08/10/2024

Reference number CHK50801110

TRAFFIC CONSULTANCY SERVICES FOR REZONING REQUEST FROM "V" TO "G/IC(3)" FOR BUDDHIST CHEUNG HA TEMPLE, AT LOT NOS. 1087 AND 1130 IN DD6 AND ADJOINING GOVERNMENT LAND, TAI PO

TRAFFIC IMPACT ASSESSMENT STUDY

TABLE OF CONTENTS

1.	INTRODUCTION	7
1.1	BACKGROUND	7
1.2	STUDY OBJECTIVES	8
1.3	STUDY OBJECTIVES	8
2.	PROPOSED (EXISTING) DEVELOPMENT	9
2.1	Existing Site Conditions	9
2.2	PROPOSED (EXISTING) IN-SITE COLUMBARIUM DEVELOPMENT	9
2.3	INTERNAL TRANSPORT FACILITIES	9
3.	EXISTING TRAFFIC CONDITIONS	10
3.1	Existing Road Network	10
3.2	EXISTING PUBLIC TRANSPORT SERVICES	10
3.3	IDENTIFIED JUNCTION FOR ASSESSMENT	11
3.4	Assessment of Identified Pedestrian Facilities	12
3.5	VISITOR TRIP GENERATION OF THE APPLICATION SITE	17
3.6	Existing Parking Provision	18
4.	TRAFFIC FORECASTS	19
4.1	DESIGN YEAR	19
4.2	GROWTH FACTOR FOR TRAFFIC FORECAST	19
4.3	VISITOR AND TRAFFIC TRIP GENERATION FOR PROPOSED (EXISTING) COLUMBARIUM DEVELOPMEN	NT 21
4.4	ADJACENT COLUMBARIUM DEVELOPMENTS	23
4.5	YEAR 2032 TRAFFIC FORECASTS	26
5.	TRAFFIC MANAGEMENT PLAN	27
5.1	CROWD MANAGEMENT MEASURES	27
5.2	OTHER MANAGEMENT MEASURE	31
6.	TRAFFIC IMPACT ASSESSMENT	32
6.1	OPERATIONAL JUNCTION ASSESSMENT	32
6.2	OPERATIONAL PERFORMANCE OF PEDESTRIAN FACILITIES	33
6.3	PROVISION OF CAR PARKING FACILITIES IN THE VICINITY	37
7.	SUMMARY AND CONCLUSION	39
7.1	SUMMARY	39
7.2	CONCLUSION	40

APPENDICES

Appendix A	Detail of Junction Calculation Sheets
Appendix B	Descriptions of Level-of-Services (LOS)
Appendix C	Tertiary Planning Unit (TPU) Boundaries
Appendix D	Letters from the Applicant to Hong Kong Police Force (HKPF)

LIST OF TABLES

Table 2.1	Status of Columbarium Niches and Memorial Tablets9		
Table 3.1	Existing Bus Routes in the Vicinity (Sunday/ Public Holiday Services) 1		
Table 3.2	Existing GMB Routes in the Vicinity (Sunday/ Public Holiday Services)		
Table 3.3	Identified Junctions to be Assessed		
Table 3.4	Identified Peak Periods for Vehicles during the Survey Time Period		
Table 3.5	Existing Junction Operational Performance during 2024 Ching N	Aing Festival Period	12
Table 3.6	Identified Peak Periods for Pedestrians during the Survey Time	Period	13
Table 3.7	Existing Operational Performance of Identified Pedestrian Facili to 2024 Ching Ming Festival	ities during Weekend p	rior 14
Table 3.8	Existing Operational Performance of Identified Pedestrian Facili Ming Festival	ities during 2024 Ching	15
Table 3.9	Existing Operational Performance of Identified Pedestrian Facili 2024 Ching Ming Festival	ties during Weekend af	fter 16
Table 3.10	Surveyed Visitor Trip Generation and Attraction due to Columb Application Site	parium Development of	the 17
Table 3.11	Surveyed Visitor Trip Generation and Attraction due to Religion Application Site	us Activity of the	17
Table 4.1	Average Annual Daily Traffic (A.A.D.T.) Data from ATC		19
Table 4.2	Growth Rates Derived from Projection of Population Distribution	on by Tertiary Planning (Unit
		, , , ,	20
Table 4.3	Growth Rates derived from data in Hong Kong Population		20
Table 4.4	Net Difference in Visitor Trip Generation for Proposed (Existing Development) Columbarium	22
Table 4.5	Modal Split of Visitor of the Application Site		22
Table 4.6	Net Difference in Traffic Trip Generation of the Proposed (Existing Development	ing) Columbarium	23
Table 4.7	Adjacent Columbarium Developments		24
Table 4.8	Estimated Pedestrian Trip Generations of Adjacent Columbariu	m Development	24
Table 4.9	Estimated Traffic Trip Generations of Adjacent Columbarium De	evelopment	25
Table 5.1	Pedestrian Routes to/from the Public Transport Facilities from/	to the Application Site	27
Table 5.2	Table 5.2 Comparison of the Maximum Numbers of Daily Visitors and 2024 Observed Numbers of Daily Visitors of the Application Site 29		of 29
Table 5.3	Comparison of the Maximum Numbers of Daily Visitors and Est Upon Full Occupation of Niches and Memorial Tablets	imated Daily Demand	30
Table 5.4	Comparison of the Maximum Numbers of Daily Visitors and the	Estimated Daily Demai	nd
	under Pre-booking system		30
affic Consultaneung Ha Tem	ancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist uple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai	СНК50801110	

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist	
Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai	CHK5
Ро	

Table 5.5	Operational Performance of the Identified Holding Areas for Waiting Visitors	31
Table 6.1	Junction Operational Performance in Year 2032 Reference Scenario	32
Table 6.2	Junction Operational Performance in Year 2032 Design Scenario	32
Table 6.3	Operational Performance of Identified Pedestrian Facilities in Design Year 2032 (Weeke prior to Ching Ming Festival)	end 34
Table 6.4	Operational Performance of Identified Pedestrian Facilities in Design Year 2032 (Ching Ming Festival)	35
Table 6.5	Operational Performance of Identified Pedestrian Facilities in Design Year (Weekend af Ching Ming Festival)	ter 36
Table 6.6	Potential Increase in Parking Need of the Application Site	37
Table 6.7	Available Parking Spaces in the vicinity of the Application Site during 2024 Ching Ming	
	Festival	37

CHK50801110

LIST OF DRAWINGS

- 1.1 Site Location
- 3.1 Existing Road Network and Identified Junctions to be Assessed
- 3.2 Existing Public Transport Services in the Vicinity
- 3.3.1 Existing Junction Layout of Pak Shing Street Near Sui On Street (J1)
- 3.3.2 Existing Junction Layout of Kam Shan Road/ Hon Ka Road (J2)
- 3.3.3 Existing Junction Layout of Kam Shan Road/Access Road linking to Kam Shek New Village Car Park (J3)
- 3.4 2024 Observed Traffic Flows (Ching Ming Festival Period)
- 3.5.1 Existing Operational Performance of Identified Pedestrian Facilities in Year 2024 (Weekend prior to Ching Ming Festival)
- 3.5.2 Existing Operational Performance of Identified Pedestrian Facilities in Year 2024 (Ching Ming Festival)
- 3.5.3 Existing Operational Performance of Identified Pedestrian Facilities in Year 2024 (Weekend after Ching Ming Festival)
- 3.6 Parking Facilities in Vicinity
- 4.1 Adjacent Columbarium Developments
- 4.2 2032 Reference Traffic Flows (Ching Ming Festival Period)
- 4.3 Net Difference in Development Traffic Flows
- 4.4 2032 Design Traffic Flows (Ching Ming Festival Period)
- 5.1 Proposed Crowd Management Measure
- 5.2 Proposed Visitors Ingress Routing
- 5.3 Proposed Visitors Egress Routing
- 6.1.1 Operational Performance of Identified Pedestrian Facilities in Design Year 2032 (Weekend prior to Ching Ming Festival)
- 6.1.2 Operational Performance of Identified Pedestrian Facilities in Design Year 2032 (Ching Ming Festival)
- 6.1.3 Operational Performance of Identified Pedestrian Facilities in Design Year 2032 (Weekend after Ching Ming Festival)

1. INTRODUCTION

1.1 Background

- 1.1.1 The Application Site is located at Lots Nos. 1087 and 1130 in D.D.6 and their Adjoining Government Land, Kam Shan, Tai Po, New Territories. The location of the Application Site is shown in **Drawing No. 1.1**.
- 1.1.2 The Application Site is currently occupied by Buddhist Cheung Ha Temple Limited(佛教長霞 淨院有限公司). The Applicant intends to regularize the existing religious and ancillary columbarium structures within the Application site. There are totally 11,726 columbarium niches (i.e. 5,508 being sold and 6,218 being un-sold) and 3,049 memorial tablets (i.e. 2,121 being sold and 928 being un-sold) in two columbarium structures at the Application Site.
- 1.1.3 The Application Site falls within an area zoned "Village Type Development" ("V") on the approved Tai Po Outline Zoning Plan (OZP No. S/TP/30). In accordance with the previous rezoning proposal under Application No. Y/TP/29, the Applicant intended to request for rezoning the Application Site from "V" Zone to "Government, Institution or Community (3)" ("G/IC(3)") Zone under Section 12A of the Town Planning Ordinance to regularize the existing religious and ancillary columbarium structures at the Application Site.
- 1.1.4 Under the present Section 12A Rezoning Application, the Applicant has intended to propose the Application Site from "V" Zone to G/IC(3) with some changes over the previous application, including:
 - Reduction of 1,700 niches to address precedent effect, which will be mentioned in **Section 2.2**; and;
 - Minimising disturbance to nearby residents during the festival periods by directing visitors to access/ leave the Application Site via the staircase east of the site (the main temple access).
- 1.1.5 MVA Hong Kong Limited was commissioned by the Applicant as a traffic consultant to undertake a Traffic Impact Assessment (TIA) study in support of Section 12A (S12A) Rezoning Application.
- 1.1.6 The purpose of this study is to present findings of TIA study and the proposed traffic management plan in association with proposed (existing) columbarium development at the Application Site during Ching Ming Festival Day and its shadow weekends (i.e. two weeks before and two weeks after festival day, including public holiday, if any) (here under called the "festival period"). This festival period is deemed as the peak period with the relatively higher in volume of visitors.

1.2 Study Objectives

- 1.2.1 The main objective of this study is to assess traffic impact of the captioned development in support of the S12A Rezoning Application. The following tasks were carried out and included in this report:
 - to evaluate the current traffic conditions in the vicinity of the Application Site;
 - to estimate the traffic and pedestrian generations and attractions of the proposed (existing) columbarium developments during the festival period;
 - to produce traffic and pedestrian demand forecast for an appropriate design year;
 - to investigate the traffic impact to the identified junction by the proposed (existing) columbarium development and;
 - to recommend crowd management measures for vehicular and pedestrian traffic during festival periods to alleviate the anticipated vehicular and pedestrian traffic problems generated by proposed (existing) columbarium development on the surrounding road networks, if necessary.

1.3 Study Objectives

- 1.3.1 Following this introductory chapter, there are six further chapters:
 - **O** Chapter 2 Proposed (Existing) Development, which presents the proposed development schedule, and its internal transport facilities.
 - Chapter 3 Existing Traffic Conditions, which reviews the existing road network in the vicinity of the Application Site, presents the summary of vehicular and pedestrian surveys and assesses the existing traffic and pedestrian conditions during 2024 Ching Ming Festival Period.
 - Chapter 4 Traffic Forecasts, which presents the potential traffic and pedestrian generation and attraction of the proposed (existing) columbarium development on festival period and summaries the methodology for future traffic forecasts.
 - Chapter 5 Traffic Management Plan, which presents the necessary crowd management measures for the proposed (existing) columbarium development during the festival period.
 - Chapter 6 Traffic Impact Assessment, which presents the findings of traffic and pedestrian impact assessment in the future design year during the festival period.
 - Chapter 7 Summary and Conclusion, which summaries the findings of the study and presents the conclusion and recommendations regarding the traffic and pedestrian issues associated with the proposed (existing) columbarium development at the Application Site.

2. **PROPOSED (EXISTING) DEVELOPMENT**

2.1 **Existing Site Conditions**

- 2.1.1 The Application Site is located at Lots Nos. 1087 and 1130 in D.D.6 and their Adjoining Government Land, Kam Shan, Tai Po, New Territories. The location of the Application Site is shown in Drawing No. 1.1.
- 2.1.2 The Application Site is zoned as "Village Type Development" ("V") on the approved Tai Po Outline Zoning Plan (OZP No. S/TP/30).

2.2 Proposed (Existing) In-site Columbarium Development

- To address precedent effect for similar application with the same "V" zone, i.e. Cheung Ha 2.2.1 Ching Shea near the Application Site, it is proposed to reduce the total number of niches from 13,426 (under previous Application No. Y/TP/29) to 11,726 (i.e. reduction of 1,700 niches, which is the same niches number of Cheung Ha Ching Shea as recorded on 30th June, 2017).
- 2.2.2 Table 2.1 summaries the status of the columbarium niches and memorial tablets within the Application Site.

Items	No. of Niches ⁽¹⁾	No. of Memorial Tablets ⁽²⁾	Sub-Total
Sold Niches and Memorial Tablets	5,508	2,121	7,629
Un-sold Niches and Memorial Tablets	6,218	928	7,146
Total no. of Niches and Memorial Tablets	11,726	3,049	14,775

Table 2.1 Status of Columbarium Niches and Memorial Tablets

Note: (1) The numbers and the conditions of sold niches were already recorded and submitted to the government on or before 30th June, 2017 for "Pre-Cut-Off columbarium".

(1) The numbers of memorial tablets presented in Tables 2.1 were the latest count in April 2024.

2.3 **Internal Transport Facilities**

- 2.3.1 At present, the Application Site has never been served by any vehicular access, no parking or loading/ unloading facility has ever been provided inside the Site. All daily deliveries are conducted by hands and this practice will continue in future. All visitors are well aware of this arrangement.
- 2.3.2 In accordance with statutory requirements as stipulated in the Hong Kong Planning Standards and Guidelines (HKPSG), no car parking and servicing provisions have ever been specified for the of "Columbarium" development.
- 2.3.3 To minimize the traffic impact during the festival period, appropriate traffic management measures are proposed to be implemented in **Chapter 5** of this TIA report.

3. EXISTING TRAFFIC CONDITIONS

3.1 Existing Road Network

- 3.1.1 The existing road network in the vicinity of the Application Site is shown in **Drawing No. 3.1**.
- 3.1.2 A major frontage of the Application Site is located to the south of Kam Shan Road, which is a single two-lane carriageway south of Lam Tsuen River, linking to the major road network via Pak Shing Street and Kwong Fuk Road.
- 3.1.3 Pak Shing Street is a single two-lane carriageway south of Lam Tsuen River, connecting Kam Shan Road to the west and Kwong Fuk Road to the east.
- 3.1.4 Kwong Fuk Road is a single 4-lane carriageway with local road linking to Tai Po Central and Tai Po Market, as well as linkages to Tolo Highway for Shatin and Kowloon bound.

3.2 Existing Public Transport Services

- 3.2.1 Currently, Kam Shan Road is served by GMB route 22K, which only operates at AM peak.
- 3.2.2 However, the MTR Tai Wo Station is located in the close proximity of the Application Site, which is within 600m walking distance (around 7-8 minutes walking time) from/to the Application Site via Kam Wo Bridge or Tai Wo Bridge.
- 3.2.3 In addition to the MTR East Rail Line, various road-based public transports of franchised bus and Green Mini-Bus (GMB) routes are serving in close proximity to the Application Site. They are summarised in **Table 3.1** and **Table 3.2**, and illustrated in **Drawing No. 3.2**.

Route No.	Origin – Destination	Frequency (minutes)
Franchised B	us	
64K	Yuen Long West – Tai Po Market Station	7 – 10
71K	Tai Wo – Tai Po Market Station	15 - 20
72	Tai Wo – Cheung Sha Wan	20 - 30
72K	Tai Wo – Fu Tip Estate (Circular)	20
73	Tai Po Industrial Estate – Wah Ming	30
73A	Wah Ming – Yu Chui Court	30
73B	Chuen On Road (Nethersole Hospital) – Sheung Shui (Circular)	25 - 30
74A	Tai Wo – Kai Yip	60
74D	Kau Lung Hang – Kwun Tong Ferry	60
264R	Yuen Long (West) – Tai Po Market Station	20

 Table 3.1
 Existing Bus Routes in the Vicinity (Sunday/ Public Holiday Services)

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai Po

СНК50801110

Route No.	Origin/Destination	Frequency (minutes)
GMB Routes		
22К	Kam Shan Road – Tai Po Market (Nam Shing Street)	AM Peak Only
21K	Wai Tau Tsuen – Tai Po Market (Nam Shing Street)	15 – 30
25A	Nam Wa Po – Tai Po Market (Nam Shing Street)	5 - 10
25B	Kau Lung Heng/ Yuen Leng – Tai Po Market (Nam Shing Street)	4-8
25K	Ng Tung Chai – Tai Po Market (Nam Shing Street)	5 – 12

Table 3.2 Existing GMB Routes in the Vicinity (Sunday/ Public Holiday Services)

- 3.2.4 Additionally, there is no "Non-Stop Restriction" imposed along the concerned road section of Kam Shan Road just outside the Application Site, so visitors can also access the Application Site by Taxi.
- 3.2.5 In view of the availability of various public transports in the vicinity, the Application Site enjoys high accessibility of public transport services.

3.3 Identified Junction for Assessment

- 3.3.1 For columbarium development, the Ching Ming Festival and its shadow weekends (e.g. two weeks before and two weeks after festival day) are generally regarded as the peak period with the relatively higher in volume of visitors.
- 3.3.2 Thus, to reveal the critical traffic situation during the grave sweeping festival periods, traffic count surveys were carried out at the identified junction within the local study area from 07:00 to 19:00 during 2024 Ching Ming Festival Period as follows:
 - 1. Weekend prior to Ching Ming Festival Sunday on 31st March 2024
 - 2. Ching Ming Festival Thursday on 4th April 2024
 - 3. Weekend after Ching Ming Festival Sunday on 7th April 2024
- 3.3.3 The location of the junctions are identified in **Drawing No. 3.1** and the list of drawing for the existing junction layouts is summarised in **Table 3.3**.

Ref. No.	Junction	Method of Control	Drawing No.
J1	Pak Shing Street Near Sui On Street	Signal	3.3.1
J2	Kam Shan Road/ Hon Ka Road	Priority	3.3.2
J3	Kam Shan Road/ Access Road Linking to Kam Shek New Village Car Park	Priority	3.3.3

Table 3.3	Identified Junctions to be Assessed

3.3.4 Based on the observed traffic flows, the Peak hours during 2024 Ching Ming Festival Period are summarised in the **Table 3.4**.

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist	
Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai	CHK50801110
Ро	

Table 3.4 Identified Peak Periods for Vehicles during the Survey Time Period

	Survey Periods	Identified Peak Periods
	Weekend prior to Ching Ming Festival (31 st March 2024)	10:30 – 11:30
	Ching Ming Festival (4 th April 2024)	10:45 – 11:45
	Weekend after Ching Ming Festival (7 th April 2024)	10:45 – 11:45

3.3.5 To evaluate the existing traffic conditions in the vicinity of the Application Site, the operational performance of the identified junctions were assessed based on the observed traffic flows shown in **Drawing Nos. 3.4**, and its existing junction layout and method of control are indicated in **Drawing Nos. 3.3.1** to **3.3.3**. The assessment results during 2024 Ching Ming Festival Period are summarised as shown in **Table 3.5**. The details of junction calculations are attached in **Appendix A**.

Table 3.5	Existing Junction	Operational	Performance of	during 2024	Ching Ming	Festival F	Period
	0						

			Year 2024 Existing RC ⁽²⁾ /DFC ⁽³⁾					
Ref. No. ⑴	Junction	Method of Control	Weekend prior to Ching Ming Festival (31 st March 2024)	Ching Ming Festival (4 th April 2024)	Weekend after Ching Ming Festival (7 th April 2024)			
J1	Pak Shing Street Near Sui On Street	Signal	>100%	>100%	>100%			
J2	Kam Shan Road/ Hon Ka Road	Priority	0.06	0.13	0.06			
J3	Kam Shan Road/ Access Road Linking to Kam Shek New Village Car Park	Priority	0.15	0.34	0.07			

Note: (1) Refer to **Drawing No. 3.1** for the location of identified junction.

(2) RC - Reserve Capacity for signalised junction.

(3) DFC – Design flow to Capacity Ratio for priority junction

3.3.6 The results of the assessment have indicated that the identified junctions operated within its capacities during peak hours of 2024 Ching Ming Festival Period.

3.4 Assessment of Identified Pedestrian Facilities

- 3.4.1 Pedestrian headcount surveys at the Application Site and various sections of existing pedestrian facilities (i.e. footpath, cautionary crossing and staircase) in the vicinity were conducted during the survey period specified in **Section 3.3.2**.
- 3.4.2 Based on the observed pedestrian flows, the identified peak hours during 2024 Ching Ming Festival Period are summarised in the **Table 3.6**.

CHK50801110

Table 3.6 Identified Peak Periods for Pedestrians during the Surve	y Time Period	
--	---------------	--

Survey Periods	Identified Peak Periods		
Weekend prior to Ching Ming Festival	10:40 - 11:40		
(31 st March 2024)	10.10 11.10		
Ching Ming Festival	10.25 11.25		
(4 th April 2024)	10.55 - 11.55		
Weekend after Ching Ming Festival	10.45 11.45		
(7 th April 2024)	10.45 - 11.45		

- 3.4.3 At present, there are two existing staircases (i.e. F4 and F5) connected to the Application Site at Kam Shan Road. Under the Traffic Management Plan (to be discussed in **Chapter 5**), visitors are directed by staffs to access/ leave the Application Site exclusively via the existing staircase at northeastern of the site (i.e. F5).
- 3.4.4 Pre-booking system for columbarium development of the Application Site (to be discussed in **Chapter 5**) has already been executed during 2024 Ching Ming Festival Period as one of the crowd management measures to mitigate the potential traffic impact on the local area. Under pre-booking system, the maximum number of visitors is controlled at 117 visitors per 30-minute session (i.e. a maximum of 234 visitors per hour), which reduces the traffic impact by the Application Site to the surrounding pedestrian network.
- 3.4.5 The existing operational performance of the identified pedestrian facilities have been assessed based on the following scenarios:
 - Assessment Scenario 1: Pedestrian peak flows in 60-minute interval
 - Assessment Scenario 2: Pedestrian peak flows in 15-minute interval
- 3.4.6 To evaluate the existing pedestrian facilities surrounding the Application Site, the operational performance of pedestrian facilities at the surveyed sections have been assessed based on:
 - 1. Level-of-Service (LOS) methodology as stipulated in Highway Capacity Manual 2000 and TPDM; and
 - 2. Ratio of Volume to Capacity (V/C Ratio) for staircase and cautionary crossing as stipulated in Transport Planning and Design Manual (TPDM), Vol. 2, Ch. 3.7.
- 3.4.7 In general, V/C Ratio (i.e. V/C < 0.85) and LOS C are desirable for most design at street with dominant 'living' pedestrian activities. The results shown in **Drawing Nos. 3.5.1** to **3.5.3** and summarised in **Tables 3.7** to **3.9**.

Table 3.7	Existing Operational Performance of Identified Pedestrian Facilities during Weekend prior to 2024 Ching Ming
	Foctival

i estivai										
	Actual	Effective	Ass (Ped 6	Assessment Scenario 1 (Pedestrian peak flows in 60-minute interval)			Assessment Scenario 2 (Pedestrian peak flows in 15-minute interval)			
Ret. (1)	Width (m)	Width (m) ⁽²⁾	Peak Hourly Flow (ped/hr)	Peak Flow Rate ⁽³⁾ (ped/min/m)	V/C Ratio ⁽⁴⁾⁽⁵⁾ / LOS ⁽⁶⁾	Peak 15-min Flow ⁽⁷⁾ (ped/15-min)	Peak Flow Rate ⁽⁸⁾ (ped/min/m)	V/C Ratio ⁽⁴⁾⁽⁵⁾ / LOS ⁽⁶⁾		
F1 (Footpath connecting the western of the Site)	1.3	0.3	245	13.61	А	74	16.44	В		
F2 (Footpath between the two staircases at site access)	3.2	2.2	246	1.86	А	74	2.24	А		
F3 (Footpath connecting the eastern of the Site)	3.2	2.2	295	2.23	А	89	2.70	А		
F4 ⁽⁹⁾ (Staircase at northwestern of site access)	1.25	0.25	25	1.67	0.042	8	2.13	0.053		
F5 (Staircase at northeastern of site access)	1.7	0.7	505	12.02	0.301	152	14.48	0.362		
F6 (Cautionary Crossing at Kam Shan Road)	2.5	2.5	164	1.09	0.109	50	1.33	0.133		
F7 (Footpath at Eastbound of Kam Shan Road)	3.2	2.2	243	1.84	А	73	2.21	А		
F8 (Kam Wo Bridge)	6.2	5.2	638	2.04	А	192	2.46	А		
F9 (Tai Wo Bridge)	7.2	6.2	1,434	3.85	А	431	4.63	А		

Notes: (1) Refer to Drawing No. 3.5.1 for location and operation performance of the footpaths, cautionary crossing and staircases.

(2) Effective width of footpath and staircase = Actual width – 1.0m dead width (0.5m dead width on one side of footpath)

(3) Peak flow rate = Peak hourly flow \div 60 \div effective width

(4) V/C Ratio = Peak flow ÷ capacity⁽⁵⁾

(5) According to TPDM, the capacity flow of the staircase = 40 ped/m/min, and the capacity of 2.5m width of cautionary crossing = 1500 ped/hr

(6) Refer to TPDM for LOS description in Appendix B.

(7) Peak factor of 1.2 is applied for calculating the pedestrian peak flows in 15-minute interval based on the ratio of surveyed peak hourly pedestrian flows and surveyed peak 15-min flows.

(8) Peak flow rate = Peak hourly flow \div 15 \div effective width

(9) Based on the survey results, a few visitors have used staircases F4 to access/ leave the Application Site instead during 2024 Ching Ming Festival.

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist	
Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai	
Po	

CHK50801110

	Actual	Effective	Assessment Scenario 1 (Pedestrian peak flows in 60-minute interval)			Assessment Scenario 2 (Pedestrian peak flows in 15-minute interval)			
Ref. ⁽¹⁾	Width (m)	Width (m) ⁽²⁾	Peak Hourly Flow (ped/hr)	Peak Flow Rate ⁽³⁾ (ped/min/m)	V/C Ratio ⁽⁴⁾⁽⁵⁾ / LOS ⁽⁶⁾	Peak 15-min Flow ⁽⁷⁾ (ped/15-min)	Peak Flow Rate ⁽⁸⁾ (ped/min/m)	V/C Ratio ⁽⁴⁾⁽⁵⁾ / LOS ⁽⁶⁾	
F1 (Footpath connecting the western of the Site)	1.3	0.3	411	22.83	В	124	27.56	с	
F2 (Footpath between the two staircases at site access)	3.2	2.2	403	3.05	A	121	3.67	A	
F3 (Footpath connecting the eastern of the Site)	3.2	2.2	476	3.61	A	143	4.33	А	
F4 ⁽⁹⁾ (Staircase at northwestern of site access)	1.25	0.25	18	1.20	0.03	6	1.60	0.04	
F5 (Staircase at northeastern of site access)	1.7	0.7	823	19.60	0.49	247	23.52	0.588	
F6 (Cautionary Crossing at Kam Shan Road)	2.5	2.5	334	2.23	0.223	101	2.69	0.269	
F7 (Footpath at Eastbound of Kam Shan Road)	3.2	2.2	355	2.69	А	107	3.24	А	
F8 (Kam Wo Bridge)	6.2	5.2	998	3.20	А	300	3.85	А	
F9 (Tai Wo Bridge)	7.2	6.2	1,569	4.22	A	471	5.06	А	

Notes: (1) Refer to Drawing No. 3.5.2 for location and operation performance of the footpaths, cautionary crossing and staircases.

(2) Effective width of footpath and staircase = Actual width - 1.0m dead width (0.5m dead width on one side of footpath) Peak flow rate = Peak hourly flow \div 60 \div effective width (3)

(4) V/C Ratio = Peak flow ÷ capacity ⁽⁵⁾

According to TPDM, the capacity flow of the staircase = 40 ped/m/min, and the capacity of 2.5m width of cautionary crossing (5) = 1500 ped/hr

Refer to TPDM for LOS description in Appendix B. (6)

(7) Peak factor of 1.2 is applied for calculating the pedestrian peak flows in 15-minute interval based on the ratio of surveyed peak hourly pedestrian flows and surveyed peak 15-min flows.

Peak flow rate = Peak hourly flow ÷ 15 ÷ effective width (8)

Based on the survey results, a few visitors have used staircases F4 to access/ leave the Application Site instead during 2024 (9) Ching Ming Festival.

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist	
Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai	
Ро	

CHK50801110

Table 3.9	Existing Operational Performance of Identified Pedestrian Facilities during Weekend after 2024 Ching
	Ming Festival

				ing reserva					
	Actual	Effective Width (m) ⁽²⁾	Assessment Scenario 1 (Pedestrian peak flows in 60-minute interval)			Assessment Scenario 2 (Pedestrian peak flows in 15-minute interval)			
Ref. ⁽¹⁾	Width (m)		Peak Hourly Flow (ped/hr)	Peak Flow Rate ⁽³⁾ (ped/min/m)	V/C Ratio ⁽⁴⁾⁽⁵⁾ / LOS ⁽⁶⁾	Peak 15-min Flow ⁽⁷⁾ (ped/15-min)	Peak Flow Rate ⁽⁸⁾ (ped/min/m)	V/C Ratio ⁽⁴⁾⁽⁵⁾ / LOS ⁽⁶⁾	
F1 (Footpath connecting the western of the Site)	1.3	0.3	292	16.22	В	88	19.56	В	
F2 (Footpath between the two staircases at site access)	3.2	2.2	309	2.34	A	93	2.82	A	
F3 (Footpath connecting the eastern of the Site)	3.2	2.2	381	2.89	A	115	3.48	А	
F4 ⁽⁹⁾ (Staircase at northwestern of site access)	1.25	0.25	25	1.67	0.042	8	2.13	0.053	
F5 (Staircase at northeastern of site access)	1.7	0.7	632	15.05	0.376	190	18.10	0.452	
F6 (Cautionary Crossing at Kam Shan Road)	2.5	2.5	246	6.56	0.164	74	1.97	0.197	
F7 (Footpath at Eastbound of Kam Shan Road)	3.2	2.2	387	2.93	А	117	3.55	А	
F8 (Kam Wo Bridge)	6.2	5.2	686	2.20	А	206	2.64	А	
F9 (Tai Wo Bridge)	7.2	6.2	1,947	5.23	А	585	6.29	А	

Notes: (1) Refer to Drawing No. 3.5.3 for location and operation performance of the footpaths, cautionary crossing and staircases.

(2) Effective width of footpath and staircase = Actual width – 1.0m dead width (0.5m dead width on one side of footpath)

(3) Peak flow rate = Peak hourly flow \div 60 \div effective width

(4) V/C Ratio = Peak flow ÷ capacity⁽⁵⁾

(5) According to TPDM, the capacity flow of the staircase = 40 ped/m/min, and the capacity of 2.5m width of cautionary crossing = 1500 ped/hr

(6) Refer to TPDM for LOS description in Appendix B.

(7) Peak factor of 1.2 is applied for calculating the pedestrian peak flows in 15-minute interval based on the ratio of surveyed peak hourly pedestrian flows and surveyed peak 15-min flows.

(8) Peak flow rate = Peak hourly flow \div 15 \div effective width

(9) Based on the survey results, a few visitors have used staircases F4 to access/ leave the Application Site instead during 2024 Ching Ming Festival.

CHK50801110

3.4.8 As shown in **Tables 3.7** to **3.9**, the V/C Ratio of staircases and cautionary crossing at the Application Site are below 0.85. All the level-of service (LOS) of the identified footpaths surrounding the Application Site are LOS A to LOS C. The results have indicated that all the identified pedestrian facilities are operating with adequate spare capacities to cater for the existing demand during in peak hour of 2024 Ching Ming Festival Period under the implementation of Pre-booking system.

3.5 Visitor Trip Generation of the Application Site

- 3.5.1 To determine the visitor trip generation of the proposed (existing) columbarium development, headcount surveys at site entry were conducted from 07:00 to 19:00 during the identified peak periods as mentioned in **Section 3.4.2**. Visitors to the Application Site could be classified into two groups, namely (1) visitors due to columbarium development (including niches and memorial tablets) and (2) visitors due to religious activity. These two groups of visitors share the same staircase for access.
- 3.5.2 The visitor trip generation and attraction due to columbarium development and religious activity of the Application Site during 2024 Ching Ming Festival Period are summarised as **Tables 3.10** and **3.11** below.

Development	Date	Identified	No. of Sold Niches ⁽¹⁾ and Memorial Tablets ⁽²⁾	No. of Daily Visitors	Peak Hour Trip (Person/hr)		Peak Hour Trip Rate (Person/hr/(niche/tablet))	
		Peak Periods		(Person/day)	Gen.	Att.	Gen.	Att.
	Weekend prior to Ching Ming Festival (31 st March, 2024)	10:40 - 11:40		894	240	283	0.031	0.037
Columbarium Development	Ching Ming Festival (4 th April, 2024)	10:35 - 11:35	7,629 ⁽³⁾	2,308	377	351	0.049	0.046
	Weekend after Ching Ming Festival (7 th April, 2024)	10:45 - 11:45		1,190	309	334	0.041	0.044

Table 3.10 Surveyed Visitor Trip Generation and Attraction due to Columbarium Development of the Application Site

Note: (1) No. of niches sold were already recorded and submitted to the government on or before 30th June, 2017 for "Pre-Cut-Off columbarium".

(2) At time of survey during 2024 Ching Ming Festival Period, the recoded number of sold memorial tablets were 2,121 and the number of un-sold memorial tablets were 928.

(3) At time of survey during 2024 Ching Ming Festival Period, the no. of sold niches and memorial tables = 5,508 +2,121 = 7,629

Table office office to the office of the office off
--

Development	Date	Identified Peak	Peak Hour Trip (Person/hr)		
		Ferious	Gen.	Att.	
	Weekend prior to Ching Ming Festival (31 st March, 2024)	10:40 - 11:40	-	-	
Religious Activity	Ching Ming Festival (4 th April, 2024)	10:35 – 11:35	-	103	
	Weekend after Ching Ming Festival (7 th April, 2024)	10:45 - 11:45	-	-	

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai Po

CHK50801110

- 3.5.3 Pre-booking system for columbarium development of the Application Site (to be discussed in **Chapter 5**) has already been implemented during 2024 Ching Ming Festival Period, which allows for a maximum of 117 visitors per 30-minute session (i.e. maximum of 234 visitors per hour). In addition, a waiting area has been provided within the Application Site for allowing visitors arriving 30 minutes or below prior to their reserved time slot (i.e. maximum of 117 visitor for visitors per hour). Therefore, under pre-booking system, the maximum allowed visitor for columbarium development of the Application Site is 234 + 117 = 351 persons/hr.
- 3.5.4 As presented in **Table 3.10**, the numbers of visitor attracted to the Application Site due to columbarium development during peak hours of weekend prior to Ching Ming Festival (31st March, 2024) and weekend after Ching Ming Festival (7th April, 2024) were 283 persons/hr and 334 persons/hr respectively, within the maximum allowed visitor of 351 persons/hr. It indicates that there were no full bookings during the shadow period of Ching Ming festival period.
- 3.5.5 The numbers of visitor attracted to the Application Site due to columbarium development during peak hours of Ching Ming Festival (4th April,2024) was 351 persons/hr, which was equal to the maximum allowed visitor of 351 persons/hr, revealing that there was full booking on the Ching Ming Festival. It has indicated that pre-booking system is an effective measure to control the number of visitors induced by the proposed (existing) columbarium development based on the survey results.

3.6 Existing Parking Provision

- 3.6.1 The public car parks available in the vicinity of the Application Site are illustrated in **Drawing No. 3.6**.
- 3.6.2 The on-street meter parking on Park Shing Street outside Yan Hing Street refuse collection point (CP1) provides a total of 8 parking spaces.
- 3.6.3 The on-street meter parking on Hei Yuen Street, Sui On Street, and Yan Hing Street (CP2) provides a total of 38 parking spaces.
- 3.6.4 The lay-by at Kam Shan Road (CP3) provides 7 parking spaces.
- 3.6.5 The on-street meter parking at Kam Shek New Village (CP4) provides around 67 parking spaces.
- 3.6.6 Two indoor hourly public parking located across Lam Tsuen River in Tai Wo Estate near Po Nga Road (CP5) and Kai Wo Road (CP6), provides around 200 parking spaces each respectively.
- 3.6.7 Parking inventory surveys on the above-mentioned car parks were carried out during 2024 Ching Ming Festival Period, to study the spare capacity for the potential parking need of the Application Site. The results of the survey will be discussed in **Section 6.3**.

4. TRAFFIC FORECASTS

4.1 Design Year

4.1.1 For the purpose of setting up the Design Year for this Traffic Impact Assessment study, it is assumed the un-sold niches in proposed (existing) columbarium is scheduled to be fully sold out by year 2029 tentatively (regarded as "Completion Year"). With reference to the relevant guidelines for Traffic Impact Assessment, either 3 years after completion (i.e. 2029 + 3 years = 2032) or 5 years from the date of submission (i.e. 2024 + 5 years = 2029), whichever is later, should be adopted as design year for TIA Study. Therefore, year 2032 is adopted as design year for traffic forecast and operational assessment.

4.2 Growth Factor for Traffic Forecast

- 4.2.1 To derive year 2032 reference traffic flows in the local study area, an appropriate growth factor has been identified for the area, which have been anticipated based on the year 2024 observed traffic flows and the derived growth factors for background traffic with the review on the following information, which are available from the current government websites:
 - Annual Traffic Census (ATC) historical traffic data of road links in the vicinity published by Transport Department (TD) are shown in **Table 4.1**;
 - Projections of Population Distribution by Tertiary Planning Unit from 2023 to 2031 published by Planning Department are shown in **Table 4.2**; and
 - Data extracted from Hong Kong Population Projections 2022-2046 issued by Census and Statistics Department are shown in **Table 4.3**

Historical Trend

4.2.2 Transport Department has traffic count stations adjacent to the Application Site. The past 6 years traffic counts reported in the ATC are summarised in **Table 4.1**.

ATC Stn. No. Ro	Road	Road From		То		Annual Growth Rate (% p.a.)				
				2017	2018	2019	2020	2021	2022	2017 - 2022
6040	Po Heung St	Kwong Fuk Rd	Tai Po Tai Wo Rd	32,850	29,520	29,310*	28,100*	29,200*	31,920	-0.57%
5646	Kwong Fuk Rd	Wan Tau St	Po Heung St	14,690*	15,050*	14,940*	13,110	14,140	13,710*	-1.37%
5009	Kwong Fuk Rd	Nam Wan Rd	Wan Tau St	20,100	20,210	19,720	18,230	19,010	17,830	-2.37%
Total			67,640	64,780	63,970	59,440	62,370	63,460	-1.27%	

 Table 4.1
 Average Annual Daily Traffic (A.A.D.T.) Data from ATC

Note: (*) A.A.D.T. estimated by growth factor.

4.2.3 The Average Annual Daily Traffic (A.A.D.T.) flows in **Table 4.1** show that the annual traffic growth rate in the study area are -1.27% per annum from year 2017 to 2022.

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist	
Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai	CHK50801110
Ро	

<u>Planning Data</u>

4.2.4 The Projection of Population Distribution by Tertiary Planning Unit from 2023-2031 published by Planning Department is shown in **Table 4.2**.

Tertiary Planning Unit	Projection o	Annual Growth Rate (% p.a.)			
	2024	2025	2026	2027	2024-2027
723 ⁽³⁾	71,000	70,100	70,200	71,500	+0.23%

Table 4.2 Growth Rates Derived from Projection of Population Distribution by Tertiary Planning Unit

Notes: (1) Projection of Population by Tertiary Planning Unit are taken from Table 15 of "Projection of Population Distribution 2023-2031" published by Planning Department.

(2) Source: <u>https://www.pland.gov.hk/pland_en/resources/population_data/pop_dist_proj/index.html</u>

(3) As illustrated in **Appendix C** regarding the TPU boundaries, the Application Site is located inside TPU 723.

(*) Base year estimates.

- 4.2.5 **Table 4.2** indicates the average annual growth rates of population in the area from year 2024 to 2027 is +0.23%.
- 4.2.6 The Hong Kong Population Projection 2022-2046 published by Census and Statistics Department is shown in **Table 4.3**.

Year	Hong Kong Resident Population					
2024	7,526,800					
2025	7,559,800					
2026	7,596,800					
2027	7,638,700					
2028	7,684,500					
2029	7,731,100					
2030	7,777,100					
2031	7,820,200					
2032	7,862,100					
Growth Rates derived from Hong Kong Population Projection (Annual Growth Rate (% p.a.))						
2024-2032	+0.55%					

 Table 4.3 Growth Rates derived from data in Hong Kong Population

4.2.7 **Table 4.3** indicates the average annual growth rate of Hong Kong population from year 2024 to 2032 is +0.55%.

Adopted Growth Factor

4.2.8 Based on the information given by A.A.D.T. historical data and planning data as shown in **Tables 4.1** to **4.3**, in order to produce a conservative assessment, the growth rate +1.0% per annum was adopted to cover the growth in traffic and pedestrian from observed year 2024 up to design year 2032. This is deemed sufficient to allow for any unexpected future growth as a result of some changes in land use or redevelopments in the area, if any.

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist	
Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai	CHK50801110
Ро	

4.3 Visitor and Traffic Trip Generation for Proposed (Existing) Columbarium Development

Net Increases in Visitor Trip Generation for Proposed (Existing) Columbarium Development

- 4.3.1 For the proposed (existing) columbarium development, pre-booking system, as one of crowd management measures, will be adopted to control the numbers of visitor during Chung Yeung Festival and Ching Ming Festival Periods, the details of pre-booking system will be discussed in the **Chapter 5**.
- 4.3.2 According to the details of pre-booking system and the calculation of holding capacity of the proposed (existing) columbarium development in **Chapter 5**, the proposed (existing) columbarium development could allow 117 visitors to undertake niches worshipping at each time slot.
- 4.3.3 Taking 30 minutes as the duration of each time slot and 07:00 to 19:00 (12 hours in total during the Ching Ming / Cheung Yeung Festivals and their shadow periods) as the opening hours under the implementation of pre-booking system for niches worshipping, the visitor trip generation of the proposed (existing) columbarium development would be:

Visitor Trip Generation per hour = 117 persons / (30 minutes / 60 minutes) = 234 persons/ hr

- 4.3.4 In case of early arrival of the subsequent time slot (i.e. 117 persons), the total waiting areas with around 98m² will be provided for visitors within the Application Site. Visitors arriving 30 minutes or above prior to their reserved time slot are not allowed to enter the Application Site. In the light of this, the additional trips attracted/allowed arising from the holding capacity of the waiting areas is 117 persons, which will be incorporated in the pedestrian trip attraction. The pedestrian trip attraction of the proposed (existing) columbarium development is therefore 234 + 117 = 351 persons/hr under the implementation of prebooking system.
- 4.3.5 As discussed in **Section 3.5.4**, there were no full bookings for columbarium development during peak hours of weekend prior to Ching Ming Festival and weekend after Ching Ming Festival, indicating that there was surplus capacity to cater for a potential increase in visitors upon full booking.
- 4.3.6 The net increase in visitor trip generation for proposed (existing) columbarium development when comparing the existing numbers of visitor during 2024 Ching Ming Festival Period and numbers of visitor under full booking are presented in **Table 4.4** below.

Table 4.4 N	let Difference in Visitor	Trip Generation for	Proposed (Existing)	Columbarium Development
-------------	---------------------------	----------------------------	---------------------	--------------------------------

Development	Date	Existing Pea in 2024 Cl Festival [/ (Perso	k Hour Trip hing Ming Period ⁽¹⁾ \] hn/hr)	Peak He under Full E [I (Perso	our Trip Booking ^{(2) (3)} B] on/hr)	Net Difference [B] - [A]		
		Gen.	Att.	Gen.	Att.	Gen.	Att.	
Columbarium Development	Weekend prior to Ching Ming Festival	240	283	298	351	+58	+68	
	Ching Ming Festival	377	351	377	351	0	0	
	Weekend after Ching Ming Festival	309	334	325	351	+16	+17	

Note: (1) Refer to **Table 3.10** for the visitor trip generation and attraction due to columbarium development of the Application Site during 2024 Ching Ming Festival Period.

(2) As discussed in **Section 4.3.4**, the pedestrian trip attraction of the proposed (existing) columbarium development is 351 person/hr under full booking.

(3) The pedestrian trip generation under full booking is estimated by using the ratio between the existing peak hour trip attraction and the peak hour trip attraction under full booking.

4.3.7 Since the religious activity of the Application Site (as discussed in **Section 3.5**) is independent of the proposed (existing) columbarium development of the Application Site, the future visitor trip generation due to religious activity is expected to remain unchanged as the survey count during 2024 Ching Ming Festival period.

Net Increases in Traffic Trip Generation for Proposed (Existing) Columbarium Development

4.3.8 To acquire the modal split of visitors of the Application Site, an interview survey was conducted during the survey period mentioned in **Section 3.3.5**. The results are summarised in **Table 4.5** below.

Survey Periods	Тахі	Private Car	Railway	Bus	GMB	Walking	Total
Ching Ming Festival Period	8%	30%	33%	9%	3%	17%	100%

Table 4.5 Modal Split of Visitor of the Application Site

- 4.3.9 As shown in **Table 4.5**, most visitors used public transport or walking to access the Application Site. It showed that the Application Site enjoys high accessibility of MTR, Bus and GMB services.
- 4.3.10 The vehicular trip generation by the Application Site would be attributed to taxi and private car. The estimated net increase in traffic trip generation of the proposed (existing) columbarium development during Ching Ming Festival Period are determined as shown in **Table 4.6**.

Table 4.6 Net Difference in Traffic Trip Generation of the Proposed (Existing) Columbarium Development

Development	Period	Net Difference in Pedestrian Trip		Modal Split of Visitor ⁽²⁾		Net Difference in Nos. of Visitor ⁽³⁾ (person/hr)		Net Difference in Traffic Trip Generation (pcu/hr)	
		(person/hr)	Тахі	Private Car	Тахі	Private Car	Taxi ⁽⁴⁾⁽⁵⁾	Private Car ⁽⁴⁾⁽⁶⁾	Total
Columbarium Development	Weekend prior to Ching Ming Festival	+68	8%	30%	+6	+21	+2	+6	+8
	Ching Ming Festival	0	8%	30%	0	0	0	0	0
	Weekend after Ching Ming Festival	+17	8%	30%	+2	+6	+1	+2	+3

Note: (1) Refer to **Table 4.4** for the net difference in pedestrian trip generation (adopt the higher one between generation and attraction).

(2) Refer to **Table 4.5** for the observed modal split of visitor of the Application Site.

(3) No. of visitor taking taxi or private car = pedestrian trip generation x modal split of taxi or private car.

(4) According to the results of interview surveys, the average occupancy rate for taxis and private car are 3 and 4 visitors per

vehicle respectively.

(5) No. of taxi generated = nos. of visitor taking taxi ÷ 3 nos. of visitor per taxi

(6) No. of private car generated = nos. of visitor taking private car ÷ 4 nos. of visitor per private car

4.4 Adjacent Columbarium Developments

4.4.1 Adjacent columbarium developments are identified in the vicinity of the Application Site as shown in **Drawing No. 4.1**, and the development parameters are summarised as shown in **Table 4.7**.

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai Po

CHK50801110

Ref.	Adjacent Columbarium	Proposed No. of Niches and Memorial Tablets		Memorial Tablets Occupied		Information on Columbarium	Application Status ⁽⁶⁾	
No.	Development	Niches	Memorial Tablets	Niches	Memorial Tablets	Development ⁽¹⁾		
1	Poh Yea Ching Shea (2 Mui Shue Hang, Tai Po, New Territories)	5,302 ⁽²⁾	174 ⁽²⁾	1,035	-	Part B	Approved with condition(s) on 29 th November, 2019	
2	Ling Hin Fat Yuen (Shek Kwu Lung, Tai Po, New Territories)	757 ⁽³⁾	1,782 ⁽³⁾	174	877	Part B	Approved with condition(s) on 19 th July,2019	
3	Ever Rest Temple (8 Mui Shue Hang, Tai Po, New Territories)	763 ⁽⁴⁾	49 ⁽⁴⁾	174	6	Part B	Approved on 10 th November,2023	
4	Pun Chun Yuen (17 Shek Lin Road, Tai Po, New Territoeries)	3,834 ⁽⁵⁾	3,257 ⁽⁵⁾	2,466	2,096	Part B	Approved with condition(s) on 26 th August,2022	

Table 4.7 Adjacent Columbarium Developments

Notes: (1) According to the information on private columbaria from the website of Development Bureau,

> (i) Part A: Private columbaria compliant with user restrictions in the land leases and the statutory town planning requirements and are not illegally occupying Government land

> (ii) Part B: Other private columbaria made known to the Lands Department and/or Planning Department that do not fall under Part A

> Source: https://www.devb.gov.hk/en/issues in focus/private columbaria/index.html (update of 29 March 2018)

- (2) According to the Planning Application No. A/TP/657, 5,302 niches and 174 memorial tablets are proposed and the columbarium development has already in existence and operation.
- (3) According to the Planning Application No. A/TP/652, 757 niches and 1,782 memorial tablets are proposed and the columbarium development has already in existence and operation.
- (4) According to the Rezoning Application No. Y/TP/36, 763 niches and 49 memorial tablets are proposed and the columbarium development has already in existence and operation.
- (5) According to the Planning Application No. A/TP/681, 3,834 niches and 3,257 memorial tablets are proposed and the columbarium development has already in existence and operation.
- (6) The application status is updated in July 2024.

4.4.2 The estimated pedestrian trip generations of existing adjacent columbarium development during peak hour are summarised in Table 4.8.

Ref. No.	Columbarium Davalonment	Proposed No. Memoria	of Niches and al Tablets	Pedestrian Trip Generation (person/hr)		
	Columbanum Development	Niches	Memorial Tablets	Gen.	Att.	
1	Poh Yea Ching Shea	5,302	174	976 ⁽¹⁾	954 ⁽¹⁾	
2	Ling Hin Fat Yuen	757	1,782	48(2)	48(2)	
3	Ever Rest Temple	763	49	80 ⁽³⁾	80 ⁽³⁾	
4	Pun Chun Yuen	3,834	3,257	200 ⁽⁴⁾	200 ⁽⁴⁾	

Table 4.8 Estimated Pedestrian Trip Generations of Adjacent Columbarium Development

Note: (1) Refer to Table 5-4 of the TIA in approved Planning Application No. A/TP/657.

(2) Refer to Table 4.1 of the TIA in approved Planning Application No. A/TP/652, the peak hour visitor flow under full occupation of niches are 96 visitor/ hr (two-way).

(3) Refer to approved Rezoning Application No. Y/TP/36, the visitor number will be restricted to a maximum of 60 visitors per 45-minute session under "visit-by-appointment" system.

(4) Refer to approved Table 5.4 of the TIA in approved Planning Application No. A/TP/681.

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist	
Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai	
Po	

CHK50801110

4.4.3 The estimated traffic trip generations of existing adjacent columbarium development during peak hour are summarised in **Table 4.9** below.

Ref. No.	Columbarium	Pedestrian Trip	Mode of Transport		Nos. of Visitor ⁽²⁾		Traffic Trip Generation ^{(3) (4)} (pcu/hr)					
	Development	Generation ⁽¹⁾ (person/hr)	Private Car	Тахі	Shuttle Service	Private Car	Тахі	Shuttle Service	Private Car	Taxi	Shuttle Service	Total
1	Poh Yea Ching Shea	976	20% ⁽⁵⁾	9% ⁽⁵⁾	-	196	88	-	49	30	-	79
2	Ling Hin Fat Yuen	48	-	100%(6)	-	-	48	-	-	16	-	16
3	Ever Rest Temple	80	20% ⁽⁷⁾	9% ⁽⁷⁾	-	16	8	-	4	3	-	7
4	Pun Chun Yuen	200	31%	28% ⁽⁸⁾	29% ⁽⁸⁾	62	56	58	16	19	8	43

Table 4.9 Estimated Traffic Trip Generations of Adjacent Columbarium Development

Note: (1) Refer to **Table 4.8** for the pedestrian trip generation (adopted the higher one between generation and attraction). (2) Nos. of visitor = pedestrian trip generation x mode of transport.

(3) Assume the the average occupancy rate for taxis and private car are 3 and 4 visitors per vehicle respectively, while the average occupancy rate for shuttle service is 14 visitors per vehicle according to Table 2.8 of the TIA in Planning Application No. A/TP/681.
(4) Traffic trip generation = nos. of visitor taking private car ÷ 4 nos. of visitor per vehicle + nos. of visitor taking taxi ÷ 3 nos. of visitor per vehicle + (nos. of visitor taking shuttle service ÷ 14 nos. of visitor per vehicle)*1.5 pcu factor

(5) According to Table 5-3 of the TIA in approved Planning Application No. A/TP/657, the estimated modal split of Poh Yea Ching Shea's visitors taking private car and taxi are 20% and 9% respectively.

(6) According to Section 2.1.5 of the TIA in approved Planning Application No. A/TP/652, all visitors will take taxi to access Ling Hin Fat Yuen.

(7) Assume the modal split of Ever Rest Temple's visitors taking taxi or private car are the same as that of Poh Yea Ching Shea, which is located adjacent to Ever Rest Temple.

(8) According to Table 5.2 of the TIA in Planning Application No. A/TP/681, the estimated modal split of Pun Chun Yuen's visitors taking private car and taxi are 31% and 28% respectively, while that of taking shuttle service is 29% (traffic trip attraction is adopted).

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai Po

CHK50801110

4.5 Year 2032 Traffic Forecasts

Year 2032 Reference Traffic Flows

4.5.1 The year 2032 reference traffic flows (without proposed (existing) columbarium development) were derived by applying the adopted growth rate of +1.0% p.a. on the background traffic (i.e. disregard of existing traffic induced by the proposed (existing) columbarium development due to implementation of pre-booking system as explained in Chapter 5), then assigning the trip generations from adjacent columbarium developments. The year 2032 reference traffic flows during Ching Ming Festival Period are shown in Drawing No. 4.2.

2032 Reference Traffic Flows =	(2024 Observed Traffic Flows on Ching Ming Festival Period –
during Ching Ming Festival	Traffic Flows generated by the proposed (existing)
Period	columbarium development on 2024 Ching Ming/Chung
(Drawing No. 4.2)	Yeung Festival Period) x (1+1%) ⁸ +
	Traffic Flows generated by the proposed (existing)
	columbarium development on 2024 Ching Ming/Chung
	Yeung Festival Period +
	Trip Generations from Adjacent Columbarium Developments

Year 2032 Design Traffic Flows

4.5.2 The proposed (existing) columbarium development traffic flows (under the implementation of pre-booking system) as shown in **Drawing No. 4.3** was then superimposed onto year 2032 reference traffic flows in **Drawing No. 4.2** to produce the year 2032 design traffic flows as shown in **Drawing No. 4.4**.

		(Drawing No. 4.3)
(Drawing No. 4.4)		Flows
Period		Net Difference in Proposed (existing) Development Traffic
during Ching Ming Festival		(Drawing No. 4.2) +
2032 Design Traffic Flows	=	2032 Reference Traffic Flows under different scenarios

5. TRAFFIC MANAGEMENT PLAN

5.1 Crowd Management Measures

Traffic and Public Transport Arrangement

5.1.1 At present, the Application Site is well served by public transport services in the vicinity. The pedestrian routes to/from the public transport facilities from/to the Application Site are shown in **Drawing No. 5.1** and summarised in **Table 5.1**.

Route No. (1)	Destination	Walking Distance	Travel Time ⁽²⁾
1	From/to public transport at Tai Wo Station (1)	~ 500m	~7 mins
2	From/to public transport at Tai Wo Station (2)	~ 600m	~8.5 mins
3	From/to public transport at Tai Wo Station (3)	~ 550m	~8 mins

Table 5.1	Pedestrian Routes to	/from the Public Trar	sport Facilities from	/to the Application Site
10010 012	i cacoti lan noates to			/ to the / application once

Note: (1) Refer to **Drawing No. 5.1** for location of the pedestrian routes.

5.1.2 To further promote the access by public transport, the Applicant shall inform visitors the location of public transport facilities and the corresponding access routes one month before Ching Ming/Chung Yeung Festival day. The Applicant has prepared the website and Prebooking Mobile Application, which provide the major routes from public transport facilities, to encourage the access by public transport to the Application Site during Ching Ming/Chung Yeung Festival Period. They will be notified and explained in detail of the site location and access arrangement that no on-site parking space is provided for the visitors due to the inherent site constraints.

Pedestrian Access Arrangement

5.1.3 To avoid unnecessary disturbance to the neighboring developments caused by the temple related activities during Ching Ming/ Chung Yeung Festival Periods, visitors are directed by staffs to access/ leave the Application Site exclusively via the existing staircase east of the site (the main temple access, i.e. F5). The proposed visitor ingress and egress routings are illustrated in **Drawing Nos. 5.2** to **5.3** respectively. In addition, the villagers are free to access both the existing staircase F4 and F5.

Temporary Directional Signs

5.1.4 In order to guide the visitors, appropriate temporary directional signs would be erected along the proposed visitors ingress/ egress routing as shown in in **Drawing Nos. 5.2** to **5.3**.

<u>Staff Assistants</u>

- 5.1.5 23 staffs are employed for day-to-day operation during normal days. With foreseeable high numbers of visitors during Ching Ming/ Chung Yeung Festival Period to the Application Site, additional manpower will be deployed. A total of 36 staffs will be on duty during Ching Ming/ Chung Yeung Festival Period.
- 5.1.6 Staff will be deployed at the entrances of the Application Site and at key points on the identified visitors routes as indicated in in **Drawing Nos. 5.2** to **5.3** to provide assistance for the visitors so that order and smooth pedestrian flow can be maintained.
- 5.1.7 Admission control will be adopted at the entrance of the Application Site. Staff will be stationed at entrance to ensure only visitors with valid QR code can enter the Application Site. Visitors without prior booking is not allowed to enter the Application Site. As illustrated in **Drawing No. 5.2**, staff will check the visitors' booked time slot upon their arrival to the Application Site. If the visitors arrive earlier than the reserved time slot, they will be asked to wait at the waiting area to await the start of session. If the visitors arrive on time, or the visitors waiting at waiting area have reached their designated time slot, staff will provide guidance for the visitors to leave the waiting areas in sequence and go into the columbarium buildings.
- 5.1.8 Visitors arriving 30 minutes or above prior to their reserved time slot are not allowed to enter the Application Site. Besides, visitors will receive advance notices (i.e. not arrive more than 30 minutes early) from the Applicant via the pre-booking Mobile Application to advise them not to arrive more than 30 minutes early.

House Rules (Pre-Booking System)

- 5.1.9 The Applicant shall require the niche purchasers, including visitors who purchased "sold niches" and visitors who will purchase "un-sold niches", to adhere to the House Rules. Prebooking for the preferred time slot will be required before visiting the Application Site during Ching Ming/ Chung Yeung Festival Days and their Shadow Periods. The Applicant has already included the pre-booking system requirement in the House Rules and the pre-booking mobile application has been implemented during the 2024 Ching Ming Festival Period. Additionally, the staff assistants already notified the visitors at the site during the 2024 Ching Ming Festival Period that the pre-booking mobile application were under operation and advised the visitors to make their reservations for the preferred time slot through the mobile application. QR code will be generated by the pre-booking mobile application/mail/Whatsapp after making their reservations. The Applicant shall exercise strict control of the number of visitors at a manageable level which would not exceed its holding capacity.
- 5.1.10 In order to calculate the holding capacity, the available standing area of the buildings and occupancy factor are considered.
- 5.1.11 As advised by KELand Surveying Planning & GIS Co. Ltd, the standing area of the buildings (indoor area for the flow of visitors) is around 425m². In accordance with the means of escape for Use Classification 5d of Part B in the Code of Practice for Fire Safety in Buildings 2011, the

occupancy factor is 2m² per person for columbarium use. Thus, the holding capacity of the buildings of the Application Site is around 212 persons (i.e. 425m²/ 2m² per person) for each time slot.

Occupancy Factor of the = $425m^2/2m^2$ per person = 212 per person

- 5.1.12 Under the current pre-booking system for columbarium development of the Application Site described in **Chapter 3**, it allows for the maximum of 117 visitors for each time slot, which do not exceed the holding capacity of the building with around 212 persons for each time slot.
- 5.1.13 Therefore, under the pre-booking system, it allows for a maximum of 117 visitors per 30minute session (i.e. maximum of 234 visitors per hour).
- 5.1.14 To assess the pre-booking system under existing demand, the observed numbers of daily visitors during 2024 Ching Ming Festival Period is compared with the maximum numbers of daily visitors under pre-booking system. The comparison is summarised in **Table 5.2** below.

		2024 Ching Ming Fe	estival Period	Maximum no. of		
Date	No. of Niches and Memorial Tablets ⁽²⁾	Observed Daily Nos. of Visitor [A]	Observed Daily Visitor Trip Rate ⁽¹⁾ (Person/day/(niche/tablet))	Daily Visitors under Pre-Booking System (visitor per day) [B]	Surplus/ Shortage [B] – [A]	
Weekend prior to Ching Ming Festival		894	0.117	2,808	+1,914	
Ching Ming Festival	7,629 ⁽²⁾	2,308	0.303	2,808	+500	
Weekend after Ching Ming Festival		1,190	0.156	2,808	+1,618	
Total		4,392	-	8,424	+4,032	

Table 5.2Comparison of the Maximum Numbers of Daily Visitors and 2024 Observed Numbers of Daily
Visitors of the Application Site

Note:(1) Daily Visitor Trip Rate = Observed Daily Nos. of Visitor ÷ Existing No. of Niches and Memorial Tablets.
(2) Refer to Table 2.1.

- 5.1.15 As presented in **Table 5.2**, the observed number of daily visitors on Ching Ming Festival is greater than the maximum numbers of daily visitors under pre-booking system (with surplus of 4,032 no. of visitor). Under advance booking, the numbers of visitors can be controlled and re-distributed so as to balance throughout the whole Ching Ming Festival and its shadow period.
- 5.1.16 To assess the pre-booking system after full occupation of niches, the expected numbers of daily visitors are compared with the maximum numbers of daily visitors under pre-booking system. The estimated numbers of daily visitors after full occupation of niches during Ching Ming Festival and their Shadow Periods are calculated based on the observed daily visitor trip rate as presented in **Table 5.2**.
- 5.1.17 The booking capacity analysis upon full occupation of niches and memorial tablets are determined in Table **5.3** below.

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist	
Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai	CHK50801110
Ро	

Table 5.3	Comparison of the Maximum Numbers of Daily Visitors and Estimated Daily Demand Upon Full
	Occupation of Niches and Memorial Tablets

	Upon Full	Occupation of Niches and	Maximum no. of			
Date	No. of Niches and Memorial Tablets ⁽²⁾	Adopted Daily Visitor Trip Rate ⁽¹⁾ (Person/day/(niche/ta blet))	Estimated Daily Nos. of Visitor [A]	Daily Visitors under Pre-Booking System (visitor per day) [B]	Surplus/ Shortage [B] – [A]	
Weekend prior to Ching Ming Festival		0.117	1,740	2,808	+1,068	
Ching Ming Festival	14,775 ⁽²⁾	0.303	4,470	2,808	-1,662	
Weekend after Ching Ming Festival		0.156	2,310	2,808	+498	
Total		-	8,520	8,424	-96	

Note: (1) Refer to **Table 5.2**. (2) Refer to **Table 2.1**.

5.1.18 The shortage of booking capacity during Ching Ming Festival Period can be re-distributed to the shadow periods under pre-booking system as shown in **Table 5.4** below.

Date	Estimated Daily Person Trip ⁽¹⁾ (person/day)	Maximum no. of Daily Visitor under Pre-booking System (person/day)		
Weekend prior to Ching Ming Festival	1,740	2,808		
Ching Ming Festival	4,470	2,808		
Weekend after Ching Ming Festival	2,310	2,808		
Shadow Period of Ching Ming Festival ⁽²⁾	2,310	2,808		
TOTAL	10,830	11,232		

Table 5.4 Comparison of the Maximum Numbers of Daily Visitors and the Estimated Daily Demand underPre-booking system

Note: (1) Refer to **Table 5.3**.

(2) Assume the estimated daily person trip of shadow period of Ching Ming Festival are the same.

- 5.1.19 As presented in **Table 5.4**, under the pre-booking system, the numbers of visitors can be controlled and re-distributed so as to balance throughout the whole Ching Ming Festival and their shadow periods. Therefore, the anticipated demand of visitor upon full occupation of niches and memorial tablets can be accommodated under the implementation of prebooking system.
- 5.1.20 In case of early arrival of the subsequent time slot, a waiting area with around 98m² will be provided for visitors within the Application Site. Visitors arriving 30 minutes or above prior to their reserved time slot are not allowed to enter the Application Site. In light of this, the total holding capacity of the waiting areas is 117 persons. The location of the waiting area (i.e. 98m²) within the Application Site is shown in **Drawing Nos. 5.2** to **5.3**.

5.1.21 The traffic impact on the holding areas for waiting visitors is assessed by assuming 117 persons of subsequent time slot arriving the Application Site early. The assessment is conducted and presented in **Table 5.5** below.

Tuble 5.5 Operational renormance of the fuentified flotding Areas for Walting Visitors								
Total Holding Areas for Waiting Visitors (m²)	Additional Trips attracted/allowed arising from the Holding Areas (persons)	Space per visitor in the Holding Areas (m²/person)	Level of Service ⁽¹⁾ (LOS)					
98	117	0.84	C					

Table 5.5 Operational Performance of the Identified Holding Areas for Waiting Visitors

Note: (1) Refer to Highway Capacity Manual 2000 for LOS description in Appendix B.

- 5.1.22 According to the description of queuing area Level-of-Service (LOS) in Highway Capacity Manual 2000 shown in **Appendix B**, the LOS of the waiting area provided can achieve LOS C, which is acceptable for personal comfort.
- 5.1.23 Therefore, the waiting area within the Application Site can provide a comfortable environment for visitors of the subsequent time slot under the implementation of prebooking system. The results have also demonstrated that the additional trips allowed arising from the holding areas for waiting visitors would not induce adverse traffic impact to said holding areas.

Advance Coordination with Hong Kong Police Force (HKPF)

5.1.24 For better coordination with Hong Kong Police Force (HKPF), the Applicant will take an active role to inform HKPF, such as operation hours, crowd management measures, etc., before the Ching Ming and Chung Yeung Festival Days and their Shadow Periods. The relevant past letters regarding the Buddhist Festival, Ching Ming Festival and Yu Lan Festival from the Applicant to HKPF have been attached in **Appendix D**.

5.2 Other Management Measure

Online Memorial Service

5.2.1 In order to minimise the traffic impact during the peak seasons, the Applicant will provide Online Memorial Services for all visitors in the future. Online memorial service is the virtual platform on the internet for visitors to have niches worshipping activities at any time of the day or night. Visitors can express their affection and respect for their departed relatives through the platform after the registration of online memorial services. It is expected that the implementation of online memorial can further reduce the demand of people visiting the Application Site in person, especially during Ching Ming Festival and Chung Yeung Festival Days as well as their shadow periods.

CHK50801110

6. TRAFFIC IMPACT ASSESSMENT

6.1 Operational Junction Assessment

6.1.1 The operational performance of the junction identified in Section 3.3 were assessed with the forecasted peak hour traffic flows in design year 2032 under the implementation of crowd management measures shown in Chapter 5. The assessment results are summarised in Tables
 6.1 to 6.2 and the relevant junction calculation sheets are attached in Appendix A.

Ref.		Method	Year 2032 Reference Scenario RC ⁽²⁾ /DFC ⁽³⁾				
No. ⁽¹⁾	Junction	of Control	Weekend prior to Ching Ming Festival	Ching Ming Festival	Weekend after Ching Ming Festival		
J1	Pak Shing Street Near Sui On Street	Signal	>100%	>100%	>100%		
J2	Kam Shan Road/ Hon Ka Road	Priority	0.09	0.16	0.09		
J3	Kam Shan Road/ Access Road Linking to Kam Shek New Village Car Park	Priority	0.19	0.40	0.11		

Table 6.1	Junction O	perational	Performance	in Year	2032 Reference Scenario
	Junction Of	scrationar	1 chronnance	in rear	2052 Nererence Scenario

Note: (1) Refer to **Drawing No. 3.1** for the location of identified junction.

(2) RC - Reserve Capacity for signalised junction.

N

J2

J3

(3) DFC – Design flow to Capacity Ratio for priority junction

	Table 6.2 Junction Operational Performance in Year 2032 Design Scenario								
lef.		Method	Year 2032 Design Scenario RC ⁽²⁾ /DFC ⁽³⁾						
0. ⁽¹⁾	Junction	of Control	Weekend prior to Ching Ming Festival	Ching Ming Festival	Weekend after Ching Ming Festival				
J1	Pak Shing Street Near Sui On Street	Signal	>100%	>100%	>100%				
	Kam Shan Road/ Hon Ka								

0.09

0.19

0.16

0.40

0.09

0.11

Table 6.2 Junction Operational Performance in Year 2032 Design Scenario

Note: (1) Refer to **Drawing No. 3.1** for the location of identified junction.

Priority

Priority

(2) RC - Reserve Capacity for signalised junction.

Road Kam Shan Road/ Access

Road Linking to Kam Shek

New Village Car Park

(3) DFC – Design flow to Capacity Ratio for priority junction

6.1.2 The assessment results in **Tables 6.1** to **6.2** have indicated that the assessed junctions are expected to operate within capacities in Year 2032 under both reference and design scenarios. The traffic impact due to the traffic generation of proposed (existing) columbarium development at the Application Site is considered insignificant.

СНК50801110

6.2 Operational Performance of Pedestrian Facilities

- 6.2.1 The operational performance of the pedestrian facilities identified in **Section 3.4** were assessed with the forecasted peak hour pedestrian flows in Year 2032 under design scenarios (with proposed (existing) columbarium development).
- 6.2.2 The operational performance of the identified pedestrian facilities in Year 2032 have been assessed based on the following scenarios:
 - Assessment Scenario 1: Pedestrian peak flows in 60-minute interval
 - Assessment Scenario 2: Pedestrian peak flows in 15-minute interval
- 6.2.3 The results of the operational performance of the pedestrian facilities are shown in **Drawing Nos. 6.1.1** to **6.1.3** and summarised in **Tables 6.3** to **6.5**.

Table 6.3	Operational Performance of Identified Pedestrian Facilities in Design Year 2032 (Weekend prior to
	Ching Ming Festival)

	Actual Effective		Ass (Ped 6	essment Scenar lestrian peak flo 0-minute interva	io 1 ws in al)	Assessment Scenario 2 (Pedestrian peak flows in 15-minute interval)		
Ref. ⁽¹⁾	Width (m)	Width ⁽²⁾ (m)	Peak Hourly Flow (ped/hr)	Peak Flow Rate (ped/min/m)	V/C Ratio ⁽⁴⁾⁽⁵⁾ / LOS ⁽⁶⁾	Peak 15-min Flow ⁽⁷⁾ (ped/15-min)	Peak Flow Rate ⁽⁸⁾ (ped/min/m)	V/C Ratio ⁽⁴⁾⁽⁵⁾ / LOS ⁽⁶⁾
F1 (Footpath connecting the western of the Site)	1.3	0.3	305	16.94	В	92	20.44	В
F2 (Footpath between the two staircases at site access)	3.2	2.2	301	2.28	А	91	2.76	A
F3 (Footpath connecting the eastern of the Site)	3.2	2.2	369	2.80	А	111	3.36	А
F4 ⁽⁹⁾ (Staircase at northwestern of site access)	1.25	0.25	4	0.27	0.007	2	0.53	0.013
F5 ⁽⁹⁾ (Staircase at northeastern of site access)	1.7	0.7	656	15.62	0.39	197	18.76	0.469
F6 (Cautionary Crossing at Kam Shan Road)	2.5	2.5	204	1.36	0.136	62	1.65	0.165
F7 (Footpath at Eastbound of Kam Shan Road)	3.2	2.2	266	2.02	А	80	2.42	А
F8 (Kam Wo Bridge)	6.2	5.2	2967	9.51	А	891	11.42	А
F9 (Tai Wo Bridge)	7.2	6.2	1580	4.25	А	4747	5.10	А

Notes: (1) Refer to Drawing No. 6.1.1 for location and operation performance of the footpaths, cautionary crossing and staircases.

(2) Effective width of footpath and staircase = Actual width – 1.0m dead width (0.5m dead width on one side of footpath)

(3) Peak flow rate = Peak hourly flow \div 60 \div effective width

(4) V/C Ratio = Peak flow ÷ capacity (5)

- (5) According to TPDM, the capacity flow of the staircase = 40 ped/m/min, and the capacity of 2.5m width of cautionary crossing = 1500 ped/hr
- (6) Refer to TPDM for LOS description in Appendix B.

(7) Peak factor of 1.2 is applied for calculating the pedestrian peak flows in 15-minute interval based on the ratio of surveyed peak hourly pedestrian flows and surveyed peak 15-min flows.

(8) Peak flow rate = Peak hourly flow \div 15 \div effective width

(9) Under the crowd management, visitors are directed by staffs to access/ leave the Application Site exclusively via the existing staircase at northeastern of the site (i.e. from F4 to F5).

CHK50801110

Table 6.4	Operational Performance of Identified Pedestrian Facilities in Design Year 2032 (Ching Ming

Festival)

	Actual Effective		Assessment Scenario 1 (Pedestrian peak flows in 60-minute interval)			Assessment Scenario 2 (Pedestrian peak flows in 15-minute interval)		
Ref. ⁽¹⁾	Width (m)	Width ⁽²⁾ (m)	Peak Hourly Flow (ped/hr)	Peak Flow Rate (ped/min/m)	V/C Ratio ⁽⁴⁾⁽⁵⁾ / LOS ⁽⁶⁾	Peak 15-min Flow ⁽⁷⁾ (ped/15-min)	Peak Flow Rate ⁽⁸⁾ (ped/min/m)	V/C Ratio ⁽⁴⁾⁽⁵⁾ / LOS ⁽⁶⁾
F1 ¹⁰⁾ (Footpath connecting the western of the Site)	1.3	0.3	416	23.11	С	125	27.78	С
F2 (Footpath between the two staircases at site access)	3.2	2.2	418	3.17	А	126	3.82	А
F3 (Footpath connecting the eastern of the Site)	3.2	2.2	486	3.68	А	146	4.42	А
F4 ⁽⁹⁾ (Staircase at northwestern of site access)	1.25	0.25	8	0.53	0.013	3	0.8	0.02
F5 ⁽⁹⁾ (Staircase at northeastern of site access)	1.7	0.7	844	20.10	0.502	254	24.19	0.605
F6 (Cautionary Crossing at Kam Shan Road)	2.5	2.5	340	2.27	0.227	102	2.72	0.272
F7 (Footpath at Eastbound of Kam Shan Road)	3.2	2.2	384	2.91	А	116	3.52	А
F8 (Kam Wo Bridge)	6.2	5.2	3314	10.62	А	995	12.76	А
F9 (Tai Wo Bridge)	7.2	6.2	1680	4.52	А	504	5.42	А

Notes: (1) Refer to Drawing No. 6.1.2 for location and operation performance of the footpaths, cautionary crossing and staircases.

(2) Effective width of footpath and staircase = Actual width – 1.0m dead width (0.5m dead width on one side of footpath)

(3) Peak flow rate = Peak hourly flow \div 60 \div effective width

(4) V/C Ratio = Peak flow \div capacity ⁽⁵⁾

(5) According to TPDM, the capacity flow of the staircase = 40 ped/m/min, and the capacity of 2.5m width of cautionary crossing = 1500 ped/hr

(6) Refer to TPDM for LOS description in Appendix B.

(7) Peak factor of 1.2 is applied for calculating the pedestrian peak flows in 15-minute interval based on the ratio of surveyed peak hourly pedestrian flows and surveyed peak 15-min flows.

(8) Peak flow rate = Peak hourly flow \div 15 \div effective width

(9) Under the crowd management, visitors are directed by staffs to access/ leave the Application Site exclusively via the existing staircase at northeastern of the site (i.e. from F4 to F5).

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist
Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai
Po

СНК50801110

Table 6.5	Operational Performance of Identified Pedestrian Facilities in Design Year (Weekend after Ching
	Ming Festival)

				0				
	Actual Effective	Assessment Scenario 1 (Pedestrian peak flows in 60-minute interval)			Assessment Scenario 2 (Pedestrian peak flows in 15-minute interval)			
Ref. ⁽¹⁾	Width (m)	Width ⁽²⁾ (m)	Peak Hourly Flow (ped/hr)	Peak Flow Rate (ped/min/m)	V/C Ratio ⁽⁴⁾⁽⁵⁾ / LOS ⁽⁶⁾	Peak 15-min Flow ⁽⁷⁾ (ped/15-min)	Peak Flow Rate ⁽⁸⁾ (ped/min/m)	V/C Ratio ⁽⁴⁾⁽⁵⁾ / LOS ⁽⁶⁾
F1 ¹⁰⁾ (Footpath connecting the western of the Site)	1.3	0.3	313	17.39	В	94	20.89	В
F2 (Footpath between the two staircases at site access)	3.2	2.2	321	2.43	А	97	2.94	А
F3 (Footpath connecting the eastern of the Site)	3.2	2.2	402	3.05	A	121	3.67	А
F4 ⁽⁹⁾ (Staircase at northwestern of site access)	1.25	0.25	8	0.53	0.013	3	0.8	0.02
F5 ⁽⁹⁾ (Staircase at northeastern of site access)	1.7	0.7	687	16.36	0.409	207	19.71	0.493
F6 (Cautionary Crossing at Kam Shan Road)	2.5	2.5	264	1.76	0.176	80	2.13	0.213
F7 (Footpath at Eastbound of Kam Shan Road)	3.2	2.2	420	3.18	А	126	3.82	А
F8 (Kam Wo Bridge)	6.2	5.2	2994	9.60	А	899	11.53	A
F9 (Tai Wo Bridge)	7.2	6.2	2102	5.65	А	631	6.78	А

Notes: (1) Refer to Drawing No. 6.1.3 for location and operation performance of the footpaths, cautionary crossing and staircases.

(2) Effective width of footpath and staircase = Actual width – 1.0m dead width (0.5m dead width on one side of footpath)

(3) Peak flow rate = Peak hourly flow \div 60 \div effective width

(4) V/C Ratio = Peak flow \div capacity ⁽⁵⁾

- (5) According to TPDM, the capacity flow of the staircase = 40 ped/m/min, and the capacity of 2.5m width of cautionary crossing = 1500 ped/hr
- (6) Refer to TPDM for LOS description in Appendix B.

(7) Peak factor of 1.2 is applied for calculating the pedestrian peak flows in 15-minute interval based on the ratio of surveyed peak hourly pedestrian flows and surveyed peak 15-min flows.

(8) Peak flow rate = Peak hourly flow \div 15 \div effective width

(9) Under the crowd management, visitors are directed by staffs to access/ leave the Application Site exclusively via the existing staircase at northeastern of the site (i.e. from F4 to F5).

CHK50801110

6.2.4 As shown in Tables 6.3 to 6.5, the V/C Ratio of staircases and cautionary crossing at the Application Site access are below 0.85 and the LOS of identified footpaths surrounding the Application Site are C or above in design year 2032 during Ching Ming Festival Period. It indicates that under the implementation of crowd management measures, all the identified footpaths near the Application Site are expected to operate with adequate spare capacities to cater for the future demand during the peak hours under design scenario.

6.3 **Provision of Car Parking Facilities in the Vicinity**

6.3.1 As presented in Table 4.5, the modal split of visitor taking private car was 30% during Ching Ming Festival Period. For conservative approach, some visitors might still access the Application Site by private car despite the implementation of traffic management plan, the potential increase in parking need of the Application Site are determined in Table 6.6 below.

Period	Net Difference in Pedestrian Trip Generation ⁽¹⁾ (person/hr)	Weaking Need of the Application Site Modal Split of Net Difference in Potential Incre Visitor taking Nos. of Visitor Parking Nee Private Car taking Private Car ⁽²⁾ (veh/hr)		
Weekend prior to Ching Ming Festival Period	+68	30%	+21	+6
Ching Ming Festival Period	0	30%	0	0
Weekend after Ching Ming Festival Period	+17	30%	+6	+2

(1) Refer to Table 4.4 for the net difference in pedestrian trip generation (adopt the higher one between generation Note: and attraction).

(2) Net difference in no. of visitor taking private car = net difference in pedestrian trip generation x modal split of private car.

(3) According to the results of interview surveys, the average occupancy rate for private car is 4 visitors per vehicle.

- 6.3.2 As shown in **Table 6.6**, the potential increase in parking need of the Application Site would be +2 to +6 veh/hr during Ching Ming Festival Period. Therefore, parking inventory survey on the identified public car parks in the vicinity of the Application Site as shown in Drawing No. 3.6 was carried out to study their spare capacity.
- 6.3.3 The result of parking survey on 2024 Ching Ming Festival during the peak hour (i.e. 10:35 – 11:35) is summarised in Table 6.7 below.

Table 6.7	Available Parking Spaces in the vicinity of the Application Site during 2024 Ching Ming Festival
-----------	--

		Parking Provision (nos.)	Available Parking Space (nos.)			
Ref. No	Car Park		Weekend prior to Ching Ming Festival	Ching Ming Festival	Weekend after Ching Ming Festival	
CP1	Pak Shing Street	8	0	0	0	
CP2	Hei Yuen Street, Sui On Street, Yan Hing Street	38	0	0	0	
СР3	Kam Shan Road	7	0	0	0	
CP4	Kam Shek New Village	67	0	0	15	
CP5	CP5 Tai Wo Estate near Po Nga Road		22	7	18	
CP6 Tai Wo Estate near Kai Wo Road		218	18	37	5	
Total		543	40	44	38	

Note: (1) Refer to Drawing No. 3.6 for locations of the identified public car parks.

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai Ро

CHK50801110

- 6.3.4 As shown in **Table 6.7**, there were 38 to 44 surplus parking spaces during peak hour in these identified public car parks located in the vicinity of the Application Site. Thus, it is anticipated that the identified public car parks have adequate parking spaces to cater for the potential increase in parking need of the Application Site (i.e. 2 veh/hr and 6 veh/hr).
- 6.3.5 Even though there is sufficient surplus parking space during peak hour in these identified public car parks located in the vicinity of the Application Site, the Applicant has strongly encouraged the visitors to access by public transport during Ching Ming/ Chung Yeung Festival via advance notice in the website and Pre-booking Mobile Application as discussed in **Chapter 5**.

CHK50801110

7. SUMMARY AND CONCLUSION

7.1 Summary

- 7.1.1 The Application Site is located at Lots Nos. 1087 and 1130 in D.D.6 and their Adjoining Government Land, Kam Shan, Tai Po, New Territories. The location of the Application Site is shown in **Drawing No. 1.1**.
- 7.1.2 The Application Site is currently occupied by Buddhist Cheung Ha Temple Limited(佛教長霞 淨院有限公司). The Applicant intends to regularize the existing religious and ancillary columbarium structures within the Application site. There are totally 11,726 columbarium niches (i.e. 5,508 being sold and 6,218 being un-sold) and 3,049 memorial tablets (i.e. 2,121 being sold and 928 being un-sold) in two columbarium structures at the Application Site.
- 7.1.3 Under the present Section 12A Rezoning Application, the Applicant has intended to propose the Application Site from "V" Zone to G/IC(3) with some changes over the previous application, including reduction of 1,700 niches to address precedent effect.
- 7.1.4 At present, the Application Site is not served by any vehicular access, so there are no parking facilities provided inside the Site.
- 7.1.5 In view of the availability of various public transports in the vicinity, the Application Site is highly accessible by public transport services. The MTR Tai Wo Station is located within 7-8 minutes walking time to and from the Application Site. Also, various road-based public transports of franchised bus and GMB routes are operating in the vicinity of the Application Site.
- 7.1.6 The proposed (existing) columbarium is scheduled to be completed by year 2029 tentatively and hence that the design year of 2032 (i.e. three years after occupation) is adopted in this study for assessment.
- 7.1.7 The design year 2032 traffic and pedestrian flows during Ching Ming Festival Period were derived based on the year 2024 observed traffic and pedestrian demand by adopting an appropriate growth rate. The traffic and pedestrian generations and attractions of the proposed (existing) columbarium are estimated under the implementation of pre-booking system, which is one of the crowd management measures as explained in **Chapter 5**.
- 7.1.8 In order to ensure road safety and smooth pedestrian during the Festival Period, staff will be deployed on-site or key points on pedestrian routes to guide and provide assistance for the visitors; and temporary management plans for pedestrian would be implemented as illustrated in **Drawing Nos. 5.1** to **5.3**.
- 7.1.9 To minimise the traffic impact during the peak seasons, it is proposed to adopt a pre-booking system for all visitors to the proposed (existing) columbarium during the Chung Yeung/ Ching Ming Festival Days and their shadow periods.

- 7.1.10 The operation performance assessments for the identified key junction during Ching Ming in the design year 2032 were conducted. The results have indicated that the identified key junction would operate within their capacities. It also proved that the traffic flows generated by the proposed (existing) columbarium does not induce adverse traffic impact to the surrounding pedestrian network.
- 7.1.11 The operation performance assessments for the identified pedestrian facilities during Ching Ming Festival Period in the design year 2032 were conducted. The V/C Ratio of staircases and cautionary crossing at the Application Site access are below 0.85 and the LOS of identified footpaths surrounding the Application Site are C or above in design year 2032 during Ching Ming Festival Period. It indicates that under the implementation of crowd management measures, all the identified footpaths near the Application Site are expected to operate with adequate spare capacities to cater for the future demand during the peak hours under design scenario.
- 7.1.12 Based on the parking inventory survey, it is anticipated that the public car park will have adequate parking spaces to cater for the potential parking need of the Application Site.

7.2 Conclusion

- 7.2.1 For the crowd management, pre-booking system, staff assistant and temporary management plans for pedestrian will be implemented during the Chung Yeung and Ching Ming Festival Period as to enhance the safety and smooth pedestrian flow.
- 7.2.2 According to the above assessment and the management plans, it can be concluded that the proposed (existing) columbarium development with a total of 11,726 columbarium niches and 3,049 memorial tablets will not cause adverse impact to traffic and pedestrian on adjacent road network and is acceptable from traffic engineering point of view.

08/10/2024

DRAWINGS

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai Po

CHK50801110

08/10/2024

Page 41

Original Size : A4

						1.1	off 10	ou // ///		. de la	1 Coll II h		/			λ		
		**************************************					0n 40 h	8.0		2. III	lite fr			/ $/$		\sum		
1		Cours	>	ury Set			~//	///	太和廣場第二期	1		6.0	<" \	, <u> </u>	Ridia		足球場 + ^{5.}	.4 \ \
~		/	this second		L	//	X	Τα	i Wo Plaza Ph	ase 2		N A REAL	L L				Football Fi	ield
			Hebron		H.	\mathcal{M}	\geq	\wedge					I then I	/ / /	torm .	893 V		\geq
		God		tool	ESS T		\mathbb{A}			\wedge	aterica a		Augur 15		- Inday			/
\sim	6.3 +	empty		Boskourt	L	X (L				°r⊕, Γ	L Shares				$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		·
		hes	×					平台	B H	DIHIIII		·L' ···································		STREETERSTONE				\frown
\square			* Cour		6.8 · · · · · · · · · · · · · · · · · · ·		1 - Fer	11.0 + De dium		E .				PO-1				$\langle \rangle$
		$\langle \langle \rangle$	Baskett	/ /L			L	(Car Park under)		L	A			-WGA	ROAD			
		Le	//	¢L + 6.5	Eathridge	X) /a	Stona L	AL DILL	L			er er	+6.7	LO			K	\checkmark
<			·		Accessment	Effectiv			Book Flow	Poto	1 🔨	For	otbridge	L /				
				Lo	Scenario	Width (m)	Peak Flow	(ped/mir	h/m) LOS	2	As	sessment	Effective			Peak Flov	w Rate
	#×	the second se	44 +6.6		(1)	5.2	(638 ped/hr	2.04	Α	LO		Scenario	Width (m)	Peak	Flow	(ped/mi	n/m) LC
\square	Outrall	Sol Sol			(2)	52	103	2 nod/15-min	2.46	Δ			(1)	6.2	1434	ped/hr	3.85	5 4
		A A				5.2			7.40	~		•L ~	(2)	6.2	431 peo	d/15-min	4.63	3
		F	3			L	\sim	L	/	\frown		•-	L	Ye L	/ @	eril eril		
	•L	A				17	PH			\sim	L.			2	L / /			
+ ⁹	0.6					≤ 1	The		L	La La		運動場	.L		V L	L *)		
			F	ootpath			L	The w	<u>^</u>	〉 滋葉場 ~ 6.2 Playground	L	Sports Ground				5.9		
	All of	e l		Assessmen	t Effective	Deak	Eleve	Peak Flow	Rate	· · ·	P	Footpath			В	重球場 asketball Court	RCP	ALLA
術奕(諸徑			Scenario	Width (m)	Реак	FIOW	(ped/min	/m) LOS	L	L.	Assessment	Effectiv	e		Peak Flow	v Rate	
L				(1)	0.3	245 p	ed/hr	13.61	Α		L®	Scenario	Width (n	n) Peak	Flow	(ped/mi	n/m)	OS 0
	•L	•L		(2)	0.3	74 ped/	15-min	16.44	В			(1)	2.2	246 p	ed/hr	1.86	;	A
llage .6	7 105 106 107	108 109			~~//			1			11111	(2)	2.2	74 ped/	15-min	2.24	L .	A
			eL			\Box								· · · ·				_
~	Cautionary C	rossing										/						
T	Assessment Scenario	Effective Width (m)	Design	Capacity	Peak Flow	v V/C	Ratio				/							· Laman
93	(1)	2.5	1500	ped/hr	164 ped/hr	r 0.	109		LITT		/		—				d martine	KAM
	(1)	2.5	275 mg		50 mod/15 m		122			4/111							ROAD	//
金	(2)	2.3	375 pe	a/15-min	50 ped/15-m		133		L Remaining	5.0						KAM		Footpath
I SH	EK NEW VILL	AGE .		84 85	80	L	H/			4.4		L FF		L +		· · · · · · · · · · · · · · · · · · ·	52 51 60 70	Assessm
L	۰L	•L	81 82	83		Rd AN/0-80	1	Iny No Extre oH				۰L	10		5 0 0 H 0 0 0	52A- 52B	Trs	Scenari
75	76 77 78	79 00			BOAD	5.1 D	Pline	JEXIN E.	70	TS		新山路	9.0	00000000	Ee		En l	(1)
				K	AM SHAN AND ACCOUNT	- Road	eE e	H	13 72 71	F4	F2	Rd Ah/D-Bd R	7 54	8 1112112		12	100	(2)
	Staircaso	-	+6.3		Port Out Out	82	4 A 180	A 80 79 78 70	M	5/ 64 63	58-59 58- 87		s		T			E
	Assessment	Effective		E.		83			66 0			55	TS AAA			L		
64	Scenario	Width (m)	Design	Capacity	Peak Flow	v V/C	Ratio		8:2, E				E 14.0	ouipan			11	B-8A
-	(1)	0.25	600	ped/hr	25 ped/hr	0.	.042		PO 18.6	18.4			1 30	Scenario	Width	(m) Pe	eak Flow	peak r
H	(2)	0.25	150 pe	d/15-min	8 ned/15-mi	in 0	053	77	20.6		45	1 40 39 3 3 37		(1)	2.2	2 29	5 ped/hr	2
		155	100 pc			101						N	///P\\-	(2)	22) 80 r	ed/15-mir	n 2
7.	TS 7.5 \$ 167 15		11.9	+ 11.9	103 102 1		-	20 (*	SA 1					(2)	2.2	. 0.00 P		
100	Note ·		·	156'	XIL	1 97	90	87 10					XAX	U	HTI	PER	30.0+	
	Assessment S	cenario			E 99 98	EL 93	92		+30.7	411	2	4.9	Stair	case	GREEN	WICH	<u> </u>	
	(1) Pedestrian	beak flows in	n 60-minu	ute interval	4.7 4 95 9	A A		TA VA	TT	33.0	TAT	29 8 2	Asse	ssment E	ffective	Design C	Capacity	Peak F
	(2) Pedestrian p	beak flows ir	n 15-minu	ute interval	115	90 89	88		E				300	(1)	0.7	4000	a al //	505
\mathbb{K}	Remarks :								10 AL	2	V/K-			(1)	0.7	1680 p	ea/nr	SUS pe
	Peak factor of 1	.2 is applied	for calcu	ulating the	L	FP Lº E	E P	× / / /	H			HT-		(2)	0.7	420 ped	/15-min	152 ped/1
F	Assessment Sc	enario (2) ba	ased on t	he ratio of	E	P		M///	编山				TS	+29.5	H	TTT		
20	surveyed peak l	nourly pedes 15-min flows	strian flov 3.	ws and			IF	S / / + ^{41.4} /		N		KN	EA.	TIT	A TI	111	1	50.2
				FLIT	AL M	112	H						Flat			42.4		1 Day
.03				N L los as			roject Title		///				awing Title		FP			
Ŀ.	-						,	TRAFE			VICES FOR			EXIS	TING	OPERA	TIONA	
-	-					·		REZONIN	G REQUEST	FROM "V"	TO "G/IC(3)"		I I	DENTIF		EDEST	RIAN F	ACILIT
-	-					·		FOR E	SUDDHIST (CHEUNG HA	IN DOG AND			(WEE	KEND	PRIOR	TO CI	HING M
Ŀ	-					·		ADJOIN	NG GOVEF	RIMENT LAN	ND, TAI PO	De	signed	- Checked	Scal	e	Date	Draw
Rev.	Description				Checked	Date							MST	1 N	IYL Í	NTS	I SEP	2024

CHK50801110/TIA/F351.CDR/LLH/5SEP24

Original Size : A3

Γ		6.5 6.5		nool	L• +	0 ⁴	M ^{No} Hour 8.0	/				H				- Ca
~		^{vo} ur _i	the second	Jory SC	L			太和廣場第二) Tai Wo Plaza Ph) ase 2						For	5.4 otball Field
		e e	d Hebron	8.5 ol	H.				\land			Annut .				
	*	asempty of	$\langle \rangle$	Basketot	So Le The					Crient Land						
	L		*6.3 Cour		L . 6.8	L L	平台 (下層停車場) 11.0		B.Am. <							
	1 PP	\sim	Basksthor	L		L L	Car Podium (Car Park u	nder)	L e	A			red MGA	ROMO		
~		L.		*L *	Footbridge	- Trana		L'I		,	eL	+6.7	L			
	~	LIM		L	Assessment Scenario	Effective Width (m)	Peak Flow	Peak Flov (ped/min	/ Rate n/m) LOS		As	otbridge ssessment	Effective	Beek	Flow Peak	Flow Rate
	outron	e e			(1)	5.2	998 ped/hr	3.20	Α	L O		Scenario (1)	Width (m)	1569 p	ed/br	ed/min/m)
		A State			(2)	5.2	300 ped/15-m	nin 3.85	Α		eL	(1)	6.2	471 ped/	/15-min	5.06
		IN FO	8		L	Ph		/ /				.L	Call Call		/ fite/	
+	9.6					ITT	$\langle \langle \rangle$							L	LO	5.2 ±
		line		Footpath		1 The		~ <	》 遊樂場 6.2 Playground	L	Sports Ground L		Ly	,	.9	a land
衝突	首徑 1	Ľ	\triangleleft	Assessmen Scenario	t Effective Width (m)	Peak Flo	ow Peak Flo (ped/n	ow Rate nin/m) LOS	L	L. P	Footpath	t Effectiv		Basi	ketball Court	RCP
		۹L		(1)	0.3	411 ped/	/hr 22.	83 B			Scenario	Width (r	n) Peak	Flow '	(ped/min/m)	
illage .6	°L 7 105 106 107	108 109 11	10	(2)	0.3	124 ped/15	5-min 27.	56 C	1111		(1)	2.2	403 p	ed/nr /15-min	3.05	
~	Cautionary C	crossing	leL										1.2. 6.4			
	Assessment Scenario	Effective Width (m)	Desigr	n Capacity	Peak Flow	V/C Ra	atio			/	/					ab a manufacture
93	(1)	2.5	1500) ped/hr	334 ped/hr	0.22	3		1			—			and the second se	KAN
	(2)	2.5	375 pe	ed/15-min	101 ped/15-m	nin 0.26	9	L L	5.0						AN AN AN	- Footpath
1 51	HEK NEW VILL	AGE .L	~	83 84 85	86	L L		F6	4.4		L	PL	5.0 L +	and the second s	N7. + H52 51	Assessm Scenari
1 75	eL 76 77 78	79 80	81 82		L	5.1	Phydexit E	H IIIIII	FILTE		。L 意味 幼山路	4.8		T EO	628	(1)
				-K	AM SHAN ROAL	STREAM	Det H	74 73 72 71 70	Fa	E2 50-50	Rd AV/D-Bd R	54	8 1111111	L	12	(2)
	Staircase	-	+6.3	E.	P	83 82 4	80A 80 79 78	N 86	35 84 83	58-57		TS			L	
64	Assessment Scenario	Effective Width (m)	Desigr	n Capacity	Peak Flow	V/C Ra	atio	18-2+				E 14.0	Cotpath	t Effectiv		10 9 BB-8A
H	(1)	0.25	600	ped/hr	18 ped/hr	0.03	3	6 8.7 PO	18. YX MC SHR	20.6* 42 41	40 30 #W	花園 36	Scenario	Width (m) Peak F	low (ped/
	(2)	0.25	150 pe	ed/15-min	6 ped/15-mi	n 0.04				43			(1)	2.2	4/6 pe	d/hr 3
7.	TS 7.5 × 157 15		11.9	127 128 125	103 102 1		20	E					(-/			
0B	Note : Assessment S	cenario			E 99 98	93 92	81	+38.7			1.9	Stair	Case 1	GREENW	IICH H	
	(1) Pedestrian p	beak flows in	n 60-min	ute interval	24.7	4	38 278	ATT.	33.0	TAL	29	28 Asse Sco	essment E enario W	ffective /idth (m)	Design Capa	city Peak F
	(2) Pedestrian p Remarks :	Deak nows in	n 19-min	ute interval	115	90	A THE REAL PROPERTY OF	19				• 1	(1)	0.7	1680 ped/h	ir 823 pe
	Peak factor of 1 pedestrian peak	.2 is applied flows in 15	l for calc -mimute	ulating the interval in		FP		H H			THE	TS - H-	(2) +29.5	0.7	420 ped/15-n	nin 247 ped/
20	Assessment Sc surveyed peak	enario (2) ba hourly pedea 15-min flowe	ased on strian flo	ws and	RCF	2		錦山					14	35.9 4		502
10.5			3D		113	112	P A A A	AM SHA				10		FP	42.40	
Ē	-				-	_ Projec	t Title				Dr	awing Title	EXIC		DEBATIC	
ŀ.	-					·	REZON	ING REQUES	T FROM "V"	TO "G/IC(3)"		I	DENTIF	IED PE	DESTRIA	N FACILII
Ŀ	-				-		AT LC AD.IC	T NOS. 1087 DINING GOVER	AND 1130	IN DD6 AND ND, TAI PO		esigned	Checked	(C	CHING M	
Rev.	Description				Checked	Date				,		MST	N N	IYL	NTS [SEP 2024

CHK50801110/TIA/F352.CDR/LLH/6SEP24

Original Size : A3

				1	6.2	/ //	<u></u>	o ^u // ///			1 Post II II	······································	4					
		6.5 6.5		001			OU NO H	8.0		CF 1				/ $/$				Cal
		Cours		ary Sent					太和廣場第二	/		6.0°	M /	` / `	Ribero		5. 足球場 +	.4
\sim		/ /	the Second	·/	L	//	X	Τα	i Wo Plaza Pl	ase 2	Cuefortes		L			EN CONTRACTOR	Football Fi	eld
		× P	Hebron		H.	\mathcal{A}		\land		^			Aun I	/ / /	orm un	×32	\geq	
		of Gol		Kett + 6.5 all	ESS III	$\langle \rangle$	P				Ne ¹ L ¹⁹⁵		Allon 15		100		\sum	/
	• • • •	Lesemby		Bascon		L L	L	PH	17-1			Letra bar el 1330		fit /				~
	L L	· / /	+6.3		L 6.8			平台 下層停車場)		DHIII <								
$\langle \rangle$	Fp	\checkmark	Kethol .				L	Podium	T	•H	\rightarrow		OL OF	PO NGA				\nearrow
		L	Bos.	6.5	XA	1 / Fa	S.C.		L			\sum			ROAD W		Ž	
<					Footbridge	<u>M</u>	30				- 2		L		Le frage			$\langle \rangle$
	\sim		\sim	Le	Assessment	Effecti	ive (m)	Peak Flow	Peak Flov	/ Rate LOS		Foo	otbridge		////##			
	ta.				(1)	5.2		686 pod/br	2 20		LO	Ass	sessment cenario	Width (m)	Peak	Flow	peak Flow (ped/mi	n/m) LC
	Outron	C			(1)	5.2			2.20	A			(1)	6.2	1947	ped/hr	5.23	3
		20 A			(2)	5.2	200	6 ped/15-min	2.64	A		•L	(2)	6.2	585 per	1/15-min	6.20	/
		F	8			Lø	\sim	1	/	\frown	7	•L	(2)	V.L				
	-l	A			+.0		PH			~ 1		• •		Cal.				
+	2.6						Th					建动场	.L			•L	7, ***	
				Footpath	~		L	The w	<u>^</u>	6.2 Playground	L	Sports Ground				5.9		
	ALLOS .	e L	\leq	Assessmen	t Effective	Peak	Flow	Peak Flow	Rate LOS	L	P	Footpath		V	Bo	sketball Court	RCP	A VII
術奕	情徑 L			Scenario		000	1//	(ped/mm				Assessment	Effectiv	e Peak	Flow	Peak Flov	v Rate	os
		٩		(1)	0.3	292 p	pea/nr	16.22	В			Scenario			1/1	(ped/mil	n/m) =	
llage	eL	108 109 11	0	(2)	0.3	88 ped	l/15-min	n 19.56	В	1111		1 (1)	2.2	309 p	ed/nr	2.34	,	
.6			eL			M						(2)	2.2	93 ped/	15-min	2.82		A
~	Cautionary C	rossing		TIL			\square					/						
	Assessment	Effective	Design	Capacity	Peak Flow	, v/c	C Ratio	1777			/	/						1 June
93			4500		0.40		464		IIII		/		—				1 FT	KAM
	(1)	2.5	1500	pea/nr	246 ped/n	r U	0.164	•L		ATT							ROAD .	<u> </u>
4	(2)	2.5	375 pe	ed/15-min	74 ped/15-m	nin 0).197		L.	5.0						KANA		Footpath
1 SI	HEK NEW VILL	AGE		85	86				F6	4.4		L FP	L	L +		000A.4	52 51 50 49	Assessm
	eL	eL	81 82	63		Rd AN/0-8d		Iny AND Extre of				۰L	4.8		5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5245	TS -	Scenario
75	76 77 78	/9 00			ANROA	D ^{5.1}	JLPhie	dexity	70	TS		高調に			Eeo	12		(1)
		L		K	AMSHAN	J. I.	A	H 76 74	13 72 1	174	F2 50-59	Rd AtvD-Bd R	54	8	L		K S	(2)
	Staircase		+6.3	E	P	82	14/21 80	A 80 79 76	N AL	35 64 63	58-57		-	A				
	Assessment	Effective	Design	Canacity	Peak Flow		Ratio	11 X X X X X X X X X X X X X X X X X X	T A BO			55	TS F	ootpath		0 L OE	11 10 1	9 8B-8A
64	Scenario	Width (m)	Design	Supacity	I Cak I IOW		Tatio		8.2, H					Assessmen	t Effect	tive	ak Elow	Peak F
H	(1)	0.25	600	ped/hr	25 ped/hr	0	0.042	76	18.7 DPC		20.01	1 40 111 111111111111111111111111111111	周月	Scenario	Width	(m) Pe		(ped/r
-	(2)	0.25	150 pe	ed/15-min	8 ped/15-m	in 0	0.053	17			43		/////L	(1)	2.2	38	1 ped/hr	2.
7	ETS 7.5 \$ 157 151	5155	11.0	+ 11.9	102	101		20	TA A					(2)	2.2	2 115 p	ped/15-mi	n 3.
			+	1274		H 97	96	87 M A	E				XIIX	011	HFI	里卡	30.0+	
0 N	NOLE :	cenario			E 99 98	EL 03	92		+30-7	KIT T		4.9	Stair	case	23-20 GREEN	WICH T-		
	(1) Pedestrian	eak flows ir	n 60-minu	ute interval	24.7 4 95	A E		TA VA	TT	33.0	TAT	29 8 28	Asse	ssment E	ffective	Design C	apacity	Peak F
\square	(2) Pedestrian p	eak flows ir	n 15-minu	ute interval	115	90 89	88		E					(1)	0.7	4600	od/br	600
K	Remarks :	.							1 et al		V/K-		1.6		0.7	1080 p		032 pe
	Peak factor of 1 pedestrian peak	.2 is applied flows in 15	tor calcu -mimute	ulating the interval in	LARE!	FP	EL	374//_/	H			TIT		(2)	0.7	420 ped/	15-min	190 ped/1
-L'	Assessment Sc	enario (2) ba	ased on t	the ratio of	LEN DIT H RO	P		9////	编山/	× C)	XX				35.9		The second	
20	surveyed peak	15-min flows	S			112	M	× / ++++	XAM SHA	N	TTH/	Т	Eth)	/TTI	11	42.4		50.2
.03			S/ XX		14 113			A	///	$\langle \rangle$			10		FP		111	T
·	-				-	- F	Project Title					Dra	wing Title					
·	-				-	•				TANCY SER	VICES FOR	,		EXIS	TING	OPERA	TIONA	
·	-				-	-		FOR E	BUDDHIST	CHEUNG HA	TEMPLE,			VENTIF ////E	EKENI	LUESTI D AFTE	RIAN F	ACILIT
·	-				-	-			NOS. 1087	AND 1130	IN DD6 AND	Der	signed	Checked	Cool			
Rev.	Description				Checked	Date					W, MITU	Des	MST	N CHECKED		° NTS	SEP	2024

CHK50801110/TIA/F353.CDR/LLH/6SEP24

Original Size : A3

					LANTS	SUEN RIVER			Tai Wo ation	
						Shek New Vill Shek New Vill Shan ROAD Kam Sh	age nan Vil	lage	Application	Site
								Ref. No. Application Site	Columbarium Buddhist Ch Poh Yea Chin Ling Hin Fat	n Development eung Ha Temple ng Shea Yuen
- Rev.	- Description	 Checked Date	 Rev. Description			 Checked Da	- te Rev.	O	Ever Rest le Pun Chun Yu	mple len Checked Dat
Projec	tTtle TRAFFIC CONSULTANCY SERVICES REZONING REQUEST FROM "V" TO FOR BUDDHIST CHEUNG HA TEM AT LOT NOS 1087 AND 1130 IN D	FOR "G/IC(3)" IPLE, DE AND	Drawing Title	ADJACE	NT COLUI	MBARIUM	DEV	ELOPMENTS	;	SYSTIA

8(0)[3]		1	KAM SHAN ROAT	application Site		8(0)[3		PAK SHING STREET 8(0)[3] HOM KA RO B	8(0)[3]	3(0)[3]	
							LEC	GEND :			
							8	WEEKEND PRIOR TO C	LOW (PCU/F HING MING	R) FESTIVAL	.)
							(0) PEAK HOUR TRAFFIC FL	LOW (PCU/F	R)	
								PEAK HOUR TRAFFIC FI	, LOW (PCU/H	R)	
							[3	Y (WEEKEND AFTER CHIN	IG MING FES	STÍVAL)	
		1			-	-		-			_
Rev. Description	Checked Date	Rev. Description			Checked	Date	Rev.	Description		Checked	Date
Project Title TRAFFIC CONSULTANCY SERVICES REZONING REQUEST FROM "V" TO " FOR BUDDHIST CHEUNG HA TEM AT LOT NOS. 1087 AND 1130 IN DD	FOR 'G/IC(3)" PLE, 06 AND	Drawing Title	IET DIFFER	ENT IN DE	VELO	PME	т ти	RAFFIC FLOWS	SY	'ST MVA	-0-
ADJOINING GOVERNMENT LAND, TA		Designed	Checked	Seele	Data		under en Miler	-			

CHK50801110/TIA/F52.CDR/LLH/6SEP24

Original Size : A3

Original Size : A3

		6.5 6.5			L• + +		CU NO V	10 ⁰¹		2	+					$\langle \rangle$		Cite I
		Cours	to and	dary scho				Tai	太和廣場第二期 Wo Plaza Ph) ase 2			6.0 H		Rightorm		足球場 ◆	.4
\sim			A Lebron Seco		H _e	. //					CHORE S				Platform	the en		
	83	G ^o	^s r	e.s.			$A \downarrow$				N ^{e1} L ¹⁵		A Aunum k		Linder		\square	/
	* · · · ·	Assembly		BosCos		L	L		TAT	2 HHHHH		L Constanting of the state of t	5.39 Sta	A A A A A A A A A A A A A A A A A A A		$\langle \rangle$		$\langle $
	L Fp		+6.3 Cour		°L .6.8			(下層停車場) 11.0 + Podium	F	g.				P.Q.A.		\geq		$\langle \rangle$
		L	Boskett	6.5 (L Ve	(Car Park under)		L				WG7	t-RGALD			
~					ootbridge		Lind L		11		, À							\checkmark
	~	417	\sim	LOL	Assessment Scenario	Widt	ctive h (m)	Peak Flow	Peak Flow (ped/mir	/Rate 1/m) LOS			Assessmen	t Effectiv	e Peal	Elow	Peak Floy	w Rate
	Outron	er Se		6.0	(1)	5.	.2	2967 ped/hr	9.51	Α			Scenario (1)	Width (n	1) 1580	ned/br	(ped/mi	n/m)
		A CONTRACTOR			(2)	5.	.2 89	1 ped/15-min	11.42	A		eL	(1)	6.2	474 pe	d/15-min	5.10	
		F	8			L		L	/			• -	-,-/			in a second s		
	0.6 •L					\Box				3		•L •			L L	Le	5.2	L
			7	Footpath		11-	- le	The	<u>^</u>	8.2 Playground	L	Sports Ground	d			5.9 +		The state of the s
	ALL AND A	e L	\leq	Assessment	t Effective Width (m)	Pea	ak Flow	Peak Flow Flow	Rate LOS	Lo	P	Footpath				重动地 asketball Court	RCP	A LL
衝突	音徑 L			(1)	0.3	305	i ped/hr	16.94	В		LO	Assessme Scenario	ent Effection Width	ve (m) Peal	k Flow	Peak Flov (ped/mi	v Rate n/m)	os 🔹
llage	•L	eL	10	(2)	0.3	92 pe	ed/15-mi	n 20.44	В			(1)	2.2	301	ped/hr	2.28	3	A
.6	105 106 107		eL			TT						(2)	2.2	91 peo	d/15-min	2.76	;	Α
~	Cautionary C	Crossing						V				/						
	Scenario	Width (m)	Desigr	n Capacity	Peak Flow	v V	/C Ratio	44111			/	/	_					AM
93	(1)	2.5	1500	0 ped/hr	204 ped/h	r	0.136	• L	1111	MITT							PARA	N
Ś	(2)	2.5	375 pe	ed/15-min	62 ped/15-m	nin	0.165			5.0				5.	0	KANA	R4 60 49	Footpath
I S	HEK NEW VILL	AGE .L		83 84 85		Rd ANVO	L	104		4.4			FP L	L+	- Inter	82A- (82A- (82A-	52 51 TS	Assessme Scenario
75	76 77 78	79 80	81 84		L BOA	D ^{5.1}		NO EXIT	70	FITTS		· · · · · · · · · · · · · · · · · · ·	4.8		E C	621		(1)
		L	6	K	AM SHAN THE ACCOM		THE PACE	H 178 75 74 7	3 72 71	174	F2 60-59	RG AV/D-Bd R	VIS 54	8 TUTIT	L			(2)
	Staircase		+0.3	E.	PILIOUT	83	82 000 8		66 6	64 6 ³	58-57		5 TS SAA					
64	Assessment Scenario	Width (m)	Desigr	n Capacity	Peak Flow	v V	/C Ratio	\$\$1,76.76 1 1 18	2.				E . 14.0	Assessme	ent Effec	tive _	11 10	Peak Fl
H	(1)	0.25	600	ped/hr	4 ped/hr		0.007	76	8.7 PO	18.4	20.5+	41 40 70 1	шитен 30	Scenario	Width	(m) Pe	eak Flow	(ped/r
	(2)	0.25	150 pe	ed/15-min	2 ped/15-m	in	0.013	77			43		37	(1)	2.2	$\frac{2}{2}$ 36	9 ped/hr	2. in 3
7.	ETS 7.5 \$ 157 15	61.0	11.9	+11.9	103 102		96	20 (F)					X	(2)			Jeu/1J-III	11 J.
DB 1	Note :	oomorio			6 99 98	I av	92	87 M	+38.7			24.9	5.1 Sta	rcase	GREE	NWICH	30.0+	
	(1) Pedestrian p	beak flows in	n 60-min	ute interval	4.7 8 95	94	88			33.0	TAL	+ 29		essment cenario	Effective Width (m)	Design C	Capacity	Peak F
	(2) Pedestrian p	beak flows in	n 15-min	ute interval	115	90	89		E				9.6	(1)	0.7	1680 p	ed/hr	656 pe
\mathbb{N}	Peak factor of 1	.2 is applied	for calc	culating the		EP	L° EL		H		$\langle \rangle \rangle$			(2)	0.7	420 ped	/15-min	197 ped/1
F	Assessment Sc	enario (2) ba	ased on	the ratio of	E PIL	P		Y///	錦山				TS	+29.5	H-35.9 W	TT	K	
20	surveyed peak	15-min flows	S.		T Aug	112	M		am sha	N					TI	42.4		50.2
.03	- III]]]))	H - Har and	6 T 113	-	Project Title		///				Drawing Title		FP			TIM
ŀ	-				-	-		TRAFFIC	CONSULT			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		OPEF	RATION		RFORM	MANCE
Ŀ	-				-	-]		UDDHIST (CHEUNG HA	TEMPLE,			PEDE (WEE	STRIA KEND	N FACI PRIOR		IN DES HING M
- Rev.	- Description				- Checked	- Date	-	ADJOINI	NG GOVER	RNMENT LAN	ND, TAI PO	, ,	Designed MS	T Checked	MYL Sca	le NTS	Date SEP	2024 Draw

CHK50801110/TIA/F611.CDR/LLH/6SEP24

Original Size : A3

Г		Scate 6.5			L. +		BALLS HO	000 100 100		57 H	4 64			$\langle \cdot \rangle$		$\langle \rangle$		CAL
		Cours		Jry Schot		~			太和廣場第二	/ 1			×H //		Riderot		足球場 + 5.4	//
\sim			Fron Secon	$ \land$	H. L			Tal	Wo Plaza Ph	ase 2	overfulle	, H. C. S.	L		Alton n	the a	Football Field	
		eo, eo,	Heb.	6.5 ol	ES	\sim							Aunut		T HINGE			/
	, ^{6.3}	eempy of	$ \land $	Baskerut	UN Le		L				CHOIL R	S AND					\mathbf{X}	
	L	Mer	* ^{6.3}		°L 6.8		A dec	平台下層停車場)		DIA		0L 1-2275-00		STREET STREET	ATTEN .			
$\langle \rangle$	Fp	$\langle \langle \rangle$	the the lot					+ Podium (Car Park under)	T	-H	λ	(le le	OL OF	Po NGA				\nearrow
		L	Bor	6.5		$\int \int k$	Strong L	PL UL	4				+5.7	L 0	Mente (1)			
<			- AL		Assessment	Effec	tive		Peak Flow	Rate	1 🔨	For	otbridge	, /				$\langle \rangle$
			L	L.	Scenario	Width		Peak Flow	(ped/mir	n/m) LOS		As	sessment	Effective	Peak		ak Flow I	Rate LC
	Outron	E S	4		(1)	5.2	2 3	314 ped/hr	10.62	2 A	ET CH		(1)	6 2	1680	ped/br	//min/	m) -
		En la			(2)	5.2	2 998	5 ped/15-min	12.76	6 A		•L	(1)	6.2	504 pe	d/15-min	5 42	
		F	3			L		L			7	۰ ^L	(²)			a, 13-iiiii 	J.+2	
	eL	A Company				$ \uparrow\uparrow$	PH	\sim		30	L.	L ₀		C in		LO	5.2	
· ·							LIT) 建築通		Sports Ground	••			0L		
	5			Assessmen	t Effective			Peak Flow	Rate	L.	P			Le		+ 重动場 asketball Court		
術奕(諸徑 L	- \		Scenario	Width (m)	Pea	k Flow	(ped/min/	m) LOS	L		Assessment	t Effectiv	e Book	Flow	Peak Flow F	Rate	
		۴L	\neg	(1)	0.3	416	ped/hr	23.11	C			Scenario	Width (n	n) Feak		(ped/min/r	n) 100	
llage 6	PL 105 106 107	108 109 11		(2)	0.3	125 pe	ed/15-mir	n 27.78	C	1111		(1)	2.2	418 p	ea/nr /15 min	3.17	A	
			eL			\Box						(2)	2.2	120 peu	15-1111	3.02	A	
~	Cautionary C	Fffective									/	/						
	Scenario	Width (m)	Design	Capacity	Peak Flow	v V/	C Ratio		111		/		_					KAN
93	(1)	2.5	1500	ped/hr	340 ped/h	r	0.227	• L		MITT							29AD	1
ŝ	(2)	2.5	375 pe	d/15-min	102 ped/15-r	nin	0.272		L.	5.0						KAM	F	ootpath
I Sł	EK NEW VILL	AGE .L	- 5	83 84 85	80		Lall		F6	4.4				6.0 L + L		*****	51 BU TO A	ssessm
	eL	79 80	81 82		L	5.1	International In	DEXIL E					4.8	1111111	E CO	82A 52B		(1)
75	/0			A statement	AM SHAN ROA	a contraction	The se	H A TI	3 72 71 70	Fa	E2	Rd Ah/D-Bd R	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			12	H-	(2)
	Staircaso	L	L +6.3	The second secon	Potton Potton	8	2 14 64 80	A 80 79 78 75 74	N	8/ 84 63 61	60-59 F5	F3	TS 54				V	E
	Assessment	Effective	Docian	Capacity	Poak Elow	83			86			55	TS	ootpath		O LA OF	11 10 9	8B-8A
64	Scenario (4)	Width (m)	Design			• • • · ·			P0 18.6	18.4	- El Prod			Assessmen	t Effec	tive Peak	Flow	Peak F
H	(1)	0.25	150 po	d/15 min	8 pea/nr	in	0.013	77 78	18.7, PO		20.8° 42 41	40 39 3X 77	花園 / 目 36	(1)	2 2	(11) 486	oed/hr	(peu/
		0.25	150 pe	4/13-11111	3 peu/13-11	101	0.02		6 En				///EV-	(2)	2.2	2 146 pe	d/15-min	4
7.4	TS 7.5 \$ 157 10		11.9	127 128 125	103 102		96	20			VII	TINK	X		-	FI		
DB 1	Note :				E 99 98		92	87	+ 30.7		TAT	2 Martin	Stair	case 1	GREEL	NWICH	30.0+	
	Assessment So (1) Pedestrian c	<i>cenarıo</i> beak flows ir	n 60-minu	ute interval		94 E 93				33.0		29 F	Asse	ssment E	ffective	Design Car	acity	Peak F
	(2) Pedestrian p	beak flows in	15-minu	ute interval	115	90 8	89 88		E					(1)	0.7	1680 per	l/hr	844 ne
\mathbb{X}	Remarks : Peak factor of 1	2 is applied	for calci	lating the					HA HA	2	XX			(2)	0.7	420 ped/15	i-min 2	254 ped/1
L.	pedestrian peak	(flows in 15)	-mimute i	interval in	ET	FP	IF	SI///				THI	TS SERVICE	+29.5				
20	surveyed peak i	hourly pedes	strian flov	ws and	IET III RO	5	I	414/-	%山	AL X		RW	The second	THE	35.9 W			50.2
					And I and	112	H L					TS IS	Flol		FP	42.4		TAK
-	-		///	IL I IIat at	-	-	Project Title		, ///			Dr	awing Title					
·	-				-	-		TRAFFIC	CONSUL	TANCY SER	VICES FOR			OPER	ATION	IAL PER	FORM/	
								REZUNING	I REQUES		10 "G/IC(3)"	I		DENES	TDIVI		тібс і	
<u> </u>	-				-	-			UDDHIST	CHEUNG HA	TEMPLE,			PEDES	TRIAI	N FACILI Ching I	TIES I MING I	FESTI

CHK50801110/TIA/F612.CDR/LLH/6SEP24

Original Size : A3

Γ		Cold Cold	>	y senool	L • + • · · ·		On Wo	Hour B.O.		54 I.J.			H		Ru		5.	C.
$\overline{\ }$			Habron Second	013	H		A	To	入れ)廣切界—— ii Wo Plaza Ph	n ase 2			L		attorm	theen -	足球場 + Football Fi	bla
	+6.3	anby of Go	s r	Bostourt Bostourt			L				Die ^{1/195}				Linder,			/
	L	hes	* ^{6.3} Court		L			平台 (下層停車場) 11.0	P	PHILIN				AD A A A A A A A A A A A A A A A A A A	- ALTER			\sum
	TTP		Bosketboli	6.5			L Se	Podium (Car Park under		L e	A	L	(OL OF OF	++ONGA	ROAD			
~					ootbridge	Effe			Peak Flow	Rate	ı À	Fo	otbridge					$\langle \rangle$
	<i>in</i> .			La AL	Scenario (1)	Widt	h (m)	Peak Flow	(ped/mii	h/m) LOS	LO	As	sessment Scenario	Effective Width (m)	Peak	Flow	Peak Flov (ped/mi	v Rate n/m) LC
	outrail				(1)	5.	.2 89	99 ped/15-min	11.53	3 A			(1)	6.2	2102	ped/hr	5.65	j A
		e Ma	2			La	\sim	2.		<u> </u>		.L	(2)	6.2	631 peo	d/15-min	6.78	
	el l	A CONTRACTOR	,		+		PH			γ	L.	L .	· ·	64		eri L •)	5.2	
	9.6			Footpath			LIT			Le 遊樂場 8.2 Playaround		運動場 Sports Ground	۰L			5.9	1	
	ALL	e L	$\langle \rangle$	Assessment	t Effective	Pea	ak Flow	Peak Flow	Rate LOS		P	دیاری Footpath		Le	В	+ <u> </u> <u></u>	RCP	I LI N
衛奕	情徑 L			(1)	0.3	313	B ped/hr	17.39	В		L®	Assessmen Scenario	t Effectiv Width (n	n) Peak	Flow	Peak Flow (ped/min	Rate I/m)	os 🔹
llage	eL	•L	0	(2)	0.3	94 pe	ed/15-mi	n 20.89	В			1 (1)	2.2	321 p	ed/hr	2.43		Α
.6	105 100		e L			IT	7					(2)	2.2	97 ped/	15-min	2.94		A
	Assessment	Effective	Docian	Capacity	Poak Elov			III			/	/						1
93	Scenario (1)	Width (m)	1500		264 ped/h	r v	0 176		IIII		/		—				and the second	KAM
	(2)	2.5	375 pe	ed/15-min	80 ped/15-n	nin	0.213			5.0						Lunin al	AN ROAD	
1 S	រីឆិ រាភកោរ HEK NEW VILL	AGE .	I	84 85	86		L		F6	4.4		L	p L	5.0 L +		KAMart	32 51 80 49 4	Assessm
	eL	eL	81 82		L	5.1		Int WNO Exit - OH					4.8		E O	82Å- 52B	TS	Scenari (1)
75	76			K	AM SHAN ROA		A A A A A A A A A A A A A A A A A A A	е е е е е е е е е е е е е е е е е е е	75 72 71 70	- Tra	F2	Rd Ah/D-Bd R	64	e Trunt		12		(2)
	Staircase	L	+6.3	E.	Pi Dut Out	83	82 14 64	80A 80 79 78 70	N B6 N	67	58-57		IS SAA		T			PRAM
64	Assessment Scenario	Effective Width (m)	Design	Capacity	Peak Flov	v V	//C Ratio	\$\$75.78 1	18:2+			A 6H	E 14.0	octpath			11 10 5	BB-8A
H	(1)	0.25	600	ped/hr	8 ped/hr		0.013	78	PO 18.8 18.7 + PO	18.4 17.1 18.4 17.1	20.80	1 40 #4	花園 36	Scenario	Width	(m) Pe	ak Flow	(ped/
	(2)	0.25	150 pe	ed/15-min	3 ped/15-m	in	0.02	77			43	39 3 37	7////	(1)	2.2	2 402 2 121 p	2 ped/hr	3.
7.	ETS 7.5 \$ 157 15		11.9	+11.9	103 102		96	20 (7	E		VI			(2)	2.2			<u> </u>
DB 1	Note :	conario			E 99 98	E ST	92	87 M	+30.7			4.9	Stair	Case 1	GREEN	WICH	30.0+	
	(1) Pedestrian p	eak flows ir	n 60-mini	ute interval	4.7	94	88	278		33.0	TAL	29	Asse Sco	essment E enario W	ffective idth (m)	Design C	apacity	Peak F
	(2) Pedestrian p Remarks :	eak flows ir	n 15-mini	ute interval	115	90	89		L-38.9		V		• 1	(1)	0.7	1680 p	ed/hr	687 pe
	Peak factor of 1 pedestrian peak	.2 is applied flows in 15	l for calc -mimute	ulating the interval in		FP			H				TS III-	(2)	0.7	420 ped/	15-min	207 ped/1
20	Assessment Sc surveyed peak	enario (2) ba nourly pedes	ased on strian flo	the ratio of ws and	E THE R	iP		41.4	錦山			R		-H	36.9 1	TI		
	surveyeu peak		s. 3/	M H	113	112	H	Qig -	KAM SHA			TS			FP	+2.4	TI	1 A PART
-	-		- 11/	UDF AND	-	-	Project Title	9	0.00101			Dr	awing Title	ODED				
ŀ	-					-	-	REZONIN FOR	G REQUES	TANCY SERV T FROM "V" CHELING HA	TO "G/IC(3)"			PEDES	TRIAN	N FACIL	ITIES	IN DE
Ŀ	-				-	-	1	AT LOT ADJOIN	NOS. 1087 ING GOVER	AND 1130	IN DD6 AND ND, TAI PO	D	esigned	Checked			Date	NG YEL
Rev.	Description				Checked	Date	1					[_	MST	1 N	IYL	NTS	I SEP	2024

CHK50801110/TIA/F613.CDR/LLH/6SEP24

Original Size : A3

APPENDIX A –

Detail of Junction Calculation Sheets

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai Po

CHK50801110

08/10/2024

											Job No.	: <u>CHK5080</u>	1110	N	MVA HON	g kong	
Junction:	Pak Shi	ng Stree	t Near S	ui On Stre	et (J1)			-							Design Yea	r: <u>2024</u>	
Description:	2024 Ob	served .	Traffic F	lows (Wee	kend prior	to Ching	Ming Fe	estival)			Designed	By: <u>MST</u>			Checked By	y: <u>MYL</u>	
	nts				Radius	(m)	(%)	Pro. Tu	rning (%)	Revised Flow (Saturation pcu/hr)		Peak				
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	Peak		Peak		Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pak Shing St W	в 🔶	A	1	4.000		l				2015	2015	120	0.060	0.060	0	0.000	0.000
Pak Shing St El	Β →	A	1	4.000						2015	2015	105	0.052		0	0.000	
Pedestrian Cros	sing	Bp	2	MIN GRE	EEN + FLAS	SH =	5	÷	10	=	15						•
Pedestrian Cross	sing	Bp	2	MIN GRE	EEN + FLAS cu/hr)	SH =	5	+	10	=	15 	Group		,* A,Bp	Group		•
Pedestrian Cross	sing	Bp	2	MIN GRE	EEN + FLAS cu/hr) → 12	SH = 20	5	+	10	=	15 ↑ N	Group		А.Вр 0.060	Group		
Pedestrian Cros	sing	Bp	2	MIN GRE	EEN + FLAS cu/hr) → 12	SH = 20	5	+	10	=	15 	Group y L (sec)		А.Вр 0.060 22	Group y L (sec)		
Pedestrian Cros:	sing	Bp	2	MIN GRE	EEN + FLAS cu/hr) → 12	SH = 20	5	+	10	-	15	Group y L (sec) C (sec)		А.Вр 0.060 22 48	Group y L (sec) C (sec)		
Notes:	sing	Вр	2	MIN GRE	EEN + FLAS cu/hr) ► 12	SH = 20	5	+	10	-	15	Group y L (sec) C (sec) y pract.		 А.Вр 0.060 22 48 0.488 	Group y L (sec) C (sec) y pract.		
Notes:	sing	Вр	2	MIN GRE	EEN + FLAS Cu/hr) → 12	SH = 20	5	+	10	-	15 ↑ ^N	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.060 22 48 0.488 719%	Group y L (sec) C (sec) y pract. R.C. (%)		
Notes: Stage / Phase E	Sing	Вр	2	MIN GRE	EEN + FLAS cu/hr) → 12	SH = 20	5	+ 105	10	-	15 ♣ ^N	Group y L (sec) C (sec) y pract. R.C. (%)		ж А.Вр 0.060 22 48 0.488 719%	Group y L (sec) C (sec) y pract. R.C. (%)		
Notes: <u>Stage / Phase E</u> 1.	sing Diagrams	Bp	2	MIN GRE	EEN + FLAS cu/hr) } 12	SH = 20	5	+ 105	10		15 ▲ N	Group y L (sec) C (sec) y pract. R.C. (%)		 А.Вр 0.060 22 48 0.488 719% 	Group y L (sec) C (sec) y pract. R.C. (%) 5.		
Pedestrian Cros: Notes: Stage / Phase E 1.	Diagrams	Bp	2	MIN GRE	EEN + FLAS cu/hr) → 12	SH = 20	5	+ 105 3.	10	-	15	Group y L (sec) C (sec) y pract. R.C. (%) 4.		А.Вр 0.060 22 48 0.488 719%	Group y L (sec) C (sec) y pract. R.C. (%) 5.		
Notes: Stage / Phase E 1. A	Sing Diagrams	Bp	2	MIN GRE	EEN + FLAS cu/hr) 1?	SH = 20	5	+ 105 3.	10	-	15 + N	Group y L (sec) C (sec) y pract. R.C. (%) 4.		А.Вр 0.060 22 48 0.488 719%	Group y L (sec) C (sec) y pract. R.C. (%) 5.		
Pedestrian Cross Notes: Stage / Phase [1. A	Sing Diagrams	Bp	2 A	MIN GRE	EEN + FLAS cu/hr) → 12	20	5	+ 105	10	-	15	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.060 22 48 0.488 719%	Group y L (sec) C (sec) y pract. R.C. (%)		
Notes: Stage / Phase I 1. A	Diagrams	Bp	2 — A	MIN GRE	EEN + FLAS cu/hr) → 12	SH = 20	5	+ 105 3.	10	-	15	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.060 22 48 0.488 719%	Group y L (sec) C (sec) y pract. R.C. (%)		
Notes: Stage / Phase E 1. A	Diagrams	Вр	2 — A	MIN GRE	EEN + FLAS cu/hr) } 12	SH = 20	5	+ 105 3.	10		15	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.060 22 48 0.488 719%	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Cross Notes: Stage / Phase E 1. A	Diagrams	Вр	2 A	MIN GRE	EEN + FLAS	SH = 20	5	+ 105	10	-	15	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.060 22 48 0.488 719%	Group y L (sec) C (sec) y pract. R.C. (%)		
Stage / Phase I 1. A I/G= 3	Diagrams	Bp	2 — A	Flow: (pr 2.	EEN + FLAS cu/hr) → 12	SH = 20 Bp ¥	5	+ 105 3.	10	-	15 + N 	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.060 22 48 0.488 719%	Group y L (sec) C (sec) y pract. R.C. (%)		

TRAFFIC																	
lunction:	Pak Shir	ng Street	Near S	ui On Stree	et (J1)			_							Design Yea	r: <u>2024</u>	
Description:	2024 Ob	served 7	Traffic Fl	ows (Ching	g Ming Fe	estival)		-			Designed I	By: <u>MST</u>			Checked By	/: <u>MYL</u>	
	nts				Radiu	ıs (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (J	Saturation pcu/hr)		Peak				
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	Peak		Peak		Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pak Shing St WB		А	1	4.000						2015	2015	235	0.117	0.117	0	0.000	0.000
Pak Shing St EB	→	A	1	4.000						2015	2015	230	0.114		0	0.000	
² edestrian Cross	ng	Вр	2	MIN GRE	EN + FL/	ASH =	5	+	10	-	15	Group		* А.Вр	Group		
² edestrian Cross	ng	Вр	2	MIN GRE	EN + FL/ :u/hr)	ASH =	5	+	10	-	15 ♠ +	Group y		А.Вр 0.117	Group y		
edestrian Crossi	ng	Вр	2	MIN GRE	EN + FL/ cu/hr)	ASH = 235	5	÷	10	=	15 	Group y L (sec)		А.Вр 0.117 22	Group y L (sec)		•
edestrian Cross	ng	Вр	2	MIN GRE	EN + FL/ cu/hr)	ASH = 235	5	+ 230	10	-	15 ↑ 15	Group y L (sec) C (sec)		* А.Вр 0.117 22 48	Group y L (sec) C (sec)		
edestrian Crossi	ng	Вр	2	MIN GRE	EN + FL/ cu/hr) →	ASH = 235	5	+ 230	10	-	15 ♠ N	Group y L (sec) C (sec) y pract.		А.Вр 0.117 22 48 0.488	Group y L (sec) C (sec) y pract.		
edestrian Cross	ng	Вр	2	MIN GRE	EN + FL/ :u/hr) →	ASH = 235	5	+ 230	10	-	15 ♣ N	Group y L (sec) C (sec) y pract. R.C. (%)		 А.Вр 0.117 22 48 0.488 318% 	Group y L (sec) C (sec) y pract. R.C. (%)		
edestrian Crossi otes: tage / Phase Di	ng	Вр	2	MIN GRE	EN + FL/ :u/hr) 	ASH = 235	5	230	10	-	15 ∱ [№]	Group y L (sec) C (sec) y pract. R.C. (%)		А,Вр 0.117 22 48 0.488 318%	Group y L (sec) C (sec) y pract. R.C. (%)		
edestrian Cross lotes: tage / Phase Di	ng	Вр	2	MIN GRE	EN + FL/ :u/hr) →	ASH = 235	5	+ 230	10	-	15 ♣ +	Group y L (sec) C (sec) y pract. R.C. (%) 4.		 А.Вр 0.117 22 48 0.488 318% 	Group y L (sec) C (sec) y pract. R.C. (%) 5.		
Pedestrian Crossi	ng agrams	Вр	2 A	MIN GRE	EN + FL/	ASH = 235	5	+ 230	10	=	15 ▲ N	Group y L (sec) C (sec) y pract. R.C. (%) 4.		А.Вр 0.117 22 48 0.488 318%	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Cross Notes: Stage / Phase Di 1. A	ng agrams	Вр	2 — A	MIN GRE	EN + FL/	ASH = 235	5	+ 230	10	-	15 + N	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.117 22 48 0.488 318%	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Crossi	agrams	Вр	2 — A	MIN GRE	EN + FL/	ASH = 235	5	+ 230 3.	10	=	15	Group y L (sec) C (sec) y pract. R.C. (%)		* 0.117 22 48 0.488 318%	Group y L (sec) C (sec) y pract. R.C. (%)		

TRAFFIC	SIGN	ALS (CALC	ULAT	ION						Job No.	: <u>CHK5080</u>	<u>1110</u>	ſ	IVA HON	g kong	
Junction:	Pak Shi	ng Stree	t Near S	ui On Stre	et (J1)			_							Design Yea	r: <u>2024</u>	
Description:	2024 Ot	served	Traffic F	lows (Wee	ekend after	Ching	Ming Fest	<u>ti</u> val)			Designed	By: <u>MST</u>			Checked By	: <u>MYL</u>	
	nts				Radius	(m)	(%)	Pro. Tur	ning (%)	Revised Flow (Saturation pcu/hr)		Peak				
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	Peak		Peak		Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pak Shing St WE	3 ←	А	1	4.000						2015	2015	140	0.069	0.069	0	0.000	0.000
Pak Shing St EE	·	A	1	4.000						2015	2015	115	0.057		0	0.000	
Pedestrian Cross	ing	Вр	2	MIN GRE	EEN + FLA:	SH =	5	+	10	=	15			•			
Notes:				Flow: (p	cu/hr)						[▲] N	Group		A,Bp	Group		
l					→ 1	40					Ι	У		0.069	У		
l I												L (sec)		22	L (sec)		
								115	•			C (sec)		48	C (sec)		
												y pract.		0.488	y pract.		
												R.C. (%)		602%	R.C. (%)		
Stage / Phase D	iagrams			1				1							T		
1.				2.				3.				4.			5.		
Α ——			<u>م</u>			,	Ŷ										
						Вр	V										
			1	<u> </u>								I			<u> </u>		
I/G= 3			I/G= 5			15		I/G=			/G=			I/G=			
	-	-	-		-						Date			Junct Pak Shine	ion:	n Street (.11)	(J1)

Job Title: Traffic Consultancy Service	ces for Buddhist Cheung Ha Temple			
Junction: Kam Shan Road/Hon Ka	Road (J2)		Desig	ned by: MST
Scheme: Existing (Weekend prior to Design Year: 2024	Ching Ming Festival)	110	Chec Date:	ked by: MYL Jul-24
Arm A: Kam Shan Road WB	305 1001100001	110	Dalo.	50124
Arm B: Hon Ka Road				
Arm C: Kam Shan Road EB				
1C				-
Arm C PEAK				
100				
		¥		
				-
		PEAK		Arm A
		115		
		5		Kam Shan Road WB
	/ /	¥		
				-
PEAK				
TF 5	/ '			
	I			
	Arm B Hon Ka Ro	ad		
GEOMETRY				
Major Road Width (m)	W 7.30	Lane widths (m)	w(b-a)	3.50
Central Reserve Width (m) Blockage of major road right turn	WCL 0.00		w(b-c) w(c-b)	3.50
Combined stream on minor arm	Y/N? Y		w(c-b)	3.00
Visibility Distances (m)	Vr(b-a) 20	Calculated	D	0.843
	VI(b-a) 50	Parameters	E	0.897
	Vr(b-c) 20		F	0.937
	Vr(c-b) 50		ř	0.748
ANALYSIS			PEAK	
	a(c-a)		100	
	q(c-b)		5	
	q(a-b)		5	
	q(a-c) a(b-a)		5	
	q(b-c)		5	
	f		0.50	
CAPACIIIES (pcu/hr)	Q(b-ac) Q(c-a)		552.28 1786 5	
	Q(c-b)		667.44	
RFC's	с-а		0.06	
	c-b		0.01	
	10-UC		0.02	
RFC			0.06	
Where VI and Vr are visibility distances	to the left or right of the respective st	reams		
D = (1+0.094(w(b-a)-3.65))(1+0.0009(vr))	(b-a)-120))(1+0.0006(VI(b-a)-150))	Curris		
E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr))	(b-c)-120))			
F = (1+0.094(wc-b)-3.65))(1+0.0009(Vr(a)))(1+0.0009)(Vr(a)))(1+0	z-b)-120))			
f = proportion of minor traffic turning le	eft			
Q(b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+	-f*Q(b-a) Capacity of combined str	reams		
All the above formulat are in accorde	Inco to T.P.D.M. Volume 2 Chanter 4 A	nnandix 1		
All the above formulas are in accorda	nce to I.P.D.M. volume 2 Chapter 4 A			

Job Title: Traffic Consultancy Service	es for Buddhist Ch	neung Ha Temple			
Junction: Kam Shan Road/Hon Ka R	Road (J2)			Desig	ned by: MST
Scheme: Existing (Ching Ming Festive	al)	100 No (CHK 50901110		Cheo	cked by: MYL
Arm A: Kam Shan Road WB		JOD NO.:CHK50601110		Dale	. JUI-24
Arm B: Hon Ka Road					
Arm C: Kam Shan Road EB					
10					
Arm C PEAK					
Kam Shan Road FB 5					
ID					
			v		
					_
			DEAK		1B
	~	_ / ←	230		Arm A
	· · · /		5		Kam Shan Road WB
	/				1A
		- /	•		_
	/				
PEAK 5		Y I			
F 5		/			
	•				
	A				
GEOMETRY					
Major Road Width (m)	W	7.30	Lane widths (m)	w(b-a)	3.50
Central Reserve Width (m)	Wcr	0.00		w(b-c)	3.50
Biockage of major road right furn	Y/N?	Y		W(C-D)	3.65
combined siredin on minor dim	1/149	1			
Visibility Distances (m)	Vr(b-a)	20	Calculated	D	0.843
	VI(b-a)	50	Parameters	E	0.897
	Vr(D-C)	20		F Y	0.937
		00			0.740
ANALYSIS				PEAK	
TRAFFIC FLOWS (pcu/hr)	q(c-a)			225	
	q(c-b)			5	
	q(a-c)			230	
	q(b-a)			5	
	q(b-c)			5	
	f			0.50	
1					
CAPACITIES (pcu/hr)	Q(b-ac)			512.75	
	Q(c-a)			1785.9	
	Q(c-b)			638.1	
RFC's	c-a			0.13	
	c-b			0.01	
	b-ac			0.02	
REC				0 1 2	
				0.13	
Where VI and Vr are visibility distances	to the left or right	of the respective streams			
D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-3.65)))(1+0.0009(Vr(b-a)-	b-a)-120))(1+0.00	06(VI(b-a)-150))			
E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b	o-c)-120))				
F = (1+0.094(wc-b)-3.65))(1+0.0009(Vr(c-	-b)-120))				
f = 1-0.0345W	1				
(p - p) = Q(p - c) + Q(p - a) / (1 - f) + Q(p - c) + f	" "Q(b-a) Cana	icity of combined streams			
	_12 d) Capa				
All the above formulas are in accordan	ce to T.P.D.M. Vo	lume 2 Chapter 4 Appendi	ix 1		

TRAFFIC	SIGN/	ALS (CALC	ULAT	ION						Job No.	: <u>CHK5080</u>	<u>1110</u>	Γ	NVA HON	g kong	
Junction:	Pak Shing Street Near Sui On Street (J1)												Design Year: <u>2032</u>				
Description:	2032 Reference Traffic Flows (Weekend prior to Ching Ming Festival)								Designed By: <u>MST</u>				Checked By: <u>MYL</u>				
	nts		Stage	Width (m)	Radius (m)		(%)	Pro. Turning (%)		Revised Saturation Flow (pcu/hr)		Peak					
Approach	Moveme	Phase			Left	Right	Gradient	Peak		Peak		Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pak Shing St WE	3 ←	A	1	4.000			l			2015	2015	180	0.089	0.089	0	0.000	0.000
Pak Shing St EE	3	A	1	4.000						2015	2015	160	0.079		0	0.000	
Pedestrian Cross	ing	Вр	2	MIN GRE	EEN + FL	ASH =	5	÷	10	=	15						·
Notes:				Flow: (pe	cu/hr)						≜ ^N	Group		A,Bp	Group		
						180					I	У		0.089	У		
												L (sec)		22	L (sec)		
								160	•	_		C (sec)		48	C (sec)		
												y pract.		0.488	y pract.		
												R.C. (%)		446%	R.C. (%)		
Stage / Phase D	iagrams			2.				3.				4.			5.		
A ———																	
	4		— A				^										
						Вр	Ŵ										
I/G= 3			I/G= 5	5		15		I/G=			I/G=			I/G=			
									I		Date); 2024		Junct	ion:	- Otra at (14)	J
TRAFFIC	IC SIGNALS CALCULATION Pak Shing Street Near Sui On Street (J1)																
--	--	----------	----------	--------------	---------------------------	----------------------	----------	----------------	-----------------	---------------------	-----------------------	--	---------	--	--	----------------	------------
Junction:	Pak Shing Street Near Sui On Street (J1) n:2032 Reference Traffic Flows (Ching Ming Festival)								Designed By: Cł						Design Yea	r: <u>2032</u>	
Description:	2032 Re	eference	Traffic	Flows (C	hing Ming I	Festival)		-			Designed	By: <u>MST</u>			Checked By	/: <u>MYL</u>	
	nts				Radi	us (m)	(%)	Pro. Tu	irning (%)	Revised S Flow (Saturation pcu/hr)		Peak				
Approach	Moveme	Phase	Stage	Widtl (m)	Left	Right	Gradient	Peak		Peak		Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pak Shing St WE	3 ←	A	1	4.00)					2015	2015	300	0.149	0.149	0	0.000	0.000
Pak Shing St EE		A	1	4.000						2015	2015	295	0.146		0	0.000	
'edestrian Cross	an Crossing Bp 2 MIN GREEN + FLASH = 5							+	10	=	15			*			*
Pedestrian Cross	ing	Вр	2	MIN G	REEN + FL pcu/hr)	ASH =	5	+	10	=	15	Group		.* А.Вр	Group		
Pedestrian Cross	ing	Вр	2	MIN G	REEN + FL	ASH = 300	5	+	10	-	15 	Group		.* А.Вр 0.149	Group y		
Pedestrian Cross	ing	Вр	2	MIN G	REEN + FL pcu/hr) →	ASH = 300	5	+	10	-	15 ▲ N +	Group y L (sec)		А.Вр 0.149 22	Group y L (sec)		
Pedestrian Cross	ing	Вр	2	MIN G	REEN + FL pcu/hr)	ASH =	5	+ 295	10	-	15 ▲ N +	Group y L (sec) C (sec)		А.Вр 0.149 22 48	Group y L (sec) C (sec)		•
Pedestrian Cross	ing	Вр	2	MIN G	REEN + FL pcu/hr)	ASH = 300	5	+ 295	10	-	15 N	Group y L (sec) C (sec) y pract.		А.Вр 0.149 22 48 0.488 2279/	Group y L (sec) C (sec) y pract.		
Pedestrian Cross Notes:	ing	Вр	2	MIN G	REEN + FL	ASH = 300	5	+ 295	10	-	15 ♠ ^N	Group y L (sec) C (sec) y pract. R.C. (%)		 А.Вр 0.149 22 48 0.488 227% 	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Cross Notes: Nates:	ing	Bp	2	MIN G	REEN + FL	ASH = 300	5	+ 295	10	-	15	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.149 22 48 0.488 227%	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Cross Notes: Stage / Phase D 1.	ing	Bp	2	MIN G	REEN + FL	ASH = 300	5	+ 295	10	-	15 ▲ N	Group y L (sec) C (sec) y pract. R.C. (%) 4.		А.Вр 0.149 22 48 0.488 227%	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Cross Notes: Stage / Phase D 1. A	ing iagrams	Bp	2 — A	MIN G	REEN + FL	ASH = 300	5	+ 295	10 • • • •	-	15	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.149 22 48 0.488 227%	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Cross Notes: Stage / Phase D 1. A	ing agrams	Вр	2 — A	MIN G	pcu/hr)	ASH = 300 Bp -	5	+ 295 3.	10 •	-	15 + N //G=	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.149 22 48 0.488 227%	Group y L (sec) C (sec) y pract. R.C. (%)		

TRAFFIC	SIGN/	ALS C	CALC	ULAT	ION						Job No.	: <u>CHK5080</u>	<u>1110</u>	Ν	IVA HON	g kong	
Junction:	Pak Shi	ng Stree	t Near S	ui On Stre	et (J1)			_							Design Yea	r: <u>2032</u>	
Description:	2032 Re	eference	Traffic F	lows (We	ekend afte	er Ching	Ming Fes	<u>s</u> tival)			Designed	By: <u>MST</u>			Checked By	: <u>MYL</u>	
	ıts				Radiu	s (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		Peak				
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	Peak		Peak		Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pak Shing St WB	-	А	1	4.000						2015	2015	200	0.099	0.099	0	0.000	0.000
Pak Shing St EB		A	1	4.000						2015	2015	170	0.084		0	0.000	
Pedestrian Cross	ing	Bp	2	MIN GRE	EEN + FLA	ASH =	5	+	10	-	15	Group		τ Α.Βρ	Group		
10003.				1.00.05	ou, m y						≜ ^N	Group		A,Bp	Group		
						200						У		0.099	У		
												L (sec)		22	L (sec)		
								170	•			C (sec)		48	C (sec)		
												y pract.		0.488	y pract.		
												R.C. (%)		391%	R.C. (%)		
Stage / Phase Di	agrams			2				3				4			5.		
				-													
A ———																	
	4		— А			,	Ŷ										
						Вр	¥										
I/G- 3			1/C - 5	<u> </u>		15			1			L		1/0-	<u> </u>		
<u>- 0</u>			#G= 5	,		10								i/G=			
											Date	: IIII 2024		Junct	ion:	- Charat (14)	(J1)

Job Title: Traffic Consultancy Service	es for Buddhist Cheuna Ha T	emple			
Junction: Kam Shan Road/ Hon Ka I	Road (J2)			Desi	gned by: MST
Scheme: 2032 Reference Traffic Flor	ws(Weekend prior to Ching I	Ming Festival)		Che	cked by: MYL
Design Year: 2032	Job No.:0	CHK50801110		Date	e: Jul-24
Arm A: Kam Shan Road WB					
Arm C: Kam Shan Road FB					
10					
Arm C PEAK					
155		→			
		<u>→ ♥</u>			
	/				_
			55.4%		1B
	<hr/>	←	175		Arm A
		с г	5		Kam Shan Road WB
		1	,		1A
		*			
DEAK					
1F 5	/ '				
			1		
	I		I		
	Arm B H	on Ka Road			
GEOMETRY			-		
Marian Daned Middle (m)	7.20		Louis a suidhlas (ma)		2.50
Major Road Wiath (m) Central Reserve Width (m)	Wor 0.00		Lane wiaths (m)	w(b-a) w(b-c)	3.50
Blockage of major road right turn	Y/N? Y			w(c-b)	3.65
Combined stream on minor arm	Y/N? Y			()	
Visibility Distances (m)			Calaviatad	D	0.042
Visibility Distances (m)	VI(b-a) 20		Parameters	F	0.843
	Vr(b-c) 20		i di di li o lo lo	F	0.937
	Vr(c-b) 50			Y	0.748
				55.4.1/	
ANALYSIS				PEAK	
TRAFFIC FLOWS (pcu/hr)	a(c-a)			155	
	q(c-b)			5	
	q(a-b)			5	
	q(a-c)			175	
	q(b-c)			5	
	f			0.50	
	Q(b-ac)			532 71	
CALACITES (PC0/Til)	Q(c-a)			1786.2	
	Q(c-b)			652.13	
REC's	C-0		-}	0.09	
	c-b		1	0.01	
	b-ac		1	0.02	
KFC				0.09	
Where VI and Vr are visibility distances	to the left or right of the resr	ective streams			
D = (1+0.094(w(b-q)-3.65))(1+0.0009/Vrl)	b-a)-120))(1+0.0006(VI(b-a)-	150))			
E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-3.65)))(1+0.009(Vr(b-c)-3.65)))(1+0.009(Vr(b-c)	p-c)-120))	11			
F = (1+0.094(wc-b)-3.65))(1+0.0009(Vr(c	-b)-120))				
Y = 1-0.0345W					
t = proportion of minor traffic turning le $\Omega(b_{-}\alpha_{-}) = \Omega(b_{-}\alpha)^* \Omega(b_{-}\alpha)^{1/1} f^* \Omega(b_{-}\alpha)^{1/2}$	IT I*O(b-a) Canacity of con	bined streams			
(D-C)+	Capacity of Con				
All the above formulas are in accordar	ice to T.P.D.M. Volume 2 Ch	apter 4 Appendix 1			

Job Title: Traffic Consultancy Servic	es for Buddhist Cheuna Ha	Temple			
Junction: Kam Shan Road/ Hon Ka	Road (J2)			De	signed by: MST
Scheme: 2032 Reference Traffic Flo	ws (Ching Ming Festival)			Ch	ecked by: MYL
Design Year: 2032	Job No	.:CHK50801110		Da	te: Jul-24
Arm A: Kam Shan Road WB					
Arm C: Kam Shan Road FB					
10					
Arm C PEAK					
Kam Shan Road EB 5					
		\rightarrow V			
		<u> </u>			
		/	DEAK		1B Arm A
	<hr/>	←──	295		Allia
			5		Kam Shan Road WB
			↓		
	/		·		
PFAK					
1E 5					
1F 5					
			<u> </u>		
	Arm B	Hon Ka Road			
GEOMEIRY			1		
Major Road Width (m)	W 7.30		Lane widths (m)	w(b-a)	3.50
Central Reserve Width (m)	Wcr 0.00			w(b-c)	3.50
Blockage of major road right turn	Y/N? Y			w(c-b)	3.65
Combined stream on minor arm	Y/N? Y				
Visibility Distances (m)	Vr(b-a) 20		Calculated	D	0.843
	VI(b-a) 50		Parameters	E	0.897
	Vr(b-c) 20 Vr(c-b) 50			F	0.937
	VI(C-D) 00				0.740
ANALYSIS				PEAK	
IRAFFIC FLOWS (pcu/hr)	q(c-a) a(c-b)			290	
	a(a-b)			5	
	q(a-c)			295	
	q(b-a)			5	
	q(b-c)			5	
	I			0.30	
CAPACITIES (pcu/hr)	Q(b-ac)			490.65	
	Q(c-b)			621.51	
	4(0.0)			021101	
PEC's				0.17	
	c-u c-b			0.16	
	b-ac			0.02	
RFC				0.16	
Whore VI and Vr are visibility distances	to the left or works of the	monthing stranger -			
where vi and vi are visibility distances D = (1+0.094)w(b-a)-3.65)/(1+0.0009)/vr	to the left of right of the re $(b_{-}a)_{-}120))(1+0.0006)(V)(b_{-}a)_{-}120)(1+0.0006)(1$	spective streams			
E = (1+0.094(w(b-c)-3.65))(1+0.0009(vr))	b-c)-120))	1.0011			
F = (1+0.094(wc-b)-3.65))(1+0.0009(Vr(c	-b)-120))				
Y = 1-0.0345W					
t = proportion of minor traffic turning le	f*O(b, a) Capacity of a	mbined streems			
ענט-ענא-ענא-ענא-ענא-ענא-ענא-ענא-ענא-ענא-ענא					
All the above formulas are in accorda	nce to T.P.D.M. Volume 2 C	hapter 4 Appendix	(1		

Job Title: Traffic Consultancy Service	ces for Buddhist Cheung Ha Temple			
Junction: Kam Shan Road/ Hon Ka	Road (J2)	all	Desig	ned by: MST
Design Year: 2032	Job No.:CHK5080	1110	Date	: Jul-24
Arm A: Kam Shan Road WB				
Arm B: Hon Ka Road Arm C: Kam Shan Road EB				
				_
Arm C PEAK				
Kam Shan Road EB 5				
1D		↓		
				1B
	← / ←	190		Arm A
		10		Kam Shan Road WB
	/ /	↓		
	/			_
PEAK	/ / /			
	I	I		
	Arm B Hon Ka Ro	ad		
GEOMETRY				
		Ī		
Major Road Width (m)	W 7.30	Lane widths (m)	w(b-a)	3.50
Blockage of major road right turn	Y/N? Y		w(c-b)	3.65
Combined stream on minor arm	Y/N? Y		()	
Visibility Distances (m)	Vr(b-a) 20	Calculated	D	0.843
	VI(b-a) 50	Parameters	E	0.897
	Vr(c-b) 50		F Y	0.748
			PEAK	
TRAFFIC FLOWS (pcu/hr)	q(c-a)		165	
	q(c-b)		5	
	q(a-c)		190	
	q(b-a)		5	
	q(b-c) f		5 0.50	
CAPACITIES (pcu/hr)	Q(b-ac)		527.68	
	Q(c-a)		1786.1	
	Q(C-D)		647.03	
REC's			0.09	
	c-b		0.01	
	b-ac		0.02	
RFC			0.09	
		•		
Where VI and Vr are visibility distances $D = (1+0.094)w(b, a) 3.45)/(1+0.0009)/(4)$	to the left or right of the respective st	reams		
E = (1+0.094(w(b-c)-3.65))(1+0.0009(vr))	(b-c)-120))			
F = (1+0.094(wc-b)-3.65))(1+0.0009(Vr(a)))(1+0.0009(Vr(a)))(1+0.0009(Vr(a)))))(1+0.0009(Vr(a))))(1+0.0009(Vr(a)))))(1+0.0009(Vr(a))))(1+0.0009(Vr(a)))))(1+0.0009(Vr(a))))(1+0.0009(Vr(a)))))(1+0.0009(Vr(a)))))(1+0.0009(Vr(a)))))(1+0.0009(Vr(a)))))(1+0.0009(Vr(a))))))(1+0.0009(Vr(a)))))(1+0.0009(Vr(a)))))(1+0.0009(Vr(a)))))(1+0.0009(Vr(a))))))))))(1+0.0009(Vr(a)))))(1+0.0009(Vr(a)))))))))))))(1+0.0009(Vr(a)))))))))))))))))))))))))))))))))))	c-b)-120))			
f = proportion of minor traffic turning le	əft			
Q(b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+Q(b-c	+f*Q(b-a) Capacity of combined st	reams		
All the above formulas are in accorde	Ince to TPD M Volume ? Chanter 4 A	nnendix 1		
rai me abore ionnolus die in accolda	ande to ta .b.m. volume z chuplel 4 A	PPCIIUIA I		

Job Title: Traffic	Consultancy Servic	es for Buddhist Che	ung Ha Temple			
Junction: Kam S	han Road/ Access	Road Linking to Kan	h Shek New Village Car Park	(L)	Design	ed by: MST
Design Year: 2032 R	ererence franic FIO	ws (weekend prior	Job No.:CHK50801110		Date:	Jul-24
Arm A: Kam S	han Road EB					
Arm B: Access Arm C: Kam S	s koad Linking to Ko han Road WB	am Shek New Villag	e Car Park			
1C	DEAK					
Kam Shan Road	95		\longrightarrow			
WB	85					
ID			$ \longrightarrow $			
						=
				DEAK		1B Arma A
		< /	┥/ ϵ───	100		0000
				30		Kam Shan Road EB
			- √			
		/				•
1E	PEAK		/			
1E	45	/	1			
		•	B Assess Development in the second s second second sec		Car Barda	
		Arn	1 B Access Road Linking	TO Kam Shek New VIIIO	age Car Park	
GEOMETRY				-		
Maior Road Width (m)	w	7.00	I ane widths (m)	w(b-a)	3.70
Central Reserve Wi	dth (m)	Wcr	0.00	zano mano (m)	w(b-c)	3.70
Blockage of major	road right turn	Y/N?	Y		w(c-b)	3.90
Combined sireding		1/14	1			
Visibility Distances (~)	V(r b, q)	10	Calculated	D	0.945
VISIDIIITY DISTOLICES (I	11)	VI(b-a)	30	Parameters	E	0.932
		Vr(b-c)	40		F	0.959
		Vr(C-D)	50		Y	0.759
ANALYSIS					PEAK	
TRAFFIC FLOWS (pc	u/hr)	q(c-a)			95	
		q(c-b)			85	
		q(a-c)			100	
		q(b-a)			45	
		q(b-c) f			60 0.57	
		·				
CAPACITIES (pcu/h	r)	Q(b-ac)			566.48	
		Q(c-a) Q(c-b)			1575	
		Q(C-D)			000.00	
RFC's		c-a			0.06	
		c-b			0.12	
		D-ac			0.19	
RFC					0.19	
Where VI and Vr and	e visibility distances	to the left or right o	f the respective streams			
D = (1+0.094)(w(b-a)))-3.65))(1+0.0009(Vr	(b-a)-120))(1+0.0006	(VI(b-a)-150))			
E = (1+0.094(w(b-c)))	-3.65))(1+0.0009(Vr(b-c)-120)) b)-120))				
Y = 1-0.0345W	5.55))(1 · 0.0007(41(C	-67*12011				
f = proportion of mi	nor traffic turning le	ft	he of opposition of st			
Q(b-ac) = Q(b-c)*G	+(D-d)/(I-I)*Q(D-d)+	r"@(b-a) Capaci	ty of combined streams			
All the above form	ılas are in accorda	nce to T.P.D.M. Volu	me 2 Chapter 4 Appendix 1			

Job Title:	Traffic (Consultancy Servi	ces for Buddhist (Cheung Ha Temple			
Junction:	Kam Sh	an Road/ Access	Road Linking to	Kam Shek New Village	e Car Park (J3)	Desigi	ned by: MST
Scheme:	2032 Re	eference Traffic Flo	ows (Ching Ming	Festival)	110	Chec	ked by: MYL
Design tea Arm A:	1. 2032 Kam Sh	an Road FR		108067HD::ON DOL	ΠU	Date:	JUI-24
Arm B:	Access	Road Linking to K	am Shek New Vi	llage Car Park			
Arm C:	Kam Sh	nan Road WB					
							_
Arm	ГС С	DEAK					
Kam Shan	Road	215		>			
WB		85		-			
					↓ J		
					•		
							= 1B
					PEAK		Arm A
			< <u> </u>	── / ←─	210		
			/		135		Kam Shan Road EB
			/		¥		
							-
		PEAK					
		85		_/ 1			
		110					
					ad Linking to Kam Shak Now Ville	ao Car Park	
				ALIFE ACCESS ROO	ad Linking to Karn Shek New Villa	ye Car Park	
GEOMETRY							
Major Road	l Width (r	n)	W	7.00	Lane widths (m)	w(b-a)	3.70
Central Res	f major r	ath (m) and right turn	WCL WCL	0.00		W(D-C)	3.70
Combined	stream c	on minor arm	Y/NŞ	Y		w(c-b)	3.70
				10		_	
Visibility Dist	ances (n	n)	Vr(b-a)	40	Calculated	D	0.865
			Vr(b-c)	40	raidificiers	F	0.959
			Vr(c-b)	50		Υ	0.759
ANALYSIS						PEAK	
TRAFFIC FLC	DWS (pcu	J/hr)	q(c-a)			215	
		,	q(c-b)			85	
			q(a-b)			135	
			q(a-c)			210	
			q(b-c)			85	
			f			0.44	
CAPACITIES	(pcu/hr)	Q(b-ac)			489.21	
0, 1, 1011120	, (pee),	1	Q(c-a)			1554.5	
			Q(c-b)			623.12	
RFC's			c-a			0.14	
			c-b			0.14	
			b-ac			0.40	
REC						0.40	
RI C					I	0.40	
Where VI ar	nd Vr are	visibility distance	s to the left or rig	ht of the respective str	eams		
D = (1+0.094	4(w(b-a)	-3.65))(1+0.0009(V	r(b-a)-120))(1+0.0	0006(VI(b-a)-150))			
E = (1+0.094)	4(w(b-c)-	3.65))(1+0.0009(Vr	(b-c)-120))				
r = (1+0.094 Y = 1-0.0344	+(WC-D)-3 5W	0.60))(1+0.0009(Vr(C-DJ-120))				
f = proportion	on of mir	nor traffic turnina l	eft				
Q(b-ac) = 0	Q(b-c)*Q	(b-a)/(1-f)*Q(b-c)	+f*Q(b-a) Cap	pacity of combined str	eams		
All the abov	ve formu	las are in accordo	ance to T.P.D.M. \	/olume 2 Chapter 4 Ap	opendix 1		

Job Title: Traffic Consultancy Serv	ices for Buddhist Cheung Ha Temple		1 - · · ·
Junction: Kam Shan Road/ Acces Scheme: 2032 Reference Traffic F	s Road Linking to Kam Shek New Villag ows (Weekend after China Mina Festiv	e Car Park (J3) (al)	Designed by: MST Checked by: MYI
Design Year: 2032	Job No.:CHK5080	1110	Date: Jul-24
Arm A: Kam Shan Road EB			
Arm B: Access Road Linking to Arm C: Kam Shan Road WB	kam snek New Village Car Park		
Arm C PEAK Kam Shan Road 190 WB 5			
РЕАК 16 <u>20</u> 16 <u>25</u>		PEAK 150 25	EB Arm A Kam Shan Road EB
GEOMETRY	Arm B Access Ro	ad Linking to Kam Shek New Villag	e Car Park
Major Road Width (m) Central Reserve Width (m) Blockage of major road right turn Combined stream on minor arm	W 7.00 Wcr 0.00 Y/N? Y Y/N? Y	Lane widths (m)	w(b-a) 3.70 w(b-c) 3.70 w(c-b) 3.90
Visibility Distances (m)	Vr(b-a) 40 VI(b-a) 30 Vr(b-c) 40 Vr(c-b) 50	Calculated Parameters	D 0.865 E 0.932 F 0.959 Y 0.759
ANALYSIS			PEAK
TRAFFIC FLOWS (pcu/hr)	q(c-a) q(c-b) q(a-b) q(a-c) q(b-c) f		190 5 25 150 25 20 0.44
CAPACITIES (pcu/hr)	Q(b-ac) Q(c-a) Q(c-b)		539.93 1786.5 668.13
RFC's	c-a c-b b-ac		0.11 0.01 0.08
RFC			0.11
Where VI and Vr are visibility distance D = $(1+0.094(w(b-a)-3.65))(1+0.0009(Vr E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr Y = 1-0.0345Wr f = proportion of minor traffic turning Q(b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c) All the above formulas are in accord$	ts to the left or right of the respective s (r(b-a)-120))(1+0.0006(V1(b-a)-150)) (c-b)-120)) (c-b)-120)) left +f*Q(b-a) Capacity of combined s ance to T.P.D.M. Volume 2 Chapter 4 A	treams treams	

TRAFFIC	SIGN	ALS (CALC	ULAT	ION					Job No.	: <u>CHK5080</u>	<u>1110</u>	N	NVA HON	g kong	
Junction:	Pak Shi	ng Stree	t Near S	ui On Stre	et (J1)		_							Design Yea	r: <u>2032</u>	
Description:	2032 De	esign Tra	ffic Flow	/s (Weeke	nd prior to Chir	ng Ming Fest	<u>ti</u> val)			Designed	By: <u>MST</u>			Checked By	/: <u>MYL</u>	
	ıts				Radius (m)	(%)	Pro. Tur	ning (%)	Revised Flow (Saturation pcu/hr)		Peak				
Approach	Movemer	Phase	Stage	Width (m)	Left Right	Gradient	Peak		Peak		Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pak Shing St WE	3 ←	A	1	4.000					2015	2015	188	0.093	0.093	0	0.000	0.000
Pak Shing St EE	·•	A	1	4.000					2015	2015	168	0.083		0	0.000	
Pedestrian Cross	ing	Вр	2	MIN GRE	EEN + FLASH	= 5	+	10	=	15						
Notes:				Flow: (p	cu/hr)					[↑] N	Group		A,Bp	Group		
					▶ 188					I	У		0.093	У		
											L (sec)		22	L (sec)		
							168	•	_		C (sec)		48	C (sec)		
											y pract.		0.488	y pract.		
											R.C. (%)		423%	R.C. (%)		
Stage / Phase D	iagrams			1								•		1		
1.				2.			3.				4.			5.		
A — →			^			¢										
			А		E	ip ₩										
I/G= 3			I/G= 5	5	15		I/G=			I/G=			I/G=			
I			1					1		Date			Junct	ion:	in Street (11)	(J1)

TRAFFIC	C SIGNALS CALCULATION Pak Shing Street Near Sui On Street (J1)																
Junction:	Pak Shing Street Near Sui On Street (J1)							Design Year:203 Designed By:ST Checked By:Y1							Design Yea	r: <u>2032</u>	
Description:	2032 De	sign Tra	ffic Flow	s (Ching N	ling Festi	val)					Designed	By: <u>MST</u>			Checked By	: MYL	
	ints				Radiu	ıs (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		Peak				
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	Peak		Peak		Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pak Shing St WE	3 ←	A	1	4.000						2015	2015	300	0.149	0.149	0	0.000	0.000
Pak Shing St EE		A	1	4.000						2015	2015	295	0.146		0	0.000	
	Jestrian Crossing Bp 2 MIN GREEN + FLASH = 5																
Pedestrian Cross	ing	Вр	2	MIN GRE	EN + FL/	ASH =	5	÷	10	=	15	Group		* A,Bp	Group	Γ	•
Pedestrian Cross	ing	Вр	2	MIN GRE	EN + FL/	ASH =	5	+	10	=	15 ≜ ™	Group		А.Вр 0.149	Group		
Pedestrian Cross	ing	Вр	2	MIN GRE	EN + FL/ cu/hr)	ASH = 300	5	+	10	=	15 † N	Group y L (sec)		А.Вр 0.149 22	Group y L (sec)		•
Pedestrian Cross	ing	Bp	2	MIN GRE	EN + FL/ cu/hr) →	ASH = 300	5	+ 295	10	=	15 	Group y L (sec) C (sec)		А.Вр 0.149 22 48	Group y L (sec) C (sec)		
Pedestrian Cross	ing	Вр	2	MIN GRE	EN + FL/ cu/hr) →	ASH = 300	5	+ 295	10	=	15	Group y L (sec) C (sec) y pract.		А.Вр 0.149 22 48 0.488	Group y L (sec) C (sec) y pract.		•
Pedestrian Cross	ing	Bp	2	MIN GRE	EN + FL/ :u/hr) →	ASH = 300	5	+ 295	10	=	15 ≜ ^×	Group y L (sec) C (sec) y pract. R.C. (%)		 * А.Вр 0.149 22 48 0.488 227% 	Group y L (sec) C (sec) y pract. R.C. (%)		•
Pedestrian Cross Notes: Stage / Phase D	ing	Вр	2	MIN GRE	EN + FL/ :u/hr)	ASH = 300	5	+ 295	10	-	15 •	Group y L (sec) C (sec) y pract. R.C. (%)		 А.Вр 0.149 22 48 0.488 227% 	Group y L (sec) C (sec) y pract. R.C. (%)		•
Pedestrian Cross Notes: <u>Stage / Phase D</u> 1.	ing	Bp	2	MIN GRE	EN + FL/ :u/hr) →	ASH = 300	5	+ 295	10		15 •	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.149 22 48 0.488 227%	Group y L (sec) C (sec) y pract. R.C. (%)		•
Pedestrian Cross Notes: <u>Stage / Phase D</u> 1. A	ing iagrams	Bp	2 — A	MIN GRE	EN + FL/	ASH = 300	5	+ 295	10	=	15	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.149 22 48 0.488 227%	Group y L (sec) C (sec) y pract. R.C. (%)		•
Pedestrian Cross Notes: Stage / Phase D 1. A VG= 3	ing iagrams	Bp	2 — A	MIN GRE	EN + FL/	ASH = 300 Bp \ 15	5	+ 295 3.	10		15 + N - UG=	Group y L (sec) C (sec) y pract. R.C. (%)		А.Вр 0.149 22 48 0.488 227%	Group y L (sec) C (sec) y pract. R.C. (%)		

IRAFFIC SIGNALS CALCULATION										Job No.:	CHK5080	<u>1110 </u>	N	IVA HON	g kong		
Junction: Pak Shing Street Near Sui On Street (J1)								Design Year: 2032 /al) Designed By:ST Checked By:YL									
Description:	2032 De	sign Tra	ffic Flow	vs (Weeke	nd after (Ching Mir	ng Festival	<u>l</u>)			Designed I	By: <u>MST</u>			Checked By	: <u>MYL</u>	
	nts				Radiu	us (m)	(%)	Pro. Tu	rning (%)	Revised S Flow (Saturation pcu/hr)		Peak				
Approach	Moveme	Phase	Stage	Width (m)	Left	Right	Gradient	Peak		Peak		Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pak Shing St WB	-	А	1	4.000	I		l			2015	2015	203	0.101	0.101	0	0.000	0.000
Pak Shing St EB	→	A	1	4.000						2015	2015	173	0.086		0	0.000	
	testrian Crossing Bp 2 MIN GREEN + FLASH = 5																
Pedestrian Crossir	g	Вр	2	MIN GRE	EN + FL	ASH =	5	+	10	-	15	Group		* A,Bp	Group		
Pedestrian Crossir	g	Вр	2	MIN GRE	EN + FL cu/hr)	ASH =	5	+	10	=	15 ♠ ^N	Group		.* А.Вр 0.101	Group		
Pedestrian Crossir	a	Bp	2	MIN GRE	EEN + FL cu/hr)	ASH = 203	5	+	10	-	15 ♣ ^N	Group y L (sec)		* А.Вр 0.101 22	Group y L (sec)		
Pedestrian Crossir	g	Вр	2	MIN GRE	EEN + FL cu/hr)	ASH = 203	5	+	10	=	15 ▲ ^ N	Group y L (sec) C (sec)		А.Вр 0.101 22 48	Group y L (sec) C (sec)		
Pedestrian Crossir	9	Вр	2	MIN GRE	EEN + FL cu/hr)	ASH = 203	5	+	10	-	15 ♣ N	Group y L (sec) C (sec) y pract		* А.Вр 0.101 22 48 0.488	Group y L (sec) C (sec) y pract		
Pedestrian Crossir	g	Вр	2	MIN GRE	EEN + FL cu/hr) ►	ASH = 203	5	+	10	-	15 ↑	Group y L (sec) C (sec) y pract.		 * А.Вр 0.101 22 48 0.488 38.4% 	Group y L (sec) C (sec) y pract.		
Notes:	g	Вр	2	MIN GRE	EEN + FL cu/hr)	ASH = 203	5	+	10	-	15 ♠ ^N	Group y L (sec) C (sec) y pract. R.C. (%)		* А.Вр 0.101 22 48 0.488 384%	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Crossir Notes: <u>Stage / Phase Dia</u> 1.	g grams	Вр	2	MIN GRE	cu/hr)	ASH = 203	5	+ 173	10	-	15 ↑ N	Group y L (sec) C (sec) y pract. R.C. (%)		* А.Вр 0.101 22 48 0.488 384%	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Crossir Notes: Stage / Phase Dia 1.	g grams	Вр	2	MIN GRE	cu/hr)	ASH = 203	5	+ 173	10	=	15 ♠ +	Group y L (sec) C (sec) y pract. R.C. (%) 4.		 А.Вр 0.101 22 48 0.488 384% 	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Crossir Notes: Stage / Phase Dia 1.	g grams	Вр	2	MIN GRE	cu/hr)	ASH = 203	5	+ 173 3.	10	-	15 ↑ N	Group y L (sec) C (sec) y pract. R.C. (%) 4.		* А.Вр 0.101 22 48 0.488 384%	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Crossir Notes: Stage / Phase Dia 1. A	g grams_	Вр	2 	MIN GRE	cu/hr)	ASH = 203	5	+ 173 3.	10	=	15 + N	Group y L (sec) C (sec) y pract. R.C. (%) 4.		* А.Вр 0.101 22 48 0.488 384%	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Crossir Notes: Stage / Phase Dia 1. A	g grams	Bp	2 A	MIN GRE	cu/hr)	ASH = 203	5	+ 173 3.	10	-	15	Group y L (sec) C (sec) y pract. R.C. (%) 4.		 * А.Вр 0.101 22 48 0.488 384% 	Group y L (sec) C (sec) y pract. R.C. (%)		•
Pedestrian Crossir Notes: Stage / Phase Dia 1. A	g grams_	Bp	2 — A	MIN GRE	cu/hr)	ASH = 203	5	+ 173	10	-	15	Group y L (sec) C (sec) y pract. R.C. (%)		* A.Bp 0.101 22 48 0.488 384%	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Crossir Notes: Stage / Phase Dia 1. A	g grams_	Вр	2 — A	MIN GRE	cu/hr)	ASH = 203	5	+ 173 3.	10	-	15 + N	Group y L (sec) C (sec) y pract. R.C. (%)		* А.Вр 0.101 22 48 0.488 384%	Group y L (sec) C (sec) y pract. R.C. (%)		
Pedestrian Crossir Notes: Stage / Phase Dia 1. A	g grams	Bp	2 — A	MIN GRE	cu/hr)	ASH = 203	5	+ 173 3.	10		15	Group y L (sec) C (sec) y pract. R.C. (%) 4.		* ABp 0.101 22 48 0.488 384%	Group y L (sec) C (sec) y pract. R.C. (%)		•
Pedestrian Crossir	g grams -	Bp	2 — A	MIN GRE	cu/hr)	ASH = 203 Bp 5	5	+ 173 3.	10	-	15	Group y L (sec) C (sec) y pract. R.C. (%)		* A.Bp 0.101 22 48 0.488 384%	Group y L (sec) C (sec) y pract. R.C. (%)		

Job Title: Traffic Consultancy Service	es for Buddhist Cheung Ha Tei	mple	
Junction: Kam Shan Road/ Hon Ka	Road (J2)	•	Designed by: MST
Scheme: 2032 Design Traffic Flows (Weekend prior to Ching Ming	Festival)	Checked by: MYL
Design Year: 2032	Job No.:C	HK50801110	Date: Jul-24
Arm A: Kam Shan Road WB			
Arm C: Kam Shan Road EB			
1C			
Arm C PEAK			
I 63		>	
	/	\rightarrow V	
			1B
		183	AIIIA
		5	Kam Shan Road WB
		↓	
	/	·	
PFAK			
1F 5 1	/		
	I	I	
	Arm B Ho	n Ka Road	
GEOMETRY			
Major Road Width (m)	W 730	I are widths (m)	w(b-a) 3.50
Central Reserve Width (m)	Wcr 0.00		w(b-c) 3.50
Blockage of major road right turn	Y/N? Y		w(c-b) 3.65
Combined stream on minor arm	Y/NŚ ł		
Visibility Distances (m)	Vr(b-a) 20	Calculated	D 0.843
	VI(b-a) 50	Parameters	E 0.897
	Vr(b-c) 20		F 0.937
	Vr(c-b) 50		Y 0.748
ANALYSIS			PFAK
			1 EON
TRAFFIC FLOWS (pcu/hr)	q(c-a)		163
	q(c-b)		5
	q(a-b)		5
	q(a-c) a(b-a)		5
	q(b-c)		5
	f		0.50
CAPACITIES (pcu/hr)	Q(b-ac)		530.03
	Q(c-a)		1786.2
	Q(c-b)		650.09
RFC's	C-a		0.09
	c-b		0.01
1	p-ac		0.02
REC			0.09
			0.07
Where VI and Vr are visibility distances	to the left or right of the respe	ective streams	
D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr	(b-a)-120))(1+0.0006(VI(b-a)-15	50))	
E = (1+0.094(w(b-c)-3.65))(1+0.0009)(Vr(b-c)-3.65))(1+0.009)(Vr(b	b-c)-120))		
F = (1+0.094(WC-D)-3.65))(1+0.0009(Vr(C)))(1+0.0009)	c-bj-120))		
f = proportion of minor traffic turning le	ft		
Q(b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+	f*Q(b-a) Capacity of comb	pined streams	
All the above formulas are in accorda	nce to T.P.D.M. Volume 2 Cha	oter 4 Appendix 1	

Job Title: Traffic C	Consultancy Servic	es for Buddhist (Cheung Ha Temple			
Junction: Kam Sho	nction: Kam Shan Road/ Access Road Linking to Kam Shek New Village Car Park (J3) Desig			gned by: MST		
Scheme: 2032 De	esign Traffic Flows (Weekend prior	to Ching Ming Festival)		Che	cked by: MYL
Arm A [*] Kam Sha	an Road FB		100.CHK30601110		Duit	3. JUI-24
Arm B: Access F	Road Linking to Ka	ım Shek New Vi	illage Car Park			
Arm C: Kam Sho	an Road WB					
-						
Arm C	PFAK					
Kam Shan Road	103		\longrightarrow			
WB	85			-		
1D				1		
				•		
=						18
				PEAK		Arm A
		< <u> </u>	── / ←──	108		
		/				Kam Shan Road EB
		/		¥		
-		1				
	PEAK					
	60		_/ I			
	43					
				nking to Kam Shak Now Vill	lago Car Bark	
			Arm B Access Rodd Li	nking to kam snek new vil	lage Car Park	
GEOMETRY						
Major Road Width (m	1) Ha (ma)	W	7.00	Lane widths (m)	w(b-a)	3.70
Blockage of major ro	in (m) ad right turn	A VIS	0.00 Y		w(c-b)	3.70
Combined stream or	n minor arm	Y/N?	Y		(C D)	0.70
) /ieileilite / Dieterre e e e /ree		$\langle r \rangle \langle r \rangle \langle r \rangle$	40	Calaulatad	D	0.075
VISIDIIITY DISTURCES (TT	1)	VI(b-a)	30	Parameters	E	0.932
		Vr(b-c)	40		F	0.959
		Vr(c-b)	50		Y	0.759
					PFAK	
					1 LAN	
TRAFFIC FLOWS (pcu/	/hr)	q(c-a)			103	
		q(c-b)			85	
		q(a-b)			30 108	
		q(b-a)			45	
		q(b-c)			60	
		f			0.57	
CAPACITIES (pcu/hr)		Q(b-ac)			563.71	
		Q(c-a)			1574.3	
		Q(C-D)			6/7.93	
RFC's		c-a			0.07	
		c-b b-ac			0.13	
					0.17	
RFC					0.19	
	, .,.,					
where VI and Vr are $D = (1+0.024)$ where VI and Vr are	visibility distances	to the left or rig	nt ot the respective stream	S		
$D = (1 \pm 0.094 (W(D-d) - 3))$ $F = (1 \pm 0.094 (W(D-c) - 3))$	3.33))(1+0.0009(Vr) 3.65))(1+0.0009(Vr)	b-c)-120))(1+0.0	JUUG[VI[U-U]-13U]]			
F = (1+0.094(wc-b)-3.00)	65))(1+0.0009(Vr(c	-b)-120))				
Y = 1-0.0345W						
f = proportion of minor traffic turning left						
Q(D-a) = Q(D-a)	n-a)/(1-1)*@(p-c)+	rajora) Ca	bacity of combined stream	15		
All the above formula	as are in accorda	nce to T.P.D.M.	Volume 2 Chapter 4 Apper	ndix 1		

Job Title: Traffic Consultancy Se	rvices for Buddhist Cheung Ha Temple		Designed key LICT
Scheme: 2032 Design Traffic Flor	ess Road Linking to Kam Shek New Village ws (Weekend after Ching Ming Festival)	Car Park (J3)	Checked by: MYL
Design Year: 2032	Job No.:CHK50801	110	Date: Jul-24
Arm A: Kam Shan Road EB	Kam Shek New Village Car Park		
Arm C: Kam Shan Road WB	Karrenek New Village Carrenk		
Arm C PEAK			
Kam Shan Road 193	>		
WB 5			
		¥	
			1.0
		PEAK	Arm A
	←/ ←	153	Kara Shan Dood ED
		25	
		•	
PFAK			
20			
1F 25			
	I		
	Arm B Access Roc	ad Linking to Kam Shek New Village	Car Park
GEOMETRY			
Major Road Width (m)	W 7.00	Lane widths (m) w	(b-a) 3.70
Central Reserve Width (m) Blockage of major road right turn	Wcr 0.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(b-c) 3.70
Combined stream on minor arm	Y/Nš A		(0-0) 0.70
Visibility Distances (m)	Vr(b-a) 40	Calculated D	0.865
	VI(b-a) 30	Parameters E	0.932
	Vr(c-b) 50	۲ ۲	0.759
			DEAK
ANALTSIS			PEAK
TRAFFIC FLOWS (pcu/hr)	q(c-a)		193
	q(a-b)		25
	q(a-c)		153
	q(b-a) (b-c)		25 20
	f		0.44
CAPACITIES (pcu/hr)	Q(b-ac) Q(c-a)		538.85 1786.5
	Q(c-b)		667.34
RFC's	c-a c-b		0.11
	b-ac		0.08
REC			0.11
			v.11
Where VI and Vr are visibility distant	ces to the left or right of the respective str	eams	
D = (1+0.094(w(b-a)-3.65))(1+0.0009) $E = (1+0.094(w(b-c)-3.65))(1+0.0009)$	(Vr(b-c)-120)) (Vr(b-c)-120))		
F = (1+0.094(wc-b)-3.65))(1+0.0009(Vr(c-b)-120))			
Y = 1-0.0345W f = proportion of minor traffic turning left			
Q(b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-a)	c)+f*Q(b-a) Capacity of combined str	eams	
All the above formulae are in accord	rdance to TRDM Volume 2 Chanter 4 4-	anandix 1	
All the above formulas are in accordance to T.P.D.M. Volume 2 Chapter 4 Appendix 1			

APPENDIX B– Descriptions of Level-of-Services (LOS)

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai Po

CHK50801110

08/10/2024

Page 43

Description of Pedestrian Walkway Level-of-Service (LOS)

LOS	Flow Rate (ped/min/m)	Description
A	≤ 16	Pedestrians basically move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely selected, and conflicts between pedestrians are unlikely.
В	16 – 23	Sufficient space is provided for pedestrians to freely select their walking speeds, to bypass other pedestrians and to avoid crossing conflicts with others. At this level, pedestrians begin to be aware of other pedestrians and to respond to their presence in the selection of walking paths.
С	23 – 33	Sufficient space is available to select normal walking speeds and to bypass other pedestrians primarily in unidirectional stream. Where reverse direction or crossing movement exist, minor conflicts will occur, and speed and volume will be somewhat lower.
D	33 – 49	Freedom to select individual walking speeds and bypass other pedestrians is restricted. Where crossing or reverse-flow movements exist, the probability of conflicts is high and its avoidance requires changes of speeds and position. The LOS provides reasonable fluid flow; however considerable friction and interactions between pedestrians are likely to occur.
E	49 – 75	Virtually, all pedestrians would have their normal walking speeds restricted. At the lower range of this LOS, forward movement is possible only by shuffling. Space is insufficient to pass over slower pedestrians. Cross- and reverse-movement are possible only with extreme difficulties. Design volumes approach the limit of walking capacity with resulting stoppages and interruptions to flow.
F	> 75	Walking speeds are severely restricted. Forward progress is made only by shuffling. There are frequent and unavoidable conflicts with other pedestrians. Cross- and reverse- movements are virtually impossible. Flow is sporadic and unstable. Space is more characteristics of queued pedestrians than of moving pedestrian streams.

СНК50801110

08/10/2024

Description of Queueing Area Level-of-Service (LOS)

LOS	Average Pedestrian Area (m²/person)	Description
A	> 1.2	Standing and free circulation through the queueing area is possible without disturbing others within the queue.
В	0.9 – 1.2	Standing and partially restricted circulation to avoid disturbing others in the queue is possible.
с	0.6 – 0.9	Standing and restricted circulation through the queuing area by distributing others in the queue is possible; this density is within the range of personal comfort.
D	0.3 – 0.6	Standing without touching is possible; circulation is severely restricted within the queue and forward movement is only possible as a group; long-term waiting at this density is uncomfortable.
E	0.2 - 0.3	Standing in physical contact with others is unavoidable; circulation in the queue is not possible; queueing can only be sustained for a short period without serious discomfort.
F	≤ 0.2	Virtually all persons within the queue are standing in direct physical contact with others; this density is extremely uncomfortable; no movement is possible in the queue; there is potential for panic in large crowds at this density.

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai Po

CHK50801110

08/10/2024

APPENDIX C – Tertiary Planning Unit (TPU) Boundaries

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai Po

CHK50801110

Page 46

APPENDIX D -

Letters from the Applicant to Hong Kong Police Force (HKPF)

Traffic Consultancy Services for Rezoning Request from "V" to "G/IC(3)" for Buddhist Cheung Ha Temple, at Lot Nos. 1087 and 1130 in DD6 and adjoining Government land, Tai Po

CHK50801110

08/10/2024

Page 47

佛教長霞淨院有限公司 BUDDHIST CHEUNG HA TEMPLE LIMITED 香港新界大埔錦山路43 - 45號 43-45, Kam Shan Road, Tai Po, N.T., Hong Kong

CIP/Traffic NTN Hq,

1st and 3rd floors,

8th Dec., 2012

Sheung Shui Polce Station,

Fanling Roundabout, Fanling,

New Territories.

BY FAX 2683 1801 and POST

Dear Sirs,

Traffic Control on Kam Shan Road, Tai Po, New Territories

On Buddhist 阿彌陀佛聖誕 on 27th,28th and 29th Dec.,2012

Please be informed that we will hold the 2012 Buddhist 阿彌陀佛聖誕 on 27th,28th and 29th Dec.,2012. The details are shown below:---

Date	Hours of Operation	Expected no. of Participants
27 th Dec.,2012	10:00 to 16:00	600
28 th Dec.,,2012	10:00 tc 16:00	800
29 th Dec.,,2012	10:00 to 16:00	900

We should be grateful if you would kindly arrange partols on Kam Shan Road, especially the section from Hon Kar Road to Kam Shan Village Office.

Thank you for your attention and co-operation.

Yours faithfully,

For and on bahalf of

BUDDHIST CHEUNG HA TEMPLE LTD.

CHEUNG HA TEMP (Auser AU Project Manager

2014-CM-

香港新界大埔錦山路43-45號

Hong Kong Police Force 3-45, Kam Shan Road, Tai Po, N.T., Hong Kong

Tai Po District, Tai Po Division, No.,4, On Po Lane, Tai Po, N T.

BY FAX 2144 1126 and MAIL

(Attention: DVC/Tai Po)

Dear Sirs,

16th March,2014

Traffic Control on Kam Shan Road, Tai Po, New Territories On Ching Ming Festival Days on 5th April,2014

Please be informed that Ching Ming Festival this year falls on 5th April,2014. It is expected that the Buddhists followers and members of the public will come to worship their ancestors two weeks before and after the Ching Ming Festival.,i.e., 22nd March to 19th April,2014 especially on Saturdays and Sundays within the aforesaid period.

We should be grateful if you would kindly arrange patrols on Kam Shan Road, especially the section from Hon Kar Road to Kam Shan Village Office.

3

Thank you for your attention and co-operation.

有限公司

Chi (Pa) (852) 2652 1126

Yours faithfully,

For and on behalf of

BUDDHIST CHEUNG HA TEMPLE LTD.

(Auser AU) Administrator

c.c. NT/N Regional Hqs., 1st and 3rd Floors, Sheung SHui Police Station,

Fanling Roundabout,

Fanling,

New Territories.

(Attention: CIP/Traffic,NTN/HQ)

By FAX 2683 1801 and MAIL

www.cheunghatemple.org

2015-CM-

佛教長霞淨院有限公司 BUDDHIST CHEUNG HA TEMPLE LIMITED

香港新界大埔錦山路43-45號 43-45, Kam Shan Road, Tai Po, N.T., Hong Kong

N T North Regional Headquarters, 1st and 3rd Floors. Sheung Shui Police Station, Fanling Roundabout, Fanling, N.T. (Attention: CIP/Traffic,NTN,HQ)

11th March,2015.

By FAX 2683 1801 and Post

Dear Sirs,

Traffic Control on Kam Shan Road, Tai Po, New Territories On Ching Ming Festival Days on 3rd to 6th April, 2015 inclusive

Please be informed that Ching Ming Festival this year falls on 5th April,2015 (Sunday). It is expected that the Buddhists followers and members of the public will come to worship their ancestors two weeks before and after the Ching Ming Festival, i.e., 29th March,2015 to 12th April,2015 inclusive, especially on Saturdays and Sundays within the aforesaid period. As there might be pedestrian and vehicular congestion around and near to our Temple campus ,we shoule be grateful if you would kindly arrange patrols on Kam Shan Road, especially the section from Hon Kar Road to Kam Shan Village Office.

Thank you for your attention and co-operation.

Yours faithfully, For and on behalf of BUDDHIST CHEUNG HA TEMPLE LTD.

(Auser AU) Administrator.

c.c. Hong Kong Police Force,

Tai Po District, Tai Po Division,

No. 4, On Po Lane, Tai Po

,New Territories. (Attention: DVC/Tai Po)

BY FAX 2144 1126 and POST

香港新芥大珊瑚山路43-45, Kam Shan Road, Tai Po, N.T., Hong Kong

Hong Kong Police Force, N T North Regional Headquarters, Traffic N.T. North Headquarters, 2nd Floor, No. 6, On Po Lane, Tai Po, N.T. (Attention: SSP/Traffic,NTN,HQ)

10 JUL 2817

20

By FAX 2665 1500 and Post

Dear Sirs,

Traffic Control on Kam Shan Road, Tai Po, New Territories On Yu Lan <u>Festival Days on 2nd to 4th Sept., 2017 inclusive</u>

Please be informed that Yu Lan Festival(盂蘭節) this year falls in early Sept.,2017. It is expected that the Buddhists followers and members of the public will come to worship their ancestors in columbaria in our Temple on the following days inclusive:---

DateDayTime2, 3, and 4Saturday to08:00 to 18:00 hrs.Sept.Monday

As there might be pedestrian and vehicular congestion around and near to our Temple campus ,we shoule be grateful if you would kindly arrange patrols on Kam Shan Road, especially the section from Hon Kar Road to Kam Shan Village Office.

Thank you for your attention and co-operation.

Yours faithfully, For and on behalf of BUDDHIST CHEUNG HA TEMPLE LTD.

(Auser AU) Administrator.

佛教長霞淨院有限公司 BUDDHIST CHEUNG HA TEMPLE LIMITED

香港新界大埔錦山路43-45號 43-45, Kam Shan Road, Tai Po, N.T., Hong Kong

- 2 -

c.c. Hong Kong Police Force, Tai Po District,

Tai Po Division,

No. 4, On Po Lane,

Tai Po,

New Territories. (Attention: DVC/Tai Po)

BY FAX 2144 1126 and POST

佛歑長霞淨院有限公司

BUDDHIST CHEUNG HA TEMPLE LIMITED

香港新界大埔錦山路43-45號 43-45,Kam Shan Road,Tai Po,N.T.,Hong Kong

香港警務署處長 (受文者---新界北高级警司) 新界北交通总部 大埔安埔里6號三楼 新界大埔

平郵及傳真 2665 1500

敬爱的警務長官,

佛教長霞淨院 2018 年 8 月 24 至 26 日盂蘭節法會 大埔錦山路交通管制問題

敬請留意,本院将於本年8月24(星期五)至26日(星期日)举行一年一度盂蘭節 法會,預料有很多善信會前来参与儀式及拜祭,至令人流及車流大量增加.如往 年一様,烦請你預先作出安排,到時派出人员,巡視本院附近錦山路尤其由漢家 路至錦山村村公所的一段地域.本院亦會相应特派員工,疏導挤塞情况.

日期表列如下:---

日期	農曆	<u>星期</u> ,	<u>時間</u>
24/8	七月十四	五 07	:00 至 19:00
25/8	七月十五	六 07	:00 至 19:00
26/8	七月十六	日 07	:00 至 17:00

多蒙合作, 如有疑问, 可电联本人, 手机 9233 5672 並顺祝安康.

副本: 大埔警署署長 (傳真 2144 1126 及平郵)

佛教長霞淨院有限公司 BUDDHIST CHEUNG HA TEMPLE LIMITED

香港新界大埔錦山路43-45號 43-45, Kam Shan Road, Tai Po, N.T., Hong Kong

香港警務署處長 (受文者---新界北高级警司) 新界北交通总部 大埔安埔里6號三楼 新界大埔

平郵及傳真 2665 1500

敬爱的警務長官,

佛教長霞淨院 2019 年清明節拜祭活動 大埔錦山路交通管制問題

敬請留意,本年清明節為4月5日(星期五),預料在此日前後壹星期會有很多善信前来本院拜祭先人,至令人流及車流大量增加.如往年一様,烦請你預先作出安排,到時派出人员,巡視本院附近錦山路尤其由漢家路至錦山村村公所的一段地域.本院亦會相应特派員工,疏導挤塞情况.

預期下列日期時段人流及車流會特别繁忙:---,表列如下:---

日期	<u>農曆</u>	星期		時間
30/3 及 31/3	二月廿四日及廿五日	六及日	ų.	07:00 至19:00
5/4,6/4 及 7/4	三月初一初二及初三日	五,六及日		07:00 至 19:00
13/4 及 14/4	三月初九及初十日	六及日		07:00 至17:00

多蒙合作,如有疑问,可电联本人,手机 9233 5672 並顺祝安康.

代表 佛教長霞淨院有限公司

潘冠球

董事兼院長 2019年2月27日

) .

副本: 大埔警署署長 (傳真 2144 1126 及平郵)

í)

)

佛教長霞淨院有限公司 BUDDHIST CHEUNG HA TEMPLE LIMITED

香港新界大埔錦山路43-45號 43-45, Kam Shan Road, Tai Po, N.T., Hong Kong

香港警務署處長 (受文者---新界北高级警司) 新界北交通总部 大埔安埔里6號三楼 新界大埔

平郵及傳真 2665 1500

敬爱的警務長官,

佛教長霞淨院 2019 年 8 月 9 至 11 日盂蘭節法會 大埔錦山路交通管制問題

敬請留意,本院将於本年8月9(星期五)至11日(星期日)举行一年一度盂蘭節法 會,預料有很多善信會前来参与儀式及拜祭,至令人流及車流大量增加.如往年 一様,烦請你預先作出安排,到時派出人员,巡視本院附近錦山路尤其由漢家路 至錦山村村公所的一段地域.本院亦會相应特派員工,疏導挤塞情况.

日期表列如下:---

日期	<u>農暦</u>	星期	時間
9/8	七月初九日	五	07:00 至 19:00
10/8	七月初十日	六	07 :00 至 19:00
11/8	七月十一日	日	07:00 至 17:00

多蒙合作, 如有疑问, 可电联本人, 手机 9233 5672 並顺祝安康.

代表 佛教長霞淨院有限公司

潘冠球

董事兼院長 2019 年 2 月 27 日

副本: 大埔警署署長 (傳真 2144 1126 及平郵)

-OPY TP3/3

PERSONAL DATA- 個人資料

香港警務處 新界北總區警察總部 新界北總區交通調查組 新界大埔安埔里6號217室

HONG KONG POLICE FORCE

Traffic New Territories, North, Traffic Investigation Group NTN Regional Headquarters, Room 217, No 6, On Po Lane, Tai Po, New Territories

本署檔號 Our Ref. : (132) in NTN 18/5/2 Pt.6 來函檔號 Your Ref. : 電話 Telephone : 3661 3409 傳真 Fax No. : 2946 1041

) 新界 大埔
 錦山路 43-45 號
 佛教長霞淨院有限公司
 董事兼院長 潘冠球

潘先生:

)

回覆-佛教長霞淨院 2019 年清明節拜祭活動及盂蘭節法會 大埔錦山路交通管制問題

本處已收悉 貴院於 2019 年 2 月 27 日致本處的兩封來信,有關 2019 年清 明節拜祭活動及盂蘭節法會大埔錦山路交通管制問題。

本處已得悉信內事項並將作出相關跟進。

如有任何查詢,請致電 3661 3408 與新界北總區交通部支援組劉毅康高級 督察聯絡。

警務處處長

2019年3月5日

佛教長霞淨院有限公司

BUDDHIST CHEUNG HA TEMPLE LIMITED

香港新界大埔錦山路43-45號 43-45, Kam Shan Road, Tai Po, N.T., Hong Kong

www.cheunghatemple.org

香港警務署處長 (受文者---新界北高级警司) 新界北交通总部 大埔安埔里6號三楼 新界大埔

平郵及傳真 2665 1500

敬爱的警務長官,

修正日期

佛教長霞淨院 2019 年 8 月 8 至 12 日盂蘭節法會 大埔錦山路交通管制問題

敬請留意,本院已修正日期,将於本年8月8日(星期四)至12日(星期一)举行一年一度盂蘭節法會,預料有很多善信會前来参与儀式及拜祭,至令人流及車流大量增加.如往年一様,烦請你預先作出安排,到時派出人员,巡視本院附近錦山路 尤其由忠信里(漢家路)至錦山村村公所的一段地域.本院亦會相应特派員工,疏 導挤塞情况.

日期表列如下:---

電話 Tel: (852) 2652 1126 / (852) 2652 1134

日期	農曆	星期	時間
8/8	七月初八日	20	07:00 至 19:00
9/8	七月初九日	五.	07:00 至 19:00
10/8	七月初十日	六	07:00 至 19:00
11/8	七月十一日	日	07:00 至 19:00
12/8	七月十二日		07:00 至 17:00

多蒙合作, 如有疑问, 可电联本人, 手机 9233 5672 並顺祝安康.

代表 佛教長霞淨院有限公司 潘冠球 董事兼院長 2019年4月26日 副本: 大埔警署署長 (傳真 2144 1126 及平郵)

傳真 Fax:(852)26521126

電郵 Email:csinfo@cheunghatemple.org

佛教長霞淨院有限公司 BUDDHIST CHEUNG HA TEMPLE LIMITED

香港新界大埔錦山路43 - 45號 43-45, Kam Shan Road, Tai Po, N.T., Hong Kong

香港警務處處長 (受文者---新界北高級警司) 新界北總區警察總部 新界北總區交通調查組 新界大埔安埔里 6 號 217 室

平郵及傳真 2946 1041 / 2667 / 1500

敬愛的警務長官,

佛教長霞淨院 2019 年重陽節拜祭活動 大埔錦山路交通管制問題

敬請留意,本年重陽節為10月7日(星期一),預料在此日前後壹星期會有很多家屬前來拜祭先人,致令人流及車流大量增加。如往年一樣,煩請您預先作出安排, 到時派出人員,巡視本院附近錦山路尤其由忠信里(漢家路)至錦山村村公所一段 地域。本院亦會相應特派員工,疏導擠塞情況。

日期表列如下:

日期	_農歷_	星期	時間
6-10-2019	九月初八日		07:00至19:00
7-10-2019	九月初九日	<u> </u>	07:00至19:00
13-10-2019	九月十五日	日	07:00 至 19:00

多蒙合作,如有任何疑問,請致電 9233 5672 與本人聯絡。

代表 佛教長霞淨院有限公司

2019年9月26日

副本:大埔警處處長 (傳真 2946 1041 及平郵)

PERSONAL DATA - 個人資料

香港警務處
 新界北總區警察總部
 新界北總區交通調查組
 新界大埔安埔里6號217室

HONG KONG POLICE FORCE

Traffic New Territories, North, Traffic Investigation Group NTN Regional Headquarters, Room 217, No 6, On Po Lane, Tai Po, New Territories

本署檔號 Our Ref. : (79) in NTN 18/5/2 Pt.7 來函檔號 Your Ref. : 電話 Telephone : 3661 3409 傳真 Fax No. : 2665 1500

新界 大埔 錦山路 43-45 號 佛教長霞淨院有限公司 董事兼院長 潘冠球

潘先生:

<u>回覆-佛教長霞淨院 2019 年重陽節拜祭活動</u> 大埔錦山路交通管制問題

本處已收悉 貴院於 2019 年 9 月 26 日致本處的來信, 有關上述重陽節拜祭 活動大埔錦山路一帶的交通管制問題。

本處已得悉信內事項,並已將上述個案轉介至大埔警區行動主任以便作出 跟進。

如有任何查詢,請致電 3661 3409 與新界北總區交通部支援組李家陞督察聯絡。

警務處處長

(李家陞代行)

2019年10月01日

佛教長霞淨院有限公司

BUDDHIST CHEUNG HA TEMPLE LIMITED

香港新界大埔錦山路43-45號 43-45, Kam Shan Road, Tai Po, N.T., Hong Kong

香港警務處處長 (受文者---新界北高级警司) 新界北交通總部 大埔安埔里6號三樓 新界大埔

平郵及傳真 2665 1500

敬爱的警務長官,

佛教長霞淨院 2020 年清明節拜祭活動 大埔錦山路交通管制問題

敬請留意,本年清明節為4月4日(星期六),雖然我們已請各善位避免於清明正 日及公衆假日前來拜祭先人及利用本院 Apps 預约拜祭,然而預料在此日前後壹 星期會有很多善信前来本院拜祭先人,至令人流及車流大量增加.如往年一樣, 烦請你預先作出安排,到時派出人员,巡視本院附近錦山路尤其由漢家路至錦山 村村公所的一段地域.本院亦會相應特派員工,疏導擠塞情况.

預期下列日期時段人流及車流會特别繁忙,表列如下:---

日期	<u>農曆</u>	<u>星期</u>	時間
4/4 及 5/4	三月十二日及十三日	六及日	07:00 至 19:00
10/4 至 13/4	三月十八至十一日	五至一	07:00 至 19:00

多蒙合作,如有疑问,可电联本人,手机 9233 5672 並顺祝安康.

代表 佛教長霞淨院有限公司

Im 潘冠球 佛教長霞淨院 董事兼院長 有限公司 2020年3月18日

副本: 大埔警署署長 (傳真 2144 1126 及平郵)

2 1 438 2020

大埔警署署長

大埔錦山村佛教長霞淨院 2020 年度盂蘭法事

如以往數年一樣,茲謹通知貴署我院將於下列日期時間舉行本年度盂蘭法事:

日期

28/08/2020 至 30/08/2020 (星期五 至 星期日) 時間 09:00 至 17:00

但基於 2019 新冠肺炎防疫措施,為了減少感染,本院不開放信眾來本院拜祭或觀禮,故很少 信眾會進出本院。

雷翻 Email

僅此實報貴署,共祝

安康

代表 佛教長霞淨院有限公司

(潘冠球) CHEUNG HA TEMPLE 董事兼院長 佛教長霞洋 副本送:新界北(交通)總警司

佛教長霞淨院有限公司 BUDDHIST CHEUNG HA TEMPLE LIMITED

香港新界大埔錦山路43-45號 43-45, Kam Shan Road, Tai Po, N.T., Hong Kong

2024年3月23日

香港警務處處長 新界北交通總部 新界大埔埔安埔里6號217室

親愛的警務處處長,

佛教長霞淨院 2024 年清明節拜祭活動 大埔錦山路交通管制問题

敬請垂注,本年度清明節於4月4目(星期四),當天本院有清明節法事活動舉 行。本院預料以下日期會有眾多家屬前來拜祭先人,人流及車流同時會大量增 加。

煩請貴處預先作出安排,到時派員到場巡視本院附近錦山路,尤其由忠信里(漢 家路)至錦山村村公所一段地域。本院在以下日期亦會相應特派員工,以疏導 交通擠塞情况。

日期表列如下:

農曆	星期	時間
二月廿二日	日	07:00 至 19:00
二月廿六日	四	07:00 至 19:00
二月廿九日	日	07:00 至 19:00
	<u>農曆</u> 二月廿二日 二月廿六日 二月廿九日	農曆 星期 二月廿二日 日 二月廿六日 四 二月廿九日 日

多蒙合作,如有任何疑問,請致電 9233 5672 與本人聯絡。

潘冠球 (董事及院長) 代表 佛教長霞淨院有限公司

電話 Tel : (852) 2652 1126 / (852) 2652 1134

副本:大埔警務處處長(傳真 2144 1126)

傳真 Fax:(852)26521126

電郵 Email:csinfo@cheunghatemple.org