2017	34,140	11,310*	45,450
2018	32,740	11,590*	44,330
2019#	33,220	11,500*	44,720
2020#	34,710	12,870	47,580
2021#	34,800	13,870	48,670
2022#	34,500	13450*	47,950
Average Annual Growth (2010-2018)	0.57%	0.92%	0.66%

Note: * Estimated by Growth Factor

[#] Excluded due to the impact of the public events in 2019 and COVID-19 pandemic in 2020 – 2022.

- 4.8 **Table 4.2** shows that the annual average traffic growth of 0.66%.
- 4.9 Item (ii) has no population and employment data beyond year 2031, hence, there is no reference growth rate from 2031 to 2033. In addition, the major population growth near the Proposed Development, i.e., "Development at San Hing Road and Hong Po Road, Tuen Mun", which will be completed in 2030 2033, have been included in the planned / committed developments, hence the traffic growth of the road network of concern is conservative.
- 4.10 The information for (iii) is presented in **Table 4.3**.

TABLE 4.3HONG KONG POPULATION PROJECTIONS FROM CENSUS
AND STATISTICS DEPARTMENT

Year	Population in Hong Kong (thousands)
2031	7,820.2
2033	7,903.6
Average Annual Growth (2031 – 2033)	0.53%

4.11 **Table 4.3** shows that the annual population growth between 2031 – 2033 is 0.53%. To be conservative, the annual growth rate of 1% is adopted for 2031 – 2033.

Additional Planned/ Committed Developments near the Subject Site

4.12 The planned/ committed developments near the Subject Site not included in the BDTM but have been incorporated to produce the future year traffic flows are listed in **Table 4.4** and the locations are presented in **Figure 4.1**.

TABLE 4.4THE ADDITIONAL PLANNED / COMMITTED DEVELOPMENTS
NEAR THE SUBJECT SITE

Ref. No.	Development	Intake Year	Land Use	GFA (m²)	No. of Flat (no.)	Average Flat Size (m²)	No.
Tue	n Mun Area 54 ⁽¹⁾						
А	Site 1 &1A	2022	PRH		4,232		
	Wo Tin Estate		Retail	2,420		-	
			SWF	1,060			
			Kindergarten				1 no.
В	Site 2	2017	PRH		4,688		
	Yan Tin Estate		Retail	4,250			
			SWF	3,600			
С	Site 3 & 4 (East)	2022	PRH		5,183		
	Ching Tin Estate		Retail	3,130			
			SWF	1,810			
			Kindergarten				1 no.
D	Site 3 & 4 (West)	2025	Private Housing		4,600		
	Novo Land		Retail	5,000			
E	Site 4A (East and West) ⁽²⁾	2026	Light Public Housing		5,620	_	
G	Site 4A (South)	2028	PRH		1,475		
			Kindergarten				1 no.
Н	Site 5	2028	SSF		1,020		
			SWF	1,300			
Dev	elopment at San Hi	ng Road	and Hong Po Road, Tu	en Mun ⁽³⁾	*	•	
Ι	San Hing Road	2030	PRH / SSF		9,400		
	Site	-	Primary School				1 nos.
		2033	Kindergarten				2 nos.
			SWF	N/A			
J	San Hing Road	2030	PRH / SSF		1,500		
-	Site Extension	-	Retail	5,000(4)			
		2033	Sport Centre				1 no.
К	Ho Pong Road	2030	PRH / SSF		9,500		
	Site	-	Retail	5,000 ⁽⁴⁾			
		2033	Kindergarten				2 no.
			SWF	N/A			

TABLE 4.4THE ADDITIONAL PLANNED / COMMITTED DEVELOPMENTS
NEAR THE SUBJECT SITE (CONT'D)

Ref. No.	Development	Intake Year	Land Use	GFA (m ²)	No. of Flat (no.)	Average Flat Size (m ²)	No.
Oth	er Planning Applicat	tions Nea	rby ⁽⁵⁾				
L	A/TM-LTYY/ 426	2026	Private Housing		184	31	
Μ	Y/TM-LTYY/ 10		Private Housing		288	40	
Ν	A/TM-LTYY/ 301		NTEH ⁽³⁾		1	195	
0	A/TM-LTYY/ 335		NTEH ⁽³⁾		1	195	
Р	A/TM-LTYY/ 336		NTEH ⁽³⁾		1	195	
Q	A/TM-LTYY/ 370		NTEH ⁽³⁾		1	195	
R	A/TM-LTYY/ 371		NTEH ⁽³⁾		1	195	
S	A/TM-LTYY/ 372		NTEH ⁽³⁾		1	195	

PRH – Public Rental Housing SSF – Subsidised Sale Flats NTEH – New Territories Exempted House SWF – Social Welfare Facilities

- (2) extracted from Legislative Council Panel on Housing discussion paper CB(1)1123/2023(02) on December 2023
- (3) extracted from Tuen Mun District Council discussion paper TMDC 19/2023 on September 2023
- (4) No information on area for retail uses is found in public domain, assumed 5,000 m² GFA of retail
- (5) extracted from Planning Statement of Approved Planning Applications

Planned Road Improvement Works Nearby

4.13 The planned road improvement works at assessed junctions are presented below.

Development at San Hing Road and Hong Po Road

4.14 Some road improvement works are planned under various contracts by CEDD, and these are summarized in **Table 4.5**. The road improvement works are found in **Appendix E**.

TABLE 4.5 PLANNED ROAD IMPROVEMENT WORKS

Ref	Brief Description of the Improvement	Contract
J3	Provide 2 left-turn lanes at Ng Lau Road southbound	CE 39/2021 (CE)
	Provide 1 left-turn lane at Lam Tei Interchange eastbound	CE 39/2021 (CE)
J4	Provide exclusive left-turn lane from Hong Po Road southbound	CE 39/2021 (CE)
	Modify the entry lanes from Lam Tei Interchange westbound	CE 39/2021 (CE)
J6	Provide 2 right-turn lanes and 1 shared lane for right turn and straight ahead at Castle Peak Road – Lam Tei southbound	CE 39/2021 (CE)
J7	Provide a channelized island at Tsz Tin Road eastbound ()	CV/2019/04
J10	Widened to provide 21ane 2-way single carriageway at minor road	CE 39/2021 (CE)
J12	Provide signalised cross junction	CE 39/2021 (CE)
OF a		

CE 39/2021 (CE) - Site Formation and Infrastructure Works for Public Housing Developments at San Hing Road and Hong Po Road, Tuen Mun and Choi Shun Street, Sheung Shui – Investigation, Design and Construction"

4.15 The improvement work described in **Table 4.5** will be completed gradually before 2030 – 2033, i.e., the intake of public housing of San Hing Road site, and San Hing Road site extension and Hong Po Road site (Note: These are items I, J and K in **Table 4.3**). These improvement works are adopted for the Year 2033 junction capacity analysis.

Hung Shiu Kiu New Development Area

4.16 Road improvement work is planned at Ng Lau Road / Castle Peak Road – Lam Tei (J11) under the "Hung Shui Kiu/Ha Tsuen New Development Area Package A Works for Second Phase Development - Design and Construction" (Agreement

⁽¹⁾ extracted from TIA of Approved Planning Applications A/TM/500 and A/TM/583

CV/2019/04 - Site Formation and Infrastructure Works near Tsz Tin Road and Hing Fu Street in Area 54, Tuen Mun

No. CE 01/2020 (CE)) by Civil Engineering and Development Department ("CEDD"). The layout of road improvement at J11 is presented in **Appendix E**.

Net Increase in Traffic Generation between the Approved Scheme and the Proposed Development

4.17 To estimate the traffic generation of the Proposed Development, reference is made to the TPDM. However, the smallest flat size in the TPDM is 60m² GFA, which is substantially larger than the Proposed Development average flat size of only 32m² GFA. Hence, the estimated traffic generation is conservative, i.e., on the high-side. The adopted trip generation rates and the estimated AM and PM peak hour traffic generation are presented in **Table 4.6**.

TABLE 4.6ADOPTEDTRIPRATESANDTRAFFICGENERATIONFORPROPOSEDDEVELOPMENT

Proposed Development	Parameter	AM P	eak	PM Peak		
(1,385 flats with average flat about 32m ² GFA)		Generation	Attraction	Generation	Attraction	
<i>Trip Rates:</i> Residential Use with average 60m ² GFA	pcu/flat/hr	0.0718	0.0425	0.0286	0.0370	
Traffic Generation	pcu/hr	100	59	<u>40</u>	<u>52</u>	
	-	159 (2-way)		92 (2-1	way)	
	veh/hr ⁽¹⁾	<u>94</u>	56	37	<u>49</u>	
		150 (2-	-way)	86 (2-way)		

¹⁾ Converted from pcu/hr to veh/hr based on 90% private car/ taxi and 10% heavy goods vehicles

4.18 The traffic generation of Approved Scheme found in the approved traffic impact assessment is presented in **Table 4.7**.

TABLE 4.7	ADOPTED TRAFFIC GENERATION FOR APPROVED SCHEME

Approved Scheme	Parameter	AM	Peak	РМ	Peak	
		Generation	Attraction	Generation	Attraction	
Traffic Generation	pcu/hr	37	22	<u>18</u>	23	
		59 (2-	59 (2-way)		2-way)	
	veh/hr ⁽¹⁾	35 21		17	22	
		56 (2	-way)	39 (2-way)		

¹⁾ Converted from pcu/hr to veh/hr based on 90% private car/ taxi and 10% heavy goods vehicles

- 4.19 The peak hour traffic generation of Approved Scheme and Proposed Development are shown in **Figures 4.2 4.3** respectively.
- 4.20 The net increase in traffic generation (in pcu/hr and veh/ hr) between the Approved Scheme and the Proposed Development is presented in **Tables 4.8** and 4.9.

TABLE 4.8	NET INCREASE IN TRAFFIC GENERATION (PCU PER HOUR)
-----------	---

Scheme	Traffic Generation (pcu/ hr)							
	AM	Peak	PM Peak					
	Generation	Attraction	Generation	Attraction				
Proposed Development (from Table 4.6) [a]	100	59	40	52				
Approved Scheme (from Table 4.7) [b]	37	22	18	23				
Net Increase [a] – [b]:	+63	+37	+22 +29					
	+ 100 <u>(2-way)</u>		+51 <u>(2-way)</u>					

Scheme	Traffic Generation (veh/ hr)							
	AM	PM	Peak					
	Generation	Attraction	Generation	Attraction				
Proposed Development (from Table 4.6) [a]	94	56	37	49				
Approved Scheme (from Table 4.7) [b]	35	21	17	22				
Net Increase [a] – [b]:	+ 59	+ 35	+20	+ 27				
	+94 <u>(2-way)</u>		+47 <u>(2-way)</u>					

TABLE 4.9NET INCREASE IN TRAFFIC GENERATION (VEHICLE PER HOUR)

4.21 The Proposed Development is expected to generate 100 and 51 additional pcu / hour (2-way) in AM and PM peak respectively, or equivalent to 94 and 47 vehicles / hour (2-way).

Year 2033 Proposed Additional Bus Trips

4.22 It is expected that <u>no more than</u> 4 additional bus trips are required to accommodate the road-based public transport demand of the Proposed Development in Year 2033. The year 2033 proposed additional bus trips are shown in **Figure 4.4**, and details of the additional bus trips are presented in **Paragraph 5.24**.

Year 2033 Traffic Flows

4.23 Year 2033 traffic flows for the following cases are derived:

Year 2033 Without Proposed Development [A]	 Traffic flows derived with reference to 2031 NTW1 BDTM + estimated traffic growth between 2031 and 2033 + estimated traffic generation of the planned / committed developments after 2019

Year 2033 With Approved = [A] + estimated traffic generation for Approved Scheme Scheme [B]

Year 2033 With Proposed = [A] + estimated traffic generation for Proposed Development [C] Development + Additional Bus Trips

4.24 Year 2033 peak hour junction flows and link flows for the above three cases are shown in **Figures 4.5 – 4.8** respectively.

Year 2033 Junction Capacity Analysis

4.25 Year 2033 junction capacity analysis for the three cases are summarised in Table4.10 and detailed calculations are found in the Appendix A.

Ref	Junction	Type of Junction (Parameter)	Prop	Vithout osed opment	2033 Appr Sche		2033 With Proposed Development	
			AM Peak	PM Peak	AM PeakPM Peak		AM Peak	PM Peak
J1	Unnamed Road/ Access Road	Priority (DFC)	0.055	0.049	0.057	0.050	0.059	0.051
J2	Ng Lau Road/ Unnamed Road	Priority (DFC)	0.052	0.046	0.125	0.081	0.250	0.124
J3	Ng Lau Road/ Lam Tei Interchange	Signal (RC)	35%	41%	32%	39%	28%	36%
J4	Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange	RA (DFC)	0.741	0.702	0.748	0.709	0.762	0.719
J5	Lam Tei Interchange	RA (DFC)	0.812	0.706	0.824	0.716	0.847	0.777
J6	Lam Tei Interchange/ Castle Peak Road – Lam Tei	Signal (RC)	20%	46%	20%	45%	19%	44%
J7	Tsing Lun Road/ Tsz Tin Road	Signal (RC)	22%	56%	22%	56%	21%	56%
J8	San Hing Road/ Ng Lau Road (Southern)	Priority (DFC)	0.092	0.055	0.097	0.060	0.107	0.068
J9	San Hing Road/ Ng Lau Road (Northern)	Priority (DFC)	0.200	0.453	0.200	0.453	0.200	0.453
J10	T-junction at San Hing Road	Priority (DFC)	0.058	0.071	0.061	0.074	0.069	0.080
J11	Ng Lau Road / Castle Peak Road – Lam Tei	Signal (RC)	16%	15%	16%	15%	16%	15%
J12	San Hing Road / Hong Po Road	Signal (RC)	32%	80%	32%	80%	30%	76%

TABLE 4.10YEAR 2033 JUNCTION PERFORMANCE

Note: RC – reserve capacity; RA – Roundabout, DFC – design flow/capacity ratio

4.26 **Table 4.10** shows that the Proposed Development has negligible traffic impact to the road junctions analysed.

Year 2033 Link Performance

4.27 The 2033 link performances are assessed and results are shown in **Table 4.11**.

Ref	Link		Adju	isted	Year 2033 Traffic Demand (veh/hr) Year 2033 V/C Rat					atio						
			Desig	n Flow /hr)	Without Proposed		With Approved		With Proposed		Without Proposed		With Approved		With Proposed	
				1		pment		eme		pment						pment
			AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
			Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak
	Castle Peak	NB	2,604(1)	2,604(1)	874	1,450	874	1,450	874	1,450	0.34	0.56	0.34	0.56	0.34	0.56
	Road – Lam Tei	SB		2,604(1)	1,828	1,252	1,828	1,252	1,830	1,254	0.70	0.48	0.70	0.48	0.70	0.48
	Castle Peak	NB	2,800	2,800	538	619	539	620	541	622	0.19	0.22	0.19	0.22	0.19	0.22
	Road – Lingnan	SB	2,800	2,800	863	589	865	590	868	591	0.31	0.21	0.31	0.21	0.31	0.21
	Yuen Long	NB	4,700	4,700	5,023	4,737	5,037	4,744	5,064	4,753	1.07	1.01	1.07	1.01	1.08	1.01
	Highway	SB	4,700	4,700	5,179	5,272	5,188	5,281	5,201	5,292	1.10	1.12	1.10	1.12	1.11	1.13
L4	Tuen Mun Road	NB	4,700	4,700	5,439	5,831	5,447	5,839	5,459	5,847	1.16	1.24	1.16	1.24	1.16	1.24
		SB	4,700	4,700	6,233	5,629	6,246	5,635	6,266	5,642	1.33	1.20	1.33	1.20	1.33	1.20
L5	San Hing Road	2-way	800	800	175	81	183	86	196	92	0.22	0.10	0.23	0.11	0.25	0.12
L6	Ng Lau Road	2-way	744 ⁽¹⁾	800	254	375	254	375	254	375	0.34	0.47	0.34	0.47	0.34	0.47
	(north of J9)															
L7	Ng Lau Road	2-way	800	800	409	442	456	474	535	514	0.51	0.55	0.57	0.59	0.67	0.64
	(south of J2)															
	Lam Tei	EB	2,800	2,800	1,879	1,264	1,908	1,278	1,958	1,295	0.67	0.45	0.68	0.46	0.70	0.46
	Interchange	WB	2,800	2,800	1,894	1,815	1,912	1,833	1,941	1,856	0.68	0.65	0.68	0.65	0.69	0.66
	(between J3&J5)		,	,												
L9	Tsing Lun Road	NB	1,900	1,900	897	669	898	670	900	672	0.47	0.35	0.47	0.35	0.47	0.35
	0	SB	1,900	1,900	1,334	984	1,336	985	1,339	986	0.70	0.52	0.70	0.52	0.70	0.52
	41 1						<u>ر ا</u> ر		/ //D				C	0		

TABLE 4.11YEAR 2033 LINK CAPACITY ASSESSMENT

NB – northbound SB – southbound EB – eastbound WB – westbound

⁽²⁾ With reference to paragraph 2.4.1.2 and table 2.4.1.2, Chapter 2.4, Volume 2 of TPDM, the design flow is to be reduced when the expected proportion of heavy vehicles exceeds 15%. The table below presents the adjusted design flow based on the proportion of heavy vehicles ("HV%").

Road Type	Design	Adjusted Design Flow (veh/hr)				
	Flow	0-15 HV%	15-20 HV%	20-25 HV%		
	(veh/hr)	0% reduction	7% reduction	10% reduction		
Expressway / trunk road (Dual 3 lanes – 11m-wide)	4,700	4,700	4,371	4,230		
Primary Distributor (Dual 3 lanes – 7.3m-wide)	2,800	2,800	2,604	2,520		
District Distributor (Single 4 lanes – 13.5m-wide)	1,900	1,900	1,767	1,710		
Local Roads (Single 2 lanes)	800	800	744	720		

- 4.28 The above results show that the assessed road links operate with sufficient capacity, except for Tuen Mun Road (L4), which operate with V/C ratios at 1.2 or above during the AM and PM peak hours in Year 2033. In view that there are negligible changes on the V/C ratios to L4 for cases without Proposed Development, with Approved Scheme and with Proposed Development, it can be concluded that the traffic generated by the Proposed Development is negligible.
- 4.29 As shown in LC paper no. CB(4)619/20-21(03) of Legislative Council Panel on Transport , the planned Route 11 would reduce v/c in Year 2036 from 1.2 to 1.0 at Tuen Mun Road (Siu Lam Section) in morning peak, which indicates the traffic congestion at Tuen Mun Road will be relieved by planned Route 11.
- 4.30 In addition to the above, other planned strategic road improvements, including, Tuen Mun Bypass and Yuen Long Highway (between Lam Tei and Tong Yan San Tsuen) are planned to be implemented. The traffic condition at L3 and L4 would be further improved by these planned strategic road improvements.
- 4.31 With the planned strategic road improvement works, both Yuen Long Highway (L3) and Tuen Mun Road (L4) are expected to operate with sufficient capacity.

5.0 IMPACT TO PUBLIC TRANSPORT SERVICES

Transport Mode of the Subject Site

- 5.1 The transport mode of the Subject Site is assessed with reference to "Travel Characteristic Survey 2011" ("TCS2011"), but adjusted to reflect the nearby public transport provisions. The public transport provisions near the subject site have the following characteristics:
 - (1) Direct and comprehensive light rail services at Lam Tei LRT stops operating within 50m from the Subject Site, which serve as feeder services to MTR and within Tuen Mun, instead of GMB route 42 at Ng Lau Road.
 - (2) Comprehensive bus services is identified within 400m walking distance.
 - (3) There are no special purpose bus, tram and ferry nearby.
- 5.2 Based on the above public transport characteristics, special purposed bus, tram, ferry, and public light bus found in TCS2011 are converted to rail and bus mode on pro-rata basis. The modified transport mode adopted for the Proposed Development is compared with TCS2011 and is found in **Table 5.1**.

TABLE 5.1	MODIFIED	TRANSPORT	MODE	FOR	THE	PROPOSED
	DEVELOPME	INT				

Transport Mode	TCS 2011	Modified Transport Mode adopted for the Proposed Development
Rail	30%	44%
Bus	27%	38%
Public Light Bus	13%	0%
Private Car	12%	12%
Special Purpose bus	9%	0%
Taxi	6%	6%
Tram	2%	0%
Ferry	1%	0%
Total	100%	100%

5.3 **Table 5.1** shows that 44% and 38% of mechanised trips from the Proposed Development would use MTR and bus respectively. For residents who use MTR, it is assumed that 100% would use the LRT service.

Estimated Peak Hour Mechanised Trip Generation of Proposed Development

5.4 The mechanised trip generation of the Approved Scheme and the Proposed Development is estimated with reference to TCS2011 and is presented in **Table 5.2**.

TABLE 5.2ESTIMATED PEAK HOUR MECHANISED TRIP GENERATION OF
THE PROPOSED DEVELOPMENT

Parameter	Calculation	Unit	Approved Scheme	Proposed Development
No. of Flats	А	flats	307	1,385
Average domestic household size in Tuen Mun ⁽¹⁾	В	persons/ flat	2.6	2.6
Population	C = BxA	persons	799	3,601
Average Daily Mechanised Trips ⁽²⁾	D	trips/ persons/ day	1.83	1.83
AM Peak hour factor of Daily Mechanised Trips ⁽³⁾	E	N/A	12%	12%
Estimated Peak Hour Mechanised Trip Generation	F = CxDxE	persons/ hr	176	791

¹⁾ Extracted from Census and Statistic Department website

⁽²⁾ From Table 3.3, Travel Characteristics Survey 2011 Final Report

⁽³⁾ From Para. 3.3.7, Travel Characteristics Survey 2011 Final Report

Estimated AM Peak Hour Transport Demand

The AM peak hour transport demand of the Proposed Development is estimated 5.5based on the modified transport mode in Table 5.1, and are presented in Table **5.3**.

Transport Mode of Proposed Development		Ratio ⁽¹⁾	Estimated AM Peak Hour Transport Demand of Proposed Development (Passenger/hr)
Public	Rail-based [a]	44%	348
Transport	Road-based [b]	38%	301
	Sub-total $[c] = [a] + [b]$	82%	649
Private Car / Taxi [d]		18%	142
	Total [e]=[c]+[d]	100%	791

ESTIMATED PEAK HOUR TRANSPORT DEMAND TABLE 5.3

⁽¹⁾ From Table 5.1

5.6 Table 5.3 shows that Proposed Development is expected to generate additional public transport demand of 791 passengers per hour (2-way) during AM peak hour.

Road-Based Public Transport Demand Generated

5.7The road-based public transport demand generated by the Proposed Development is summarised in Table 5.4.

ESTIMATED ROAD-BASED PUBLIC TRANSPORT DEMAND TABLE 5.4

Development	Road-based Public Transport Demand (persons / hour)							
	AM	Peak	PM Peak					
	Generation ⁽¹⁾	Attraction ⁽¹⁾	Generation ⁽¹⁾	Attraction ⁽¹⁾				
Proposed Development: 1,385 Flats	214	87	87	148				
	301 (2	2-way)	235 (2-way)					

Proportional to adopted peak hours pedestrian generation and attraction rates in Table 6.2.

Tables 5.4 shows that the Proposed Development is expected to generate road-5.8 based public transport demand of 301 and 235 passengers per hour (2-way) during AM and PM peak hours respectively.

Rail-Based Public Transport Demand Generated

5.9 The rail-based public transport demand generated by the Proposed Development are summarised in Table 5.5.

ESTIMATED RAIL-BASED PUBLIC TRANSPORT DEMAND TABLE 5.5

Development	Rail-based Public Transport Demand (persons / hour)								
	AM	AM Peak PM Peak							
	Generation ⁽¹⁾	Attraction ⁽¹⁾	Generation ⁽¹⁾	Attraction ⁽¹⁾					
Proposed Development: 1,385	247	101	100	172					
Flats	+ 348	(2-way)	+ 272 (2-way)						
(1) Proportional to adopted nedestrian generation and attraction rates in AM and PM neak									

Proportional to adopted pedestrian generation and attraction rates in AM and PM peak

Tables 5.5 shows that the Proposed Development is expected to generate rail-5.10

based public transport demand of 348 and 272 passengers per hour (2-way) during AM and PM peak hours respectively.

Annual Public Transport Demand Growth Rate between 2024 - 2033

5.11 To establish the local public transport demand growth rate from 2024 to 2033, reference is made to several sources of information including:

Between 2024 – 2031: "2019 - based TPEDM" Between 2031 – 2033: "Hong Kong Population Projections" from the Census and Statistics Department

5.12 Relevant information from the 2019-based TPEDM is presented in Table 5.6.

Year	Population [a]	Employment [b]	Overall [c] = [a] + [b]
2019	476,500	130,800	607,300
2031	606,850	150,750	757,600
Average Annual Growth 2019 to 2031	2.0%	1.2%	1.9%

TABLE 5.6 TUEN MUN NEW TOWN POPULATION PROJECTIONS

- 5.13 **Table 5.6** shows that the average annual population growth in the Tuen Mun between 2019 and 2031 is 1.9%.
- 5.14 Relevant information from the *"Hong Kong Population Projections"* is presented in **Table 5.7**.

TABLE 5.7HONG KONG POPULATION PROJECTIONS FROM CENSUS
AND STATISTICS DEPARTMENT

Year	Hong Kong Resident Population ('000)
2031	7,820.2
2033	7,903.6
Average Annual Growth 2031 to 2033	0.53%

- 5.15 **Table 5.7** shows that the average annual population growth in Hong Kong between 2031 2033 is 0.53%.
- 5.16 Based on the above, the annual growth factors adopted are 1.9% from 2024 to 2031, and 1.0% from 2031 to 2033.

2033 Road-Based Public Transport Occupancies

5.17 The destination of bus routes with stops at Castle Peak Road – Lam Tei ("CPR") and the Lam Tei Interchange ("LTI") are presented in Table 5.8.

TABLE 5.8COMPARISON ON DESTINATION OF BUS ROUTES BETWEEN
BUS STOP AT CPR AND LTI

	Walking Distance	No. of Bus Routes at Destination						n	
Bus Stop	(Time)	HKI	NTW	ΥTΜ	Kln(E)	Kln(W)	Ν	TCL	BCP
CPR	100 to 200 (2 - 4 mins)	4	3	2	2	0	1	2	1
LTI	350 to 400 (7 - 8 mins)	3	2	2	2	1	2	2	1
HKI – Hong K	N	NTW – N	ew Terri	tories W	est				

YTM – Yau Ma Tei/Tsim Sha Tsui/Mong Kok Kln(W) – Kowloon (West) BCP – Boundary Control Point NIW – New Territories West Kln(E) – Kowloon (East) N – North TCL–Tung Chung / Lantau Island

- 5.18 **Table 5.8** shows that the bus stop at CPR is located only 2 4 minutes' walk away, and has similar routes as the LTI stop, except for the routes to Kowloon West.
- 5.19 However, it is found that most of the bus routes at CPR are operated by KMB, and residents from the Proposed Development travelling to Kowloon West using these bus routes could change to other bus routes operated by KMB at the Tuen Mun Road interchange, e.g. KMB 59X, 60X and 67X. Therefore, it is concluded that all road-based public transport demand from the Proposed Development would use CPR, and there is negligible usage of LTI, due to its longer walking distance.
- 5.20 To estimate the Proposed Development passenger demand for each bus route at CPR, reference is made to the existing boarding and alighting demand of buses at CPR bus stops. The passenger demand at CPR and the estimated passenger demand for the Proposed Development of each bus route at CPR are presented in **Table 5.9**.

TABLE 5.9THEPROPOSEDDEVELOPMENTPASSENGERDEMANDANDESTIMATEDPASSENGERDEMANDFOREACHBUSROUTEATCPRBUSSTOPS

Bus Route at CPR Bus		tisting Passe (passen	•	nd	Estimated Passenger Demand for the Proposed Development (passenger/hr)					
stops	AM	Peak	PM	Peak	AM	Peak	PM Peak			
	Outward	Inward	Outward	Inward	Outward Inward		Outward	Inward		
	bound (Boarding)	bound (Alighting)	bound (Boarding)	bound (Alighting)	bound (Boarding)	bound (Alighting)	bound (Boarding)	bound (Alighting)		
KMB 53	2	4	1	0	2	4	2	0		
KMB 63X	60	18	16	38	53	14	27	23		
KMB 68A	34	12	18	115	30	10	30	71		
KMB 258A	31	-	-	-	28	0	0	0		
KMB 258P	12	-	-	24	11	0	0	15		
KMB 261P	4	-	-	-	4	0	0	0		
KMB 960A	-	-	-	10	-	-	-	7		
KMB 960P	53	-	-	24	47	0	0	15		
KMB 960X	22	-	-	3	20	0	0	2		
LWB A34	11	-	1	9	10	0	2	6		
NLB B2	9	74	15	14	9	59	26	9		
Total	238	108	51	237	214	87	87	148		

5.21 Based on the Proposed Development estimated passenger demand for each bus route at CPR bus stop in **Table 5.9**, the year 2033 performance of road-based

public transport services is derived as follows:

2033 without Proposed Development [A]	=	2024 Observed Performance of at CPR Bus Stop + adopted public transport demand growth demand growth from 2024 to 2033
2033 with Proposed Development [B]	=	[A] + Estimated Passenger Demand for the Proposed Development of Each Bus Route at CPR Bus Stops (from Table 5.9)

5.22 Year 2033 performance of road-based public transport services at CPR bus stop are presented in **Table 5.10**.

TABLE 5.10 YEAR 2033 PERFORMANCE OF ROAD-BASED PUBLIC TRANSPORT SERVICES AT CPR BUS STOPS

Bus Route	Outward bound					Inward bound				
at CPR	Capacity without Proposed Development		with Proposed Development		Capacity	without Proposed Development		with Proposed Development		
		Occupied	Occ.	Occupied	Occ.		Occupied	Occ.	Occupied	Occ.
KMB 53	240	53	22%	55	M Peak 23%	240	53	22%	57	24%
KMB 63X	600	394	66%	447	75%	240	105	44%	119	50%
KMB 68A	360	253	70%	283	79%	240	163	68%	173	72%
KMB 258A	240	140	58%	168	70%	-	-	-	-	-
KMB 258P	480	140	29%	151	31%	-	-	-	-	-
KMB 261P	120	42	35%	46	38%	_	_	_	_	_
KMB 960A	-	-	-	-	-	_	_	_	_	_
KMB 960P	720	480	67%	527	73%	_	_	_	_	_
KMB 960X	840	123	15%	143	17%	-	_	-	-	-
LWB A34	360	77	21%	87	24%	-	_	-	_	-
NLB B2	360	184	51%	193	54%	480	280	58%	339	71%
Total	4,320	1,886	44%	2,100	49%	1,200	601	50%	688	57%
	1 1	1			M Peak		<u>г</u>			
KMB 53	120	35	29%	37	31%	240	105	44%	105	44%
KMB 63X	480	140	29%	167	35%	240	210	88%	233	<u>97%</u>
KMB 68A	360	158	44%	188	52%	600	408	68%	479	<u>80%</u>
KMB 258A	-	-	-	-	-	-	-	-	-	-
KMB 258P	-	-	-	-	-	360	105	29%	120	33%
KMB 261P	-	-	-	-	-	-	-	-	-	-
KMB 960A	-	-	-	-	-	120	35	29%	42	35%
KMB 960P	-	-	-	-	-	240	70	29%	85	35%
KMB 960X	-	-	-	-	-	360	210	58%	212	59%
LWB A34	120	0	0%	2	2%	360	42	12%	48	13%
NLB B2	360	233	65%	259	72%	360	158	44%	167	46%
Total	1,440	566	39%	653	45%	2,880	1,343	47%	1,491	52%

Note: (1) Occ. – Occupancy

(2) Capacity and occupied are in passenger/hr

5.23 **Table 5.10** shows that the year 2033 road-based public transport services at CPR stop would operate with sufficient capacities during the AM and PM peak hours for the cases without and with Proposed Development, except for (i) KMB 68A outward bound in AM peak and inward bound in PM peak, and (ii) KMB 63X inward bound in PM peak.

Proposed Additional Bus Trips

- 5.24 Based on the findings from **Table 5.10**, additional bus trips are proposed for the bus routes shown in **Figure 5.1**:
 - KMB 68A outward bound in AM peak;
 - KMB 68A inward bound in PM peak; and
 - KMB 63X inward bound in PM peak.
- 5.25 With the proposed additional bus trips, the capacity of KMB 68A outward bound in AM peak would increase from 360 to 480, hence, the occupancy would decrease from 79% to 59% (calculation: $283 \div 480 = 59\%$), which is acceptable.
- 5.26 With the proposed additional bus trips, the capacity of KMB 68A inward bound in PM peak would increase from 600 to 720, hence, the occupancy would decrease from 80% to 67% (calculation: $479 \div 720 = 67\%$), which is acceptable.
- 5.27 With the proposed additional bus trips, the capacity of KMB 63X inward bound in PM peak would increase from 240 to 360, hence, the occupancy would decrease from 97% to 65% (calculation: $233 \div 360 = 65\%$), which is acceptable.

2033 Rail-Based Public Transport Occupancies

5.28 As presented in **Table 5.5**, the demand on rail-based public transport services, i.e. MTR Tuen Ma Line, associated with the Proposed Development is no more than 247 passengers during the peak hours. As presented in **Table 2.5**, the MTR Tuen Ma Line has a maximum carrying capacity of 70,000 passenger / hour. Hence, the additional passenger demand is only 0.4% of the maximum carrying capacity [Calculation: 247 ÷ 70,000 = 0.4%], which is negligible on the MTR Tuen Ma Line.

2033 LRT Service Occupancies

5.29 Based on survey result shown in **Table 2.7**, the year 2033 performance of LRT services at Lam Tei Stop were derived as follows:

2033 without Proposed Development [A]	=	2024 observed performance of LRT services at Lam Tei Stop + adopted public transport demand growth demand growth from 2024 to 2033
2033 with Proposed Development [B]	=	[A] + rail-based public transport demand due to Proposed Development (from Table 5.5)

5.30 Year 2033 performances of LRT services at Lam Tei Stop are presented in Table 5.11.

TABLE 5.11 YEAR 2033 PERFORMANCE OF LRT SERVICES AT LAM TEL STOP

Direction	Capacity ⁽¹⁾	No. of Passe Year 2033	Occupancy [c]=[b]/[a]			
	[a]	WithoutWithProposedProposedDevelopmentDevelopment		Without Proposed Development	With Proposed Development	
		AN	A Peak			
Yuen Long bound	6,600	3,829	3,866	58%	59%	
Tuen Mun bound	7,200	6,746	6,956	94%	97%	
		P /	M Peak			
Yuen Long bound	5,600	4,930	5,050	88%	90%	
Tuen Mun bound	6,400	3,599	3,651	56%	57%	

- 5.31 **Table 5.11** shows that the year 2033 LRT services at Lam Tei Stop would operate with limited capacities during the AM and PM peak hours. Although the estimated occupancy of the light rail services Tuen Mun bound would reach 97% in AM peak and Yuen Long bound would reach 90% in PM peak at Lam Tei LRT Stop in Year 2033, some measures could be adopted relieve the occupancy, including:
 - 1. (1) The planned Hung Shui Kiu MTR Station of Tuen Ma Line will be completed in Year 2030; and (2) Hung Shui Kiu New Development Area ("HSKNDA") will provide (i) Smart and Green Transit System", and (ii) pedestrian network connecting to Hung Shui Kui and Tin Shui Wai MTR Stations.

With the above planned public transport facilities, feeder service passenger demand to Siu Hong MTR Station in HSKNDA (including Nai Wai, Chung Uk Tsuen and Hung Shui Kiu LRT stops, is expected to be diverted. Hence, the occupancies of the LR services (both Tuen Mun and Yuen Long bound) are expected to reduce.

Based on the on-site observation at Siu Hong LRT stop, over 50% of the existing LRT (Tuen Mun bound) passengers would interchange at the Siu Hong Station, to switch to the Tuen Ma Line, and vice versa to Yuen Long bound. In view that the planned Hung Shui Kiu Station is located to the north of the LRT service, it is assumed that 25% of total occupancy will be diverted to the planned Hung Shui Kiu MTR Station. As a result, the year 2033 LRT (Tuen Mun bound) occupancy at Lam Tei LRT Stop is expected to reduce from 97% to 74% (calculation: 97% x (100%-25%)). For Yuen Long bound, the year 2033 LRT occupancy at Lam Tei LRT Stop is expected to reduce from 90% to 68% (calculation: 90% x (100%-25%)).

2. Year 2024 of LRT occupancy survey at the Lam Tei LRT stop found that 10 out of 24 Tuen Mun bound LRT trips have occupancies which are less than 80% (Appendix B in revised TIA refers). In addition, it is observed that the busiest period occurred between 0730 and 0800 hours, additional trips could be considered in conjunction with the actual passenger demand.

It is noted that at present two scheduled 751P (from Tin Yat to Siu Hong) trips are operated during the AM peak. To further enhance the capacity at the LRT

Lam Tei LRT Stop (Tuen Mun bound) in the AM peak, additional special departure of LRT route 751P, i.e., from Tin Yat to Siu Hong, could be considered. Hence, the LRT (Tuen Mun bound) passenger demand of the Proposed Development could be accommodated.

5.32 In view that the Proposed Development is a small-scale development, the passenger demand generated would have negligible impact to the occupancy of the LRT service, hence, the Proposed Development is considered acceptable.

Review on Public Transport Facilities

5.33 Public Transport Facilities are reviewed and presented in below paragraphs.

Additional Queuing/Waiting Demand due to the Proposed Development

5.34 The estimated additional queuing/waiting related to the Proposed Development at each bus stop / LRT station is presented in Table 5.12.

Bus Stop / LRT Stop		Boarding Demand (No. of Passenger) [a]	No. of Trips ⁽¹⁾ [b]	Average Queuing / Waiting Passenger (No. of Passenger) [c] = [a] / [b]
CPR – Southbound	KMB 53	2	2	1
(from Table 5.9)	KMB 63X	53	5	11
	KMB 68A	30	4	8
	KMB 258A	28	2	14
	KMB 258P	11	4	3
	KMB 960P	47	6	8
	KMB 960X	20	7	3
	LWB A34	10	3	4
	NLB B2	9	3	3
	Sub-total	210	<mark>36</mark>	55
CPR – Northbound	KMB 261P	4	1	4
(from Table 5.9)				
LTI – Westbound	LTI – Westbound		0	0
LTI – Eastbound		0	0	0
Lam Tei LRT Stop – Y	38	23	2	
Lam Tei LRT Stop – T	uen Mun bound	210	24	9

TABLE 5.12ADDITIONAL QUEUING / WAITING DEMAND RELATED TO
THE PROPOSED DEVELOPMENT

⁽¹⁾ included additional bus trips in **paragraph 5.24**

5.35 **Table 5.12** shows that the estimated additional average queuing /waiting passenger at CPR southbound and CPR northbound bus stops are 55 and 4 passengers respectively and no additional average queuing /waiting passenger at LTI bus stops.

Utilisation of Passenger Waiting/Queuing Areas at Bus Stops / LRT Platforms

5.36 Survey on passenger waiting/queuing areas at bus stops / LRT platforms was conducted during the AM and PM peak periods on Thursday, 8th May 2024, and the peak hours identified from the surveys is found to be between 0715 – 0815 hours. Based on this survey, the year 2033 maximum number of passenger waiting/queuing at the Bus Stops / LRT platforms were derived as follows:

2033 without Proposed Development [A]	=	2024 observed maximum queue + adopted passenger demand growth from 2024 to 2033
2033 with Proposed Development [B]	=	[A] + average queuing / waiting passenger due to Proposed Development (from Table 5.12)

5.37 Utilisations of passenger waiting/queuing area at the bus stops / LRT platforms for existing, 2033 cases without and with Proposed Development are presented in Table 5.13.

TABLE 5.13	UTILISATIONS OF PASSENGER WAITING / QUEUING AREA AT
_	BUS STOPS AND LRT PLATFORMS

Bus Stop / LRT Platform	• •	/ Waiting acity	Existing		Year 2033 Without Proposed Development		Year 2033 With Proposed Development	
	Area (m²)	Pass ⁽¹⁾ [a]	Max Queue [b]	Util [c] = [b] / [a]	Max Queue [d]	Util [e] = [d] / [a]	Max Queue [f]	Util [g] = [f] / [a]
CPR – Southbound	38	132	38	29%	45	34%	100	76%
CPR – Northbound	20	69	10	14%	12	17%	16	23%
LTI – Westbound	8	28	8	29%	10	36%	10	36%
LTI – Eastbound	8	28	0	0%	0	0%	0	0%
Lam Tei LRT Stop – Yuen Long bound	30 ⁽²⁾	104	16	15%	19	18%	21	20%
Lam Tei LRT Stop – Tuen Mun bound	96 ⁽²⁾⁽³⁾	333	84	25%	98	29%	107	32%
Pass – Passenger	•	Max – N	laximum	•	Ut	il - Utilisat	ion	

(1) Refer to Volume 9, Chapter 2.7, TPDM, standing capacity of 5 passengers per 1.44m² is adopted. (2) Deducted minimum of 1.1m walkways from doors of light rail vehicles to the exit of the platforms and utilities on the platforms, e.g. shelter, seats, ticket vending machines and Octopus card readers.

(3) Included the expansion of Lam Tei LRT Tuen Mun bound platform

5.38 Table 5.13 shows that the assessed bus stops /LRT platforms would have sufficient passenger waiting/queuing areas for the case of year 2033 with the Proposed Development.

Length of the Laybys for Bus Stops

The assessment on length of the laybys at the Castle Peak Road - Lam Tei bus 5.39 stops and Lam Tei Interchange bus stops for the year 2033 without and with Proposed Development are presented in Table 5.14.

ASSESSMENT ON LENGTH OF THE LAYBYS FOR BUS STOPS TABLE 5.14

Bus Stop	Number of Bus Could Stop (Length) [C]			Number of Bus Arrival fo Boarding /Alighting [b] 2033 Without 2033 Wit Proposed Proposed Development ⁽¹⁾ Developme			g [b] With oosed	Utilisation of Bus Stop Layby[d] = [a]x[b] / ([c]x60 minutes)2033 Without2033 WithProposedProposedDevelopmentDevelopment			
		AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
CPR – Southbound	2 (26m)	1.6	0.9	35	10	36 ⁽²⁾	10	47%	8%	48%	8%
CPR – Northbound	1 (13m)	1.2	1.3	10	21	10	23 ⁽²⁾	20%	47%	20%	50%
LTI – Westbound	1 (13m)	0.5	0.5	3	4	3	4	3%	3%	3%	3%
LTI – Eastbound	1 (13m)	0.7	0.5	7	2	7	2	8%	2%	8%	2%

(1) Refer to Paragraph 5.11, all bus services provided in Year 2033 remain the same as observed from surveys conducted in 2024

(2) Additional bus trips related to the Proposed Development are included in Year 2033 with Proposed Development scenario.

5.40 **Table 5.14** shows that:

- CPR Southbound bus stop layby: The utilisation increases from 47 to 48% in AM peak, taking into consideration the Proposed Development. Hence, the Proposed Development has negligible impact.
- CPR northbound bus stop layby: The utilisation increases from 47 to 50% in PM peak, taking into consideration the Proposed Development. The Proposed Development has minimal impact.
- LTI bus stop westbound and eastbound laybys: The utilisation remains the same for the case with the Proposed Development. Hence, there is no impact from the Proposed Development.

Justification on Not Providing Shuttle Bus Service for the Proposed Development

5.41 The assessment on the impact of public transport concluded that the public transport provisions in the vicinity of the Proposed Development are sufficient to accommodate the passenger demand due to the Proposed Development by providing 4 additional bus services. Hence, provision of shuttle bus services for the Proposed Development is not required.

6.0 PEDESTRIAN IMPACT

2033 Pedestrian Flow Forecasting

6.1 2033 peak hour pedestrian flows are produced by estimating (i) the pedestrian growth from 2024 to 2033; and (ii) expected pedestrian generated by the Proposed Development and planned / committed developments in the vicinity.

Annual Pedestrian Growth Rate between 2024 - 2033

6.2 Growth rates of 1.9% per annum from 2024 to 2031, and 1% per annum for the period from 2031 to 2033, are adopted, and references to these are found in **Paragraphs 5.20 – 5.26.**

Peak Hour Pedestrian Generated by Planned / Committed Developments in the Vicinity

6.3 Peak hour pedestrian generated by planned / committed developments in the vicinity as presented in **Table 4.3** is included in the Year 2033 pedestrian flow.

Adopted Pedestrian Generation Rate

6.4 Pedestrian generation survey was conducted at 0700 – 0900 and 1800 – 2000 hours on Thursday, 12th September 2024 at developments found near the Proposed Development. The AM and PM peak hours identified from the surveys are found to be between 0715 – 0815 hours and 1830 – 1930 hours respectively. The pedestrian generation and pedestrian generation rates is shown in **Table 6.1**.

TABLE 6.1PEDESTRIAN GENERATION AND PEDESTRIAN GENERATION
RATES

Surveyed Developments	AM	Peak	PM Peak		
(Number of Flat)	Generation	Attraction	Generation	Attraction	
Pedestrian Generation (Ped / hr)					
Novoland (3,282) ⁽¹⁾	1,491	568	542	1,346	
Ching Tin Estate (5,183)	3,214	1,436	1,270	2,379	
Yan Tin Estate (4,688)	3,085	1,262	1,248	2,143	
Pedestrian Generation Rate (Ped / hr / flat)					
Novoland (3,282) ⁽¹⁾	0.4543	0.1731	0.1651	0.4101	
Ching Tin Estate (5,183)	0.6201	0.2771	0.2450	0.459	
Yan Tin Estate (4,688)	0.6581	0.2692	0.2662	0.4571	
Adopted Pedestrian Generation Rate (% 2-way)	0.6581	0.2692	0.2662	0.4571	
	(71%)	(29%)	(37%)	(63%)	
	0.9273 (2-way)		0.7233	(2-way)	

GEN – Generation ATT – Attraction

¹⁾ As of the time of survey, only phases 1 and 2 of the development are occupied.

6.5 **Table 6.1** shows that the adopted AM and PM peak hour pedestrian generation rate are 0.9273 and 0.7233 ped/flat/hour (2-way).

Peak hour Pedestrian Generation of the Proposed Development

6.6 Based on the adopted pedestrian generation rates shown in **Table 6.1**, the peak hour pedestrian generation of the Proposed Development are calculated and are presented in **Table 6.2**.

Item	Pedestrian Generation (Ped/ hour)					
	AM Peak		PM Peak			
	Generation	Attraction	Generation	Attraction		
The Proposed Development (1,385 Flats)	911	373	369	633		
	<u>1,284 (2-way)</u>		1,002 (2-way)			

TABLE 6.2PEDESTRIAN GENERATION OF PROPOSED DEVELOPMENT

6.7 **Tables 6.2** shows that Proposed Development would generate 1,284 and 1,002 persons (2-way) during AM and PM peak hour respectively.

Year 2033 Pedestrian Flows

- 6.8 Year 2033 pedestrian flows are produced with reference to (i) the observed 2024 pedestrian flows, (ii) annual pedestrian growth rate between 2024 2033, (iii) expected pedestrian generation due to the planned / committed developments between 2024 2033 and the Subject Site.
- 6.9 Year 2033 pedestrian flows for the footpath analysis were derived as follows:

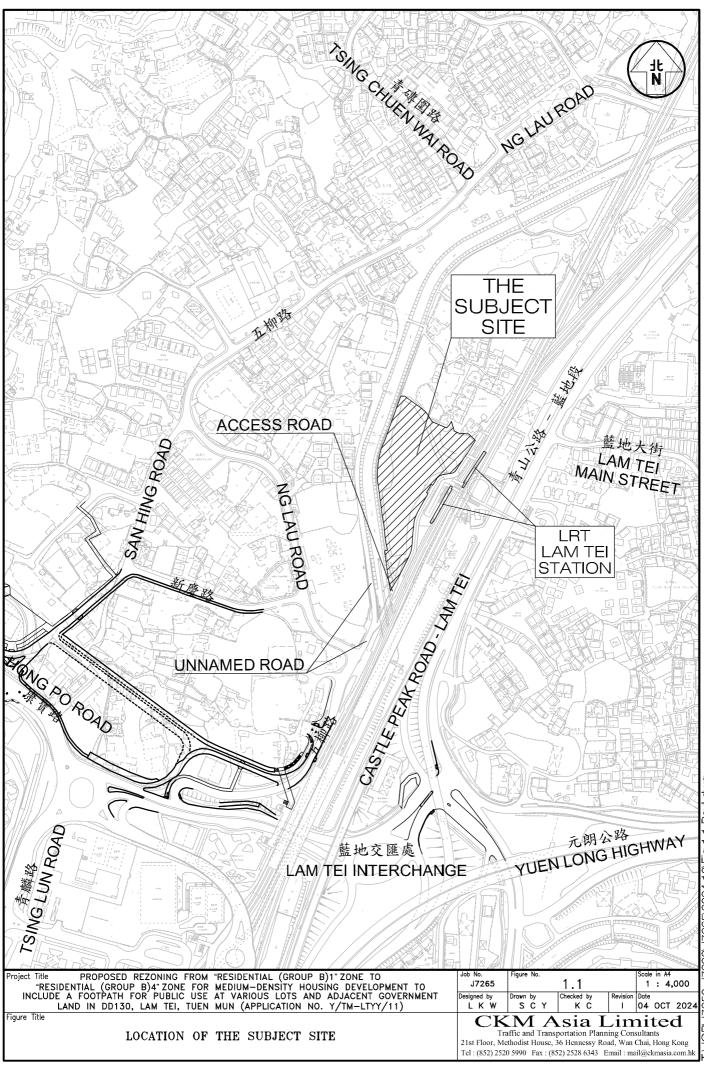
2033 without Proposed Development [A]	=	2024 observed pedestrian flows + Adopted pedestrian growth from 2024 to 2033 + estimated pedestrian due to the planned / committed developments				
2033 with Proposed Development [B]	=	[A] + pedestrian generation due to Proposed Development				

Year 2033 LOS Analysis

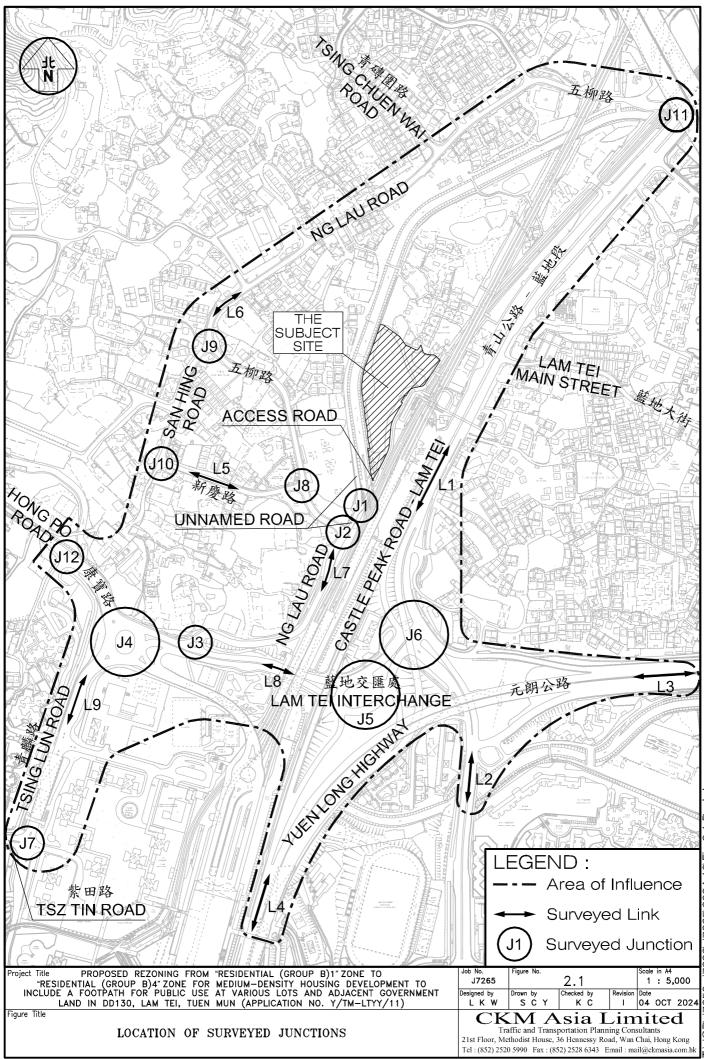
6.10 Year 2033 peak hour pedestrian flows for the two cases are estimated and presented in **Figure 6.1** and the corresponding LOS assessment is presented in **Table 6.3**.

Location		Clear Width ⁽¹⁾ [Effective	Peak Period	2033 without Proposed Development			2033 with Proposed Development		
		Width] (m)		Flow (ped/ hour)	Flow rate (ped/ min/m)	LOS	Flow (ped/ hour)	Flow rate (ped/ min/m)	LOS
P1.	Footpath on the footbridge	2.0[1.0]	AM	327	5.5	А	456	7.6	А
	accessing to Ng Lau Road		PM	235	3.9	А	336	5.6	А
P2.	Footpath between Lam Tei LRT stop and bus stop at	2.5[1.5]	AM	443	4.9	А	700	7.8	А
	Castle Peak Road – Lam Tei		PM	305	3.4	А	1,007	11.2	А
P3.	Footbridge over Castle Peak	2.5[1.5]	AM	328	3.6	А	1,227	13.6	А
	Road – Lam Tei		PM	183	2.0	А	384	4.3	А
P4.	Southern Footpath of San Hing	2.5[1.5]	AM	129	1.4	А	194	2.2	А
	Road		PM	95	1.1	А	146	1.6	А
P5.	Eastern Footpath of Ng Lau	2.0[1.0]	AM	296	4.9	А	361	6.0	А
	Road		PM	200	3.3	А	251	4.2	А

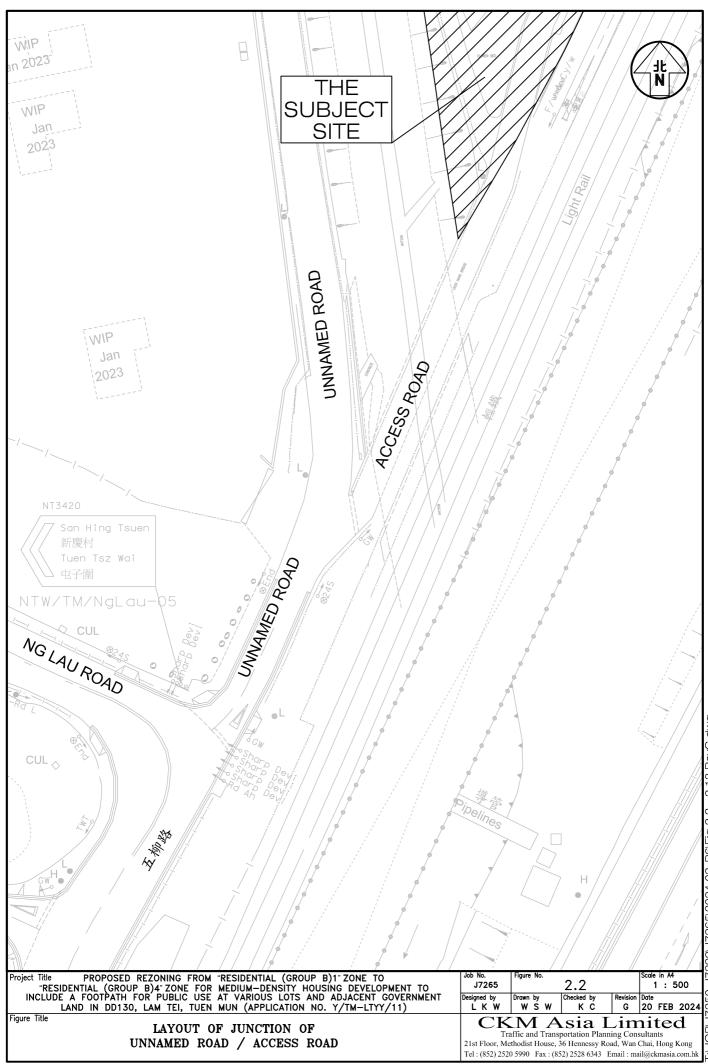
TABLE 6.3 YEAR 2033 LOS ASSESSMENT

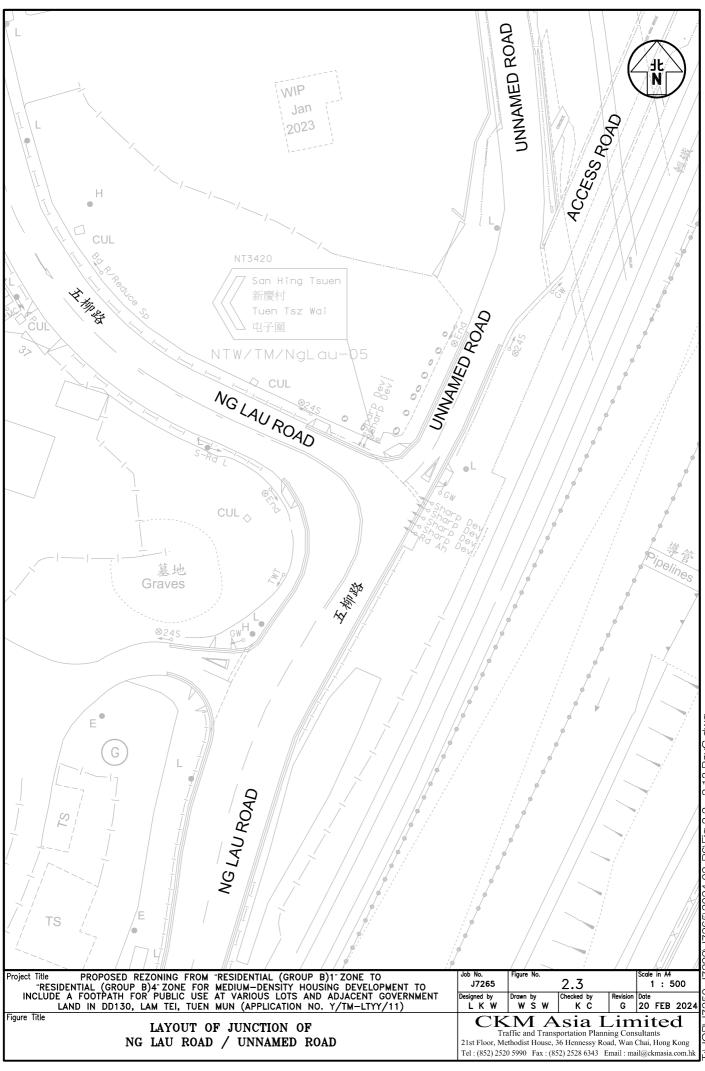

Note: ⁽¹⁾ The width excludes railing and obstructions.

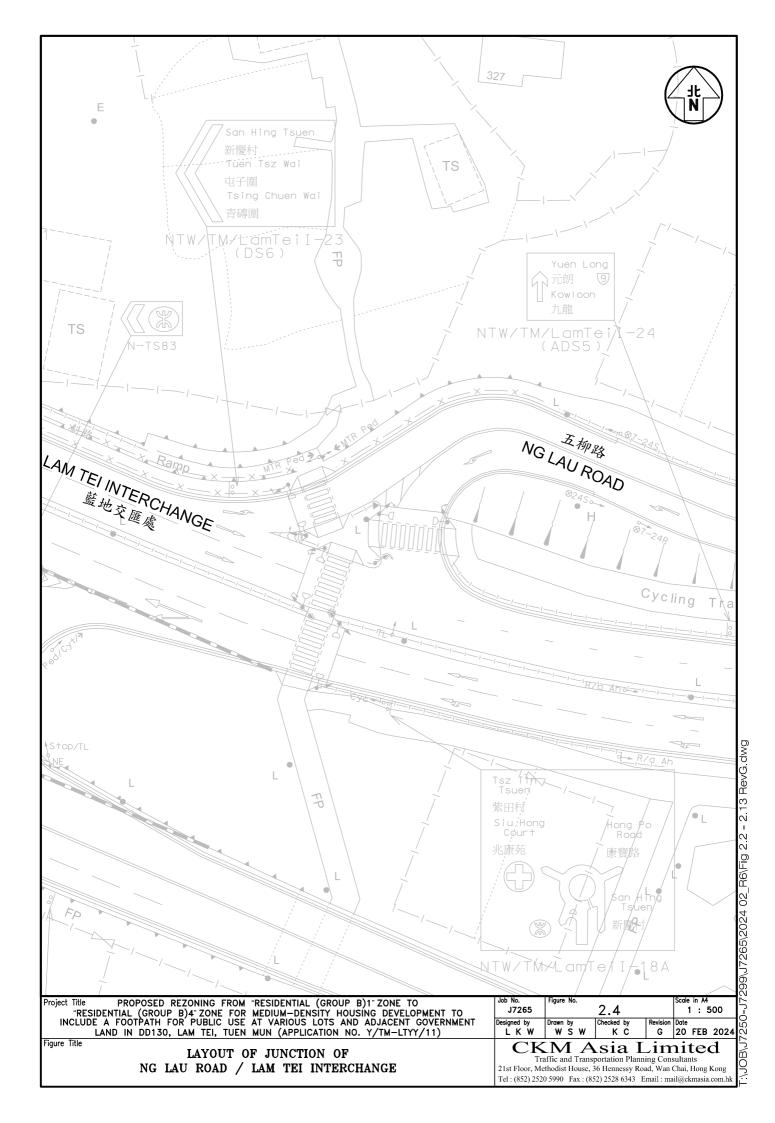
6.11 **Table 6.3** shows that the assessed footpaths operate with LOS A, i.e., have sufficient capacity to accommodate the expected pedestrian growth and pedestrian generated due to Proposed Development.

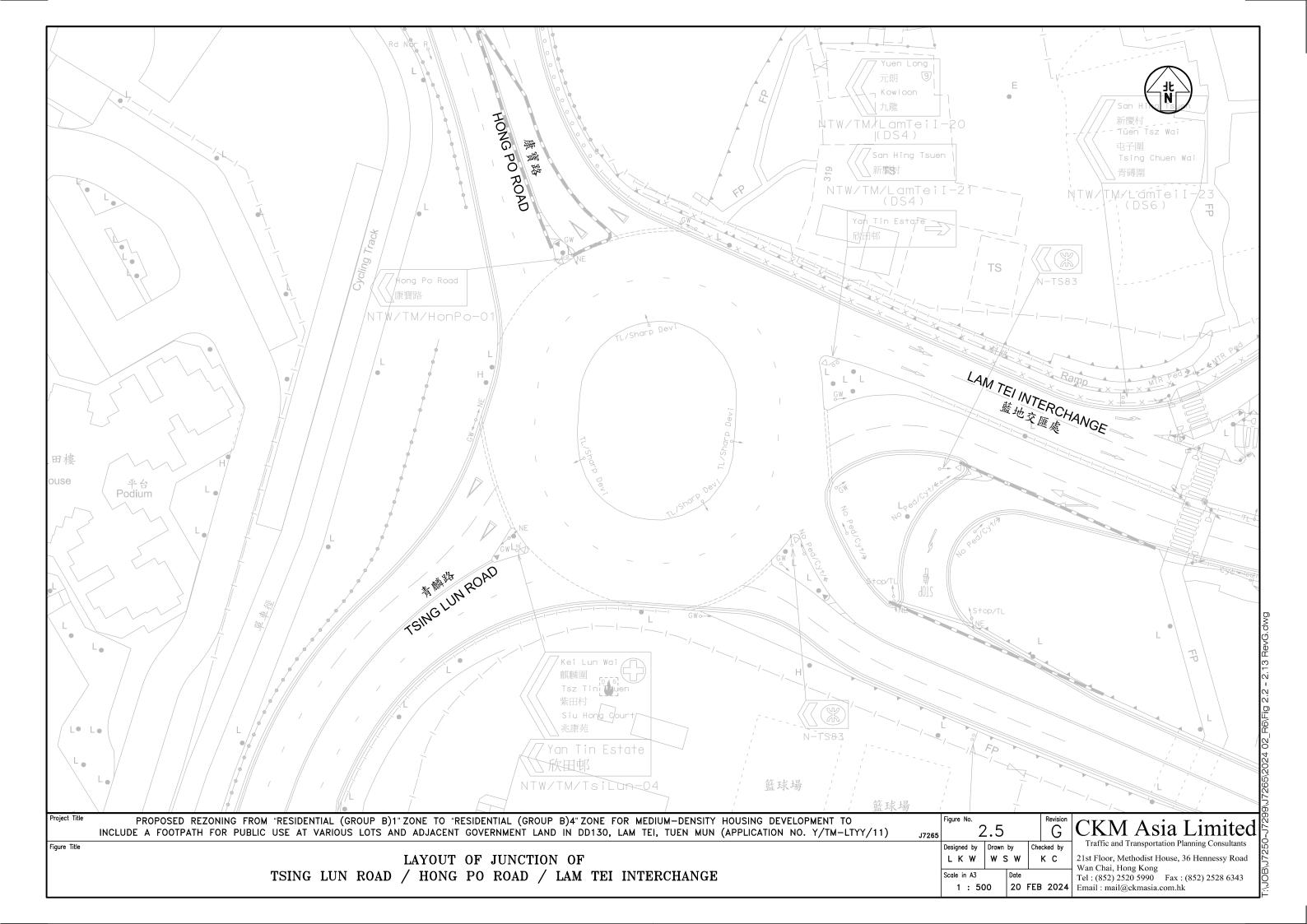

7.0 SUMMARY

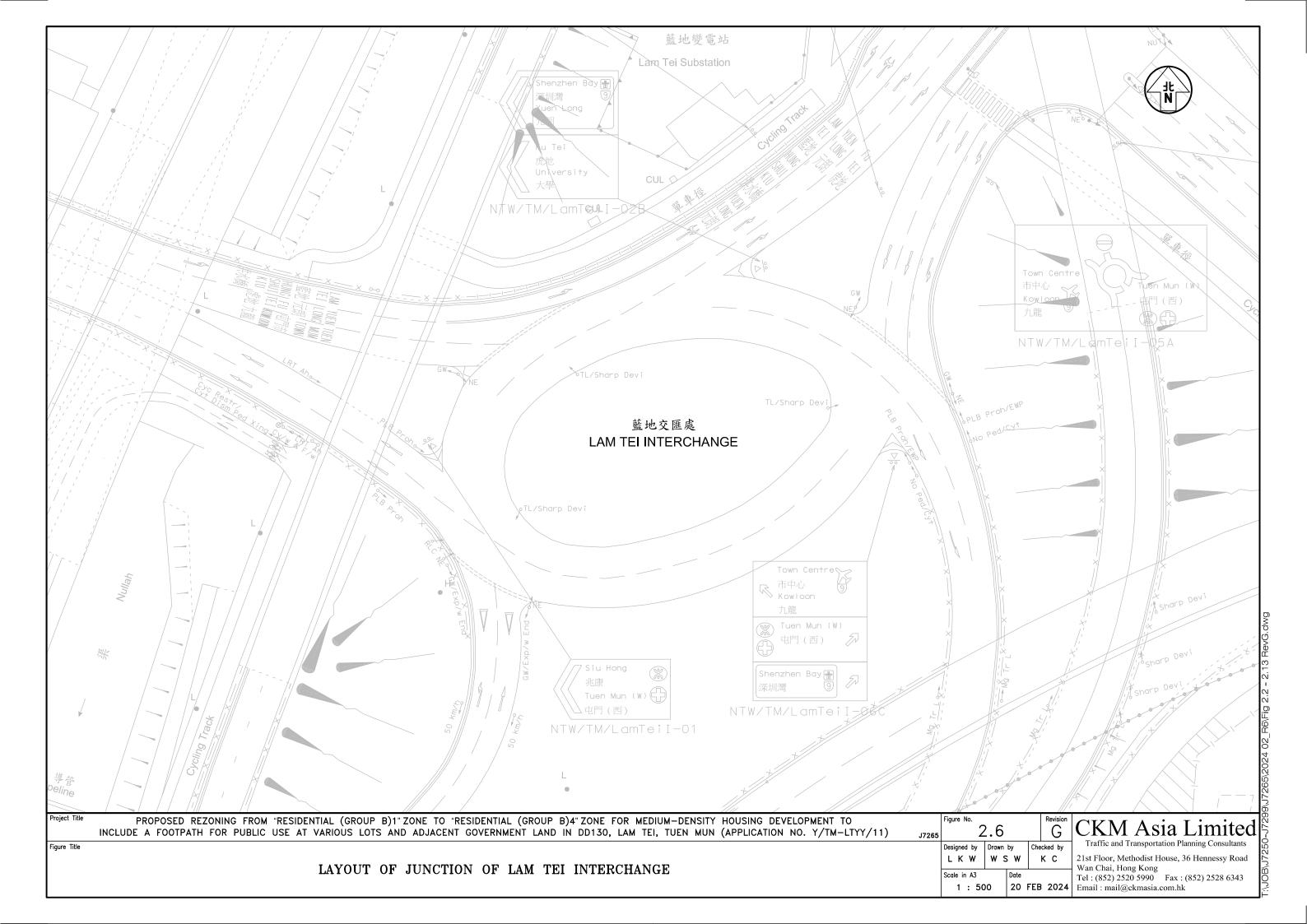
- 7.1 The Subject Site is located in D.D.130, Lam Tei, Tuen Mun. At present, the Subject Site is unoccupied, and access to the Subject Site is via an existing unnamed road which is connected to Ng Lau Road.
- 7.2 Manual classified counts were conducted at junctions and road links which are located in the vicinity in order to establish the existing traffic flows during AM Peak and PM peak hours.
- 7.3 The internal transport facilities provided comply with recommendations of the HKPSG and comments from Transport Department.
- 7.4 Year 2033 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to the BDTM; (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the 2 cases, i.e., Approved Scheme and Proposed Development.
- 7.5 Compared to the Approved Scheme, the Proposed Development will generate only 100 and 51 additional pcu (2-way) in AM peak and PM peak respectively. In addition, 4 nos. of bus trips are proposed to accommodate the road-based public transport demand of the Proposed Development.
- 7.6 The assessment of the nearby public transport services found that the Proposed Development has negligible impact. The assessment of footpaths found that the Proposed Development has negligible impact.
- 7.7 The existing access road and unnamed road connecting the Proposed Development with Ng Lau Road is planned to be improved, to provide a 7.3mwide road carriageway, a 2m-wide footpath and a 2m-wide cycle track.
- 7.8 This TIA concluded that the Proposed Development has no adverse traffic impact and the Proposed Development is acceptable from traffic engineering terms.

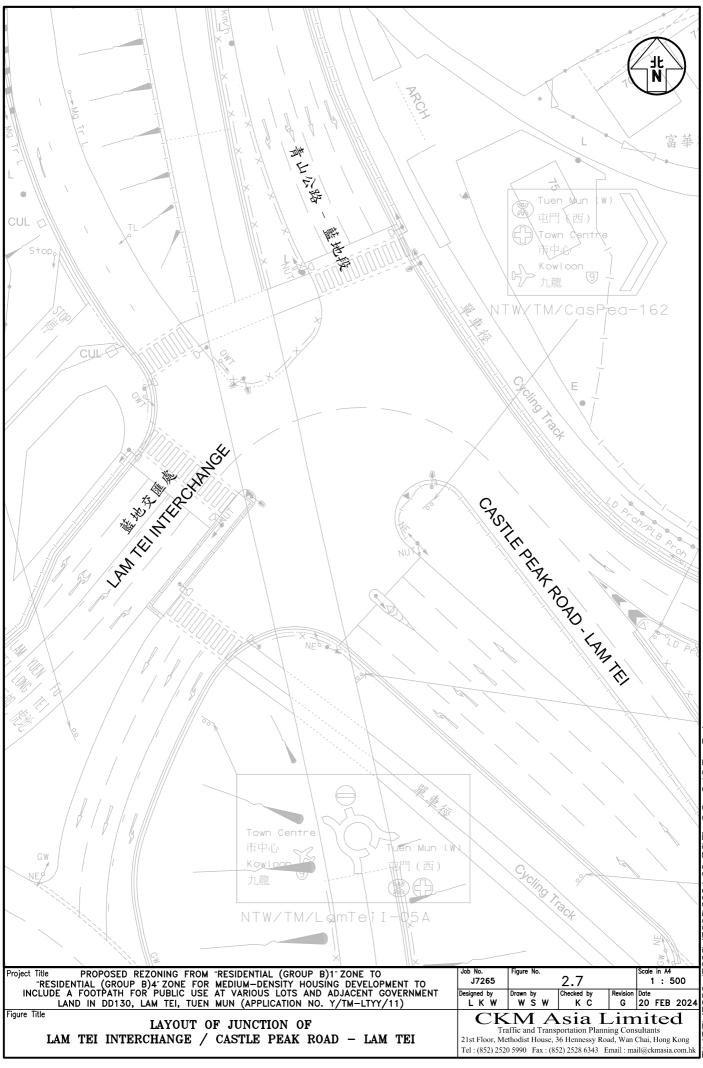

Figures

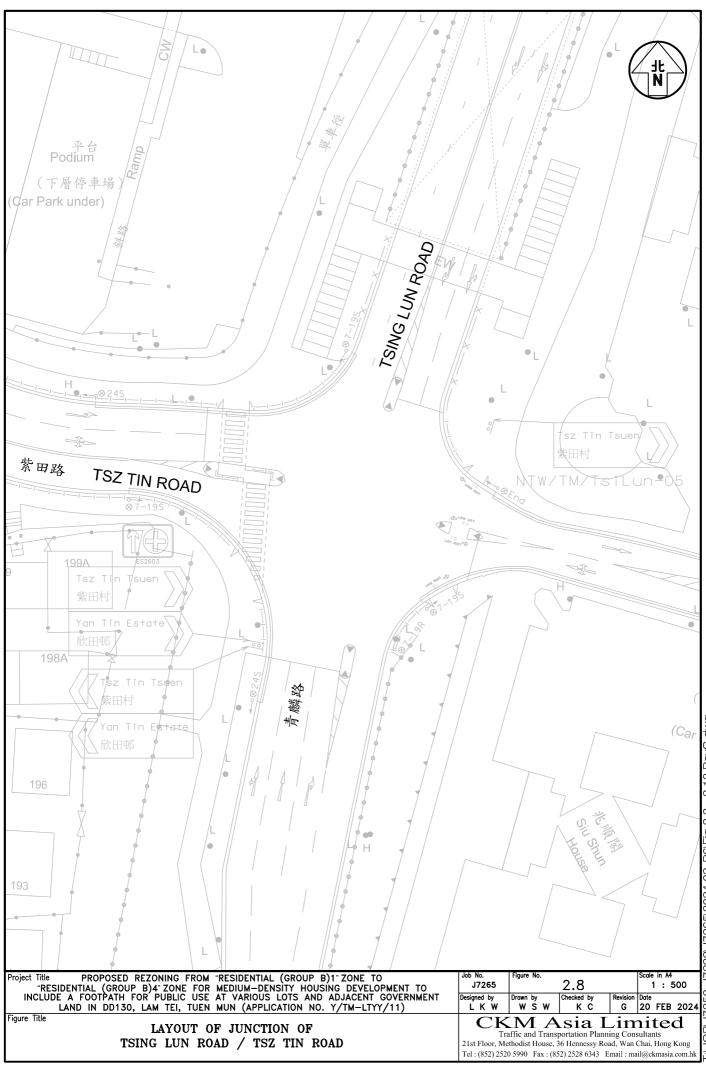

JOB\J7250-J7299\J7265\2024 10\Fig 1 1 Revi dwg

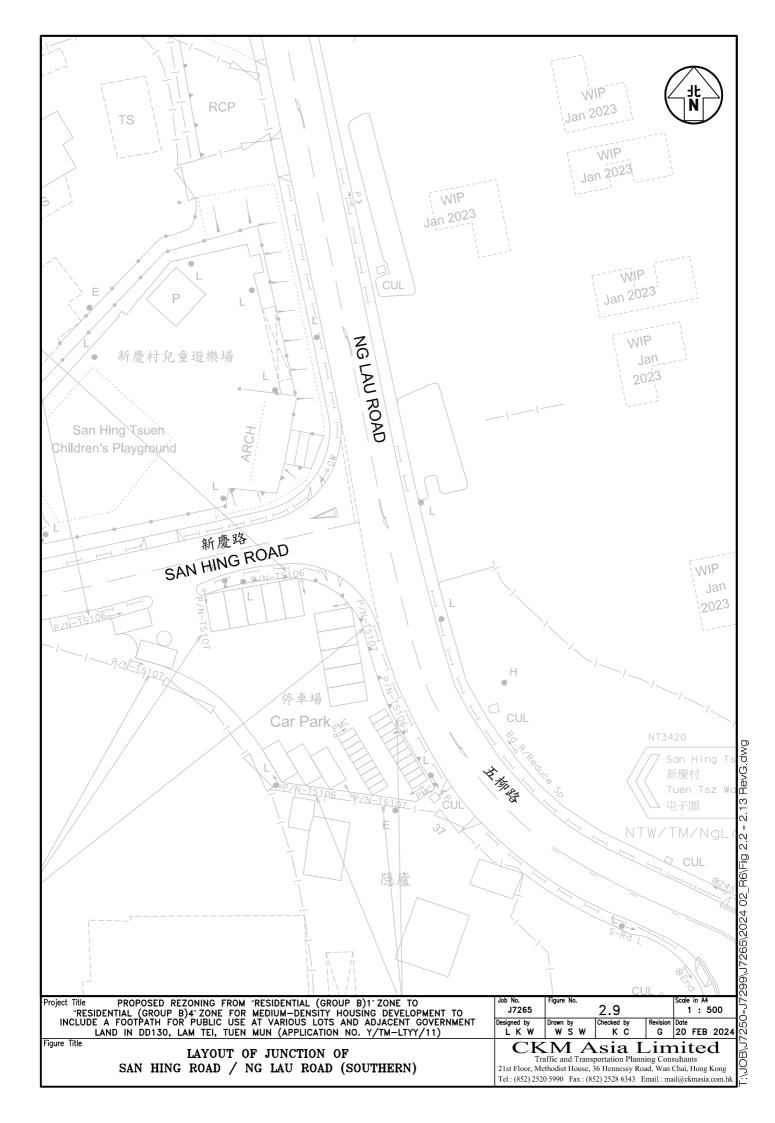


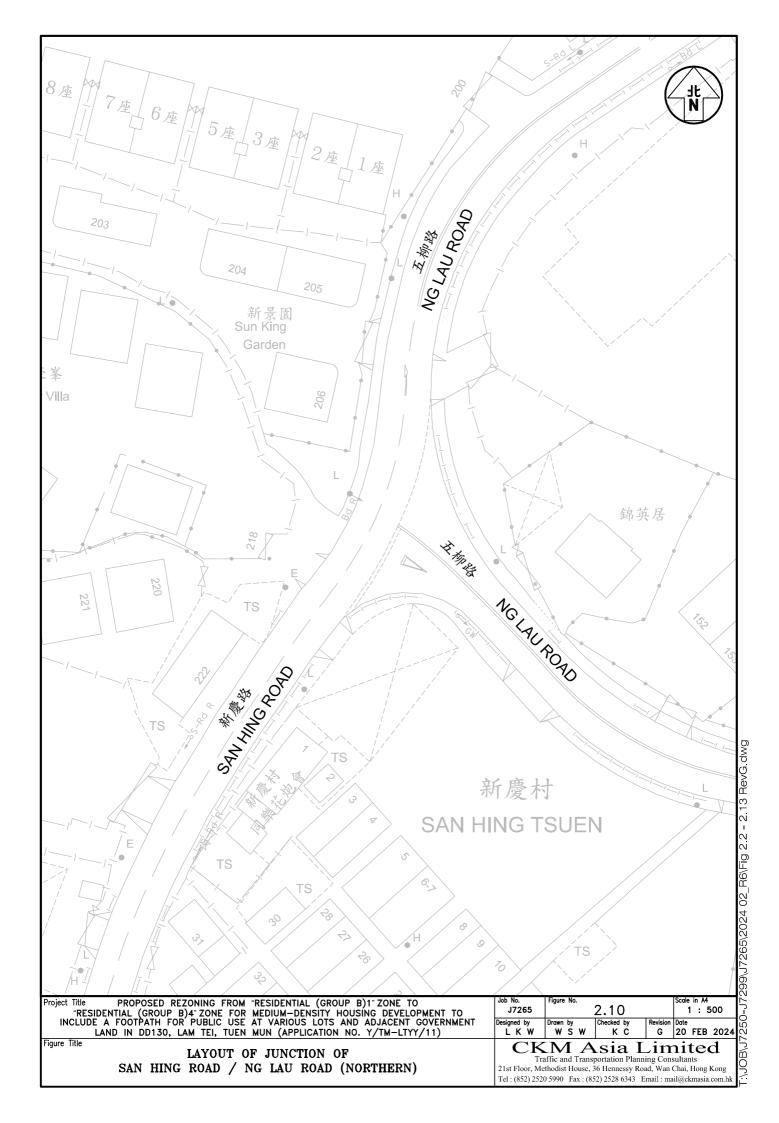

OB\J7250-J7299\J7265\2024 10\Fig 2.1 Revi dwg

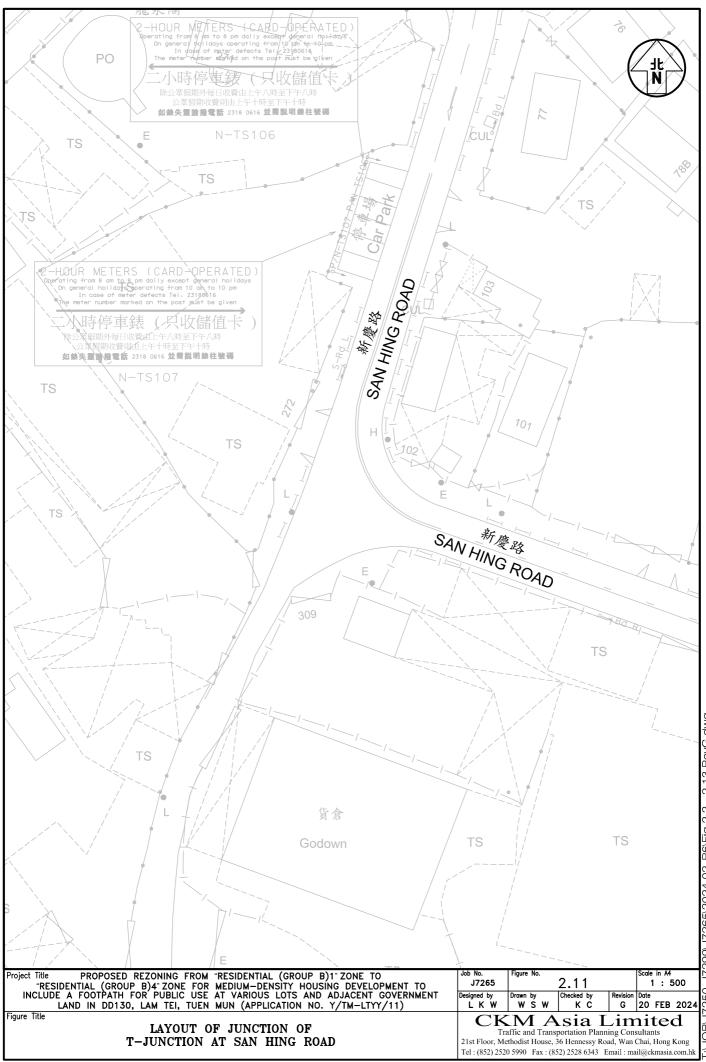


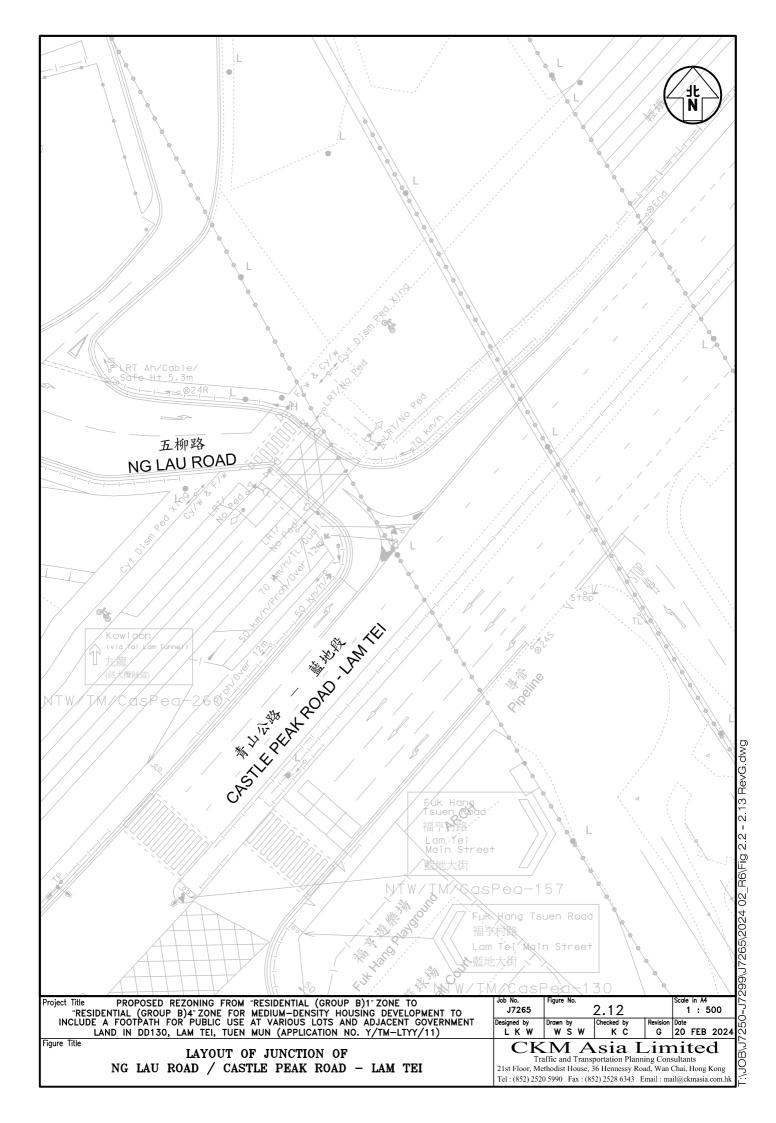

\JOB\J7250-J7299\J7265\2024 02_R6\Fig 2.2 - 2.13 RevG dwg

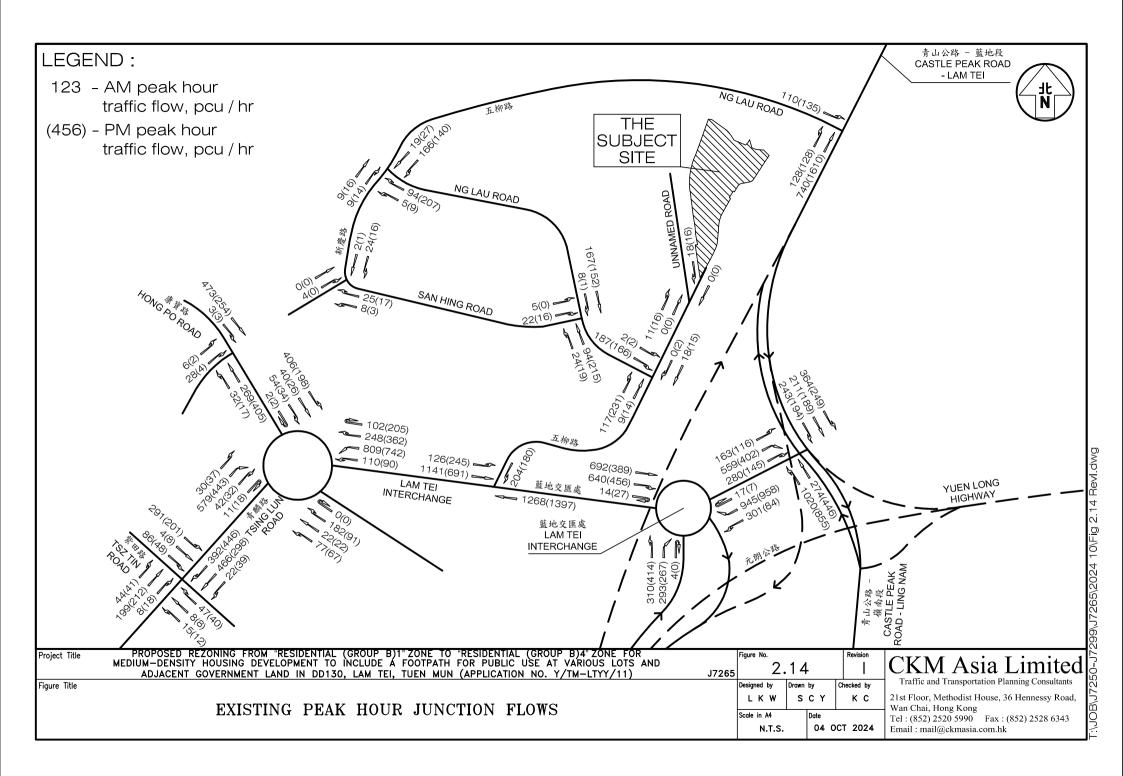


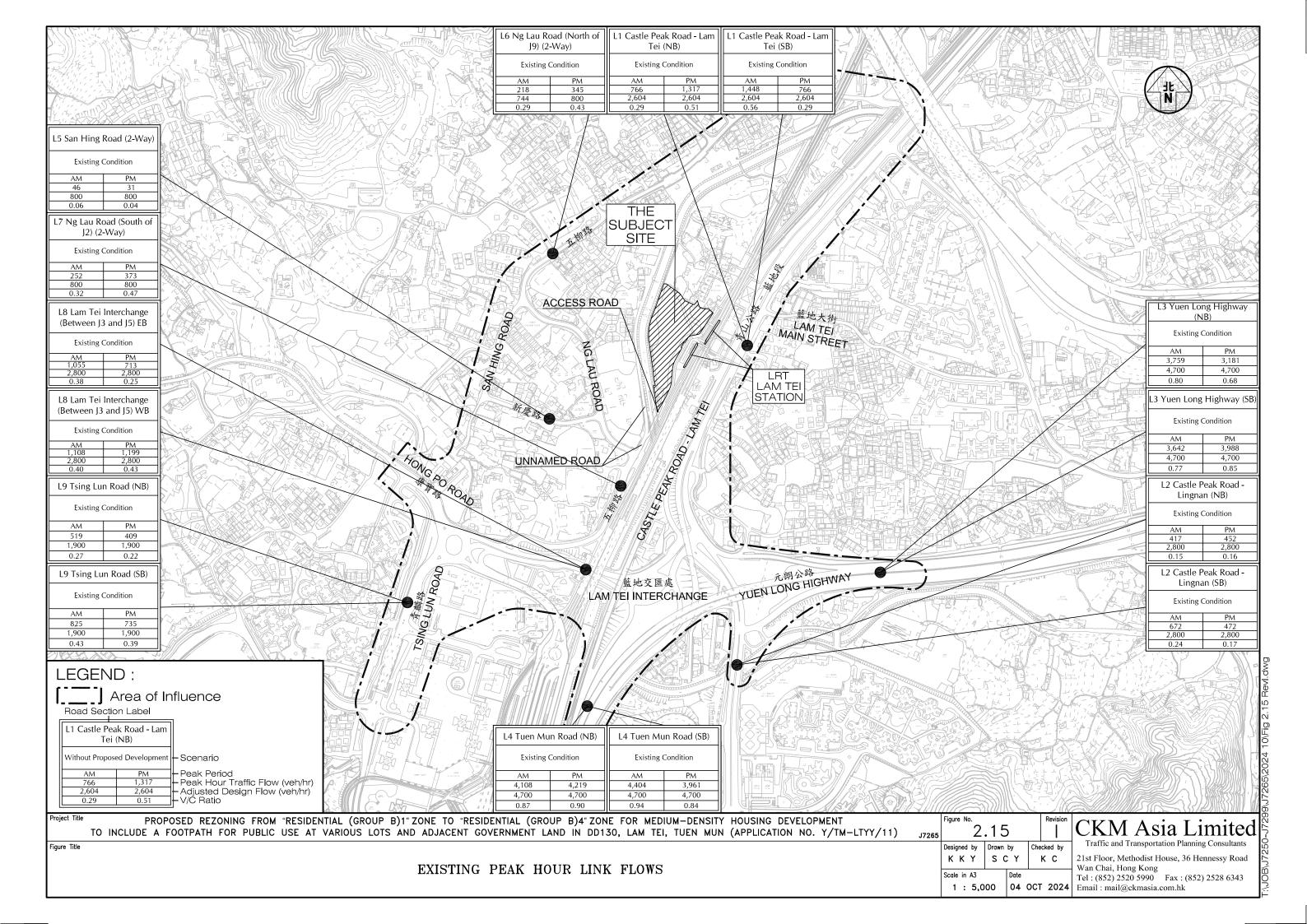


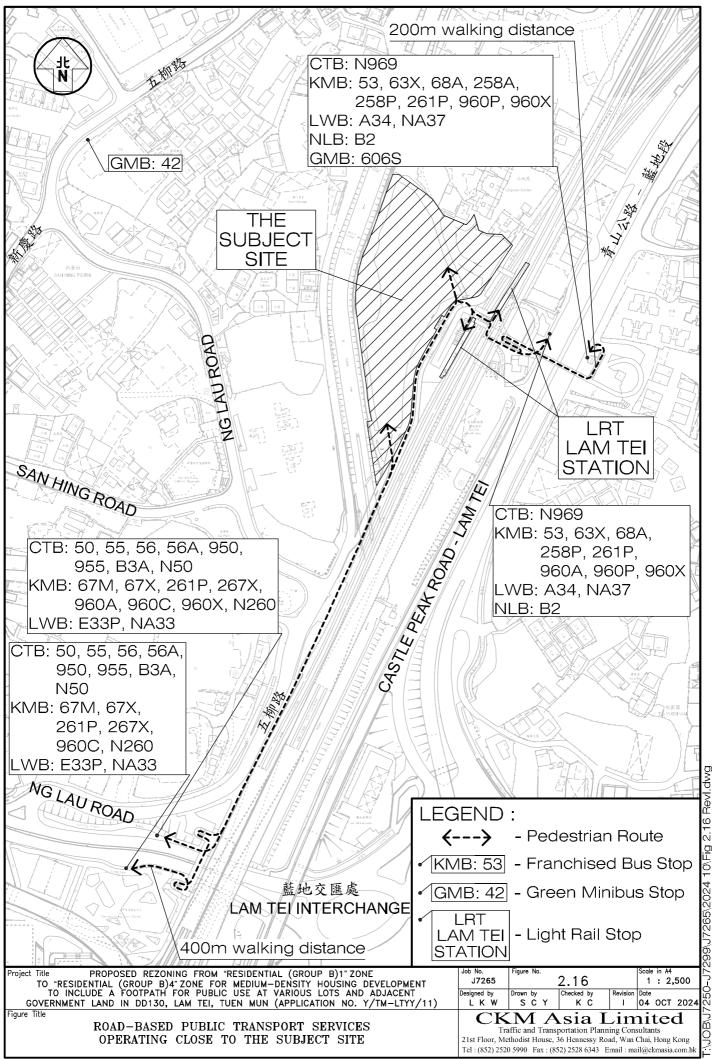


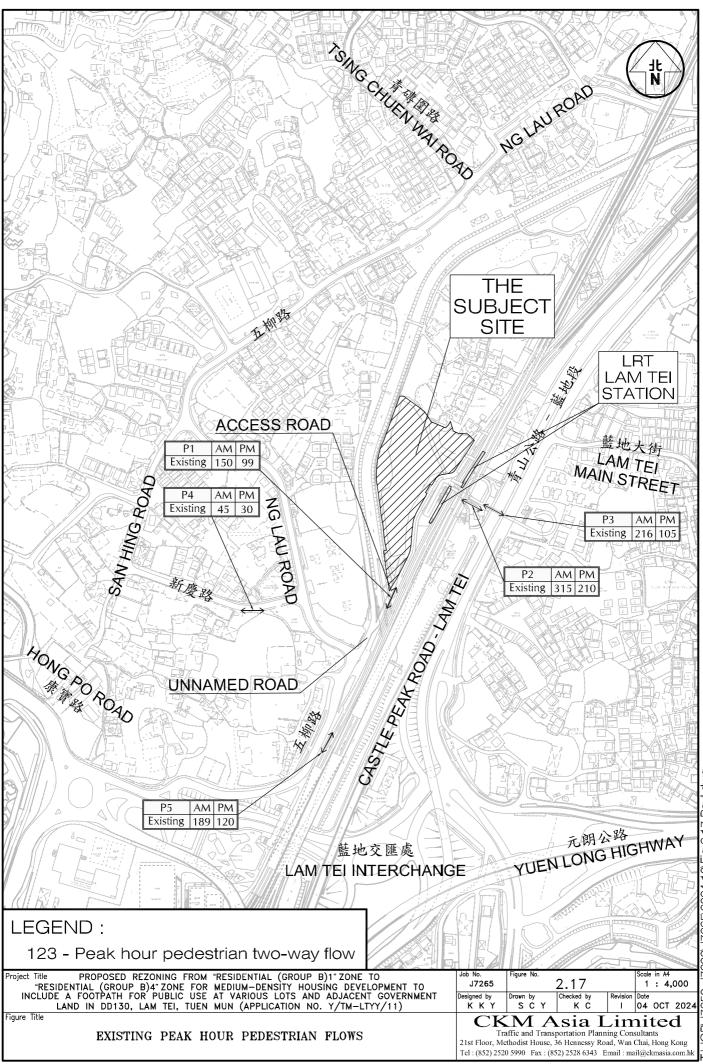

\JOB\J7250-J7299\J7265\2024 02_R6\Fig 2.2 - 2.13 RevG dwg


\JOB\J7250-J7299\J7265\2024 02_R6\Fig 2.2 - 2.13 RevG.dwg

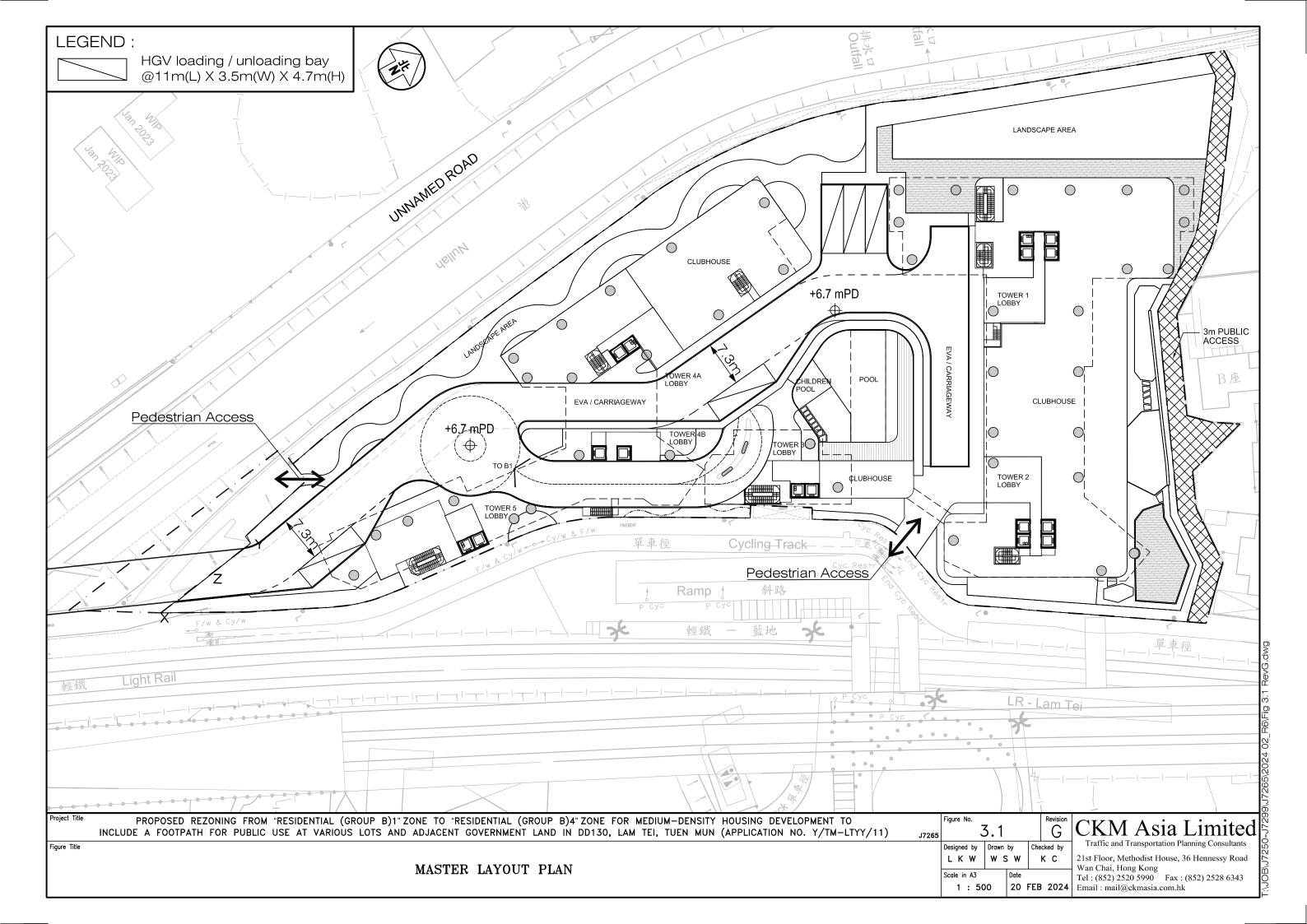


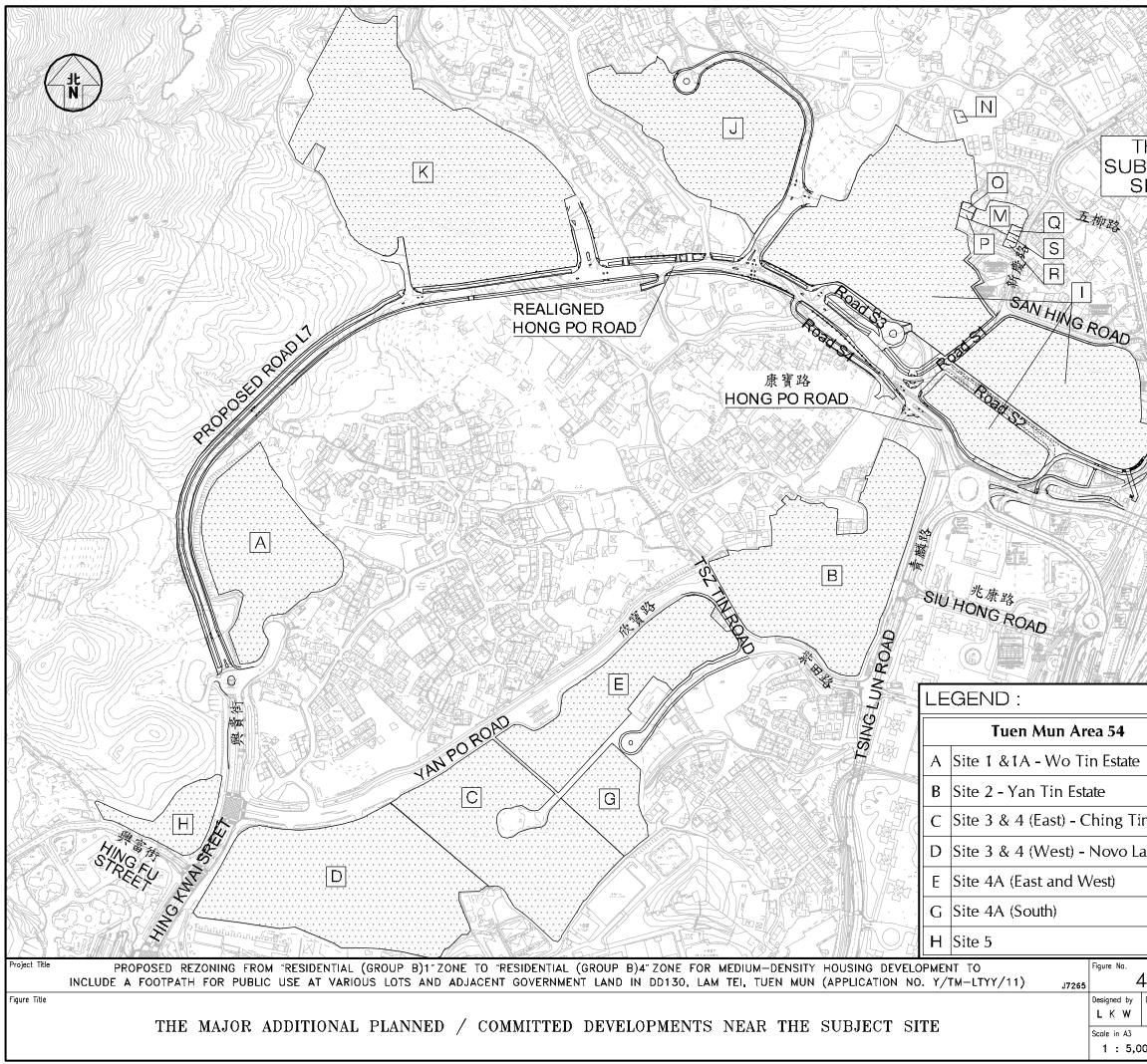

\JOB\J7250-J7299\J7265\2024 02_R6\Fig 2.2 - 2.13 RevG.dwg

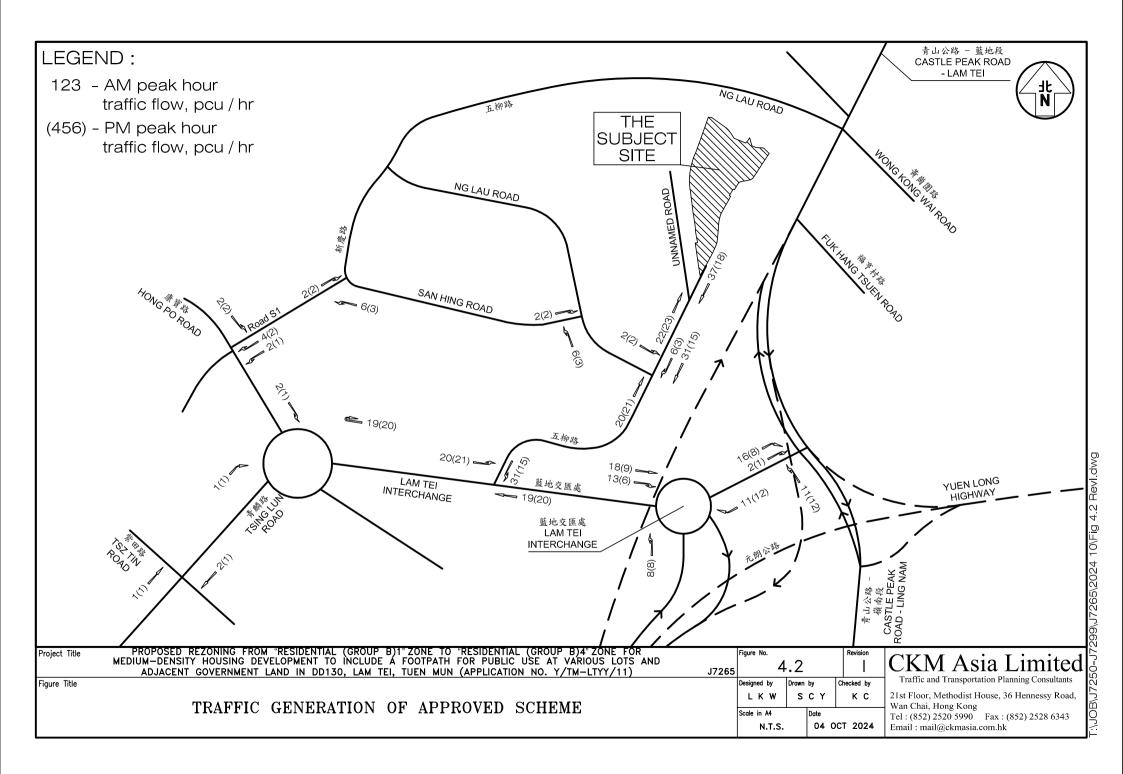


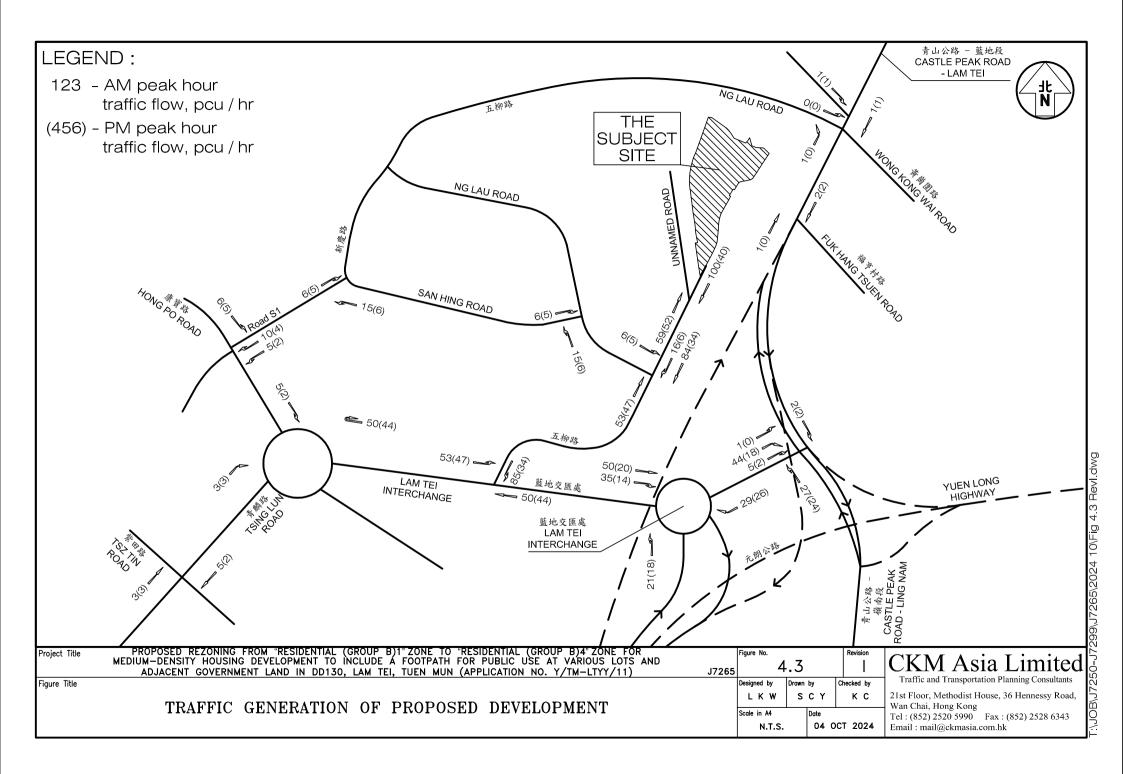

	A
	FR I I
	FB
FP FP	
	RCP CUL
in the second seco	
	FB
	4
	Mo see
	HONG ROAD
	S A &
CCFSS AL	
	Rd Nor R
	/ his right 3
Project Title PROPOSED REZONING FROM "RESIDENTIAL (GROUP B)1" ZONE TO "RESIDENTIAL (GROUP B)4" ZONE FOR MEDIUM-DENSITY HOUSING DEVELOPMENT TO INCLUDE A FOOTPATH FOR PUBLIC USE AT VARIOUS LOTS AND ADJACENT GOVERNMENT LAND IN DD130, LAM TEI, TUEN MUN (APPLICATION NO. Y/TM-LTYY/11)	Job No. Figure No. Scale in A4 J7265 2.13 1 : 500
TRESIDENTIAL (GROUP B)4 ZONE FOR MEDIUM-DENSITY HOUSING DEVELOPMENT TO INCLUDE A FOOTPATH FOR PUBLIC USE AT VARIOUS LOTS AND ADJACENT GOVERNMENT	Designed by Drawn by Checked by Revision Date
LAND IN DD130, LAM TEI, TUEN MUN (APPLICATION NO. Y/TM-LTYY/11)	LKW WSW KC G 20 FEB 2024
Figure Title LAYOUT OF JUNCTION OF	CKM Asia Limited Traffic and Transportation Planning Consultants
HONG PO ROAD / YAN TIN ESTATE ACCESS ROAD	21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong
1	Tel : (852) 2520 5990 Fax : (852) 2528 6343 Email : mail@ckmasia.com.hk

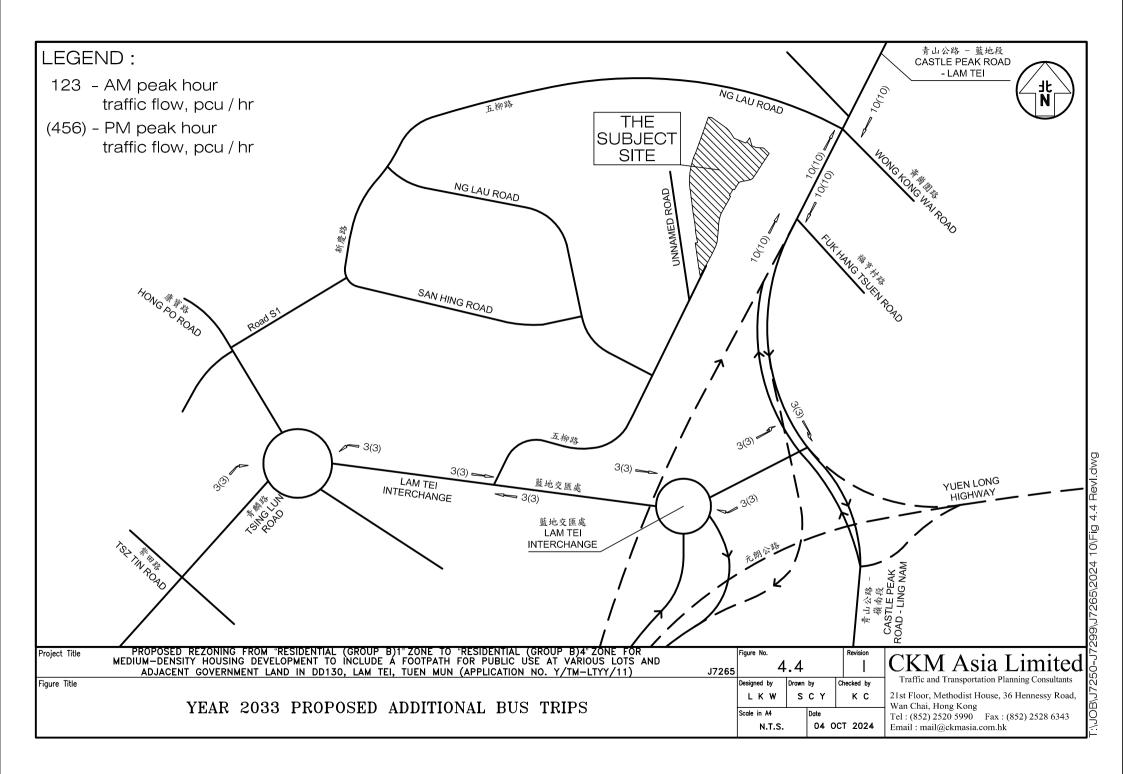
T \JOB\J7250-J7299\J7265\2024 02 _R6\Fig 2.2 - 2.13 RevG.dwg

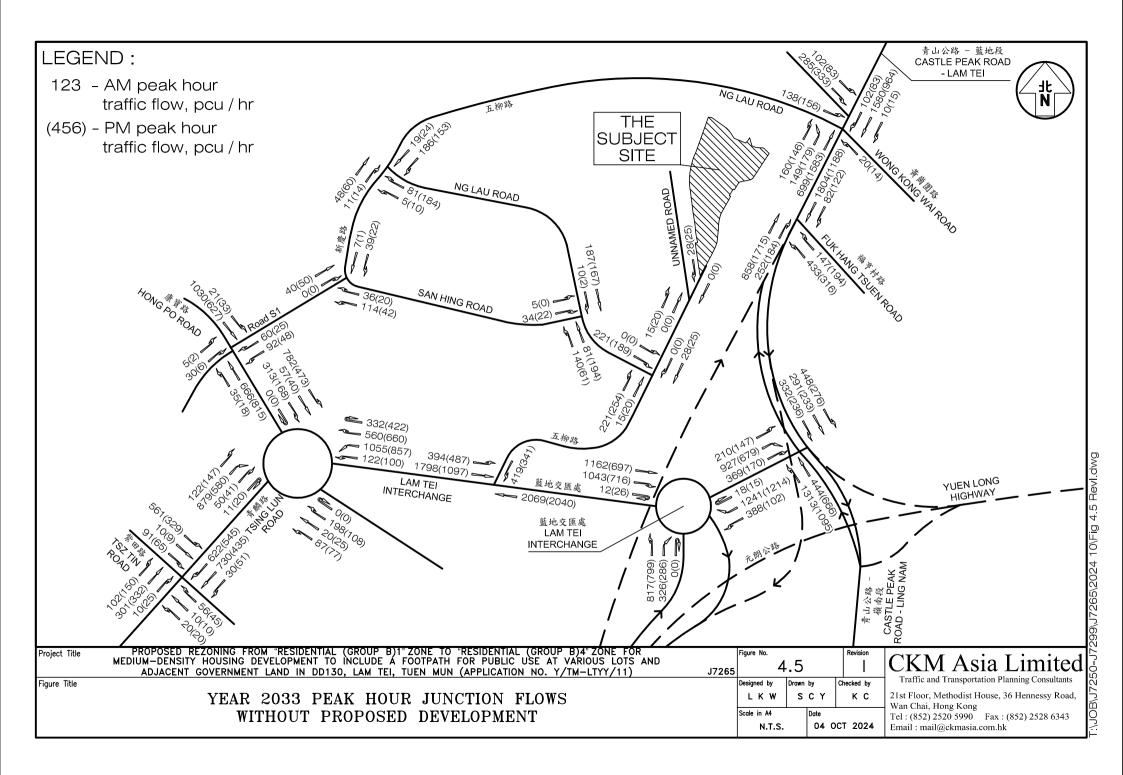


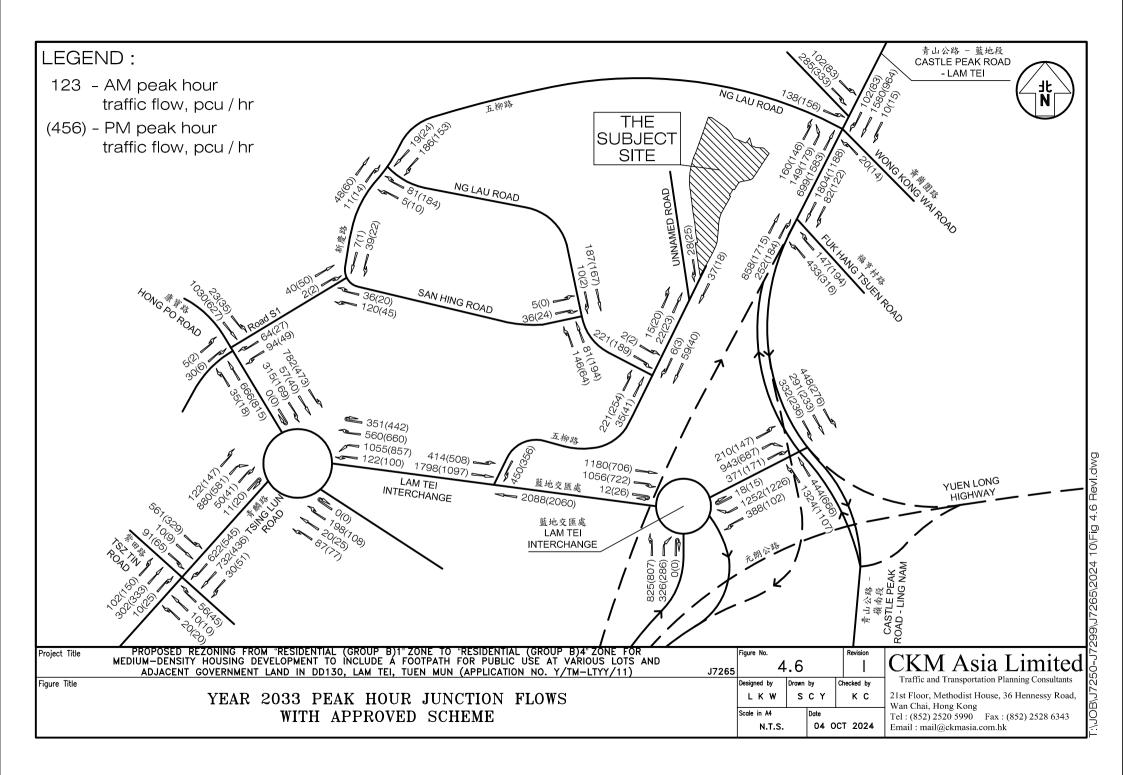


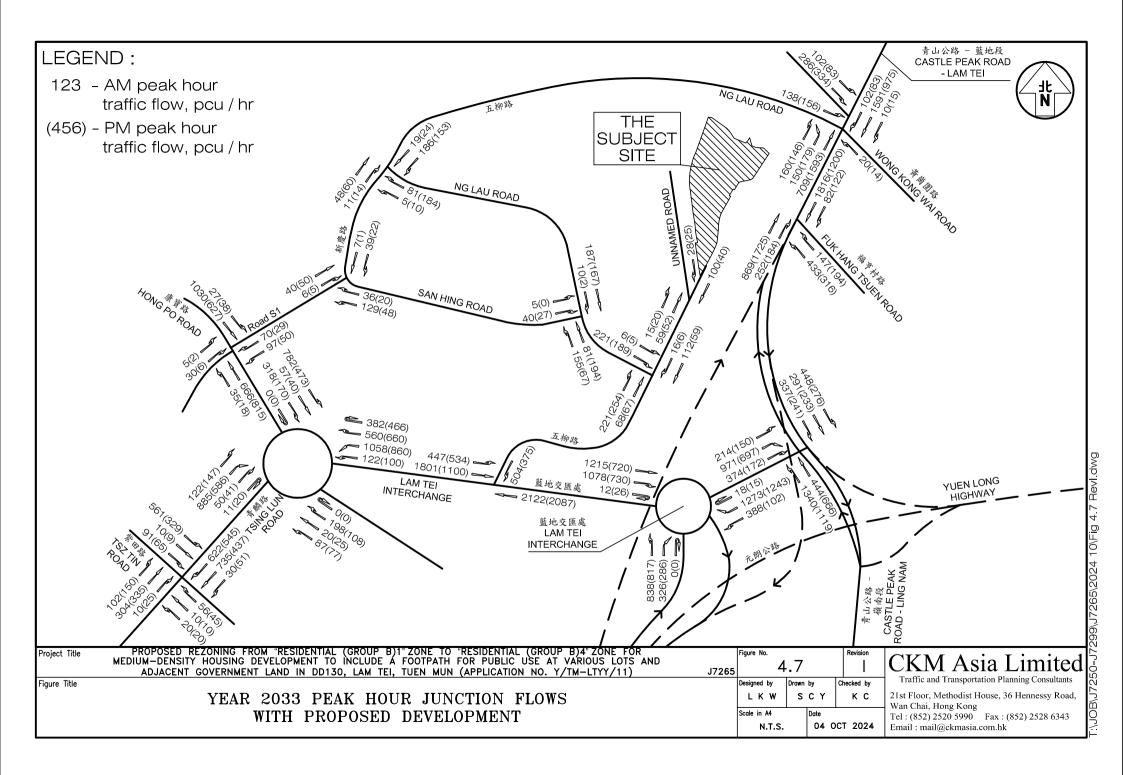


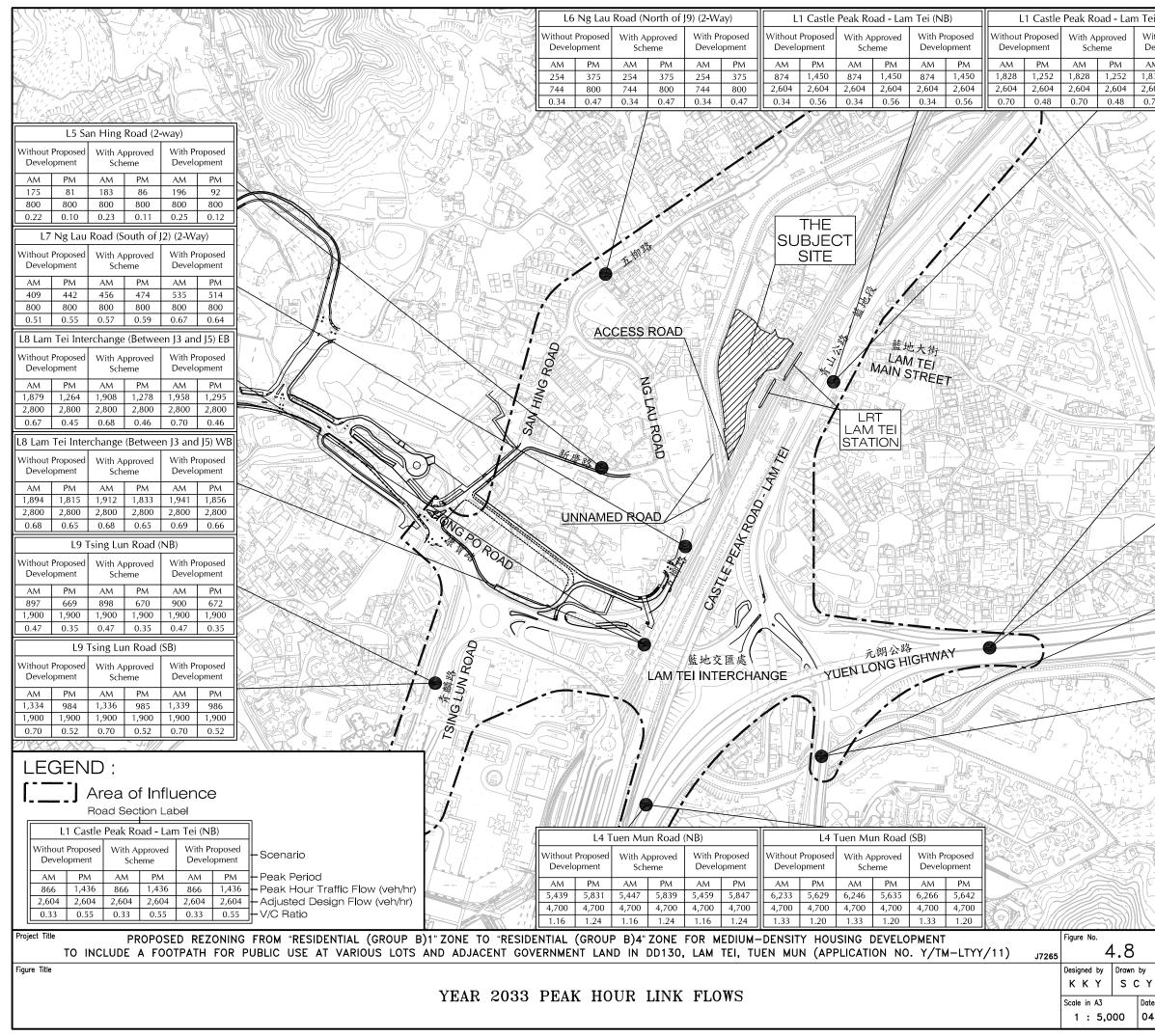

OB\J7250-J7299\J7265\2024 10\Fig 2.17 RevI.dwg






HEBJECT	J. BOAD J. BOAD J. J. J
	五柳路 NG LAU ROAD 藍地交匯處 LAM TEI INTERCHANGE
	Development at San Hing Road and
	Hong Po Road, Tuen Mun
	I San Hing Road Site
	J San Hing Road Site Extension
	K Ho Pong Road Site
	Other Planning Applications Nearby
	L A/TM-LTYY/ 426
	M Y/TM-LTYY/ 10
	N A/TM-LTYY/ 301
in Estate	O A/TM-LTYY/ 335
and	P A/TM-LTYY/ 336
	Q A/TM-LTYY/ 370
	R A/TM-LTYY/ 371
	S A/TM-LTYY/ 372
4.1	G CKM Asia Limited
	M Y/TM-LTYY/ 10 N A/TM-LTYY/ 301 O A/TM-LTYY/ 335 P A/TM-LTYY/ 336 Q A/TM-LTYY/ 370 R A/TM-LTYY/ 371 S A/TM-LTYY/ 372 Revision G CKKM Asia Limited Traffic and Transportation Planning Consultants 21st Floor, Methodist House, 36 Hennessy Road Wan Chai, Hong Kong Tel : (852) 2520 5990 Fax : (852) 2528 6343 Email : mail@ckmasia.com.bk
Dote	Wan Chai, Hong Kong Tel : (852) 2520 5990 Fax : (852) 2528 6343
000 20 F	EB 2024 Email : mail@ckmasia.com.bk

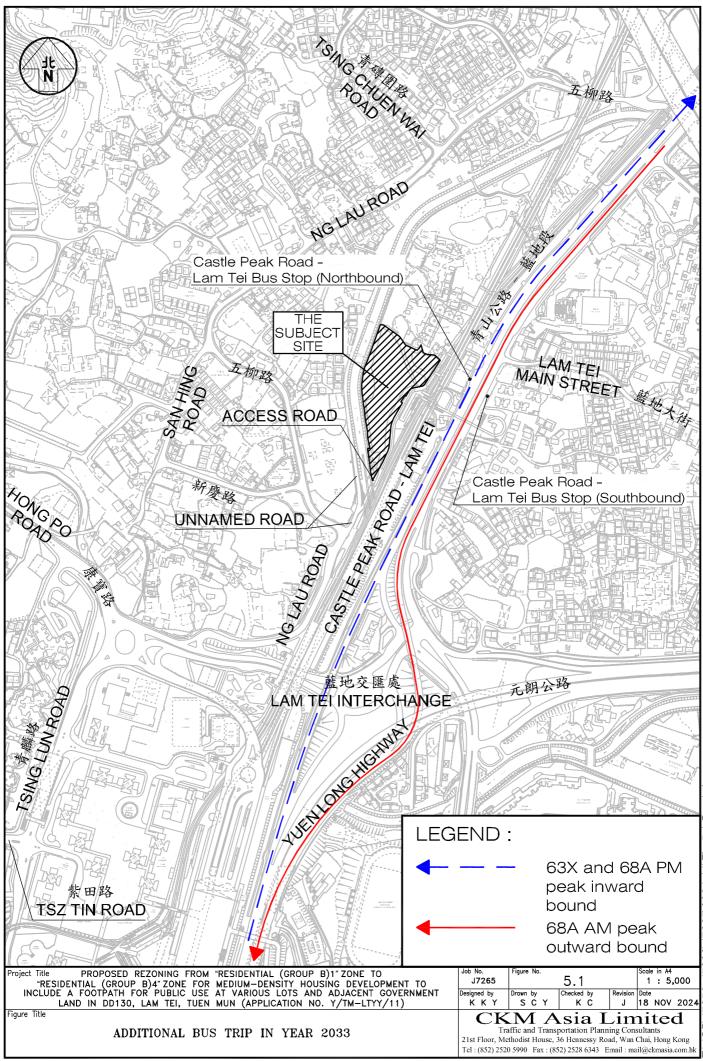


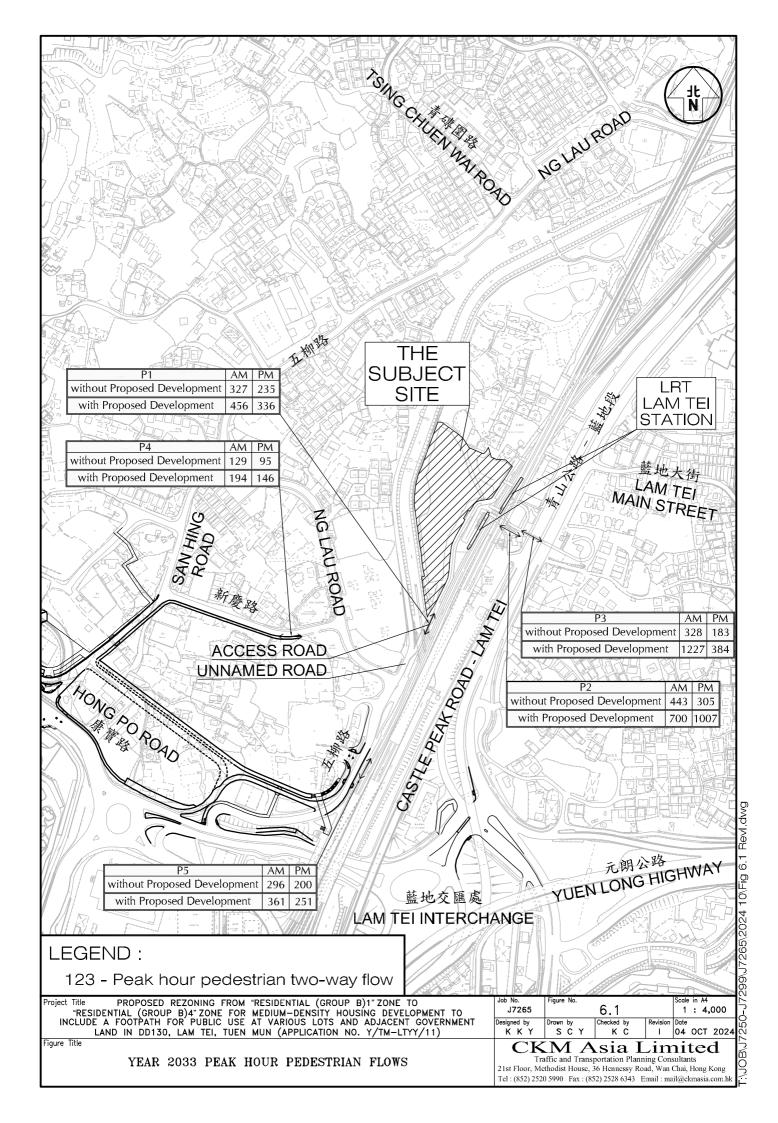


- Lar	n Tei (SE	3)						
ved		oposed		牌				
РМ		PM				\sim	- ALA	ET m
252	AM 1,830	1,254			- 1/1	\mathbf{X}	H.	Ľ
604	2,604	2,604	1076			<u>1</u> k 🖄	TIF	L' D
.48	0.70	0.48			CAL	NJ		AL S
F.								
3/	1L			L3 Yu	en Long	Highwa	y (NB)	
				Without Proposed Development		With Approved Scheme		roposed opment
Ens	119		AM	PM	AM	PM	AM	PM
E.	BIILE		5,023	4,737	5,037	4,744	5,064	4,753
2 In	L (Charles	XI	4,700	4,700	4,700	4,700	4,700	4,700
			1.07	1.01	1.07	1.01	1.08	1.01
12 Lip				L3 Yu	en Long	Highwa	iy (SB)	
				Proposed opment	With Aj Sche	pproved eme		roposed opment
Ľ			AM	РМ	AM	PM	AM	РМ
		X	5,179	5,272	5,188	5,281	5,201	5,292
빗		(3)	4,700	4,700	4,700	4,700	4,700	4,700
			1.10	1.12	1.10	1.12	1.11	1.13
4			L	2 Castle	Peak Ro	ad - Lin	gnan (NI	B)
				Proposed opment	With Approved Scheme		With Proposed Development	
14			AM	РМ	AM	РМ	AM	РМ
X3	67	ALY SI	538	619	539	620	541	622
-4			2,800	2,800	2,800	2,800	2,800	2,800
È	and the second second second		0.19	0.22	0.19	0.22	0.19	0.22
	1		L	2 Castle	Peak Ro	oad - Lin	gnan (SE	3)
	Cara and		Without Proposed With Approved With Proposed Development Scheme Development					roposed
)%			AM	PM	AM	PM	AM	PM
1 L.			863	589	865	590	868	591
1			2,800	2,800	2,800	2,800	2,800	2,800
1,	T, - YA	12	0.31	0.21	0.31	0.21	0.31	0.21
Ń						S.	X	E E

 4.8
 Image: Checked by S C Y
 K C

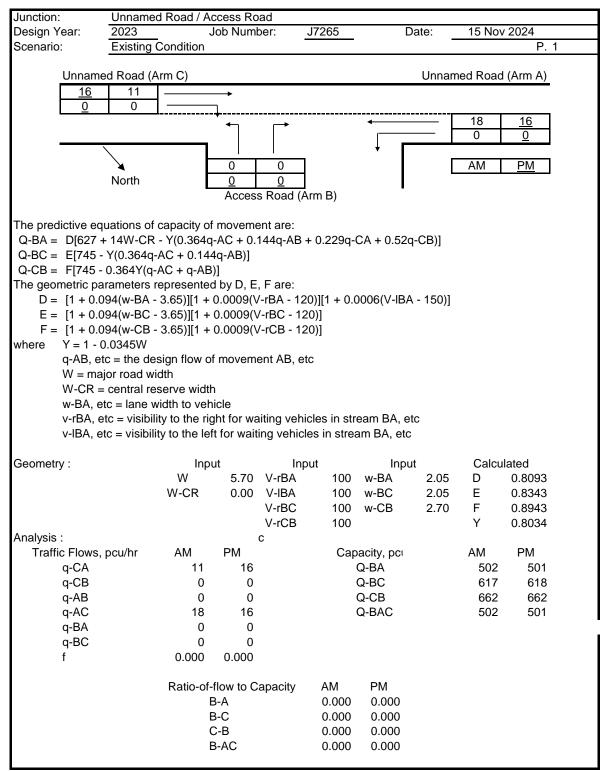
 Jordwn by
 Checked by
 CKKNA Asia Limited

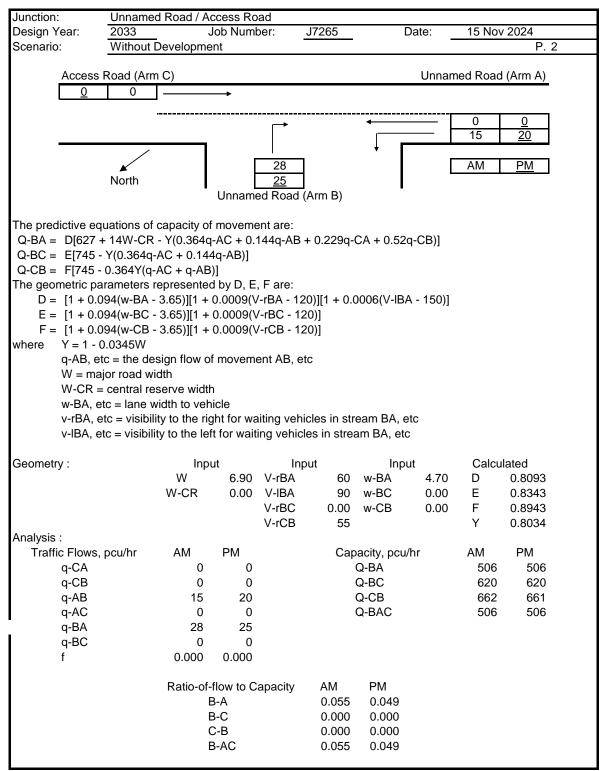

 Jordwn by
 Checked by
 CKSNA Sia Limited


 Jate
 Ist Floor, Methodist House, 36 Hennessy Road

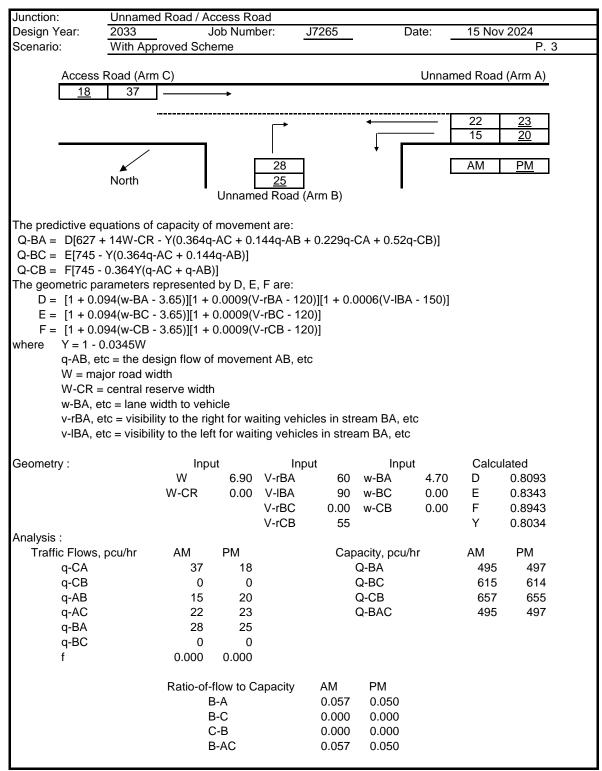
 Van Chai, Hong Kong
 Tel : (852) 2520 5990

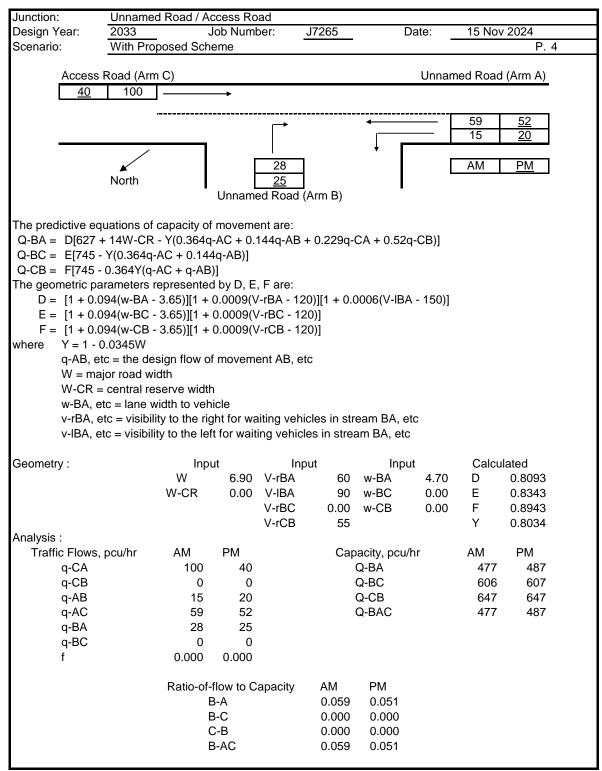
 Tel : (852) 2520 5990
 Fax : (852) 2528 6343


 Email : mail@ckmasia.com.hk
 Email : mail@ckmasia.com.hk

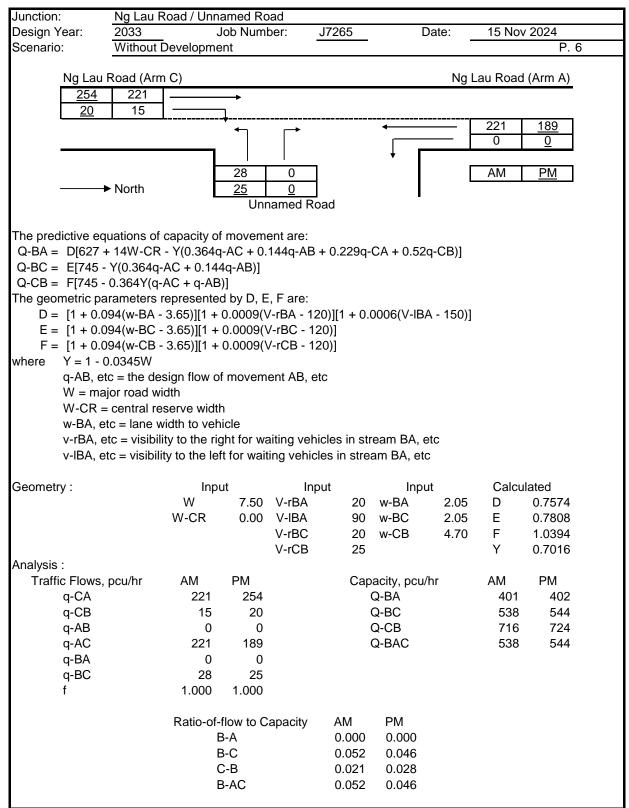


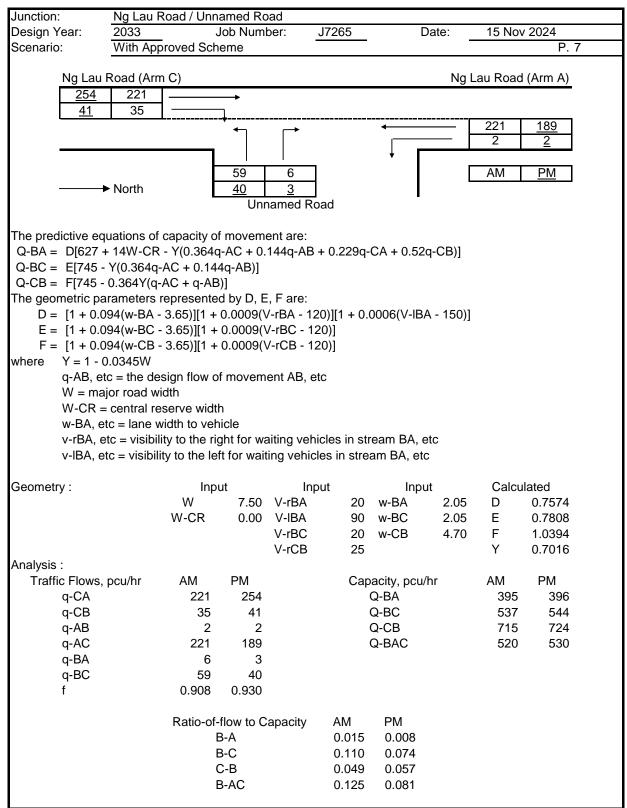
Appendix A – Junction Capacity Analysis

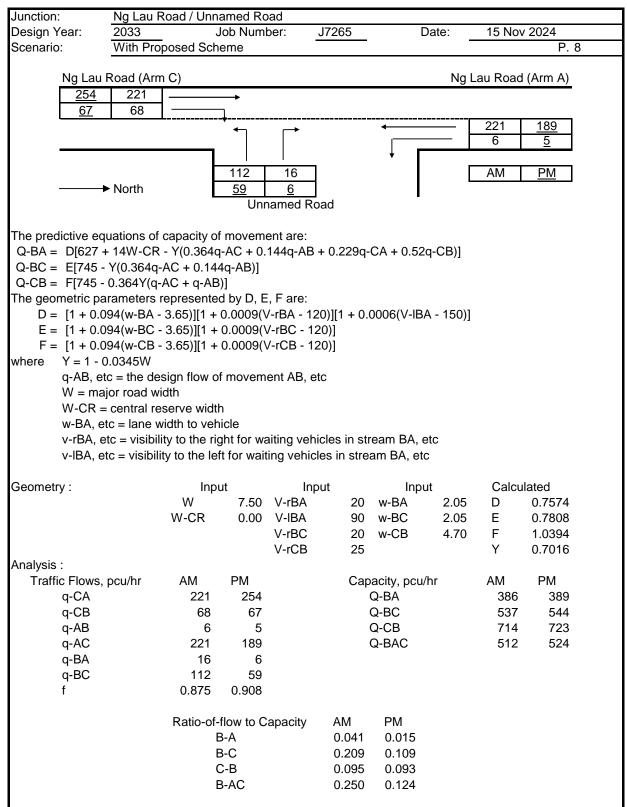

Priority Junction Analysis



Priority Junction Analysis




Priority Junction Analysis



Scenario: Existing Condition Design Year: 2023 Designed By: Checked By: Date: Aperach Prase Base With (m) Rabee (m) Volue (m) There Market With (m) State (m) Volue (m) There State (m) There There State (m) There There State (m) There	15 Nov 20	. 9
Design Year: 2023 Designed By: Checked By: Designed	15 Nov 20	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	v y value hr) 6 0.231	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	v y value hr) 6 0.231	
Lam Tei Interchange EB SA-LT A1 1 3,65 30.0 21 1959 609 0,311 0,311 55 1927 44 SA A2 1 3,65 A2 1 3,65 A2 A3 A3 A4 A3 A3 A3 A3 A4 A3 A4 A3 A4 A3 A4 A4 A3 A55 15.0 C A4 A4 A4 A3 A55 A4 A4 A4 A3 A55 A50 C A4 A4 A4 A3 A55 A50 C A4 A4 A4 A4 A4 A4 A4 A4 A4 A56 C A4 A4 A4 A4 A4 A4 A56 A50 A50 <td>6 0.231</td> <td>Critical</td>	6 0.231	Critical
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 0.231	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$Ng Lau Road SB \qquad LT B1 2 4.00 12.0 100 1791 204 0.114 0.114 100 1791 18 Ng Lau Road SB LT B1 2 4.00 12.0 100 1791 204 0.114 0.014 100 1791 18 Ng Lau Road SB LT B1 2 4.00 12.0 100 1791 204 0.114 0.014 100 1791 18 Particle Second State S$	6 0.341	0.34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 0.341	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 0.100	0.10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\frac{D_{(P)}}{126} = \frac{2}{126} + \frac{1}{1269} + \frac{245}{0} + \frac{1}{1399} + \frac{1}{0} + \frac{1}{169} $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\frac{D_{(P)}}{126} = \frac{2}{126} + \frac{1}{1269} + \frac{245}{0} + \frac{1}{1399} + \frac{1}{0} + \frac{1}{169} $	s sec	
$AM \text{ Traffic Flow (pcu/hr)} \\ 1269 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		
$\begin{array}{c} & & & \\ & &$	300	
$\begin{array}{c} & & & \\ & &$		
$\begin{array}{c} & & & \\ & &$		
$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$		
$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$		
$\begin{array}{c} & & & \\ & &$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
1141 1269 0 0 1399 0 $11+2$ $1+2$		
1141 1269 0 0 1399 0 $11+2$ $1+2$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
C (s) 82 82		
practical y 0.812 0.812		
R.C. (%) 91% 84%		
1 2 3 4 5		
$\begin{array}{c} A1 \\ A2 \end{array} \longrightarrow \\ \longleftarrow A3 \end{array}$		
A4		
↓ ↓ D _(P)		
	G =	
G= VG= G= VG= G= VG=		
	G =	
PM G= VG= 5 G= VG= 5 G= VG= G= VG= G= VG= G= VG= G= VG= G= VG=	G = G = G =	

						Signal 3	unction Ar	laiysis									
Junction:	Ng Lau Road		Intercha	inge											Job Nu	mber:	
Scenario:	Without Deve													_			10
Design Year:	2033	Designe	ed By:				-	Checke	d By:				•	Date:	15	5 Nov 20	24
									-	AM Peak		-			PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Lam Tei Intercha	nge EB	SA	A2	1	4.00				2155	899	0.417			2155	549	0.255	
		SA	A3	1	4.00				2155	899	0.417			2155	548	0.254	
l e e Teileteeke	WD	04.17															
Lam Tei Intercha	nge wB	SA+LT SA	B1	1	4.00	15.0		0	2015	1000		0.496	0	2015	986	0.489	0.489
		54	B2	1	4.00				2155	1069	0.496			2155	1054	0.489	
Ng Lau Road SB		LT	C1	2	5 50	10.0		100	1002	201	0 107	0 107	100	1002	162	0.097	0.087
		LT	C1 C2	2	5.50 5.00	10.0 15.0		100 100	1883 2050	201 218	0.107	0.107	100 100	1883 2050	163 178	0.087	0.067
			02	2	5.00	15.0		100	2030	210	0.100		100	2030	170	0.067	
pedestrian pha	ise		D _(P)	1		min c	rossing	time =	5	sec	GM +	13	sec F	GM =	18	sec	
			E _(P)	2		min c	rossing	time =	10	sec	GM +	12	sec F	GM =	22	sec	
AM Traffic Flow (pcu/hr	-1			DM Troffic I	Flow (pcu/hr)										Note:		
ANI Trainc Flow (pcu/ni			Ν		-iow (pcu/iii)				N	S = 1940 -	+ 100 (W-3	25) S =	2080 + 10	0 (W-3.25)	NOICE.		
	419						341			SM = S / (1 + 1.5 f/r)	SM =	(S - 230) / (1 + 1.5 f/r)			
	· 1798				,	1097	└→					Peak		Peak			
	1750	2069				1057		2040			1+2		1+2				
								-010 ¥		Sum y	0.603		0.576				
										L (s)	8 82		8 82				
										C (s) practical y	0.812		0.812				
										R.C. (%)	35%		41%				
4						0				r				c.			
1	D	2		C2 C1		3				4				5			
A1	< ^D (P) ►																
A2	► B2			, ,													
	← _ B1			E(P) ₩													
AM G =	1	G= 5	G =		I/G =	5	G =		I/G =	1	G =		I/G =	1	G =		
АМ G = G =		G = 0	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
PM G =		G = 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
G =		G =	G =		1/G =		G =		1/G =		G =		1/G =		G =		
5-			0-				0-				0-		.01		0-		

						Signal J	unction A	nalysis									
Junction:	Ng Lau Road	d / Lam Tei	Intercha	ange											Job Nu	mber:	J726
Scenario:	With Approve	ed Scheme	•													Ρ.	11
Design Year:	2033	Designe	ed By:				-	Checke	d By:					Date:	15	5 Nov 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Lam Tei Interchan	ige EB	SA	A2	1	4.00				2155	899	0.417			2155	549	0.255	
		SA	A3	1	4.00				2155	899	0.417			2155	548	0.254	
Lam Tei Interchan	ige WB	SA+LT SA	B1 B2	1 1	4.00	15.0		0	2015 2155	1009 1079	0.501	0.501	0	2015 2155	995 1065	0.494 0.494	0.49
Ng Lau Road SB		LT	C1 C2	2	5.50	10.0		100	1883	215	0.114	0.114	100	1883	170	0.090	0.09
		2.	02	2	5.00	15.0		100	2050	235	0.115		100	2050	186	0.091	
pedestrian phas	Se.		D _(P)	1		min c	rossing	time =	5	sec	GM +	13	sec F	GM =	18	sec	
			E _(P)	2			rossing		10		GM +	12		GM =	22	sec	
AM Traffic Flow (pcu/hr)			N	PM Traffic	Flow (pcu/hr)				N			.25) S =			Note:		
	450						356				+ 100 (vv-3.	,	(S - 230) / (. ,			
→	1798		1		 →	1097	L,				AM 1+2	Peak	PM	Peak			
		2088						2060		Sum y	0.615		0.584				
		0						0		L (s)	8		8				
										C (s)	82		82				
										practical y R.C. (%)	0.812 32%		0.812 39%				
1		2				3				4				5			
A1				C2 C1													
A2	← B2 ← B1			۔ ∔ !													
	ţ			E _(P) ♥													
AM G =	W	G= 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
G =		_{G =} g = 5	G = G =		I/G =	5	G = G =		I/G =		G = G =		I/G =		G = G =		

						Signal J	unction A	nalysis									
Junction:	Ng Lau Road	d / Lam Tei	Intercha	ange											Job Nu	mber:	J726
Scenario:	With Propos	ed Scheme														Ρ.	12
Design Year:	2033	Designe	ed By:					Checke	d By:					Date:	15	Nov 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Lam Tei Interchar	ige EB	SA	A2	1	4.00				2155	901	0.418			2155	550	0.255	
		SA	A3	1	4.00				2155	900	0.418			2155	550	0.255	
Lam Tei Interchar	ige WB	SA+LT SA	B1	1	4.00	15.0		0	2015	1025	0.509	0.509	0	2015	1008	0.500	0.50
		UN UN	B2	1	4.00				2155	1097	0.509			2155	1079	0.501	
Ng Lau Road SB		LT	C1	2	5.50	10.0		100	1883	241	0.128	0.128	100	1883	180	0.096	0.09
		LT	C2	2	5.00	15.0		100	2050	263	0.128		100	2050	195	0.095	
pedestrian pha	se		D _(P)	1		min c	rossing	time =	5	sec	GM +	13	sec F	GM =	18	sec	
			E _(P)	2		min c	rossing	time =	10	sec (GM +	12	sec F	GM =	22	sec	
AM Traffic Flow (pcu/hr)			N	PM Traffic	Flow (pcu/hr)				Ν	S = 1940 +	+ 100 (W-3	25) S =	2080 + 100) (W-3.25)	Note:		
	504						375			SM = S / (1 + 1.5 f/r)	SM = (S - 230) / (1 + 1.5 f/r)			
→	1801				>	1100	L.				AM 1+2	Peak	PM	Peak			
		2122						2087		Sum y	0.637		0.596				
		0						0		L (s)	8		8				
										C (s)	82		82				
										practical y	0.812		0.812				
		1								R.C. (%)	28%		36%				
1 A1→		2		C2 C1		3				4				5			
A2	← B2 ● B1			ļ,													
	+			E _(P)													
AM G =		g= 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
G =		G= G= 5	G = G =		I/G =	5	G = G =		I/G =		G =		I/G =		G = G =		
~W G=									I/G =		G =		I/G =		G =		

Scenario	Existing Co	ondition									Page	13
Design Ye	ar	2023			Job Numb	er	J7265			Date	15 Novem	ber 2024
AM Peak												
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c *	1	
From A	102	110	809	248					1269	259	1	
From B	182	0	77	22					281	1336		
From C	579	42	11	30					662	666		
From D	406	40	54	2					502	1026		
From E												
From F												
From G												
From H												
Total	1269	192	951	302					2714			
					* q _c in e	existing cond	lition is adjusted	d due to Tem	porary Traffic	Arrangement		
PM Peak	1											
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c *		
From A	205	90	742	362					1399	202		
From B	91	0	67	22					180	1453		
From C	443	32	18	37					530	772		
From D	198	26	34	2					260	879		
From E												
From F												
From G												
From H											4	
Total	937	148	861	423					2369	1	1	

Legend	
Arm	Road (in clockwise order)
Α	Slip Road from Lam Tei Interchange
В	Access Road from Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
E	
F	
G	
н	

Geometrie	Geometric Parameters											
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S					
From A	10.0	7.3	20.0	10.0	55	45	0.4					
From B	9.0	6.8	28.0	4.0	55	19	0.9					
From C	11.5	7.8	100.0	9.0	55	23	0.7					
From D*	6.0	4.5	27.0	6.0	55	10	0.4					
From E												
From F												
From G												
From H												

Predictive Equation $Q_E = K(F - f_cq_c)$

Q _E	Entry Capacity
q _c	Circulating Flow across the Entry

- = 1-0.00347(Ø-30)-0.978[(1/r)-0.05] Κ
- = 303x₂ F
- $= 0.210t_D(1+0.2x_2)$ \mathbf{f}_{c}
- = 1+0.5/(1+M) \mathbf{t}_{D}
- Μ $= \exp[(D-60)/10]$
- = v+(e-v)/(1+2S)**x**₂
- S = 1.6(e-v)/L

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m

* Parameter in existing condition is adjusted for TTA

- nation (\ \ / i al tale

Limitation Г

L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

							Q _E		Entry	Flow	RFC	
Arm	х ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	8.748	0.607	1.311	0.948	2651	0.757	2327	2368	1269	1399	0.545	0.591
From B	7.597	0.607	1.311	1.051	2302	0.694	1445	1360	281	180	0.194	0.132
From C	9.398	0.607	1.311	1.063	2848	0.793	2467	2377	662	530	0.268	0.223
From D	5.333	0.607	1.311	1.082	1616	0.569	1117	1207	502	260	0.449	0.215
From E												
From F												
From G												
From H												

Location	Tsing Lun Road	/ Hong Po Road /	Lam Tei Interchange
----------	----------------	------------------	---------------------

Scenario Witho	out Development				Page	14
Design Year	2033	Job Number	J7265	Date	15 Novemb	ber 2024

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	332	0	1055	560					1947	431
From B	198	0	87	20					305	2271
From C	879	50	11	122					1062	1110
From D	782	57	313	0					1152	1470
From E										
From F										
From G										
From H										
Total	2191	107	1466	702					4466	

PM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	422	0	857	660					1939	269
From B	108	0	77	25					210	2127
From C	580	41	20	147					788	1215
From D	473	40	168	0					681	1171
From E										
From F										
From G										
From H										
Total	1583	81	1122	832					3618	

l er	ne	n	d
LC	յշ		u

Legena	
Arm	Road (in clockwise order)
А	Slip Road to Lam Tei Interchange
В	Access Road to Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Е	
F	
G	
Н	

Geometric Parameters										
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S			
From A	11.0	7.8	30.0	10.0	55	20	0.5			
From B	9.0	6.8	28.0	6.0	55	19	0.6			
From C	11.5	7.8	100.0	9.0	55	23	0.7			
From D	14.0	8.5	40.0	10.0	55	10	0.9			
From E										
From F										
From G										
From H										

Predictive Equation $Q_E = K(F - f_cq_c)$

Q _E	Entry Capacity
q_{c}	Circulating Flow across the Entry

- $\begin{array}{lll} \mathsf{K} & = 1\mbox{-}0.00347(\ensuremath{\varnothing}\mbox{-}30)\mbox{-}0.978[(1/r)\mbox{-}0.05] \\ \mathsf{F} & = 303x_2 \end{array}$
- $f_c = 0.210t_D(1{+}0.2x_2)$
- $t_D = 1+0.5/(1+M)$
- M = exp[(D-60)/10]
- $x_2 = v+(e-v)/(1+2S)$
- S = 1.6(e-v)/L

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

							C	ζ _E	Entry	Flow	RI	=C
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	9.381	0.607	1.311	1.051	2842	0.792	2629	2764	1947	1939	0.741	0.702
From B	7.812	0.607	1.311	1.051	2367	0.706	804	911	305	210	0.379	0.231
From C	9.398	0.607	1.311	1.063	2848	0.793	2092	2004	1062	788	0.508	0.393
From D	10.493	0.607	1.311	1.094	3179	0.853	2106	2385	1152	681	0.547	0.286
From E												
From F												
From G												
From H												

Location	Tsing Lun Road	Hong Po Road	/ Lam Tei Interchange
----------	----------------	--------------	-----------------------

Scenario With A	Approved Scheme				Page	15
Design Year 2033		Job Number	J7265	Date	15 Novem	ber 2024

AM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	351	0	1055	560					1966	433
From B	198	0	87	20					305	2292
From C	880	50	11	122					1063	1129
From D	782	57	315	0					1154	1490
From E										
From F										
From G										
From H										
Total	2211	107	1468	702					4488	

PM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	442	0	857	660					1959	270
From B	108	0	77	25					210	2148
From C	581	41	20	147					789	1235
From D	473	40	169	0					682	1192
From E										
From F										
From G										
From H										
Total	1604	81	1123	832					3640	

Legend	
Arm	Road (in clockwise order)
А	Slip Road to Lam Tei Interchange
В	Access Road to Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Е	
F	
G	
н	

end		G
rm	Road (in clockwise order)	
Ą	Slip Road to Lam Tei Interchange	Fr
В	Access Road to Siu Hong Station	Fr
С	Tsing Lun Road	Fr
D	Hong Po Road	Fr
E		Fr
F		Fr
G		Fr
Η		Fr

Geometri	Geometric Parameters											
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S					
From A	11.0	7.8	30.0	10.0	55	20	0.5					
From B	9.0	6.8	28.0	4.0	55	19	0.9					
From C	11.5	7.8	100.0	9.0	55	23	0.7					
From D	14.0	8.5	40.0	10.0	55	10	0.9					
From E												
From F												
From G												
From H												

cPredictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q _c	Circulating Flow across the Entry
К	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f_{c}	$= 0.210t_D(1+0.2x_2)$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitatio	Limitation									
е	Entry Width	4.0 - 15.0 m								
v	Approach Half Width	2.0 - 7.3 m								
r	Entry Radius	6.0 - 100.0 m								
L	Effective Length of Flare	1.0 - 100.0 m								
D	Inscribed Circle Diameter	15 - 100 m								
Ø	Entry Angle	10° - 60°								
S	Sharpness of Flare	0.0 - 3.0								

							Q _E		Entry Flow		RFC	
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	9.381	0.607	1.311	1.051	2842	0.792	2627	2763	1966	1959	0.748	0.709
From B	7.597	0.607	1.311	1.051	2302	0.694	748	853	305	210	0.408	0.246
From C	9.398	0.607	1.311	1.063	2848	0.793	2076	1987	1063	789	0.512	0.397
From D	10.493	0.607	1.311	1.094	3179	0.853	2087	2365	1154	682	0.553	0.288
From E												
From F												
From G												
From H												

Location Tsing Lun Roa	d / Hong Po Road / Lam Tei Interc	change
------------------------	-----------------------------------	--------

Scenario With Pro	posed Scheme				Page	16
Design Year	2033	Job Number	J7265	Date	15 Novem	ber 2024

AM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	382	0	1058	560					2000	436
From B	198	0	87	20					305	2329
From C	885	50	11	122					1068	1160
From D	782	57	318	0					1157	1526
From E										
From F										
From G										
From H										
Total	2247	107	1474	702					4530	

PM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	466	0	860	660					1986	271
From B	108	0	77	25					210	2176
From C	586	41	20	147					794	1259
From D	473	40	170	0					683	1221
From E										
From F										
From G										
From H										
Total	1633	81	1127	832					3673	

Legend	
Arm	Road (in clockwise order)
А	Slip Road to Lam Tei Interchang
В	Access Road to Siu Hong Statio
С	Tsing Lun Road
D	Hong Po Road
Е	
F	

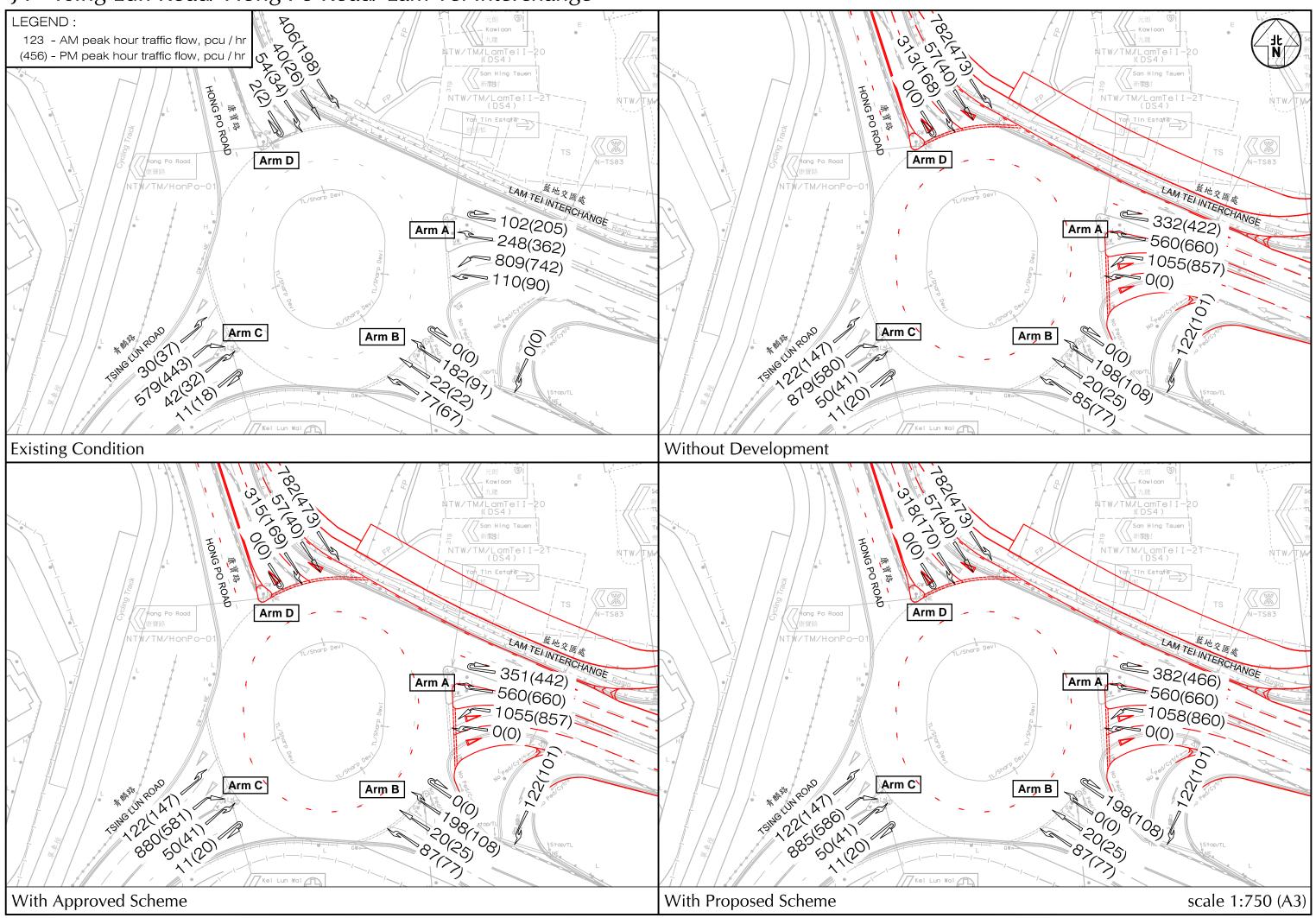
	Geo	ometrie	c Par
Road (in clockwise order)	/	Arm	е (
Slip Road to Lam Tei Interchange	Fro	m A	11
Access Road to Siu Hong Station	Fro	mВ	9
Tsing Lun Road	Fro	m C	11
Hong Po Road	Fro	m D	14
	Fro	m E	
	Fro	m F	
	Fro	m G	
	Fro	mΗ	

Geometric Parameters							
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	11.0	7.8	30.0	10.0	55	20	0.5
From B	9.0	6.8	28.0	4.0	55	19	0.9
From C	11.5	7.8	100.0	9.0	55	23	0.7
From D	14.0	8.5	40.0	10.0	55	10	0.9
From E							
From F							
From G							
rom H							

Predictive Equation $Q_E = K(F - f_cq_c)$

G Н

Q_E	Entry Capacity
q_{c}	Circulating Flow across the Entry


- κ = 1-0.00347(Ø-30)-0.978[(1/r)-0.05] = 303x₂ F
- $= 0.210t_D(1+0.2x_2)$ f_{c}
- = 1+0.5/(1+M) \mathbf{t}_{D}
- Μ $= \exp[(D-60)/10]$
- = v+(e-v)/(1+2S) \mathbf{X}_2
- s = 1.6(e-v)/L

L	imitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

							C) ^E	Entry	Flow	RI	=C
Arm	Х ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	9.381	0.607	1.311	1.051	2842	0.792	2624	2762	2000	1986	0.762	0.719
From B	7.597	0.607	1.311	1.051	2302	0.694	721	833	305	210	0.423	0.252
From C	9.398	0.607	1.311	1.063	2848	0.793	2050	1967	1068	794	0.521	0.404
From D	10.493	0.607	1.311	1.094	3179	0.853	2053	2338	1157	683	0.563	0.292
From E												
From F												
From G												
From H												

J4 - Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange

Location	Lam Tei Ir	nterchange										
Scenario	Existing C	ondition									Page	17
Design Ye	ar	2023	_		Job Numb	er	J7265			Date	15 Nover	ber 2024
AM Peak												
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	17	0	945						962	658		
From B	293	4	310						607	976		
From C	385	640	14						1039	314		
From D												
From E												
											I	

Total	695	644	1269	2608	
i ioiii G					
From G					
From F					

PM	Peak

Pivi Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	7	0	958						965	483
From B	267	0	414						681	992
From C	202	456	27						685	274
From D										
From E										
From F										
From G										
From H										
Total	476	456	1399						2331	

F

Leaend

Legena	
Arm	Road (in clockwise order)
Α	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Е	
F	
G	
Н	

Geometric Parameters

ocomean	e i aramete	0					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	51	22	0.0
From B	8.8	7.3	65.0	3.0	51	26	0.8
From C	7.7	6.8	100.0	8.0	51	17	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_{c}	Circulating Flow across the Entry
K F	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05] = 303x ₂
f _c	$= 0.210t_{D}(1+0.2x_{2})$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

							Q _E		Entry Flow		RFC	
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.407	1.355	1.052	2212	0.700	1843	1972	962	965	0.522	0.489
From B	7.877	0.407	1.355	1.048	2387	0.733	1751	1739	607	681	0.347	0.392
From C	7.438	0.407	1.355	1.084	2254	0.708	2203	2233	1039	685	0.472	0.307
From D												
From E												
From F												
From G												
From H												

Scenario	Without D	evelopmen	t								Page	18
Design Ye	ar	2033			Job Number		J7265			Date	15 November 20	
AM Peak												
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	18	0	1241						1259	1055		
From B	326	0	817						1143	1271		
From C	711	1043	12						1766	344		
From D												
From E												
From F												
From G												
From H												
Total	1055	1043	2070						4168		1	

PM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	15	0	1214						1229	742
From B	286	0	799						1085	1255
From C	414	716	26						1156	301
From D										
From E										
From F										
From G										
From H										
Total	715	716	2039						3470	

F

Legend

Legena	
Arm	Road (in clockwise order)
Α	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	51	22	0.0
From B	8.8	7.3	65.0	3.0	51	26	0.8
From C	7.7	6.8	100.0	8.0	51	17	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q _c	Circulating Flow across the Entry
К	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

mitain		
е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q _E		Entry Flow		RFC	
Arm	X ₂	Μ	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.407	1.355	1.052	2212	0.700	1550	1781	1259	1229	0.812	0.690
From B	7.877	0.407	1.355	1.048	2387	0.733	1524	1537	1143	1085	0.750	0.706
From C	7.438	0.407	1.355	1.084	2254	0.708	2180	2213	1766	1156	0.810	0.522
From D												
From E												
From F												
From G												
From H												

Scenario	With Appr	oved Scher	ne								Page	19
Design Ye	ar	2033			Job Numb	er	J7265			Date	15 November 202	
AM Peak											_	
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	18	0	1252						1270	1068		
From B	326	0	825						1151	1282		
From C	721	1056	12						1789	344		
From D												
From E												
From F												
From G												
From H												
Total	1065	1056	2089						4210		1	

PM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	15	0	1226						1241	748
From B	286	0	807						1093	1267
From C	412	722	26						1159.658	301
From D										
From E										
From F										
From G										
From H										
Total	713	722	2059						3493.658	

F

Legend

Legenu	
Arm	Road (in clockwise order)
А	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Jeometrik		513					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	51	22	0.0
From B	8.8	7.3	65.0	3.0	51	26	0.8
From C	7.7	6.8	100.0	8.0	51	17	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_{c}	Circulating Flow across the Entry
K F	= 1-0.00347(∅-30)-0.978[(1/r)-0.05] = 303x₂
f _c	$= 0.210t_{D}(1+0.2x_{2})$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation e Entry Width

v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

4.0 - 15.0 m

							C	Q _E	Entry	Flow	RI	-C
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.407	1.355	1.052	2212	0.700	1540	1776	1270	1241	0.824	0.699
From B	7.877	0.407	1.355	1.048	2387	0.733	1516	1527	1151	1093	0.759	0.716
From C	7.438	0.407	1.355	1.084	2254	0.708	2180	2213	1789	1160	0.821	0.524
From D												
From E												
From F												
From G												
From H												

Scenario	With Propo	sed Scher	ne								Page	20
Design Y	ear <u>2</u>	2033			Job Numb	er	J7265			Date	15 Novem	ber 2024
AM Peak												
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	18	0	1273						1291	1090		
From B	326	0	838						1164	1303		
From C	740	1078	12						1830	344		
From D												
From E												
From F												
From G												
From H												
Total	1083.599	1078	2123						4285			

PM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	15	0	1309						1324	790
From B	286	0	851						1137	1350
From C	419	764	26						1209	301
From D										
From E										
From F										
From G										
From H										
Total	720	764	2186						3670	

Leaend

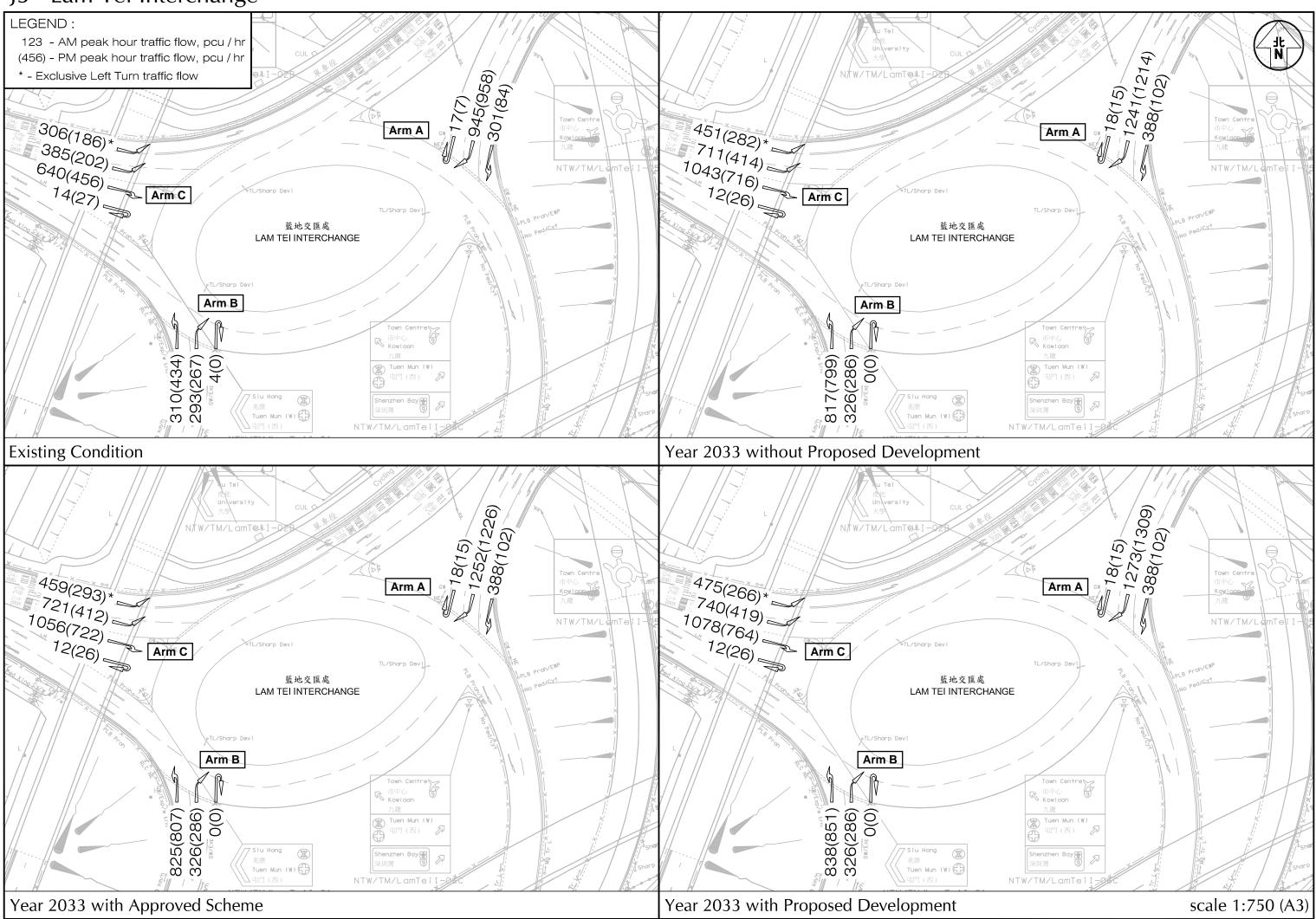
Legenu	
Arm	Road (in clockwise order)
А	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Coomean	o i aramoto						
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	51	22	0.0
From B	8.8	7.3	65.0	3.0	51	26	0.8
From C	7.7	6.8	100.0	8.0	51	17	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_{c}	Circulating Flow across the Entry
к	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L


Limitation

minan		
е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							C	2 _E	Entry	Flow	RI	FC
Arm	X ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.407	1.355	1.052	2212	0.700	1524	1745	1291	1324	0.847	0.759
From B	7.877	0.407	1.355	1.048	2387	0.733	1500	1464	1164	1137	0.776	0.777
From C	7.438	0.407	1.355	1.084	2254	0.708	2180	2213	1830	1209	0.839	0.546
From D												
From E												
From F												
From G												
From H												

J5 - Lam Tei Interchange

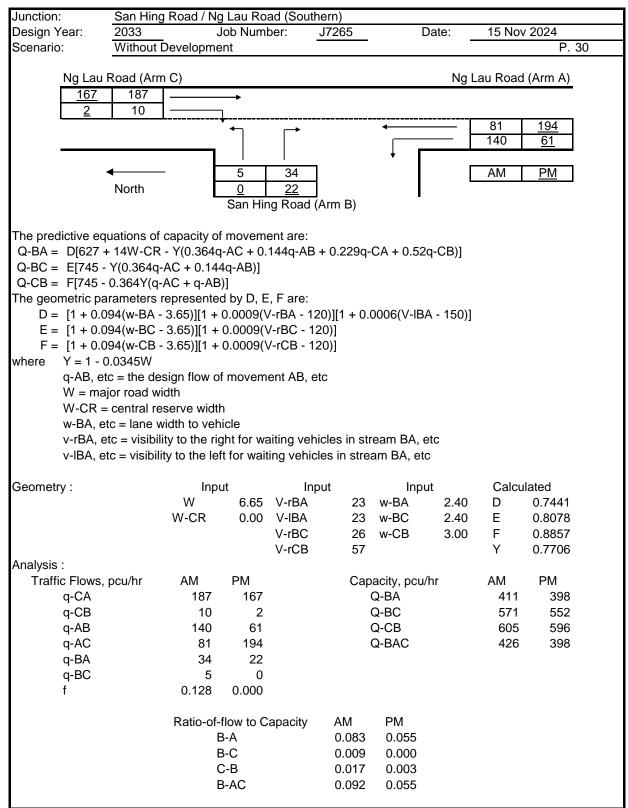
						Signal J	unction A	nalysis									
Junction:	Lam Tei Inter	rchange / C	astle Pe	eak Roa	d – Lam	Tei								_	Job Nu	mber:	J7265
Scenario:	Existing Con	dition														Ρ.	21
Design Year:	2023	Designe	ed By:				_	Checke	d By:					Date:	15	5 Nov 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical y
Castle Peak Road	d -Lam Tei SB	LT	A1	1,4	3.25	80.0	Gradient	100	1904	364	0.191	0.191	100	1904	249	0.131	0.131
		SA	A2	1,4	3.25	00.0		100	2080	157	0.075	0.101	100	2080	132	0.063	0.101
		SA+RT	A3	1	3.25	22.5		64	1995	151	0.076		55	2006	128	0.064	
		RT	A4	1	3.25	20.0		100	1935	146	0.075		100	1935	123	0.064	
Slip Road from La	am Tei Interchan	ige LT	B1	2,3	3.50	8.0		100	1655	163	0.099		100	1655	116	0.070	
		LT+RT	B2	2,3	3.50	30.0		100	2005	281	0.140		100	2005	202	0.101	
		RT	B3	2,3	3.50	26.0		100	1990	278	0.140	0.140	100	1990	200	0.100	0.100
		RT	B4	2,3	3.50	23.0		100	1976	280	0.142		100	1976	145	0.073	
Castle Peak Road	d NB	LT	C1	3,4	3.50	14.0		100	1775	486	0.274		100	1775	407	0.229	
		LT	C2	3,4	3.50	14.0		100	1951	534	0.274		100	1951	407	0.229	
		SA	D1	4	3.50				2105	137	0.065			2105	223	0.106	
		SA	D2	4	3.50				2105	137	0.065			2105	223	0.106	
pedestrian pha	se		E _(P)	1,3		min c	rossing	time =	6	sec (GM +	12	sec F	FGM =	18	sec	
			F _(P)	1		min c	rossing	time =	5	sec (GM +	7	sec F	GM =	12	sec	
			G _(P)	2		min c	rossing	time =	6	sec (GM +	11	sec F	GM =	17	sec	
			$H_{(P)}$	2		min c	rossing	time =	5	sec (GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		Ν	PM Traffic I	low (pcu/hr)				Ν	S = 1940 +	- 100 (W-3.	25) S :	= 2080 + 10	00 (W-3.25)	Note:		
										SM = S / (*	1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
³⁶⁴	1	۰	_		1 ²⁴⁹			•	_		AM	Peak	PM	Peak			
\rightarrow	211	274			\rightarrow	189		446			1,4+2,3		1,4+2,3				
243	5	1020			194			855		Sum y	0.331		0.231				
						. .		•		L (s)	21		21				
	163 559	280				116	402	145		C (s)	110		110				
										practical y	0.728		0.728				
										R.C. (%)	120%		215%				
1	۰,	2	•			3				4	+			5			
		G _(P)	ŧ							A1 A2							
A3 4									C2				D2 D1 C2				
			┯╸┍╸┍	•		•]•	┕┯╼┟╸└	• ‡	C2 C1			+	C2 C1				
F _(P) ↓ ←	*	B1	B2 B3 B4		← – – ► H _(P)	B1	B2 B3 B4				← + E _(P)	•					
Lp	1					ы				-							
AM G =		G= 15	G =		I/G =		G =		I/G =		G =		I/G =	7	G =		
G =		<u>G = 15</u>	G =		I/G =		G =		I/G =		G =		I/G =	1	G =		
PM G =		g = 15 g = 15	G =		I/G =		G =		I/G = I/G =		G = G =		I/G =	7	G =		
G =	. 1/0	u= 1 0	G =		I/G =		G =		#G =	,	G =		1/G =	1	G =		

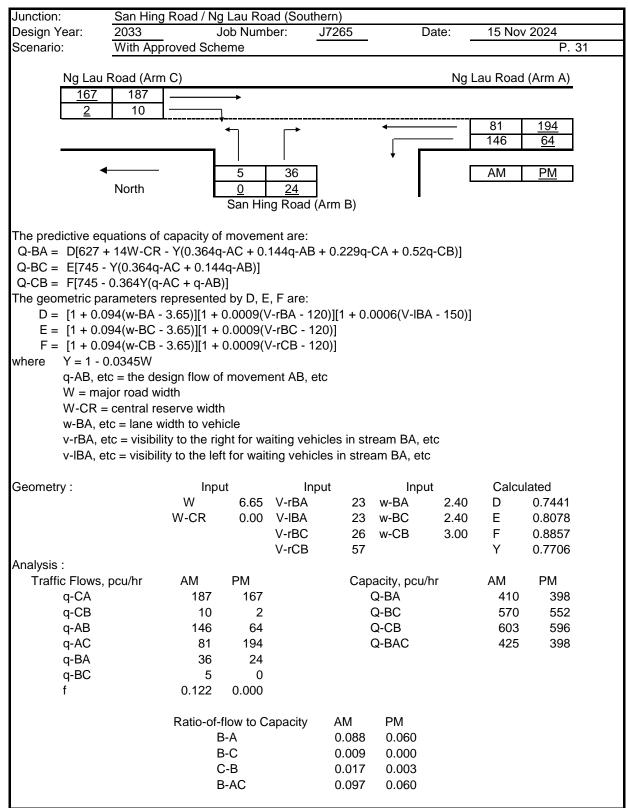
						Signal J	unction A	nalysis									
Junction:		Interchange / C	astle P	eak Roa	d – Lam	Tei								-	Job Nu	mber:	-
Scenario: Design Year:	2033	Development Designe	ed By:				-	Checke	d By:				_	Date:	15	P. 5 Nov 20	22 24
							1	1		AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Castle Peak Road	d SB	LT	A1	1,4	3.50	80.0		100	1929	448	0.232		100	1929	276	0.143	
		SA+RT	A2	1	3.50	30.0		0	2105	291	0.138	0.138	0	2105	233	0.111	0.111
		RT	A3	1	3.50	25.0		100	1986	167	0.084		100	1986	119	0.060	
		RT	A4	1	3.50	20.0		100	1958	165	0.084		100	1958	117	0.060	
Slip Road from	LT	+(To YL Hwy)RT	B2	2,3	3.50	30.0		100	2105	585	0.278		100	2005	405	0.202	0.202
Lam Tei Interchar	nge	(To YL Hwy) RT	B3	2,3	3.50	25.0		100	1986	552	0.278		100	2086	421	0.202	
		(To CPR) RT	B4	2,3	3.50	20.0		100	1958	369	0.188		100	1958	170	0.087	
Castle Peak Road	d NB	LT	C1	3,4	3.50	14.0		100	1775	625	0.352	0.352	100	1775	522	0.294	
		LT	C2	3,4	3.50	19.0		100	1951	688	0.353	0.002	100	1951	573	0.294	
		SA	D1	4	3.50				2105	222	0.105			2105	333	0.158	0.158
		SA	D2	4	3.50				2105	222	0.105			2105	333	0.158	
pedestrian pha	se		D _(P)	1		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
			E _(P)	1,4			rossing		5		GM +	7		GM =	12	sec	
			$F_{(P)}$	2			rossing		6		GM +	11		GM =	17	sec	
			$G_{(P)}$	2,3		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)	、 、	Ν	PM Traffic	Flow (pcu/hr)				Ν	S = 1940 +	- 100 (W-3.	25) S :	= 2080 + 10	00 (W-3.25)	Note:		
										SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
448		•	_		276				_		AM	Peak	PM	Peak			
332	291	444 ¥ 1313			236	233		666 J			1+3,4		1 + 2,3 + 4				
332	-	1313			230			1095		Sum y	0.490		0.471				
	210 9	27 369				147	679	+		L (s)	38		26				
	"	1						170		C (s)	110 0.589		110 0.687				
										practical y R.C. (%)	20%		46%				
1		2				3				4				5			
A1		Z G _(P)	▲			З G _(P)	1			4 A1	t			5			
		- (r)	*			- (P)	*					—	D2 D1				
A4			╌ ┾┌┿┌╴	•			← ┯╼┝╼┝┍┥	• F	C2 C1			<u>•</u>	C2 C1				
D _(P)	•				 >			+	51		* •	+	51				
E _(P))		B2 B3 B4	•	F _(P)		B2 B3 B4				E _(P)						
AM G =		⊮g = 15	G =	7	I/G =	11	G =		I/G =		G =		I/G =	7	G =		
G =		⊮G = 15	G =		I/G =		G =		I/G =		G =		I/G =		G =		
AM G =		VG = 15	G =	_	I/G =		G =		I/G =	7	G =		I/G =		G =		
G =		⊮g = 15	G =	7	I/G =	11	G =		I/G =		G =		I/G =	7	G =	-	

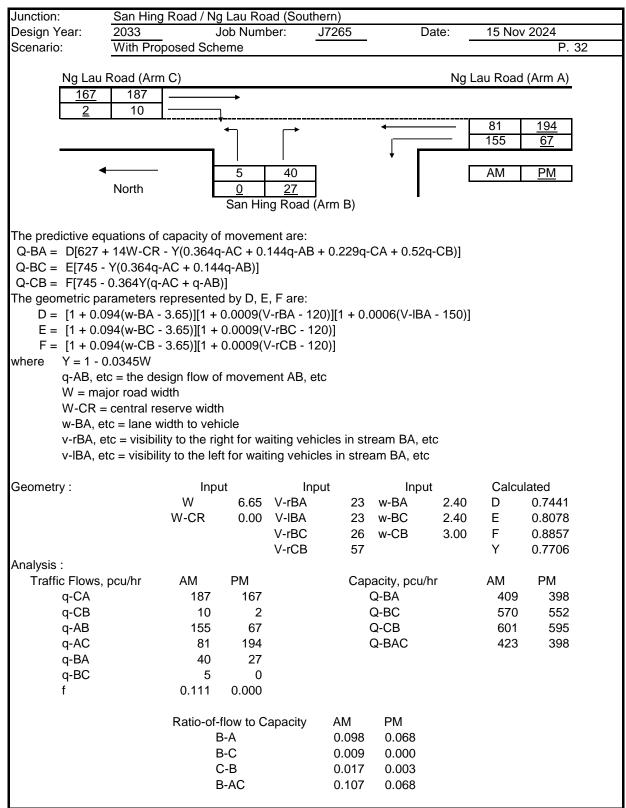
						Signal J	unction A	nalysis									
Junction:	Lam Tei I	nterchange / (Castle Pe	eak Roa	d – Lam	Tei								-	Job Nu	mber:	J7265
Scenario:		roved Scheme															23
Design Year:	2033	Design	ed By:				-	Checke	d By:					Date:	15	5 Nov 20)24
	Approach		Phase	Change	Minhh (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
			FlidSe	Stage	widur (m)		Gradient	running 78	(pcu/hr)	(pcu/hr)	y value	Chucary	Turning 78	(pcu/hr)	(pcu/hr)	y value	Childai y
Castle Peak Road	d SB	LT	A1	1,4	3.50	80.0		100	1929	448	0.232		100	1929	276	0.143	
		SA+RT RT	A2	1	4.00	85.0		0	2155	291		0.135	0	2155	233	0.108	0.108
		RT	A3 A4	1	3.50 3.50	25.0 20.0		100	1986 1958	167	0.084		100 100	1986 1958	119 117	0.060	
			A4	1	3.50	20.0		100	1950	165	0.064		100	1950	117	0.060	
Slip Road from	LT+	+(To YL Hwy)RT	B2	2,3	3.50	30.0		100	2105	593	0.282		100	2005	419	0.209	0.209
Lam Tei Interchar	nge	(To YL Hwy) RT	B3	2,3	3.50	25.0		100	1986	560	0.282		100	1986	415	0.209	
		(To CPR) RT	B4	2,3	3.50	20.0		100	1958	371	0.189		100	1958	171	0.087	
	-I ND																
Castle Peak Road	U NB	LT	C1	3,4	3.50	14.0		100	1775	631		0.356	100	1775	527	0.297	
		LT	C2 D1	3,4 4	3.50 3.50	19.0		100	1951 2105	693 222	0.355		100	1951 2105	580 333	0.297	0.158
		SA SA	D1 D2	4	3.50				2105	222	0.105			2105	333	0.158	0.158
		34	DZ	4	5.50				2105		0.103			2105	555	0.150	
									_			_					
pedestrian pha	ise		E _(P)	1		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
			F _(P) G _(P)	1,4			rossing		5		GM +	7		GM =	12	sec	
			H _(P)	2 2,3			rossing		6 5		GM +	11 9		GM =	17	sec	
			· (F)	2,3		minc	rossing	lime =	5	Sec	GM +	9	Sec r	GM =	14	sec	
AM Traffic Flow (pcu/hr	r)		N	PM Traffic	Flow (pcu/hr)				N	S - 1040 J	- 100 (W-3.	25) 8.	- 2080 + 10	00 (W-3.25)	Note:		
		~						~		S = 1940 4				(1 + 1.5 f/r)			
	8											Peak		Peak			
	291	444				233		666			1+3,4		1 + 2,3 + 4				
* 332	2	1324			♦ 236			1107		Sum y	0.491		0.475				
	← _					ا	→	•		L (s)	38		26				
	210 94	3 371				147	687	171		C (s)	110		110				
										practical y	0.589		0.687				
										R.C. (%)	20%		45%				
1	t	2	•			3	•			4				5			
		H _(P)	÷			H _(P)	ŧ			A1	T		C4				
A3 A4									C2			-	C4 C3 C2				
_ †			ᠳ	•			┥┥	*	C1			;—	C2 C1				
^E (P)	► ?)		B2 B3 B4		G _(P)		B2 B3 B4				← + F _(P)	•					
AM G =		VG = 15	G =	7	I/G =	11	G =		I/G =	L	G =		I/G =	7	G =		
0=				-	vo =	• •	0=				0=		"O =		0=		
G =		⊮g = 15	G =		I/G =		G =				G =		I/G =	7	G =		
G = AM G =					I/G =		G = G =		I/G =	7	G = G =		I/G =		G = G =		

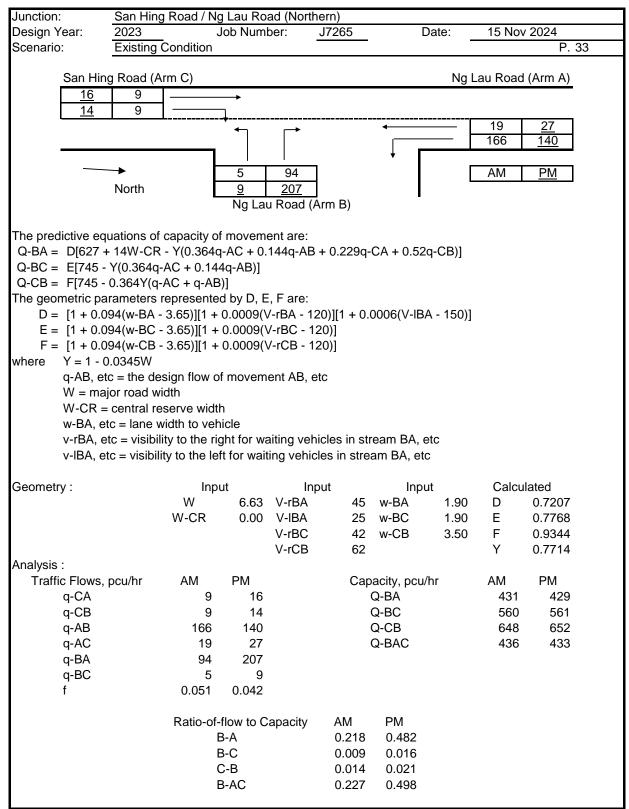
						Signal J	unction A	nalysis									
Junction:	Lam Tei	Interchange / C	Castle P	eak Roa	ad – Lan	n Tei									Job Nu	mber:	J7265
Scenario:	With Pro	posed Scheme	•													P.	24
Design Year:	2033	Designe	ed By:					Checke	d By:					Date:	15	5 Nov 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Castle Peak Road	4 SB	LT			0.50		Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Cusile i cuit riou	0.05	SA+RT	A1	1,4	3.50	80.0		100	1929	448	0.232	0.405	100	1929	276	0.143	0.400
		RT	A2	1	4.00	85.0		0	2155	291	0.135	0.135	0	2155	233	0.108	0.108
		RT	A3	1	3.50	25.0		100	1986	170	0.086		100	1986	121	0.061	
			A4	1	3.50	20.0		100	1958	167	0.085		100	1958	120	0.061	
Slip Road from	L T:	+(To YL Hwy)RT	DO	0.0	2.50	20.0		400	0405	640	0.000		400	2005	400	0.040	
Lam Tei Interchar		(To YL Hwy) RT	B2	2,3	3.50	30.0		100	2105	610	0.290		100	2005	426	0.212	0.040
	lige	(To CPR) RT	B3	2,3	3.50	25.0		100	1986	575	0.290		100	1986	421	0.212	0.212
		(10 01 10) 11	B4	2,3	3.50	20.0		100	1958	374	0.191		100	1958	172	0.088	
Castle Peak Road	d NB		C1	2.4	2.50	14.0		100	4775	600	0.050	0.050	100	4775	500	0.000	
Castion Car (10d)		LT	C1	3,4	3.50	14.0		100	1775	638	0.359	0.359	100	1775	533	0.300	
		LT	C2	3,4	3.50	19.0		100	1951	702	0.360		100	1951	586	0.300	0.450
		SA	D1	4	3.50				2105	222	0.105			2105	333	0.158	0.158
		SA	D2	4	3.50				2105	222	0.105			2105	333	0.158	
			_					· · · ·	-			40		014	40		
pedestrian pha	ise		E _(P)	1			rossing		6		GM +	12		GM =	18	sec	
			F _(P)	1,4			rossing		5		GM +	7		GM =	12	sec	
			G _(P)	2			rossing		6		GM +	11		GM =	17	sec	
			H _(P)	2,3		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr	r)		Ν	PM Traffic	Flow (pcu/hr)				Ν	S = 1940 -	+ 100 (W-3.	25) S =	2080 + 10	0 (W-3.25)	Note:		
		~						~		SM = S / (1 + 1.5 f/r)	SM =	(S - 230) / ((1 + 1.5 f/r)			
♦ ⁴⁴⁸	3										AM	Peak	PM	Peak			
	291	444	_		\rightarrow	233		666	_	L	1+3,4		1 + 2,3 + 4				
* ₃₃₇	7	1340			♦ 241			1119		Sum y	0.495		0.478				
										L (s)	38		26				
	214 9	71 374				150	697	172		C (s)	110		110				
	• •									practical y	0.589		0.687				
										R.C. (%)	19%		44%				
1		2				3				4				F			
1	ł	2	A				≜			4	1			5			
A2	•	H _(P)	ŧ			H _(P)	ŧ			A1		←	C4				
A41								<u> </u>	C2			-	C3 C2				
_ ↑ `			┯┥	•		-	╹	ţ	C2 C1			ţ	C1				
^E (P) ↓ ← Fra	•		B2 B3 B4		← ► G _(P)		B2 B3 B4				← • F _(P)	•					
- (P)	,					l				l	· (P)			l			
AM G =		I/G = 15	G =	7	I/G =	11	G =		I/G =		G =		I/G =	7	G =		
G =		I/G = 15	G =		I/G =		G =		I/G =		G =		I/G =		G =		
AM G =		I/G = 15	G =		I/G =		G =		I/G =	7	G =		I/G =	7	G =		
G =		I/G = 15	G =	7	I/G =	11	G =		I/G =		G =		I/G =	7	G =		

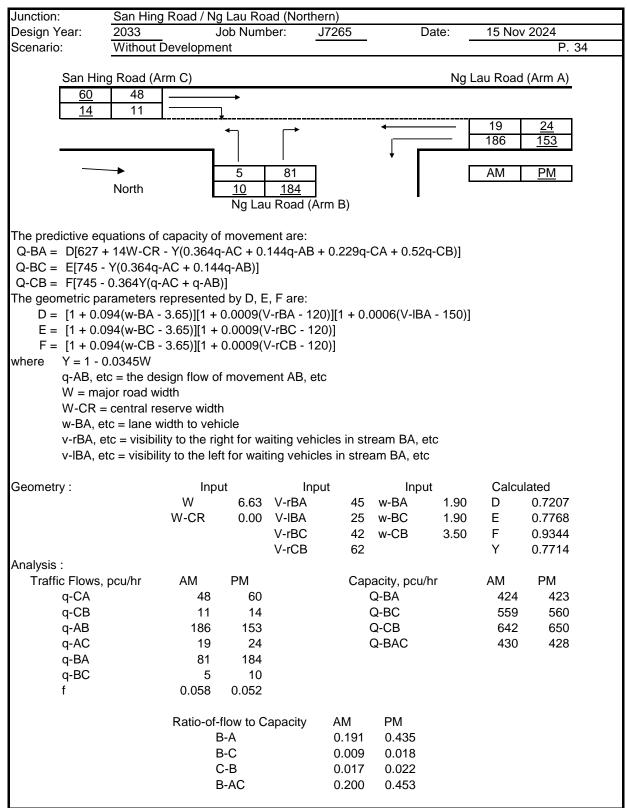
						Signal J	unction A	nalysis									
Junction:	Tsing Lu	n Road/ Tsz Tii	n Road											_	Job Nu	mber:	J7265
Scenario:	Existing	Condition														Ρ.	25
Design Year:	2023	Designe	ed By:				-	Checke	d By:				-	Date:	15	5 Nov 20	24
					1					AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tsing Lun Roa	d SB	LT+SA	A1	1	3.65	13.0		5	1969	488	0.248	0.248	12	1953	337	0.173	
		RT	A2	1	3.65	15.0		100	1927	392	0.203		100	2120	446	0.210	0.210
Tsing Lun Roa	d NB	LT+SA	C1	2	3.30	23.0		38	1898	116	0.061	0.061	34	1903	120	0.063	0.063
		SA	C2	2	3.40				2095	127	0.061			2095	133	0.063	
		RT	C3	2	3.40	15.0		100	1905	8	0.004		100	1905	18	0.009	
Access Road to		LT+SA+RT	D1	3	3.50	15.0		89	1804	70	0.039	0.039	87	1808	60	0.033	0.033
Siu Hong Cour	tWB																
Tsz Tin Road E	FB	LT		4	0.00	10.0		400	1000	400	0.400	0.400	400	1000	445	0.000	0.000
. 32 mm 10au E		LT+SA+RT	B1 B2	4	3.38 3.37	10.0 15.0		100 98	1698 1905	180 201	0.106	0.106	100 94	1698 2092	115 142	0.068	0.068
		2110,1111	DZ	4	3.37	15.0		90	1905	201	0.105		94	2092	142	0.066	
				-					-	1		-	1				-
pedestrian pha	ise		E _(P)	2		min c	rossing	time =	5	sec	GM +	10	sec F	FGM =	15	sec	
			F _(P)	3		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
				_													_
AM Traffic Flow (pcu/hr	r)		Ν	PM Traffic	Flow (pcu/hr)				Ν	S = 1940 +	- 100 (W-3.:	25) S :	= 2080 + 10	00 (W-3.25)	Note:		
		1					T			SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
291	1 392 🗲	→ 22			1 ²⁰¹	446	++→	39	1		AM	Peak	PM	Peak			
\rightarrow	4	466 47			\rightarrow	8	298	40			1+2+3+4		1+2+3+4				
86	6 199	Ť			48	212		. 1		Sum y	0.454		0.374				
	1	8 ◀—				. 1 .	8			L (s)	24		24				
44	* - *	15			41		10	12		C (s)	118		118				
										practical y	0.717		0.717				
										R.C. (%)	58%		92%				
1	A2 A1	2				3				4				5			
÷	+		<u>م</u>				<u>م</u>			B1	t						
F _(P) ↓	≁ -'↓	F _(P)	÷			F _(P)	÷	t		B1 B2	\rightarrow						
			-TTC	•				+	D1	_	↑						
			C1 C2 C3							E _(P)	÷						
						L											
AM G =		VG = 6	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =		VG = 6	G =		I/G =		G =		I/G =		G =	14	I/G =		G =		
PM G =		VG = 6	G =		I/G =		G =		I/G =		G =	14	I/G =		G =		
G =		I/G = 6	G =		I/G =	Ø	G =		I/G =	Э	G =	14	I/G =	1	G =		

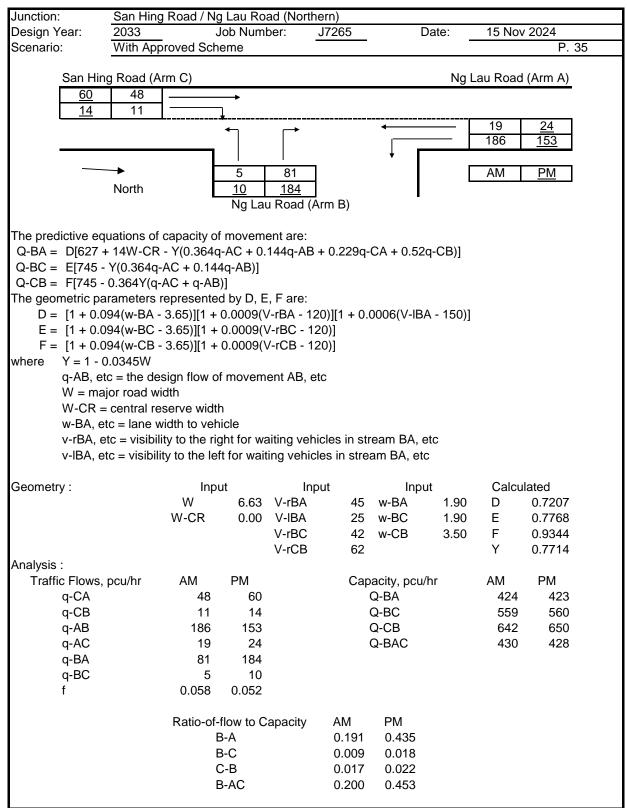

Junction: 7								nalysis									
	Tsing Lun	Road/ Tsz Tir	n Road											-	Job Nu	mber:	J7265
Scenario: <u>\</u>	Without D	evelopment														Ρ.	26
Design Year:	2033	Designe	ed By:				-	Checke	d By:				•	Date:	15	5 Nov 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
		17.04		-			Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		Childai y
Tsing Lun Road	SB	LT+SA	A1	1	3.65	13.0		4	1971	760	0.386	0.386	10	1957	486	0.248	
		RT	A2	1	3.65	15.0		100	1927	622	0.323		100	2120	545	0.257	0.257
Tsing Lun Road	NB	LT+SA	01	0	0.00	00.0		50	4000	101	0.400	0.400		4005	007	0.400	0.400
		SA	C1 C2	2	3.30 3.40	23.0		53	1880 2095	191 212	0.102	0.102	66	1865 2095	227 255	0.122	0.122
		RT	C3	2	3.40	15.0		100	1905	10	0.005		100	1905	25	0.013	
Access Road to		LT+SA+RT			0.50	45.0			4000		0.040	0.040	07	4000	75	0.044	0.044
Siu Hong Court V	NB	LITOATI	D1	3	3.50	15.0		88	1806	86	0.048	0.048	87	1808	75	0.041	0.041
Tsz Tin Road EB	3	LT	B1	4,1	3.38	10.0		100	1698	561	0.330		100	1698	329	0.194	
		SA+RT	B2	4	3.37	15.0		90	1919	101	0.053	0.053	88	1923	74	0.038	0.038
pedestrian phase	9		E _(P)	2		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
			F _(P)	3		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
										-							
AM Traffic Flow (pcu/hr)			N	PM Traffic	Flow (pcu/hr)				N		⊧ 100 (W-3.				Note:		
▲ 561	622 🗲	▶ 30			▲ ³²⁹	545	++	51		SM = S / (1 + 1.5 f/r) AM	SM = Peak		(1 + 1.5 f/r) Peak			
	0	† 730			\rightarrow	9	↓ 435				1+2+3+4		1+2+3+4				
91	301	56 1			65	332		45 1		Sum y	0.587		0.459				
	t	10				1	10	+		L (s)	24		24				
102 <	10	20			150	+	25	20		C (s)	118		118				
										practical y	0.717		0.717				
										R.C. (%)	22%		56%				
1	A2 A1	2				3				4				5			
в1	┛┝	F _(P)	ŧ			F _(P)	↑			B1	t						
	ŧ	F _(P)	+			F _(P)	ŧ	. †		B2	+						
			ЩΓ					-	D1	-	↑						
			C1 C2 C3							E _(P)	+						
AM G =		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =	7	G =		
		I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =		G =		
G =		I/G = 6	G =		I/G =	6	G =		I/G =		G =		I/G =	7	G =		

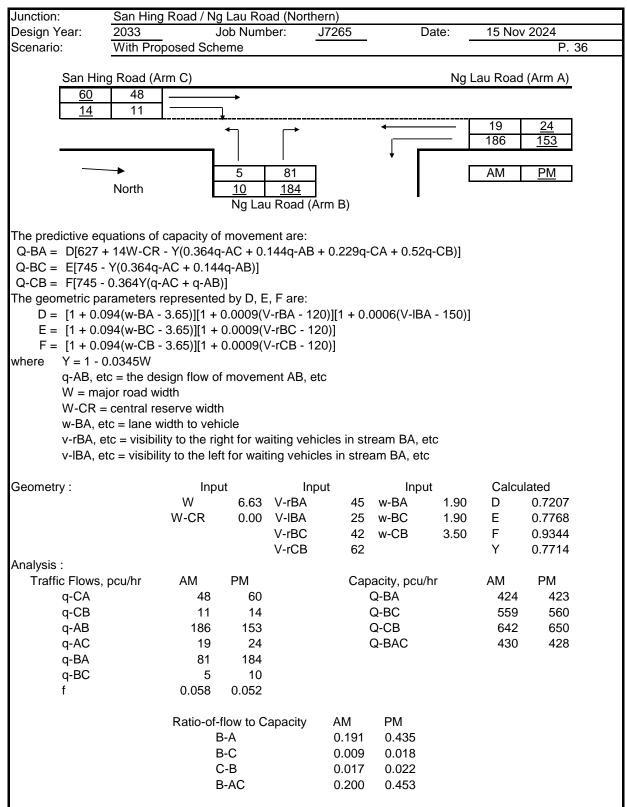

CKM Asia Limited


						Signal J	unction A	nalysis									
Junction:	Tsing Lur	n Road/ Tsz Tii	n Road											-	Job Nu	mber:	J7265
Scenario:	With App	roved Scheme														Ρ.	27
Design Year:	2033	Designe	ed By:				-	Checke	d By:					Date:	15	5 Nov 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Tsing Lun Road	1 CB	LT+SA			0.05	10.0	Gradient		(pcu/hr)	(pcu/hr)		0.007	4.0	(pcu/hr)	(pcu/hr)		
	1 30	RT	A1	1	3.65	13.0		4	1971	762	0.387	0.387	10	1957	487	0.249	
		KI	A2	1	3.65	15.0		100	1927	622	0.323		100	2120	545	0.257	0.257
T · · · · ·																	
Tsing Lun Road	I NB	LT+SA	C1	2	3.30	23.0		53	1880	191		0.102	66	1865	227	0.122	0.122
		SA RT	C2	2	3.40				2095	213	0.102			2095	256	0.122	
		IXI	C3	2	3.40	15.0		100	1905	10	0.005		100	1905	25	0.013	
Access Road to)	LT+SA+RT	D1	3	3.50	15.0		88	1806	86	0.048	0.048	87	1808	75	0.041	0.041
Siu Hong Court	WB				0.00	10.0			1000		01010	01010	0.	1000		0.011	0.011
Tsz Tin Road E	B	LT	D1	4.4	2.20	10.0		100	1609	561	0.220		100	1609	220	0.104	
		SA+RT	B1 B2	4,1 4	3.38 3.37	10.0 15.0		100 90	1698 1919	561 101	0.330	0.053	100 88	1698 1923	329 74	0.194	0.038
			52		0.07	1010			1010		0.000	0.000		1020		0.000	0.000
pedestrian pha	se		E _(P)	2		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	-
			F _(P)	3		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	-
				D.4.7. //											N1 -		
AM Traffic Flow (pcu/hr)			N	PM Traffic	Flow (pcu/hr)				N					00 (W-3.25)	Note:		
▲ 561	622 🗲	> 30			▲ 329	545		51		SM = S / (SM =					
	10	732			_ ↓	9	436	51			AM 1+2+3+4	Peak	PM 1+2+3+4	Peak			
¥ 91		56			↓ 65		430	45		Sum y	0.588		0.459				
	302 ♠	10 +				333 †	10	•		L (s)	24		24				
102	← 10	0 ↓ 20			150	+++	25	↓ 20		C (s)	118		118				
	I					I				practical y	0.717		0.717				
										R.C. (%)	22%		56%				
1	A2 A1	2				3				4				5			
+											+						
B1	+-1 ↓	F _(P)	ŧ			F _(P)	ŧ	+		B1 B2	\rightarrow						
			╷┤╽└	•				़	D1		 ▲						
			C1 C2 C3							E _(P)	ŧ						
AM G =		I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =	7	G =		
G =		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =	7	G =		
G =		VG = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =		G =		


						Signal J	unction A	nalysis									
Junction:	Tsing Lur	n Road/ Tsz Ti	n Road											-	Job Nu	mber:	J7265
Scenario:	With Prop	oosed Scheme	9													Ρ.	28
Design Year:	2033	Designe	ed By:				-	Checke	ed By:					Date:	15	Nov 20	24
					<u> </u>					AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tsing Lun Roa	id SB	LT+SA	A1	1	3.65	13.0		4	1971	765	0.388	0.388	10	1957	488	0.249	
		RT	A2	1	3.65	15.0		100	1927	622	0.323		100	2120	545	0.257	0.257
Tsing Lun Roa	id NB	LT+SA	C1	2	3.30	23.0		53	1880	192		0.102	66	1865	228	0.122	0.122
		SA RT	C2	2	3.40				2095	214	0.102			2095	257	0.123	
		KI.	C3	2	3.40	15.0		100	1905	10	0.005		100	1905	25	0.013	
Access Road to	to	LT+SA+RT	D1	3	3.50	15.0		88	1806	86	0.048	0.048	87	1808	75	0.041	0.041
Siu Hong Cour		2110/1111		3	3.50	15.0		00	1000	00	0.040	0.040	07	1000	75	0.041	0.041
g																	
Tsz Tin Road E	EB	LT	B1	4,1	3.38	10.0		100	1698	561	0.330		100	1698	329	0.194	
		SA+RT	B2	4	3.37	15.0		90	1919	101	0.053	0.053	88	1923	74	0.038	0.038
pedestrian pha	ase		E _(P)	2		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
			F _(P)	3		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
AM Traffic Flow (pcu/hr	-			DM Troffic	Flow (pcu/hr)										Note:		
Aw frame Flow (peu/n	")		N	FIVI Hallic	riow (pcu/iii)				N	S = 1940 ·	+ 100 (W-3.	25) S =	2080 + 10	0 (W-3.25)	INOLE.		
							1			SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
561	1 622 -	↓ 30	1		329	545	\rightarrow	51	'			Peak		Peak			
91	10	735 56			65	9	437	45			1+2+3+4		1+2+3+4				
51	304	10			00	335	10	1		Sum y	0.591		0.459				
102	2 + 10	, ··· ↓			150	↓	25	ţ		L (s)	24		24				
		20						20		C (s)	118 0.717		118 0.717				
	I									practical y R.C. (%)	21%		56%				
	I																
	Ι																
1	A2 A1	2				3				4				5			
1 в1 t	A2 A1		▲				†			4 B1	t			5			
1 _{B1} 1	A2 A1	2 F _(P)	↑ ↓			3 F _(P)	↑ +	_ †	- D1	4 B1 B2				5			
1 B1	A2 A1		‡ ⊷_1↑[^				▲ ↓ ↓	←	· D1	B2	 			5			
1 B11	A2 A1			•			▲ ↓	←	· D1	4 B1 B2 E _(P)				5			
1 _{B1} 1	•	F _(P)		•		F _(P)		← ↓		B2 E _(P)	•						
1 f AMG=	•	F(P)	G =		1/G =	F _(P)	G =		I/G =	B2 E _(P) 9	• G =		VG =	7	G =		
1 _{B1} 1		F _(P)			VG = VG = VG =	F _(P) 6 6		•		9 9	•		VG = VG = VG =	7	G = G = G =		


Junction:	San Hing Road /	Ng Lau Roa	d (Southerr	ר)				
Design Year:	2023	Job Numb		265	Da	ate:	15 Nov	2024
Scenario:	Existing Condition	า						P. 29
Nalaul	Road (Arm C)					Nal	.au Road	$(\Delta rm \Delta)$
<u>152</u>	167					Ny L	au Ruau	(AIII A)
<u>132</u>	8	`						
	0						94	215
		•			·	-	24	19
		7			↓ ┌─		- ·	
	 	5	22			Г	AM	PM
	North	0	16			L		
			g Road (Arn	n B)				
	uations of capacity							
-	- 14W-CR - Y(0.36	-	44q-AB + 0).229q-(CA + 0.52q·	-CB)]		
-	Y(0.364q-AC + 0.1	• • •						
-	0.364Y(q-AC + q-A	· -	_					
	rameters represen	-						
	94(w-BA - 3.65)][1				0006(V-IBA	- 150)]		
-	94(w-BC - 3.65)][1	•						
-	94(w-CB - 3.65)][1	+ 0.0009(V	-rCB - 120)					
where $Y = 1 - 0$								
	c = the design flow	or moveme	ent AB, etc					
	jor road width	dth						
W-CR =	central reserve wi							
W-CR = w-BA, et	central reserve wi tc = lane width to v	ehicle	iting vehicle	os in str	eam BA et	~		
W-CR = w-BA, et v-rBA, e	central reserve wi tc = lane width to v tc = visibility to the	ehicle right for wa	-			C		
W-CR = w-BA, et v-rBA, e	central reserve wi tc = lane width to v	ehicle right for wa	-			C		
W-CR = w-BA, et v-rBA, e v-IBA, et	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the	ehicle right for wa	-				Calcu	lated
W-CR = w-BA, et v-rBA, e v-IBA, et	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the	ehicle right for wa left for waiti nput	ng vehicles		am BA, etc		Calcu D	lated 0.7441
W-CR = w-BA, et v-rBA, e v-IBA, et	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr	ehicle right for wa left for waiti nput 6.65	ng vehicles Input	in strea	am BA, etc Input w-BA			
W-CR = w-BA, et v-rBA, e v-IBA, et	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W	ehicle right for wa left for waiti nput 6.65	ng vehicles Input V-rBA	in strea	am BA, etc Input w-BA	2.40	D	0.7441
W-CR = w-BA, et v-rBA, e v-IBA, et	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W	ehicle right for wa left for waiti nput 6.65	ng vehicles Input V-rBA V-IBA	in strea 23 23	am BA, etc Input w-BA w-BC	2.40 2.40	D E	0.7441 0.8078
W-CR = w-BA, et v-rBA, e v-IBA, et Geometry : Analysis :	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR	ehicle right for wa left for waiti put 6.65 0.00	ng vehicles Input V-rBA V-IBA V-rBC	in strea 23 23 26 57	am BA, etc Input w-BA w-BC w-CB	2.40 2.40 3.00	D E F Y	0.7441 0.8078 0.8857 0.7706
W-CR = w-BA, et v-rBA, e v-IBA, et Geometry : Analysis : Traffic Flows,	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM	ehicle right for wa left for waiti put 6.65 0.00 PM	ng vehicles Input V-rBA V-IBA V-rBC	in strea 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h	2.40 2.40 3.00	D E F Y	0.7441 0.8078 0.8857 0.7706 PM
W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Analysis : Traffic Flows, q-CA	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM 167	ehicle right for wa left for waiti nput 6.65 0.00 PM 7 152	ng vehicles Input V-rBA V-IBA V-rBC	in strea 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB w-CB acity, pcu/h Q-BA	2.40 2.40 3.00	D E F Y AM 421	0.7441 0.8078 0.8857 0.7706 PM 400
W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Analysis : Traffic Flows, q-CA q-CB	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM 167	ehicle right for wa left for waiti nput 6.65 0.00 PM 7 152 3 1	ng vehicles Input V-rBA V-IBA V-rBC	in strea 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC	2.40 2.40 3.00	D E F Y AM 421 578	0.7441 0.8078 0.8857 0.7706 PM 400 551
W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Traffic Flows, q-CA q-CB q-AB	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM 167 24	ehicle right for wa left for waiti 0.00 PM 7 152 3 1 4 19	ng vehicles Input V-rBA V-IBA V-rBC	in strea 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Geometry : Traffic Flows, q-CA q-CB q-AB q-AB q-AC	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM 167 22 94	ehicle right for wa left for waiti put 6.65 0.00 PM 7 152 3 1 4 19 4 215	ng vehicles Input V-rBA V-IBA V-rBC	in strea 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC	2.40 2.40 3.00	D E F Y AM 421 578	0.7441 0.8078 0.8857 0.7706 PM 400 551
W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Traffic Flows, q-CA q-CB q-AB q-AC q-BA	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM 167 22 94 22	ehicle right for wa left for waiti put 6.65 0.00 PM 7 152 3 1 4 19 4 215 2 16	ng vehicles Input V-rBA V-IBA V-rBC	in strea 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Analysis : Traffic Flows, q-CA q-CB q-AB q-AC q-BA q-BC	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM 167 8 24 94 22 8	ehicle right for wa left for waiti put 6.65 0.00 PM 7 152 3 1 4 19 4 215 2 16 5 0	ng vehicles Input V-rBA V-IBA V-rBC	in strea 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Traffic Flows, q-CA q-CB q-AB q-AC q-BA	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM 167 22 94 22	ehicle right for wa left for waiti put 6.65 0.00 PM 7 152 3 1 4 19 4 215 2 16 5 0	ng vehicles Input V-rBA V-IBA V-rBC	in strea 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Analysis : Traffic Flows, q-CA q-CB q-AB q-AC q-BA q-BC	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM 167 8 24 94 22 8 0.185	ehicle right for wa left for waiti 0.00 PM 7 152 3 1 4 19 4 215 2 16 5 0.000	ng vehicles Input V-rBA V-IBA V-rBC V-rCB	in strea 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-BAC	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Analysis : Traffic Flows, q-CA q-CB q-AB q-AC q-BA q-BC	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM 167 8 24 94 22 8 0.185	ehicle right for wa left for waiti oput 6.65 0.00 PM 7 152 3 1 4 19 4 215 2 16 5 0.000 of-flow to Ca	ng vehicles Input V-rBA V-IBA V-rBC V-rCB	in strea 23 26 57 Cap (((((am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-BAC	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Analysis : Traffic Flows, q-CA q-CB q-AB q-AC q-BA q-BC	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM 167 8 24 94 22 8 0.185	ehicle right for wa left for waiti oput 6.65 0.00 PM 7 152 3 1 4 19 4 215 2 16 5 0.000 bf-flow to Ca B-A	ng vehicles Input V-rBA V-IBA V-rBC V-rCB	in strea 23 26 57 Cap (((((((((((((((((((am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-BAC PM 0.040	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Analysis : Traffic Flows, q-CA q-CB q-AB q-AC q-BA q-BC	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM 167 8 24 94 22 8 0.185	ehicle right for wa left for waiti oput 6.65 0.00 PM 152 3 1 4 19 4 215 2 16 5 0.000 bf-flow to Ca B-A B-C	ng vehicles Input V-rBA V-IBA V-rBC V-rCB	in strea 23 26 57 Cap (((((((((((((((((((Am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-BAC PM 0.040 0.000	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602
W-CR = w-BA, et v-rBA, et v-IBA, et Geometry : Analysis : Traffic Flows, q-CA q-CB q-AB q-AC q-BA q-BC	central reserve wi tc = lane width to v tc = visibility to the tc = visibility to the lr W W-CR pcu/hr AM 167 8 24 94 22 8 0.185	ehicle right for wa left for waiti oput 6.65 0.00 PM 7 152 3 1 4 19 4 215 2 16 5 0.000 bf-flow to Ca B-A	ng vehicles Input V-rBA V-IBA V-rBC V-rCB	in strea 23 26 57 Cap (((((((((((((((((((am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA Q-BC Q-CB Q-BAC PM 0.040	2.40 2.40 3.00	D E F Y AM 421 578 631	0.7441 0.8078 0.8857 0.7706 PM 400 551 602

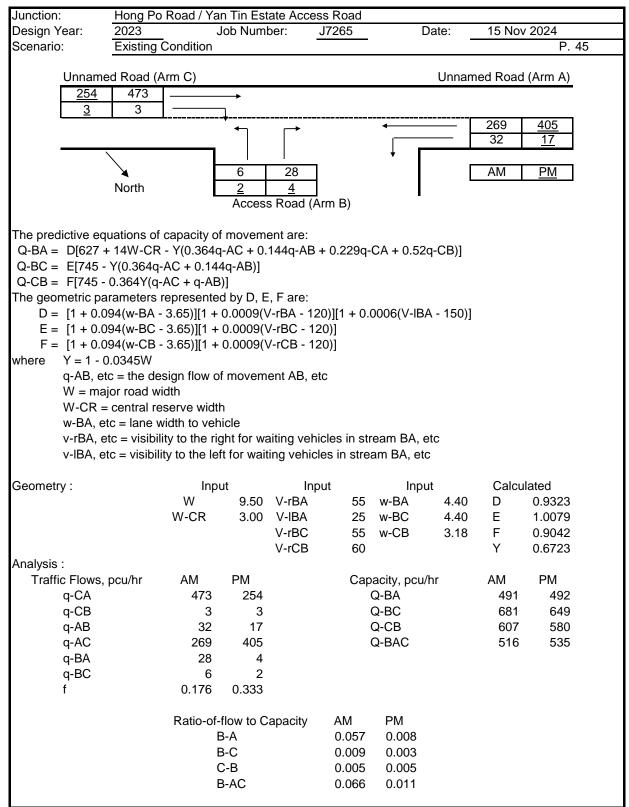




Junction:	T-juno	ction of San H	ing Road						
Design Year:	2023		Job Numl		17265	Da	ate:	15 Nov	2024
Scenario:	Existi	ng Condition							P. 37
		-							
San	Hing Road	l (Arm C)					San Hi	ing Road	(Arm A)
1	6 24	·	→						
	1 2		7						
· · · · · ·			-*			•	[25	<u>17</u>
							— F	8	<u>3</u>
			0	4			Г	AM	PM
Nor	th 🔶		0	0			_		
		-	Unr	named Roa	ad	-			
The predictive	e equations	of capacity o	f movem	ent are:					
		CR - Y(0.3640			- 0.229a-	CA + 0.52a	-CB)1		
		4q-AC + 0.14		1	1	1	- /]		
		(q-AC + q-AE							
		ers represente		Fare:					
-	•	3A - 3.65)][1 +	-)][1 + 0 (- 150)]		
-	•	3C - 3.65)][1 +	•		/	0000(V IB/(100)]		
		CB - 3.65)][1 +							
-	1 - 0.0345V	/ 	0.0003(1	-100 - 120	0)]				
		design flow a	fmovom	ont AB of	~				
	major road	-	movem	eni Ab, eii					
	•	l reserve widt	h						
		e width to ver					-		
		sibility to the ri	-	-			C		
V-IB	A, etc = VIS	ibility to the le	it for wait	ing venicle	es in strea	am BA, etc			
Coometry		laa	4	loni	.4	Innut		Coloui	atad
Geometry :		Inp W		Inpu		Input		Calcu	
				V-rBA	25	w-BA	2.50	D	0.7912
		W-CR	0.00	V-IBA	100		2.50	E	0.8156
				V-rBC	25	w-CB	3.00	F	0.8586
				V-rCB	25			Y	0.7930
Analysis :					_				514
	ws, pcu/hr	AM	PM			acity, pcu/h	r	AM	PM
q-C		24	16			Q-BA		486	489
q-C		2	1			Q-BC		601	603
q-A		8	3			Q-CB		631	635
q-A		25	17		(Q-BAC		486	489
q-B		4	0						
q-B	C	0	0						
f		0.000	0.000						
		Ratio-of-	flow to C	apacity	AM	PM			
		I	3-A		0.008	0.000			
		I	3-C		0.000	0.000			
		(С-В		0.003	0.002			
		I	B-AC		0.008	0.000			

Junction:	T-junctior	n of San H	ing Road						
Design Year:	2033		Job Numl		J7265	Da	ite:	15 Nov	2024
Scenario:	Without D	Developme	ent	-			_		P. 38
San H	ing Road (Ai	rm C)					San H	ing Road	(Arm A)
<u>22</u>	39		→						
<u>1</u>	7		l						
			~ ¬	_→		•		36	<u>20</u>
								114	<u>42</u>
						+			
			40	0				AM	<u>PM</u>
North	◀		<u>50</u>	<u>0</u>					
			Unr	named Ro	ad				
$\begin{array}{c} E = \begin{bmatrix} 1 + 0 \\ F = \begin{bmatrix} 1 + 0 \\ q - AB, \\ W = m \\ W - CR \\ w - BA, \\ v - rBA, \end{array}$	7 + 14W-CR 5 - Y(0.364q- 5 - 0.364Y(q-	- Y(0.364q AC + 0.144 AC + q-AB epresente 3.65)][1 + 3.65)][1 + 3.65)][1 + 3.65)][1 + sign flow o dth serve width idth to veh ty to the rig	I-AC + 0. 4q-AB)])] d by D, E 0.0009(\ 0.0009(\ 0.0009(\ f movem h h iicle ght for wa	144q-AB - /-rBA - 12 /-rBC - 12 /-rCB - 12 /-rCB - 12 ent AB, et	0)][1 + 0.0 0)] 0)] c cles in str	0006(V-IBA	- 150)]		
Geometry :		Inpu	ut	Inp	ut	Input		Calcu	lated
, ,		w		V-rBA	45	w-BA	4.00	D	0.9343
		W-CR	0.00	V-IBA	100	w-BC	4.00	Е	0.9632
				V-rBC	45	w-CB	3.00	F	0.8586
				V-rCB	25			Y	0.7930
Analysis :									
Traffic Flows	s, pcu/hr	AM	PM		-	acity, pcu/h	r	AM	PM
q-CA		39	22			Q-BA		555	572
q-CB		7	1			Q-BC		695	707
q-AB		114	42			Q-CB		602	624
q-AC		36	20		(Q-BAC		695	707
q-BA		0	0						
q-BC		40	50						
f		1.000	1.000						
		Ratio-of-		apacity	AM	PM			
			3-A		0.000	0.000			
			3-C		0.058	0.071			
			C-B		0.012	0.002			
		E	B-AC		0.058	0.071			

Junction:		T-junctior	of San H	ing Road						
Design Yea		2033		Job Numl		17265	Da	ite:	15 Nov	2024
Scenario:	_	With App	roved Sch	eme				_		P. 39
	-									
Sa		Road (Ar	m C)					San H	ing Road	(Arm A)
	<u>22</u>	39		→						
	<u>1</u>	7		_						
							•		36	<u>20</u>
									120	<u>45</u>
			ŀ	40	2		*	Г	A N A	DM
No	orth a		ŀ	40	2				AM	<u>PM</u>
INC	orth 🖣		L	<u>50</u>	<u>2</u> amed Roa	ad				
				UII		au				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	[627 + [745 - Y] [745 - 0] [745 - 0] tric para+ 0.09 + 0.09 + 0.09 = 1 - 0.0 AB, etc- CR = 0- CR = 0- BA, etcrBA, etc	14W-CR (0.364q-/ .364Y(q-/ ameters ru 4(w-BA - 4(w-BC - 4(w-CB - 0345W = the des br road wid central res = lane wid c = visibilit	- $\dot{Y}(0.364c)$ AC + 0.14 AC + q-AE epresente 3.65)][1 + 3.65)][1 + 3.65)][1 + 3.65)][1 + sign flow o dth serve widt idth to ver ty to the right	q-AC + 0. 4q-AB)] b)] d by D, E 0.0009(\ 0.0009(\ 0.0009(\ f movem h hicle ght for wa	144q-AB + /-rBA - 120 /-rBC - 120 /-rCB - 120 ent AB, eta	0)][1 + 0.0 0)] 0)] c	CA + 0.52q- 0006(V-IBA eam BA, etc am BA, etc	- 150)]		
Geometry :			Inp	ut	Inpu	ut	Input		Calcu	lated
,			w		V-rBA	45	w-BA	4.00	D	0.9343
			W-CR	0.00	V-IBA	100	w-BC	4.00	Е	0.9632
					V-rBC	45	w-CB	3.00	F	0.8586
					V-rCB	25			Y	0.7930
Analysis :		4				~				514
Traffic F	-	cu/hr	AM	PM		-	acity, pcu/h	r	AM	PM
	CA		39	22			Q-BA		554	571
	CB		7 120	1			Q-BC		694 601	707
	AB		120	45			Q-CB		601	624
-	AC		36	20			Q-BAC		686	701
	BA		2	2						
	BC		40	50						
f			0.952	0.962						
				flow to C	apacity	AM	PM			
				B-A		0.004	0.003			
				3-C		0.058	0.071 0.002			
				C-B B-AC		0.012 0.061	0.002 0.074			
			ſ			0.001	0.074			


Junction:		T-junctior	of San H	ing Road						
Design Ye	ear:	2033		Job Numl		17265	Da	ite:	15 Nov	2024
Scenario:		With Prop	osed Sch	eme				-		P. 40
	San Hing	g Road (Ar	m C)					San H	ing Road	(Arm A)
	<u>22</u>	39		→						
	<u>1</u>	7]						
				ં≁ન	_→		←		36	<u>20</u>
-									129	<u>48</u>
			ŀ	40			•	г	A N A	DM
	N o #h		ŀ	40	6			L	AM	<u>PM</u>
	North	•	L	<u>50</u>	<u>5</u> amed Roa	ad				
				Uni	iameu Roa	au				
Q-BA = Q-BC = Q-CB = The geom D = E = F = where	D[627 + E[745 - Y] F[745 - C] F	Y(0.364q-/ D.364Y(q-A) ameters re- $PA(w-BAPA(w-BAPA(w-CBPA(w-CBO345Wc = the design of the design o$	- $\dot{Y}(0.364c)$ AC + 0.14 AC + q-AE epresente 3.65)][1 + 3.65)][1 + 3.65)][1 + 3.65)][1 + dth serve widt idth to ver ty to the right	q-AC + 0. 4q-AB)] d by D, E 0.0009(\ 0.0009(\ 0.0009(\ f movem h hicle ght for wa	144q-AB + /-rBA - 120 /-rBC - 120 /-rCB - 120 ent AB, eta	0)][1 + 0.0 0)] 0)] c	CA + 0.52q- D006(V-IBA eam BA, etc am BA, etc	- 150)]		
Geometry	· :		Inp	ut	Inpu	ut	Input		Calcu	lated
,			w		V-rBA	45	w-BA	4.00	D	0.9343
			W-CR	0.00	V-IBA	100	w-BC	4.00	Е	0.9632
					V-rBC	45	w-CB	3.00	F	0.8586
					V-rCB	25			Y	0.7930
Analysis :						_				
	Flows, p	ocu/hr	AM	PM		-	acity, pcu/h	r	AM	PM
	q-CA		39	22			Q-BA		553	571
	q-CB		7	1			Q-BC		693	707
	q-AB		129	48			Q-CB		599	623
	q-AC		36	20		(Q-BAC		671	692
	q-BA		6	5						
	q-BC		40	50						
1	f		0.870	0.909						
				flow to C	apacity	AM	PM			
				B-A		0.011	0.009			
				B-C		0.058	0.071			
				С-В		0.012	0.002			
			ĺ	B-AC		0.069	0.080			

Junction:	Ng Lau Road		eak Roa	ad - Larr	n Tei										Job Nu	mber:	
Scenario:	Existing Cond							0						Data	4.0		41
Design Year:	2023	Designe	ea By:				•	Checke	а ву:				•	Date:	15	5 Nov 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Ng Lau Road EB		LT	A1	2	4.00	20.0	Gradient	100	(pcu/hr) 1874	(pcu/hr) 110	0.059	0.059	100	(pcu/hr) 1874	(pcu/hr) 135	0.072	0.072
3																	
Castle Peak Roa	d - Lam Tei NB	LT	B1	1	3.50	15.0		100	1786	128	0.072	0.072	100	1786	128	0.072	0.072
pedestrian pha	ise		C _(P)	1,2			rossing		8		GM +	8		GM =	16	sec	
			D _(P)	3		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
AM Traffic Flow (pcu/h	()		N	PM Traffic	Flow (pcu/hr)				Ν	S = 1940 +	+ 100 (W-3.	25) S :	= 2080 + 10	0 (W-3.25)	Note:		
	110						135				1 + 1.5 f/r)		(S - 230) /				
			I			t	L,		I		AM	Peak	PM	Peak			
12	3				128]					1+2		1+2				
										Sum y	0.130		0.144				
										L (s)	2358		2284				
										C (s) practical y	3609 0.312		3627 0.333				
										R.C. (%)	139%		132%				
1		2				3				4				5			
C _(P) ↓	↓C(P)		↑ ↓	A1 I	C(P)		D _(P)			7				5			
°/ ★	↓ ()	(°).	*	Ļ			← → +++++ +++++	E _(IRT)									
B1							+ ++++	(=)									
AM G =	: I/G	9 =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =			G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =			G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =	· VG	9 =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

						Olginal J	unction A	nalysis									
Junction:	Ng Lau Roa	d / Castle P	eak Roa	ad - Larr	Tei										Job Nu	mber:	J7265
Scenario:	Without Dev	relopment														Ρ.	42
Design Year:	2033	Designe	ed By:	_			_	Checke	d By:				_	Date:	15	5 Nov 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %		PM Peak Flow	y value	Critical y
Ng Lau Road EB	1	LT	A1	1	4.00	15.0	Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Castle Peak Roa		SA	B1	2,3	3.30	13.0		100	1832	138	0.075		100	1832	156	0.085	
Casile Feak Rua		SA	B2	2,3	3.30				1945	273	0.140			1945	545	0.280	
		SA	B3	2,3	3.30				2085	293	0.141			2085	585	0.281	
		RT	C1	2,3	3.70	15.0			2085	292	0.140		400	2085	585	0.281	
Castle Peak Roa	d - Lam Tei NB	LT	D1	2	3.70	13.0		100	1932	252	0.130	0.130	100	1932	184	0.095	0.095
Casile I eak itoa	d - Lani Terind	LT	D1 D2	2	3.70	15.0		100	1780	160	0.090		100	1780	146	0.082	
		SA	E1	2,3	3.70	13.0		100	1932	149	0.077		100	1932	179	0.093	0.070
		SA	E2	2,3	3.65				2125	350	0.165			2125	792	0.373	0.373
Castle Peak Roa	d - Lam Tei SB	LT+SA	F1	2,3	3.70	15.0			2120	349	0.165		<u> </u>	2125	791	0.372	
Casile I eak itoa	a - Lani Tei OD	SA	F2	2,3	3.70	13.0		2	1981	600	0.303	0.303	4	1977	416	0.210	
		SA	F2 F3	2,3	3.70				2125	643	0.303			2125	447	0.210	
Castle Peak Roa	d - Lam Tei SP	LT+SA	G1	2,3 1,2,3	3.70	10.0			2125	643	0.303			2125	447	0.210	
Cablic I Car I/Ud		SA	G2	1,2,3	3.70	10.0		11	1953	761	0.390		26	1910	463	0.242	
		RT	H1	4	3.50	20.0		40-	2125	829	0.390	0.055	4.0	2125	516	0.243	0.0.1-
Wong Kong Wai	Road W/R	LT	11	4	4.00	10.0		100	1958	102	0.052	0.052	100	1958	83	0.042	0.042
		LT	J1	4 5	3.70	15.0		100	1752	20	0.011		100	1752	14	0.008	
Fuk Hang Tsuen	RUAU WE	LT+RT	J2	5	3.70	15.0		100	1805	280	0.155	0.155	100	1805	246	0.136	0.136
Deed D4								100	1932	300	0.155		100	1932	264	0.137	
Road P1		LT+RT RT	K1	5 5	3.80	12.0		100	1773	185	0.104		100	1773	199	0.112	
		RI	K2	5	3.80	15.0		100	1941	202	0.104		100	1941	217	0.112	
				0.45				•	-						40		
pedestrian pha	ise		L _(P)	3,4,5	-		rossing		5		GM +	11		FGM =	16	sec	
			M _(P)	3	-		rossing		5		GM +	15		FGM =	20	sec	
			N _(P)	3,4	-		rossing		5		GM +	16		FGM =	21	sec	
			O _(P)	5	-		rossing		5		GM +	14		FGM =	19	sec	
			P _(P)	4			rossing		5		GM +	18		FGM =	23	sec	
			Q _(P)	3			rossing		11		GM +	11		FGM =	22	sec	
			R _(P)	1,2,4,5		min c	rossing	ime =	5	sec	GM +	13	Sec F	FGM =	18	sec	
AM Traffic Flow (pcu/h	r)		Ν	PM Traffic I	low (pcu/hr)				N	S = 1940 -	+ 100 (W-3.	25) S :	= 2080 + 10	00 (W-3.25)	Note:		
	138	285// 102				156		/ 83		SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
	160	•/4	I			146		*	I		AM	Peak	PM	Peak			
858	¹⁴⁹			1715		¹⁷⁹					1+2,3+4+5		1+2,3+4+5				
• 252				v 184		1583				Sum y	0.641		0.646				
		102						83		L (s)	21		21				
4	1804	1580			+	1188		964		C (s)	120		120				
≁ ┐┌ ≯				• 1	- *	122		15		practical y	0.743		0.743				
433 + 147	20			▲ 316	194		14			R.C. (%)	16%		15%				
1 R		1 2	R _(P)		R _(P)	3	4		← - ►	4	1 ◄		R _(P)	5	R_Î ◀		K1 K2 P.
I (P) ↓		P), 12	(P)		^(P) ↓	5	+ + +	1 (P) →	(P)	Ī	I ((^{P)} ↓	L (P)	^(P) ↓	5	^(P) ↓	=(P) ★	4
1	A1 R _{(i}	*									+			1			
		$B1 \longrightarrow B2 \longrightarrow$				$B1 \rightarrow B2 \rightarrow $					M.						
C1		$B1 \longrightarrow B2 \longrightarrow B3 \longrightarrow$	$ \begin{array}{c} D1 \\ D2 \\ E1 \\ E2 \\ \end{array} $			$B1 \rightarrow B2 \rightarrow B3 \rightarrow B3 \rightarrow B3 \rightarrow B3 \rightarrow B3 \rightarrow B3 \rightarrow B3$	$E1 \longrightarrow E2 \longrightarrow$				↓ M _(P)		1				
C1-7	•	$\begin{array}{c} B_1 \longrightarrow \\ B_2 \longrightarrow \\ B_3 \longrightarrow \end{array}$	$ \begin{array}{c} D1 \\ D2 \\ E1 \\ E2 \\ \hline \hline $	F3 F2	← G2	$B1 \longrightarrow B2 \longrightarrow B3 \longrightarrow$		F3 F2	← G2	P(P)	↓ M _(P) N _(P)		≛н1		N _(P)	O _(P)	I
c1-		$\begin{array}{c} B_1 \longrightarrow \\ B_2 \longrightarrow \\ B_3 \longrightarrow \end{array}$		F3 F2 F1	← G2 ← G1	$B1 \longrightarrow B2 \longrightarrow B3 \longrightarrow$		F3 F2 F1	← G2 ← G1	P _(P)	M _(P)	1	₽н1	11	N(P) ↓	O _(P) ← →	
	⊾ €	$\begin{array}{c} B1 \longrightarrow \\ B2 \longrightarrow \\ B3 \longrightarrow \\ G2 \\ G1 \end{array}$		F3 F2 F1	← G2 ← G1	B1 B2 B3 B3		F3 F2 F1	•	P _(P) ← - 1	M(P) M(P) M(P) ↓	۹] ۱۱		⁴ ⁴ J1 J2	N _(P) ↓	O _(P) ← -▶	
AM G =	↓ ↓ ↓ !/G	$\begin{array}{c} B1 \longrightarrow \\ B2 \longrightarrow \\ B3 \longrightarrow \\ B3 \longrightarrow \\ G1 \end{array}$	$\begin{array}{c} D1 \\ D2 \\ E1 \\ E2 \\ \hline \\ G \\ \hline \\ G \\ \hline \end{array}$	F3 F2 F1	€ G2 € G1 I/G =	B1 → B2 → B3 →	$ \begin{array}{c} E1 \longrightarrow \\ E2 \longrightarrow \\ \hline \\$	F3 F2 F1	• I/G =	P _(P) ← - 1	G =	•] 11	I/G =	⁴ ⁴ J1 J2	N _(P) ↓ G =	O _(P) ← -▶	I/G = 5
AM G = G =		$ \begin{array}{c} B_1 \longrightarrow \\ B_2 \longrightarrow \\ B_3 \longrightarrow \\ B_3 \longrightarrow \\ \hline \\ G_1 \\ \hline \\ G_1 \\ \hline \\ G_1 \\ \hline \\ G_2 \\ G_1 \\ \hline \\ G_1 \\ \hline \\ G_2 \\ G_1 \\ \hline \\ \\ G_2 \\ G_1 \\ \hline \\ \\ G_2 \\ \hline \\ \\ G_1 \\ \hline \\ \\ G_2 \\ \hline \\ \\ G_1 \\ \hline \\ \\ \\ G_2 \\ \hline \\ \\ \\ \\ \\ G_1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	G =	F3 F2 F1	I/G =		G =	F3 F2 F1	I/G = I/G =	P _(P) ← -1	G =	•] 11	I/G = I/G =	¶ 4 J1 J2	G =	O _(P) ← -▶	I/G =
AM G =		$\begin{array}{c} B_{1} \longrightarrow \\ B_{2} \longrightarrow \\ B_{3} \longrightarrow \\$		F3 F2 F1				F3 F2 F1	• I/G =	P _(P) ← - 1		۴] 11	I/G =	¶ 4 J1 J2		O _(P)	

						Signal Ji	unction A	nalysis									
Junction:	Ng Lau Roa	d / Castle P	eak Roa	ad - Lam	Tei									_	Job Nu	mber:	J7265
Scenario:	With Approv	ed Scheme														Ρ.	43
Design Year:	2033	Designe	ed By:				-	Checke	d By:					Date:	15	5 Nov 20	24
										AM Peak			-		PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Ng Lau Road EB		LT	A1	1	4.00	15.0		100	1832	138	0.075		100	1832	156	0.085	
Castle Peak Road	d - Lam Tei NB	SA	B1	2,3	3.30				1945	273	0.140			1945	545	0.280	
		SA	B2	2,3	3.30				2085	293	0.141			2085	585	0.281	
		SA	B3	2,3	3.30				2085	292	0.140			2085	585	0.281	
		RT	C1	1	3.70	15.0		100	1932	252	0.130	0.130	100	1932	184	0.095	0.095
Castle Peak Road	d - Lam Tei NB	LT	D1	2	3.70	13.0		100	1780	160	0.090		100	1780	146	0.082	
		LT	D2	2	3.70	15.0		100	1932	149	0.077		100	1932	179	0.093	
		SA	E1	2,3	3.70				2125	350	0.165			2125	792	0.373	
		SA	E2	2,3	3.65				2120	349	0.165			2125	791	0.372	0.372
Castle Peak Road	d - Lam Tei SB	LT+SA	F1	2,3	3.70	15.0		2	1981	600	0.303		4	1977	416	0.210	
		SA	F2	2,3	3.70				2125	643	0.303			2125	447	0.210	
		SA	F3	2,3	3.70				2125	643	0.303	0.303		2125	447	0.210	
Castle Peak Road	1 - Lam Tei SB	LT+SA	G1	1,2,3	3.70	10.0		11	1953	761	0.390		26	1910	463	0.242	
		SA	G2	1,2,3	3.70				2125	829	0.390			2125	516	0.243	
		RT	H1	4	3.50	20.0		100	1958	102	0.052	0.052	100	1958	83	0.042	0.042
Wong Kong Wai I		LT	11	4	4.00	10.0		100	1752	20	0.011		100	1752	14	0.008	
Fuk Hang Tsuen I	Road WB	LT	J1	5	3.70	15.0		100	1805	280	0.155	0.155	100	1805	246	0.136	0.136
		LT+RT	J2	5	3.70	15.0		100	1932	300	0.155		100	1932	264	0.137	
Road P1		LT+RT	K1	5	3.80	12.0		100	1773	185	0.104		100	1773	199	0.112	
		RT	K2	5	3.80	15.0		100	1941	202	0.104		100	1941	217	0.112	
pedestrian pha	se		L _(P)	3,4,5		min c	rossing	time =	5		GM +	11		GM =	16	sec	
			M _(P)	3			rossing		5		GM +	15		GM =	20	sec	
			N _(P)	3,4			rossing		5		GM +	16		GM =	21	sec	
			O _(P)	5			rossing t		5		GM +	14		GM =	19	sec	
			P _(P)	4			rossing t		5		GM +	18		GM =	23	sec	
			Q _(P)	3			rossing t		11		GM +	11		GM =	22	sec	
			R _(P)	1,2,4,5	-	min c	rossing	time =	5	sec	GM +	13	sec F	GM =	18	sec	
AM Traffic Flow (pcu/hr))		Ν	PM Traffic I	low (pcu/hr)				Ν	S = 1940 -	- 100 (W-3.	25) S :	= 2080 + 10	00 (W-3.25)	Note:		
	138	285// 102				156	333	// 83		SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
	160	↓ /↓	I			146	• •/	*	I		AM	Peak	PM	Peak			
858	¹⁴⁹			1715		¹⁷⁹					1+2,3+4+5		1+2,3+4+5				
♦ 252				♦ 184		1583				Sum y	0.640		0.646				
		102						an 1 ⁸³		L (s)	21		21				
+	1804	1580 2			+	1188		964 <u></u>		C (s)	120		120				
4 33 → 147	•	¹⁰		4 316	` •	122	▲ 14	* 15		practical y	0.743		0.743				
433 147	20			316	I 194		14			R.C. (%)	16%		15%				
1 R _(P)	A1 R _{(F}	P) 2	R _(P)		R _(P)	3	• •	L _(P)	← - ► Q _(P)	4	R _(P)	L _(P)	R _(P)	5	R _(P)	L _(P)	K1 K2 R(P)
•	l,	▼ B1→			•	в1 →	-' - ' -'	<u> </u>					•		•	*	4 *
		$B2 \longrightarrow B3 \longrightarrow$				$B2 \rightarrow B3 \rightarrow $	E1				M(P)						
C1 🚽				F3			E2 🔶	F3			▼ N(P)		₫_н1		N(P)		
	←	G2 G1	← •_	F2 F1	← G2 ← G1		← ←	F2 F1	← G2 ← G1	P _(P)	+	*		***	ŧ	O _(P) ← −▶	.
	*		•		*		•		•			ן וו		1			
AM G =	I/G	i = 8	G =		I/G =	7	G =		I/G =		G =		I/G =		G =		I/G = 5
G =	I/G		G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
PM G =		i = 8	G =		I/G =	7	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G =	I/G		G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
	-																

						Signal	Junction	-inaly 313									
Junction:	Ng Lau Road	l / Castle P	eak Ro	ad - Lar	n Tei									_	Job Nu	mber:	J7265
Scenario:	With Propose	ed Scheme)													Ρ.	44
Design Year:	2033	Designe	ed By:					Checke	ed By:					Date:	15	Nov 20	24
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Ng Lau Road EB		LT	A1	1	4.00	15.0	Gradient	400	(pcu/hr)	(pcu/hr)	0.075		400	(pcu/hr)	(pcu/hr)	0.005	
Castle Peak Roa		SA	B1	2,3	3.30	10.0		100	1832	138	0.075		100	1832	156	0.085	
Castle I eak itte		SA	B2	2,3	3.30				1945	276	0.142			1945	549	0.282	
		SA	B3	2,3	3.30				2085	296	0.142			2085	588	0.282	
		RT	C1	1	3.70	15.0		400	2085	297	0.142	0.400	400	2085	588	0.282	0.005
Castle Peak Roa	id - Lam Tei NB	LT	D1	2	3.70	13.0		100	1932	252	0.130	0.130	100	1932	184	0.095	0.095
Castle I eak itte		LT	D2	2	3.70	15.0		100	1780	160	0.090		100	1780	146	0.082	
		SA	E1	2,3	3.70	15.0		100	1932	150	0.078		100	1932	179	0.093	
		SA	E2	2,3					2125	355	0.167			2125	797	0.375	
Castle Peak Roa		LT+SA	F1	2,3	3.65 3.70	15.0		-	2120	354	0.167			2125	796	0.375	0.375
Casile Feak Rua	iu - Lani Tei 35			,		15.0		2	1981	603	0.304		4	1977	420	0.212	
		SA SA	F2 F3	2,3	3.70 3.70				2125	647	0.304	0.077		2125	451	0.212	
Castle Peak Roa	id - Lam Toi SP	LT+SA	G1	2,3 1,2,3	3.70	10.0			2125	648	0.305	0.305	~~	2125	451	0.212	
Casue r eak KUa	G Lan Tel OD	LT+SA SA	G1 G2	1,2,3	3.70	10.0		11	1953	767	0.393		26	1910	469	0.245	
		SA RT	H1	4		20.0			2125	834	0.392			2125	521	0.245	
) // //) // -:	De e d M/D				3.50	20.0		100	1958	102	0.052	0.052	100	1958	83	0.042	0.042
Wong Kong Wai		LT	11	4	4.00	10.0		100	1752	20	0.011		100	1752	14	0.008	
Fuk Hang Tsuen	Road WB	LT	J1	5	3.70	15.0		100	1805	280	0.155	0.155	100	1805	246	0.136	0.136
D 101		LT+RT	J2	5	3.70	15.0		100	1932	300	0.155		100	1932	264	0.137	
Road P1		LT+RT	K1	5	3.80	12.0		100	1773	185	0.104		100	1773	199	0.112	
		RT	K2	5	3.80	15.0		100	1941	203	0.105		100	1941	218	0.112	
													_				
pedestrian pha	ase		L _(P)	3,4,5			rossing		5		: GM +	11		GM =	16	sec	
			M _(P)	3			rossing		5		: GM +	15		GM =	20	sec	
			N _(P)	3,4			rossing		5		: GM +	16		GM =	21	sec	
			0 _(P)	5		min c	rossing	time =	5		: GM +	14		GM =	19	sec	
			P _(P)	4			rossing		5		: GM +	18		GM =	23	sec	
			Q _(P)	3			rossing		11		: GM +	11		GM =	22	sec	
			R _(P)	1,2,4,5		min c	rossing	time =	5	sec	: GM +	13	sec F	GM =	18	sec	
AM Traffic Flow (pcu/h	r)		Ν	PM Traffic	Flow (pcu/hr)				N	S = 1940 +	+ 100 (W-3.25)	S =	2080 + 10	0 (W-3.25)	Note:		
	138 2	286 102				156		// 83		SM = S / (1 + 1.5 f/r)	SM =	(S - 230) / ((1 + 1.5 f/r)			
	160	14	I			L 4	•	4	I		AM P	eak	PM	Peak	1		
869				1725		¹⁷⁹					1+2,3+4+5		1+2,3+4+5				
▶ 252	709			▶ 184		1593				Sum y	0.643		0.648				
		102						8 3		L (s)	21		21				
*	1816	1591 📥				1200		975 Č		C (s)	120		120				
€ , →	₩ 82	1 0		•		122	•	15		practical y	0.743		0.743				
433 + 14	7 20			▲ 316	194		14			R.C. (%)	16%		15%				
					- Î		-	►	← ->		_ ^ + -	-+		-	_ 1 4	>	
1 R _(P) ▼	A1 R _(P)	¢ 2	R _(P) ↓		R _(P) ↓	3	+ + +		Q _(P)	4	R(p) ▼	L _(P)	R _(P) ↓	5	R _(P) ▼	L(P)	K1 K2 R _(P)
		$B1 \longrightarrow B2 \longrightarrow$									+						
C1		B3 →	$E1 \longrightarrow$ $E2 \longrightarrow$			B3 →	$E1 \longrightarrow$ $E2 \longrightarrow$				₩ _(P)						
o. v	←	62	÷	F3 F2	← 62		÷	F3 F2	← 62	Po	N(P) ⊥		₫_н1		N _(P)	0	
	t,	G1	*∓	F1			*∓	F1		(P)	• •	1		11	. '	<-►	
												1 1		J1 J2			
AM G =		= 8	G =		I/G =	7	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G =	I/G	=	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =
PM G =	I/G	= 8	G =		I/G =	7	G =		I/G =		G =		I/G =	5	G =		I/G = 5
G =	I/G	=	G =		I/G =		G =		I/G =		G =		I/G =		G =		I/G =

							unction Ar										
Junction:	Hong Po Ro	oad / San Hii	ng Roac											•	Job Nu	mber:	J7265
Scenario:	Without Dev													_			46
Design Year:	2033	Designe	ed By:				-	Checke	d By:					Date:	15	5 Nov 20	24
	A		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow		Critical y	Turnin e 0(Sat. Flow	PM Peak Flow		Critical y
	Approach		Phase	Stage	vvidtn (m)	Radius (m)	% Op-niii Gradient	i uming %	(pcu/hr)	(pcu/hr)	y value	Critical y	Turning %	(pcu/hr)	(pcu/hr)	y value	Chucal y
Hong Po Road W	/B	SA+LT	A1	1	3.75	10.0		10	1961	336	0.171		4	1978	401	0.203	
		SA	A2	1	3.75				2130	365	0.171			2130	432	0.203	0.203
Access Road NB	3	LT+RT	B1	2	2.50	15.0		100	1796	25	0.020		100	1700	8	0.004	
			DI	2	3.50	15.0		100	1786	35	0.020		100	1786	0	0.004	
Hong Po Road E	В	LT	C1	1	3.65	25.0		100	1868	23	0.012		100	1868	35	0.019	
		SA	C2	1	3.37	2010			2092	515	0.246	0.246		2092	313	0.150	
		SA	C3	1	3.38				2093	515	0.246			2093	314	0.150	
San Hing Road S	3B	LT+RT*	D1	3	3.37	10.0		100	1817	158	0.087	0.087	100	1817	76	0.042	0.042
pedestrian pha	250		E _(P)	4		min c	rossing 1	time –	8	SAC	GM +	7	sec F	GM =	15	sec	
pedestrian pria	130		F _(P)	4			rossing		7		GM +	6		GM =	13	sec	
			G _(P)	4			rossing f		8		GM +	7		GM =	15	sec	
			H _(P)	4			rossing f		11		GM +	9		GM =	20	sec	
			I _(P)	2,3,4			rossing		5		GM +	9		GM =	14	sec	
							0										
AM Traffic Flow (pcu/hr	r)		N	PM Traffic I	Flow (pcu/hr)				N	0 4040		05) 0	0000 - 40		Note:		
											+ 100 (W-3. 1 + 1.5 f/r)		2080 + 10	0 (W-3.25) 1 + 1.5 f/r)	*Sinale	lane wit	h flare
23	3 64 🗲	→ 94			▲ 35	27	₊⊢	49		Sivi = 37 (Peak		Peak	Olligic		nnarc
	• 1030					627					1+3	1+2+3	1+3	1+2+3			
										Sum y	0.333	0.353	0.245	0.249			
		666 🗕					815	•		L (s)	46	40	46	40			
ŧ	5 - 30	↓ 35			2	←→	6	↓ 18		C (s)	90	90	90	90			
	I					I				practical y	0.440	0.500	0.440	0.500			
										R.C. (%)	32%	42%	80%	101%			
1		2				3				4	1			5			
с1т						-		D1 D2		*	(P)	H _(P)		-			
										1	Em	Gran	Ì				
C3 -	A1 A2		←→				+	┶╆└╆			-(P)	-(r)					
	`		l B1							1		- + 1	,				
AM G =	_	//G = 5	G =	5	I/G =	5	G =		I/G =	10	G =	20	I/G =	3	G =		
G =		VG = 5	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		⊮G = 5	G =	5	I/G =		G =		I/G =		G =		I/G =		G =		
G =		1/G = 5	G =		I/G =		G =		I/G =		G =		I/G =		G =		

						-	unction Ar	-									
Junction:	Hong Po Ro	ad / San Hii	ng Road												Job Nu	mber:	J7265
Scenario:	With Approv	ed Scheme														Ρ.	47
Design Year:	2033	Designe	ed By:					Checke	d By:					Date:	15	5 Nov 20	24
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Hong Po Road W	/В	SA+LT	A1	1	3.75	10.0		10	1961	336	0.171		4	1978	401	0.203	
		SA	A2	1	3.75				2130	365	0.171			2130	432	0.203	0.203
Access Road NB		LT+RT	B1	2	3.50	15.0		100	1786	35	0.020		100	1786	8	0.004	
Hong Po Road El	В	LT	C1	1	3.65	25.0		100	1868	23	0.012		100	1868	35	0.019	
		SA	C2	1	3.37				2092	515	0.246	0.246		2092	313	0.150	
		SA	C3	1	3.38				2093	515	0.246			2093	314	0.150	
San Hing Road S		LT+RT*								150					=0		
San Hing Koau S		LITKI	D1	3	3.37	10.0		100	1817	158	0.087	0.087	100	1817	76	0.042	0.042
pedestrian pha	se		E _(P)	4		min c	rossing t	time =	8	sec	GM +	7	sec F	GM =	15	sec	
			F _(P)	4		min c	rossing	time =	7	sec	GM +	6	sec F	GM =	13	sec	
			$G_{(P)}$	4		min c	rossing	time =	8	sec	GM +	7	sec F	GM =	15	sec	
			H _(P)	4		min c	rossing	time =	11	sec	GM +	9	sec F	GM =	20	sec	
			I _(P)	2,3,4		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)		Ν	PM Traffic I	low (pcu/hr)				Ν	S = 1940 -	+ 100 (W-3	25) S =	2080 + 10	0 (W-3 25)	Note:		
											1 + 1.5 f/r)			1 + 1.5 f/r)	*Sinale	lane wit	h flare
▲ ²³	3 64 🛶	→ 94			▲ ³⁵	27	$ \rightarrow $	49				Peak		Peak	g		
	1030					627					1+3	1+2+3	1+3	1+2+3			
										Sum y	0.333	0.353	0.245	0.249			
		666 •					815	•		L (s)	46	40	46	40			
5	5 - 30	↓ 35			2	<>	6	↓ 18		C (s)	90	90	90	90			
	I					I				practical y	0.440	0.500	0.440	0.500			
										R.C. (%)	32%	42%	80%	101%			
1		2				3				4	1			5			
						-		D1		· *	(P)	H _(P)		-			
										1	• •	• Gar	Ì				
C3	A1		←→				+	⊥.			└(P)	G(P)					
	▲A2		 В1							•		- • 1	,				
AM G =		/G = 5	G =	5	I/G =	5	G =		I/G =	10	G =	20	I/G =	3	G =		
AM G = G =		/G = 5 /G = 5	G = G =	5	I/G =		G = G =		I/G =		G = G =		I/G =		G = G =		
G =		/G = 5	G =	5	I/G =		G =		I/G =		G =		I/G =		G =		
РМ G = G =		/G = 5	G =	5	I/G =		G =		I/G =		G =		I/G =		G =		
G =	. V	·····	6 =		I/G =	5	6 =		I/G =	10	6 =	20	I/G =	5	G =		

						Signal J	unction Ar	lalysis									
Junction:	Hong Po Ro	oad / San Hi	ng Road	d										-	Job Nu	mber:	J7265
Scenario:	With Propos																48
Design Year:	2033	Designe	ed By:				-	Checke	d By:					Date:	15	5 Nov 20	24
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Hong Po Road V	VB	SA+LT	A1	1	3.75	10.0		10	1961	336	0.171		4	1936	401	0.207	
		SA	A2	1	3.75				2130	365	0.171			2088	432	0.207	0.207
Access Road NE	3	LT+RT	B1	2	3.5	15.0		100	1786	35	0.020		100	1786	8	0.004	-
Hong Po Road E	в	LT							1000								
riong r o rioda E		SA	C1	1	3.65	25.0		100	1868	27	0.014	0.246	100	1868	38	0.020	
		SA	C2 C3	1	3.37 3.38				2092 2093	515 515	0.246	0.246		2092 2093	313 314	0.150	
			05	1	5.50				2095	515	0.240			2035	514	0.130	
San Hing Road S	SB	LT+RT*	D1	3	3.37	10.0		100	1817	167	0.092	0.092	100	1817	79	0.043	0.043
					0.01	1010					0.002	0.002		1011		0.010	0.010
			-									-			45		
pedestrian pha	ase		E _(P) F _(P)	4			rossing		8		GM +	7		GM =	15	sec	
			G _(P)	4			rossing		7		GM +	6		GM =	13	sec	
			H _(P)	4			rossing		8 11		GM + GM +	7 9		GM = GM =	15 20	sec sec	
			I _(P)	2,3,4			rossing t		5		GM +	9		GM =	14	sec	
			. ,	2,0,1			loooling		0	000		0	0001			000	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)				N						Note:		
											+ 100 (W-3	,		` '	*0:	1	. (
2	7 70	→ 97			▲ 38	29	$ \downarrow $	50		SM = S / (1 + 1.5 f/r)				Single	lane wit	n nare
I I	• 1030				\rightarrow						AM 1+3	Peak 1+2+3	1+3	Peak 1+2+3			
										Sum y	0.338	0.358	0.250	0.255			
		666					815	•		L (s)	46	40	46	40			
	5 + 30	↓ 35			2	←→	6	↓ 18		C (s)	90	90	90	90			
	I					I				practical y	0.440	0.500	0.440	0.500			
										R.C. (%)	30%	40%	76%	96%			
1		2				3				4				5			
		-				0		D1		•••	(P)	H _(P)		0			
											t E∞	Gal					
<u> </u>	A1 A2		←→				+	⊥.			-(P)	C(P)					
			l B1								F (P)	- • 1	,				
AM G =	-	I/G = 5	G =	5	I/G =	5	G =		I/G =	10	G =	20	I/G =	3	G =		
G		I/G = 5	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 5	G =	5	I/G =	5	G =		I/G =	10	G =	20	I/G =		G =		
G =	-	I/G = 5	G =		I/G =	5	G =		I/G =	10	G =	20	I/G =	3	G =		
L																	

Appendix B – Public Transport Survey Result

TABLE B1DETAILEDPEAK1HOUROCCUPANCYSURVEYRESULTONTHEPUBLIC TRANSPORT NEAR THE PROPOSED DEVELOPMENT

Direction	Routes	Survey			ık 1 Hour			r	ık 1 Hour	
		Location	No. of		assenger	Occu-	No. of		assenger	Occu-
			Trips	Capacity [a]	Occupied [b]	pancy [c]=[b]/[a]	Trips	Capacity [a]	Occupied [b]	pancy [c]=[b]/[a
Outward	CTB 50	LTI - EB	3	360	180	50%	0	-	-	-
bound	CTB 55	LTI - EB	4	480	320	67%	0	-	-	-
	CTB 56	LTI - EB	0	-	-	-	0	-	-	-
	CTB 56A	LTI - EB	3	360	252	70%	0	-	-	-
	CTB 950	LTI - EB	2	240	150	63%	0	-	-	-
	CTB 955	LTI - EB	1	120	60	50%	0	-	-	-
	CTB B3A	LTI - EB	1	120	108	90%	2	240	120	50%
	KMB 53	CPR - SB	2	240	45	19%	1	120	30	25%
	KMB 63X	CPR - SB	5	600	338	56%	4	480	120	25%
	KMB 67M	LTI - EB	8	960	210	22%	3	360	36	10%
	KMB 67X	LTI - EB	7	840	174	21%	1	120	30	25%
	KMB 68A	CPR - SB	3	360	217	60%	3	360	135	38%
	KMB 258A	CPR - SB	2	240	120	50%	0	-	-	-
	KMB 258P	CPR - SB	4	480	120	25%	0	-	-	-
	KMB 261P	CPR - NB	1	120	36	30%	0	-	-	-
	KMB 267X	LTI - EB	2	240	24	10%	0	-	-	-
	KMB 960A	N/A	0	-	-	-	0	-	-	-
	KMB 960C	LTI - WB	1	120	6	5%	0	-	-	-
	KMB 960P	CPR - SB	6	720	412	57%	0	-	-	-
	KMB 960X	CPR - SB	7	840	105	13%	0	-	-	
	LWB A34	CPR - SB	3	360	66	18%	1	120	0	0%
	LWB E33P	LTI - WB	3	360	77	21%	0	-	-	-
	NLB B2	CPR - SB	3	360	158	44%	3	360	225	63%
		Total	71	8,520	3,178	37%	18	2,160	671	31%
Inward	CTB 50	LTI - WB	0	-	-	-	3	360	90	25%
bound	CTB 55	LTI - WB	0	-	-	-	2	240	60	25%
	CTB 56	LTI - WB	0	-	-	-	0	-	-	-
	CTB 56A	LTI - WB	3	360	180	50%	3	360	270	75%
	CTB 950	LTI - WB	0	-	-	-	1	120	54	45%
	CTB 955	LTI - WB	0	-	-	-	1	120	72	60%
	CTB B3A	LTI - WB	1	120	60	50%	2	240	180	75%
	KMB 53	CPR - NB	2	240	45	19%	2	240	90	38%
	KMB 63X	CPR - NB	2	240	90	38%	2	240	180	75%
	KMB 67M	LTI - WB	3	360	27	8%	4	480	150	31%
	KMB 67X	LTI - WB	3	360	50	14%	3	360	90	25%
	KMB 68A	CPR - NB	2	240	140	58%	5	600	350	58%
	KMB 258A	N/A	0	-	-	-	0	-	-	-
	KMB 258P	CPR - NB	0	-	-	-	3	360	90	25%
	KMB 261P	CPR - SB	0	-	-	-	0	-	-	-
	KMB 267X	LTI - WB	0	-	-	-	2	240	60	25%
	KMB 960A	LTI - EB	0	-	-	-	1	120	36	30%
	KMD 900A	CPR - NB	0	0	-	-	1	120	30	25%
	KMB 960C	LTI - EB	0	-	-	-	1	120	12	10%
	KMB 960P	CPR - NB	0	-	-	-	2	240	60	25%
	KMB 960X	CPR - NB	0	-	-	-	3	360	180	50%
	LWB A34	CPR - NB	0	-	-	-	3	360	36	10%
	LWB E33P	LTI - EB	0	-	-	-	3	360	36	10%
	NLB B2	CPR - NB	4	480	240	50%	3	360	135	38%
		Total	20	2,400	832	35%	49	5,880	2,231	38%
Intra-district	CMP 42	LTI - EB	4	76	46	60%	4	76	31	40%
Services	GMB 42	LTI - WB	4	76	20	26%	4	76	10	13%
		Tota	8	152	66	43%	8	152	41	27%

CPR – Castle Peak Road –Lam Tei LTI – Lam Tei Interchange

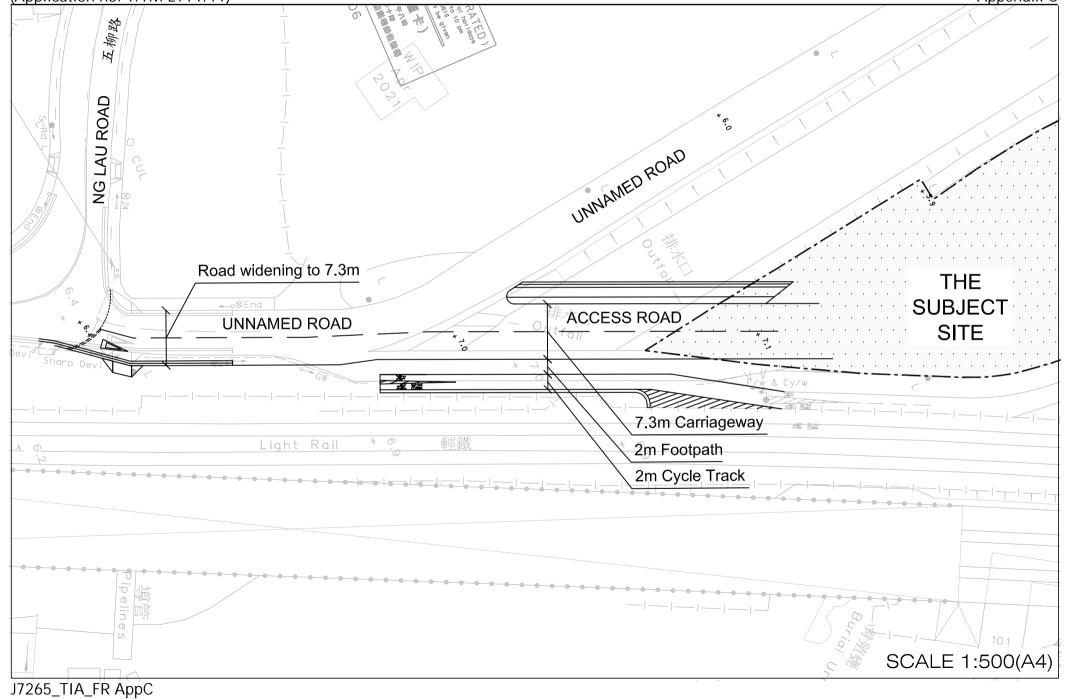
NB – northbound SB – southbound EB – eastbound WB – westbound Capacity and occupied are in passenger/hr

TABLE B2DETAILED PEAK HALF-HOUR OCCUPANCY SURVEY RESULT ON THE
PUBLIC TRANSPORT NEAR THE PROPOSED DEVELOPMENT

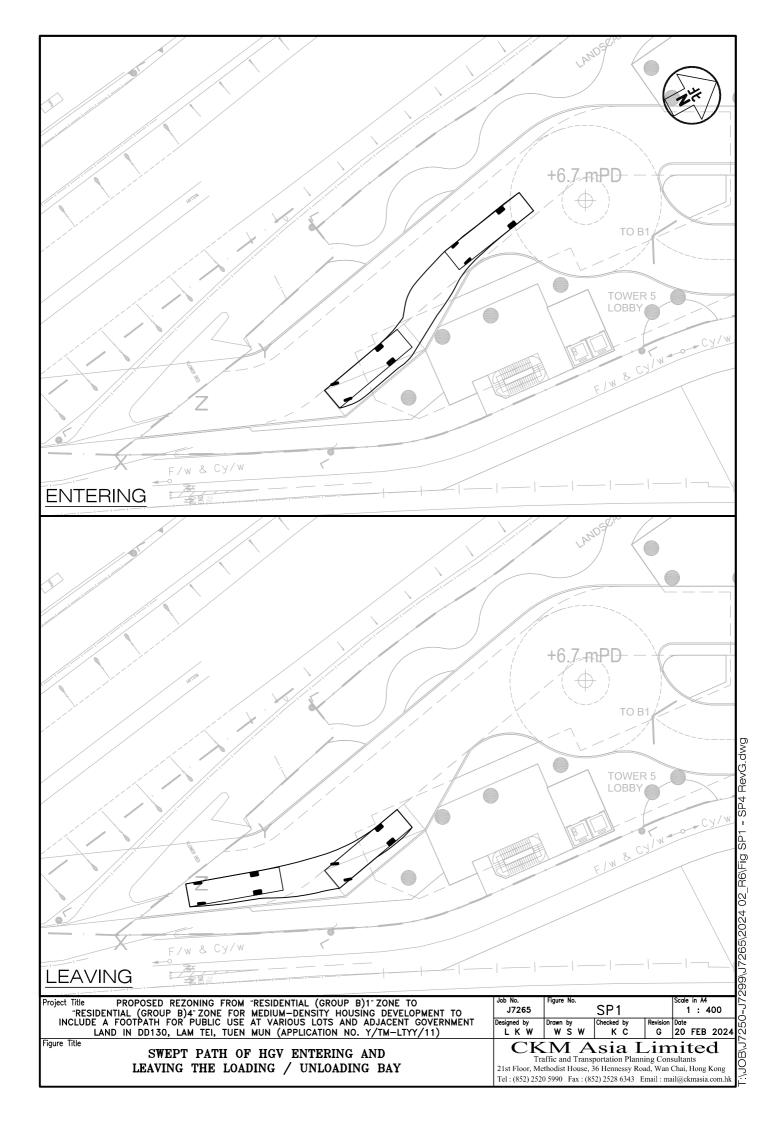
Direction	Routes	Survey			Half-hour				Half-hour	
		Location	No. of	No. of P		Occu-	No. of		assenger	Occu-
			Trips	Capacity [a]	Occupied [b]	pancy [c]=[b]/[a]	Trips	Capacity [a]	Occupied [b]	pancy [c]=[b]/[a
Outward	CTB 50	LTI - EB	2	240	152	63%	0	0	-	-
bound	CTB 55	LTI - EB	2	240	180	75%	0	0	-	-
	CTB 56	LTI - EB	0	0	-	-	0	0	-	-
	CTB 56A	LTI - EB	2	240	192	80%	0	0	-	-
	CTB 950	LTI - EB	2	240	152	63%	0	0	-	-
	CTB 955	LTI - EB	1	120	60	50%	0	0	-	-
	CTB B3A	LTI - EB	1	120	108	90%	1	120	66	55%
	KMB 53	CPR - SB	1	120	24	20%	1	120	30	25%
	KMB 63X	CPR - SB	3	360	203	56%	2	240	72	30%
	KMB 67M	LTI - EB	4	480	144	30%	2	240	29	12%
	KMB 67X	LTI - EB	4	480	135	28%	1	120	30	25%
	KMB 68A	CPR - SB	2	240	169	70%	2	240	101	42%
	KMB 258A	CPR - SB	1	120	60	50%	0	0	-	-
	KMB 258P	CPR - SB	2	240	60	25%	0	0	-	-
	KMB 261P	CPR - NB	1	120	36	30%	0	0	-	-
	KMB 267X	LTI - EB	2	240	24	10%	0	0	-	-
	KMB 960A	N/A	0	0	-	-	0	0	-	-
	KMB 960C	LTI - WB	1	120	6	5%	0	0	-	-
	KMB 960P	CPR - SB	3	360	206	57%	0	0	-	-
	KMB 960X	CPR - SB	4	480	60	13%	0	0	-	-
	LWB A34	CPR - SB	2	240	44	18%	1	120	0	0%
	LWB E33P	LTI - WB	2	240	63	26%	0	0	-	-
	NLB B2	CPR - SB	2	240	105	44%	2	240	156	65%
		Total	44	5,280	2,183	41%	12	1,440	484	34%
Inward	CTB 50	LTI - WB	0	0	-	-	2	240	68	28%
bound	CTB 55	LTI - WB	0	0	-	-	1	120	36	30%
	CTB 56	LTI - WB	0	0	_	-	0	0	-	-
	CTB 56A	LTI - WB	2	240	140	58%	2	240	200	83%
	CTB 950	LTI - WB	0	0	-	-	1	120	54	45%
	CTB 955	LTI - WB	0	0	-	-	1	120	72	60%
	CTB B3A	LTI - WB	1	120	60	50%	1	120	108	90%
	KMB 53	CPR - NB	1	120	60	50%	1	120	48	40%
	KMB 63X	CPR - NB	1	120	54	45%	1	120	96	80%
	KMB 67M	LTI - WB	2	240	24	10%	2	240	87	36%
	KMB 67X	LTI - WB	2	240	33	14%	2	240	68	28%
	KMB 68A	CPR - NB	1	120	78	65%	3	360	234	65%
	KMB 258A	N/A	0	0	-	-	0	0	-	-
	KMB 258P	CPR - NB	0	0	_	-	2	240	72	30%
	KMB 261P	CPR – SB	0	0	_	-	0	0	-	-
	KMB 267X	LTI – WB	0	0	_	-	2	240	60	25%
		LTI – EB	0	0	_	-	1	120	36	30%
	KMB 960A	CPR - NB	0	0	_	-	1	120	30	25%
	KMB 960C	LTI – EB	0	0	_	_	1	120	12	10%
	KMB 960P	CPR – NB	0	0	_	_	1	120	30	25%
	KMB 960X	CPR - NB	0	0	_	-	2	240	144	<u> </u>
	LWB A34	CPR - NB	0	0	_	-	2	240	29	12%
	LWB E33P	LTI - EB	0	0	_	_	2	240	24	12 %
	NLB B2	CPR - NB	2	240	144	60%	2	240	96	40%
		Total	12	1,440	559	39%	32	3,840	1,574	40 %
Intra-district		LTI - EB	2	38	29	76%	2	3,040	16	42%
Services	GMB 42	LTI - EB								
Jervices			2	38	15	39%	2	38	7	18%
CDD Coatla	Deals Boad	Total	4	76	44	58%	4	76	23	30%

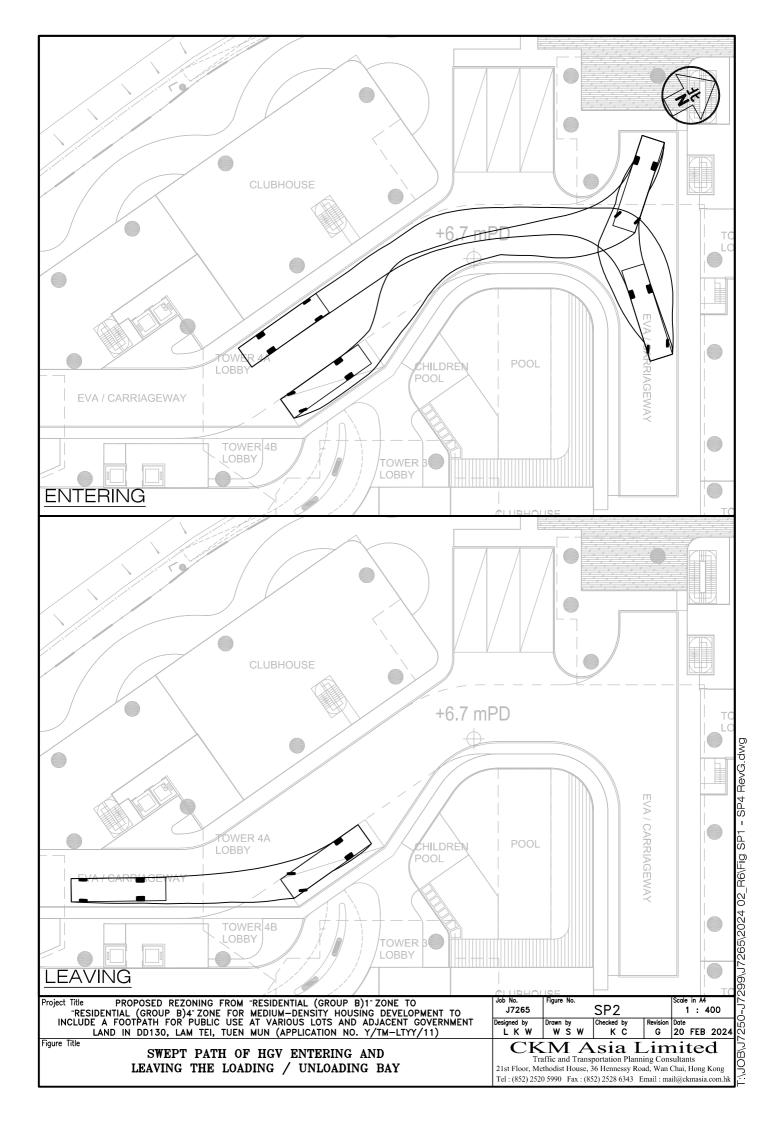
CPR – Castle Peak Road –Lam Tei LTI – Lam Tei Interchange

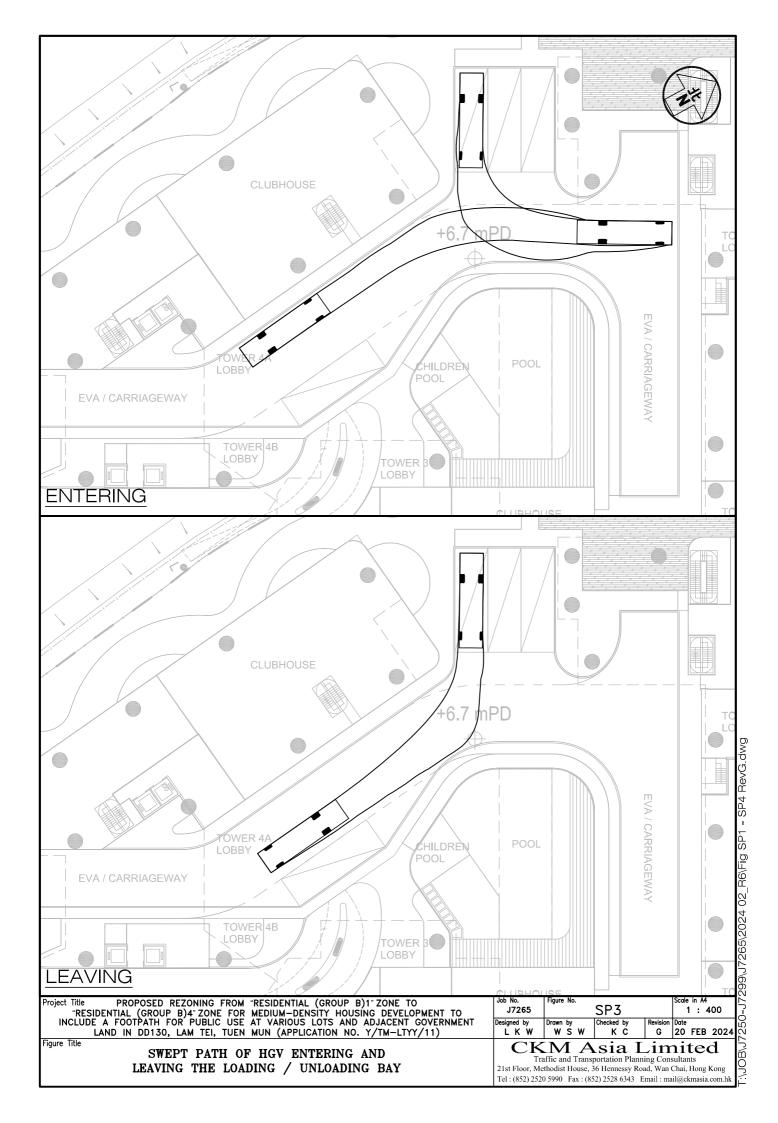
NB – northbound SB – southbound EB – eastbound WB – westbound Capacity and occupied are in passenger/hr

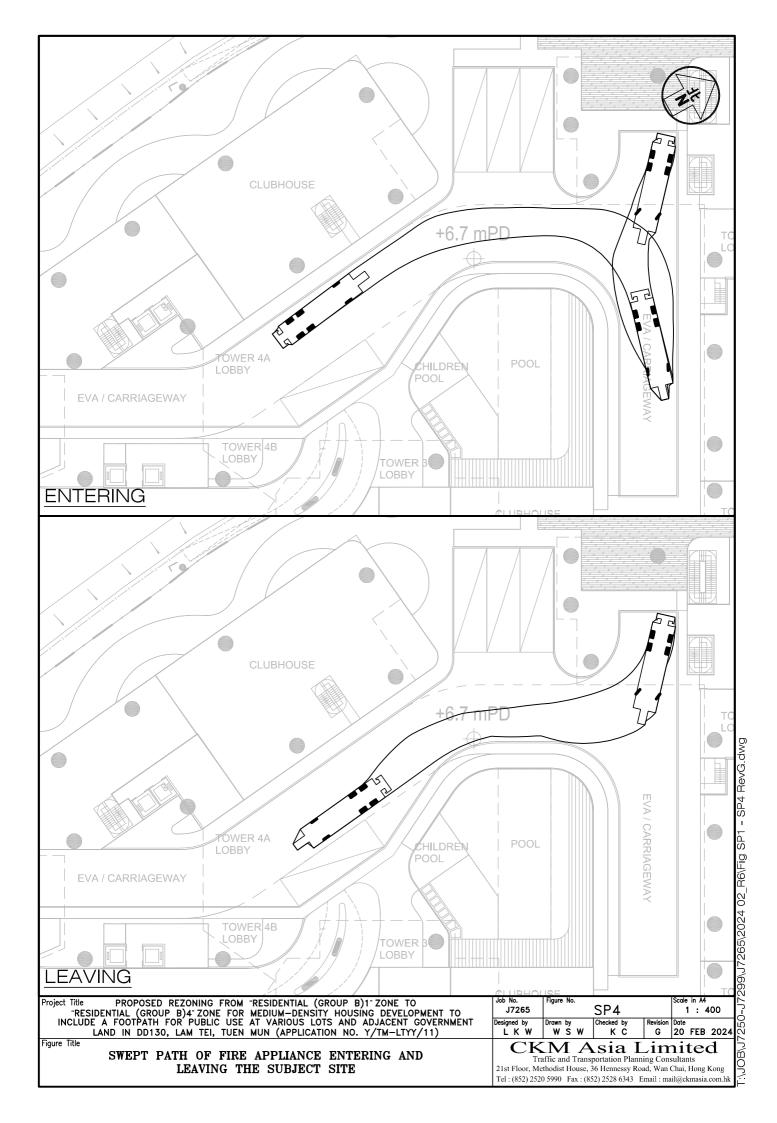

TABLE B3DETAILED PEAK 1 HOUR OCCUPANCY SURVEY RESULT AT LRT LAM
TEI STOP (TUEN MUN BOUND)

Time	Route	Single-set / Coupled-setOccupancy [c] = [a]/[b]		Capacity (Number of Passenger) [b]	Occupied (Number of Passenger) [a]
		AM	Peak		
7:15	615	Single-set	60%	200	120
7:17	615	Single-set	95%	200	190
7:20	610	Coupled-set	75%	400	300
7:22	751	Coupled-set	60%	400	240 360 380
7:27	614	Coupled-set	90%	400	
7:30	610	Coupled-set	95%	400	
7:33	751	Coupled-set	70%	400	280
7:35	751	Coupled-set	90%	400	360
7:37	615	Single-set	100%	200	200
7:42	610	Coupled-set	100%	400	400
7:44	751P	Single-set	90%	200	180
7:45	614	Single-set	95%	200	190
7:46	751	Single-set	78%	200	156
7:49	615	Single-set	100%	200	200
7:50	751	Coupled-set	90%	400	360
7:51	610	Coupled-set	70%	400	280
7:59	610	Single-set	100%	200	200
8:00	751	Coupled-set	90%	400	360
8:04	614	Coupled-set			240
8:05	615	Single-set	60% 400 80% 200		160
8:08	751	Coupled-set	70%	400	280
8:09	610	Single-set	50%	200	100
8:11	614	Single-set	80%	200	160
8:13	610	Single-set	50%	200	100
	• •	AM Peak Total	81%	7,200	5,796
18:36	751	PM Coupled-set	чеак 40%	400	160
18:39	614	Single-set	60%	200	120
18:41	751	Coupled-set	40%	400	120
18:43	615	Single-set	40%	200	80
18:47	610	Single-set		80% 200	
18:49	751	Coupled-set	40%		
18:54	614	Coupled-set	53% 400		160 212
18:56	610	Coupled-set	20% 400		80
18:59	751	Coupled-set	40%		
19:00	615	Single-set	40%	200	160 80
19:03	610	Single-set	<u>80%</u> 200		160
19:10	614	Single-set	100% 200		200
19:10	751	Coupled-set			160
19:15	615	Coupled-set	40%	400	160
19:16	610	Single-set	60%	200	120
19:18	751	Coupled-set	20%	400	80
19:20	751	Coupled-set			80
19:25	610	Single-set	100%	200	200
19:27	614	Single-set	60%	200	120
19:28	615	Single-set	60 % 200 60 % 200		120
19:20	610	Single-set	100%	200	200
	614	Single-set	60%	200	120
19:31	n14	20000-00			

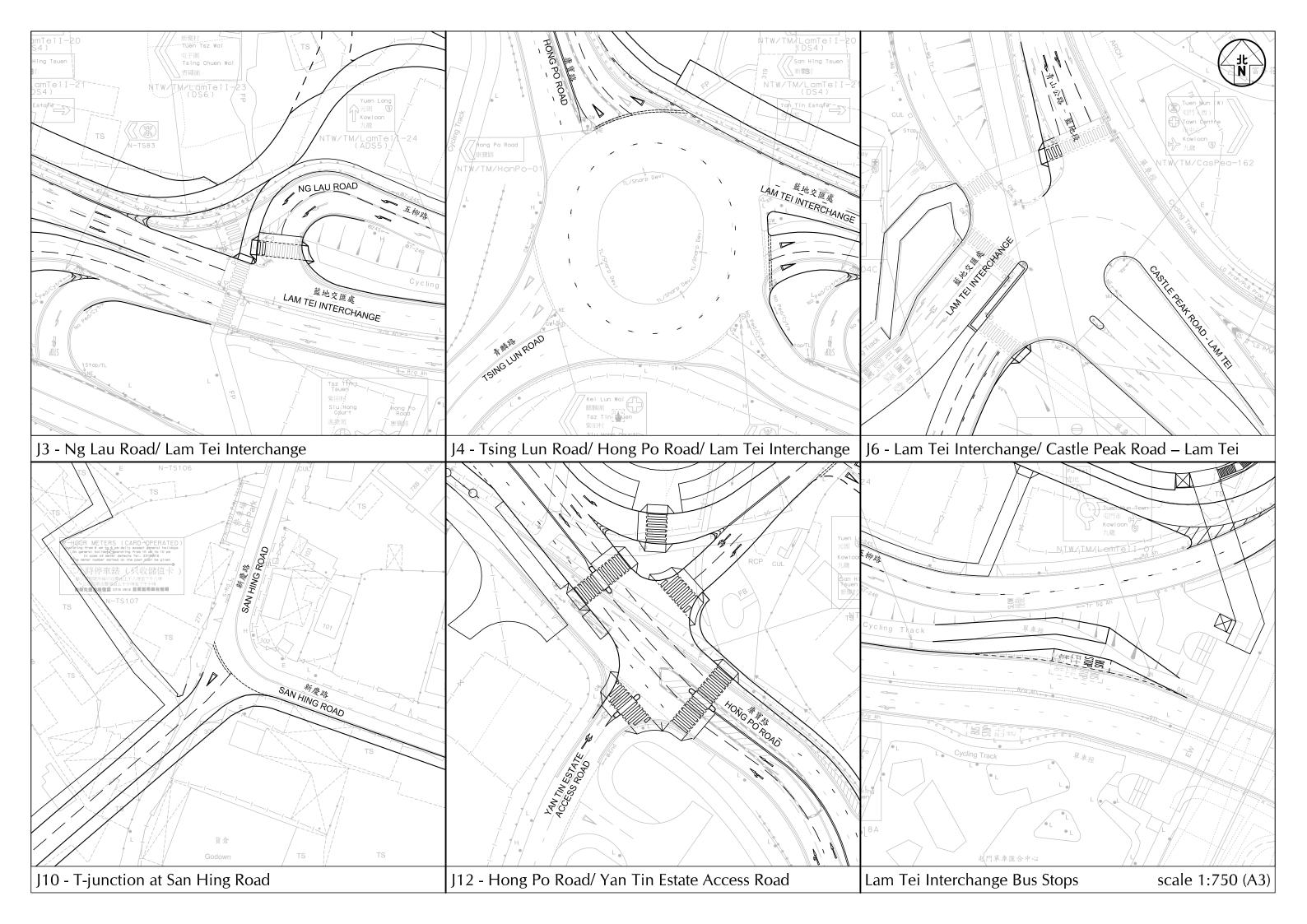

TABLE B4 DETAILED PEAK 1 HOUR OCCUPANCY SURVEY RESULT AT LRT LAM TEI STOP (YUEN LONG BOUND)

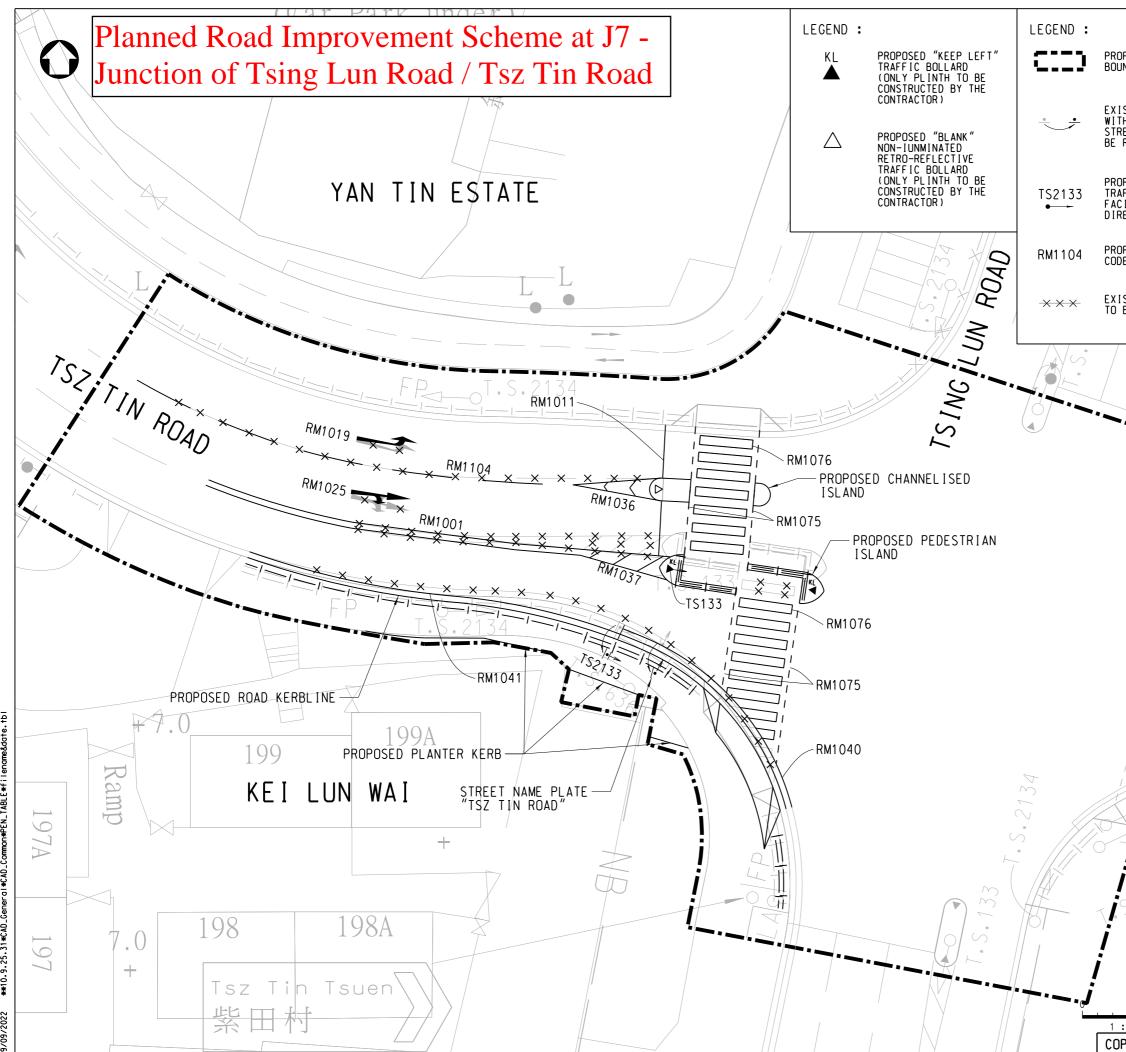

Time	Route	Single-set / Coupled-set			Occupied (Number of Passenger) [a	
		AM	Peak			
7:15	614	Coupled-set	70%	400	280	
7:16	751	Coupled-set	30%	400	120	
7:17	615	Single-set	70%	200	140	
7:25	610	Single-set	70%	200	140 160	
7:28	751	Coupled-set	40%	400		
7:32	614	Coupled-set	70%	400	280	
7:33	610	Coupled-set	40%	400	160	
7:38	751	Coupled-set	60%	400	240	
7:39	615	Single-set	80%	200	160	
7:41	610	Single-set	50%	200	100	
7:47	751	Coupled-set	40%	400	160	
7:48	614	Single-set	50%	200	100	
7:51	610	Coupled-set	50%	400	200	
7:55	751	Coupled-set	35%	400	140	
8:00	615	Single-set	76%	200	152	
8:01	610	Single-set	50%	200	100	
8:03	751	Single-set	30%	200	60	
8:07	751	Coupled-set	30%	400	120	
8:08	614	Single-set	80%	200	160	
8:09	610	Single-set	40%	200	80	
8:10	615	Single-set	40%	200	80	
8:09	610	Single-set	Ŭ		80	
8:10	615	Single-set	40%	200	80	
0110	010	AM Peak Total	50%	6,600	3,290	
				.,	-,	
		PM		1	200	
18:37	751	Single-set		100 200		
18:38	614	Single-set	60	200	120	
18:39	610	Single-set	80	200	160	
18:42	615	Single-set	40	200	<u>80</u> 320	
18:48	610	Coupled-set		80 400		
18:51	751	Single-set		80 200		
18:54	614	Single-set		98 200		
18:55	610	Single-set	100	200	200	
18:58	751	Coupled-set	80	400	320	
19:05	610	Coupled-set	100 400		400	
19:09	751	Coupled-set	80 400		320	
19:10	615	Single-set	60 200		120	
19:11	614	Single-set			120	
19:13	751	Coupled-set			160	
19:14	610	Single-set	100 200		200	
19:23	610	Single-set	80 200		160	
19:24	751	Coupled-set	100 400		400	
19:25	615	Single-set	60 200		120	
19:26	614	Single-set	60			
19:30	614	Single-set	60	200	120	
	754		(0	100	240	
19:32	751	Coupled-set	60	400	240	


Appendix C – Planned Road Works to be implemented by the Owner Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun (Application no. Y/TM-LTYY/11)

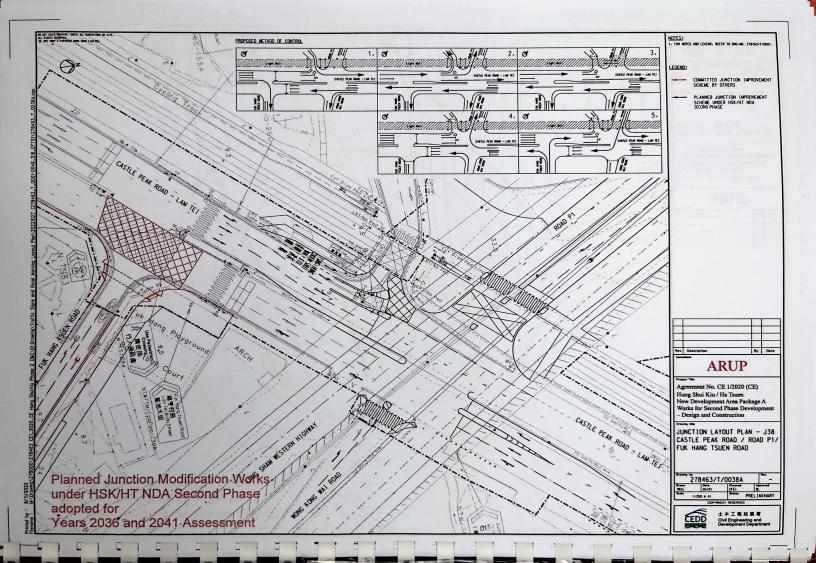


Appendix D – Swept Path Analysis





Appendix E – Extract of Planned Road Works under Agreement No. CE 39/2021 (CE) and CV/2019/04 by CEDD



S:*CV201101*Tsing Lun Road and Tsz Tin Road Junction*Sketches*LWSK-J5-0009.dgn
19/09/2022 **10.9.25.31*CAD_General*CAD_Common*FEN_TABLE*filename&date.tbl

	NC	DTES :			
DPOSED SITE JNDARY	1.	ALL DIMENSIONS ARE I MILLIMETRES UNLESS O STATED.			
ISTING SINGLE POST TH TRAFFIC SIGN OR	2.	GRID LINES ARE IN HO METRIC GRID 1980.	NG KONG		
REET NAME PLATE TO RELOCATED	3.	ALL LEVELS ARE IN ME PRINCIPAL DATUM (mPD			
DPOSED SYMBOLIC AFFIC SIGN NO. CING INDICATED AECTION	4.	THIS DRAWING SHALL B CONJUNCTION WITH DRA LWSK-J5-0010.			
DPOSED ROAD MARKING DE NO.	5.	DETAILS OF CONCRETE TRAFFIC BOLLARD SHAL HyD STANDARD DRAWING H2140 TO H2141.	L REFER TO		
ISTING ROAD MARKING BE REMOVED	6.	FOR DETAILS OF TRAFF AND ROAD MARKING, RE VOLUME 3 OF TRANSPOR AND DESIGN MANUAL (T PUBLISHED BY TRANSPO DEPARTMENT.	FER TO T PLANNING PDM)		
	7.	FOR SUPPORT DETAILS POST TRAFFIC SIGNS I COLOR OF POST, REFER STANDARD DRAWING NOS H2148.	NCLUDING TO HyD		
	 BACK OF ALL SIGNS SHALL BE PAINTED IN GREY TO BS5252F CODE 18B19. 				
re de la companya de la compa	9. EXISTING ROAD MARKING TO BE AFFECTED SHALL BE REMOVED AND REPLACED BY PROPOSED ROAD MARKING.				
	10.NEW SUPPORTS, INCLUDING SINGLE/MULTIPLE POSTS AND FRAME SUPPORTS, SHALL BE CONSTRUCTED FOR ALL PROPOSED AND RELOCATED TRAFFIC OR DIRECTIONAL SIGNS.				
	works order title IMPROVEMENT WORKS AT JUNCTION OF TSING LUN ROAD AND TSZ TIN ROAD, TUEN MUN				
1 . 21	drawing title				
	TRAFFIC AIDS AND ROAD MARKING LAYOUT				
	dra	scale			
SCALE BAR	LWS	K-J5-0009	1 : 250		
	office LAND WORKS DIVISION CIVIL ENGINEERING OFFICE				
: 250 SCALE BAR PYRIGHT RESERVED	ĆE	CIVIL ENGINEE DEVELOPMENT (
		~ ~	A3 420 x 297		

A3 420 x 297

Appendix F – Extract of Planned Road Works under Agreement No. CE 01/2020 (CE) by CEDD

